04.04.2013 Views

FORENSIC PHYSICAL ANTHROPOLOGY - Bio Medical Forensics

FORENSIC PHYSICAL ANTHROPOLOGY - Bio Medical Forensics

FORENSIC PHYSICAL ANTHROPOLOGY - Bio Medical Forensics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>FORENSIC</strong> <strong>PHYSICAL</strong><br />

<strong>ANTHROPOLOGY</strong><br />

Proceedings 2002-2011


Forensic<br />

Physical<br />

Anthropology<br />

i<br />

American Academy of Forensic Sciences<br />

Proceedings 2002-p1


Forensic<br />

Physical<br />

Anthropology<br />

iii


AMERICAN ACADEMY OF <strong>FORENSIC</strong> SCIENCES<br />

410 North 21st Street<br />

Colorado Springs, CO 80904<br />

www.aafs.org<br />

The Proceedings of the American Academy of Forensic Sciences is an official publication of the American Academy of<br />

Forensic Sciences (AAFS) and includes various areas of the forensic sciences such as pathology, toxicology, physical anthropology,<br />

psychiatry, odontology, jurisprudence, criminalistics, questioned documents, digital sciences, engineering sciences and other<br />

disciplines. The proceedings herein are from the Physical Anthropology section for the years 2002 to 2011.<br />

As with the Proceedings in which these abstracts were originally published, there is no implication or assertion that the<br />

AAFS, any of its sections, or any member of the AAFS have verified the statements and/or conclusions of the abstracts. The views<br />

expressed in this publication are not those of the AAFS or individual members. In short, the data and opinions appearing in the<br />

abstracts are the responsibility of the individual authors alone.<br />

All contents copyright 2002-2011 by the AAFS. Unless stated otherwise, noncommercial reproduction of material<br />

contained herein is permitted by the AAFS provided that the copying is faithful to the original. No other reproduction of any form may<br />

be done without prior written permission from the AAFS. Printed in the United States of America.<br />

iv


Preface<br />

The American Academy of Forensic Sciences (AAFS) is a multi-disciplinary<br />

professional organization created and maintained to provide leadership in the<br />

application of science to the legal system. A premier forensic science organization, its<br />

specific objectives are to promote professionalism, integrity, competency and education,<br />

and to foster scientific research, improvements in the practice of forensic science, and<br />

collaboration within the many fields of forensic science.<br />

For sixty-three years, since its founding in 1948, the AAFS has served a<br />

distinguished and diverse membership. It comprises eleven different sections representing<br />

the broad range of expertise and interest of its members, now numbering over 6200.<br />

Included among them are physicians, attorneys, dentists, toxicologists, physical<br />

anthropologists, document examiners, psychiatrists, physicists, engineers, criminalists,<br />

educators, and digital evidence specialists. Representing all fifty US states, all ten<br />

Canadian provinces and 61 other countries from all corners of the world, AAFS members<br />

actively practice forensic science. In many cases, AAFS members also teach and conduct<br />

research in the field, producing hundreds of refereed publications and books.<br />

v


The editors express gratitude to the past and present AAFS leadership, to the<br />

AAFS staff headed by Executive Director Anne Warren, to AAFS Presidents since 1949<br />

and to our section’s directors and chair persons.<br />

Robert E. Barsley, DDS, JD<br />

2012-13<br />

Academy Presidents<br />

Douglas H. Ubelaker, PhD 2011-12 Lowell J. Levine, DDS 1980-81<br />

Joseph P. Bono, MA 2010-11 June K. Jones, MS 1979-80<br />

Thomas L. Bohan, PhD, JD 2009-10 Kurt M. Dubowski, PhD 1978-79<br />

Carol E. Henderson, JD 2008-09 B. Edward Whittaker, BS 1977-78<br />

Bruce A. Goldberger, PhD 2007-08 James T. Weston, MD 1976-77<br />

James G. Young, MD 2006-07 Robert J. Joling, JD 1975-76<br />

Edmund R. Donoghue, MD 2005-06 David A. Crown, DCrim 1974-75<br />

Ronald L. Singer, MS 2004-05 Morton F. Mason, PhD 1973-74<br />

Kenneth E. Melson, JD 2003-04 Douglas M. Lucas, MSc, DSc 1972-73<br />

Graham R. Jones, PhD 2002-03 Cyril H. Wecht, MD, JD 1971-72<br />

Mary Fran Ernst, BLS 2001-02 Edwin C. Conrad, JD, PhD 1970-71<br />

John D. McDowell, DDS, MS 2000-01 James W. Osterburg, MPA 1969-70<br />

Patricia J. McFeeley, MD 1999-00 Maier I. Tuchler, MD 1968-69<br />

Barry A.J. Fisher, MS, MBA. 1998-99 Charles S. Petty 1967-68<br />

Michael A. Peat, PhD 1997-98 Jack L. Sachs, JD 1966-67<br />

Richard Rosner, MD 1996-97 Robert B. Forney, PhD 1965-66<br />

Haskell M. Pitluck, JD 1995-96 Dwight M. Palmer, MD 1964-65<br />

Steven C. Batterman, PhD 1994-95 Oliver C. Schroeder, Jr., JD 1963-64<br />

Enrico N. Togneri, BA 1993-94 Milton Helpern, MD 1962-63<br />

Marina Stajic, PhD. 1992-93 S.R. Gerber, MD, LLB 1961-62<br />

Homer R. Campbell, Jr., DDS 1991-92 Russel S. Fisher, MD 1960-61<br />

Ellis R. Kerley, PhD. 1990-91 Ordway Hilton, MA 1959-60<br />

Richard C. Froede, MD 1989-90 John F. Williams, BS 1958-59<br />

Richard S. Frank, BS 1988-89 Val B. Satterfield, MD 1957-58<br />

Yale H. Caplan, PhD 1987-88 Alan R. Moritz 1956-57<br />

Don Harper Mills, JD, MD 1986-87 Fred E. Inbau, BS, LLB, 1955-56<br />

Arthur D. Goldman, DMD 1985-86 A.W. Freireich, MD 1954-55<br />

Maureen Casey Owens, AB 1984-85 Louis P. Regan, MD, LLB 1953-54<br />

George E. Gantner, MD 1983-84 R.N. Harger, PhD 1952-53<br />

Anthony Longhetti, BA 1982-83 S.A. Levinson, MD, PhD 1951-52<br />

Joseph H. Davis, MD<br />

1981-82<br />

vi<br />

R.B.H. Gradwohl, MD 1949-51


Physical Anthropology<br />

Board of Directors Representatives and Chairs<br />

Director<br />

vii<br />

Chair<br />

2011-2012 Norman J. Sauer, PhD Susan M.T. Myster, PhD<br />

2010-2011 Norman J. Sauer, PhD Bradley J. Adams, PhD<br />

2009-2010 Norman J. Sauer, PhD Thomas D. Holland, PhD<br />

2008-2009 Norman J. Sauer, PhD Laura C. Fulginiti, PhD<br />

2007-2008 Norman J. Sauer, PhD Michael W. Warren, PhD<br />

2006-2007 Douglas H.Ubelaker, PhD Todd W. Fenton, PhD<br />

2005-2006 Douglas H.Ubelaker, PhD Paul S. Sledzik, MS<br />

2004-2005 Douglas H.Ubelaker, PhD Marilyn R. London, MA<br />

2003-2004 Douglas H.Ubelaker, PhD Elizabeth A. Murray, PhD<br />

2002-2003 Douglas H.Ubelaker, PhD John A. Williams, PhD<br />

2001-2002 Kathleen J. Reichs, PhD Jerry Melbye, PhD<br />

2000-2001 Kathleen J. Reichs, PhD Anthony B. Falsetti, PhD<br />

1999-2000 Kathleen J. Reichs, PhD David M. Glassman, PhD<br />

1998-1999 Kathleen J. Reichs, PhD Diane L. France, PhD<br />

1997-1998 Kathleen J. Reichs, PhD Karen Ramey Burns, PhD<br />

1996-1997 Kathleen J. Reichs, PhD Alison Galloway, PhD<br />

1995-1996 Michael Finnegan, PhD Kathleen J. Reichs, PhD<br />

1994-1995 Michael Finnegan, PhD Kenneth A.R. Kennedy, PhD<br />

1993-1994 Michael Finnegan, PhD Madeleine J. Hinkes, PhD<br />

1992-1993 William R. Maples, PhD Norman J. Sauer, PhD<br />

1991-1992 William R. Maples, PhD Ted A. Rathbun, PhD<br />

1990-1991 William R. Maples, PhD Douglas H. Ubelaker, PhD<br />

1989-1990 William R. Maples, PhD Robert I. Sundick, PhD<br />

1988-1989 Ellis R. Kerley, PhD J. Michael Hoffman, MD, PhD<br />

1987-1988 Ellis R. Kerley, PhD George W. Gill, PhD<br />

1986-1987 Ellis R. Kerley, PhD J. Stanley Rhine, PhD<br />

1985-1986 Ellis R. Kerley, PhD J. Stanley Rhine, PhD<br />

1984-1985 Ellis R. Kerley, PhD Judy M. Suchey, PhD<br />

1983-1984 William R. Maples, PhD Richard L. Jantz, PhD<br />

1982-1983 William R. Maples, PhD William M. Bass, III, PhD<br />

1981-1982 William R. Maples, PhD Michael Finnegan, PhD<br />

1980-1981 Walter H. Birkby, PhD Sheilagh T. Brooks, PhD<br />

1979-1980 Walter H. Birkby, PhD Martha D. Graham, PhD<br />

1978-1979 Walter H. Birkby, PhD William R. Maples, phD<br />

1977-1978 Clyde C. Snow, PhD Rodger Heglar, PhD<br />

1976-1977 Clyde C. Snow, PhD Walter H. Birkby, PhD<br />

1975-1976 Clyde C. Snow, PhD Ellis R. Kerley, PhD<br />

1974-1975 Ellis R. Kerley, PhD William M. Bass, III, PhD


1973-1974 Ellis R. Kerley, PhD Ellis R. Kerley, PhD<br />

1972-1973 Ellis R. Kerley, PhD Ellis R. Kerley, PhD<br />

Our heartfelt thanks to the Academy Staff for managing the proceedings process<br />

that results in the highest standards of quality including Sonya Bynoe, Publications &<br />

Website Coordinator; Debbie Crockett, Finance Manager; Sondra Doolittle, Meetings &<br />

Exposition Manager; Phyllis Gilliam, Receptionist; Salena Grant, Assistant Meetings<br />

Manager; Cheryl Hunter, Membership Coordinator; Nancy Jackson, Director of<br />

Development & Accreditation; Tracie McCray, Accounting Assistant; Christie Vigil,<br />

Membership Assistant; and Kimberly Wrasse, Executive Assistant.<br />

This further acknowledges the excellent work of all our Physical Anthropology<br />

authors and colleagues worldwide who are willing to share their work for education.<br />

viii<br />

Douglas H. Ubelaker, PhD<br />

Norman J. Sauer, PhD<br />

Susan M.T. Myster, PhD<br />

Prepared by:<br />

Laura L. Liptai, PhD 1<br />

Engineering Sciences<br />

1 The Executive Committee of The American Academy of Forensic Sciences has directed Laura Liptai,<br />

Ph.D. of the Engineering Sciences Section to prepare this volume for publication.


Table of Contents<br />

Index of Title by Year<br />

2011 .................................................................................................................................................................. Index 1<br />

2010 ............................................................................................................................................................... Index 12<br />

2009 ............................................................................................................................................................... Index 29<br />

2008 ............................................................................................................................................................... Index 41<br />

2007 ............................................................................................................................................................... Index 55<br />

2006 ............................................................................................................................................................... Index 67<br />

2005 ............................................................................................................................................................... Index 76<br />

2004 ............................................................................................................................................................... Index 85<br />

2003 ............................................................................................................................................................... Index 94<br />

2002 ............................................................................................................................................................. Index 100<br />

Index by Presenting Author ............................................................................ Index 107<br />

Proceedings by Year<br />

2011 ............................................................................................................................................................................... 1<br />

2010 ............................................................................................................................................................................ 64<br />

2009 ......................................................................................................................................................................... 145<br />

2008 ......................................................................................................................................................................... 216<br />

2007 ......................................................................................................................................................................... 293<br />

2006 ......................................................................................................................................................................... 361<br />

2005 ......................................................................................................................................................................... 410<br />

2004 ......................................................................................................................................................................... 466<br />

2003 ......................................................................................................................................................................... 531<br />

2002 ......................................................................................................................................................................... 574<br />

ix


Monitoring the Long-Term Applicability of<br />

Ground-Penetrating Radar Using Proxy<br />

Cadavers<br />

Monitoring the Applicability of Ground-<br />

Penetrating Radar on Detecting Shallow<br />

Graves Using Proxy Cadavers<br />

Taphonomy of a Mass Grave in Mid-<br />

Michigan: The Case of the Missing Cattle<br />

The Fromelles Project: Organizational and<br />

Operational Structures of a Large Scale<br />

Mass Grave Excavation and On-Site<br />

Anthropological Analysis<br />

Blast Injury in Skeletal Remains: The Case<br />

of a Soldier From WWI<br />

Peri-Mortem Fracture Patterns in South-<br />

Central Texas: A Preliminary Investigation<br />

Into the Peri-Mortem Interval<br />

Index of Title by Year<br />

2011<br />

William T. Hawkins, BA*, 10215 Blanchard Park Trail,<br />

Apartment 2314, Orlando, FL 32817; Joanna M. Fletcher,<br />

BA, 9941 Timber Oaks Court, Orlando, FL 32817; and<br />

John J. Schultz, PhD, University of Central Florida,<br />

Department of Anthropology, PO Box 25000, Orlando, FL<br />

32816<br />

Joanna M. Fletcher, BA*, 9941 Timber Oaks Court,<br />

Orlando, FL 32817; William T. Hawkins, BA, 10215<br />

Blanchard Park Trail, Apartment 2314, Orlando, FL<br />

32817; and John J. Schultz, PhD, University of Central<br />

Florida, Department of Anthropology, PO Box 25000,<br />

Orlando, FL 32816<br />

Mary S. Megyesi, PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853; Lindsey L.<br />

Jenny, MA, Michigan State University, East Lansing, MI<br />

48823; Cate Bird, MA, 2740 Senate Drive, #3E, Lansing,<br />

MI 48912; Amy Michael, MA, 528 West Lapeer Street,<br />

Lansing, MI 48933; and Angela Soler, MA, and Jane<br />

Wankmiller, MA, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institute, Shrivenham, SN6<br />

8LA, UNITED KINGDOM; and Louise Loe, PhD, Oxford<br />

Archaeology, Janus House, Osney Mead, Oxford, OX2 0ES,<br />

UNITED KINGDOM<br />

Martin Smith, PhD, and Marie Christine Dussault, MSc*,<br />

Bournemouth University, Centre for Forensic Science,<br />

Christchurch House, Poole, BH12 5BB, UNITED<br />

KINGDOM<br />

Rebecca E. Shattuck, MA*, 809 Green Meadows Drive,<br />

Apartment #305, Columbia, MO 65201<br />

Analysis of Primary Blast Rib Fractures Angi M. Christensen, PhD, FBI Laboratory, 2501<br />

Investigation Parkway, Quantico, VA 22135; and Victoria<br />

A. Smith, MA*, ORAU, 2501 Investigation Parkway,<br />

Pattern and Distribution of Fractures in<br />

the William M. Bass and Hamann-Todd<br />

Osteological Collections<br />

Quantico, VA<br />

Shauna McNulty, MA*, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Index 1<br />

1<br />

1<br />

2<br />

3<br />

3<br />

4<br />

4<br />

5


No Country for Young Pigs: Identifying<br />

the Use of Captive Bolt Pistols in Non-<br />

Natural Death Occurrences<br />

Defining Intimate Partner Violence: New<br />

Case Studies in IPV<br />

Skeletal Trauma Patterns in a Vietnam-<br />

Era Aircraft Loss: Part I - Lower<br />

Extremities<br />

The Central Identification Unit (CIU)<br />

During the Korean War<br />

Introducing COFFA: An International<br />

Consortium of Forensic Anthropology<br />

Programs<br />

The American Board of Forensic<br />

Anthropology: Historical Trends in<br />

Research and Training<br />

The Scientific Working Group for Forensic<br />

Anthropology: An Update<br />

Involvement of Forensic Anthropologists in<br />

the National Unidentified and Missing<br />

Persons System (NamUs)<br />

Diversification: Evolving Professional<br />

Roles for the Forensic Anthropologist in<br />

the Medicolegal System<br />

Scott A. Kirkland, MA*, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695; Sarah L. Cunningham, MA,<br />

Binghamton University, Department of Anthropology, PO<br />

Box 6000, Binghamton, NY 13902; Jonathan Cammack,<br />

MS, North Carolina State University, Department of<br />

Entomology, Campus Box 7626, Raleigh, NC 27695; Ann<br />

H. Ross, PhD, North Carolina State University, Department<br />

of Sociology & Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107; and D. Wes Watson, PhD, North Carolina<br />

State University, Department of Entomology, Campus Box<br />

7626, Raleigh, NC 27612<br />

Chelsey Juarez, MA*, University of California - Santa<br />

Cruz, Social Science 1, Department of Anthropology, 1156<br />

High Street, Santa Cruz, CA 95064; and Cris E. Hughes,<br />

MA, 2306 East Delaware Avenue, Urbana, IL 61802<br />

Matthew Rhode, PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam, AFB, HI 96853<br />

Kathleen M. Loyd, MA*, Joint POW-MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Ann H. Ross, PhD*, North Carolina State University,<br />

Department of Sociology & Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107; and Erin H. Kimmerle,<br />

PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

Jonathan D. Bethard, MA*, Pellissippi State Community<br />

College, 10915 Hardin Valley Road, PO Box 22990,<br />

Knoxville, TN 37933<br />

Thomas D. Holland, PhD*, DoD JPAC, Central ID Lab,<br />

310 Worchester Avenue, Hickam AFB, HI 96853<br />

Bruce E. Anderson, PhD, Forensic Science Center, Office<br />

of the <strong>Medical</strong> Examiner, 2825 East District Street, Tucson,<br />

AZ 85714; Elizabeth A. Murray, PhD*, College of Mount<br />

Saint Joseph, Department of <strong>Bio</strong>logy, 5701 Delhi Road,<br />

Cincinnati, OH 45233-1670; Susan M.T. Myster, PhD,<br />

Hamline University, MB 196, 1536 Hewitt Avenue, Saint<br />

Paul, MN 55104; and Jennifer C. Love, PhD, Harris<br />

County Institute of Forensic Sciences, 1885 Old Spanish<br />

Trail, Houston, TX 77054<br />

Gwendolyn M. Haugen, MA*, Saint Louis County <strong>Medical</strong><br />

Examiner’s Office, 6039 Helen Avenue, Saint Louis, MO<br />

63134; Gina O. Hart, MA, 325 Norfolk Street, Newark, NJ<br />

07103-2701; and Pamela M. Steger, MS, 934 Sycamore<br />

Street, San Marcos, TX 78666<br />

Index 2<br />

6<br />

6<br />

7<br />

7<br />

8<br />

8<br />

9<br />

10<br />

10


Forensic Anthropology and Virtual Human<br />

Remains: Ethics in Uncharted Territory<br />

Femmes Fatales: Why Do Women<br />

Dominate the Discipline of Forensic<br />

Anthropology?<br />

Development of the Colombian Skeletal<br />

Collection<br />

A Bayesian Approach to Multifactorial<br />

Age-at-Death Estimation<br />

The Use of Vertebral Osteoarthritis and<br />

Osteophytosis in Age Estimation<br />

Error and Uncertainty in Pelvic Age<br />

Estimation Part II: Younger vs. Older<br />

Adult Females<br />

Assumptions and Bias in Recalibrating Age<br />

Standards Across Populations<br />

Sacral Epiphyseal Fusion at S1-S2:<br />

Classification, Comparability, and Error<br />

An Evaluation of the Chen et al. Pubic<br />

Aging Method on a North American<br />

Sample<br />

The Accuracy of the Lamendin Method of<br />

Dental Aging in Teeth With Fillings<br />

Stephanie L. Davy-Jow, PhD*, Liverpool John Moores<br />

University, James Parsons Building, Byrom Street,<br />

Liverpool, L3 3AF, UNITED KINGDOM; Summer J.<br />

Decker, MS, USF COM Department of Pathology, 12901<br />

Bruce B. Downs Boulevard, MDC 11, Tampa, FL 33612;<br />

and Diane L. France, PhD, Colorado State University,<br />

Human Identification Lab, Department of Anthropology,<br />

Fort Collins, CO 80523<br />

Anna Williams, PhD*, Cranfield University, Defense<br />

Academy of the United Kingdom, Shrivenham, SN6 8LA,<br />

UNITED KINGDOM<br />

Cesar Sanabria, MA*, Instituto de Medicina Legal y<br />

Ciencias Forenses, Calle 7a #12-61, Segundo Piso, Bogota,<br />

COLOMBIA; and Elizabeth A. DiGangi, PhD*, ICITAP,<br />

Calle 125 #19-89, Office 401, Bogota, COLOMBIA<br />

Natalie M. Uhl, MS*, 308 North Orchard Street, Apartment<br />

7, Urbana, IL 61801; Nicholas V. Passalacqua, MS, 1559<br />

Mount Vernon, East Lansing, MI 48823; and Lyle W.<br />

Konigsberg, PhD, University of Illinois, 109 Davenport<br />

Hall, 607 South Mathews Avenue, Urbana, IL 61801<br />

Ginesse A. Listi, PhD*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, Baton Rouge, LA 70803<br />

Allysha P. Winburn, MA*, and Carrie A. Brown, MA, Joint<br />

POW/MIA Acct Command, Central Identification Lab, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Erin H. Kimmerle, PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; and Lyle W. Konigsberg, PhD,<br />

University of Illinois, Department of Anthropology, 109<br />

Davenport Hall, 607 South Mathews Avenue, Urbana, IL<br />

61801<br />

Carrie A. Brown, MA*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, JPAC-CIL,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853<br />

Julie M. Fleischman, BA*, Michigan State University, 560<br />

Baker Hall, East Lansing, MI 48824<br />

Kristin E. Horner, MA*, Secchia Center, 15 Michigan<br />

Street Northeast, Grand Rapids, MI 49503<br />

Index 3<br />

11<br />

11<br />

12<br />

13<br />

13<br />

14<br />

15<br />

16<br />

16<br />

17


Three-Dimensional Geometric<br />

Morphometric Analysis and Multislice<br />

Computed Tomography: Application for<br />

Adult Sexual Dimorphism in Human Coxal<br />

Bone<br />

Estimation of Stature From Foot and its<br />

Segments in a Sub-Adult Population of<br />

North India<br />

New Linear Measurements for the<br />

Estimation of Sex From the Human<br />

Sacrum<br />

Sex Discrimination Using Patellar<br />

Measurements: Method and Validation<br />

Study<br />

Sex Estimation Using the Petrous Portion<br />

of the Temporal Bone By Linear<br />

Regression Anaylsis<br />

Age Estimation Utilizing Postnatal Dental<br />

Mineralization: An Exploratory Analysis<br />

of Molar Development for a Contemporary<br />

Florida Population.<br />

A New Method for Height Estimation<br />

Using Photogrammetry: Reliability and<br />

Validity<br />

Fabrice Dedouit, Ph D*, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean Poulhès,<br />

TSA 50032, Toulouse Cedex 9, 31059, FRANCE; Marie<br />

Faruch Bifeld, MS, Service de Médecine Légale, CHU<br />

Toulouse-Rangueil, 1 Avenue Professeur Jean Poulhès,<br />

Toulouse Cedex 9, 31059, FRANCE; José Braga, PhD,<br />

Laboratoire d’Anthropobiologie AMIS, FRE 2960 CNRS,<br />

Université Paul Sabatier, 37 allées Jules Guesde, Toulouse,<br />

31000, FRANCE; Nicolas Sans, PhD, Service de<br />

Radiologie, CHU Toulouse-Purpan, Place du Docteur<br />

Baylac, Toulouse, 31059, FRANCE; Hervé Rousseau, PhD,<br />

Service de Radiologie, CHU Toulouse-Rangueil, 1 Avenue<br />

Professeur Jean Poulhès, Toulouse, 31059, FRANCE; Eric<br />

Crubezy, PhD, Laboratoire d’Anthropobiologie AMIS, FRE<br />

2960 CNRS, Université Paul Sabatier, 37 allées Jules<br />

Guesde, Toulouse, 31000, FRANCE; Daniel Rouge, PhD,<br />

Service de Médecine Légale, CHU Toulouse-Rangueil, 1<br />

Avenue Professeur Jean Poulhès, Toulouse, 31059,<br />

FRANCE; and Norbert Telmov, PhD, Service Medico-<br />

Judiciaire, CHU Rangueil, 1 Avenue Jean Poulhes,<br />

Toulouse, F-31054, FRANCE<br />

Kewal Krishan, PhD*, Panjab University, Department of<br />

Anthropology, Sectoc-14, Chandigarh, 160 014, INDIA;<br />

Tanuj Kanchan, MD, Kasturba <strong>Medical</strong> College,<br />

Department of Forensic Medicine, Light House Hill Road,<br />

Mangalore, 575 001, INDIA; and Neelam Passi, MSc,<br />

Panjab University, Department of Anthropology, Sector-14,<br />

Chandigarh, HI 160 014, INDIA<br />

Jennifer M. Vollner, MS*, 328 Baker Hall, East Lansing,<br />

MI 48824; Nicholas V. Passalacqua, MS, 1559 Mount<br />

Vernon, East Lansing, MI 48823; and Christopher W.<br />

Rainwater, MS, Office of the Chief <strong>Medical</strong> Examiner, 520<br />

1st Avenue, New York, NY 10016<br />

Matthew Rhode, PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam, AFB, HI 96853<br />

Dolly K. Stolze, MA*, 1900 Huntington Lane, Apartment 4,<br />

Redondo Beach, CA 90278<br />

Meryle A. Dotson, BA*, University of South Florida, 4202<br />

East Fowler Avenue, Soc 107, Tampa, FL 33620; Erin H.<br />

Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820; and Lyle W. Konigsberg, PhD, University of Illinois,<br />

Department of Anthropology, 109 Davenport Hall, 607<br />

South Mathews Avenue, Urbana, IL 61801<br />

Antonio De Donno, PhD*, and Bruno Morgese, MD,<br />

Section of Legal Medicine - University of Bari, Pizza Giulio<br />

Cesare n.11, Bari, 70124, ITALY; Maurizio Scarpa, MD,<br />

Pizza G. Cesare 11 University of Bari, Bari, ITALY; and<br />

Francesco Introna, PhD, Section of Legal Medicine -<br />

DiMIMP, P.zza Giulio Cesare n.11, Bari, 70124, ITALY<br />

Index 4<br />

17<br />

18<br />

19<br />

19<br />

20<br />

20<br />

21


Contribution of the Maxillary Sinus<br />

Analysis for Human Identification<br />

Evaluating the Performance of Population<br />

Estimation Methods in Commingled<br />

Skeletal Assemblages<br />

Revising Revisions: Modification of the<br />

Measurement of the Sacral Body Height<br />

for Use in Fully’s (1956) Anatomical<br />

Method of Stature Estimation<br />

Investigating Between Group Differences<br />

in Zygomaxillary Suture Form Using<br />

Fourier Analysis<br />

An Investigation and Critique of the<br />

DiGangi et al. (2009) First Rib Aging<br />

Method<br />

Cervical Vertebral Centra Epiphyseal<br />

Union as an Age Estimation Method in<br />

Teenage and Young Adult Skeletons<br />

A Pilot Study in the Forensic Potential of<br />

the Health Index<br />

Demographic Differences of Homicide<br />

Victims Examined by Forensic<br />

Anthropologists in Comparison to National<br />

Homicide Victim Trends<br />

Ancestry Estimation Using Random Forest<br />

Modeling<br />

Ancestry Determination From Foramen<br />

Magnum<br />

Group Classification Using Traditional<br />

Craniometrics, Angle Measurements,<br />

Geometric Morphometric Techniques, and<br />

the Potential Applications of These<br />

Methods to Fragmentary Crania<br />

Jamilly O. Musse, PhD*, Jeidson A.M. Marques, PhD,<br />

Faculty of Dentistry, Feira de Santana State University<br />

(UEFS), Fanco Manoel da Silva, 437, Cidade Nova, Feira<br />

de Santana - Bahia, 44053-060, BRAZIL; and Rogério N.<br />

Oliveira, PhD, University of São Paulo, Lineu Prestes,<br />

5081, Cidade Universitária, São Paulo, 05508-000,<br />

BRAZIL<br />

Bradley I. Lanning, MA*, Jolen Anya Minetz, MA, and<br />

Jennie J.H. Jin, PhD, JPAC-CIL, 310 Worchester Avenue<br />

Building 45, Hickam AFB, HI 96835<br />

Atsuko Hayashi, BA*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853-<br />

5530<br />

Sabrina B. Sholts, PhD*, Department of Anthropology,<br />

Santa Barbara, CA 93106-3210; and Sebastian K.T.S.<br />

Wärmländer, PhD, Stockholm University, Division of<br />

<strong>Bio</strong>physics, Stockholm, 10691, SWEDEN<br />

Sara M. Getz, BS*, Mercyhurst College, Department of<br />

Applied Forensic Sciences, 501 East 38th Street, Erie, PA<br />

16546<br />

A. Midori Albert, PhD*, University of North Carolina -<br />

Wilmington, Department of Anthropology, 601 South<br />

College Road, Wilmington, NC 28403-5907<br />

Nicholas V. Passalacqua, MS*, 1559 Mount Vernon, East<br />

Lansing, MI 48823; Jennifer M. Vollner, MS, 328 Baker<br />

Hall, East Lansing, MI 48824; Dominique Semeraro, MS,<br />

Office of State <strong>Medical</strong> Examiners, 48 Orms Street,<br />

Providence, RI 02904; and Christopher W. Rainwater, MS,<br />

Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New<br />

York, NY 10016<br />

Alma Koon, BS*, 731 Pond Branch Road, Lexington, SC<br />

29073; and Katherine E. Weisensee, PhD*, Clemson<br />

University, Department of Sociology & Anthropology, 132<br />

Brackett Hall, Clemson, SC 29634<br />

Joseph T. Hefner, PhD*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96583;<br />

Kate Spradley, PhD, Department of Anthropology, Texas<br />

State University, 601 University Drive, San Marcos, TX<br />

78666; and Bruce E. Anderson, PhD, Forensic Science<br />

Center, Office of the <strong>Medical</strong> Examiner, 2825 East District<br />

Street, Tucson, AZ 85714<br />

Stephanie Marie Crider, MA*, Louisiana State University,<br />

Department of Geography and Anthropology, 227 Howe-<br />

Russell-Kniffen Geosciences Complex, Baton Rouge, LA<br />

70803; and Mary H. Manhein, MA, Department of<br />

Geography & Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Jolen Anya Minetz, MA*, and Jiro Manabe, MA, JPAC-<br />

CIL, 310 Worchester Avenue Building 45, Hickam AFB,<br />

Honolulu, HI 96853<br />

Index 5<br />

21<br />

22<br />

23<br />

23<br />

24<br />

24<br />

25<br />

25<br />

26<br />

27<br />

27


Sex and Ancestry Estimation Using the Michael W. Kenyhercz, MS*, 6327 Catawba Drive,<br />

Olecranon Fossa<br />

Canfield, OH 44406<br />

Applicability of Femur Subtrochanteric Sean D. Tallman, MA*, and Allysha P. Winburn, MA, Joint<br />

Shape to Ancestry Assessment<br />

POW/MIA Acct Command, Central ID Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853-<br />

5530<br />

Improving Sex Estimation From the Natalie R. Shirley, PhD*, University of Tennessee,<br />

Cranium Using 3-Dimensional Modeling Department of Anthropology, 250 South Stadium Hall,<br />

From CT Scans<br />

Knoxville, TN 37996; Emam E.A. Fatah, MS, Center for<br />

Musculoskeletal Research, University of Tennessee, 307<br />

Perkins Hall, Knoxville, TN 37996; Richard Jantz, PhD,<br />

University of Tennessee, Department of Anthropology,<br />

Knoxville, TN 37996-0720; and Mohamed Mahfouz, PhD,<br />

Center for Musculoskeletal Research, University of<br />

Tennessee, 307 Perkins Hall, Knoxville, TN 37996<br />

Dismemberment: Cause of Death in the Isla Y. Campos Varela*, and Maria D. Morcillo, MD,<br />

Colombian Armed Conflict<br />

National Institute of Legal Medicine, Calle 7 A Number 12-<br />

61, Piso 3, Bogota, COLOMBIA<br />

CPR Fractures in Infants: When Do They Miriam E. Soto, MA*, The University of Tennessee, 250<br />

Occur?<br />

South Stadium Hall, Knoxville, TN 37996<br />

The Relationship Between Directionality of Tammy S. Thomas, BS*, 910 San Jacinto Street, Lockhart,<br />

Force and the Formation of Butterfly TX 78644; and Tal Simmons, PhD, School of Forensic &<br />

Fractures<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, PR1 2HE, UNITED KINGDOM<br />

Microscopic Analysis of Sharp Force Christopher W. Rainwater, MS*, and Christian Crowder,<br />

Trauma From Knives: A Validation Study PhD, Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016; and Jeannette S. Fridie, MA,<br />

520 First Avenue, Forensic Anthropology Unit, New York,<br />

NY 10016<br />

Strontium Particles: Confirmation of Alicja K. Kutyla, MS*, Department of Anthropology,<br />

Primer Derived Gunshot Residue on Bone University of Tennessee, 250 South Stadium Hall,<br />

in an Experimental Setting<br />

Knoxville, TN 37996-0720; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Determining the Epidemiology of Hyoid Samantha M. Seasons, BA*, University of South Florida,<br />

Fractures in Cases of Hanging and 4202 East Fowler Avenue, Tampa, FL 33620; Charles A.<br />

Strangulation<br />

Dionne, MA, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler Avenue, Soc 107, Tampa,<br />

FL 33620-7200; Leszek Chrostowski, MD, Hillsborough<br />

County <strong>Medical</strong> Examiner’s Office, 11025 North 46th<br />

Street, Tampa, FL 33617; and Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler, Soc 107, Tampa, FL 33820<br />

Fusion Patterns in Modern Hyoid Bones Charles A. Dionne, MA*, and Samantha M. Seasons, BA,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, Soc 107, Tampa, FL 33620;<br />

Leszek Chrostowski, MD, Hillsborough County <strong>Medical</strong><br />

Examiner’s Office, 11025 North 46th Street, Tampa, FL<br />

33617; and Erin H. Kimmerle, PhD, University of South<br />

Florida, Department of Anthropology, 4202 East Fowler,<br />

Soc 107, Tampa, FL 33820<br />

The Prosecution of a 28-Year-Old Case of Turhon A. Murad, PhD*, California State University -<br />

Shaken Baby Syndrome<br />

Chico, Department of Anthropology, 400 West First Street<br />

Chico, Chico, CA 95929-0400<br />

Index 6<br />

28<br />

29<br />

29<br />

30<br />

31<br />

31<br />

32<br />

32<br />

33<br />

33<br />

34


Infanticide and Unclear Law: The Death of<br />

Four Infants<br />

Proficiency and Competency Testing —<br />

What They Are, What They Are Not<br />

Errors, Error Rates, and Their Meanings<br />

in Forensic Science<br />

A Simulation for Exploring the Effects of<br />

the “Trait List” Method’s Subjectivity on<br />

Consistency and Accuracy of Ancestry<br />

Estimations<br />

The More the Better?: Evaluating the<br />

Impact of Fixed Semi-Landmark Number<br />

in Cranial Shape Variation Analyses<br />

A Performance Check of Ear Prediction<br />

Guidelines Used in Facial Approximation<br />

Based on CT Scans of Living People<br />

The Importance of Testing and<br />

Understanding Statistical Methods in the<br />

Age of Daubert: Can FORDISC Really<br />

Classify Individuals Correctly Only One<br />

Percent of the Time?<br />

Forensic Interviews: Corroborating<br />

Evidence and Collecting Data for<br />

Anthropological Field Work<br />

Archaeological Methodology Used at the<br />

World Trade Center Site During the<br />

2006/2007 Recovery Excavation<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102,<br />

Rockville, MD 20850; Tasha Z. Greenburg, MD, University<br />

of Texas Southwestern <strong>Medical</strong> Center, 5323 Harry Hines<br />

Boulevard, Dallas, TX 7530; and David R. Fowler, MD,<br />

Office of the Chief <strong>Medical</strong> Examiner, 111 Penn Street,<br />

Baltimore, MD 21201<br />

Vincent J. Sava, MA*, JPAC, Central Identification Lab,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853<br />

Angi M. Christensen, PhD, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA<br />

22135; Christian M. Crowder, PhD*, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016;<br />

Stephen D. Ousley, PhD, Mercyhurst College, Department<br />

of Applied Forensic, Anthropology, 501 East 38th Street,<br />

Erie, PA 16546; and Max M. Houck, PhD, West Virginia<br />

University, 1600 University Avenue, 208 Oglebay Hall,<br />

Morgantown, WV 26506-6217<br />

Cris E. Hughes, PhD*, 2306 East Delaware Avenue,<br />

Urbana, IL 61802; Chelsey A. Juarez, PhD, University of<br />

California Santa Cruz, 1156 High Street, Social Science 1,<br />

Department of Anthropology, Santa Cruz, California<br />

95064; Gillian M. Fowler, MS, Lincoln University,<br />

Brayford Pool Lincoln, Lincolnshire, LN6 7TS, UNITED<br />

KINGDOM; Taylor Hughes, PhD, University of Urbana-<br />

Champaign, 2306 East Delaware Avenue, Urbana, IL<br />

61802; and Shirley C. Chacon, BA, FAFG, Avenida Simeón<br />

Cañas 10-64 zona 2, Guatemala, 01002, GUATEMALA<br />

Shanna E. Williams, PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235<br />

Pierre Guyomarc’h, MS*, Universite Bordeaux 1, UMR<br />

5199 PACEA, UMR 5199 PACEA, Universite Bordeaux 1,<br />

Av des Facultes, Bat B8, Talence, 33405, FRANCE; Carl N.<br />

Stephan, PhD, JPAC - CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Nicole D. Siegel, DVM*, Cleveland Museum of Natural<br />

History, 1 Wade Oval Drive, Cleveland, OH 44106-1767;<br />

and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East<br />

38th Street, Erie, PA 16546<br />

Charles J. Massucci, MA*, Tampa Police Department, 411<br />

North Franklin Avenue, Tampa, FL 33602; and Erin H.<br />

Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

Scott C. Warnasch, MA*, New York City Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 First Avenue, New York, NY 10016;<br />

Christian Crowder, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016; and<br />

Kristen Hartnett, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, Forensic Anthropology, 520 1st Avenue, New<br />

York, NY 10016<br />

Index 7<br />

34<br />

35<br />

36<br />

36<br />

37<br />

38<br />

38<br />

39<br />

39


World Trade Center Revisited: A Bayesian<br />

Approach to Disaster Victim Identification<br />

New Forensic Archaeological Recovery<br />

Protocols for Fatal Fire Scenes<br />

Using Spatial Analysis to Recognize<br />

Normal and Abnormal Patterns in Burned<br />

Bodies<br />

Recovery and Identification of a WWI<br />

American Doughboy in Rembercourt-sur-<br />

Mad, France<br />

The Fromelles Project – The Recovery and<br />

Identification of British and Australian<br />

WWI Soldiers From Mass Graves in<br />

Northern France<br />

Validation of X-Ray Fluorescence (XRF) to<br />

Determine Osseous or Dental Origin of<br />

Unknown Material<br />

The Condyle Connection: Forensic<br />

Implications for the Association Between<br />

the Condyles of the Femur and Tibia<br />

Craniometric Variation in the Caribbean<br />

and Latin America as Influenced by the<br />

Trans-Atlantic Slave Trade<br />

Regional Variation of the Proximal Femur<br />

in the United States: Analysis of Data From<br />

NHANES III<br />

Morphometric Evaluation of Nasal<br />

Characteristics in 20th Century White and<br />

Black South Africans<br />

Can Femoral Shape be Used to Estimate<br />

Weight?<br />

Benjamin J. Figura, MA*, New York City Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

10016<br />

Dennis C. Dirkmaat, PhD, Luis L. Cabo-Pérez, MS,<br />

Alexandra R. Klales, MS*, Erin Chapman, MS, and Allison<br />

M. Nesbitt, MS, Mercyhurst College, Department of Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

Christina L. Fojas, MS*, Department of Anthropology,<br />

Binghamton University, PO Box 6000, Binghamton, NY<br />

13902; Christopher W. Rainwater, MS, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016;<br />

Luis L. Cabo-Pérez, MS, Mercyhurst College, Department<br />

of Applied Forensic Sciences, 501 East 38th Street, Erie,<br />

PA 16546; and Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East<br />

38th, Erie, PA 16546-0001<br />

Denise To, PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Carrie A. Brown,<br />

MA, Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Building 45,<br />

Hickam AFB, HI 96853<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institute, Shrivenham, SN6<br />

8LA, UNITED KINGDOM; and Louise Loe, PhD, Oxford<br />

Archaeology, Janus House, Osney Mead, Oxford, OX2 0ES,<br />

UNITED KINGDOM<br />

Angi M. Christensen, PhD*, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Forensic Anthropology Program (TEU), Quantico, VA<br />

22135; Michael A. Smith, PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Chemistry Unit, Quantico, VA 22135; and Richard M.<br />

Thomas, PhD, Federal Bureau of Investigation Laboratory,<br />

Trace Evidence Unit, 2501 Investigation Parkway,<br />

Quantico, VA 22135<br />

Erin B. Waxenbaum, PhD*, 1810 Hinman Avenue,<br />

Evanston, IL 60208; and Kelsea Linney, BA*, Northwestern<br />

University, 1810 Hinman Avenue, Evanston, IL 60208<br />

Ashley L. Humphries, BA*, North Carolina State<br />

University, Department of Sociology & Anthropology, 334<br />

1911 Building, Campus Box 8107, Raleigh, NC 27695<br />

Richard A. Gonzalez, PhD*, Saint Lawrence University,<br />

Department of Anthropology, 1 Romoda Drive, Canton, NY<br />

13617<br />

Jennifer L. McDowell, BSc, University of Pretoria,<br />

Department of Anatomy, Basic <strong>Medical</strong> Sciences Building,<br />

PO Box 2034, Pretoria, 0001, SOUTH AFRICA; Ericka N.<br />

L’Abbe, PhD*, University of Pretoria, PO Box 5023,<br />

Pretoria, 0001, SOUTH AFRICA; and Michael W.<br />

Kenyhercz, MS, 6327 Catawba Drive, Canfield, OH 44406<br />

Gina M. Agostini, MA*, 83 Newton Street, Greenfield, MA<br />

01301<br />

Index 8<br />

40<br />

41<br />

41<br />

42<br />

43<br />

43<br />

44<br />

44<br />

45<br />

46<br />

46


Osteometric Analysis of the Vertebral<br />

Column<br />

Variation in Browridge and Chin<br />

Morphologies: Sexual Dimorphism and<br />

Covariation With Body Size<br />

Taphonomic Changes Observed on<br />

Skeletal Remains in Southeast Texas<br />

Using the Freeze-Thaw Cycle to Determine<br />

the Postmortem Interval: An Assessment of<br />

Pig Decomposition in West Central<br />

Montana<br />

Animal Scavenging and Taphonomic<br />

Interpretation: An Evaluation of the Role<br />

of Scavenger Behavior and Environmental<br />

Context in Outdoor Forensic Scenes<br />

A Longitudinal Study on the Outdoor<br />

Human Decomposition Sequence in<br />

Central Texas<br />

Taphonomy Reader Beta-Version: A<br />

Software to Help in Taphonomic<br />

Syndromes Diagnosis<br />

Comparison of Fresh Tissue Autopsy and<br />

Skeletal Analysis Reports in Colombia<br />

Conditions for Breaking Down Mummified<br />

Tissue and the Subsequent Implications for<br />

Time Since Death<br />

Comparing Human and Porcine Infant<br />

Parietal Histomorphology to Facilitate<br />

Research on Pediatric Cranial Trauma<br />

Identification vs. Cause of Death in Mass<br />

Graves Where Individuals are<br />

Commingled in Colombia<br />

Positive Identification Through<br />

Comparative Panoramic Radiography of<br />

the Maxillary Sinuses: A Validation Study<br />

Jolen Anya Minetz, MA*, JPAC/CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853; Bradley I.<br />

Lanning, MA, JPAC-CIL, 310 Worchester Avenue Building<br />

45, Hickam AFB, HI 96835; Kylie Puzzuto, West Virginia<br />

University, PO Box 6201, Morgantown, WV 26506; and<br />

Elizabeth Okrutny, BS, Central Florida University, 4000<br />

Central Florida Boulevard, Orlando, FL 32816<br />

Heather M. Garvin, MS*, Johns Hopkins University, 1830<br />

East Monument Street, Room 302, Baltimore, MD 21205<br />

Charity G. Owings, BS*, 2475 TAMU, College Station, TX<br />

77845; Nicole C. Larison, BS*, Sam Houston State<br />

University, Department of <strong>Bio</strong>logical Sciences, Box 2116,<br />

Huntsville, TX 77341; and Joan A. Bytheway, PhD, Sam<br />

Houston State University, Box 2296, Huntsville, TX 77341-<br />

2296<br />

Beatrix Dudzik, MA*, and Hillary R. Parsons, MA, 508 49<br />

Chisholm Trail, Knoxville, TN 37919-7050; and Ashley H.<br />

McKeown, PhD, University of Montana, Department of<br />

Anthropology, Missoula, MT 59812<br />

Lisa N. Bright, BS*, 1259 Hobart, Chico, CA 95926 49<br />

Joanna K. Suckling, BS*, Texas State University, 601<br />

University Drive, San Marcos, TX 78666<br />

Matteo Borrini, MS*, via del Mattone 17\a, La Spezia,<br />

19131, ITALY; Maria V. Tumbarello, Via Luigi Calabresi<br />

14, Montecatini (PT), AE 51016, ITALY<br />

Karen R. Burns, PhD*, University of Utah, Department of<br />

Anthropology, 270 South 1400 East, Salt Lake City, UT<br />

84112-0060; and Ana C. Guatame-Garcia, MSc, Calle<br />

126A #7C-45, Bogota, COLOMBIA<br />

Kanya Godde, PhD*, Texas State University, San Marcos,<br />

Department of Anthropology, 601 University Drive, San<br />

Marcos, TX 78666<br />

Lindsey L. Jenny, MA, Paige V. Wojcik, BS*, and Todd W.<br />

Fenton, PhD, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Maria D. Morcillo, MD*, and Isla Y. Campos Varela,<br />

National Institute of Legal Medicine, Calle 7 A Number 12-<br />

61, Piso 3, Bogota, COLOMBIA<br />

Angela Soler, MA*, Michigan State University, Department<br />

of Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Index 9<br />

47<br />

48<br />

48<br />

50<br />

50<br />

51<br />

52<br />

52<br />

53<br />

53


New Method of Identification Based on<br />

Computer-Assisted Radiograph<br />

Comparison<br />

Test of Osteon Circularity as a Method of<br />

Human/Non-Human Identification<br />

The Evaluation of Bone Area as a<br />

Histomorphometric Variable for<br />

Estimating Age at Death<br />

Improving Forensic Facial Reproductions<br />

Using Empirical Modeling<br />

Prediction of Mouth Shape Using<br />

Geometric Morphometrics for Facial<br />

Approximation<br />

The Effects of Avian and Terrestrial<br />

Scavenger Activity on Human Remains in<br />

the Piney Woods of Southeast Texas<br />

Scavenging Impacts on the Progression of<br />

Decomposition in Northern New England<br />

Decomposition Patterns of Human<br />

Remains Within Enclosed Environments:<br />

A Comparative Analysis of the Midwest<br />

and Southeast<br />

Using Algae to Estimate Postmortem<br />

Submersion Interval in a Louisiana Bayou<br />

Sharon M. Derrick, PhD*, Harris County Institute of<br />

Forensic Sciences, 1885 Old Spanish Trail, Houston, TX<br />

77054; John A. Hipp, PhD, <strong>Medical</strong> Metrics, Incorporated,<br />

2121 Sage Road, Houston, TX 77056; Jennifer C. Love,<br />

PhD, and Jason M. Wiersema, PhD, Harris County Institute<br />

of Forensic Sciences, 1885 Old Spanish Trail, Houston, TX<br />

77054; N. Shastry Akella, PhD, <strong>Medical</strong> Metrics,<br />

Incorporated, 2121 Sage Road, Houston, TX 77056; and<br />

Luis A. Sanchez, MD, Harris County Institute of Forensic<br />

Sciences, 1885 Old Spanish Trail, Houston, TX 77054<br />

MariaTeresa A. Tersigni-Tarrant, PhD*, MCG/UGA<br />

<strong>Medical</strong> Partnership, 279 Williams Street, Athens, GA<br />

30602; John E. Byrd, PhD, 95-033 Hokuiwa Street, #51,<br />

Mililani, HI 96853-5530; and Jiro Manabe, MA, JPAC-<br />

CIL, 310 Worchester Avenue Building 45, Hickam AFB,<br />

Honolulu, HI 96853<br />

Janna M. Andronowski, BA*, University of Toronto, 19<br />

Russell Street, Toronto, ON M5S 2S2, CANADA; and<br />

Christian Crowder, PhD, New York Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016<br />

Brian Wood, MS*, University of Tennessee, 315 Pasqua<br />

Engineering Building, Knoxville, TN 37996; Richard Jantz,<br />

PhD, Lee Meadows Jantz, PhD, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; and Mohamed Mahfouz, PhD,<br />

University of Tennessee, Center for Musculoskeletal<br />

Research, 307 Perkins Hall, Knoxville, TN 37996<br />

Pierre Guyomarc’h, MS*, Bruno Dutailly, MS, Christine<br />

Couture, PhD, and Helene Coqueugniot, PhD, Universite<br />

Bordeaux 1 - UMR 5199 PACEA, Universite Bordeaux 1,<br />

UMR 5199 PACEA - LAPP, Av des Facultes, Bat B8,<br />

Talence, 33405, FRANCE<br />

Kathryn E. Moss, BS*, 4800 Calhoun Street, Houston, TX<br />

77004; and Angela D. Rippley, BS, and Joan A. Bytheway,<br />

PhD, Sam Houston State University, Box 2296, Huntsville,<br />

TX 77341-2296<br />

Marcella H. Sorg, PhD*, University of Maine, Margaret<br />

Chase Smith Policy Center, 5784 York Complex, Building<br />

#4, Orono, ME 04469<br />

Melissa A. Pope, MA*, University of South Florida,<br />

Anthropology Department, 4202 East Fowler Avenue,<br />

Tampa, FL 33620<br />

Sophia G.D. Renke, MA*, Faculty of Law, University of<br />

Alberta, Edmonton, AB T6G 2H5, CANADA; Mary H.<br />

Manhein, MA, Department of Geography & Anthropology,<br />

Louisiana State University, Baton Rouge, LA 70803; and<br />

Sibel Bargu-Ates, PhD, Department of Oceanography and<br />

Coastal Sciences, 1235 Energy, Coast and Environment,<br />

Louisiana State University, Baton Rouge, LA 70803<br />

Index 10<br />

54<br />

55<br />

55<br />

56<br />

57<br />

57<br />

58<br />

59<br />

59


Profiling of Marine Microbial<br />

Communities Associated With<br />

Decomposing Remains Can Indicate<br />

Postmortem Submersion Interval<br />

Scavenging and Its Relationship to<br />

Decomposition in the Northern Rockies<br />

Anaerobic and Aerobic Decomposition in<br />

55-gallon Oil Drums: A Two-Year Study<br />

on the Deliberate Concealment of Remains<br />

Potential Impact of Regional Ecologies on<br />

the Estimation of Postmortem Interval:<br />

Case Comparisons From Northern New<br />

England<br />

The Relationship Between Ambient<br />

Temperature and the Temperature of<br />

Maggot Masses on Decomposing Pig and<br />

Rabbit Carcasses<br />

Gemma C. Dickson, BSc*, and Russell T.M. Poulter, PhD,<br />

University of Otago, Department of <strong>Bio</strong>chemistry, PO Box<br />

56, Dunedin, AS 9054, NEW ZEALAND; Jules A. Kieser,<br />

PhD, University of Otago, Sir John Walsh Research<br />

Institute, Faculty of Dentistry, PO Box 647, Dunedin, AS<br />

9054, NEW ZEALAND; Elizabeth W. Maas, PhD, National<br />

Institute of Water & Atmospheric Research, Ltd. (NIWA),<br />

Private Bag 14901, Wellington, AS 9054, NEW ZEALAND;<br />

and P. Keith Probert, PhD, University of Otago,<br />

Department of Marine Science, PO Box 56, Dunedin, AS<br />

9054, NEW ZEALAND<br />

Ashley H. McKeown, PhD*, University of Montana,<br />

Department of Anthropology, 32 Campus Drive, Missoula,<br />

MT 59812; Walter L. Kemp, MD, Department Of Justice,<br />

State of Montana, Forensic Science Division, 2679 Palmer,<br />

Missoula, MT 59808-6010; and Beatrix Dudzik, MA, and<br />

Hillary R. Parsons, MA, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Lauren R. Pharr, MA*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, Baton Rouge, LA 70803; and Wayne L.<br />

Kramer, PhD, Louisiana State University, Department of<br />

Entomology, 404 Life Science Building, Baton Rouge, LA<br />

70803<br />

Kerriann Marden, MA*, 3800 New Hampshire Avenue,<br />

Northwest, Apartment #509, Washington, DC 20011; and<br />

Marcella H. Sorg, PhD, University of Maine, Margaret<br />

Chase Smith Policy Center, 5784 York Complex, Building<br />

#4, Orono, ME 04469<br />

Amanda B. Troy, MSc*, 13 Castlerock, Tulla Road, Ennis,<br />

IRELAND; and Colin Moffatt, PhD, and Tal Simmons,<br />

PhD, School of Forensic & Investigative Sciences,<br />

University of Central Lancashire, Preston, PR1 2HE,<br />

UNITED KINGDOM<br />

Index 11<br />

60<br />

61<br />

61<br />

62<br />

63


Interpretation and Confirmation of<br />

Patterned Clothing Stains Observed on<br />

Both Tibiae<br />

A Preliminary Study of the Timing of<br />

Specific Characteristics of Copper and<br />

Iron Discoloration on Bone<br />

Detecting Various Burial Scenarios in a<br />

Controlled Setting Using Ground-<br />

Penetrating Radar<br />

Precision of Coordinate Landmark Data<br />

Acquired From the Os Coxa<br />

The Utility of Cohen’s Kappa for Testing<br />

Observer Error in Discrete Data and<br />

Alternatives<br />

Tags and Spurs: Morphological Features of<br />

Cranial Blunt Force Trauma Fractures<br />

Primary and Secondary Skeletal Blast<br />

Trauma<br />

Case Studies and Patterns of Postmortem<br />

Dismemberment<br />

A SEM-EDS Trace Elemental Analysis of<br />

Sharp Force Trauma on Bone<br />

2010<br />

Danielle A.M. Wieberg, MA*, Knoxville Police Department,<br />

800 Howard Baker, Jr. Avenue, PO Box 3610, Knoxville,<br />

TN 37927; and Daniel J. Wescott, PhD, Florida<br />

International University, Department of <strong>Bio</strong>logical<br />

Sciences, 11200 Southwest 8th Street, Miami, FL 333199<br />

Cate E. Bird, BA*, Michigan State University, 2740 Senate<br />

Drive, #3E, Lansing, MI 48912; and Amy R. Michael, BA,<br />

Michigan State University, 528 West Lapeer Street,<br />

Lansing, MI 48933<br />

Michael Martin, BS*, 4000 Central Florida Boulevard,<br />

Phillips Hall, Room 309, Orlando, FL 32816; and John J.<br />

Schultz, PhD, University of Central Florida, Department of<br />

Anthropology, PO Box 25000, Orlando, FL 32816<br />

Joan A. Bytheway, PhD*, Sam Houston State University,<br />

Chemistry & Forensic Science Building, 1003 Bowers<br />

Boulevard, Box 2525, Huntsville, TX 77340; and Ann H.<br />

Ross, PhD*, North Carolina State University, Sociology<br />

and Anthropology, Campus Box 8107, Raleigh, NC 27695-<br />

8107<br />

Alexandra R. Klales, MS*, 501 East 38th Street, Erie, PA<br />

16546; and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East<br />

38th Street, Erie, PA 16546<br />

Vincent H. Stefan, PhD*, Department of Anthropology,<br />

Lehman College, CUNY, 250 Bedford Park Boulevard,<br />

West, Bronx, NY 10468<br />

Angi M. Christensen, PhD*, Federal Bureau of<br />

Investigation Laboratory, Trace Evidence Unit -<br />

Anthropology, 2501 Investigation Parkway, Quantico, VA<br />

22135; Vanessa Ramos, BS, Oak Ridge Associated<br />

Universities, 2501 Investigation Parkway, Quantico, VA ;<br />

Rachealle Sanford, BA, Western Kentucky University,<br />

College Heights Boulevard, Bowling Green, KY 42101;<br />

Candie Shegogue, BS, Oak Ridge Associated Universities,<br />

2501 Investigation Parkway, Quantico, VA 22135; Victoria<br />

A. Smith, MA*, ORAU, Federal Bureau of Investigation<br />

Laboratory, Trace Evidence Unit, 2501 Investigation<br />

Parkway, Quantico, VA 22135; and W. Mark Whitworth,<br />

BS, Federal Bureau of Investigation Laboratory Explosives<br />

Unit, 2501 Investigation Parkway, Quantico, VA 22135<br />

Nicolette M. Parr, MS*, 1305 Northeast 6th Terrace,<br />

Gainesville, Florida ; Katherine Skorpinski, MA, 1626<br />

Southwest 14th Street, Aartment 16, Gainesville, FL 32608;<br />

Traci L. Van Deest, MA, 121 Southeast 16th Avenue,<br />

Apartment J201, Gainesville, FL 32601; and Laurel Freas,<br />

MA, 3425 Southwest 2nd Avenue, #246, Gainesville, FL<br />

32607<br />

Shannon E. May, MA*, 250 South Stadium Hall,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37966<br />

Index 12<br />

64<br />

64<br />

65<br />

65<br />

66<br />

66<br />

67<br />

68<br />

68


Long Bone Healing Following Trauma Lenore Barbian, PhD*, Department of History &<br />

Anthropology, Edinboro University of Pennsylvania,<br />

Schmorl’s Nodes in the Skeletal Remains of<br />

an American Military Population:<br />

Frequency, Formation, and Etiology<br />

Protocol for Objective Evidentiary<br />

Photography in Forensic Anthropology<br />

Postmortem Interval of Surface Remains<br />

During Spring in Southeast Texas<br />

Common Household Rope and an Outdoor<br />

Hanging: An Investigation Sparked by a<br />

Skeletal Case Exhibiting Cervical Vertebra<br />

Entrapment<br />

Estimating Sex of the Human Skeleton<br />

Based on Metrics of the Sternum<br />

Microscopic Markers of Trauma in<br />

Decomposed Bone and Skin<br />

Can We Estimate Stature From the<br />

Scapula? A Test Considering Sex and<br />

Ancestry<br />

Edinboro, PA 16444<br />

Kelly L. Burke, MSc*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Malina L. Reveal, MSc*, PO Box 4493, Chico, CA 95927;<br />

and Ian Hanson, MSc, Bournemouth University, Room<br />

C136, Christchurch House, Talbott Campus, Fern Barrow,<br />

Poole, BH12 5BB, UNITED KINGDOM<br />

Katelyn A. Stafford*, Sam Houston State Univeristy,<br />

Department of Chemistry, PO Box 2117, 1003 Bowers<br />

Boulevard, Huntsville, TX 77341; Kathryn E. Moss, BS*,<br />

4800 Calhoun Street, Houston, TX 77004; Natalie<br />

Lindgren, BS, Sam Houston State University, College of<br />

Criminal Justice, 1300 Bowers Boulevard, Huntsville, TX<br />

77340; and Joan A. Bytheway, PhD*, Sam Houston State<br />

University, Chemistry & Forensic Science Building, 1003<br />

Bowers Boulevard, Box 2525, Huntsville, TX 77340<br />

Alicja K. Kutyla, MS*, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996; Rebecca J. Wilson, MA, 3108 Rennoc Road,<br />

Knoxville, TN 37918; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Rosanne Bongiovanni, BA*, 601 University Drive, ELA<br />

232, San Marcos, TX 78666<br />

Anna Taborelli, MD, and Salvatore Andreola, MD, Sezione<br />

di Medicina Legale, Dipartimento di Morfologia Umana e<br />

Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY;<br />

Alessia Di Giancamillo, DVM, Dipartimento di Scienze e<br />

Tecnologie Veterinarie p, Università degli Studi, Milan,<br />

ITALY; Guendalina Gentile, BSc, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, Via Mangiagalli, 37, Milano, ITALY; Daniele<br />

Gibelli, MD*, and Marketa Pechnikova, BSc, Laboratorio<br />

di Antropologia e Odontologia Forense, Sezione di<br />

Medicina Legale, Dipartimento di Morfologia Umana e<br />

Scienze <strong>Bio</strong>mediche, Via Mangiagalli, 37, Milan, ITALY;<br />

Cinzia Domeneghini, DVM, Dipartimento di Scienze e<br />

Tecnologie Veterinarie, Università degli Studi, Milan,<br />

ITALY; Marco Grandi, MD, Sezione di Medicina Legale e<br />

delle Assicurazioni di Milano, Dipartimento di Morfologia<br />

Umana e Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan,<br />

ITALY; and Cristina Cattaneo, PhD, Laboratorio di<br />

Antropologia e Odontologia Forense, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY<br />

Rachel M. Burke, MA*, 10024 Northeast 120th Sreet #D3,<br />

Kirkland, WA<br />

Index 13<br />

69<br />

70<br />

70<br />

71<br />

71<br />

72<br />

73<br />

73


A Pilot Study on Nuclear DNA Recovery<br />

From Charred White-Tailed Deer<br />

(Odocoileus virginianus) Bone Tissue<br />

Rolling Bones: A Field “System” for the<br />

Recovery and Transportation of Fragile<br />

Skeletal Evidence<br />

The Effects of Fire Suppression Techniques<br />

on Burned Bone<br />

Burned Beyond Recognition: Can the<br />

<strong>Bio</strong>logical Profile Be Estimated From<br />

Unprocessed Human Cremated Remains?<br />

Effects of Heat-Modification on Sharp<br />

Force Trauma in Charred Remains<br />

Teaching Forensic Field Methods to<br />

Anthropology Students: The University of<br />

West Florida Model<br />

Fatal Fire Modeling: Replicating<br />

Environmental and Human Factors<br />

Associated With the Recovery and Analysis<br />

of Burned Human Remains<br />

Differentiating Peri- and Postmortem<br />

Fractures in Burned Postcranial Remains<br />

Towards a Standardization of Burnt Bone<br />

Analysis: The Use of Micro-Computed<br />

Tomography and 3-Dimensional Imaging<br />

to Assess Morphological Change<br />

Mama Mia! Murder and Disposal of a<br />

Corpse in a Pizza Oven<br />

XRD and FTIR: A Diagnostic Tool to<br />

Determine Whether or Not a DNA Profile<br />

Can Be Successfully Generated From Heat<br />

Treated Bone Prior to DNA Extraction<br />

Taphonomic Patterns: Can Brush Fires<br />

Mimic the Natural Decomposition of Heavy<br />

Muscle Markers on Bone?<br />

Differential Decomposition Patterns in<br />

Charred Versus Un-Charred Remains<br />

Rethinking Bone Trauma: A New<br />

<strong>Bio</strong>mechanical Continuum Based<br />

Approach<br />

Jordan N. Espenshade, BS*, 1420 Centre Avenue,<br />

Apartment 103, Pittsburgh, PA 15282; and Lisa Ludvico,<br />

PhD, Duquesne University Department of <strong>Bio</strong>logy, 341<br />

Fisher Hall 600 Forbes Avenue, Pittsburgh, PA 15282<br />

Julie M. Saul, BA*, Lucas County Coroner’s Office<br />

Forensic Anthropology Lab, 2595 Arlington Avenue,<br />

Toledo, OH 43614-2674; Frank P. Saul, PhD*, Lucas<br />

County Coroners Office, US HHS DMORT 5, 2595<br />

Arlington Avenue, Toledo, OH 43614-2674; G. Michael<br />

Pratt, PhD, Heidelberg University, Department of<br />

Anthropology, 310 East Market Street, Tiffin, OH 44993;<br />

Richard P. Brownley, BA, Ohio Peace Officers Training<br />

Academy, 1650 State Route 56, London, OH 43140; and<br />

Lauri M. Martin, PhD, University of Texas, Austin,<br />

Department of Anthropology, Campus Mail Code C3200 1<br />

University Station, Austin, TX 78712<br />

Briana K. Curtin, BA*, 1901 Elaine Drive, St. Joseph, MO<br />

64505<br />

Teresa G. Nugent, BA*, Texas State University, 601<br />

University Drive, ELA 232, San Marcos, TX 78666<br />

Daisy D.M. Vincent, MA*, 29 rue des Poudrieres,<br />

Neuchatel, 2000, SWITZERLAND<br />

A. Joanne Curtin, PhD*, University of West Florida,<br />

Department of Anthropology, 11000 University Parkway,<br />

Pensacola, FL 32514<br />

Elayne J. Pope, PhD*, Anthropology Department,<br />

University of West Florida, Anthropology Building 13,<br />

11000 University Parkway, Pensacola, FL 32514<br />

Elayne J. Pope, PhD, Heidi S. Davis, BA, BS*, and Ashley<br />

E. Shidner, BA, University of West Florida, Anthropology<br />

Department,11000 University Parkway, Building 13,<br />

Pensacola, FL 32514<br />

Patrick Randolph-Quinney, PhD*, Centre for Anatomy &<br />

Human Identification, College of Life Sciences, University<br />

of Dundee, Dundee, DD1 5EH, UNITED KINGDOM<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong><br />

Examiner’s Office, 1413 Research Boulevard, Building 102,<br />

Rockville, MD 20850<br />

Jamie D. Fredericks, MSc*, Cranfield University, SCR 12,<br />

DASSR, Shrivenham, Swindon, SN6 8LA, UNITED<br />

KINGDOM<br />

Tricia A. Fernandes, BSc*, Saint Mary’s University, 923<br />

Robie Street, Halifax, Nova Scotia B3H 3C3, CANADA<br />

Ariel M. Gruenthal, BA*, 2534 E, Eureka, CA 95501 81<br />

Anne Kroman, PhD*, Lincolm Memorial University-<br />

DeBusk College of Osteopathic Medicine, 6965<br />

Cumberland Gap Parkway, Harrogate, TN<br />

Index 14<br />

74<br />

74<br />

75<br />

75<br />

76<br />

77<br />

77<br />

78<br />

78<br />

79<br />

80<br />

80<br />

81


A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns – Part 2:<br />

Fracture Quantification and Further<br />

Investigations on Infant Cranial Bone<br />

Fracture Properties<br />

Objective Interpretation of the Striation<br />

Pattern Observed in Experimentally Cut<br />

Costal Cartilage<br />

The Contextual Nature of “Excessive<br />

Force”: Alcohol-Induced Osteopenia,<br />

Fracture Prevalence, and Healing Rates<br />

Among In-Custody and Homicide Deaths<br />

From the Harris County <strong>Medical</strong><br />

Examiner’s Office<br />

Patterns of Trauma on the Skeletal<br />

Remains of U.S. Soldiers in the Battle of<br />

East Chosin, North Korea<br />

Peri-Mortem Skeletal Trauma in U.S.<br />

Korean War Soldiers: An Epidemiological<br />

and Historical Study of Prisoner-of-War<br />

and Battlefield Casualties<br />

Preliminary Studies of the Isolation of<br />

Drugs From Bone and Bone Marrow: A<br />

Broadened Role for the Forensic<br />

Anthropologist<br />

The Effects of Varying pH on Bone in<br />

Aquatic Environments<br />

Taphonomic Processes Involved With the<br />

Decomposition of Human Remains Within<br />

the Puget Sound<br />

Nicholas V. Passalacqua, MS*, 3518 Hagadorn Road,<br />

Okemos, MI 48864-4200; Todd W. Fenton, PhD, Michigan<br />

State University, Department of Anthropology, 354 Baker<br />

Hall, East Lansing, MI 48824; Brian J. Powell, BS, and<br />

Timothy G. Baumer, BS, Orthopaedic <strong>Bio</strong>mechanics<br />

Laboratories, Michigan State University, East Lansing, MI<br />

48824; William N. Newberry, MS, Exponent Failure<br />

Analysis Associates, Inc., Farmington Hills, MI 48331; and<br />

Roger C. Haut, PhD, A407 East Fee Hall, Orthopaedic<br />

<strong>Bio</strong>mechanics, Michigan State University, East Lansing, MI<br />

48824<br />

Jennifer C. Love, PhD*, Jason M. Wiersema, PhD, and<br />

Sharon M. Derrick, PhD, Harris County <strong>Medical</strong><br />

Examiner’s Office, 1885 Old Spanish Trail, Houston, TX<br />

77054; and Heather Backo, MA, Department of<br />

Anthropology, Tulane University, 1326 Audubon Street,<br />

New Orleans, LA 70118<br />

Heather Backo, MA*, Tulane University Deaprtment of<br />

Anthropology, 1326 Audubon Street, New Orleans, LA<br />

70118<br />

James T. Pokines, PhD*, Kelly L. Burke, MSc, and<br />

Josephine M. Paolello, MS, JPAC/CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

Joan E. Baker, PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Alexander F.<br />

Christensen, PhD, JPAC-CIL, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Maranda A. Kles, MA*, C.A. Pound Human ID Labortory,<br />

1376 Mowry Road, Room G17, University of Florida,<br />

Gainesville, FL 32610; Bruce A. Goldberger, PhD,<br />

Department of Pathology, University of Florida College of<br />

Medicine, 4800 Southwest 35th Drive, Gainesville, FL<br />

32608; Michele Merves, PhD, University of Florida, Rocky<br />

Point Labs, Toxicology, 4800 Southwest 35th Drive,<br />

Gainesville, FL 32608; and Michael W. Warren, PhD, C.A.<br />

Pound Human ID Laboratory, 1376 Mowry Road, Room<br />

G17, PO Box 113615, Gainesville, FL 32610, and John<br />

Krigbaum, PhD, University of Florida, College of Liberal<br />

Arts and Sciences, Department of Anthropology, 1112<br />

Turlington Hall, Gainsville, FL 32611<br />

Angi M. Christensen, PhD*, FBI Laboratory, Trace<br />

Evidence Unit - Anthropology, 2501 Investigation Parkway,<br />

Quantico, VA 22135; Kevin J. Horn, JD*, FBI Laboratory,<br />

Evidence Response Team Unit, 2501 Investigation<br />

Parkway, Quantico, VA 22135; and Sarah W. Myers, BA,<br />

Emory University, 201 Dowman Drive, Atlanta, GA 30322<br />

Sarah M. Huntington, MSc*, PO Box 961, Kingston, WA<br />

98346; and Tal Simmons, PhD, School of Forensic &<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Index 15<br />

82<br />

83<br />

83<br />

84<br />

85<br />

85<br />

86<br />

87


Microbial Marine Decomposition: Marine<br />

Bacteria as an Indicator of Postmortem<br />

Submersion Interval<br />

A Study of the Differences Between Fresh<br />

Water and Salt Water Decomposition:<br />

Establishing Time Since Death or Time<br />

Since Submergence<br />

Decomposition Patterns in Indoor<br />

Environments: A Comparative Analysis of<br />

Rodriguez and Bass’s Stages<br />

Differential Decomposition of Non-<br />

Traumatized, Blunt Force, and Sharp<br />

Force-Traumatized Buried Pig Carcasses<br />

Application of Geopedology to Forensic<br />

Anthropology: Can Vivianite Be a Marker<br />

of Burial in Soil? – Three Case Reports<br />

<strong>Bio</strong>metric Assessment of the Accuracy of a<br />

Large Sample of Three-Dimensional<br />

Computerized Facial Approximations<br />

Results From a Survey on Computerized<br />

Facial Approximation<br />

Gemma C. Dickson, BSc*, and Russell T.M. Poulter, PhD,<br />

University of Otago, Department of <strong>Bio</strong>chemistry, PO Box<br />

56, Dunedin, Otago 9054, NEW ZEALAND; Jules A.<br />

Kieser, PhD, University of Otago, Sir John Walsh Research<br />

Institute, Faculty of Dentistry, PO Box 647, Dunedin, Otago<br />

9054, NEW ZEALAND; Elizabeth W. Maas, PhD, National<br />

Institute of Water & Atmospheric Research, Ltd. (NIWA),<br />

Private Bag 14901, Wellington, Otago 9054, NEW<br />

ZEALAND; and P. Keith Probert, PhD, University of<br />

Otago, Department of Marine Science, PO Box 56,<br />

Dunedin, Otago 9054, NEW ZEALAND<br />

Mallory S. Littman, BS*, and Peter J. Colleran, BS, Boston<br />

University School of Medicine, 715 Albany Street, Boston,<br />

MA 02118; and Tara L. Moore, PhD, Boston University<br />

School of Medicine, 700 Albany Street, Boston, MA 02118;<br />

and Billie L. Seet, MA, Office of the Chief <strong>Medical</strong><br />

Examiner, 720 Albany Street, Boston, MA 02118<br />

Melissa A. Pope, BA*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler Avenue,<br />

Tampa, FL 33612; and Erin H. Kimmerle, PhD, University<br />

of South Florida, Department of Anthropology, 4202 East<br />

Fowler, Soc 107, Tampa, FL 33820<br />

Donna C. Boyd, PhD*, Lindsay Sliwa, BS, and Cliff Boyd,<br />

PhD*, Radford University, Anthropological Sciences<br />

Program, School of Environmental and Physical Sciences,<br />

Radford, VA 24142<br />

Stephania Ern, BSc, and Luca Trombino, Dipartimento di<br />

Scienze della Terra, Università degli Studi di Milano,<br />

Milan, ITALY; Daniele Gibelli, MD*, Laboratorio di<br />

Antropologia e Odontologia Forense, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY; and<br />

Cristina Cattaneo, PhD, Laboratorio di Antropologia e<br />

Odontologia Forense, Sezione di Medicina Legale,<br />

Dipartimento di Morfologia Umana e Scienze <strong>Bio</strong>mediche,<br />

V. Mangiagalli, 37, Milan, ITALY<br />

Terrie L. Simmons, MA*, Counterterrorism and Forensic<br />

Science Research Unit, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Peter H. Tu, PhD, and<br />

Jeffrey D. Erno, MS, GE Global Research, One Research<br />

Circle, Niskayuna, NY 12309; and Philip N. Williams, BS,<br />

and Keith L. Monson, PhD, Counterterrorism and Forensic<br />

Science Research Unit, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135<br />

Terrie L. Simmons, MA*, FBI Laboratory Division,<br />

Counterterrorism and Forensic Science Research Unit,<br />

2501 Investigation Parkway, Quantico, VA 22135; Lisa G.<br />

Bailey, BA, FBI Laboratory, 2501 Investigation Parkway,<br />

SPU/Room 1115, Quantico, VA 22135; and Melissa A.<br />

Torpey, MS, Philip N. Williams, BS, and Keith L. Monson,<br />

PhD, Counterterrorism and Forensic Science Research<br />

Unit, FBI Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135<br />

Index 16<br />

87<br />

88<br />

88<br />

89<br />

90<br />

90<br />

91


Integrative Measurement Protocol<br />

Incorporating Morphometric and<br />

Behavioral Research Tools From Forensic<br />

Anthropology, Human <strong>Bio</strong>logy, and<br />

Primatology<br />

Evaluation of Bilateral Differences in<br />

Histomorphometry From the Anterior<br />

Cortex of the Femur of Korean Adults<br />

Phoebe R. Stubblefield, PhD*, Department of<br />

Anthropology, University of North Dakota, 236 Centennial<br />

Drive Stop 8374, Grand Forks, ND 58202; Susan C. Anton,<br />

PhD*, New York University, Department of Anthropology,<br />

25 Waverly Place, New York, NY 10003; James J.<br />

Snodgrass, PhD*, Department of Anthropology, University<br />

of Oregon, 1218 University of Oregon, Eugene, OR 97405-<br />

1218; Christian Crowder, PhD, <strong>Medical</strong> Examiner’s Office,<br />

520 1st Avenue, New York, NY 10016; Anthony Di Fiore,<br />

PhD, Department of Anthropology, New York University,<br />

25 Waverly Place, New York, NY 10003; Dana L. Duren,<br />

PhD, Departments of Community Health, Neuroscience,<br />

Wright State Boonshoft School of Medicine, 3640 Colonel<br />

Glenn Highway, Dayton, OH 45435; Eduardo Fernandez-<br />

Duque, PhD, Department of Anthropology, University of<br />

Pennsylvania, 3260 South Street, Philadelphia, PA 19104-<br />

6398; William R. Leonard, PhD, Department of<br />

Anthropology, Northwestern University, 1810 Hinman<br />

Avenue, Evanston, IL 60208-1330; Steve Leigh, PhD,<br />

Department of Anthropology, University of Illinois,<br />

Urbana-Champaign, 109 Davenport Hall, 607 South<br />

Matthews Avenue, Urbana, IL 61801; Felicia Madimenos,<br />

MS, Department of Anthropology, University of Oregon,<br />

1218 University of Oregon, Eugene, OR 97405-1218; Scott<br />

McGraw, PhD, Department of Anthropology, The Ohio<br />

State University, 174 West 18th Avenue Columbus, OH<br />

43210; Emily R. Middleton, MS, and Chris A. Schmitt, MS,<br />

Department of Anthropology, New York University, 25<br />

Waverly Place, New York, NY 10003; Richard J. Sherwood,<br />

PhD, Wright State Boonshoft School of Medicine, 3640<br />

Colonel Glenn Highway, Dayton, OH 45435; Trudy R.<br />

Turner, PhD, Department of Anthropology, University of<br />

Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201;<br />

Claudia R. Valeggia, PhD, Department of Anthropology,<br />

University of Pennsylvania, 3260 South Street,<br />

Philadelphia, PA 19104-6398; and Francis J. White, PhD,<br />

Department of Anthropology, University of Oregon, 1218<br />

University of Oregon, Eugene, OR 97405-1218<br />

Seung Mook Jo, MD, PhD, Gachon University of Medicine<br />

and Science, Department of Anatomy, 1198, Kuwol-dong,<br />

Namdong-gu, Incheon, 405760, KOREA; and Yi-Suk Kim,<br />

MD, PhD*, Ewha Womans University, Departement of<br />

Anatomy, School of Medicine, 911-1, Mok6-dong,<br />

Yangcheon-gu, Seoul, 158710, KOREA<br />

Index 17<br />

92<br />

93


Forensic Anthropological Consideration of<br />

Quantification Techniques of Individuals<br />

From Excavated Human Remains in Case<br />

of Burial Place at Daehak-Ro, Korea<br />

Stature Estimation: Are There Any<br />

Advantages to Using Principal Component<br />

Analysis?<br />

An Investigation Into the Rate of<br />

Decomposition of Decapitated Heads and<br />

Heads With an Attached Body<br />

An Assessment of a Simple Model and<br />

Method for Osteometric Sorting<br />

Improving Histomorphometric Age<br />

Estimation: An Application of Osteon<br />

Population Density on Kerley’s Original<br />

Sample Data<br />

Histological Age Estimation: Towards<br />

Standardizing Definitions of Bone<br />

Histological Variables<br />

And Dens There Were Two: The Utility of<br />

the Second Cervical Vertebra as an<br />

Indicator of Sex and Age-at-Death<br />

A Radiographic Assessment of Age Using<br />

Distal Radius Epiphysis Presence in a<br />

Modern Subadult Sample<br />

U-Young Lee, MD*, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Socho-gu, Seoul, 137701, KOREA; Dae-Kyoon Park,<br />

MD, PhD, Soonchunhyang University, College of Medicine,<br />

Department of Anatomy, 366-1 Ssangyong-dong, Cheonansi,<br />

Seoul 330946 KOREA; Yi-Suk Kim, MD, PhD, Ewha<br />

Womans University, Department of Anatomy, School of<br />

Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul,<br />

158710, KOREA; Sang-Seob Lee, DDS, National Institute<br />

of Scientific Investigation, Shinwol-7-dong, Yancheon-gu,<br />

Seoul, 158707, KOREA; Yong-Woo Ahn, DDS, PhD,<br />

Institute of Forensic Medicine, School of Medicine, Pusan<br />

National University, 1-10, Ami-dong, Seo-gu, Busan,<br />

602739, KOREA; Nak-Eun Jung, PhD, National Institute of<br />

Scientific Investigation, Shinwol-7-dong, Yancheon-gu,<br />

Seoul, 158707, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Kalan S. Lynn, BSc*, Mercyhurst College, 501 East 38th<br />

Street, Erie, PA 16546; and Stephen D. Ousley, PhD,<br />

Mercyhurst College, Department of Applied Forensic,<br />

Anthropology, 501 East 38th Street, Erie, PA 16546<br />

Tal Simmons, PhD*, School of Forensic & Investigative<br />

Sciences, University of Central Lancashire, Preston,<br />

Lancashire PR1 2HE, UNITED KINGDOM; and Elizabeth<br />

A. Walker, BSc, 3 Ruskin Road, Birtley, Co Durham, DH3<br />

1AD, UNITED KINGDOM<br />

Ana Del Alamo, BA*, 4521 Northeast 22 Road, Fort<br />

Lauderdale, FL<br />

Merissa Olmer, BA*, Department of Anthropology,<br />

University of Maryland, 1111 Woods Hall, College Park,<br />

MD 20742; Sophia Mavroudas, BA*, Department of<br />

Anthropology, New York University, 25 Waverly Place,<br />

New York, NY; Franklin E. Damann, MA, National Museum<br />

of Heath and Medicine, AFIP, PO Box 59685, Washington,<br />

DC 20012-0685; and Christian Crowder, PhD, Office of<br />

the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY<br />

10016<br />

Meghan-Tomasita J. Cosgriff-Hernandez, MS*, The Ohio<br />

State University, Department of Anthropology, 4034 Smith<br />

Laboratory, 174 West 18th Avenue, Columbus, OH 43210;<br />

and Sam D. Stout, PhD, Ohio State University, Department<br />

of Anthropology, 4034 Smith Laboratory, Columbus, OH<br />

43210-1106<br />

Billie L. Seet, MA*, Office of the Chief <strong>Medical</strong> Examiner,<br />

720 Albany Street, Boston, MA 02118; and Jonathan D.<br />

Bethard, MA*, Pellissippi State Community College, 10915<br />

Hardin Valley Road, PO Box 22990, Knoxville, TN 37933<br />

Christina L. Fojas, BA*, Mercyhurst College, Department<br />

of Anthropology & Applied Forensic Sciences, 501 East<br />

38th Street, Erie, PA 16546<br />

Index 18<br />

93<br />

94<br />

94<br />

95<br />

95<br />

96<br />

97<br />

97


New York City Unidentified Decedents<br />

From 1980 – 2008<br />

Detecting Individuals With Reduced<br />

Mobility Using Femoral Morphology<br />

Sociocultural Factors in the Identification<br />

of Undocumented Migrants<br />

What’s in a Number: Statistical Paradigm<br />

Shifts in Forensic Anthropology<br />

The Use (and Abuse) of the Sacrum in Sex<br />

Determination<br />

Sex and Ancestry Estimation From<br />

Landmarks of the Cranial Base<br />

Virtual Sex: Phenice and Metrics of the<br />

Pelvis From 3D Computed Tomography<br />

(CT) Models<br />

Molar Crenulation as an Attribute of<br />

Ancestry in Forensic Cases: Identification<br />

and Accuracy<br />

Benjamin J. Figura, MA*, New York City Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

10016<br />

Stephanie L. Child, MA*, University of Missouri, 107<br />

Swallow Hall, Columbia, MO 65211; and Daniel J.<br />

Wescott, PhD, Florida International University,<br />

Department <strong>Bio</strong>logical Sciences, 11200 Southwest 8th<br />

Street, Miami, FL 333199<br />

Robin Reineke, MA*, The University of Arizona, School of<br />

Anthropology, 1009 East South Campus Drive, Tucson, AZ<br />

85721; and Bruce E. Anderson, PhD, Pima County Office<br />

of the <strong>Medical</strong> Examiner, 2825 East District Street, Tucson,<br />

AZ 85714<br />

Natalie R. Shirley, PhD*, Alicja K. Kutyla, MS, and<br />

Richard Jantz, PhD, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

Elizabeth A. Miller, PhD*, California State University at<br />

Los Angeles, Department of Anthropology, 5151 State<br />

University Drive, Los Angeles, CA 90032; and Stephen D.<br />

Ousley, PhD, Mercyhurst College, Department of Applied<br />

Forensic, Anthropology, 501 East 38th Street, Erie, PA<br />

16546<br />

Ashley H. McKeown, PhD*, University of Montana,<br />

Department of Anthropology, Missoula, MT 59812; and<br />

Daniel J. Wescott, PhD, Florida International University,<br />

Department of <strong>Bio</strong>logical Sciences, 11200 Southwest 8th<br />

Street, Miami, FL 333199<br />

Summer J. Decker, MA, MS*, University of South Florida<br />

College of Medicine, Department of Pathology & Cell<br />

<strong>Bio</strong>logy, 12901 Bruce B. Downs Boulevard, MDC 11,<br />

Tampa, FL 33612; Stephanie L. Davy-Jow, PhD, School of<br />

<strong>Bio</strong>logical and Earth Sciences, Liverpool John Moores<br />

University, Liverpool John Moores University, James<br />

Parsons Building, 236, Byrum Street, Liverpool, L3 3AF,<br />

UNITED KINGDOM; and Jonathan M. Ford, MS, and Don<br />

R. Hilbelink, PhD, Deptartment of Pathology & Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL<br />

33612<br />

Christen E. Herrick, BS*, and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard AB3, Fort Myers, FL<br />

33965-6565; Katy L. Shepherd, BS, Florida Gulf Coast<br />

University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Marta U.<br />

Coburn, MD, District 20 <strong>Medical</strong> Examiner’s Office, 3838<br />

Domestic Avenue, Naples, FL 34104; and Margarita<br />

Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100 Jefferson<br />

Street, Jacksonville, FL 32206<br />

Index 19<br />

98<br />

99<br />

99<br />

100<br />

100<br />

101<br />

101<br />

102


Subadult Ancestry Determinations Using<br />

Geometric Morphometrics<br />

Craniometric Variation in South African<br />

and American Blacks<br />

Death on America’s Southern Border: A<br />

Summary of Five Years of Genetic Data<br />

Acquisition and Analysis of the Reuniting<br />

Families Project<br />

The Scientific Working Group for Forensic<br />

Anthropology<br />

Shanna E. Williams, PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235; and Ann H. Ross, PhD, North Carolina State<br />

University, Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107<br />

Stephen D. Ousley, PhD*, Mercyhurst College, Department<br />

of Applied Forensic Anthropology, 501 East 38th Street,<br />

Erie, PA 16546; and Ericka N. L’Abbe, PhD*, PO Box<br />

5023, Pretoria, 0001, SOUTH AFRICA<br />

Lori E. Baker, PhD*, Baylor University, Forensic Research<br />

Lab, One Bear Place #97388, Waco, TX 76798-7388; and<br />

Yasmine M. Baktash, BA, Baylor University, One Bear<br />

Place #97388, Waco, TX 76798<br />

Thomas D. Holland, PhD*, DoD JPAC, Central ID Lab,<br />

310 Worchester Avenue, Hickam AFB, HI 96853; Angi M.<br />

Christensen, PhD*, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Bradley J. Adams, PhD,<br />

New York Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016; Bruce E. Anderson, PhD,<br />

Forensic Science Center, 2825 East District Street, Tucson,<br />

AZ 85714; Hugh E. Berryman, PhD, Department Sociology<br />

& Anthropology, Middle Tennessee State University, Box<br />

89, Murfreesboro, TN 37132; John E. Byrd, PhD,<br />

JPAC/CIL, 310 Worchester Avenue, Hickam AFB, HI<br />

96853- 5530; Leslie E. Eisenberg, PhD, 6228 Trail Ridge<br />

Court, Oregon, WI 53575; Todd W. Fenton, PhD, Michigan<br />

State University, Department of Anthropology, 354 Baker<br />

Hall, East Lansing, MI 48824; Michael Finnegan, PhD,<br />

Kansas State University, Osteology Lab, 204 Waters Hall,<br />

Manhattan, KS 66506; Diane L. France, PhD, Colorado<br />

State University, Human Identification Lab, Department of<br />

Anthropology, Fort Collins, CO 80523; Lisa M. Leppo,<br />

PhD, U.S. Army QM Center & School, Joint Mortuary<br />

Affairs Center, 1201 22nd Street, Fort Lee, VA 23801-1601;<br />

Lee Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996- 0720; Robert W. Mann, PhD, Joint<br />

POW/MIA Accounting Command, Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5000; Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Anthropology/Archaeology, 501 East 38th<br />

Street, Erie, PA 16546; William C. Rodriguez III, PhD,<br />

Armed Forces <strong>Medical</strong> Examiner’s Office, 1413 Research<br />

Boulevard, Building 102, Rockville, MD 20850; Paul S.<br />

Sledzik, MS, NTSB, Office ofTransportation Disaster<br />

Assistance, 490 L’Enfant Plaza, Southwest Washington, DC<br />

20594; Richard M. Thomas, PhD, FBI Laboratory, DNA<br />

Unit II, Room 3220, 2501 Investigation Parkway, Quantico,<br />

VA 22135; Andrew Tyrrell, PhD, JPAC-CIL, 310<br />

Worchester Avenue, Hickam AFB, HI 96853; Douglas H.<br />

Ubelaker, PhD, Department of Anthropology, NMNH -<br />

MRC 112, Smithsonian Institution, Washington, DC 20560;<br />

Michael W. Warren, PhD, C.A. Pound Human ID<br />

Laboratory, 1376 Mowry Road, Room G17, PO Box<br />

Index 20<br />

103<br />

103<br />

104<br />

105


Developing a Regional Forensic<br />

Taphonomy: Environmental and Climatic<br />

Inputs<br />

Human Decomposition Ecology at the<br />

University of Tennessee Anthropology<br />

Research Facility<br />

Deep Coastal Marine Taphonomy: Interim<br />

Results From an Ongoing Experimental<br />

Investigation of Decomposition in the<br />

Saanich Inlet, British Columbia<br />

An Experimental Study of Putrefaction<br />

and Decomposition in Aqueous<br />

Environments<br />

Decomposition in Water: The Effects of<br />

Climate on the Rate of Decay in New<br />

England<br />

Dead on Time? The Repellent Effect of<br />

Liquid Petroleum Gas on Time Since<br />

Death Estimation<br />

Predicting the Postmortem Submersion<br />

Interval From the Adipocere Formation on<br />

Rabbits<br />

Differential Decomposition in Terrestrial,<br />

Saltwater, and Freshwater Environments:<br />

A Pilot Study<br />

Inter- and Intra-Element Variation in<br />

Carnivore and Rodent Scavenging Patterns<br />

in Northern California<br />

113615, Gainesville, FL 32610; and P. Willey, PhD, Chico<br />

State University, Department of Anthropology, Chico, CA<br />

95929-0400<br />

Marcella H. Sorg, PhD*, Margaret Chase Smith Policy<br />

Center, University of Maine, Orono, ME 04469; William D.<br />

Haglund, PhD, 20410 25th Avenue, Northwest, Shoreline,<br />

WA 98177; Edward David, MD, JD, 498 Essex Street,<br />

Bangor, ME 04401; Sarah A. Kiley, MS, 235 Forest Hill<br />

Street, Jamaica Plain, MA 02130; William Parker, BS,<br />

Margaret Chase Smith, Policy Center, University of Maine,<br />

Orono, ME 04469; Harold W. Borns, PhD, Climate Change<br />

Institute, University of Maine, Orono, ME 04469; John<br />

Burger, PhD, Department of Zoology, University of New<br />

Hampshire, Durham, NH 03834; John Dearborn, PhD,<br />

School of Marine Sciences, University of Maine, Orono,<br />

ME 04469; Ann Dieffenbacher-Krall, PhD, Climate Change<br />

Institute, University of Maine, Orono, ME 04469; Deborah<br />

Palman, MS, Maine K-9 Services, PO Box 57, Aurora, ME<br />

04408; and Touradj Solouki, PhD, Department of<br />

Chemistry, University of Maine, Orono, ME 04469<br />

Franklin E. Damann, MA*, National Museum of Health and<br />

Medicine, AFIP, PO Box 59685, Washington, DC 20012-<br />

0685; and Aphantree Tanittaisong, MS, AFIP Armed<br />

Forces DNA Identification Laboratory, 1413 Research<br />

Boulevard, Rockville, MD 20850<br />

Gail S. Anderson, PhD*, and Lynne S. Bell, PhD, Simon<br />

Fraser University, School of Criminology, 8888 University<br />

Drive, Burnaby, BC V5A 1S6, CANADA<br />

Kristen E. Greenwald, MA*, 32 10th Street, Hermosa<br />

Beach, CA 90254<br />

Peter J. Colleran, BS*, and Mallory S. Littman, BA, Boston<br />

University School of Medicine, 715 Albany Street, Boston,<br />

MA 02118; Billie L. Seet, MA, Office of the Chief <strong>Medical</strong><br />

Examiner, Boston, MA 02118; Tara L. Moore, PhD, Boston<br />

University School of Medicine, 700 Albany St., Boston, MA<br />

02118; Debra A. Prince, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, Boston, MA 02118<br />

Branka Franicevic, MSc*, University of Bradford,<br />

Bradford, BD7 1DP, UNITED KINGDOM<br />

Marcella M.C. Widya, BSc*, 14 Stanleyfield Road, Preston,<br />

Lancashire PR1 1QL, UNITED KINGDOM<br />

Laura E. Ayers, BA*, 206 B Redbud, New Braunfels, TX<br />

78130<br />

Eric J. Bartelink, PhD, 400 West First Street, Department<br />

of Anthropology, Butte #311, California State University-<br />

Chico, Chico, CA 95929-0400; and Lisa N. Bright, BS*,<br />

1259 Hobart, Chico, CA 95926<br />

Index 21<br />

106<br />

106<br />

107<br />

108<br />

108<br />

109<br />

110<br />

110<br />

111


Southeast Texas Applied Forensic Science<br />

Facility (STAFS) at Sam Houston State<br />

University: A New Forensic Anthropology<br />

Human Decomposition Facility<br />

Establishing a Taphonomic Research<br />

Facility in the United Kingdom<br />

Forensic Archaeological Recovery of the<br />

Victims of the Continental Connection<br />

Flight 3407 Crash in Clarence Center, New<br />

York<br />

Spatial Patterning of Clandestine Graves in<br />

the Investigation of Large Scale Human<br />

Rights Violations: The Example of the<br />

Spanish Civil War Rearguard Repression<br />

Validity of Portable X-Ray Fluorescence in<br />

Assistance With Identification of<br />

Individuals in a Burial Setting by<br />

Comparison With mtDNA<br />

The Assessment and Determination of<br />

Forensic Significance in Forensic<br />

Anthropology<br />

A Radiographic Database for Forensic<br />

Anthropology<br />

New Scapular Measurements for<br />

Determining Sex<br />

Sex Estimation From the Calcaneus Using<br />

Discriminant Function Analysis<br />

Sex Determination Using the Calcaneus in<br />

Koreans<br />

Joan A. Bytheway, PhD*, Sam Houston State University,<br />

Chemistry & Forensic Science Building, 1003 Bowers<br />

Boulevard, Box 2525, Huntsville, TX 77340<br />

Tal Simmons, PhD, Peter A. Cross, MSc*, and Rachel E.<br />

Cunliffe, MSC, University of Central Lancashire, School of<br />

Forensic and Investigative Sciences, Preston, AS PR1 2HE,<br />

UNITED KINGDOM<br />

Dennis C. Dirkmaat, PhD*, Applied Forensic Sciences<br />

Department, Mercyhurst College, Glenwood Hills, Erie, PA<br />

16546; Steven A. Symes, PhD, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, 501 East 38th, Erie, PA<br />

16546-0001; and Luis L. Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501<br />

East 38th Street, Erie, PA 16546<br />

Derek Congram, MSc*, 706-1850 Comox Street,<br />

Vancouver, BC V6G 1R3, CANADA<br />

Jennifer F. Byrnes, MA*, SUNY at Buffalo, Department of<br />

Anthropology, 380 MFAC, Ellicott Complex, Buffalo, NY<br />

14261-0026; Peter J. Bush, BS, SUNY at Buffalo, South<br />

Campus Instrument Center, B1 Squire Hall, South Campus,<br />

Buffalo, NY 14214; Esther J. Lee, MSc, and D. Andrew<br />

Merriwether, PhD, Binghamton University, Department of<br />

Anthropology, PO Box 6000, Binghamton, NY 13902-6000;<br />

and Joyce E. Sirianni, PhD, SUNY at Buffalo, Department<br />

of Anthropology, 380 MFAC, Ellicott Complex, Buffalo, NY<br />

14261-0026<br />

Lelia Watamaniuk, BSc*, University of Toronto,<br />

Department of Anthropology, 3359 Mississauga Road,<br />

North, NB 226, Mississauga, ON M4V 1R6, CANADA<br />

Stephen D. Ousley, PhD*, Mercyhurst College, Department<br />

of Applied Forensic Anthropology, 501 East 38th Street,<br />

Erie, PA 16546; Kyra E. Stull, MS*, Mercyhurst College,<br />

501 East 38th Street, Erie, PA 16546; and Kathryn L.<br />

Frazee, MS*, 351 West 22nd Street, Floor 2, Erie, PA<br />

16502<br />

Natalie Uhl, MS*, 308 North Orchard Street, Apartment 7,<br />

Urbana, IL 61801<br />

Daniel L. DiMichele, BS*, Texas State University, 601<br />

University Drive, ELA 232, San Marcos, TX 78666<br />

Deog-Im Kim, PhD*, Department of Anatomy, Kwandong<br />

University College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; Yi-Suk Kim, MD, PhD, Ewha<br />

Womans University, Department of Anatomy, School of<br />

Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul,<br />

158710, KOREA; Dae-Kyoon Park, MD, PhD, Department<br />

of Anatomy, College of Medicine, Soonchunhyang<br />

University, 366-1 Sangyong-dong, Cheonan-si, Seoul<br />

330946, KOREA; and U-Young Lee, MD, and Seung- Ho<br />

Han, MD, PhD, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Seocho-gu, Seoul, 137701, KOREA<br />

Index 22<br />

112<br />

112<br />

113<br />

114<br />

114<br />

115<br />

115<br />

116<br />

117<br />

117


Postcranial Sex Estimation of Individuals<br />

Considered Hispanic<br />

The Use of Geometric Morphometric<br />

Analysis for Subadult Sex Estimation<br />

Utilizing Innominates<br />

Secular Trends in Cranial Morphological<br />

Sexing: The Mastoid Process<br />

Twentieth Century Change in Facial<br />

Morphology and Its Relationship to Metric<br />

Sexing<br />

Foramen Magnum Shape as a Potential<br />

Indicator of Ancestry<br />

Prognathism and Prosthion in the<br />

Evaluation of Ancestry<br />

Craniometric Variation Within Southeast<br />

Asia<br />

Ancestry Trends in Trophy Skulls in<br />

Northern California<br />

Ancestry Estimation From the Tibia: Size<br />

and Shape Differences Between American<br />

Whites and Blacks<br />

Recollected Versus Actual Stature: How<br />

Does the Height Reported by Next of Kin<br />

Measure Up?<br />

The Use of Morbidity and Mortality<br />

Patterns in Transitional Justice Initiatives<br />

Towards Human Identification<br />

Meredith L. Tise, BA*, Texas State University, Department<br />

of Anthropology, 601 University Drive, ELA 232, San<br />

Marcos, TX 78666; and Kate Spradley, PhD, Texas State<br />

University, Department of Anthropology, 601 University<br />

Drive, San Marcos, TX 78666<br />

Jennifer M. Vollner, MS*, 328 Baker Hall, East Lansing,<br />

MI 48824; Nicholas V. Passalacqua, MS, 3518 Hagadorn<br />

Road, Okemos, MI 48864-4200; and Stephen D. Ousley,<br />

PhD, Mercyhurst College, Department of Applied Forensic<br />

Anthropology, 501 East 38th Street, Erie, PA 16546<br />

Angela M. Dautartas, MA, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; and Kanya<br />

Godde, PhD*, University of Tennessee, 3904 Lonas Drive,<br />

Knoxville, TN 37909<br />

Richard Jantz, PhD*, and Lee Meadows Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Stephanie M. Crider, BA*, Louisiana State University,<br />

Department of Geography and Anthropology, 227 Howe-<br />

Russell, Baton Rouge, LA 70803; and Mary H. Manhein,<br />

MA, Louisiana State University, Department of Geography<br />

& Anthropology, Baton Rouge, LA 70803<br />

Rebekah K. Baranoff, BA*, 10 East 34th Street, Apartment<br />

#1, Erie, PA 16504<br />

Michael W. Kenyhercz, BA*, 6327 Catawba Drive,<br />

Canfield, OH 44406; Michael Pietrusewsky, PhD,<br />

University of Hawaii, Department of Anthropology, 2424<br />

Maile Way, Saunders 346, Honolulu, HI 96822; Franklin E.<br />

Damann, MA, NMHM, AFIP, PO Box 59685, Washington,<br />

DC 20012-0685; and Stephen D. Ousley, PhD, Mercyhurst<br />

College, Department of Applied Forensic Anthropology,<br />

501 East 38th Street, Erie, PA 16546<br />

Lisa N. Bright, BS*, California State University, Chico, 400<br />

West First Street, Chico, CA 95928; Ashley E. Kendell,<br />

BS*, 808 West 2nd Avenue, Apartment 12, Chico, CA<br />

95926; and Turhon A. Murad, PhD, California State<br />

University, Chico, Department of Anthropology, Chico, CA<br />

95929-0400<br />

Natalie R. Shirley, PhD*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Emam ElHak Abdel Fatah, BS,<br />

Center for Musculoskeletal Research, University of<br />

Tennessee, Department Mechanical, Aerospace, &<br />

<strong>Bio</strong>medical Engineer, 307 Perkins Hall, Knoxville, TN<br />

37996; and Mohamed Mahfouz, PhD, Center for<br />

Musculoskeletal Research, Department Mechanical,<br />

Aerospace, & <strong>Bio</strong>medical Engineer, University of<br />

Tennessee, 307 Perkins Hall, Knoxville, TN 37996<br />

Lauren J. Duhaime, BSc*, 1693 Virginia Drive, Sudbury,<br />

Ontario P3E 4T7, CANADA<br />

Liotta N. Dowdy,*BS, and Erin H. Kimmerle, PhD,<br />

Department of Anthropology, University of South Florida,<br />

4202 East Fowler Avenue SOC 107, Tampa FL 33620; and<br />

John O. Obafunwa, MD, JD, Department of Pathology and<br />

Index 23<br />

118<br />

118<br />

119<br />

119<br />

120<br />

121<br />

121<br />

122<br />

123<br />

123<br />

124


Forensic Anthropology and Age-at-Death<br />

Forensic Medicine, Lagos State University College of<br />

Medicine, Ikeja, Lagos, NIGERIA<br />

Heather M. Garvin, MS*, Johns Hopkins University, 1830 125<br />

Estimation: Current Trends in Adult Age East Monument Street, Room 302, Baltimore, MD 21205;<br />

Estimation<br />

and Nicholas V. Passalacqua, MS, 3518 Hagadorn Road,<br />

Okemos, MI 48864-4200<br />

Understanding Uncertainty in Age Carrie A. Brown, MA*, Joint POW/MIA Accounting 125<br />

Estimation: Error Associated With the Command Central Identification Laboratory, 310<br />

Mann et al. Maxillary Suture Method Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

X-Ray Diffraction as a Tool for the Teresa V. Wilson, MA*, and Mary H. Manhein, MA, 126<br />

Analysis of Age-Related Changes in Teeth Louisiana State University, Department of Geography and<br />

Anthropology, 227 Howe- Russell Building, Baton Rouge,<br />

LA 70803; and Ray E. Ferrell, Jr., PhD, Department of<br />

Geology and Geophysics, Louisiana State University, E235<br />

Howe Russell Building, Baton Rouge, LA 70803<br />

Using the Acetabulum to Estimate Age: A Stephanie E. Calce, BSc*, University of Toronto,<br />

127<br />

Revised Method<br />

Department of Anthropology, 3359 Mississauga Road<br />

North, Mississauga, ON L5L1C6, CANADA<br />

Error and Uncertainty in Pelvic Age Allysha P. Winburn, MA, BA*, and Carrie A. Brown, MA, 127<br />

Estimation Part I: Younger vs. Older Adult Joint POW/MIA Accounting Command, Central<br />

Males<br />

Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

The Impact of Obesity on Morphology of Gina M. Agostini, MA*, 205 Middle Street, Hadley, MA 128<br />

the Femur<br />

01035<br />

Mortality Structure and Age Estimation in Erin H. Kimmerle, PhD*, University of South Florida, 129<br />

Nigerian Populations<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; and John O. Obafunwa, MD, JD,<br />

Department of Pathology and Forensic Medicine, Lagos<br />

State University College of Medicine, Ikeja, Lagos,<br />

NIGERIA<br />

Dead Man’s Curve: How Scoliosis Affects Nicole M. Webb, BS*, 19760 Osprey Cove Boulevard, 129<br />

Rib Aging<br />

Apartment 136, Fort Myers, FL 33967; Heather A. Walsh-<br />

Haney, PhD, Katy L. Shepherd, BS, and Christen E.<br />

Herrick, BS, Florida Gulf Coast University, Division of<br />

Justice Studies, 10501 Florida Gulf Coast University<br />

Boulevard South, AB3, Fort Myers, FL 33965-6565; Alyssa<br />

L. Butler, BA, 9795 Glen Heron Drive, Bonita Springs, FL<br />

34135; Marta U. Coburn, MD, District 20 <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

34104; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

The Effect of Axial Developmental Defects Katy L. Shepherd, BS*, Heather A. Walsh-Haney, PhD, and 130<br />

on Forensic Stature Estimates<br />

Christen E. Herrick, BS, Florida Gulf Coast University,<br />

Division of Justice Studies, 10501 Florida Gulf Coast<br />

University Boulevard South, AB3, Fort Myers, FL 33965-<br />

6565; Marta U. Coburn, MD, District 20 <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

34104; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

Automatic Skull Landmark Determination Jeffrey D. Erno, MS*, and Peter H. Tu, PhD, GE Global 130<br />

for Facial Reconstruction<br />

Research, Imaging Technologies, 1 Research Circle,<br />

Niskayuna, NY 12309; and Terrie Simmons, MA, and Philip<br />

N. Williams, BS, FBI Laboratory, CFSRU, Building 12,<br />

Quantico, VA 22135<br />

In Vivo Facial Tissue Depth Measurements Meaghan A. Huculak, BSc*, Saint Mary’s University, 923 131<br />

Index 24


of African Nova Scotian Children for 3-D<br />

Forensic Facial Reconstruction<br />

Skeletal Identification by Radiographic<br />

Comparison: Blind Tests of a<br />

Morphoscopic Method Using Antemortem<br />

Chest Radiographs<br />

Robie Street, Halifax, Nova Scotia B3H 3C3, CANADA<br />

Carl N. Stephan, PhD*, and Andrew J. Tyrrell, PhD, JPAC-<br />

CIL, 310 Worchester Avenue, Hickam AFB, HI 96853<br />

Index 25<br />

131


Positive Identification Using Radiographs<br />

of the Lumbar Spine: A Validation Study<br />

Hand Comparison: The Potential for<br />

Accurate Identification/Recognition in<br />

Cases of Serious Sexual Assault<br />

Forensic Characteristics of Hand Shape:<br />

Analysis of Individuation Potential and<br />

Sexual Dimorphism Using Geometric<br />

Morphometrics<br />

<strong>Bio</strong>nic Remains: Positive Identifications<br />

From Surgical Implants<br />

Epidemiology of Homicide in the Spanish<br />

Civil War<br />

Forensic Anthropology in Colombia:<br />

Working Amidst Armed Conflict<br />

Ten Years On: Problems Relating to<br />

Victim Identification in Timor Leste<br />

Personal Identification from Skeletal<br />

Remains in Human Rights Investigations:<br />

Challenges from the Field<br />

The International Commission on Missing<br />

Persons and an Integrated,<br />

Multidisciplinary Forensic Approach to<br />

Identification of the Missing From the 1995<br />

Srebrenica, Bosnia Mass Execution Event<br />

Jane C. Wankmiller, MA*, Michigan State University,<br />

Department of Anthropology, 354 Baker Hall, East<br />

Lansing, MI 48824<br />

Xanth Mallett, PhD*, University of Dundee, Centre for<br />

Anatomy & Human Identification, Dow Street, Dundee, UK<br />

DD1 5EH, SCOTLAND<br />

Patrick Randolph-Quinney, PhD*, Centre for Anatomy and<br />

Human Identification, College of Life Sciences, University<br />

of Dundee, Dundee, DD1 5EH, UNITED KINGDOM<br />

Alison E. Jordan, BS*, Forensic Institute for Research and<br />

Education, PO Box 89, Middle Tennessee State University,<br />

Murfreesboro, TN 37132; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Dawnie W. Steadman, PhD*, Binghamton University,<br />

Department of Anthropology, PO Box 6000, Binghamton,<br />

NY 13902-6000; Camila Oliart, MA, Universidad<br />

Autònoma de Barcelona, Department of Prehistory, Edifici<br />

B, Barcelona, 08193, SPAIN; Elena Garcia-Guixé, MA,<br />

Museu d’Arqueologia de Catalunya, Laboratori de<br />

Paleoantropologia i Paleopatologia, Barcelona, SPAIN;<br />

María Inés Fregeiro, MA, and Elena Sintes, MA,<br />

Universitat Autonoma de Barcelona, Department of<br />

Prehistory, Edifici B, Barcelona, 08193, SPAIN; Jennifer<br />

Bauder, MA, and Aimee E. Huard, MA, Binghamton<br />

University, Department of Anthropology, Binghamton, NY<br />

13902; Jorge Jiménez, MA, Universidad Autònoma de<br />

Barcelona, Department of Prehistory, Barcelona, 08193,<br />

SPAIN; and Carme Boix, PhD, Badley Ashton & Associates<br />

Ltd., Winceby House, Winceby, Horncastle, Lincolnshire,<br />

LN9 6PB, UNITED KINGDOM<br />

Isla Yolima Campos Varela*, Institute of Legal Medicine,<br />

Calle 7A #12- 61, Bogota, COLOMBIA; and Elizabeth A.<br />

DiGangi, PhD*, ICITAP, Calle 125 #19-89, Of. 401,<br />

Bogota, COLOMBIA<br />

Debra Komar, PhD*, United Nations Mission in Timor<br />

Leste, UN House, Dili, EAST TIMOR<br />

Luis Fondebrider*, Argentine Forensic Anthropology Team<br />

(EAAF), Rivadavia 2443, 2do piso, dpto.3 y 4, (1034)<br />

Capital Federal, Buenos Aires, ARGENTINA; and Soren<br />

Blau, PhD*, Victorian Institute of Forensic Medicine, 57-83<br />

Kavanagh Street, Southbank, Melbourne, Victoria 3146,<br />

AUSTRALIA<br />

Thomas Parsons, PhD*, Adnan Rizvić, BSc, Andreas<br />

Kleise, LLM; Adam Boys, MA, and Asta Zinbo, MA;<br />

Forensic Sciences International Commission on Missing<br />

Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-<br />

HERZEGOVINA; Mark Skinner, PhD, Simon Fraser<br />

University, Department of Archeology, Burnaby, BC, V5A<br />

1S6, CANADA; and Kathryne Bomberger, MA, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Index 26<br />

132<br />

133<br />

133<br />

134<br />

134<br />

135<br />

136<br />

137<br />

137


The Work of the ICMP in the Detection,<br />

Excavation, Documentation, and Analysis<br />

of Clandestine Graves Relating to the 1995<br />

Fall of Srebrenica: A Review of Activities<br />

and Challenges Encountered<br />

The Podrinje Identification Project: A<br />

Dedicated Mortuary Facility for the<br />

Missing From Srebrenica<br />

The Lukavac Re-Association Center: A<br />

Model for a Multidisciplinary Approach in<br />

the Examination of Commingled Remains<br />

The Use of Population-Specific Standards<br />

in Anthropological Examination and Their<br />

Incorporation Into a Multidisciplinary<br />

Mortuary Database<br />

High Throughput DNA Typing for<br />

Degraded Skeletal Remains and Victim<br />

Reference Samples in a Large Scale<br />

“DNALed” Missing Persons Identification<br />

and Re-Association Project: The ICMP<br />

Work on the Missing Recovered From<br />

Srebrenica Mass Graves<br />

The ICMP Identification Coordination<br />

Center: A Sample Accessioning and Blind<br />

DNA Matching System for Missing Persons<br />

Identification on a Regional Scale<br />

Renée C. Kosalka, MA*, Sharna Daley, MSc, and Jon<br />

Sterenberg, MSc, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Rick Harrington, PhD,<br />

PO Box 40191, Tucson, AZ 85717; Hugh Tuller, MA, JPAC<br />

CIL, 310 Worchester Avenue, Hickam AFB, HI; Cecily<br />

Cropper, PhD, Forensic Sciences International<br />

Commission on Mission Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Mark Skinner, PhD,<br />

Simon Fraser University, Department of Archeology,<br />

Burnaby, BC, V5A 1S6, CANADA; and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Rifat Kešetović, MD*, Laura Yazedjian, MSc, Dragana<br />

Vučetić, MSc, Emina Kurtalić, Zlatan Šabanović, Cheryl<br />

Katzmarzyk, MA, Adnan Rizvić, BSc, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Cheryl Katzmarzyk, MA*, Rifat Kešetović, MD, Kerry-Ann<br />

Martin, MSc, Edin Jasaragić, René Huel, BA, Jon<br />

Sterenberg, MSc, and Adnan Rizvić, BSc, International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Mark Skinner, PhD;<br />

Simon Fraser University, Department of Archeology,<br />

Burnaby, BC, V5A 1S6, CANADA; and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Cheryl Katzmarzyk, MA, and Kerry-Ann Martin, MSc,<br />

Forensic Sciences International Commission on Missing<br />

Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-<br />

HERZEGOVINA; Senem Skulj, MSc*, 17 VKB 19/11,<br />

Sanski Most, 79260, BOSNIA-HERZEGOVINA; and Laura<br />

Yazedjian, MSc, Dragana Vučetić, MSc, Adnan Rizvić, MA,<br />

and Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Rene Huel, BA*, Ana Miloš-Bilic MSc, Sylvain Amory PhD,<br />

Stojko Vidović, Tony Donlon, BSc, Adnan Rizvić, BSc, and<br />

Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Edin Jasaragic, BA*, Zlatan Bajunovic, Adnan Rizvić, BSc,<br />

and Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Index 27<br />

138<br />

139<br />

139<br />

140<br />

141<br />

141


An Innovative Software Solution for Large<br />

Scale Forensic Identification Efforts<br />

Mapping Forensic Evidence Onto the Stor<br />

of Srebrenica: Augmenting the Historical<br />

Record Through Analysis of Archaeology,<br />

Anthropology, and DNA<br />

Identifying the Missing From Srebrenica:<br />

Family Contact and the Final Identification<br />

Process<br />

The Social Effects of Recognizing<br />

Srebrenica’s Missing<br />

Lessons and Challenges From Srebrenica:<br />

A Summary and Future Perspectives<br />

Adnan Rizvic, MA*; Azra Aljić, MSc; Djordje Badza, BsC;<br />

Damir Bolić, BsC; Goran Jotanović, BsC; Muris Pucić,<br />

BsC; Amir Mandzuka, PhD; Zoran Cvijanović, PhD; Edin<br />

Jasaragić, BA, Zlatan Bajunović, Cheryl Katzmarzyk, MA,<br />

Kerry-Ann Martin, MSc, Sharna Daley, MSc, Reneé<br />

Kosalka, MA, René Huel, BA, Tony Donlon, BSc, and<br />

Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Renee Kosalka, MA*, Cheryl Katzmarzyk, MA*, Sharna<br />

Daley, MSc, Jon Sterenberg, MSc, Rifat Kešetović, MD,<br />

Laura Yazedjian, MSc, René Huel, BSc, Edin Jasaragić,<br />

Adnan Rizić, BSc, and Thomas Parsons, PhD, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Nedim Durakovic, BSc*, Rifat Kešetović, MD, Emina<br />

Kurtalić, Amir Hasandžiković, BSc, Adnan Rizvić, BSc, and<br />

Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Sarah Wagner, PhD*, University of North Carolina<br />

Greensboro, Department of Anthropology, 437 Graham<br />

Building, Greensboro, North Carolina 27410<br />

Thomas Parsons, PhD*, Andreas Kleiser LLM, Adnan<br />

Rizvić BSc, and Kathryne Bomberger MA, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIAHERZEGOVINA<br />

Index 28<br />

142<br />

142<br />

143<br />

143<br />

144


Assessment of Differences in<br />

Decomposition Rates of Rabbit Carcasses<br />

With and Without Insect Access Prior to<br />

Burial<br />

2009<br />

Jutta Bachmann, MSc*, Postweg 2, Fellbach, Baden-<br />

Wuerttemberg 70736, GERMANY<br />

Bugs Bunny? No Bugs Bunny Tal Simmons, PhD*, Peter A. Cross, MSc, Rachel Adlam,<br />

MSc, and Colin Moffatt, PhD, University of Central<br />

Lancashire, School of Forensic and Investigative Sciences,<br />

Decomposition of Sharpey’s Fibers in<br />

Estimating Postmortem Interval<br />

Year-of-Death Determination Based Upon<br />

the Measurement of Atomic Bomb-Derived<br />

Radiocarbon in Human Soft Tissues<br />

The Effects of Coverings on the Rate of<br />

Human Decomposition<br />

Modes of Mutilation in Taphonomic<br />

Context: Can Sharp Force Trauma<br />

Decelerate the Decomposition Process?<br />

Living With Corpses: Case Report of<br />

Psychological Impairment and Neglect,<br />

Leading to the Death of Two Women<br />

Creating an Open-Air Forensic<br />

Anthropology Human Decomposition<br />

Research Facility<br />

Metacarpal and Metatarsal Histology of<br />

Humans and Black Bears<br />

The Effects of Papain and EDTA on Bone<br />

in the Processing of Forensic Remains<br />

Practical Considerations in Trace Element<br />

Analysis of Bone by Portable X-Ray<br />

Fluorescence<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Gretchen R. Dabbs, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; and Michelle A. Granrud,<br />

585 North Scottsdale Drive, Apartment 6, Fayetteville, AR<br />

72701<br />

Gregory W. Hodgins, PhD*, University of Arizona,<br />

Department of Physics, 1118 East Fourth Street, Tucson,<br />

AZ 85721<br />

Angela M. Dautartas, BS*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Branka Franicevic, MSc*, Department of Archaeology,<br />

Sheffield University, Sheffield, S1 4ET, UNITED<br />

KINGDOM<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102,<br />

Rockville, MD 20850<br />

Jerry Melbye, PhD*, and Michelle D. Hamilton, PhD,<br />

Texas State University-San Marcos, Department of<br />

Anthropology, 601 University Drive, San Marcos, TX<br />

78666-4616<br />

Brannon I. Hulsey, MA*, Walter E. Klippel, PhD, and Lee<br />

Meadows Jantz, PhD, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37966-0720<br />

Bobbie J. Kemp, MS, Michael I. Siegel, PhD, Margaret A.<br />

Judd, PhD, and Mark P. Mooney, PhD, University of<br />

Pittsburgh, Department of Anthropology, 3302 Wesley W.<br />

Posvar Hall, Pittsburgh, PA 15260, and Luis L. Cabo-<br />

Pérez, MS, Mercyhurst College, Department of Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

Jennifer F. Byrnes, BS*, SUNY University at Buffalo,<br />

Department of Anthropology, 380 MFAC, Ellicott Complex,<br />

Buffalo, NY 14261-0026; and Peter J. Bush, BS, SUNY at<br />

Buffalo, South Campus Instrument Center, B1 Squire Hall,<br />

South Campus, Buffalo, NY 14214<br />

Index 29<br />

145<br />

145<br />

146<br />

147<br />

147<br />

148<br />

149<br />

149<br />

150<br />

150<br />

151


Field Contamination of Archaeological<br />

Bone Samples Submitted for<br />

Mitochondrial DNA (mtDNA) Analysis<br />

Training in Forensic Archaeology and<br />

Anthropology on a Shoestring: Is It<br />

Possible? Is It Sensible?<br />

Ground Penetrating Radar: A New Tool in<br />

Crime Scene Examination?<br />

Forensic Field Radiography: In the<br />

Trenches With MacGyver<br />

Hispanic: History and Use of a Generic<br />

Term<br />

Cephalic Index of Gurung Community of<br />

Nepal: An Anthropometric Study<br />

Ancestry Estimation Using the Femur: A<br />

Pilot Study<br />

Evaluation of Enamel Short Chemical<br />

History as a Forensic Tool: A Comparative<br />

Study of Six Countries<br />

Differentiating Between Foreign National<br />

Hispanics and U.S. Hispanics in the<br />

Southwest: The Influence of Socioeconomic<br />

Status on Dental Health and Stature<br />

Past or Present? An Empirical Basis for<br />

Quantitatively Distinguishing Between<br />

Prehistoric and Modern Forensic Cases<br />

Using a California Native American<br />

Population<br />

Frequencies of Non-Metric Characteristics<br />

in Northern California Native Populations:<br />

Establishing a Foundation for Comparison<br />

Alexander F. Christensen, PhD, Joint POW/MIA<br />

Accounting Command, Central Identification Lab, 310<br />

Worchester Avenue, Hickam AFB, HI 96853; Suni M.<br />

Edson, MS*, Armed Forces DNA ID Lab, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850; Erica L.<br />

Chatfield, MFS, AFDIL, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850; Audrey L. Meehan,<br />

BGS, JPAC-CIL, 91-1074 Anaunau Street, Ewa Beach, HI<br />

96706; and Suzanne M. Barritt, MS, AFDIL, Armed Forces<br />

DNA ID Lab, 1413 Research Boulevard, Building 101,<br />

Rockville, MD 20850<br />

Roland Wessling, BSc*, and Ambika Flavel, MSc, Inforce<br />

Foundation, Cranfield University, Cranfield Forensic<br />

Institute, Shrivenham, SN6 8LA, UNITED KINGDOM<br />

Donna M. MacGregor, MSc*, Queensland Police Service,<br />

Scientific Section, 200 Roma Street, Brisbane, 4001,<br />

AUSTRALIA<br />

Gerald J. Conlogue, MHS*, c/o Diagnostic Imaging<br />

Program, Quinnipiac University, 275 Mt. Carmel Avenue,<br />

Hamden, CT 06518; and Mark D. Viner, MSc, Inforce<br />

Foundation, Forensic Science Institute, Cranfield<br />

University, Royal Military College of Science, Shrivenham,<br />

Wiltshire, UNITED KINGDOM<br />

Ashley E. Shidner, BA*, and Heidi S. Davis, BA, BS,<br />

University of West Florida, Department of Anthropology,<br />

11000 University Parkway, Pensacola, FL 32514<br />

Stany W. Lobo, MSc*, Department of Anatomy, Melaka<br />

Manipal <strong>Medical</strong> College, Manipal, Karnataka 576104,<br />

INDIA<br />

Sarah E. McManus, BA*, 2019 Stonybrook Road,<br />

Louisville, TN 37777<br />

Khudooma S. Al Na’imi, BSc*, University of Central<br />

Lancashire, United Kingdom, Um Ghafa, Abu Dhabi, Al<br />

Ain, Box 16584, UNITED ARAB EMIRATES<br />

Bruce E. Anderson, PhD, Forensic Science Center, 2825<br />

East District Street, Tucson, AZ 85714; Tamela R. Smith,<br />

BA*, Arizona State University, Tempe, AZ 85281; Walter H.<br />

Birkby, PhD, Forensic Science Center, 2825 East District<br />

Street, Tucson, AZ 85714; Todd W. Fenton, PhD, Michigan<br />

State University, 354 Baker Hall, Department of<br />

Anthropology, East Lansing, MI 48824; Carolyn V. Hurst,<br />

BA, Michigan State University, East Lansing, MI 48823;<br />

and Claire C. Gordon, PhD, U.S. Army Natick RD&E<br />

Center, Kansas Street, Natick, MA 01760-5020<br />

Cris E. Hughes, MA*, and Chelsey Juarez, MA, Department<br />

of Anthropology, University of California – Santa Cruz,<br />

Social Science 1, 1156 High Street Room 435, Santa Cruz,<br />

CA 95064; and Lauren Zephro, MA, Santa Cruz Sheriff’s<br />

Office, 701 Ocean Street, Room 340, Santa Cruz, CA 95060<br />

Cris E. Hughes, MA*, and Chelsey Juarez, MA, Department<br />

of Anthropology, University of California – Santa Cruz,<br />

Social Science 1, 1156 High Street Room 435, Santa Cruz,<br />

CA 95064<br />

Index 30<br />

152<br />

152<br />

153<br />

154<br />

154<br />

155<br />

155<br />

156<br />

156<br />

157<br />

157


A New Metric Procedure for the<br />

Estimation of Sex and Ancestry From the<br />

Human Innominate<br />

Secular Trends in Cranial Morphological<br />

Sexing<br />

Determination of Sex Using Metric Data of<br />

Greater Sciatic Notch in Koreans<br />

Sexual Dimorphism of Joint Surface Area<br />

through 3-D Digital Data Modeling<br />

Sex-Determination of Koreans Using<br />

Metric Analysis of Vertebrae<br />

Tarsal Measurements to Estimate Sex for<br />

Use in a Forensic Setting<br />

An Evaluation of Facial Features Used for<br />

Facial Recognition Applied to Cases of<br />

Missing Persons<br />

Alexandra R. Klales, BA*, Jennifer M. Vollner, BS*, and<br />

Stephen D. Ousley, PhD, Mercyhurst College, Department<br />

of Anthropology & Applied Forensic Science Program, 501<br />

East 38th Street, Erie, PA 16546<br />

Kanya Godde, MA*, and Angela M. Dautartas, BS,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

U-Young Lee, MD*, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Socho-gu, Seoul, 137701, KOREA; In-Hyuk Chung,<br />

PhD, Department of Anatomy, Yonsei University College of<br />

Medicine, 134 Sinchon-dong, Seodaemoon-gu, Seoul,<br />

120752, KOREA; Dae-Kyoon Park, PhD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University,<br />

366-1 Sangyong-dong, Cheonan-si, Seoul, 330946,<br />

KOREA; Yi-Suk Kim, PhD, Department of Anatomy,<br />

Gachon University of Medicine & Science, 1198 Kuwoldong,<br />

Namdong-gu, Incheon, 405760, KOREA; Sang-Seob<br />

Lee, MSD, National Institute of Scientific Investigation,<br />

Shinwol-7-dong, Yancheon-gu, Seoul, 158707, KOREA;<br />

Yong-Woo Ahn, PhD, Institute of Forensic Medicine,<br />

School of Medicine, Pusan National University, 1- 10, Amidong,<br />

Seo-gu, Busan, 602739, KOREA; Deog-Im Kim, PhD,<br />

Department of Anatomy, Kwandong University College of<br />

Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

and Je-Hoon Lee, MSc, and Seung-Ho Han, PhD, The<br />

Catholic University of Korea, Department of Anatomy,<br />

College of Medicine, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA<br />

Denise To, MA*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Dae-Kyoon Park, PhD*, Department of Anatomy, College<br />

of Medicine, Soonchunhyang University, Department of<br />

Anatomy; U-Young Lee, MD, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Socho-gu, Seoul, 137701, KOREA; Yi-<br />

Suk Kim, PhD, Department of Anatomy, Gachon University<br />

of Medicine & Science, 1198 Kuwol-dong, Namdong-gu,<br />

Incheon, 405760, KOREA; Deog-Im Kim, PhD, Department<br />

of Anatomy, Kwandong University College of Medicine,<br />

522, Naegok-dong, Gangneug, 201701, KOREA; Seung-Ho<br />

Han, PhD, Department of Anatomy, College of Medicine,<br />

The Catholic University of Korea, 505, Banpo-dong,<br />

Seocho-gu, Seoul, 137701, KOREA; and In-Hyuk Chung,<br />

PhD, Department of Anatomy, Yonsei University College of<br />

Medicine, 134 Sinchon-dong, Seodaemoon-gu, Seoul,<br />

120752, KOREA<br />

Vanessa L. Aziz, BA*, 11735 Bergamo Court, Las Vegas,<br />

NV 89183<br />

Samantha M. Seasons, BA*, and Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, Soc 107, Tampa, FL 33820<br />

Index 31<br />

158<br />

158<br />

159<br />

159<br />

160<br />

160<br />

161


The Reliability of Visually Comparing<br />

Small Frontal Sinuses<br />

Three-Dimensional Computer Modeling<br />

and Anthropological Assessment of the<br />

National Library of Medicine’s Visible<br />

Human Male<br />

The Reproducibility of Results From Facial<br />

Approximation Accuracy Tests That Use<br />

Face-Arrays<br />

Cranial Fracture Patterns in Pediatric<br />

“Crushing” Injuries and Preliminary<br />

<strong>Bio</strong>mechanical Modeling Using a Simple<br />

Finite Element Model<br />

Shark-Inflicted Trauma on Human<br />

Skeletal Remains<br />

Patterns of Blunt Force Trauma Induced<br />

by Motorboat and Ferry Propellers as<br />

Illustrated by Three Known Cases From<br />

Rhode Island<br />

Cervical Vertebrae Entrapment in the<br />

Noose as Evidence of Cause of Death by<br />

Hanging in Skeletal Cases: Three<br />

Remarkable Finds<br />

Diagnosing Peri-Mortem Blunt Force<br />

Trauma in Burnt Remains<br />

Victoria A. Smith, MA*, Oak Ridge Associated Universities,<br />

Federal Bureau of Investigation Laboratory TEU, 2501<br />

Investigation Parkway, Quantico, VA 22135; Angi M.<br />

Christensen, PhD, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA<br />

22135; and Sarah W. Myers, Emory University, 201<br />

Dowman Drive, Atlanta, GA 30322<br />

Summer J. Decker, MA*, Jonathan M. Ford, BA*, and Don<br />

R. Hilbelink, PhD, Department of Pathology and Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC 11, Tampa, FL<br />

33612; and Eric J. Hoegstrom, MSBE, Department of<br />

Chemical Engineering, University of South Florida College<br />

of Engineering, Tampa, FL 33612<br />

Carl N. Stephan, PhD*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Jody<br />

Cicolini, BSc, The University of Queensland, Brisbane,<br />

4072 AUSTRALIA<br />

Marcus B. Nashelsky, MD*, Department of Pathology -<br />

5244 RCP, University of Iowa Hospitals & Clinics, 200<br />

Hawkins Drive, Iowa City, IA 52242; Todd W. Fenton,<br />

PhD, Michigan State University, 354 Baker Hall,<br />

Department of Anthropology, East Lansing, MI 48824;<br />

Nicholas V. Passalacqua, MS, 3518 Hagadorn Road,<br />

Okemos, MI 48864; Carolyn V. Hurst, BA, 3303 Wharton<br />

Street, East Lansing, MI 48823; and Timothy G. Baumer,<br />

BS, and Roger C. Haut, PhD, Orthopaedic <strong>Bio</strong>mechanics<br />

Laboratories, Michigan State University, East Lansing, MI<br />

48824<br />

Maria T. Allaire, MA*, Louisiana State University FACES<br />

Laboratory, Louisiana State University, 227 Howe-Russell<br />

Building, Baton Rouge, LA 70803; and Mary H. Manhein,<br />

MA, Department of Geography & Anthropology, Louisiana<br />

State University, Baton Rouge, LA 70803<br />

Dominique S. Semeraro, MS*, Office of State <strong>Medical</strong><br />

Examiners, 48 Orms Street, Providence, RI 02904;<br />

Nicholas V. Passalacqua, MS, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI 48824; Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East<br />

38th, Erie, PA 16546-0001; and Thomas P. Gilson, MD,<br />

Office of State <strong>Medical</strong> Examiners, 48 Orms Street,<br />

Providence, RI 02904<br />

Jennifer A. Ledford, BS*, Barrett Gobelet, BS*, and Hugh<br />

E. Berryman, PhD, Department Sociology & Anthropology,<br />

Middle Tennessee State University, Box 89, Murfreesboro,<br />

TN 37132<br />

Aimee E. Huard, MA*, Binghamton University, Jeremy J.<br />

Wilson, MA, and Dawnie W. Steadman, PhD, Department<br />

of Anthropology, Binghamton University, PO Box 6000,<br />

Binghamton, NY 13902-6000<br />

Index 32<br />

162<br />

162<br />

163<br />

164<br />

164<br />

165<br />

166<br />

166


A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns - Part 1:<br />

Investigations on Infant Cranial Bone<br />

Fracture Initiation and Interface<br />

Dependent Fracture Patterns<br />

Todd W. Fenton, PhD*, Michigan State University, 354<br />

Baker Hall, Department of Anthropology, East Lansing, MI<br />

48824; Nicholas V. Passalacqua, MS, 3518 Hagadorn<br />

Road, Okemos, MI 48864; and Timothy G. Baumer, BS,<br />

Brian J. Powell, BS, and Roger C. Haut, PhD, Orthopaedic<br />

<strong>Bio</strong>mechanics Laboratories, Michigan State University,<br />

East Lansing, MI 48824<br />

And a Little Child Shall Lead Them.... Julie M. Saul, BA*, Forensic Anthropology Lab, Lucas<br />

County Coroner’s Office, 2595 Arlington Avenue, Toledo,<br />

OH 43614-2674; Frank P. Saul, PhD, U.S. HHS DMORT 5,<br />

2595 Arlington Avenue, Toledo, OH 43614- 2674; and<br />

Allan J. Warnick, DDS, Wayne & Oakland Counties<br />

<strong>Medical</strong> Examiner’s Office, 31632 Schoolcraft Road,<br />

Callus Treatment: Collaboration Between<br />

Forensic Anthropology and Forensic<br />

Pathology to Improve the Recognition and<br />

Elucidation of Skeletal Fractures in Infants<br />

and Children<br />

Eaten or Attacked By His Own Dogs?<br />

From the Crime Scene to a<br />

Multidisciplinary Approach<br />

Solving <strong>Medical</strong> Examiner Cold Cases:<br />

Modern Resources in the Reanalysis of<br />

Human Skeletal Remains<br />

What Lies Beneath: Re-Examining a Cold<br />

Case Homicide From a Forensic<br />

Anthropological Perspective - A Case<br />

Report<br />

Livonia, MI 48150<br />

Julie M. Fleischman, BA*, Laura C. Fulginiti, PhD, and<br />

Jeffrey S. Johnston, MD, Maricopa County Office of the<br />

<strong>Medical</strong> Examiner, 701 West Jefferson, Phoenix, AZ 85007<br />

João Pinheiro, MD, MSc*, Instituto Nacional de Medicina<br />

Legal, Instit Nacional Medicina Legal, Delegação do<br />

Centro, Largo da Sé Nova, Coimbra, 3000, PORTUGAL;<br />

Eugenia Cunha, PhD, Departamento De Antropologia,<br />

Universidade de Coimbra, Coimbra, 3000-056,<br />

PORTUGAL; Hugo Pissarra, DVM, Faculdade de<br />

Medicina Veterinária da Univsersidade Técnica da Lisboa,<br />

Av. da Univsersidade Técnica da Lisboa, Lisbon, AL,<br />

PORTUGAL; and Francisco Corte Real, PhD, Insituto<br />

Nacional de Medicina Legal, Largo da Sé Nova, 3000,<br />

Coimbra, AL, PORTUGAL<br />

Christen E. Herrick, BS*, and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard AB3, Fort Myers, FL<br />

33965-6565; Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206;<br />

Marta U. Coburn, MD, District 20 <strong>Medical</strong> Examiner, 3838<br />

Domestic Avenue, Naples, FL 34104; E.H. Scheuerman,<br />

MD, 1856 Colonial Drive, Green Cove Springs, FL 32043;<br />

Jennifer L. Anderson, BS, BA, 4632 Deleon Street, #129,<br />

Fort Myers, FL 33907; Jeffrey J. Brokaw, BA, 2100<br />

Jefferson Street, Jacksonville, FL 32206; Brian Womble,<br />

BS, 3838 Domestic Avenue, Naples, FL 34104; Katy L.<br />

Shepherd, BS, Florida Gulf Coast University, Division of<br />

Justice Studies, 10501 FGCU Boulevard, South, Fort<br />

Myers, FL 33965; Laura E. Gibson, BS, 2040 Larchmont<br />

Way, Clearwater, FL 33764; and Minas Iliopoulos, BS,<br />

10501 FGCU Boulevard, South, Division of Justice Studies,<br />

AB3, Fort Myers, FL 33965<br />

Joan A. Bytheway, PhD*, Sam Houston State University,<br />

1003 Bowers Boulevard, Huntsville, TX 77340; Kathryn E.<br />

Moss, BS*, 4800 Calhoun Street, Houston, TX 77004; and<br />

Stephen M. Pustilnik, MD*, Galveston County <strong>Medical</strong><br />

Examiner’s Office, 6607 Highway 1764, Texas City, TX<br />

77591<br />

Index 33<br />

167<br />

168<br />

168<br />

169<br />

170<br />

170


Age-Related Change in Adult Orbital<br />

Shape<br />

Craniofacial Growth, Maturation, and<br />

Change: Teens to Mid-Adulthood<br />

Estimating Advanced Adult Age-at-Death<br />

in the Pelvis: A Comparison of Techniques<br />

on Known-Age Samples From Iberia<br />

The Sacral Auricular Surface: A New<br />

Approach to Aging the Human Skeleton<br />

Cranial Suture Closure as a Reflection of<br />

Somatic Dysfunction: Lessons From<br />

Osteopathic Medicine Applied to Physical<br />

Anthropology<br />

A Multidisciplinary Test of the Lamendin<br />

Age Estimation Method<br />

Full Time Employment of Forensic<br />

Anthropologists in <strong>Medical</strong><br />

Examiner’s/Coroner’s Offices in the<br />

United States—A History<br />

Death Investigation for Anthropologists:<br />

Examining an Alternative Role for<br />

Forensic Anthropologists in <strong>Medical</strong><br />

Examiner’s and Coroner’s Offices<br />

Identification of Multiple Cranial Traumas<br />

in a Recently Closed Homicide<br />

Investigation<br />

Anthropologist/<strong>Medical</strong> Examiner<br />

Collaboration at Isolated, Inaccessible, or<br />

Disrupted Crime Scenes<br />

Shanna E. Williams, PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235; Dennis E. Slice, PhD, Department of Scientific<br />

Computing, Florida State University, Tallahassee, FL<br />

32306; and Anthony B. Falsetti, PhD, CA Pound Human Id<br />

Lab, C/O Cancer/Genetics Research, PO Box 103615,<br />

Gainesville, FL 32610<br />

Ann H. Ross, PhD*, North Carolina State University,<br />

Sociology and Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107; and Shanna E. Williams, PhD, University<br />

of Florida, Department of Anatomy, PO Box 100235,<br />

Gainesville, FL 32610-0235<br />

Allysha P. Winburn, MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam Airforce Base, HI<br />

96853; and Carme Rissech, PhD, Universitat de Barcelona,<br />

Avd. Diagonal, 645; 08028, Barcelona, SPAIN<br />

Alicja K. Kutyla, MS*, University of Tennessee, Knoxville,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Anne M. Kroman, PhD*, and Gregory A. Thomspon, DO,<br />

Lincoln Memorial University, De-Busk College of<br />

Osteopathic Medicine, 6965 Cumberland Gap Parkway,<br />

Harrogate, TN 37752<br />

Ann W. Bunch, PhD*, 164 Albert Brown Building,<br />

Department of Criminal Justice, SUNY Brockport,<br />

Brockport, NY 14420; Mary I. Jumbelic, MD, Onondaga<br />

County <strong>Medical</strong> Examiners Office, 100 Elizabeth Blackwell<br />

Street, Syracuse, NY 13210; Robert D. Willis, DDS, 7282<br />

Oswego Road, Liverpool, NY 13090; Ronald Brunelli,<br />

Onondaga County <strong>Medical</strong> Examiner’s Office, 100<br />

Elizabeth Blackwell Street, Syracuse, NY 13210; and<br />

Jennifer J. VanWie-Dobson, BA, 403 Robinson Road,<br />

Durham, NC 27705<br />

Hugh E. Berryman, PhD*, Department Sociology &<br />

Anthropology, Middle Tennessee State University, Box 89,<br />

Murfreesboro, TN 37132<br />

Gina O. Hart, MA*, Regional <strong>Medical</strong> Examiner’s Office,<br />

325 Norfolk Street, Newark, NJ 07103-2701<br />

Thomas A. Furgeson, MA*, University of Wyoming, 1002<br />

South 3rd Street, Laramie, WY 82070; George W. Gill,<br />

PhD, University of Wyoming, Department of Anthropology,<br />

Laramie, WY 82071; and Rick L. Weathermon, MA,<br />

Department of Anthropology, University of Wyoming, 10<br />

East University Avenue, Department 3431, Anthropology,<br />

Laramie, WY 82071<br />

Emily A. Craig, PhD*, <strong>Medical</strong> Examiner’s Office, 100<br />

Sower Boulevard, Suite 202, Frankfort, KY 40601<br />

Index 34<br />

171<br />

171<br />

172<br />

173<br />

173<br />

174<br />

175<br />

175<br />

176<br />

177


The Role of Forensic Anthropology in<br />

Disaster Operations<br />

The Forensic Anthropologist, the National<br />

Crime Information Center (N.C.I.C.), and<br />

National Missing and Unidentified<br />

Persons\System (NamUs) Databases<br />

The Role of the Harris County <strong>Medical</strong><br />

Examiner’s Office Forensic Anthropology<br />

Division in Scientific Identification<br />

Forensic Anthropology at the Pima County<br />

(Arizona) Office of the <strong>Medical</strong> Examiner:<br />

The Identification of Foreign Nationals<br />

Forensic Pathology and Anthropology: A<br />

Collaborative Effort<br />

Maintaining Custody: A Virtual Method of<br />

Creating Accurate Reproductions of<br />

Skeletal Remains for Facial Approximation<br />

The Role of Adult Age-Related<br />

Craniofacial Changes and the MORPH<br />

Database in Computer Automated Face<br />

Recognition Research and Development<br />

Skull/ Photo Superimposition Validation<br />

Study<br />

The Importance of Morphological Traits in<br />

Facial Identification<br />

Christian Crowder, PhD*, Benjamin J. Figura, MA,<br />

Bradley J. Adams, PhD, and Frank DePaolo, MS, New York<br />

City, Office of Chief <strong>Medical</strong> Examiner, 520 First Avenue,<br />

New York, NY 10016<br />

Donna A. Fontana, MS*, New Jersey State Police, Office of<br />

Forensic Sciences, Forensic Anthropology Laboratory,<br />

1200 Negron Drive, Hamilton, NJ 08691<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong><br />

Examiner, Anthropology Division, Houston, TX 77054; and<br />

Jennifer C. Love, PhD, Sharon M. Derrick, PhD, and Luis<br />

A. Sanchez, MD, Harris County, <strong>Medical</strong> Examiner’s<br />

Office, 1885 Old Spanish Trail, Houston, TX 77054<br />

Bruce E. Anderson, PhD*, and Walter H. Birkby, PhD,<br />

Forensic Science Center, 2825 East District Street, Tucson,<br />

AZ 85714<br />

Kathryn H. Haden-Pinneri, MD*, Jennifer C. Love, PhD*,<br />

Jason M. Wiersema, PhD, and Sharon M. Derrick, PhD,<br />

Harris County <strong>Medical</strong> Examiner’s Office, 1885 Old<br />

Spanish Trail, Houston, TX 77054<br />

Summer J. Decker, MA*, Jonathan M. Ford, BA, BA, and<br />

Don R. Hilbelink, PhD, Department of Pathology and Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL<br />

33612; and Eric J. Hoegstrom, MSBE, Department. of<br />

Chemical & <strong>Bio</strong>medical Engineering, University of South<br />

Florida College of Engineering, Tampa, FL 33612<br />

A. Midori Albert, PhD*, University of North Carolina<br />

Wilmington, Department of Anthropology, 601 South<br />

College Road, Wilmington, NC 28403-5907<br />

Audrey L. Meehan, BGS*, 91-1074 Anaunau Street, Ewa<br />

Beach, HI 96706; and Robert W. Mann, PhD, Joint<br />

POW/MIA Acct Command, Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5000<br />

Cristina Cattaneo, PhD, LABANOF, and Danilo De<br />

Angelis, DDS*, Laboratorio di Antropologia e Odontologia<br />

Forense, via Mangiagalli 37, Milan, 20133, ITALY; Peter<br />

Gabriel, MD, Institut für Rechtsmedizin, im Uniklinikum<br />

Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 12, D-<br />

24105, Kiel, ITALY; Stefanie Ritz-Timme, MD, Institut für<br />

Rechtsmedizin, im Uniklinikum Schleswig-Holstein,<br />

Campus Kiel, Arnold-Heller-Str. 12, D-24105, Kiel, ,<br />

GERMANY; Janine Tutkuviene, MD, Department of<br />

Anatomy, Histology and Anthropology, Faculty of<br />

Medicine, Vilnius University, Vilnius, , LITHUANIA; and<br />

Daniele Gibelli, MD, LABANOF, Laboratorio di<br />

Antropologia e Odontologia Forense, V. Mangiagalli, 37,<br />

Milan, ITALY<br />

Index 35<br />

177<br />

178<br />

178<br />

179<br />

179<br />

180<br />

181<br />

181<br />

182


Fingering a Murderer: A Successful<br />

Anthropological and Radiological<br />

Collaboration<br />

Material Culture Analysis in Forensic<br />

Cases: A Call for Formal Recognition by<br />

Forensic Anthropologists<br />

Training the National Disaster Victim<br />

Identification Team<br />

The Need for Holistic Investigations of<br />

Human Rights Violations: An Example<br />

From Peru<br />

Reconciling the Discrepancy in Victim<br />

Number Between the S-21 Prison and the<br />

Choeung Ek Killing Fields of Cambodia<br />

Forensic Findings on Illegal Burials in<br />

Colombia<br />

Evolution of Forensic Archaeology and<br />

Anthropology in Italy: Three Criminal<br />

Cases<br />

Sexual Dimorphism of Index to Ring<br />

Finger Ratio in South Indian Children<br />

Subadult Sexual Dimorphism in Long Bone<br />

Dimensions (The Luis Lopes Collection)<br />

Sex Estimation From the Clavicle in<br />

Modern Americans: Traditional Versus<br />

Alternative Approaches<br />

The Impact of Racial Metric Variation in<br />

the Pelvis on the Morphological<br />

Assessment of Sex<br />

Bilateral Asymmetry in Historic Versus<br />

Modern Skeletal Remains: Activity and<br />

Identification<br />

B.G. Brogdon, MD*, University of South Alabama <strong>Medical</strong><br />

Center, Department of Radiology, 2451 Fillingim Street,<br />

Mobile, AL 36617; Marcella H. Sorg, PhD*, Margaret<br />

Chase Smith Policy Center, University of Maine, Orono,<br />

ME 04469; and Kerriann Marden, MA, c/o 23 Flicker<br />

Drive, Topsham, ME 04086<br />

Mark Skinner, PhD, Simon Fraser University, Department<br />

of Archeology, Burnaby, BC V5A 1S6, CANADA; and<br />

Ariana Fernandez, MPhil, and Derek Congram, MSc*, 706-<br />

1850 Comox Street, Vancouver, BC V6G 1R3, CANADA<br />

Lucina Hackman, MSc*, Dundee University, WTB/MSI<br />

Complex, Dow Street, Dundee, DD1 4AH, UNITED<br />

KINGDOM<br />

Jose P. Baraybar, MSc*, EPAF, Av. Mello Franco 341,<br />

Jesus Maria, PERU; and Ellen Salter-Pedersen, MA,<br />

Department of Anthropology, Indiana University, 701 East<br />

Kirkwood, SB130, Bloomington, IN 47405<br />

Debra Komar, PhD*, International Criminal Tribunal for<br />

the Former Yugoslavia, Van der Heimstraat 64, The Hague,<br />

NETHERLANDS<br />

Claudia M. Briceno*, Departamento Administrativo de<br />

Seguridad, Carrera 28 # 17a-00, BOGOTA, COLOMBIA<br />

Cristina Cattaneo, PhD, Dominic Salsarola, BSc, Davide J.<br />

Porta, PhD, Pasquale Poppa, BSc, and Daniele Gibelli,<br />

MD*, Laboratorio di Antropologia e Odontologia Forense,<br />

V. Mangiagalli, 37, Milan, ITALY; Giovanna Sansoni, BE,<br />

Laboratorio di Optoelettronica, Via Branze 38, 25123<br />

Brescia – Italy, Brescia, ITALY; and Enrico Silingardi,<br />

Laboratorio di Antropologia e Odontologia Forense, V.<br />

Mangiagalli, 37, Milan, ITALY<br />

Tanuj Kanchan, MD*, Kasturba <strong>Medical</strong> College,<br />

Department of Forensic Medicine, Light House Hill Road,<br />

Mangalore, 575 001, INDIA<br />

Miriam E. Soto, MA*, The University of Tennessee, 250<br />

South Stadium Hall, 1425 South Stadium Drive, Knoxville,<br />

Tennessee 37996<br />

Natalie R. Shirley, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Brandon C. Merkl, MS, University of<br />

Tennessee, Department of Mechanical, Aerospace, and<br />

<strong>Bio</strong>medica, 414 Dougherty Engineering Building,<br />

Knoxville, TN 37996; and Richard Jantz, PhD, Department<br />

of Anthropology, University of Tennessee, Knoxville, TN<br />

37996-0720<br />

Ginesse A. Listi, PhD*, Louisiana State University, 1723<br />

Lombard Drive, Baton Rouge, LA 70810<br />

Shannon E. May, MA*, 250 South Stadium Hall,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37966<br />

Index 36<br />

183<br />

183<br />

184<br />

184<br />

185<br />

186<br />

186<br />

187<br />

187<br />

188<br />

189<br />

189


Observer Error Analysis Trends in<br />

Forensic Anthropology<br />

Prediction of Shoe Size From Tarsals and<br />

Metatarsals<br />

Radiography as a Tool for Contemporary<br />

Anthropological Research<br />

Can Bilateral Joint Asymmetry Be Used as<br />

an Estimation of Handedness?<br />

Forensic Anthropology Academic and<br />

Employment Trends<br />

<strong>Bio</strong>logy and Culture in the Modern Era:<br />

How Cultural Evidence Can Conflict With<br />

Forensic Significance<br />

Analysis of Thirty-Three Years of Forensic<br />

Anthropology Casework at California<br />

State University, Chico (1975-2008)<br />

Detecting Buried Metallic Weapons in a<br />

Controlled Setting Using a Conductivity<br />

Meter<br />

The Effects of Ethanol Abuse on Bone<br />

Mineral Density in the Proximal Femur<br />

Geophysical Remote Sensing Applied to the<br />

Forensic Search for WWII Graves in<br />

Guadalcanal<br />

Megan Ingvoldstad, MA, Ohio State University, Department<br />

of Anthropology, 244 Lord Hall, 124 West 17th Avenue<br />

Columbus, OH 43210; and Christian Crowder, PhD*,<br />

<strong>Medical</strong> Examiner’s Office, 520 First Avenue, New York,<br />

NY 10016<br />

Paul D. Emanovsky, MS*, JPAC-CIL, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

Melissa A. Pope, BA*, University of South Florida,<br />

Anthropology Department, 4202 East Fowler Avenue,<br />

Tampa, Florida 33613; and Liotta N. Dowdy, BA*,<br />

University of South Florida, 3115 Palmira Street, Tampa,<br />

Florida 33629<br />

Kathryn R.D. Driscoll, MA*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Gina M. Agostini, BS*, and Emily J. Gomez, BA, 4500<br />

Manor Village, Apartment 316, Raleigh, NC 27612<br />

Clarissa R. Dicke, AD*, 1325 East Orange Street, Tempe,<br />

AZ 85281; Laura C. Fulginiti, PhD, Forensic Science<br />

Center, 701 West Jefferson, Phoenix, AZ 85007; and Mark<br />

A. Fischione, MD, Maricopa County Office of the <strong>Medical</strong><br />

Examiner, 701 West Jefferson Street, Phoenix, AZ 85003<br />

Ashley E. Kendell, BS*, 1253 West 5th Street, Apartment<br />

85, Chico, CA 95928; and Ashley Hutchinson, BA, James<br />

Brill, BA, Eric J. Bartelink, PhD, Turhon A. Murad, PhD,<br />

and P. Willey, PhD, California State University-Chico, 400<br />

West First Street, Department of Anthropology, Butte #311,<br />

Chico, CA 95929-0400<br />

Charles A. Dionne, BS*, University of Central Florida,<br />

Department of Anthropology, 4000 Central Florida<br />

Boulevard, Orlando, FL 32816<br />

Bridget Algee-Hewitt, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Rebecca J. Wilson, MA*, 3108<br />

Rennoc Road, Knoxville, TN 37918; and Megan Katrina<br />

Moore, PhD, University of Tennessee, University of<br />

Tennessee, Department of Anthropology, Knoxville, TN<br />

37996<br />

Rhett Herman, PhD, Radford University, Department of<br />

Chemistry and Physics, Radford University, Radford, VA<br />

24142; Cliff Boyd, PhD, Radford University, Department of<br />

Sociology and Anthropology, Radford University, Radford,<br />

VA 24142; Jarrod Burks, PhD, Ohio Valley Archaeological<br />

Consultants, 4889 Sinclair Road, Suite 210, Columbus, OH<br />

43229; Donna C. Boyd, PhD*, Department Sociology &<br />

Anthropology, Radford University, Radford, VA 24142; and<br />

Doug Drumheller, MBA, Greatest Generation MIA<br />

Recoveries, 2187 Ben Franklin Drive, Pittsburg, PA 15327<br />

Index 37<br />

190<br />

191<br />

191<br />

192<br />

193<br />

193<br />

194<br />

194<br />

195<br />

196


Necessary Breaks With Conservator<br />

Standards: Cranial Reconstruction in<br />

Forensic Cases<br />

Anthropology for Breakfast: A Semi-<br />

Cautionary Tale<br />

Unusual Skeletal Variations Observed in<br />

an Adult Aboriginal Male: Case Study<br />

from Brisbane, Australia<br />

Estimation of Age at Death From the<br />

Juvenile Scapula<br />

Forensic Age Estimation of Living<br />

Individuals: A Retrospective Case Analysis<br />

Sealed For Your Protection II: The Effects<br />

of Corrosive Substances on Human Bone<br />

and Tissue<br />

Aquatic Taphonomy in a Lacustrine<br />

Environment: A Case Study From<br />

Southeastern Tennessee<br />

Recovery of Human Remains From<br />

Vehicles Submerged in Fresh Water<br />

Decomposition Variables: A Comparison<br />

of Skeletal Remains Recovered After Long-<br />

Term Submersion in Florida Aquatic<br />

Environments<br />

Laura E. Gibson, BS*, 2040 Larchmont Way, Clearwater,<br />

FL 33764; Heather A. Walsh-Haney, and Christen E.<br />

Herrick, BS, Florida Gulf Coast University, Division of<br />

Justice Studies, 10501 FGCU Boulevard South, AB3, Fort<br />

Myers, FL 33965-6565; Katy L. Shepherd, BS, Florida Gulf<br />

Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Gertrude M.<br />

Juste, MD, District 15 Office of the <strong>Medical</strong> Examiner,<br />

3126 Gun Club Road, West Palm Beach, FL 33406; and<br />

Margarita Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100<br />

Jefferson Street, Jacksonville, FL 32206<br />

John A. Williams, PhD*, Anthropology & Sociology,<br />

Western Carolina University, 101 McKee Hall, Cullowhee,<br />

NC 28723<br />

Donna M. MacGregor, MSc*, Queensland Police Service,<br />

Scientific Section, 200 Roma Street, Brisbane, 4001,<br />

AUSTRALIA<br />

Natalie Uhl, MS*, 308 North Orchard Avenue, Apartment<br />

7, Urbana, IL 68101<br />

Antonio De Donno, PhD*, and Valeria Santoro, PhD,<br />

Section of Legal Medicine - DiMIMP, P.zza Giulio Cesare<br />

n.11, Bari, 70124, ITALY; Carlo P. Campobasso, PhD,<br />

University of Molise, via De Sanctis, snc, Campobasso,<br />

86100, ITALY; Nunzio Di Nunno, PhD, via Guido Dorso 9,<br />

Bari, 70125, ITALY; and Francesco Introna, PhD, Section<br />

of Legal Medicine - DiMIMP, P.zza Giulio Cesare n.11,<br />

Bari, 70124, ITALY<br />

Laura C. Fulginiti, PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Frank Di Modica,<br />

Phoenix Police Department, 620 West Washington Street,<br />

Phoenix, AZ 85003; Kristen Hartnett, PhD, Office of Chief<br />

<strong>Medical</strong> Examiner, Forensic Anthropology, 520 1st Avenue,<br />

New York, NY 10016; and Diane Karluk, MD, Maricopa<br />

County Office of the <strong>Medical</strong> Examiner, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Jonathan D. Bethard, MA*, The University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, Tennessee 37996; and Murray K. Marks, PhD*,<br />

University of Tennessee, Graduate School of Medicine,<br />

1924 Alcoa Highway, Knoxville, TN 37920-6999<br />

Stephen P. Nawrocki, PhD*, and Anthony J. Koehl, BS*,<br />

University of Indianapolis, Archeology & <strong>Forensics</strong><br />

Laboratory, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227<br />

Katy L. Shepherd, BS*, and Heather A. Walsh-Haney, PhD,<br />

Florida Gulf Coast University, Division of Justice Studies,<br />

10501 FGCU Boulevard AB3, Fort Myers, FL 33965-6565;<br />

Valerie J. Rao, MD, District 4 <strong>Medical</strong> Examiner’s Office,<br />

2100 Jefferson Street, Jacksonville, FL 32206; Khalil S.<br />

Wardak, MD, 5301 SW 31st Avenue, Fort Lauderdale, FL<br />

33312; Predrag Bulic, MD, District 7 Office of the <strong>Medical</strong><br />

Examiner, 1360 Indian Lake Road, Daytona Beach, FL<br />

32124; and Christena Roberts, MD, Office of the Chief<br />

<strong>Medical</strong> Examiner of Virginia, Western District, 6600<br />

Index 38<br />

196<br />

197<br />

198<br />

198<br />

199<br />

199<br />

200<br />

200<br />

201


Taphonomic Degradation to Bone Through<br />

Scavenging by Marine Mollusks of the<br />

Class Polyplacophora<br />

Skeletal Remains in a Fluvial<br />

Environment: Microscopic Evidence of<br />

Glycoproteinous Adhesive of Balanus<br />

Improvisus on the Occlusal Surface of<br />

Mandibular Teeth<br />

Cremated Tooth Morphology: A User’s<br />

Guide to Identification<br />

Going Green: Environmentally Sound<br />

Practices in Human Decomposition<br />

Research and Laboratory Settings<br />

A Study of the Human Decomposition<br />

Sequence in Central Texas<br />

Forensic Osteology Research Station<br />

(FOREST): The First Donation<br />

Taphonomic Signatures of Animal<br />

Scavengers in Northern California<br />

Raccoon (Protocyon lotor) Soft Tissue<br />

Modfication of Human Remains<br />

Estimating Ancestry Through Nonmetric<br />

Traits of the Skull: A Test of Education<br />

and Experience<br />

A Statistical Assessment of Cranial and<br />

Mandibular Morphoscopic Traits Used in<br />

the Determination of Ancestry<br />

Morphological Variations of the Cervical<br />

Spine as Racial Indicators: A Validation<br />

and Observer Error Study Using the Terry<br />

Collection<br />

Hispanic Affiliation: Definitions,<br />

Assumptions, and <strong>Bio</strong>logical Reality<br />

Northside High School Road, Roanoke, VA 24019<br />

Audrey L. Scott, MA*, Simon Fraser University,<br />

Department of Archaeology, Simon Fraser University,<br />

Burnaby, British Columbia V5A 1S6, CANADA<br />

Amanda Johnson, MPA*, Sam Houston State University,<br />

PO Box 2296, Huntsville, TX 77340; Joan A. Bytheway,<br />

PhD*, 23936 Northcrest Trail, New Caney, TX 77357; and<br />

Stephen M. Pustilnik, MD, Galveston County <strong>Medical</strong><br />

Examiner’s Office, 6607 Highway 1764, Texas City, TX<br />

77591<br />

Elizabeth M. Danner, BA*, School of Forensic and<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, PR1 2HE, UNITED KINGDOM<br />

Michelle D. Hamilton, PhD*, and Jerry Melbye, PhD,<br />

Texas State University-San Marcos, Department of<br />

Anthropology, 601 University Drive, ELA 273, San Marcos,<br />

TX 78666-4616<br />

Connie L. Parks, BA*, 8802 Featherhill Road, Austin, TX<br />

78737; Elizabeth T. Brandt, BA, 232 Evans Liberal Arts,<br />

Anthropology Department 601 University Drive, San<br />

Marcos, TX 78666; Michelle D. Hamilton, PhD, Texas<br />

State University-San Marcos, Department of Anthropology,<br />

601 University Drive, Austin, TX 78666; Jennifer Pechal,<br />

MS, TAMU 2475, Texas A&M University, College Station,<br />

TX 77843- 2475; and Jeffery K. Tomberlin, PhD,<br />

Department of Entomology, TAMU 2475, College Station,<br />

TX 77843-2475<br />

Cheryl A. Johnston, PhD*, Western Carolina University,<br />

Department of Anthropology & Sociology, 101 McKee<br />

Building, Cullowhee, NC 28723<br />

Eric J. Bartelink, PhD*, and Lisa N. Bright, BS, California<br />

State University-Chico, 400 West First Street, Department<br />

of Anthropology, Butte #311, Chico, CA 95929-0400<br />

Jennifer A. Synstelien, MA*, The University of Tennessee,<br />

The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37996-0720<br />

Amber D. Wheat, BS*, 232 Evan Liberal Arts, 601<br />

University Drive, San Marcos, TX 78666<br />

Nicolette M. Parr, MS*, University of Florida, CA Pound<br />

Human Identification Laboratory, 1305 NE 6th Terrace,<br />

Gainesville, FL 32601; and Joseph T. Hefner, PhD,<br />

Statistical Research, Inc., 6099 East Speedway Boulevard,<br />

Tucson, AZ 85712<br />

Joan E. Baker, PhD*, Joint POW/MIA Accounting<br />

Command Central Identification, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Paul S. Sledzik,<br />

MS, National Transportation Safety Board, Office of<br />

Transportation Disaster Assistance, 490 L’Enfant Plaza,<br />

SW, Washington, DC 20594<br />

Kate Spradley, PhD*, Department of Anthropology, Texas<br />

State University - San Marcos, 601 University Drive, San<br />

Marcos, TX 78666; and Bruce E. Anderson, PhD, Forensic<br />

Science Center, 2825 East District Street, Tucson, AZ<br />

85714<br />

Index 39<br />

202<br />

202<br />

203<br />

203<br />

204<br />

205<br />

205<br />

206<br />

206<br />

207<br />

207<br />

208


Morphoscopic Traits: Mixed Ancestry,<br />

Hispanics, and <strong>Bio</strong>logical Variation<br />

Shifting Morphological Structure:<br />

Comparing Craniometric Morphology in<br />

Founding and Descendant Populations<br />

Non-Metric Trait Expressions Most<br />

Prevalent in Undocumented Border<br />

Crossers of Southwest Hispanic Descent<br />

From the Pima County Office of the<br />

<strong>Medical</strong> Examiner<br />

Skeletal Fracture Patterns in Documented<br />

Cases of Torture, Assault, Abuse, and<br />

Accidents<br />

Assessing Directionality of Low Velocity<br />

Gunshot Wounds to the Vertebrae: A<br />

Preliminary Study<br />

A Radiographic Assessment of Pediatric<br />

Fracture Healing and Time Since Injury<br />

Supra-Inion Depressions in a Pediatric<br />

<strong>Medical</strong> Examiner Sample: Support for a<br />

Synergy of Developmental and<br />

<strong>Bio</strong>mechanical Etiologies<br />

The Recovery of Human Remains From a<br />

Fatal Fire Setting Using Archeological<br />

Methodology<br />

From Scene to Seen: Post-Fire Taphonomic<br />

Changes Between the In Situ Context and<br />

the Medicolegal Examination of Burned<br />

Bodies<br />

Human Cremains From a Controlled Car<br />

Fire<br />

The Burning Question: A Case Analysis of<br />

Peri-Mortem Trauma vs. Post Fire<br />

Damage<br />

Joseph T. Hefner, PhD*, Statistical Research, Inc., 6099<br />

East Speedway Boulevard, Tucson, AZ 85712<br />

Shanna E. Williams, PhD*, University of Florida,<br />

Department of Anatomy and Cell <strong>Bio</strong>logy, PO Box 100235,<br />

Gainesville, FL 32610- 0235; and Ann H. Ross, PhD, North<br />

Carolina State University, Sociology and Anthropology,<br />

Campus Box 8107, Raleigh, NC 27695-8107<br />

Carolyn V. Hurst, BA*, 354 Baker Hall, East Lansing, MI<br />

48824<br />

Erin H. Kimmerle, PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; Matthias I. Okoye, MD, JD, The<br />

Nebraska Institute of Forensic Sciences, 5925 Adams<br />

Street, Lincoln, NE 68507; John O. Obafunwa, LLB, 5540<br />

South 72nd Street, Lincoln, NE 68516; Thomas L. Bennett,<br />

MD, Yellowstone Pathology Institute, 2900 12th Avenue,<br />

North, Suite 260W, Billings, MT 59101; and Paul F.<br />

Mellen, MD, East Central Indiana Pathologists, PC & PA<br />

Labs, LLC2401 West University Avenue, Muncie, IN 47303<br />

Julie A. Henderson, BA*, PO Box 125, 130 4th Street,<br />

Morton, WA 98356<br />

Christina A. Malone, BHS, BA*, Michigan State University,<br />

Forensic Anthropology Lab, A-439 East Fee Hall, East<br />

Lansing, MI 48824<br />

Sharon M. Derrick, PhD*, Harris County <strong>Medical</strong><br />

Examiner’s Office, 1885 Old Spanish Trail, Houston, TX<br />

77054<br />

Gregory O. Olson, MSc*, Office of the Fire Marshal, 2284<br />

Nursery Road, Midhurst, Ontario L0L 1X0, CANADA<br />

Elayne J. Pope, PhD*, University of West Florida,<br />

Anthropology Department, 11000 University Parkway,<br />

Building 13, Pensacola, FL 72701<br />

Peer H. Moore-Jansen, PhD, Department of Anthropology,<br />

Wichita State University, 114 Neff Hall, Wichita, KS 67260-<br />

0052; Elayne J. Pope, PhD, University of West Florida,<br />

Anthropology Department, 11000 University Parkway,<br />

Building 13, Pensacola, FL 72701; and Laura B. Bennett,<br />

BS*, 1013 Wisteria Drive, Derby, KS 67037<br />

Alison Galloway, PhD, University of California, Social<br />

Science One FS, Santa Cruz, CA 95064; Elayne J. Pope,<br />

PhD, University of West Florida, Anthropology Building<br />

13, 11000 University Parkway, Pensacola, FL 32514; and<br />

Chelsey Juarez, MA*, Dept of Anthropology, UCSC Social<br />

Science 1, 1156 High Street, Santa Cruz, CA 95064<br />

Index 40<br />

208<br />

209<br />

210<br />

210<br />

211<br />

211<br />

212<br />

212<br />

213<br />

214<br />

215


A Small Plane Crash With (Unforeseen)<br />

Large Legal Consequences<br />

An Assessment of <strong>Bio</strong>logical Ancestry in an<br />

Unmarked Cemetery From Nevada: An<br />

Integrated Approach<br />

Separately Discovered Skeletal Remains<br />

and the Path to Reassociation: A Case<br />

Review<br />

Surgical Sutures as a Means of Identifying<br />

Human Remains<br />

Fractured Frontier: An Analysis of<br />

Fracture Patterns in a Historic Nevada<br />

Cemetery<br />

Homicide by Lapidation in Neolitic Age:<br />

Results of Two Cases<br />

2008<br />

Julie M. Saul, BA*, Frank P. Saul, PhD, and James R.<br />

Patrick, MD, Lucas County Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH 43614-2673<br />

Kyle McCormick, BA*, Kate E. Kolpan, BA, Karen Smith<br />

Gardner, BA, Eric J. Bartelink, PhD, Beth Shook, PhD, and<br />

Turhon A. Murad, PhD, California State University,<br />

Department of Anthropology, 400 West First Street, Butte<br />

#311, Chico, CA 95929-0400<br />

Audrey Scott, MA*, Simon Fraser University, Department<br />

of Archaeology, 8888 University Dr., Burnaby, British<br />

Columbia V5A 1S6, CANADA; David Sweet, DMD, PhD,<br />

Bureau of Legal Dentistry Lab, University of British<br />

Columbia, 6190 Agronomy Road, Suite 202, Vancouver, BC<br />

V6T 1Z3, CANADA; Derek Congram, MSc, Simon Fraser<br />

University, Department of Archaeology, 8888 University<br />

Drive, Vancouver, BC V5A 1S6, CANADA; and Stephen<br />

Fonseca, Office of the Chief Coroner, Identification and<br />

Disaster Response Unit, 2035-4720 Kingsway, Burnaby,<br />

BC V5H 4N2, CANADA<br />

Katy L. Shepherd, BS*, 10101 Villagio Palms Way, Unit<br />

201, Estero, FL 33928; Heather A. Walsh-Haney, PhD,<br />

Florida Gulf Coast University, Division of Justice Studies,<br />

10501 FGCU Boulevard South, AB3, Fort Myers, FL<br />

33965-6565; and Marta U. Coburn, MD, District 20<br />

<strong>Medical</strong> Examiner, 3838 Domestic Avenue, Naples, FL<br />

34104<br />

Carrie A. Brown, BA*, Nikki A. Willits, BA, Brenna K.<br />

Blanchard, BA, and Kristin L. Chelotti, BA, California State<br />

University, Department of Anthropology, 400 West First<br />

Street, Butte Hall 311, Chico, CA 95929<br />

Antonio De Donno, PhD*, Section of Legal Medicine -<br />

DiMIMP - University of Bari, P.zza Giulio Cesare n.11,<br />

Bari, 70124, ITALY; Simona Corrado, MD, Sezione di<br />

Medicina Legale, Bari, 70100, ITALY; Valeria Santoro,<br />

PhD, Domenico Urso, MD, Piercarlo Lozito, DDS, and<br />

Francesco Introna, MD, Section of Legal Medicine,<br />

Department of Internal and Public Medicine (DiMIMP),<br />

University of Bari, P.zza Giulio Cesare n.11, Bari, 70124,<br />

ITALY; Aldo Di Fazio, MD, Section of legal medicine -<br />

Matera Hospital, via Montescaglioso n.5, Matera, 75100,<br />

ITALY; and Rocco Maglietta, MD, Section of Legal<br />

Medicine - San Carlo Hospital Potenza, via P.Petroni n.6,<br />

Potenza, 85100, ITALY<br />

Index 41<br />

216<br />

216<br />

217<br />

218<br />

218<br />

219


Identification by the Numbers: A Case<br />

Study in Skeletal Trauma Examination and<br />

Surgical Implant Tracking<br />

Practical Consideration of the Daubert<br />

Guidelines on Methods of Identification in<br />

the <strong>Medical</strong> Examiner Setting<br />

Archival Matters: The William R. Maples<br />

Collection at Florida Gulf Coast University<br />

A Summary of Trauma Specimens at the<br />

Armed Forces Institute of Pathology,<br />

National Museum of Health and Medicine<br />

Taphonomy and Dentition: Understanding<br />

Postmortem Crack Propagation in Teeth<br />

Quantitative and Spatial Comparison of<br />

the Microscopic Bone Structures Of Deer<br />

(Odocoileus virginianus), Dog (Canis<br />

familiaris), and Pig (Sus scrofa domesticus)<br />

Controlled Research Utilizing Geophysical<br />

Technologies in the Search for Buried<br />

Firearms and Miscellaneous Weapons<br />

Accuracy Testing of Computerized Facial<br />

Approximations by Comparison With<br />

Antemortem Photographs<br />

Dual Energy X-ray Absorptiometry<br />

(DEXA) Scans for Skeletal Remains<br />

Identification of Anorexia Nervosa<br />

Placement of the Human Eyeball and<br />

Canthi in Craniofacial Identification<br />

Gwendolyn M. Haugen, MA*, St. Louis County <strong>Medical</strong><br />

Examiner’s Office, 6039 Helen Avenue, St. Louis, MO<br />

63134; Kathleen Diebold, MA*, St. Charles, Jefferson &<br />

Franklin, <strong>Medical</strong> Examiner’s Office, 3556 Caroline Street,<br />

Room C305, St. Louis, MO 63104; Mary E.S. Case, MD,<br />

Chief <strong>Medical</strong> Examiner of St. Louis, St. Charles, Jefferson,<br />

and Franklin Counties in Missouri, 6039 Helen Avenue, St.<br />

Louis, MO 63134; St. Louis County <strong>Medical</strong> Examiner’s<br />

Office, 6039 Helen Avenue, St. Louis, MO 63134; and<br />

Charles W. Subke, Franklin County Sheriff’s Office, #1<br />

Bruns Drive, Union, MO 63084<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong><br />

Examiner, Anthropology Division, Houston, TX 77054;<br />

Jennifer C. Love, PhD, and Luis A. Sanchez, MD, Harris<br />

County, <strong>Medical</strong> Examiner’s Office, 1885 Old Spanish<br />

Trail, Houston, TX 77054<br />

Kevin A. Waters, BS*, Laura Gibson, BS, and Heather A.<br />

Walsh- Haney, PhD, Florida Gulf Coast University,<br />

Division of Justice Studies, 10501 FGCU Boulevard South,<br />

AB3, Fort Myers, FL 33965-6565<br />

Brian F. Spatola, MA*, and Franklin E. Damann, MA*,<br />

Armed Forces Institute of Pathology, National Museum of<br />

Health and Medicine, 6825 16th St. NW, Building 54,<br />

Washington, DC 20306-6000<br />

Cris E. Hughes, MA*, University of California at Santa<br />

Cruz, 5405 Prospect Road, #7, San Jose, CA 95129; and<br />

Crystal A. White*, University of California at Santa Cruz,<br />

Crown College, 400 McLaughlin Drive, Santa Cruz, CA<br />

95064<br />

Zoe Hensley Morris, HBSc, MA*, University Of Western<br />

Ontario, Department Of Anthropology, Social Sciences<br />

Centre, London, Ontario N6A 5C2, CANADA; Mary H.<br />

Manhein, MA, Department Of Geography & Anthropology,<br />

Louisiana State University, Baton Rouge, LA 70803; and<br />

Ginesse A. Listi, MA, 1723 Lombard Drive, Baton Rouge,<br />

LA 70810<br />

Mary M. Rezos, BA*, 12644 Victoria Place Circle,<br />

Apartment 7216, Orlando, FL 32828; John J. Schultz, PhD,<br />

University of Central Florida, Department of Anthropology,<br />

4000 Central Florida Boulevard, Orlando, FL 32816; and<br />

Ronald A. Murdock, MFS, and Stephen A. Smith, BS,<br />

Orange County Sheriff’s Office, 2500 W Colonial Drive,<br />

Orlando, FL 32804<br />

Diana K. Moyers, MA*, and Philip N. Williams, BS,<br />

Federal Bureau of Investigation Laboratory,<br />

Counterterrorism and Forensic Science Research Unit,<br />

Building 12, Quantico, VA 22135<br />

Bianca Vigil, MFS*, Ismail Sebetan, MD, PhD, and Paul<br />

Stein, PhD, Forensic Sciences Program, National<br />

University, 11255 North Torrey Pines Road, La Jolla, CA<br />

92037<br />

Carl N. Stephan, PhD*, Anne Huang, and Paavi Davidson,<br />

School of <strong>Bio</strong>medical Sciences, University of Queensland,<br />

Otto Hirschfeld Building, Brisbane, 4072, AUSTRALIA<br />

Index 42<br />

219<br />

220<br />

221<br />

221<br />

222<br />

222<br />

223<br />

224<br />

224<br />

225


Analysis of the Auricular Surface on Multi-<br />

Slice Computed Tomography<br />

Reconstructions for Assessment of Aging:<br />

A Preliminary Study<br />

Design Perspectives for Obtaining Facial<br />

Soft Tissue Depths From Cadavers Using a<br />

New Approach<br />

VICTIMS Identification Project: The<br />

Nation’s Unidentified...Who Are They?<br />

And What Can We Do?<br />

Virtual Skull Anatomy: Three-Dimensional<br />

Computer Modeling and Measurement of<br />

Human Cranial Anatomy<br />

What Starts as a Homicide Ends as a<br />

Forgotten Cemetery: How <strong>Medical</strong><br />

Examiners, Law Enforcement, and State<br />

Archaeologists Work Together to Protect<br />

Archaeological Sites<br />

Towards a Comprehensive Theory in<br />

Forensic Anthropology<br />

Beyond the Fire: Taphonomic Variables of<br />

Burned Human Remains<br />

Estimation of Bone Exposure Duration<br />

Through the Use of Spectrophotometric<br />

Analysis of Surface Bleaching and its<br />

Applications in Forensic Taphonomy<br />

The Taphonomic Effects of Agricultural<br />

Practices on Bone<br />

The Reliability of Cadaver Decomposition:<br />

Can Non-Enteric Microbes Rapidly<br />

Contribute to Cadaver Breakdown in Soil?<br />

The Influence of Penetrative Trauma on<br />

the Rate of Decomposition<br />

Fabrice Dedouit, MD*, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 avenue du Professeur Jean Poulhès,<br />

TSA 50032, Toulouse Cedex 9, 31059, FRANCE; Pierre<br />

Barrier, Philippe Otal, PhD, Hervé Rousseau, PhD, and<br />

Francis Joffre, PhD, Service de Radiologie Générale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean<br />

Poulhès,TSA 50032, Toulouse Cedex 9, 31059, FRANCE;<br />

and Daniel Rouge, PhD, and Norbert Telmon, PhD, Service<br />

de Médecine Légale, Hôpital de Rangueil, 1 avenue du<br />

Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9,<br />

31059, FRANCE<br />

Janene M. Curtis, MS*, and Owen B. Beattie, PhD,<br />

University of Alberta, Department of Anthropology, 13-15<br />

HM Tory Building, Edmonton, Alberta T6G 2H4, CANADA<br />

Philip N Williams, BS*, and Melissa A Torpey, MS, Federal<br />

Bureau of Investigation, Counterterrorism and Forensic<br />

Science Research Unit, Building 12, Quantico, VA 22135;<br />

and Lisa Bailey, BA, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, SPU/Room 1115,<br />

Quantico, VA 22135<br />

Summer J. Decker, MA, MABMH*, and Don R. Hilbelink,<br />

PhD, Department of Pathology & Cell <strong>Bio</strong>logy, University.<br />

of South Florida College of Medicine, 12901 Bruce B.<br />

Downs Boulevard, MDC 11, Tampa, FL 33612; and Eric J.<br />

Hoegstrom, MSBE, Department. of Chemical Engineering,<br />

University of South Florida, College of Engineering, 13201<br />

Bruce B. Downs Boulevard Tampa, FL 33612<br />

Christen E. Herrick, BS*,and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard S, AB3, Fort Myers, FL<br />

33965-6565; and E. Hunt Scheuerman, MD, 1856 Colonial<br />

Drive, Green Cove Springs, FL 32043<br />

Cliff Boyd, PhD, and; Donna C. Boyd, PhD*, Radford<br />

University, Department of Sociology & Anthropology, Box<br />

6948, Russell Hall 228, Radford, VA 24142<br />

Elayne J. Pope, MA*, University of Arkansas, Anthropology<br />

Department, 330 Old Main, Fayetteville, AR 72701<br />

Mark O. Beary, MS*, University of Missouri at Columbia,<br />

107 Swallow Hall, Columbia, MO 65211-1440; and Luis L.<br />

Cabo-Pérez, MS, Mercyhurst College, Department Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

Sarah A. Kiley, MS*, University of Indianapolis,<br />

Archeology & <strong>Forensics</strong> Laboratory, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

David O. Carter, PhD*, University of Nebraska,<br />

Department of Entomology, 202 Plant Industry Building,<br />

Lincoln, NE 68583-0816; David Yellowlees, PhD, School of<br />

Pharmacy and Molecular Sciences, James Cook University,<br />

Townsville, 4811, AUSTRALIA; and Mark Tibbett, PhD,<br />

Centre for Land Rehabilitation, University of Western<br />

Australia, Crawley, 6009, AUSTRALIA<br />

Peter A. Cross, BSc*, 11 Lower Bank Road, Fulwood,<br />

Preston, 0 PR2 8NS, UNITED KINGDOM<br />

Index 43<br />

225<br />

226<br />

226<br />

227<br />

228<br />

228<br />

229<br />

230<br />

230<br />

231<br />

232


Debugging Decomposition Data Tal Simmons, PhD*, and Rachel Adlam, MSc, University of<br />

Central Lancashire, Forensic & Investigative Science,<br />

Maudland Building, Preston, Lancashire, PR1 2HE,<br />

Beyond Taphonomy: Craniometric<br />

Variation Among Anatomical Specimens<br />

Decomposition and Postmortem Interval:<br />

A Critical Analysis of British Medico-legal<br />

Investigation and Trends in South<br />

Yorkshire, 1995-2002<br />

Basement Bodies: The Effect of Light on<br />

Decomposition in Indoor Settings<br />

UNITED KINGDOM<br />

Joseph T. Hefner, PhD*, and Natalie Uhl, MS, 1503 North<br />

Pennsylvania Street, Apartment 21, Indianapolis, IN 46202;<br />

and Nicholas V. Passalaqua, MS, Michigan State<br />

University, 203 Berkey Hall, East Lansing, MI 48824-1111<br />

Brooke L. Magnanti, PhD, Newcastle University, Sir James<br />

Spence Institute, Royal Victoria Infirmary, Newcastle-upon-<br />

Tyne, Tyne and Wear NE1 4LP, UNITED KINGDOM; and<br />

Anna Williams, PhD*, Cranfield University, Defence<br />

Academy of the United Kingdom, Shrivenham, Wiltshire<br />

SN6 8LA, UNITED KINGDOM<br />

Branka Franicevic, MSc*, University of Central<br />

Lancashire, Department of Forensic and Investigative<br />

Science, Preston, PR1 2HE, UNITED KINGDOM<br />

Taphonomic Effects of Vulture Scavenging Nicole M. Reeves, BA*, Texas State University-San Marcos,<br />

Anthropology Department, 601 University Drive, San<br />

Computer Simulation for Drift<br />

Trajectories of Objects in the Magdalena<br />

River, Colombia<br />

Experiential Education: The Use of<br />

Simulation in Training in Forensic<br />

Anthropology and Archaeology<br />

Realism in Simulation Training: Examples<br />

of Mass Grave Excavation and Mass<br />

Fatality Incident Mortuary Simulation<br />

Exercises<br />

The Effects of Body Mass Index on<br />

Cremation Weight<br />

The Influence of Body Fat on the Rate of<br />

Decomposition in Traumatized Pigs<br />

Saw Cut Marks in Bone Created by<br />

Atypical Saws<br />

DNA Quantification of Burned Skeletal<br />

Tissue<br />

Marcos, TX 78666<br />

Ana C. Guatame-Garcia, BSc*, University of Central<br />

Lancashire, Calle 9 #0-95, Bogota, COLOMBIA; Luis A.<br />

Camacho, PhD, Universidad Nacional de Colombia at<br />

Bogota, Bogota, COLOMBIA; and Tal Simmons, PhD,<br />

Department of Forensic and, Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, UNITED KINGDOM<br />

Margaret Cox, PhD*, Cranfield University / Inforce<br />

Foundation, Shrivenham, Swindon, UNITED KINGDOM<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institutde, Shrivenham, 0<br />

SN6 8LA, UNITED KINGDOM<br />

Shannon E. May, BA*, and Richard Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

S Stadium Hall, Knoxville, TN 37996-0720<br />

Kavita Novinchandra Chibba, BSc*, 9203 Nile Street,<br />

Extension 10, Lenasia, Johannesburg, 1820, SOUTH<br />

AFRICA<br />

John A. Williams, PhD*, Anthropology & Sociology,<br />

Western Carolina University, 101 McKee Hall, Cullowhee,<br />

NC 28723<br />

Jamie Daniel Fredericks*, Lower Bank Road, Fulwood,<br />

Preston, Lancashire PR2 8NS, UNITED KINGDOM; and<br />

Tal Simmons, PhD, Department of Forensic and<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Index 44<br />

232<br />

232<br />

233<br />

234<br />

234<br />

235<br />

235<br />

236<br />

236<br />

237<br />

237<br />

238


Early Diagenesis of Bone and DNA<br />

Preservation<br />

The Effect of Carcass Weight on the<br />

Decomposition of Pigs (Sus scrofa)<br />

Patterns of Perimortem Fracture From<br />

Military Aircraft Crashes<br />

Predicting the Location of Scattered<br />

Human Remains: When Will Heads Roll<br />

and Where Will They Go?<br />

Identifying Sharp Force Trauma on<br />

Burned Bones<br />

Fracture Patterns in Fleshed and De-<br />

Fleshed Pig Femora Inflicted With Various<br />

Ammunition Types<br />

Decomposition Scoring as a Method for<br />

Estimating the Postmortem Submersion<br />

Interval of Human Remains Recovered<br />

From United Kingdom Rivers - A<br />

Comparative Study<br />

Sealed for Your Protection, Part I: The<br />

Effects of an Unknown Corrosive Agent on<br />

Human Bone<br />

Mummification and Palynology: What We<br />

Can Learn in Regards to Time and<br />

Location of Death<br />

Forensic Osteology Research Station<br />

(FOREST): A New Facility for Studies of<br />

Human Decomposition<br />

<strong>Bio</strong>mechanics of Blunt Ballistic Impacts to<br />

the Forehead and Zygoma<br />

Miranda M.E. Jans, PhD*, Institute for Geology and<br />

<strong>Bio</strong>archaeology, Vrije Universiteit, De Boelelaan 1085,<br />

Amsterdam, 1081 HV, NETHERLANDS; Andrew J. Tyrrell,<br />

PhD, Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Building 54,<br />

Hickam Air Force Base, HI 96853; Odile Loreille, PhD,<br />

Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Rockville, MD 20850; and Henk Kars,<br />

PhD, Institute for Geology and <strong>Bio</strong>archaeology, Vrije<br />

Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV,<br />

NETHERLANDS<br />

Heather J. Brand, BA*, 422 Queen Anne Heights, Victoria,<br />

British Columbia V8S 4K6, CANADA<br />

Franklin E. Damann, MA*, National Museum of Health and<br />

Medicine, Armed Forces Institute of Pathology, 6825 16th<br />

Street, NW, Bldg 54, Washington, DC 20306-6000; and<br />

Rebekkah Adler, BS, Derek C. Benedix, PhD, and Elias J.<br />

Kontanis, PhD Joint POW/MIA Accounting Command<br />

(JPAC), Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam Air Force Base, HI 96853-5530<br />

Gretchen R. Dabbs, BA, MA*, University of Arkansas, 330<br />

Old Main, Fayetteville, AR 72701<br />

Daniel W. Jackson, MA*, and Pamela M. Steger, MS*,<br />

Travis County <strong>Medical</strong> Examiner’s Office, 1213 Sabine<br />

Street, PO Box 1748, Austin, TX 78666<br />

Joanna Yaffa Kay, BA*, 222 South 150th Circle, Omaha,<br />

NE 68154<br />

Abigail C. Lagden, BSc*, and Tal Simmons, PhD,<br />

Department of Forensic and, Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, UNITED KINGDOM<br />

Laura C. Fulginiti, PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Kristen Hartnett, PhD,<br />

Office of Chief <strong>Medical</strong> Examiner, Forensic Anthropology,<br />

520 1st Avenue, New York, NY 10016; Frank Di Modica,<br />

Phoenix Police Department, 620 West Washington Street,<br />

Phoeniz, AZ 85003; and Diane Karluk, MD, Maircopa<br />

County Office of the <strong>Medical</strong> Examiner, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Cheslee Cornell*, and Nicole A. Wall, MFS, College of<br />

Saint Mary, Forensic Science Program 7000 Mercy Road,<br />

Omaha, NE 68106<br />

Cheryl A. Johnston, PhD*, Western Carolina University,<br />

Department of Anthropology & Sociology, 101 McKee<br />

Building, Cullowhee, NC 28723<br />

Greg Crawford, MS,; David Raymond, MS*, Chris Van Ee,<br />

PhD, and Cynthia Bir, PhD, Wayne State University, 818<br />

West Hancock, Detroit, MI 48201<br />

Index 45<br />

239<br />

239<br />

240<br />

240<br />

241<br />

241<br />

242<br />

243<br />

243<br />

243<br />

244


The Effectiveness of Papain in the<br />

Processing of Remains<br />

Beating a Dead Pig to Death: An<br />

Actualistic Test of Archaeological<br />

Assumptions<br />

Gunshot Residue (GSR) on Bone as a<br />

Potential Indicator of Gunshot Trauma in<br />

the Absence of a Bullet Wound Defect — A<br />

Noteworthy Observation<br />

Use of Facial Indices for Comparative<br />

Metric Facial Identification After<br />

Parametrical Superimposition<br />

Ancestry Informative Markers (AIMs) and<br />

Forensic Anthropologist’s New<br />

Competition: Understanding the Theories,<br />

Methods, and Techniques for Allocating<br />

Ancestry in the Field of Forensic Genetics<br />

Introduction to the Use and Limits of<br />

Elemental and Isotopic Analysis for the<br />

Forensic Provenancing of Unidentified<br />

Human Remains<br />

Extending the <strong>Bio</strong>logical Profile Using<br />

Stable Carbon and Nitrogen Isotope<br />

Analysis: Prospects and Pitfalls<br />

Studies in Isotopic Variability:<br />

Investigating Human Tooth Enamel<br />

X-ray Diffraction (XRD) Analysis of<br />

Human Cremains and Concrete<br />

Characterization of Lead, Transition<br />

Metal, and Rare Earth Element<br />

Composition of Human Bone by ICP-MS<br />

and LA-ICP-MS<br />

Bobbie J. Kemp, MS*, University of Pittsburgh, Department<br />

of Anthropology, 3302 Wesley W. Posvar Hall, Pittsburgh,<br />

PA 15260; Luis Lorenzo Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501<br />

East 38th Street, Erie, PA 16546; John J. Matia, BS, 901<br />

Jancey Street, Pittsburgh, PA 15206; and Dennis C.<br />

Dirkmaat, PhD, Mercyhurst Archaeological Institute,<br />

Mercyhurst College, Glenwood Hills, Erie, PA 16546<br />

Kerriann Marden, MA*, Dept of Anthropology, Tulane<br />

University, 1326 Audubon Street, New Orleans, LA 70118<br />

Hugh E. Berryman, PhD*, Middle Tennessee State<br />

University, Department of Sociology and Anthropology,<br />

Box 10, Murfreesboro, TN 37132; and Alicja K Kutyla,<br />

BS*, Middle Tennessee State University, MTSU Box 60,<br />

Murfreesboro, TN 37132<br />

Francesco Introna, MD*, Antonio De Donno, PhD,<br />

Domenico Urso, PhD, and Valeria Santoro, PhD, Section of<br />

Legal Medicine, Department of Internal and Public<br />

Medicine (DiMIMP) - University of Bari, P.zza Giulio<br />

Cesare n.11, Bari, 70124, ITALY<br />

Cris E. Hughes, MA*, University of Californiaat Santa<br />

Cruz, 5405 Prospect Road, #7, San Jose, CA 95129<br />

Jurian A. Hoogewerff, PhD*, University of East Anglia, ,<br />

Norwich, Norfolk NR4 7TJ, UNITED KINGDOM<br />

Eric J. Bartelink, PhD*, 400 West First Street, Department<br />

of Anthropology, Butte #311, CSUC, Chico, CA 95929-<br />

0400; Melanie Beasley, BS, 400 West First Street, Chico,<br />

CA 95929-0400; Chelsey A. Juarez, MA, Department of<br />

Anthropology, UCSC Social Science 1, 1156 High Street,<br />

Santa Cruz, CA 95064<br />

Chelsey A. Juarez, MA*, Department of Anthropology,<br />

UCSC Social Science 1, 1156 High Street, Santa Cruz, CA<br />

95064<br />

Thomas E. Bodkin, MA*, Hamilton County <strong>Medical</strong><br />

Examiner Office, 3202 Amnicola Highway, Chattanooga,<br />

TN 37406; Jonathan W. Mies, PhD, University of<br />

Tennessee at Chattanooga, Department of Physics,<br />

Geology, and Astronomy, Department 6556, Chattanooga,<br />

TN 37403<br />

Thomas H. Darrah, MS*, University of Rochester, 227<br />

Hutchison Hall, University of Rochester, Department of<br />

Earth & Environmental Sciences, Rochester, NY 14627;<br />

Jennifer J. Prutsman-Pfeiffer, MA, University of Rochester<br />

<strong>Medical</strong> Center, Autopsy & Neuropathology, 601 Elmwood,<br />

Box 626, Rochester, NY 14642; and Robert J. Poreda, PhD,<br />

University of Rochester, 227 Hutchison Hall, University of<br />

Rochester, Department of Earth & Environmental Sciences,<br />

Rochester, NY 14627<br />

Index 46<br />

244<br />

245<br />

246<br />

246<br />

247<br />

247<br />

248<br />

249<br />

249<br />

250


Comparison of Portable X-ray Florescence<br />

and Inductively Coupled Plasma Mass<br />

Spectroscopy in the Measurement of Lead<br />

in Human Bone<br />

Species Identification of Fragmented Bone:<br />

Evaluation of a New Method of Pyrolysis<br />

and X-ray Diffraction Analysis<br />

Estimating Body Mass From Bone Mineral<br />

Density of Human Skeletal Remains<br />

Preservation of Skeletal Collections: The<br />

Viability of DNA Analysis After the<br />

Application of Chemical Preservative<br />

Jennifer J. Prutsman-Pfeiffer, MA*, University of<br />

Rochester, University of Rochester <strong>Medical</strong> Center, Autopsy<br />

& Neuropathology, 601 Elmwood, Box 626, Rochester, NY<br />

14642; and Thomas H. Darrah, MS, University of<br />

Rochester, 227 Hutchison Hall, University of Rochester,<br />

Department Earth & Environmental Sciences, Rochester,<br />

NY 14627<br />

Sophie Beckett, MSc*, and Keith D. Rogers, PhD, Cranfield<br />

University, Cranfield Forensic Institute, Department of<br />

Materials and Applied Science, Shrivenham, Swindon, SN6<br />

8LA, UNITED KINGDOM<br />

Megan K. Moore, MS*, University of Tennessee, 301<br />

Perkins Hall, Department of Mech, Aero, & <strong>Bio</strong>med<br />

Engineering, Knoxville, TN; and Dixie L. Thompson, PhD,<br />

University of Tennessee, Knoxville, Department of Exercise,<br />

Sports and Leisure Studies, 340 Health, Physical<br />

Education, and Recreation Building, Knoxville, TN 37996<br />

Lori E. Baker, PhD*, Baylor University, Department of<br />

Anthropology and Forensic Science, Forensic Research<br />

Lab, One Bear Place #97388, Waco, TX 76798-7388; Lee<br />

Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996- 0720; Yasmine M. Baktash, BA,<br />

Baylor University, One Bear Place #97388, Waco, TX<br />

76798; and J. Randall Pearce, DDS, 3769 West Andrew<br />

Johnson Highway, Morristown, TN 37814<br />

Forensic Bone Toxicology Melinda L. Carter, PhD*, 302 Heritage Drive, De Soto, IL<br />

62924<br />

253<br />

In Vivo Facial Tissue Depth Study of Adult Wing Nam J. Chan, MA*, 4720 210th Street, Bayside, NY 254<br />

Chinese Americans in New York City 11361; Mary H. Manhein, MA, Department of Geography<br />

& Anthropology, Louisiana State University, Baton Rouge,<br />

LA 70803; and Ginesse A. Listi, MA, 1723 Lombard Drive,<br />

Baton Rouge, LA 70810<br />

Who Is This Person? A Comparison Study Summer J. Decker, MABMH*, and Don R. Hilbelink, PhD, 254<br />

of Current 3-Dimensional Facial<br />

Department. of Pathology and Cell <strong>Bio</strong>logy, University of<br />

Approximation Methods<br />

South Florida College of Medicine, 12901 Bruce B. Downs<br />

Boulevard, MDC11, Tampa, FL 33612; Eric J. Hoegstrom,<br />

MSBE, Department of Chemical Engineering, University of<br />

South Florida College of Engineering, Tampa, FL 33612;<br />

Carl K. Adrian, Federal Bureau of Investigation, 2501<br />

Investigation Parkway, Attn: Carl Adrian/IPGU Rm. #1170,<br />

Quantico, VA 22135; and Stephanie L. Davy-Jow,<br />

Department of Archaeology, University of Sheffield,<br />

Northgate House, West Street, Sheffield, S1 4ET, UNITED<br />

KINGDOM<br />

Advances in Computer Graphic Facial Murray K. Marks, PhD*, University of Tennessee,<br />

255<br />

Recognition Software: Matching Facial Department of Anthropology, 252 South Stadium Hall,<br />

Approximations to Antemortem<br />

Knoxville, TN 37996; Diana K. Moyers, MA, Visiting<br />

Photographs<br />

Scientist, CFSRU, FBI Laboratory, FBI Academy, Building<br />

12, Quantico, VA 22135; Peter H. Tu, PhD, GE Global<br />

Research, Imaging Technologies, 1 Research Circle,<br />

Niskayuna, NY 12309; and Philip N. Williams, BS, FBI<br />

Laboratory, CFSRU, Building 12, Quantico, VA 22135<br />

Index 47<br />

251<br />

252<br />

252<br />

253


Accreditation of the Small Skeletal<br />

Laboratory: It is Easier Than You Think!<br />

Testing the Demirjian Method and the<br />

International Demirjian Method on an<br />

Urban American Sample<br />

Dental Aging Methods and Population<br />

Variation as Demonstrated in a Peruvian<br />

Sample<br />

Multifactorial Determination of Age at<br />

Death From the Human Skeleton<br />

An Evaluation of the Skeletal Aging<br />

Method Using Adult Male Vertebrae as<br />

Developed by Drukier, et al.<br />

Spheno-Occipital Synchondrosis Fusion in<br />

the American Population<br />

A Curve Where No Hand Has Touched -<br />

Vertebral Ageing Method in Females<br />

Investigation of Second, Fourth, and<br />

Eighth Sternal Rib End Variation Related<br />

to Age Estimation<br />

Age Related Histomorphometric Changes<br />

in Fetal Long Bones<br />

Critical Study of Observations of the<br />

Sternal Extremity of the 4th Rib<br />

Determination of Sex From Juvenile<br />

Crania by Means of Discriminant Function<br />

Analysis: A First Study<br />

Vincent J. Sava, MA*, JPAC, Central Identification Lab,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853; and John E. Byrd, PhD, JPAC, Central<br />

Identification Lab, 310 Worchester Avenue, Hickam AFB,<br />

HI 96853-5530<br />

Nicole M. Burt, MS*, Forensic Anthropology Laboratory,<br />

Michigan State University, A-439 East Fee Hall, East<br />

Lansing, MI 48824<br />

Douglas H. Ubelaker, PhD*, Department of Anthropology,<br />

NMNH - MRC 112, Smithsonian Institution, Washington,<br />

DC 20560; and Roberto C. Parra, BA, Instituto de<br />

Medicina Legal del Peru, Av. Abancay 491 6to Piso, Lima,<br />

PERU<br />

Natalie Uhl, MS*, 1503 North Pennsylvania Street,<br />

Apartment 21, Indianapolis, IN 46202<br />

Nanette Hollands, BSc*, Flat 8, 5 Bryanstone Road,<br />

Winton, Bournemouth, BH3 7JE, UNITED KINGDOM; and<br />

Piotr D. Drukier, MSc*, Bournemouth University, C134<br />

Christchurch House, Talbot Campus, Fern Barrow, Poole,<br />

BH12 5BB, UNITED KINGDOM<br />

Natalie R. Shirley, MA*, and Richard Jantz, PhD,<br />

University of Tennessee Department of Anthropology,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Reuben Edwin Leigh Moreton*, Bournemouth University,<br />

33 Corsair Drive, Dibden, Southampton, Hampshire SO45<br />

5UF, UNITED KINGDOM; and Piotr D. Drukier, MSc*,<br />

Bournemouth University, C134 Christchurch House, Talbot<br />

Campus, Fern Barrow, Poole, 0 BH12 5BB, UNITED<br />

KINGDOM<br />

Kathleen Alsup, MA*, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 307996<br />

Courtney D. Eleazer, MA*, 7700 Gleason Drive, Apartment<br />

39G, Knoxville, TN 37919<br />

Laurent Fanton, MD*, Institut of Legal Medicine, 12<br />

Avenue Rockefeller, Lyon, 69008, FRANCE; Marie Paule<br />

Gustin-Paultre, PhD, Lyon University, Lyon 1 University,<br />

Laboratory of <strong>Bio</strong>statistics ISPB, Lyon, F-69008, FRANCE;<br />

Habdelhamid Grait, MD, Milltary Hospital, Alger,<br />

ALGERIA; Aissa Boudabba, MD, Military Hospital, Alger,<br />

ALGERIA; Claire Desbois, MD, Lyon University, Lyon 1<br />

University, Institut of Forensic Medicine, Lyon, F-69008,<br />

FRANCE; Patrice Stephane Schoendorff, MD, Institut<br />

Medico-Legal de Lyon, 12 Avenue Rockfeller, Lyon, 69007,<br />

FRANCE; Stéphane Tilhet-Coartet, MD, Institut of Legal<br />

Medicine, 12 avenue Rockefeller, Lyons, 69008, FRANCE;<br />

Daniel Malicier, MD, Institu Medico Legal, 12 Avenue<br />

Rockfeller, Lyon, 69007, FRANCE<br />

Richard A. Gonzalez, PhD*, Department of Anthropology,<br />

Saint Lawrence University, 23 Romoda Drive, Canton, NY<br />

13617<br />

Index 48<br />

255<br />

256<br />

257<br />

257<br />

258<br />

259<br />

259<br />

260<br />

261<br />

262<br />

262


Admixture and the Growing List of Racial<br />

Categories: Clarity or Confusion for Law<br />

Enforcement (and the Public)<br />

Racial Admixture: A Test of Non-Metric<br />

Ancestry Estimation<br />

Discriminant Function Analysis as Applied<br />

to Mandibular Metrics to Assess<br />

Population Affinity<br />

A Test of Methods: Implications of<br />

Dimorphism, Population Variation, and<br />

Secular Change in Estimating Population<br />

Affinity in the Iberian Peninsula<br />

Cranial Histomorphology: Species<br />

Identification and Age Estimation<br />

Are Cranial Morphological Traits<br />

Population Specific? A Reevaluation of<br />

Traditional Sex Estimation Methodology<br />

A Practical Method for Determining Sex<br />

From Human Chest Plate Radiographs<br />

A Test of an Age-at-Death Method Using<br />

the First Rib<br />

Classification of Frontal Sinus Patterns in<br />

Koreans by Three-Dimensional<br />

Reconstruction Using Computed<br />

Tomography<br />

Conrad Bezekiah Quintyn, PhD*, Bloomsburg University,<br />

Department of Anthropology, 400 East 2nd Street,<br />

Bloomsburg, PA 17815<br />

Lindsey L. Caldwell, BA*, 2245 College Drive, Apartment<br />

178, Baton Rouge, LA 70808; MariaTeresa A. Tersigni,<br />

PhD, Department of Anthropology, Univeristy of<br />

Cincinnati, Braunstein 481 PO 210380, Cincinnati, OH<br />

45221; and Mary H. Manhein, MA, Department of<br />

Geography & Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Gregory E. Berg, MA*, US Army Central ID Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Ann H. Ross, PhD*, North Carolina State University,<br />

Sociology and Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107; Douglas H. Ubelaker, PhD, Department<br />

of Anthropology, NMNH - MRC 112, Smithsonian<br />

Institution, Washington, DC 20560; and Erin H. Kimmerle,<br />

PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

Lindsay H. Trammell, MA*, Murray K. Marks, PhD, and<br />

Walter E. Klippel, PhD, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37966-0720; and Darinka Mileusnic-<br />

Polchan, MD, PhD, UTMCK, Department of Pathology,<br />

1924 Alcoa Highway, Knoxville, TN 37920<br />

Angela M. Dautartas, BS*, and Kanya M Godde, MA*,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Heather Garvin, MS*, 7471 SE 117th Terrace, Morriston,<br />

FL 32668; Luis Lorenzo Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501<br />

East 38th Street, Erie, PA 16546; Kyra Elizabeth Stull, BA,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546;<br />

and Dennis C. Dirkmaat, PhD, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, Glenwood Hills, Erie, PA<br />

16546<br />

Elizabeth A. DiGangi, MA*, Department of Natural and<br />

Behavioral Sciences, 10541 Hardin Valley Road, Knoxville,<br />

TN 37933; Jonathan D. Bethard, MA*, The University of<br />

Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Deog-Im Kim, PhD*, Department of Anatomy, Kwandong<br />

University, College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; Dai-Soon Kwak, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Index 49<br />

263<br />

263<br />

264<br />

264<br />

265<br />

265<br />

266<br />

267<br />

267


Demographic Expression of the Frontal<br />

Sinuses<br />

Sex Determination of Talus in Korean<br />

Using Discrimination Function Analysis<br />

Morphometrics of the Korean Thyroid<br />

Cartilage for Determination of Sex<br />

Sexual Dimorphism of the Humerus in<br />

Contemporary Cretans<br />

Evaluating Methods of Age Estimation of<br />

Fetal/Neonate Remains From Radiographs<br />

Using a Diverse Autopsy Sample<br />

The Utility of the Samworth and Gowland<br />

Age-at-Death “Look-Up” Tables in<br />

Forensic Anthropology<br />

Kathryn Lee Frazee*, 1422 Pearce Park, Apartment # 2,<br />

Erie, PA 16502-2915<br />

U-Young Lee, MD*, Catholic Institute for Applied Anatomy,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Socho-gu, Seoul,<br />

137701, KOREA; In-Heok Chung, MD, PhD, Department<br />

of Anatomy, Yonsei University College of Medicine,<br />

Department of Anatomy, Yonsei University College of<br />

Medicine, 134 Sinchon-dong, Seodaemoon-gu, Seoul,<br />

120752, KOREA; Dae-Kyoon Park, MD, PhD, Deptartment<br />

of Anatomy, Colleege of Medicine, Soonchunhyang Univ,<br />

Soonchunhyang University, 366-1 Ssangyong-dong,<br />

Cheonan-si, Seoul 330946 KOREA; Yi-Suk Kim, MD, MS,<br />

Department of Anatomy, Gachon University of Medicine,<br />

1198 Kuwol-dong, Namdong-gu, Incheon, 405760,<br />

KOREA; Deog-Im Kim, PhD, Department of Anatomy,<br />

Kwandong University College of Medicine, 522, Naegokdong,<br />

Gangneug, 201701, KOREA; Je-Hoon Lee, MSc,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, Department of Anatomy, College of Medicine,<br />

The Catholic University of Korea,, 505 Banpo-dong, Sochogu,<br />

Seoul, 137701, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Dae-Kyoon Park, MD, PhD*, Department of Anatomy,<br />

College of Medicine Soonchunhyang University, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul, 330946 KOREA;<br />

Deog-Im Kim, PhD, Department of Anatomy, Kwandong<br />

University College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; U-Young Lee, MD, and<br />

Seung-Ho Han, MD, PhD, Department of Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Socho-gu, Seoul, 137701, KOREA<br />

Elena Fotios Kranioti, MD, Mused Nacional de Ciencias<br />

Naturales, Jose Gutierrez Abascal 2, Madrid, 28006,<br />

SPAIN; Anastasia Efstratios Kastanaki, MSc*, State Mental<br />

Health Hospital of Chania, Psychooncology Centre, 38, I.<br />

Skaltsouni Str., El. Giakoumaki Str., and DaraTso, Chania,<br />

Crete, 73100, GREECE; M. Yasar Iscan, PhD, Istanbul<br />

Universitesi, Adli Tip Enstitusu, Cerrahpasa Kampusu,<br />

PK.10, 34303, Istanbul, 34098, TURKEY; and Manolis N.<br />

Michalodimitrakis, MD, JD, University of Crete, <strong>Medical</strong><br />

School, Dpt Forensic Sciences, Heraklion, Crete 71110,<br />

GREECE<br />

Christopher R. Grivas, MS*, University of New Mexico,<br />

Department of Anthropology, MSC01-1040, Albuquerque,<br />

NM 87131; Debra Komar, PhD, Office of the <strong>Medical</strong><br />

Investigator, 1 University of New Mexico, MSC11 6030,<br />

Albuquerque, NM 87131<br />

Nicholas Vere Passalacqua, MS*, 3518 Hagadorn Road,<br />

Okemos, MI 48864<br />

Index 50<br />

268<br />

269<br />

269<br />

270<br />

271<br />

271


Metric Sex Determination From the<br />

Mandible<br />

Microscopic Age Estimation From the<br />

Anterior Cortex of the Femus in Korean<br />

Adults<br />

Sternal Rib Histomorphometry: A Test of<br />

the Age Estimation Method of Stout, et al.<br />

(1994)<br />

Accuracy of Regression Formulae for<br />

Racing and Sexing the Cranial Base in a<br />

Forensic Collection<br />

Deconstructing or Perpetuating Race: The<br />

Status of Race in Forensic Anthropology<br />

A Test of the FORDISC Sex Discriminant<br />

Function on a Korean Cranial Sample<br />

Sexual Dimorphism in the Juvenile<br />

Skeleton<br />

Coming Unglued: The Use of Acrylic Resin<br />

Adhesives in Forensic Reconstruction<br />

<strong>Bio</strong>mechanics of Blunt Ballistic Impacts to<br />

the Head and Fracture Specific Injury<br />

Criteria Development<br />

Nicolette Maria Luney Parr, BA, MS*, 1305 NE 6th<br />

Terrace, Gainesville, FL 32601-3732; Carlos J. Zambrano,<br />

MS, 5231 NW 56th Court, Gainesville, FL 32653; and<br />

Laurel Freas, MA, 3425 SW 2nd Avenue, #246, Gainesville,<br />

FL 32607<br />

Yi-Suk Kim, MD, MS*, Department of Anatomy, Gachon<br />

University of Medicine and Science, Department of<br />

Anatomy, Gachon University of Medicine, 1198, Kuwoldong,<br />

Namdong-gu, Incheon, 405760, KOREA; Yong-Woo<br />

Ahn, DDS, PhD, and Gi-Yeong Huh, MD, PhD, Institute of<br />

Forensic Medicine, School of Medicine, Pusan National<br />

University, 1-10, Ami-dong, Seo-gu, Busan, 602739,<br />

KOREA; Dai-Soon Kwak, PhD, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Seocho-gu, Seoul, 137701, KOREA;<br />

Dae-Kyoon Park, MD, PhD, Department. of Anatomy,<br />

College of Medicine Soonchunhyang University, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul, 330946 KOREA; and<br />

U-Young Lee, MD, and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Sam D. Stout, PhD*, and Deborrah C. Pinto, MA*;<br />

Department of Anthropology, Ohio State University, 124<br />

West 17th Avenue, 244 Lord Hall, Columbus, OH 43210-<br />

1364; Lara E. McCormick, MA*, The Ohio State<br />

University, 2894 Neil Avenue, #513A, Columbus, OH<br />

43202; and Meghan-Tomasita C. Cosgriff-Hernandez, MA,<br />

and Annamaria C. Crescimanno, MA, Department of<br />

Anthropology, Ohio State University, 124 West 17th<br />

Avenue, 244 Lord Hall, Columbus, OH 43210-1364<br />

Maria Allaire, MA*, LSU FACES Laboratory, Louisiana<br />

State University, 227 Howe-Russell Bldg, Baton Rouge, LA<br />

70803; and Mary H. Manhein, MA, Department of<br />

Geography and Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Christina A. Malone, BHS, BA*, Michigan State University,<br />

Forensic Anthropology Laboratory, A-439 E. Fee Hall,<br />

East Lansing, MI 48823<br />

Helen Cho, PhD*, Department of Anthropology, Davidson<br />

College, Box 6934, Davidson, NC 28035-6934; and Hee-<br />

Kyung Park, DDS, PhD, Seoul National University, 275-1<br />

Yeongeon-dong, Jongno-Gu, Seoul National University,<br />

School of Dentistry, Seoul, 0 110-768, KOREA<br />

Kyra Elizabeth Stull, BA*, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546<br />

Kate E. Kolpan, BA*, Eric J. Bartelink, PhD, and Georgia<br />

L. Fox, PhD, Department of Anthropology, California State<br />

University, Chico, 400 West First Street, Chico, CA 95929-<br />

0400<br />

David Raymond, MS*, Greg Crawford, MS, Chris Van Ee,<br />

PhD; and Cynthia Bir, PhD, Wayne State University, 818<br />

West Hancock, Detroit, MI 48201<br />

Index 51<br />

272<br />

273<br />

273<br />

273<br />

274<br />

274<br />

275<br />

275<br />

276


Detection of Gunshot Residue (GSR) on<br />

Bone: Potential for Bullet Direction and<br />

Range Estimation<br />

Determination of Low Velocity Bullet<br />

Trajectory in Long Bones: An<br />

Experimental Investigation<br />

Fragmentation Patterns of Victims From a<br />

Fatal Aviation Accident<br />

Effect of Loading Environment on the<br />

Alicja K. Kutyla, BS*, Middle Tennessee State University,<br />

Department of <strong>Bio</strong>logy, Box 60, Murfreesboro, TN 37132;<br />

and Hugh E. Berryman, PhD, Middle Tennesee State<br />

University, Department of Sociology and Anthropology,<br />

Box 10, Murfreesboro, TN 37132<br />

Regina L. McGowan, BA*, 3841 Branson Road, Victoria,<br />

BC V9C 4A7, CANADA<br />

Giovanna M. Vidoli, MSc*, 56 Mitchell Avenue,<br />

Binghamton, NY 13903<br />

278<br />

Tracey Tichnell, BS*, 354 Baker Hall, East Lansing, MI 279<br />

Healing of Long Bone Fractures<br />

48824<br />

Cranial Bone Trauma: Misleading Injuries João Pinheiro*, Instituto Nacional de Medicina Legal,<br />

Instit Nacional Medicina Legal, Delegação do Centro,<br />

Largo da Sé Nova, Coimbra, 0 3000, PORTUGAL;<br />

Andersen Lyrio da Silva, and Eugenia Cunha, PhD,<br />

Departamento De Antropologia, Universidade de Coimbra,<br />

Coimbra, 3000-056, PORTUGAL; and Steven A. Symes,<br />

PhD, Mercyhurst Archaeological Institute, Mercyhurst<br />

College, 501 East 38th, Erie, PA 16546-0001<br />

279<br />

Recognizing Patterned Fire and Heat Steven A. Symes, PhD*, Mercyhurst Archaeological 280<br />

Damage to Bone<br />

Institute, Mercyhurst College, 501 East 38th, Erie, PA<br />

16546-0001; Christopher W. Rainwater, MS, Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY<br />

10016; Erin N. Chapman, BA, 216 Maiden Lane, Erie, PA<br />

16504; Desina R. Gipson, BA, 549 East Grandview<br />

Boulevard, Erie, PA 16504; and Kyra E. Stull, BA,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546<br />

Missing in Amazonian Jungle: A Case Tania Delabarde, PhD*, Institut Francais d’Etudes 280<br />

Study of Suspected Dismemberment Andines, Whymper 442 y Coruna, Quito, ECUADOR; and<br />

Freddy G.H. Almagro, MD, Departmento Medico Legal de<br />

la Policia, Judicial de Pichincha Av., Mariana de Jesus s/n<br />

y Av., Occidental, ECUADOR<br />

An Epidemiological Study of Trauma in Joan E. Baker, PhD*, and Alexander F. Christensen, PhD, 281<br />

U.S. Casualties of the Korean War Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Hickam Air<br />

Force Base, HI 96853<br />

The Utility of the Identification Unit Sharon M. Derrick, PhD*, Jason M. Wiersema, PhD, Ruth 281<br />

Concept in the <strong>Medical</strong> Examiner Setting Mathis, Jennifer C. Love, PhD, and Luis A. Sanchez, MD,<br />

Harris County <strong>Medical</strong> Examiner’s Office, Anthropology<br />

Division, 1885 Old Spanish Trail, Houston, TX 77054<br />

Evidentiary Standards for Forensic Angi M. Christensen, PhD, Federal Bureau of Investigation 282<br />

Anthropology<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA<br />

22135; Christian M. Crowder, PhD*, New York City Office<br />

of Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York,<br />

NY 10016; and Tracy Rogers, PhD, Department of<br />

Anthropology, University of Toronto at Mississauga,<br />

Mississauga, Ontario L5L 1C6, CANADA<br />

An Electronic Data Management Tool for Ute Hofmeister, MA*, Morris Tidball-Binz, MD, and 283<br />

the Search for Missing Persons and Shuala M. Drawdy, MA, International Committee of the<br />

Forensic Human Identification: The ICRC Red Cross, 19 Avenue de la Paix, Geneva, 1202,<br />

AM/PM DB<br />

SWITZERLAND<br />

Index 52<br />

277<br />

277


Elliptic Fourier Analysis of Vertebral<br />

Outlines for Victim Identification<br />

Left Hanging in Mandeville: Multiple<br />

Approaches in Search of a Positive<br />

Identification<br />

The eBay® Mummy: A Case of a Scottish<br />

Mummy From Maryland for Sale in<br />

Michigan<br />

Uncovering the Truth Behind the Killings:<br />

Predicting Patterns of Perimortem Trauma<br />

Using Skeletons Exhumed From Ex-<br />

Military Bases in Guatemala<br />

Unearthing Peru’s Buried Secrets: La<br />

Cantuta Revisited<br />

How Easily Can We Derive Cause and<br />

Manner of Death on the Basis of Dry<br />

Bones? Lessons Derived From Coimbra<br />

Identified Skeletal Collections<br />

Renewed Search, Recovery, and<br />

Identification Efforts Related to the<br />

September 11, 2001 Attacks of the World<br />

Trade Center<br />

The Use of Material Culture to Establish<br />

the Ethnic Identity of Victims in Genocide<br />

Investigations: A Validation Study From<br />

the American Southwest<br />

A Population Approach to the Problem of<br />

the Missing and Unidentified With<br />

Emphasis on the Status of Migrant and<br />

Undocumented Workers<br />

Establishing a Central Database for the<br />

Missing and Unidentified of Louisiana<br />

Resolution of Cold Identity Cases:<br />

Resources, Methodology, and a Review of<br />

Some Success Stories<br />

Identity Crisis: The Number and Quality<br />

of Unidentified Decedent Data and a New<br />

Solution<br />

Josephine M. Paolello, MS*, and Luis L. Cabo-Pérez, MS,<br />

Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

John W. Verano, PhD*, Brian Pierson, BA, and Anne<br />

Titelbaum, MA, Doris Z. Stone Laboratory of <strong>Bio</strong>logical<br />

and Forensic Anthropology, Department of Anthropology,<br />

Tulane University, 1326 Audubon Street, New Orleans, LA<br />

70118<br />

Kristin E. Horner, MA*, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI 48824<br />

Shirley C. Chacon, BA*, and Gillian M. Fowler, MA,<br />

Fundacion de Antropologia Forense de Guatemala,<br />

Avenida Simeon Cañas, 10-64, Zona 2, Guatemala City,<br />

01002, GUATEMALA<br />

Jose P. Baraybar, MSc*, Equipo Peruano de Antropología<br />

Forense, Toribio Pacheco 216, Lima, Lima 18, PERU; and<br />

Bertrand Ludes MD, PhD, Institut de Medicine Légale de<br />

Strasbourg, 11, Rue Humann - 67085 Strasbourg, France<br />

Eugenia Cunha, PhD*, Joan V. Badal, and Andersen Líryo,<br />

Department of Anthropology, University of Coimbra,<br />

Coimbra, 3000-056, PORTUGAL; João Pinheiro, Instituto<br />

Nacional de Medicina Legal, Delegação de Coimbra,<br />

Largo da Sé Nova, Coimbra, 3000, PORTUGAL; and<br />

Steven A. Symes, PhD, Mercyhurst Archaeological Inst,<br />

Mercyhurst College, 501 East 38th, Erie, PA 16546-0001<br />

Bradley J. Adams, PhD*, Christian Crowder, PhD, and;<br />

Frank DePaolo, MPAS, Office of Chief <strong>Medical</strong> Examiner,<br />

520 1st Avenue, New York, NY 10016<br />

Debra Komar, PhD*, and Sarah Lathrop, PhD, University<br />

of New Mexico, Office of the <strong>Medical</strong> Investigator, MSC 11<br />

6030, 1 University of New Mexico, Albuquerque, NM<br />

87131; and Christopher R. Grivas, MS, University of New<br />

Mexico, Department of Anthropology, MSC01-1040,<br />

Albuquerque, NM 87131<br />

Erin H. Kimmerle, PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; Anthony B. Falsetti, PhD, C.A. Pound<br />

Human Id Laboratory, C/O Cancer/ Genetics Research, PO<br />

Box 103615, Gainesville, FL 32610; and Ann H. Ross, PhD,<br />

North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107<br />

Mary H. Manhein, MA*, and Helen B. Mathews, MA,<br />

Louisiana State University, Department of Geography and<br />

Anthropology, 227 Howe- Russell Building, Baton Rouge,<br />

LA 70803<br />

Dana Austin, PhD*, and Paul E. Coffman, Tarrant County<br />

<strong>Medical</strong> Examiner District, 200 Feliks Gwozdz Place, Fort<br />

Worth, TX 76104-4919<br />

Melissa A. Torpey, MS*, and Philip N. Williams, BS,<br />

Federal Bureau of Investigation Counterterrorism and,<br />

Forensic Science Research Unit, FBI Academy, Building<br />

12, Quantico, VA 22135<br />

Index 53<br />

283<br />

284<br />

285<br />

285<br />

286<br />

286<br />

287<br />

288<br />

288<br />

289<br />

290<br />

290


Comparison of Two Methods of Age<br />

Determination Using Histomorphology:<br />

Periosteal vs. Endosteal Surface Equations<br />

Osteon Area Measurements - A Validation<br />

Study<br />

Osteon Area and Circularity: A Method<br />

for the Assessment for Human and Non-<br />

Human Fragmentary Remains<br />

Andrea Clowes, BA*, Michigan State University, 16789<br />

Chandler Road, #1422A, East Lansing, MI 48823<br />

MariaTeresa Tersigni, PhD, Department of Anthropology,<br />

University of Cincinnati, Braunstein 481 PO 210380,<br />

Cincinnati, OH 45221; Amy Michael, BA*, 416 West<br />

Genesee, Apartment 1, Lansing, MI 48933; Amber Heard,<br />

BA, 16789 Chandler Road, #1632, East Lansing, MI 48823;<br />

Christina Malone, BHS, BA, 180 Arbor Glen Drive,<br />

Apartment 203, East Lansing, MI 48823; and John E. Byrd,<br />

PhD, Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Hickam Air<br />

Force Base, HI 96853-5530<br />

MariaTeresa A. Tersigni, PhD*, Department of<br />

Anthropology, University of Cincinnati, Braunstein 481, PO<br />

210380, Cincinnati, OH 45221; Amy Michael, BA, 416<br />

West Genesee, Apartment 1, Lansing, MI 48933; and John<br />

E. Byrd, PhD, JPAC/CIL, 310 Worchester Avenue, Hickam<br />

Air Force Base, HI 96853-5530<br />

Index 54<br />

290<br />

291<br />

292


A Histological Examination of Odocoileus<br />

virginianus for Forensic Application<br />

Identification of the Rib Number by Metric<br />

Study in Korean<br />

Pedagogy of Practicing Forensic<br />

Anthropologists: A Collection of Our<br />

History<br />

Forensic Anthropology in the Courtroom:<br />

Trends in Testimony<br />

Houston Mass Murder Victims: 33 Years<br />

Later<br />

The Bone Histology of Bear Paws and<br />

Human Hands<br />

Exhumation of an Historical Gravesite at<br />

Taos Cemetery<br />

The Relationship Between Bone Weight<br />

and Age at Death<br />

2007<br />

Lindsay H. Trammell, MA*, University of Tennessee-<br />

Knoxville, Department of Anthropology, 250 South Stadium<br />

Hall, Knoxville, TN 37996-0720<br />

Deog-Im Kim*, Seung-Ho Han, PhD, Dai-Soon Kwak,<br />

PhD, and Je- Hoon Lee, Department of Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Seocho-gu, Seoul, 137701, South Korea; Yi-Suk Kim,<br />

MD, Department of Anatomy, Gahon University of<br />

Medicine and Science, 1198 Guwol-dong, Namdong-gu,<br />

Incheon, 405760, South Korea; Dae-Kyoon Park, PhD,<br />

Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyongdong,<br />

Cheonan-si, Chungcheongnam-do, Seoul, 330946, South<br />

Korea; U-Young Lee, MD, Division of Forensic Medicine,<br />

National Institute of Scientific Investigation, Sinwol 7dong,<br />

Yangcheon-gu, Seoul, 158707, South Korea; and In-Hyuk<br />

Chung, PhD, Department of Anatomy, College of Medicine,<br />

Yonsei University, 134, Sinchon-dong, Seodaemungu,<br />

Seoul, 120752, South Korea<br />

Joseph T. Hefner, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Natalie M. Uhl, BS, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227; Stanley Rhine, PhD, University of New Mexico,<br />

Department of Anthropology, MSC01-1040 Anthropology,<br />

Albuquerque, NM 87131-0001; and William M. Bass, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Elizabeth A. Murray, PhD*, College of Mount St. Joseph,<br />

5701 Delhi Road, Cincinnati, OH 45233-1670; and Bruce<br />

E. Anderson, PhD*, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714<br />

Sharon M. Derrick, PhD*, Michele Hunt, BS, and Luis A.<br />

Sanchez, MD, Harris County <strong>Medical</strong> Examiner’s Office,<br />

1885 Old Spanish Trail, Houston, TX 77054<br />

Brannon I. Jones, MA*, University of Tennessee, 250 South<br />

Stadium Hall, Department of Anthropology, Knoxville, TN<br />

37996<br />

Mary H. Dudley, MD*, Sedgwick County Regional Forensic<br />

Science Center, 1109 North Minneapolis, Wichita, KS<br />

67214; Joy Vetters, BS, Wichita State University -<br />

Department of Anthropology, 1845 Fairmount, Wichita, KS<br />

67260; and Angela E. Benefiel, BA, Sedgwick County<br />

Regional Forensic Science Center, 1109 North<br />

Minneapolis, Wichita, KS 67214<br />

Emily J. Loucks, BA*, University of Tennessee, 250 South<br />

Stadium Hall, Department of Anthropology, Knoxville, TN<br />

37996; and Brannon I. Jones, MA, University of Tennessee,<br />

250 South Stadium Hall, Department of Anthropology,<br />

Knoxville, TN 37996<br />

Index 55<br />

293<br />

293<br />

294<br />

294<br />

295<br />

295<br />

296<br />

296


Paleopathological Diagnosis of Leprosy in<br />

Skeletons From a French Medieval Leper<br />

Bone Fragmentation Created by a<br />

Mechanical Wood Chipper<br />

Microscopic Characteristics of Hacking<br />

Trauma on Bone: The Potential for<br />

Interpretation and Identification<br />

Inter-Tidal Decomposition Patterns in<br />

Croatia: An Experiment using Sus scrofa<br />

Pedal Elements<br />

The Difference Between an Individual’s<br />

Self-Reported, Perceived, and Actual<br />

Height and Its Forensic Significance<br />

Sex and Stature Estimation Based on the<br />

Calcaneus, Talus, and Metatarsal Length<br />

Sex Determination of Koreans Through<br />

Cervical Vertebrae<br />

Stages of Epiphyseal Union in the Cervical<br />

Vertebrae of Young Adult Skeletons<br />

Pauline Saint-Martin, MD*, Service de Médecine Légale,<br />

Hôpital Trousseau, CHRU Tours, Tours, 37044, France;<br />

Norbert Telmon, MD, PhD, and Henri Dabernat, MD, PhD,<br />

Laboratoire d’Anthropobiologie, UMR 8555, CNRS, 39<br />

allees Jules Guesde, Toulouse, 31400, France; Christian<br />

Theureau, Laboratoire d’Archéologie Urbaine, Chateau de<br />

Tours, 25 quai d’Orleans, Tours, 37000, France; Patrick<br />

O’Byrne, MD, Service de Médecine Légale, Hôpital<br />

Trousseau, CHRU Tours, Tours, 37044, France; and Eric<br />

Crubezy, PhD, Laboratoire d’Anthropobiologie, UMR<br />

8555, CNRS, 39 allees Jules Guesde, Toulouse, 31400,<br />

France<br />

John A. Williams, PhD*, Western Carolina University,<br />

Department of Anthropology and Sociology, Cullowhee, NC<br />

28723<br />

Ariana P. Ridgely, BA*, Department of Anthropology, New<br />

York University, 25 Waverly Place, New York, NY 10003<br />

Branka Franicevic, MSc*, University of Bradford,<br />

Department of Archaeological Sciences, Bradford, BD7<br />

1DP, United Kingdom; and Robert F. Pastor, PhD,<br />

University of Bradford, <strong>Bio</strong>logical Anthropology Research<br />

Centre, Department of Archaeological Sciences, Bradford,<br />

BD7 1DP, United Kingdom<br />

Valerie B. Russell, BA*, 8 Thomas Court, Valley Cottage,<br />

NY 10989<br />

Dawn M. Strohmeyer, MS*, 12 Bridge Street, Hitchin,<br />

Hertfordshire SG5 2DE, United Kingdom; and Tal L.<br />

Simmons, PhD, Department of Forensic and Investigative<br />

Science, University of Central Lancashire, Preston,<br />

Lancashire PR1 2HE, United Kingdom<br />

Dae-Kyoon Park, MD, PhD*, Soonchunhyang University,<br />

Department of Anatomy, College of Medicine, 366-1,<br />

Ssangyong-dong, Cheonan-si, Chungcheongnam-do,<br />

Choenan-si, Seoul 330946 Korea, Republic of Korea; U-<br />

Young Lee, MD, National Institute of Scientific<br />

Investigation, Division of Forensic Medicine, 331-1 Sinwol<br />

7-dong, Yangcheon-gu, Seoul, Seoul 158707 Korea,<br />

Republic of Korea; Yi-Suk Kim, MD, Gachon University of<br />

Medicine and Science, Department of Anatomy, 1198<br />

Guwol-dong, Namdong-gu, Incheon-si, Seoul 405760<br />

Korea, Republic of Korea; Deog-Im Kim, BA, and Seung-<br />

Ho Han, MD, PhD, The Catholic University of Korea,<br />

College of Medicine, Catholic Institute for Applied<br />

Anatomy, Department of Anatomy, 505, Banpodong,<br />

Seocho-gu, Seoul, Seoul 137701 Korea, Republic of Korea;<br />

and In-Hyuk Chung, MD, PhD, Yonsei University College<br />

of Medicine, Department of Anatomy, 134, Sinchon-dong,<br />

Seodaemun-gu, Seoul, Seoul 120749 Korea, Republic of<br />

Korea<br />

Melissa A. Torpey, MS*, Michigan State University, 7<br />

Gardenwood Drive, Asheville, NC 28803<br />

Index 56<br />

297<br />

298<br />

298<br />

299<br />

300<br />

300<br />

301<br />

301


New Method of Skeletal Age Estimation<br />

Based on Progressive Morphological<br />

Changes in Vertebral Column<br />

Progression of Intra-Epiphyseal Union and<br />

its Predictive Capability in Fragmented<br />

Remains<br />

Age Determination From the Medial and<br />

Lateral Clavicle: A Re-Evaluation of<br />

Present Scoring Systems<br />

Forensic Age-at-Death Estimation From<br />

the European American Male Sacrum: A<br />

New Component System<br />

Accuracy of Age Estimates Using the Pubic<br />

Symphysis<br />

A Reevaluation and Revision of the<br />

Suchey-Brooks and Loth and Iscan Aging<br />

Methods<br />

Age Estimation From the Posterior and<br />

Middle Part of the Ilium<br />

Bones in Aid of Forensic Pathology:<br />

Trauma Isn’t Only Skin Deep<br />

Propeller Impacts: Injury Mechanics and<br />

Bone Trauma<br />

Standardizing Saw and Knife Mark<br />

Analysis on Bone<br />

Ballistics-Induced Depressed Skull<br />

Fractures<br />

Eva-Elvira Klonowski, PhD*, Nermin Sarajlic, PhD, MD,<br />

and Senem Skulj, BSc, International Commission on<br />

Missing Persons, Alipasina 45A, Sarajevo, 71 000, Bosnia<br />

and Herzegovina<br />

Maureen Schaefer, MA*, University of Dundee, Anatomy<br />

and Forensic Anthropology, Faculty of Life Sciences,<br />

MSI/WTB Complex, Dundee, DD1 5EH, United Kingdom<br />

Natalie L. Shirley, MA*, and Richard L. Jantz, PhD, The<br />

University of Tennessee Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Nicholas V. Passalacqua, BA*, Mercyhurst College,<br />

Department Applied Forensic Sciences, Zurn 119A, 501<br />

East 38th Street, Erie, PA 16546<br />

Michael Finnegan, PhD*, Kansas State University, 204<br />

Waters Hall, Manhattan, KS 66506-4000<br />

Kristen M. Hartnett, MA*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007<br />

Clotilde Rougé-Maillart, MD*, and Nathalie Jousset, MD,<br />

Service de Médecine Légale, CHU - 4 rue Larrey, Angers,<br />

49933, France; Bruno Vielle, MD, Departement de<br />

Statistique, CHU - 4 rue Larrey, Angers, 49933, France;<br />

Eugénia Cunha, MD, PhD, Departamento de Antropologia<br />

- Faculdade de Ciências, Universidade de Coimbra,<br />

Coimbra, 3000-056, Portugal; and Norbert Telmon, MD,<br />

PhD, Service de Médecine Légale, hôpital de Rangeuil - 1<br />

Avenue Jean Poulhès, Toulouse, 31403, France<br />

Laurent Martrille, MD*, Service de Médecine Légale, CHU<br />

Lapeyronie, 191 Avenue du Doyen Gaston Giraud,<br />

Montpellier cedex 5, 34295, France; Cristina Cattaneo,<br />

MD, PhD, Istituto di Medicina Legale, Università Degli<br />

Studi, Via Mangiagali 37, Milano, 30133, Italy; Steven A.<br />

Symes, PhD, Mercyhurst Archaeological Institute, 119 Zurn<br />

Hall, Erie, PA 16546; and Eric Baccino, MD, Service<br />

Médecine Légale, CHU Lapeyronie, Montpellier, 34295,<br />

France<br />

Anne M. Kroman, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Tyler A. Kress, PhD, BEST<br />

Engineering, 2312 Craig Cove Road, Knoxville, TN 37919;<br />

and David J. Porta, PhD, Bellarmine University,<br />

Department of <strong>Bio</strong>logy, 2001 Newburg Road, Louisville, KY<br />

40205<br />

Steven A. Symes, PhD*, and Christopher W. Rainwater, BA,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546;<br />

and Susan M. Thurston Myster, PhD, Hamline University,<br />

PO Box 196, St. Paul, MN 55104<br />

Kathryn Haden-Pinneri, MD*, Office of the <strong>Medical</strong><br />

Examiner of Harris County, Joseph A. Jachimiczyk<br />

Forensic Center, 1885 Old Spanish Trail, Houston, TX<br />

77054; and Gregory Berg, MS, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Index 57<br />

302<br />

302<br />

303<br />

304<br />

305<br />

305<br />

306<br />

307<br />

307<br />

308<br />

309


When the Bullet Hits the Bone: Patterns of<br />

Gunshot Trauma to the Infracranium<br />

Controlled Fracture of Bones Before and<br />

After Degradation Under Different<br />

Environmental Conditions<br />

Sources of Error in Genetic and<br />

Osteological Sex Determination: Lessons<br />

from Physical Anthropology<br />

Skeletal Markers of Parturition II:<br />

Reanalysis of a Modern American Sample<br />

Geometric Morphometrics of the Scapula:<br />

An Assessment of Ancestry<br />

Refining the Isotopic Fingerprint in<br />

Modern Mexican Populations: Using<br />

Strontium, Carbon, Nitrogen, and Oxygen<br />

to Determine Region of Origin for<br />

Deceased Undocumented Border Crossers<br />

Assessment of Determination of<br />

Handedness Using Standard Osteological<br />

Measurements of the Shoulder Girdle and<br />

Arm Long Bones from Individuals of<br />

Known Handedness<br />

Bilateral Asymmetry and Handedness: Are<br />

they Really Related?<br />

Katharine A. Chapman, BA*, Texas State University,<br />

Department of Anthropology, 601 University Drive, San<br />

Marcos, TX 78666<br />

Lori E. Baker, PhD, Baylor University, Department of<br />

Anthropology, Forensic Science, and Archaeology, One<br />

Bear Place #97388, Waco, TX 76798; Carolyn P. Skurla,<br />

PhD*, Baylor University, Department of Mechanical<br />

Engineering, One Bear Place #97356, Waco, TX 76798;<br />

Zachary Kelm, BS, Mayo Clinic College of Medicine, 200<br />

1st Street SW, Rochester, MN 55905; Casey Anderson,<br />

Baylor University, Department of Anthropology, Forensic<br />

Science, and Archaeology, One Bear Place #97388, Waco,<br />

TX 76798; David R. Webster, BS, Baylor University,<br />

Department of Mechanical Engineering, One Bear Place<br />

#97356, Waco, TX 76798; Kieran P. McNulty, PhD, Baylor<br />

University, Department of Anthropology, Forensic Science,<br />

and Archaeology, One Bear Place #97388, Waco, TX<br />

76798; Kristy Bernard, BS, University of New Haven,<br />

Department of Forensic Science, 300 Boston Post Road,<br />

West Haven, CT 06516; and Eric A. Schaefer, and Daniel<br />

C. Bland, Baylor University, Department of Mechanical<br />

Engineering, One Bear Place #97356, Waco, TX 76798<br />

Krista E. Latham, MS*, Temple University, Department of<br />

Anthropology, 1115 West Berks Street, Gladfelter Hall, 2nd<br />

Floor, Philadelphia, PA 19122; and Luis M. Cabo-Perez,<br />

MS, Jeremy J. Beach, MS, and Dennis C Dirkmaat, PhD,<br />

Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

Elizabeth A. DiGangi, MA*, Pellissippi State Technical<br />

Community College, Department of Natural and Behavioral<br />

Sciences, 10915 Hardin Valley Road, Knoxville, TN 37993;<br />

and Jonathan D. Bethard, MA*, The University of<br />

Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Natalie M. Uhl, BS, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Joseph T. Hefner,<br />

MA, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and John J. Schultz, PhD, University<br />

of Central Florida, 4000 Central Florida Boulevard,<br />

Orlando, FL 32816<br />

Chelsey A. Juarez, MA*, 240 River Street, #1, Santa Cruz,<br />

CA 95060<br />

Marie Elaine Danforth, PhD*, and Andrew R. Thompson,<br />

BA, University of Southern Mississippi, Department of<br />

Anthropology and Sociology, 118 College Drive, #5074,<br />

Hattiesburg, MS 39406<br />

Kathryn R.D. Driscoll, MA*, University of Tennessee,<br />

Knoxville, Department of Anthropology, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

Index 58<br />

309<br />

310<br />

310<br />

311<br />

311<br />

312<br />

312<br />

313


Correlation of Forensic Anthropologic<br />

Findings With DNA Profiles Obtained<br />

From Cold Cases<br />

Ossification of Laryngeal Structures: As<br />

Indicators of Age<br />

Age Related Changes of the Distal<br />

Humerus<br />

The Determination of Age Using the<br />

Acetabulum of the Os Coxa<br />

Matjes River Rockshelter: A Case of<br />

Commingled Remains<br />

Differential Wound Healing Patterns in<br />

Bone: A Case Study Involving Multiple<br />

Antemortem Injuries<br />

Hyoid Fusion and the Relationship With<br />

Fracture: Forensic Anthropological<br />

Implications<br />

The Potential Diagnostic Value of Scanning<br />

Electron Microscopy in the Differential<br />

Diagnosis of Bone Lesions: A Pilot Study<br />

Evaluation of the Mandibular Angle as an<br />

Indicator of Sex<br />

Test of a Method Regarding Sex Indication<br />

of the Human Hyoid Body<br />

Efficient Processing of Human Remains<br />

Using Dermestid Beetles<br />

Bodies and Body Parts: When and How to<br />

Record Them During the Excavation of<br />

Mass Graves<br />

Putting It All Together: Recovery,<br />

Assembly, and Analysis of Multiple Body<br />

Parts<br />

Heather Walsh-Haney, MA*, and Sulekha R. Coticone,<br />

PhD*, Florida Gulf Coast University, 10501 FGCU<br />

Boulevard, Ft. Myers, FL 33965<br />

Heather M. Garvin, BA, BS*, 1422 Pearce Park, Apartment<br />

# 6, Erie, PA 16502<br />

Emily Jeavons, BS*, Bournemouth University, School of<br />

Conservation Science, Talbot Campus, Poole, Dorset BH12<br />

5BB, United Kingdom<br />

Kyra E. Stull, BA*, 108 Firethorne Drive, Greer, SC 29650;<br />

Dustin M. James, BA, 7735 Village Drive, Knoxville, TN<br />

37919; and Joseph T. Hefner, MA, 241 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Ericka N L’Abbe, PhD*, Marius Loots, BSc, and Natalie<br />

Keough, BSc, University of Pretoria, Faculty of Health<br />

Sciences, Department of Anatomy, PO Box 2034, Pretoria,<br />

0001, South Africa<br />

Allison Bouwman, BA*, Jessica Dimka, BS, Jennifer<br />

Halpain, BS, Turhon A. Murad, PhD, and Eric J. Bartelink,<br />

PhD, California State University, Chico, 400 West First<br />

Street, Department of Anthropology, Butte #311, Chico, CA<br />

95929-0400<br />

Jonathan D. Bethard, MA*, and Christine M. Pink, MA,<br />

The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37916<br />

Wendy E. Potter, BA, MS*, Department of Anthropology,<br />

MSC01-1040, 1 University of New Mexico, Albuquerque,<br />

NM 87131<br />

Carlos J. Zambrano, MS, Nicolette M. Parr, MS*, Laurel<br />

Freas, MA, Anthony B. Falsetti, PhD, and Michael W.<br />

Warren, PhD, C.A. Pound Human Identification<br />

Laboratory, Department of Anthropology, University of<br />

Florida, PO Box 103615, 1376 Mowry Road, Gainesville,<br />

FL 32610<br />

Michelle L. Osborn, BA*, Department of Geography and<br />

Anthropology, Louisiana State University, Howe-Russel<br />

Building, Baton Rouge, LA 70803; Mary H. Manhein, MA,<br />

Department of Geography and Anthropology, FACES Lab,<br />

Louisiana State University, E105 Howe- Russell Building,<br />

Baton Rouge, LA 70803; and Michael Leitner, PhD,<br />

Department of Geography and Anthropology, Loiusiana<br />

State University, E111 Howe-Russell Building, Baton<br />

Rouge, LA 70803<br />

Karen R. Cebra, MS, MSFS*, California State University at<br />

Chico, Anthropology Department, 400 West 1st Street,<br />

Chico, CA 95929<br />

Hugh H. Tuller, MA*, and Joan Baker, PhD, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, Hawaii<br />

96853<br />

Emily A. Craig, PhD*, and Cristin Rolf, MD, Kentucky<br />

<strong>Medical</strong> Examiner’s Office, 100 Sower Boulevard, Suite<br />

202, Frankfort, KY 40601<br />

Index 59<br />

314<br />

314<br />

315<br />

315<br />

316<br />

316<br />

317<br />

317<br />

318<br />

319<br />

319<br />

320<br />

320


Percentage of Body Recovered and its<br />

Effect on Identification Rates and<br />

Cause/Manner of Death Determination<br />

The Fourth Era of Forensic Anthropology:<br />

Examining the Future of the Discipline<br />

Debra Komar, PhD, Office of the <strong>Medical</strong> Investigator,<br />

MSC11-6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001; and Wendy E. Potter, MS*, Department of<br />

Anthropology, MSC01-1040, 1 University of New Mexico,<br />

Albuquerque, NM 87131-0001<br />

Paul S. Sledzik, MS*, National Transportation Safety<br />

Board, Office of Transportation Disaster Assistance, 490<br />

L’Enfant Plaza East, SW, Washington, DC 20594-2000;<br />

Todd W. Fenton, PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824; Michael W. Warren, PhD*, Department of<br />

Anthropology, University of Florida, PO Box 117305,<br />

Gainesville, FL 32611; John E. Byrd, PhD*, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Christian Crowder, PhD*, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 First Avenue, New York, NY 10016;<br />

Shuala M. Drawdy, MA*, International Committee of the<br />

Red Cross, 19 Avenue de la Paix, Geneva, 1202,<br />

Switzerland; Dennis C. Dirkmaat, PhD*, Department of<br />

Applied Forensic Sciences, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546; Alison Galloway, PhD*,<br />

Chancellor’s Office, University of California, Santa Cruz,<br />

1156 High Street, Santa Cruz, CA 95064; Michael<br />

Finnegan, PhD*, Osteology Laboratory, Kansas State<br />

University, 204 Waters Hall, Manhattan, KS 66506; Laura<br />

C. Fulginiti, PhD*, and Kristen Hartnett, MA*, Maricopa<br />

County Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007; Thomas D. Holland, PhD*, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Murray K. Marks, PhD*, Department of<br />

Anthropology, University of Tennessee, 225 South Stadium<br />

Hall, Knoxville, TN 37996; Stephen D. Ousley, PhD*,<br />

Repatriation Office, Department of Anthropology, NMNH-<br />

MRC 138, Smithsonian Institution, Washington, DC 20013-<br />

7012; Tracy Rogers, PhD*, Department of Anthropology,<br />

University of Toronto at Mississauga, Mississauga, Ontario<br />

L5L 1C6, Canada; Norman J. Sauer, PhD*, Department of<br />

Anthropology, 354 Baker Hall, Michigan State University,<br />

East Lansing, MI 48824; Tal L. Simmons, PhD*,<br />

Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston, Preston PR1<br />

2HE, United Kingdom; Steven A. Symes, PhD*, Department<br />

of Applied Forensic Sciences, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546-0001; Morris Tidball-Binz,<br />

MD*, International Committee of the Red Cross, 19 Avenue<br />

de la Paix, Geneva, 1202, SWITZERLAND; and Douglas<br />

Ubelaker, PhD*, Department of Anthropology, NMNH-<br />

MRC 112, Smithsonian Institution, Washington, DC 20560<br />

A New Method for Evaluating Orbit Shape Shanna E. Williams, MA*, University of Florida, C.A.<br />

Pound Human Identification Laboratory, 1376 Mowry<br />

Road, Gainesville, FL 32610<br />

Index 60<br />

321<br />

322<br />

325


Morphological Characteristics of Ancestry<br />

in the Fetal/Newborn Human Skeleton<br />

The Curse of the Curvaceous Femur, the<br />

Litigious Line, and the Intrepid<br />

Investigator<br />

Isotopic Determination of Region of Origin<br />

in Modern Peoples: Applications for<br />

Identification of U.S. War-Dead From the<br />

Vietnam Conflict II<br />

Richard Jantz: A Man of Impressive<br />

Numbers<br />

Estimating Geographic Ancestry of<br />

Hispanic Crania Using Geometric<br />

Morphometrics<br />

Morphological Variation in the Cranial<br />

Base: Implications for Sex and Ancestry<br />

Estimation<br />

Craniometrics as Jantz Taught Us:<br />

Multiple Lines of Evidence to Deduce the<br />

Affiliation of Painted “Aztec” Skulls<br />

Repeatability and Error of Cranial<br />

Landmark Coordinates<br />

Morphological Variation of the Human<br />

Knee: Implications for Sex and Ancestral<br />

Designations<br />

Sex Determination in the Human Sacrum:<br />

Wing Index and Sacral Curvature<br />

Lawrence Frelich, DDS, PhD, Department of Peridontics,<br />

University of Maryland School of Dentistry, 666 West<br />

Baltimore Street, Baltimore, MD 21201; and David R.<br />

Hunt, PhD*, Smithsonian Institution, Department of<br />

Anthropology, National Museum of Natural History,<br />

Washington, DC 20013-7012<br />

Gregory E. Berg, MA*, Sabrina C. Ta’ala, MA, Elias J.<br />

Kontanis, PhD, and Sardiaa Plaud, BS, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Laura A. Regan, PhD*, Armed Forced <strong>Medical</strong> Examiner<br />

System, 1413 Research Boulevard, Building 102, Rockville,<br />

MD 20850; Anthony B. Falsetti, PhD, C.A. Pound Human<br />

Identification Lab, University of Florida, PO Box 103615,<br />

1376 Mowry Road, Gainesville, FL 32601; and Andrew<br />

Tyrrell, PhD, Joint POW/MIA Accounting Command-<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Lee Meadows Jantz, PhD*, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Katherine M. Spradley, PhD*, and Bridget F.B. Algee-<br />

Hewitt, MA, The University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

Ashley H. McKeown, PhD*, Department of Anthropology,<br />

University of Montana, Missoula, MT 59812; and Daniel J.<br />

Wescott, PhD, Department of Anthropology, University of<br />

Missouri, Columbia, MO 65211<br />

Susan M.T. Myster, PhD*, Hamline University, MB 196,<br />

1536 Hewitt Avenue, St. Paul, MN 55104; Erin Kimmerle,<br />

PhD, University of South Florida, Soc 110, 4202 East<br />

Fowler, Tampa, FL 33620; and Ann H. Ross, PhD, North<br />

Carolina State University, Campus Box 8107, Raleigh, NC<br />

27695-8107<br />

Ann H. Ross, PhD*, North Carolina State University,<br />

Department of Sociology and Anthropology, CB 8107,<br />

Raleigh, NC 27695-8107; and Shanna Williams, MA,<br />

University of Florida, C.A. Pound Human Identification<br />

Laboratory, Gainesville, FL 32611<br />

Erin B. Waxenbaum, MA*, C.A. Pound Human<br />

Identification Lab, University of Florida, PO Box 103615,<br />

1376 Mowry Road, Gainesville, FL 32610; Anthony B.<br />

Falsetti, PhD, C.A. Pound Human Identification Lab,<br />

University of Florida, PO Box 103615, 1376 Mowry Road,<br />

Gainesville, FL 32601; and David R. Hunt, PhD, National<br />

Museum of Natural History, Smithsonian Institution,<br />

Department of Anthropology, Washington, DC 20560<br />

Michaela M. Huffman, BS*, National Museum of Natural<br />

History, Department of Anthropology, MRC112, 10th &<br />

Constitution Avenue NW, Washington, DC 20560-0112;<br />

and David R. Hunt, PhD, National Museum of Natural<br />

History, Department of Anthropology/MRC112, 10th &<br />

Constitution Avenue NW, Washington, DC 20560-0112<br />

Index 61<br />

326<br />

326<br />

327<br />

327<br />

328<br />

328<br />

329<br />

330<br />

330<br />

331


New Statistical Approaches to Sex<br />

Estimation: Multi-Stage Discriminant<br />

Function Analysis<br />

The Value of Experience, Education, and<br />

Methods in Ancestry Prediction<br />

Using Growth Data to Understand Secular<br />

Trends in Femur Diaphyseal Size and<br />

Shape among American Adults<br />

SIRLI (Sistema de Identificación de Restos<br />

y Localización de Individuos): A Review of<br />

the First Year of Mexico’s Database for<br />

Missing Persons<br />

An Argument for the Increased<br />

Involvement of Forensic Anthropologists in<br />

Mass Fatality Incidents in the United<br />

States, United Kingdom and Europe<br />

Introducing Forensic Anthropology to<br />

Albania Using the Problem-Based<br />

Learning Model<br />

The Importance of Archaeological Site<br />

Formation Processes and Flexible<br />

Excavation Strategies to the Development<br />

of Successful Medicolegal Approaches to<br />

Mass Graves Excavation: Al Hatra, Iraq<br />

Creating a Standardized Approach to<br />

Capacity Building Programs in Forensic<br />

Anthropology: Human Rights<br />

Investigations in Colombia<br />

The Current and Potential Role of Forensic<br />

Anthropology in Cambodia<br />

Stephen D. Ousley, PhD*, Smithsonian Institution, PO Box<br />

37012, NMNH MRC 138, Washington, DC 20013-7012;<br />

and John E. Byrd, PhD, Joint POW/MIA Accounting,<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Joseph T. Hefner, MA*, Forensic Anthropology Center,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37996; Paul D. Emanovsky, MS, and John<br />

Byrd, PhD, Joint POW/MIA Accounting Command, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853;<br />

and Stephen D. Ousley, PhD, National Museum of Natural<br />

History, Smithsonian Institution, PO Box 37012 MRC 138,<br />

Washington, DC 20013<br />

Daniel J Wescott, PhD*, University of Missouri-Columbia,<br />

Department of Anthropology, 107 Swallow Hall, Columbia,<br />

MO 65211<br />

Lori E. Baker, PhD*, Baylor University, Department of<br />

Anthropology, Forensic Science and Archaeology, One<br />

Bear Place #97388, Waco, TX 76798<br />

Frank A. Ciaccio, MPA*, Kenyon International Emergency<br />

Services, Inc., 15180 Grand Point Drive, Houston, TX<br />

77090; and Nick Haig, BA, Msc*, Kenyon International<br />

Emergency Services, Inc., 1, The Western Centre, Western<br />

Road, Bracknell, RG12 1RW, England, United Kingdom<br />

Thomas A. Crist, PhD*, and John H. Johnsen, PhD, Utica<br />

College, 1600 Burrstone Road, Utica, NY 13304<br />

Joan E. Baker, PhD*, and Eric B Emery, PhD, Joint<br />

POW/MIA Accounting Command Central Identification<br />

Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

Jennifer L. Beatty, JD*, Department of Justice, Criminal<br />

Division, International Criminal Investigative Training<br />

Assistance Program, 1331 F Street NW Suite 500,<br />

Washington, DC 20530; Andrew Tyrrell, PhD, Eric Emery,<br />

PhD, William R. Belcher, PhD, and Derek C. Benedix,<br />

PhD, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, Building 45, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-3350; and Liliana del<br />

Amparo Segura Leal, and Manuel A. Torres Rojas,<br />

Prosecutor General’s Office, Technical Investigation Corps<br />

(CTI), Diagonal 22B No. 52-01, Bogota, DC, Colombia<br />

Sabrina C. Ta’ala, MA*, and Gregory E. Berg, MA, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Grave Problems in Iraq Derek R. Congram, BA Honours, MSc, MA*, 393 Pinehurst<br />

Drive, RR4 Belle River, Ontario N0R 2A0, Canada; and<br />

Ambika Flavel, BA, MSc Forensic Archaeology, Regime<br />

Crimes Liaison Office, RCLO/Mass Graves, APO, AE<br />

09342<br />

Index 62<br />

331<br />

332<br />

333<br />

334<br />

334<br />

335<br />

335<br />

336<br />

337<br />

337


Differential Diagnosis of Torture in<br />

Skeletal Remains<br />

Blasting Injuries in Human Rights Cases<br />

and Armed Conflicts<br />

Decomposition in a Mass Grave and the<br />

Implications for Post Mortem Interval<br />

Estimates<br />

The Decomposition of Human Remains<br />

Recovered From the River Clyde,<br />

Scotland: A Comparative Study of UK<br />

Fluvial Systems<br />

The Boy in the Chimney: A Case Study in<br />

Human Decomposition<br />

Patella Sex Determination by 3D Statistical<br />

Shape Models and Nonlinear Classifiers<br />

The Problem-Based Learning Approach to<br />

Forensic Anthropology at Butrint National<br />

Park, Albania: The International Student<br />

Perspective<br />

Long Bone Ratios for the Bosnian Male<br />

Population<br />

The Mastoid Sinuses and Their Potential in<br />

Comparative Radiology for Forensic<br />

Anthropology<br />

The Petrous Portion of the Human<br />

Temporal Bone Revisited: A Bayesian<br />

Analysis of its Potential Value in the<br />

Identification of Human Skeletal Remains<br />

Mandibular Morphology as an Indicator of<br />

Human Subadult Age: Interlandmark and<br />

Geometric Morphometric Approaches<br />

Jose P. Baraybar, BA, MS*, and Carmen R. Cardoza, BA,<br />

Equipo Peruano de Antropologia Forense (EPAF), Arnaldo<br />

Marquez 2144-D, Lima, Lima 11, Peru<br />

Erin H. Kimmerle, PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler Avenue,<br />

SOC 107, Tampa, FL 33620- 8100; and Jose Pablo<br />

Baraybar, MSc, Peruvian Forensic Anthropology Team<br />

(EPAF), Toribio Pacheco 216 Lima 18 Peru, Lima, 18,<br />

Peru<br />

Rebecca E. White*, 1 Harlestone Court, Harlestone Road,<br />

Dallington, Northampton, Northamptonshire, NN5 7AP,<br />

United Kingdom<br />

Vivienne G. Heaton, MS*, and Tal Simmons, PhD,<br />

Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, United Kingdom<br />

Elizabeth A. Miller, PhD*, Cal State Los Angeles and Los<br />

Angeles County Coroner, Department of Anthropology,<br />

5151 State University Drive, Los Angeles, CA 90032<br />

Mohamed Mahfouz, PhD, Ahmed M. Badawi, PhD,<br />

Brandon C. Merkl, MS, Emam ElHak Ali Abd ElFatah, MS,<br />

Emily Pritchard, BS, and Katherine R. Kesler, BS,<br />

Department of Mechanical, Aerospace and <strong>Bio</strong>medical<br />

Engineering, 301 Perkins Hall, University of Tennessee,<br />

Knoxville, TN 37996; and Megan K. Moore, MS*, Richard<br />

L. Jantz, PhD, and Lee Meadows Jantz, PhD, Department<br />

of Anthropology, 250 South Stadium Hall, University of<br />

Tennessee, Knoxville, TN 37996<br />

Alyson E. Jaagumagi*, University of Toronto, 100 St.<br />

George Street, Toronto, Ontario M5S 3G3, Canada; Bo<br />

Yeon Kim*, Bryn Mawr College, 101 North Merion Avenue,<br />

Bryn Mawr, PA 19010-2899; Danielle Stollak, Haverford<br />

College, 370 Lancaster Avenue, Haverford, PA 19041-<br />

1392; and Meisha Bray*, Grand Valley State University, 1<br />

Campus Drive, Allendale, MI 49401-9401<br />

Alexandra M. Klonowski, MS*, and Tal Simmons, PhD,<br />

University of Central Lancashire, Maudland Building,<br />

Preston, Lancashire PR1 2HE, United Kingdom<br />

Pamela M Steger, BA, MS*, Travis County <strong>Medical</strong><br />

Examiners Office, 934 Sycamore Street, San Marcos, TX<br />

78666; and Daniel Jackson, BA, MA, Travis County<br />

<strong>Medical</strong> Examiners Office, 104 B Ladybird Lane, San<br />

Marcos, TX 78666<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong><br />

Examiner, 1885 Old Spanish Trail, Houston, TX<br />

Daniel Franklin, PhD*, Centre for Forensic Science,<br />

School of Anatomy and Human <strong>Bio</strong>logy, The University of<br />

Western Australia, MBDP 420, 35 Stirling Highway,<br />

Crawley, Perth, Western Australia 6009, Australia; and<br />

Andrea Cardini, PhD, Functional Morphology and<br />

Evolution Research Unit, The Hull York <strong>Medical</strong> School,<br />

Heslington, York Y010 5DD, United Kingdom<br />

Index 63<br />

338<br />

338<br />

339<br />

339<br />

340<br />

341<br />

341<br />

342<br />

343<br />

343<br />

344


Assessment of Histomorphological<br />

Features of the Fourth Rib for Age<br />

Estimation in Koreans<br />

Age-Related Histomorphometric Changes<br />

in Fetal and Infant Long Bones<br />

Utilization of the Iscan Method on Multislice<br />

Computed Tomography<br />

Reconstructions for Assessment of Aging:<br />

A Preliminary Study<br />

Estimating Time Since Death From Human<br />

Skeletal Remains by Radioisotope and<br />

Trace Element Analysis<br />

Even in Alaska! Missing Person or<br />

Cremains and How to Tell the Difference<br />

Forensic Anthropology Investigation of<br />

Human Rights Violations in the Ixil and<br />

Ixcan areas of Guatemala<br />

Most Common Variation and Dental<br />

Anomalies in Skeletons Analyzed in the<br />

Laboratory of the Guatemalan Forensic<br />

Anthropology Foundation<br />

Diverse Stature Estimation Formulae<br />

Applied to a Bosnian Population<br />

A Simple Technique for Imaging the<br />

Human Skeleton: An Application Using the<br />

Auricular Surface for Aging<br />

Yi-Suk Kim, MD*, Department of Anatomy, Gahon<br />

University of Medicine and Science, 1198, Kuwol-dong,<br />

Namdong-gu, Incheon, 405760, South Korea; Dae-Kyoon<br />

Park, PhD, Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyong-dong,<br />

Cheonan-si, Chungcheongnam-do 330946, South Korea;<br />

and Deog-Im Kim, Je-Hoon Lee, and Seung-Ho Han, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, South Korea<br />

Courtney D. Eleazer, BS*, and Murray K. Marks, PhD,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, 250 South Stadium Hall, Knoxville, TN 37996<br />

Fabrice Dedouit, MD*, Stéphanie Bindel, David Gainza,<br />

MD, and Anthony Blanc, MD, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean Poulhès,<br />

TSA 50032, Toulouse Cedex 9, 31059, France; Francis<br />

Joffre, PhD, Service de Radiologie Générale, Hôpital de<br />

Rangueil, 1 Avenue du Professeur Jean Poulhès, TSA<br />

50032, Toulouse Cedex 9, 31059, France; and Daniel<br />

Rouge, PhD, and Norbert Telmon, PhD, Service de<br />

Médecine Légale, Hôpital de Rangueil, 1 Avenue du<br />

Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9,<br />

31059, France<br />

Sheridan J. Howard, BHS*, Centre for Forensic Science,<br />

The University of Western Australia, 35 Stirling Highway,<br />

Crawley, WA 6009, Australia; and Jan Meyer, PhD, School<br />

of Anatomy & Human <strong>Bio</strong>logy, 35 Stirling Highway,<br />

Crawley, WA 6009, Australia<br />

Kathleen Day, MS*, State of Alaska <strong>Medical</strong> Examiner’s<br />

Office, 4500 South Boniface Parkway, Anchorage, AK<br />

99507; and David McMahan, MA, Alalska Department of<br />

Natural Resources, Office of History & Archaelogy, 3601 C<br />

Street, Suite 1278, Anchorage, AK 99503<br />

Lourdes A. Penados, MS*, CAFCA, 2a. calle 6-77 zona 1,<br />

Guatemala, 01001, Guatemala; and Tal L. Simmons, PhD,<br />

University of Central Lancashire, Department of Forensic<br />

and Investigative Sciences, Maudland Building 114,<br />

Preston, Lancashire PR12HE, United Kingdom<br />

Shirley C. Chacón, BA*, and Leonel E. Paiz, BA,<br />

Fundación de Antropología Forense de Guatemala<br />

(FAFG), Avenida Simeón Cañas 10- 64 Zona 2, Guatemala<br />

City, 01002, Guatemala<br />

Nermin Sarajlic, MD, PhD*, Eva-Elvira Klonowski, PhD,<br />

and Senem Skulj, BSc, ICMP, Alipasina 45A, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Sherry C. Fox, PhD*, Wiener Laboratory, American School<br />

of Classical Studies at Athens, 54 Souidias Street, Athens,<br />

Attica GR106-76, Greece; and Sotiris K. Manolis, PhD, and<br />

Constantinos Eliopoulos, PhD, Department of Animal and<br />

Human Physiology, Division of <strong>Bio</strong>logy, University of<br />

Athens, Athens, Attica GR106-76, Greece<br />

Index 64<br />

345<br />

345<br />

346<br />

347<br />

347<br />

347<br />

348<br />

348<br />

349


Analysis of Commingled Remains Using<br />

Archaeology, Anthropology, and DNA: A<br />

Case Study from North Korea<br />

Investigating the Spanish Civil War:<br />

Forensic Anthropological Investigations in<br />

Santaella<br />

Sifting Through the “Ashes”: Age and Sex<br />

Estimation Based on Cremains Weight<br />

Burned Human Remains: Myths in<br />

Forensic Science<br />

Establishing the Perimortem Interval:<br />

Correlation Between Bone Moisture<br />

Content and Blunt Force Trauma<br />

Characters<br />

Bone-Breaking Rules: A Report of Six<br />

Fracture Mechanism-of-Injury Axioms<br />

Developed From Experimental Impact<br />

Testing<br />

Trace Element Analysis of Human Bone<br />

Using Portable XRF<br />

Physical Matches of Bone, Tooth, and Shell<br />

Fragments: A Validation Study<br />

Three-Dimensional Variation in Face<br />

Shape in a Large Study Sample<br />

Facial Soft Tissue Depths in Craniofacial<br />

Identification: Properties Gleaned From a<br />

Comparative Bottom-Up Approach<br />

Alexander F. Christensen, PhD*, and William R. Belcher,<br />

PhD*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

AFB, HI 96853; and Sarah Bettinger, MSFS, Armed Forces<br />

DNA Identification Laboratory, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850<br />

Dawnie W. Steadman, PhD*, Binghamton University,<br />

Department of Anthropology, PO Box 6000, Binghamton,<br />

NY 13902-6000; Elena Sintes Olives, MA, and Camila<br />

Oliart Caravatti, MA, Autonomous University of Barcelona,<br />

Department of Prehistory, Edifici B, Barcelona, 08193,<br />

Spain; and Jennifer M. Bauder, MA, Binghamton<br />

University, Department of Anthropology, PO Box 6000,<br />

Binghamton, NY 13902-6000<br />

Traci L Van Deest, BA*, California State University, Chico,<br />

Department of Anthropology, 311 Butte Hall, Chico, CA<br />

95929<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Anthropology Department, Fayetteville, AR 72701<br />

Danielle A. Miller Wieberg, MA*, 4107 Meredith Road,<br />

Knoxville, TN 37921<br />

Tyler A. Kress, PhD*, BEST Engineering, 2312 Craig Cove<br />

Road, Knoxville, TN 37919; David J. Porta, PhD,<br />

Bellarmine University, Department of <strong>Bio</strong>logy, 2001<br />

Newburg Road, Louisville, KY 40205; Anne M. Kroman,<br />

MA, University of Tennessee, Department of Anthropology,<br />

Knoxville, TN 37996; and Bryce O. Anderson, PhD, BEST<br />

Engineering, 2312 Craig Cove, Knoxville, TN 37919<br />

Jennifer J. Prutsman-Pfeiffer, MA*, University of Rochester<br />

<strong>Medical</strong> Center, Autopsy and Neuropathology, 601<br />

Elmwood Avenue, Box 626, Rochester, NY 14642; and<br />

Peter J. Bush, BS, South Campus Instrument Center, School<br />

of Dental Medicine, State University of New York at<br />

Buffalo, Buffalo, NY 14214<br />

Angi M. Christensen, PhD*, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135; and Adam D. Sylvester, PhD, The<br />

University of Tennessee, Department of Mechanical,<br />

Aerospace and <strong>Bio</strong>medical Engineering, 301 Perkins Hall,<br />

Knoxville, TN 37996<br />

Martin P. Evison, PhD*, University of Toronto at<br />

Mississauga, Forensic Science Program, 3359 Mississauga<br />

Road North, Mississauga, ON L5L 1C6, Canada; and<br />

Richard W. Vorder Bruegge, PhD, Federal Bureau of<br />

Investigation, Forensic Audio, Video and Image Analysis<br />

Unit, Engineering Research Facility, Building 27958A,<br />

Quantico, VA 22135<br />

Carl N. Stephan, PhD*, The University of Queensland,<br />

Anatomy and Developmental <strong>Bio</strong>logy, The University of<br />

Queensland, Brisbane, QLD 4072, Australia; and Ellie K.<br />

Simpson, PhD, Forensic Science South Australia, 21 Divett<br />

Place, Adelaide, SA 5000, Australia<br />

Index 65<br />

349<br />

350<br />

350<br />

351<br />

352<br />

353<br />

353<br />

354<br />

355<br />

355


Examination of Identification Methods<br />

Used by <strong>Medical</strong> Examiners: A Facility<br />

Study<br />

The Technique of Sampling Skeletal<br />

Remains for Mitochondrial DNA Testing<br />

DNA Preservation of Skeletal Elements<br />

From the World Trade Center Disaster:<br />

Some Recommendations for Mass Disaster<br />

Management<br />

Considerations in Differentiating<br />

Negligence From Deliberate Misconduct —<br />

Lessons Learned From Tri-State<br />

Crematorium<br />

The Donation Dilemma: Academic Ethics<br />

and Public Participation at the<br />

Anthropological Research Facility<br />

Daubert and Kumho: Implications for<br />

Anthropologists in the Courtroom<br />

Bones of Contention - The Investigation of<br />

a Cadaver Dog Handler<br />

Angela Soler, BS*, and Todd W. Fenton, PhD, Michigan<br />

State University, 354 Baker Hall, East Lansing, MI 48824;<br />

and Joyce L. deJong, DO, Sparrow Hospital, 1215 East<br />

Michigan Avenue, Lansing, MI 48909<br />

Audrey L. Meehan, BGS*, Joint POW/MIA Accounting<br />

Command/ Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Amy Z Mundorff, MA*, Simon Fraser University,<br />

Department of Archaeology, 8888 University Dr, Burnaby,<br />

BC V5A 1S6, Canada; and Eric J Bartelink, PhD,<br />

California State University, Chico, Department of<br />

Anthropology, Butte Hall 311, Chico, CA 95929<br />

Hugh E. Berryman, PhD*, Sociology and Anthropology,<br />

PO Box 10, Middle Tennessee State University,<br />

Murfreesboro, TN 37132; and Carrie Anne Berryman, MA,<br />

Department of Anthropology, Vanderbilt University, 2301<br />

Vanderbilt Place, Box 356050, Station B, Nashville, TN<br />

37235<br />

Bridget Algee-Hewitt, MA*, Rebecca J Wilson, MA, and<br />

Lee Meadows Jantz, PhD, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Christopher R. Grivas, MS*, and Debra Komar, PhD,<br />

University of New Mexico, Department of Anthropology,<br />

MSC01 1040, Office of the <strong>Medical</strong> Investigator, MSC11<br />

6131, 1 University of New Mexico, Albuquerque, NM<br />

87131-0001<br />

Amy L. Michaud, BS*, Bureau of Alcohol, Tobacco,<br />

Firearms, and Explosives, National Laboratory Center,<br />

6000 Ammendale Road, Ammendale, MD 20705; Douglas<br />

H. Ubelaker, PhD, Department of Anthropology, NMNH-<br />

MRC112, Smithsonian Institution, Washington DC, 20560;<br />

and Norman J. Sauer, PhD, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI 48824<br />

Index 66<br />

356<br />

356<br />

357<br />

357<br />

358<br />

359<br />

359


2006<br />

Estimating Time Since Injury From Kevin B. Hufnagl, MA*, 601 Lindsay Place, Apartment 361<br />

Healing Stages Observed in Radiographs B14, Knoxville, TN 37919<br />

The Human Petrous Temporal Bone: Jason M. Wiersema, MA*, Department of Anthropology, 361<br />

Potential for Forensic Individuation Texas A&M University, College Station, TX 77843-4352<br />

Results of Forensic Anthropological Dae-Kyoon Park, MD, PhD*, Department of Anatomy, 362<br />

Examination in Daegu Subway Disaster College of Medicine, Soonchunhyang University, 366-1,<br />

(2003, Korea)<br />

Ssangyong-dong, Chungcheongnam-do, Cheonan-si,<br />

330946, Korea; Yi-Suk Kim, MD, and Nak-Eun Chung,<br />

MD, PhD, Division of Forensic Medicine National Institute<br />

of Scientific Investigation, 331-1 Sinwol 7 -dong,<br />

Yangcheon-gu, Seoul, 158707 Korea; and Seung-Ho Han,<br />

MD, PhD, Department of Anatomy, Catholic Institute for<br />

Applied Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505 Banpo-dong, Socho-gu, Seoul<br />

137701 Korea<br />

Population Variation in the Sacrum Jaime L. Loichinger, BA*, and Cynthia A. Wilczak, PhD,<br />

University of Maryland, College Park-Dept. of<br />

Anthropology, 1111 Woods Hall, College Park, MD 20742<br />

362<br />

Skull and Photo Superimposition<br />

Audrey L. Meehan, BGS*, and Robert W. Mann, PhD, Joint 363<br />

Technique Used to Aid in the Identification POW/MIA Accounting Command/Central Identification<br />

Process<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853<br />

Selection of Variables for Discriminant Adam Kolatorowicz, MS*, 4510 Marcy Lane, # 41, 363<br />

Analysis of Human Crania for Determining<br />

Ancestry<br />

Indianapolis, IN 46205<br />

Age of Closure of the Spheno-Occipital M. Essam E. El-Sheikh, MD, PhD*, and Salwa Ramadan, 364<br />

Synchondrosis in the Arabian Gulf Region MD, PO Box 1747, Farwaina 1747, Kuwait<br />

Sexual Dimorphism in the Subadult Daniel Franklin, PhD, and Charles E. Oxnard, MBChB, 364<br />

Mandible: Quantification Using Geometric PhD, Centre for Forensic Science, School of Anatomy and<br />

Morphometrics<br />

Human <strong>Bio</strong>logy, The University of Western Australia, 35<br />

Stirling Highway, Crawley, Perth, Western Australia 6009,<br />

Australia; Paul O’Higgins, MBChB, PhD, Functional<br />

Morphology and Evolution Research Group, The University<br />

of York, Heslington, York Y010 5DD, United Kingdom; and<br />

Ian Dadour, PhD*, and Robin Napper, BA, Centre for<br />

Forensic Science, The University of Western Australia, 35<br />

Stirling Highway, Crawley, Perth, Western Australia 6009,<br />

Australia<br />

Forensic GPR: Using Ground-Penetrating Johh J. Schultz, PhD*, University of Central Florida, 365<br />

Radar to Search for Buried Bodies Department of Sociology and Anthropology, Orlando, FL<br />

32816-1360<br />

A Case of Historical Homicide in Northern Ryan W. Schmidt, BS*, 1424 Santa Anita Drive, Apartment 365<br />

Nevada<br />

B, Las Vegas, NV 89119; and Jennifer L. Thompson, PhD,<br />

University of Nevada, Las Vegas, 4505 Maryland Parkway,<br />

Las Vegas, NV 89154<br />

Index 67


What Matters - Size or Shape? Three-<br />

Dimensional Analysis of Craniofacial<br />

Sexual Variation Among American<br />

Populations<br />

Estimation of Living Stature From Selected<br />

Anthropometric (Soft Tissue)<br />

Measurements: How do These Compare<br />

With Osteometric (Skeletal)<br />

Measurements?<br />

Morphological, Metric, and Morphometric<br />

Variation in the Midface<br />

An Assessment of Non-Metric Traits of the<br />

Mandible Used in the Determination of<br />

Ancestry<br />

Discriminant Function Analysis as Applied<br />

to Mandibular Morphology to Assess<br />

Population Affinity<br />

Morphoscopic Traits and the Statistical<br />

Determination of Ancestry II<br />

Ontogeny of Femur Subtrochanteric<br />

Shape: Implications for Determining<br />

Ancestry Using the Platymeric Index<br />

A New Method for Estimating Age-at-<br />

Death From the First Rib<br />

Stature Estimation Based on Dimensions of<br />

the Bony Pelvis and Proximal Femur<br />

Evaluation of Three Methods of Age<br />

Estimation From Human Skeletal Remains<br />

(Suchey-Brooks, Lamendin, and Two-Step<br />

Strategy)<br />

Ann H. Ross, PhD*, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695- 8107; Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, SOC 107, Tampa, FL 33620-<br />

8100; Dennis E. Slice, PhD, Institute for Anthropology,<br />

University of Vienna, Vienna, Austria; and Anthony B.<br />

Falsetti, PhD, University of Florida, CA Pound Human ID<br />

Laboratory, Department of Anthropology, Gainesville, FL<br />

32611<br />

Bradley J. Adams, PhD*, Office of Chief <strong>Medical</strong><br />

Examiner, City of New York, 520 First Avenue, New York,<br />

NY 10016; and Nicholas P. Herrmann, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Stephen D. Ousley, PhD*, Smithsonian Institution, NMNH<br />

MRC 138, PO Box 37012, Washington, DC 20013-7012;<br />

and Lisa M. Martinez, Department of Anthropology,<br />

Harvard University, 11 Divinity Avenue, Cambridge, MA<br />

02138<br />

Nicolette M. Parr, MS*, Department of Anthropology,<br />

University of Florida, Gainesville, FL 32611<br />

Gregory E. Berg, MA*, Joint POW/MIA Accounting<br />

Command, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Joseph T. Hefner, BA, MA*, Department of Anthropology,<br />

University of Florida, Gainesville, FL 32611; and Stephen<br />

D. Ousley, PhD, Department of Anthropology, Smithsonian<br />

Institution, Washington, DC 20560<br />

Daniel J. Wescott, PhD*, University of Missouri-Columbia,<br />

Department of Anthropology, 107 Swallow Hall, Columbia,<br />

MO 65211<br />

Elizabeth A. DiGangi, MA*, and Jonathan D. Bethard, MA,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37916; Erin H.<br />

Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler Avenue, SOC 107, Tampa,<br />

FL 33620-8100; and Lyle W. Konigsberg, PhD, University<br />

of Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Carolyn L. Giroux, BA*, 6200 East Richland Road,<br />

Columbia, MO 65201; and Daniel J. Wescott, PhD,<br />

University of Missouri-Columbia, Department of<br />

Anthropology, 107 Swallow Hall, Columbia, MO 65211<br />

Rika Prodhan, BS*, 547 Cedar Branch Road, League City,<br />

TX 77573; Douglas H. Ubelaker, PhD, Department of<br />

Anthropology, MRC 112, National Museum of Natural<br />

History, Smithsonian Institution, Washington, DC 20560;<br />

and Debra A. Prince, PhD, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Index 68<br />

366<br />

366<br />

367<br />

368<br />

369<br />

369<br />

370<br />

370<br />

371<br />

371


Evaluation of Purkait’s Triangle Method<br />

for Determining Sexual Dimorphism<br />

Robert P. Brown, MFS*, 22nd Military Police Battalion<br />

(CID), USACIDC, PO Box 331009, Mailstop #84, Fort<br />

Lewis, WA 98433; Douglas H. Ubelaker, PhD, Smithsonian<br />

Institution’s National Museum of Natural History,<br />

Department of Anthropology, 10th and Constitution Avenue<br />

NW, MRC 112, PO Box 37012, Washington, DC 20013;<br />

and Moses S. Schanfield, PhD, The George Washington<br />

University, Department of Forensic Sciences, 2036 H Street<br />

NW, 102 Samson Hall, Washington, DC 20052<br />

Sex Determination From the Hyoid Body Jered B. Cornelison, MS*, Michigan State University,<br />

Department of Anthropology, 204 Olds Hall, East Lansing,<br />

MI 48824; Wendy L. Lackey- Cornelison, MA, Michigan<br />

State University, Department of Anthropology, 426 East<br />

Fee Hall, East Lansing, MI 28824; and Brian C. Hunter,<br />

Forensic Application of Epiphyseal<br />

Sequencing<br />

Research Trends During the History of the<br />

Physical Anthropology Section at the<br />

AAFS Annual Meetings<br />

PhD, 1215 East Michigan Avenue, Lansing, MI 48912<br />

Maureen C. Schaefer, MA*, University of Dundee, Anatomy<br />

and Forensic Anthropology, Faculty of Life Sciences,<br />

University of Dundee, Dow Street, Dundee, DD1 5EH,<br />

Scotland<br />

Derek C. Benedix, PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853-5530; and<br />

William R. Belcher, PhD, JPACCIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853-5530<br />

Billie L. Seet, MA*, 16 Arcola Street #2, Jamaica Plain,<br />

Estimating the Postmortem Interval in<br />

374<br />

Freshwater Environments<br />

MA, 02130<br />

Missing, Present, and Left Behind Julie M. Saul, BA*, and Frank P. Saul, PhD, Lucas County<br />

(Toledo) Coroners Office and Wayne County (Detroit)<br />

<strong>Medical</strong> Examiners Office, 3518 East Lincolnshire Blvd,<br />

Toledo, OH 4360<br />

374<br />

Gooney Birds and Rocky Clouds:<br />

Alexander F. Christensen, PhD*, Joint POW/MIA<br />

375<br />

Perimortem Trauma in World War II C-47 Accounting Command, Central Identification Laboratory,<br />

Crashes From Papua New Guinea<br />

310 Worchester Ave., Hickam AFB, HI 96853<br />

Of Butterflies and Spirals: Interpretation Laura C. Fulginiti, PhD*, Kristen M. Hartnett, MA, Kevin 376<br />

of Fractures in Motor Vehicle vs.<br />

D. Horn, MD, and Ruth E. Kohlmeier, MD, Forensic<br />

Pedestrian Accidents<br />

Science Center, 701 West Jefferson, Phoenix, AZ 85007<br />

Orthopedic Devices and the William M. Rebecca J. Wilson, MA*, Jonathan D. Bethard, MA, and 376<br />

Bass Donated Skeletal Collection:<br />

Elizabeth A. DiGangi, MA, The University of Tennessee,<br />

Implications for Forensic Anthropological Department of Anthropology, 250 South Stadium Hall,<br />

Identification<br />

Knoxville, TN 37996<br />

The Effects of Household Corrosive Darcy J. Cope*, and Tosha L. Dupras, PhD, University of 377<br />

Substances on Human Bone and Teeth Central Florida, Department of Sociology and<br />

Anthropology, Orlando, FL 32816<br />

Artists Contribution to Facial<br />

Gloria L. Nusse, BFA*, Clay and Bones, 129 Stanford 377<br />

Reconstruction<br />

Avenue, Mill Valley, CA 94941; and Alison Galloway,<br />

PhD*, University of California, Santa Cruz, Anthropolgy<br />

Department, Social Science One FS, Santa Cruz, CA 95064<br />

Superficial Ancestral Characteristics of the Stephanie M. Crider, BA*, 4525 North Leata Lane, La 378<br />

Nose<br />

Canada, CA 91011<br />

Index 69<br />

372<br />

373<br />

373<br />

374


Morphometrics Using Radiographic Study<br />

of Thyroid Cartilage for Age-Estimation in<br />

Korean Males<br />

Isotopic Determination of Region of Origin<br />

in Modern Peoples: Applications for<br />

Identification of U.S. War-Dead From the<br />

Vietnam Conflict<br />

Non-Destructive Microscopic<br />

Differentiation of Human From Non-<br />

Human Fragmentary Burned Bone<br />

The Detection of Microscopic Markers of<br />

Haemorrhaging and Wound Age on Dry<br />

Bone: Beating the Barriers Between<br />

Forensic Anthropology and Forensic<br />

Pathology<br />

Differential Diagnosis of Gout in Skeletal<br />

Remains<br />

Bevel, Bevel in my Bone, Be it Bullet or Be<br />

it Stone? Misidentification of Blunt Force<br />

Trauma as Ballistic Entrance Wounds in<br />

Burned Cranial Bone<br />

The Difference Between “Pala” and “Palo”<br />

is the Instrument of Death<br />

Scanning Electron Microscopy of Saw<br />

Marks in Bone: Assessment of Wear-<br />

Related Features of the Kerf Wall<br />

Seasonal Variation of Scavenging and<br />

Associated Faunal Activity on Pig<br />

Carcasses in South Western Australia<br />

A Preliminary Investigation of<br />

Decomposition in Cold Climate<br />

Dae-Kyoon Park, MD, PhD*, and Jeong-Sik Ko, PhD,<br />

Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyong-dong,<br />

Chungcheongnam-do, Cheonan-si, 330946, Korea; and<br />

Deog-Im Kim, MA, U-Young Lee, MD, and Seung-Ho Han,<br />

MD, PhD, Department of Anatomy, Catholic Institute for<br />

Applied Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505 Banpo-dong, Sochogu, Seoul,<br />

137701, Korea<br />

Laura A. Regan, MS*, and Anthony B. Falsetti, PhD, C.A.<br />

Pound Human Identification Lab, Department of<br />

Anthropology, University of Florida, PO Box 112545,<br />

Building 114, Gainesville, FL 32611; and Andrew Tyrrell,<br />

PhD, Joint POW/MIA Accounting Command-CIL, 310<br />

Worchester Avenue, Hickam Air Force Base, HI 96853<br />

Elayne J. Pope, MA, Trey Batey, MA*, and Jerome C. Rose,<br />

PhD, University of Arkansas, 330 Old Main, Fayetteville,<br />

AR 72701<br />

Cristina Cattaneo, PhD, MD*, and Eloisa Marinelli, MD,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy; Salvatore Andreola, MD, Istituto Nazionale<br />

per la Cura Dei Tumori, via venezian 1, Milano, 20133,<br />

Italy; and Pasquale Poppa, BSc, and Marco Grandi, MD,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy<br />

Christopher R. Grivas, MS*, University of New Mexico,<br />

Department of Anthropology, 1 University of New Mexico,<br />

Albuquerque, NM 87131<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; O’Brian C. Smith, MD, 381<br />

Cherry Hollow, Cordova, TN 38018; and Kate M. Spradley,<br />

MA, University of Tennessee, 250 South Stadium Drive,<br />

Knoxville, TN 37996<br />

Turhon A. Murad, PhD*, Anthropology Department,<br />

California State University, Chico, CA 95929-0400<br />

Laurel Freas, MA*, Department of Anthropology, CA<br />

Pound Human ID Laboratory, University of Florida, PO<br />

Box 112545, Gainesville, FL 32611<br />

R. Christopher O’Brien, BA, MFS*, University of Western<br />

Australia, Centre for Forensic Science, 35 Stirling<br />

Highway, Mail Bag M420, Crawley, WA 6009, Australia;<br />

Shari L. Forbes, PhD, University of Ontario Institute of<br />

Technology, Faculty of Science, 2000 Simcoe Street, North,<br />

Oshawa, ON L1H 7K4, Canada; Jan Meyer, PhD,<br />

University of Western Australia, School of Anatomy and<br />

Human <strong>Bio</strong>logy, 35 Stirling Highway, Mail Bag M360,<br />

Crawley, WA 6009, Australia; and Ian Dadour, University<br />

of Western Australia, Centre for Forensic Science, 35<br />

Stirling Highway, Mail Bag M420, Crawley, WA 6009,<br />

Australia<br />

Ann W. Bunch, PhD*, State University of New York at<br />

Oswego, 310 Mahar Hall, Department of Anthropology,<br />

Oswego, NY 13126<br />

Index 70<br />

378<br />

379<br />

380<br />

380<br />

381<br />

382<br />

382<br />

383<br />

384<br />

384


Assessing the Effect of Repeated Physical<br />

Disturbance Associated With Data<br />

Collection in Experimental Decomposition<br />

Studies<br />

Beetle Poop: Interpret With Caution in<br />

Southeast Texas<br />

Temperature Variability in the Burial<br />

Environment<br />

The Shallow Grave as an Option for<br />

Disposing of the Recently Deceased: Goals<br />

and Consequences<br />

How to Look a Gift Corpse in the Mouth:<br />

Season at Death Determined by Cementum<br />

Increment Analysis<br />

Anthropological Saw Mark Analysis on<br />

Bone: What is the Potential of<br />

Dismemberment Interpretation?<br />

Working With Family Members of<br />

Decedents: A Discussion of Techniques for<br />

Forensic Scientists<br />

Anthropologist Directed Triage Teams<br />

From Three Distinct Mass Fatality Events<br />

Involving Human Fragmentation<br />

Rachel E. Adlam, MSc*, and Tal L. Simmons, PhD,<br />

University of Central Lancashire, Department of Forensic<br />

and Investigative Science, Maudland Building, Preston,<br />

PR1 2HE, United Kingdom<br />

Dwayne A. Wolf, MD, PhD*, Harris County <strong>Medical</strong><br />

Examiner Office, 1885 Old Spanish Trail, Houston, TX<br />

77054; Harrell Gill-King, PhD, University of North Texas,<br />

PO Box 305220, Denton, TX 76203; Lee M. Goff, PhD,<br />

Chaminade University of Honolulu, 3140 Waialae Avenue,<br />

Honolulu, HI 96816<br />

Misty A. Weitzel, PhD*, Oregon State University, Waldo<br />

212, Corvallis, OR 97333<br />

Dennis C. Dirkmaat, PhD*, and Luis L. Cabo, MS,<br />

Mercyhurst College, Department Applied Forensic<br />

Sciences, Zurn 119A, 501 East 38th Street, Erie, PA 16546<br />

Vicki L. Wedel, MA*, Department of Anthropology,<br />

University of California, 1156 High Street, SS1 Faculty<br />

Services, Santa Cruz, CA 95064-1077; Shannon Bowman,<br />

BA, Texas A&M University, Department of Anthropology,<br />

College Station, TX 77483<br />

Steven A. Symes, PhD*, Department of Applied Forensic<br />

Sciences, Mercyhurst College, 501 East 38th Street, Erie,<br />

PA 16546; Anne M. Kroman, MA, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; Susan M.T. Myster, PhD,<br />

Hamline University, Department of Anthropology, St. Paul,<br />

MN 55104; and Christopher W. Rainwater, BA, and John J.<br />

Matia, MS, Mercyhurst College, Department of<br />

Forensic/<strong>Bio</strong>logical Anthropology, Erie, PA 16546<br />

Paul S. Sledzik, MS*, National Transportation Safety<br />

Board, Office of Transportation Disaster Assistance, 490<br />

L’Enfant Plaza East, SW, Washington, DC 20594; Lee<br />

Meadows Jantz, PhD*, Forensic Anthropology Center,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; Amy Z. Mundorff, MA*, Simon<br />

Fraser University, 611-1485 West 6th Avenue, Vancouver,<br />

BC V6H 4G1, Canada; Giovanna M. Vidoli, MSc*, Office<br />

of Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York,<br />

NY 10016; Thomas D. Holland, PhD*, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853; Darinka<br />

X. Mileusnic- Polchan, MD, PhD*, University of Tennessee<br />

<strong>Medical</strong> Center, Department of Pathology/Knox County<br />

Office of the <strong>Medical</strong> Examiner, 1924 Alcoa Highway,<br />

Knoxville, TN 37920; and Mercedes Doretti*, and Luis<br />

Fondebrider*, Equipo Argentino de Antropologia Forense,<br />

Av. Rivadavia 2443, Piso 2 Dep. 4, Buenos Aires, 1034,<br />

Argentina<br />

Amy Z. Mundorff, MA*, Simon Fraser University, 611-1485<br />

West 6th Avenue, Vancouver, BC V6H4G1, Canada<br />

Index 71<br />

385<br />

385<br />

386<br />

386<br />

387<br />

388<br />

388<br />

389


The Accuracy of Ante-Mortem Data and<br />

Presumptive Identification: Appropriate<br />

Procedures, Applications and Ethics<br />

Tal Simmons, PhD*, Department of Forensic and<br />

Investigative Science, University of Central Lancashire,<br />

Preston PR1 2HE, United Kingdom; and Mark Skinner,<br />

PhD, International Commission on Missing Persons,<br />

Alipašina 45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Anthropological Aspect of Mass Disasters Laurent Martrille, MD*, Service de Medecine Legale, Chu<br />

Lapeyronie, 191 Avenue du doyen Gaston Giraud,<br />

Montpellier, 34295, France; Cristina Cattaneo, MD, PhD,<br />

Istituto di Medicina Legale, Università degli Studi di<br />

Milano, via Mangiagali 37, Milano, 20133, Italy; Yves<br />

Schuliar, MD, IRCGN, 1 Boulevard Théophile Sueur, Rosny<br />

Sous Bois, 93111, France; and Eric Baccino, MD, Service<br />

de Medecine Legale, Chu Lapeyronie, 191 Avenue du doyen<br />

Traumatic Modifications of Human<br />

Remains of Victims of Mass Disasters and<br />

Long-Term Abuse<br />

Anthropology Responds to Hurricane<br />

Katrina<br />

To Measure or Not to Measure: An<br />

Analysis of Maximum Length of the Tibia<br />

Extensive Rat Modification of a Human<br />

Skeleton From Central Indiana<br />

Gaston Giraud, Montpellier, 34295, France<br />

Kenneth A.R. Kennedy, PhD*, Cornell University,<br />

Department of Ecology and Evolutionary <strong>Bio</strong>logy, 231<br />

Corson Hall, Ithaca, NY 14853<br />

Laura C. Fulginiti, PhD*, 15015 South 14th Place,<br />

Phoenix, AZ 85048; Michael W. Warren, PhD, and Joseph<br />

T. Hefner, MA, Department of Anthropology, University of<br />

Florida, PO Box 117305, Gainesville, FL 32611; Larry R.<br />

Bedore, MS, District 8 Office of the <strong>Medical</strong> Examiner,<br />

Gainesville, FL 32601; Jason H. Byrd, PhD, Department of<br />

Criminology, Law & Society, University of Florida, PO Box<br />

115950, Gainesville, FL 32611; Vincent Stefan, PhD,<br />

Department of Anthropology, Lehman College, CUNY,<br />

Bronx, NY 10468; and Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Department Applied Forensic<br />

Sciences, Zurn 119A, 501 E 38th Street, Erie, PA 16546<br />

Erin B. Waxenbaum, MA*, C.A. Pound Human<br />

Identification Laboratory, Department of Anthropology,<br />

University of Florida, PO Box 112545, Building 114,<br />

Gainesville, FL 32611; David R. Hunt, PhD, Department of<br />

Anthropology, National Museum of Natural History,<br />

Smithsonian Institution, Washington, DC 20560; and<br />

Anthony B. Falsetti, PhD, C.A. Pound Human Identification<br />

Lab, Department of Anthropology, University of Florida,<br />

PO Box 112545, Building 114, Gainesville, FL 32611<br />

Sarah A. Kiley, BA*, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Nicolette M. Parr,<br />

MS, University of Florida, PO Box 117305, Gainesville, FL<br />

32611; and Stephen P. Nawrocki, PhD, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227<br />

Mass Disasters and Non-Human Remains Deborah W. Gray, MA*, Riverside County Sheriff-Coroner,<br />

800 South Redlands Avenue, Perris, CA 92571; and Judy<br />

M. Suchey, PhD, Department of Coroner, Los Angeles<br />

County, 1104 North Mission Road, Los Angeles, CA 90033<br />

Index 72<br />

390<br />

391<br />

391<br />

392<br />

392<br />

393<br />

393


Antemortem vs. Perimortem Infant Rib<br />

Fracture: The Histological Evidence<br />

Evaluation of the Relationship Between<br />

Fifth Metatarsal Length and Foot Length/<br />

Shoe Size: A Possible Aid in Human<br />

Identification<br />

Nail or Bullet? A Comparison of Typical<br />

Cranial Gunshot Wounds to a Defect<br />

Resulting From a Nail Gun<br />

Observations of Decomposition in<br />

Southern Coastal North Carolina<br />

The Differential Diagnosis of Skullbase<br />

Osteomyelitis Secondary to Necrotizing<br />

Otitis Externa<br />

Sexual Dimorphism in the Vertebral<br />

Column<br />

Heat Intensity Versus Exposure Duration<br />

Part I: Macroscopic Influence on Burned<br />

Bone<br />

Odd Man Out: Separation and<br />

Identification of Terrorist Remains in<br />

Suicidal Bombings<br />

Evidence vs. Identification: The Role of<br />

Humanitarian Organizations in the<br />

Balkans 1992-2002<br />

Children’s Traumas Caused During the<br />

Civil War in Guatemala<br />

Murray K. Marks, PhD*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; Mariateresa A.<br />

Tersigni, PhD, Joint POW/MIA Accounting Command<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Darinka<br />

Mileusnic, MD, PhD, Knox County <strong>Medical</strong> Examiner’s<br />

Office, 1924 Alcoa Highway, U-71, Knoxville, TN 37920<br />

Robert F. Pastor, PhD*, University of Bradford, <strong>Bio</strong>logical<br />

Anthropology Research Centre, Department of<br />

Archaeological Sciences, Bradford, West Yorkshire BD7<br />

1DP, United Kingdom; and Angela J. Reynard, MSc*,<br />

Bureau of Forensic Science, Ltd, Temple Chambers, 3-7<br />

Temple Avenue, London, EC4Y OHP, United Kingdom<br />

Wendy E. Potter, BA, MS*, Department of Anthropology,<br />

MSC01-1040, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001; and Russell T. Alexander, MD, Office of<br />

the <strong>Medical</strong> Investigator, MSC11-6030, 1 University of New<br />

Mexico, Albuquerque, NM 87131-0001<br />

Midori Albert, PhD*, Department of Anthropology,<br />

University of North Carolina Wilmington, 601 South<br />

College Road, Wilmington, NC 28403- 5907; Jeffery K.<br />

Tomberlin, PhD, Department of Entomology, Texas A&M<br />

University, 1229 North U.S. Highway 281, Stephenville, TX<br />

76401; and Christina Johnson, BA, Department of<br />

Sociology and Criminal Justice, University of North<br />

Carolina Wilmington, 601 S College Road, Wilmington, NC<br />

28403-5978<br />

Stephanie L. Child, MA*, The University of Missouri-<br />

Columbia, 701 Swallow Hall, Columbia, Missouri 65211;<br />

and Dana E. Austin, PhD, Tarrant County <strong>Medical</strong><br />

Examiner’s Office, 200 Felix Gwozdz Place, Forth Worth,<br />

Texas 76104<br />

Amanda S. Allbright, BA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Joanne B. Delvin, PhD*, and Anne Kroman, MA*,<br />

University of Tennessee, Department of Anthropology, 252<br />

South Stadium Hall, Knoxville, TN 37996; Steve Symes,<br />

PhD, Mercyhurst College, Mercyhurst Archaeological<br />

Institute, Department of Applied Forensic Sciences , Erie,<br />

PA 16546; and Nicholas P. Herrmann, PhD, University of<br />

Tennessee, 252 South Stadium Hall, Department of<br />

Anthropology, Knoxville, TN 37996<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, 16465 Old Frederick Road, Building<br />

102, Rockville, MD 20850<br />

Abbie K. Cuff, MSc*, and Tal Simmons, PhD, University of<br />

Central Lancashire, Department of Forensic &<br />

Investigative Science, Preston, PR1 2HE, United Kingdom<br />

Shirley C. Chacon, BA*, Avenida Simeon Canas 10-64 zona<br />

2, 2 Avenida 8-28 zona 18 Residenciales Atlantida,<br />

Guatemala, 01002, Guatemala; and Leonel E. Paiz, BA,<br />

Avenida Simeon Canas 10-64 zona 2, Guatemala, 01002,<br />

Guatemala<br />

Index 73<br />

394<br />

394<br />

395<br />

396<br />

396<br />

397<br />

397<br />

398<br />

398<br />

399


Burial Patterns of Korean War Casualties<br />

as an Indicator of the Social Relationships<br />

Between the Dead and the Living<br />

Characterizing Primary and Secondary<br />

Mass Graves and Their Impact on<br />

Identification Methodology: The<br />

Experience in Bosnia and Herzegovina<br />

Forensic Anthropology and the Current<br />

Politics of the US- Mexico Border<br />

Identification of the Living From Video<br />

Tape and Photographs: The Dynamic<br />

Orientation Technique<br />

Trace Element Analysis of <strong>Medical</strong> School<br />

Cadaver Cremains<br />

Bone Fracture Mechanics: In Vitro Strain<br />

Gauge Analysis of the Ribs and Mandible<br />

During Failure<br />

Evaluation of Date of Death Through<br />

Analysis of Artificial Radiocarbon in<br />

Distinct Human Skeletal and Dental<br />

Tissues<br />

The Impact of High Speed-High Resolution<br />

Three Dimensional CT Scans on Forensic<br />

Anthropology<br />

Identification of the Living on Video<br />

Surveillance Systems: A Novel Approach<br />

Lumbosacral Transitional Vertebrae,<br />

Spondylolysis and Spondylolisthesis:<br />

Prevalence in a Modern Forensic Skeletal<br />

Population<br />

“The (Almost) Exhumation of Billy the<br />

Kid: Why We Aren’t Digging Him up (and<br />

Why You Shouldn’t Either)”<br />

William R. Belcher, PhD*, and Derek C. Benedix, PhD,<br />

JPAC-CIL, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853-5530<br />

Ana Boza Arlotti, PhD*, International Commission for<br />

Missing Persons, Alipasina 45a, Sarajevo 71000, Bosnia<br />

and Herzegovina<br />

Chelsey A. Juarez, MA*, University of California, Santa<br />

Cruz, 1156 High Street, Santa Cruz, CA 95064<br />

Todd W. Fenton, PhD*, and Norman J. Sauer, PhD,<br />

Michigan State University, Department of Anthropology,<br />

354 Baker Hall, East Lansing, MI 48824<br />

Tom E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner<br />

Office, 3202 Amnicola Highway, Chattanooga, TN 37406;<br />

Timothy Brooks, and Gretchen E. Potts, PhD, University of<br />

Tennessee at Chattanooga, Department of Chemistry, 615<br />

McCallie Avenue, Grote Hall, 4th Floor, Chattanooga, TN<br />

37403; and Stephanie Smullen, PhD, University of<br />

Tennessee at Chattanooga, Department of Computing<br />

Sciences, 615 McCallie Avenue, Department 2302,<br />

Chattanooga, TN 37403<br />

David J. Daegling, PhD*, Jennifer Hotzman, MA, Casey J.<br />

Self, MA, and Michael W. Warren, PhD, Department of<br />

Anthropology, University of Florida, PO Box 117305, 1112<br />

Turlington Hall, Gainesville, FL 32611<br />

Douglas H. Ubelaker, PhD*, Department of Anthropology,<br />

MRC 112, National Museum of Natural History,<br />

Smithsonian Institution, Washington, DC 20560; Bruce A.<br />

Buchholz, PhD, Center for Accelerator Mass Spectrometry,<br />

Mail Stop L-397, Lawrence Livermore National<br />

Laboratory, PO Box 808, Livermore, CA 94551; and John<br />

Stewart, PhD, Federal Bureau of Investigation, DNA<br />

Analysis Unit II, 2501 Investigation Parkway, Quantico, VA<br />

22135<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, 1413 Research Boulevard, Building<br />

102, Rockville, MD 20850<br />

Danilo De Angelis, DDS*, and Pasquale Poppa, BSc,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy; Remo Sala, PhDc, Politecnico di Milano<br />

Facolta di Ingegneria Industriale Dipartimento di<br />

Meccanica Sezione di Misure e Tecniche Sperimentali, via<br />

Magiagalli 37, Milano, 20133, Italy; and Cristina<br />

Cattaneo, PhD, MD, Istituto di Medicina Legale, via<br />

Mangiagalli 37, Milano, 20133, Italy<br />

Anthony B. Falsetti, PhD*, and Laurel E. Freas, MA,<br />

University of Florida, C.A. Pound Human Identification<br />

Laboratory, PO Box 112545, Southwest Radio Road,<br />

Gainesville, FL 32611<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator,<br />

MSC11 6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001<br />

Index 74<br />

400<br />

400<br />

401<br />

401<br />

402<br />

402<br />

403<br />

403<br />

404<br />

405<br />

405


Reducing Observer Error Through Choice<br />

of Histological Evaluation Technique<br />

Resolving Extremely Commingled Skeletal<br />

Remains From the Korean War Through<br />

Mitochondrial DNA (mtDNA) Testing<br />

Reducing Problems With Osteological and<br />

Dental Samples Submitted to Missing<br />

Person DNA Databases<br />

Is This Bone Human or What? In Pursuit<br />

of Human vs. Non Human Determinations<br />

in Small Osseous Fragments<br />

Applications of DNA Identification to<br />

Human Rights: Additional Informative<br />

Sites in the mtDNA Genome<br />

MtDNA From Degraded Human Skeletal<br />

Remains: Is Quality Affected by Storage<br />

Conditions?<br />

Christian M. Crowder, PhD*, Joint POW/MIA Accounting<br />

Command Central ID Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853-5530<br />

Jennifer O’Callaghan, MFS*, and Jacqueline Raskin-<br />

Burns, MS, Armed Forces DNA Identification Laboratory,<br />

1413 Research Boulevard, Building 101, Rockville, MD<br />

20850; Alexander F. Christensen, PhD, Central<br />

Identification Laboratory, Joint POW/MIA Accounting<br />

Command, Hickam AFB, HI 96853; Audrey Meehan, BGS,<br />

and Mark Leney, PhD, Central Identification Laboratory,<br />

Joint POW/MIA Accounting Command, 310 Worchester<br />

Avenue, Hickam Air Force Base, HI 96853; and Suzanne<br />

M. Barritt, MS, and Brion C. Smith, DDS, Armed Forces<br />

DNA Identification Laboratory, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850<br />

John E.B. Stewart, PhD*, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, DNA Analysis<br />

Unit I, Quantico, VA 22135; Patricia J. Aagaard, BS,<br />

Federal Bureau of Investigation Laboratory, 2501<br />

Investigation Parkway, DNA Analysis Unit II, Quantico, VA<br />

22135; Deborah Polanskey, BS, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

DNA Analysis Unit II, Quantico, VA 22135; Eric G.<br />

Pokorak, BA, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, DNA Analysis Unit I,<br />

Quantico, VA 22135; and Mark R. Ingraham, MS, and H.<br />

Gill-King, PhD, Laboratory of Forensic Anthropology and<br />

Human Identification, Department of <strong>Bio</strong>logical Sciences,<br />

University of North Texas, Denton, TX 76203<br />

Mark D. Leney, PhD*, Central Identification Laboratory,<br />

Joint POW/MIA Accounting Command, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

Karen P. Mooder, PhD*, and Mary-Claire King, PhD,<br />

Division of <strong>Medical</strong> Genetics, University of Washington,<br />

Box 357720, Seattle, WA 98195-7720<br />

Suni M. Edson, MS*, and Suzanne M. Barritt, MS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850; Mark D.<br />

Leney, PhD, Central Identification Lab, Joint POW/MIA<br />

Accounting Command, 310 Worchester Avenue, Hickam Air<br />

Force Base, HI 96853; and Brion C. Smith, DDS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850<br />

Index 75<br />

406<br />

407<br />

407<br />

408<br />

408<br />

409


Rodent Modification of Human Skeletal<br />

Remains: Brown Rat (Rattus norvegicus)<br />

vs. Gray Squirrel (Sciurus carolinensis)<br />

Postmortem Interval Field Research at<br />

Three High Elevation <strong>Bio</strong>geoclimatic Zones<br />

in Southwest Colorado<br />

Decomposition in the Santa Monica<br />

Mountains: A Seasonal Taphonomic<br />

Analysis of Buried and Exposed Remains<br />

Escaping Tennessee: Regions for<br />

Taphonomy Research Beyond Eastern<br />

Tennessee<br />

Insect Colonization of Child-Sized<br />

Remains: Behavioral Analysis of Pig<br />

Carcasses via 24 Hour, High Resolution<br />

Video Surveillance<br />

2005<br />

Walter E. Klippel, PhD*, and Jennifer A. Synstelien, MA,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Maria T. Allaire, MA*, 16 Pinedale Lane, Durango, CO<br />

81303<br />

Diana A. Dupuis, BA*, 2610 110th Avenue, NE, Bellevue,<br />

WA 98004<br />

Tracey A. Tichnell, BS*, Michigan State University,<br />

Department of Anthropology, East Lansing, MI 48824<br />

Abigail Gremillian, BA*, 17862 East General Forrest,<br />

Baton Rouge, LA 70817; and Robert J. Morton, MS, and<br />

Wayne D. Lord, PhD, FBI NCAVC, FBI Academy,<br />

Quantico, VA 22135<br />

Human Decomposition in the Detroit River Paula A. Perry, BA*, Bournemouth University, Talbot<br />

Campus, Poole, Dorset BH12 5BF, United Kingdom<br />

413<br />

Observed Taphonomic Changes and Drift Victoria L. Brewer, BSc*, Bournemouth University, School 414<br />

Trajectory of Bodies Recovered From the of Conservational Sciences, Talbot Campus, Poole, Doreset<br />

Tidal Thames, London England: A 15-<br />

Year Retrospective Study<br />

BH12 5BB, United Kingdom<br />

Analysis of Season at Death Using<br />

Vicki L. Wedel, MA*, and Joshua B. Peabody, MA*, 414<br />

Cementum Increment Analysis<br />

University of California, Santa Cruz, Department of<br />

Anthropology, 1156 High Street, Social Sciences 1 Faculty<br />

Services, Room 361, Santa Cruz, CA 95064<br />

The Meeting of Old and New: Luminol Thora S. Steffensen, MD*, University Hospital of Iceland, 415<br />

Application to a Suspected Ritualistic Department of Pathology, Rannsoknastofa H.I. vid<br />

Heathen Stone From Viking Times Baronsstig, Reykjavik, IS 108, Iceland; and Omar<br />

Palmason, Reykjavik Police Department, Hverfisgata 115,<br />

Reykjavik, IS 108, Iceland<br />

Lifestyles of the Unidentified: Challenges Heather C. Backo, MA*, and John Verano, PhD, Tulane 415<br />

in Positive Identification<br />

University Anthropology Department, 1021 Audubon Street,<br />

New Orleans, LA 70118<br />

Internal Cranial Fractures Alison Galloway, PhD, Department of Anthropology, Social<br />

Science One FS, University of California, Santa Cruz, CA<br />

95064; and Lauren Zephro, MA, Monterey County Sheriff’s<br />

Office, 1414 Natividad Road, Salinas, CA 95006<br />

416<br />

Perimortem Bone Fracture Distinguished Steven A. Symes, PhD*, Mercyhurst College, Department of 416<br />

From Postmortem Fire Trauma: A Case Forensic/<strong>Bio</strong>logical Anthropology, 501 East 38th Street,<br />

Study With Mixed Signals<br />

Erie, PA 16546; James J. Woytash, DDS, MD, Erie County<br />

<strong>Medical</strong> Examiner’s Office, 462 Grider Street, Buffalo, NY<br />

14214; Anne M. Kroman, MA, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; and Andrew C. Wilson, BS,<br />

Department of Forensic/<strong>Bio</strong>logical Anthropology,<br />

Mercyhurst College, Erie, PA 16509<br />

Mandible and Cranial Base Fractures in Anne M. Kroman, MA*, University of Tennessee, 250 South 417<br />

Adults: Experimental Testing<br />

Stadium Hall, Knoxville, TN 37996; Tyler Kress, PhD,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, 501 East 38th Street, Erie, PA<br />

Index 76<br />

410<br />

410<br />

411<br />

412<br />

413


Unusual Cranial Base Trauma in Victims<br />

16546<br />

Sabrina C. Ta’ala, MA*, and Gregory E. Berg, MA, Joint 418<br />

of the Khmer Rouge<br />

POW/MIA Accounting Command Central ID Lab<br />

(JPAC/CIL), 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Microscopic and Cross Section Analysis of Emily A. Craig, PhD*, and Cristin Rolf, MD, State <strong>Medical</strong> 418<br />

Occult Intraosseous Fracture (Bone Examiner’s Office, 100 Sower Boulevard, Suite 202,<br />

Bruise) of the Skull<br />

Frankfort, KY 40601; and Warren Mitchell, Kentucky State<br />

Police Laboratory, 100 Sower Boulevard, Suite 202,<br />

Frankfort, KY 40601<br />

Disappearance, Torture, and Murder of Shirley C. Chacon, BA*, Leonel E. Paiz, BA, and Renaldo 419<br />

Nine Individuals in a Community of Acevedo, BA, Fundacion de Anthropology Forense de<br />

Guatemala<br />

Guatemala, Avenida Simeon Cañas 10-64 Zona 2,<br />

Guatemala, 01002, Guatemala<br />

Morphoscopic Traits and the Statistical Stephen D. Ousley, MA, PhD*, Smithsonian Institution, 419<br />

Determination of Ancestry<br />

Department of Anthropology, PO Box 7012, NMNH MRC<br />

138, Washington, DC 20013- 7012; and Joseph T. Hefner,<br />

MA, Department of Anthropology, CA Pound Human<br />

Identification Laboratory, University of Florida,<br />

Gainesville, FL 32605<br />

Forensic Identifications and the<br />

Ann H. Ross, PhD*, North Carolina State University, 420<br />

Complexity of Determining <strong>Bio</strong>logical Department of Sociology and Anthropology, Campus Box<br />

Affinities of “Hispanic” Crania<br />

8107, Raleigh, NC 27695- 8107; Dennis E. Slice, PhD,<br />

Wake Forest University, School of Medicine, Department of<br />

<strong>Bio</strong>medical Engineering, Division of Radiologic Sciences,<br />

Winston-Salem, NC 27157; and José V. Pachar, MD,<br />

Morgue Judicial, Instituto de Medicina Legal, Panama-<br />

Ancon, Panama<br />

<strong>Bio</strong>logical Variation Among Hispanic Martha K. Spradley, MA*, and Richard L. Jantz, PhD, 421<br />

(Spanish-Speaking) Peoples of the<br />

University of Tennessee, Department of Anthropology, 250<br />

Americas<br />

South Stadium Hall, Knoxville, TN 37996; David M.<br />

Glassmann, PhD, University of Southern Indiana, School of<br />

Liberal Arts, 8600 University Boulevard, Evansville, IN<br />

47712-3596; and Alan G. Robinson, MSc, Fundacion de<br />

Antropologia Forense de Guatemala, Avenida Simon Canas<br />

10-64 Zona 2, Ciudad de Guatemala, Guatemala City,<br />

01002, Guatemala<br />

Classification and Evaluation of Unusual Donna Freid, MA*, University of Tennessee, Knoxville, 250 421<br />

Individuals Using FORDISC<br />

South Stadium Hall, Knoxville, TN 37996; Richard L. Jantz,<br />

PhD, University of Tennessee, Knoxville, 250 South<br />

Stadium Hall, Knoxville, TN 3799<br />

Ur-FORDISC, or Early Statistical Methods Eugene Giles, PhD*, Department of Anthropology, 422<br />

in Forensic Anthropology<br />

University of Illinois, 607 South Mathews Avenue, Urbana,<br />

IL 61801<br />

The Next FORDISC: FORDISC 3 Stephen D. Ousley, PhD*, Smithsonian Institution, NMNH,<br />

MRC 138, Washington, DC 20013; and Richard L. Jantz,<br />

MA, PhD, University of Tennessee, Department of<br />

Anthropology, 252 South Stadium Hall, Knoxville, TN<br />

37996-0720<br />

422<br />

Anatomy of a Cauldron: Sociocultural Kerriann Marden, MA, ABD*, and John W. Verano, PhD, 423<br />

Contributions to Understanding a Forensic Tulane University, Department of Anthropology, 1021<br />

Case<br />

Audubon Street, New Orleans, LA 70118<br />

Not for the Passive: The Active Application Hugh Tuller, MA*, Joint POW/MIA Accounting Command, 424<br />

of Electronic Resistivity in the Excavation Central Identification Laboratory, 310 Worchester Avenue,<br />

of a Mass Grave<br />

Hickam AFB, HI 96853-5530; and Jon Sterenberg, MS,<br />

Index 77


When Experts Disagree: There May be a<br />

Rodent Involved – Part I: The Request for<br />

a New Trial<br />

An Assessment of Tissue Depth<br />

Measurement Tables Used for Facial<br />

Reconstruction/Reproduction<br />

Blasting Caps: An Alternate Source of<br />

High Velocity Trauma in Human Skeletal<br />

Remains<br />

Modern Day Cranial Trepanation: The<br />

Ventriculosotomy<br />

SEM Analysis of Mummified Skin: A<br />

Preliminary Study of Obsidian and Chert<br />

Induced Trauma<br />

Juvenile Idiopathic Arthritis,<br />

Pharmacological Treatments, and the<br />

Potential for Individuation in Forensic<br />

Anthropology<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Julie M. Saul, BA*, and Frank P. Saul, PhD, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

43614-2674; Steven A. Symes, PhD, Departments of<br />

Anthropology and Applied Forensic Science, Mercyhurst<br />

College, 501 East 38th Street, Erie, PA 16546-0001; and<br />

Carl J. Schmidt, MD, Wayne County <strong>Medical</strong> Examiner’s<br />

Office, 1300 East Warren Avenue, Detroit, MI 48207<br />

Keri Reeves, MS*, and Jill Haslasm, MS, University of New<br />

Haven, 300 Orange Avenue, West Haven, CT 06516;<br />

Shannon Butler-Williams, BS, University of California,<br />

Davis, Department of Anthropology, 1 Shields Avenue,<br />

Davis, CA 95616; and Brandi J. Schmitt, BS, MS*,<br />

University of California, Davis, School of Medicine,<br />

Anatomical Services Division, Davis, CA 95616<br />

Maria T. Allaire, MA*, 16 Pinedale Lane, Durango, CO<br />

81303; and Mary H. Manhein, MA, and Ginesse A. Listi,<br />

MA, Louisiana State University, Department of Geography<br />

and Anthropology, 227 Howe- Russell Building, Baton<br />

Rouge, LA 70803<br />

Bruce E. Anderson, PhD*, University of Arizona,<br />

Department of Anthropology, Tucson, AZ 85721; and<br />

Thomas P. Gilson, MD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

Alaina K. Goff, BA*, and Debra Komar, PhD, Department<br />

of Anthropology, MSC01-1040, 1 University of New<br />

Mexico, Albuquerque, NM 87131<br />

Meghan M. Cotter, MSc*, Burial Sites Preservation<br />

Program, Wisconsin Historical Society, 816 State Street,<br />

Madison, WI 53706<br />

The Lady in the Box Frank P. Saul, PhD*, and Julie M. Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

43614-2674; and Steven A. Symes, PhD, Departments of<br />

Anthropology and Applied Forensic Science, Mercyhurst<br />

Forensic Anthropologist and Forensic<br />

Pathologist: Why Work Together? Some<br />

Illustrative Cases of Homicide<br />

Reducing Intra- and Inter-Observer Error<br />

Through Histomorphometric Variable<br />

Selection<br />

Dental Enamel Thickness as a Method of<br />

Subadult Sex Determination<br />

College, 501 East 38th Street, Erie, PA 16546-0001<br />

Joao Pinheiro, MD, MS*, Instituto Nacional de Medicina<br />

Legal, Largo da Sé Nova, Coimbra, 3000-213, Portugal;<br />

Eugénia Cunha, PhD, Departamento De Antropologia,<br />

Universidade de Coimbra, Coimbra, 3000-056, Portugal;<br />

Cristina Cattaneo, PhD, Università degli Studi di Milano,<br />

Laboratorio di Antropologia e Odontologia, Università<br />

degli Studi di Milano, Milano, 3330, Italy; and Francisco<br />

Corte Real, PhD, Instituto Nacional de Medicina Legal,<br />

Largo da Sé Nova, Coimbra, 3000-213, Portugal<br />

Christian M. Crowder, MA, and Zoe H. Morris, BSc*,<br />

University of Toronto, Department of Anthropology, 100 St.<br />

George Street, Toronto, ON M5S3G3, Canada<br />

Leilani E. Beltran, MFS, Forensic Sciences Program,<br />

National University, 11355 North Torrey Pines Road, La<br />

Jolla, CA 92037; and A. Midori Albert, PhD*,<br />

Anthropology Program, University of North Carolina at<br />

Wilmington, 601 South College Road, Wilmington, NC<br />

28403<br />

Index 78<br />

424<br />

425<br />

426<br />

426<br />

427<br />

427<br />

428<br />

429<br />

429<br />

430


Sexual Dimorphism in Vertebral<br />

Dimensions at the T12/L1 Junction<br />

Race as a Variable in Dental Health of<br />

Korean War Military Personnel<br />

Stable Strontium and Geolocation: The<br />

Pathway to Identification of Unidentified<br />

Mexican Aliens<br />

Stature Estimation of Hispanics: The Most<br />

Appropriate Stature Regression Equations<br />

Anatomical Stature Estimation: Why Not<br />

Fully Accurate?<br />

The Effects of Skeletal Preparation<br />

Techniques on DNA From Human and<br />

Nonhuman Bone<br />

An Assessment of DNA Degeneration Due<br />

to Air-Drying Preservation for the<br />

Remains of the World Trade Center<br />

Elemental Analysis of Human Cremains<br />

Using Inductively-Coupled Plasma Optical<br />

Emission Spectroscopy (ICP-OES) to<br />

Distinguish Between Legitimate and<br />

Contaminated Cremains<br />

Elemental Characterization of Skeletal<br />

Remains Using Laser-Induced Breakdown<br />

Spectroscopy (LIBS)<br />

An Experimental Test of the Accuracy of<br />

Human Forensic Identification Techniques<br />

for Analysis of Burn- Damaged Bone and<br />

Tissue<br />

Robert F. Pastor, PhD*, University of Bradford,<br />

Department of Archaeological Sciences, Bradford, West<br />

Yorkshire BD7 1DP, United Kingdom<br />

Joan E. Baker, PhD*, and Helen D. Wols, PhD, Joint<br />

POW/MIA Accounting Command Central Identification<br />

Laboratory (JPAC CIL), 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853-5530<br />

Chelsey A. Juarez, BA*, UC Santa Cruz, Department of<br />

Anthropology, 1156 High Street, Santa Cruz, CA 95064<br />

Vincent H. Stefan, PhD*, Lehman College - CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard,<br />

West, Bronx, NY 10468<br />

Donna M. McCarthy, MA*, and Richard L. Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Index 79<br />

430<br />

431<br />

432<br />

432<br />

433<br />

Stephanie L. Rennick, BS*, Michigan State University, 434<br />

Forensic Science Program, School of Criminal Justice, 560<br />

Baker Hall, East Lansing, MI 48824; Todd W. Fenton,<br />

PhD, Michigan State University, Department of<br />

Anthropology and Forensic Science Program, Baker Hall,<br />

East Lansing, MI 48824; David R. Foran, PhD, Michigan<br />

State University, Forensic Science Program, School of<br />

Criminal Justice and Department of Zoology, 560 Baker<br />

Hall, East Lansing, MI 48824<br />

Benjamin J. Figura, MA*, PO Box 538, Empire, MI 49630 434<br />

Thomas E. Bodkin, MA*, Hamilton County <strong>Medical</strong><br />

Examiner Office, 3202 Amnicola Highway, Chattanooga,<br />

TN 37406; and Gretchen E. Potts, PhD, Kira Shurtz, and<br />

Timothy Brooks, University of Tennessee at Chattanooga,<br />

Department of Chemistry, 404 Grote Hall, Chattanooga,<br />

TN 37403<br />

Arpad A. Vass, PhD*, and Madhavi Martin, PhD, Oak<br />

Ridge National Laboratory, 1 Bethel Valley Road, 1505,<br />

MS 6038, Oak Ridge, TN 37831- 6038; Jennifer Synstelien,<br />

MA, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; and Kimberly Collins, BS,<br />

Maryville College, College Avenue, Maryville, TN 37804<br />

Michelle Kaye, MA*, University of Alaska, Fairbanks,<br />

Department of Anthropology, 310 Eielson Building, PO Box<br />

757720, Fairbanks, AK 99775-7720; Elayne J. Pope, MA,<br />

University of Arkansas, Department of Anthropology, 330<br />

Old Main, Fayetteville, AR 72701; Frank Cipriano, PhD,<br />

San Francisco State University, Conservation Genetics<br />

Laboratory, Hensill Hall 745, 1600 Holloway Avenue, San<br />

Francisco, CA 94132; and O’Brian C. Smith, MD, UT<br />

<strong>Medical</strong> Group, Inc, Regional Forensic Center, 1060<br />

Madison, Memphis, TN 38104<br />

435<br />

435<br />

436


Semi-Automated Ultrasound Facial Soft<br />

Tissue Depth Registration: Method and<br />

Preliminary Results<br />

Quantification of Commingled Human<br />

Skeletal Remains: Determining the Most<br />

Likely Number of Individuals (MLNI)<br />

Osteometric Sorting of Commingled<br />

Human Remains<br />

Resolving Commingling Issues In Mass<br />

Fatality Incident Investigations<br />

Methods and Techniques for Sorting<br />

Commingled Remains: Anthropological<br />

and Physical Attributes<br />

The Importance of Using Traditional<br />

Anthropological Methods in a DNA-Led<br />

Identification System<br />

The Importance of Body Deposition<br />

Recording in Event Reconstruction and the<br />

Re-Association and Identification of<br />

Commingled Remains<br />

Commingled Skeletonized Remains in<br />

Forensic Cases: Considerations for<br />

Methodological Treatment<br />

Exhumation and Identification of a<br />

Particular Individual in a Mass Grave<br />

Sven De Greef, DDS*, Katholieke Universiteit Leuven<br />

Faculty of Medicine, School of Dentistry, Oral Pathology<br />

and Maxillofacial Surgery, Forensic Odontology,<br />

Kapucijnenvoer 7, Leuven, B-3000, Belgium; Peter Claes,<br />

MEng, Wouter Mollemans, MEng, Dirk Vandermeulen,<br />

PhD, and Paul Suetens, PhD, Katholieke Universiteit<br />

Leuven, ESAT, <strong>Medical</strong> Image Computing, Herestraat 49,<br />

Leuven, B-3000, Belgium; and Guy Willems, DDS, PhD,<br />

Katholieke Universiteit Leuven, Faculty of Medicine,<br />

School of Dentistry, Oral Pathology and Maxillofacial<br />

Surgery, Forensic Odontology, Kapucijnenvorer 7, Leuven,<br />

B-3000, Belgium<br />

Bradley J. Adams, PhD*, Office of Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016; and<br />

Lyle W. Konigsberg, PhD, University of Tennessee,<br />

Department of Anthropology, 252 South Stadium Hall,<br />

Knoxville, TN 37996<br />

John E. Byrd, PhD*, JPAC Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853; and Bradley J. Adams, PhD, Office of Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

Paul S. Sledzik, MS*, National Transportation Safety<br />

Board, 490 L’Enfant Plaza, SW, Washington, DC 20594;<br />

and Elias J. Kontanis, BS, Oak Ridge Institute for Science<br />

and Education, Joint POW MIA Accounting Command-<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, 1413 Research Boulevard, Building<br />

102, Rockville, MD 21771<br />

Laura N. Yazedjian, MSc*, Rifat Kesetovic, MD, Ana Boza-<br />

Arlotti, PhD, and Zeljko Karan, MD, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia-Herzegovina<br />

Hugh H. Tuller, MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Ute<br />

Hofmeister, MA, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and<br />

Herzegovina; and Sharna Daley, MSc, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Sofia Egaña*, Silvana Turner, Patricia Bernardi, Mercedes<br />

Doretti, and Miguel Nieva, Argentine Forensic<br />

Anthropology Team (EAAF), Avenue Rivadavia 2443, 2nd<br />

Floor, Office 3-4, Buenos Aires, C1034ACD, Argentina<br />

Eugénia Cunha, PhD*, Maria Cristina Mendonça, PhD,<br />

and Duarte Nuno Vieira, PhD, Universidade de Coimbra,<br />

Departamento Antropologia, Instituto Nacional de<br />

Medicina Legal, Largo da Sé-Nova, Coimbra, 3000-056,<br />

Portugal<br />

Index 80<br />

437<br />

437<br />

438<br />

439<br />

440<br />

440<br />

441<br />

441<br />

442


Separating Commingled Remains Using<br />

Ancient DNA Analysis<br />

Marrying of Anthropology and DNA:<br />

Essential for Solving Complex<br />

Commingling Problems in Cases of<br />

Extreme Fragment<br />

Mass Graves, Human Rights and<br />

Commingled Remains: Considering the<br />

Benefits of Forensic Archaeology<br />

Advances in the Assessment of<br />

Commingling Within Samples of Human<br />

Remains<br />

Closed Case Files: Sequelae of a Case of<br />

Complex Postmortem Mutilation<br />

A Tale of Two Bodies: Separating<br />

Commingled Skeletal Remains With<br />

Similar <strong>Bio</strong>logical Profiles<br />

Performance of FORDISC 2.0 Using<br />

Inaccurate Measurements<br />

Testing Determination of Adult Age at<br />

Death Using Four Criteria of the<br />

Acetabulum<br />

A Potential New Morphological Indicator<br />

of <strong>Bio</strong>logical Affinity in Human Skeletal<br />

Remains<br />

An Evaluation of Racial Differences in the<br />

Human Mandible Using Discriminant<br />

Function Analysis<br />

Evaluation of Regression Equations to<br />

Estimate Age at Death Using Cranial<br />

Suture Closure<br />

Test of an Alternative Method for<br />

Determining Sex in the Hip: Applications<br />

for Modern Americans<br />

Franklin E. Damann, MA*, and Mark D. Leney, PhD,<br />

JPAC Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530; and Suni M. Edson,<br />

MS, Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Building 101, Rockville, MD 20850<br />

Amy Z. Mundorff, MA*, Robert Shaler, PhD, Erik T.<br />

Bieschke, MS, and Elaine Mar, MS, Office of Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016<br />

Dennis C. Dirkmaat, PhD*, Luis M. Cabo, MS, and James<br />

M. Adovasio, PhD, Mercyhurst College, 501 East 38th<br />

Street, Erie, PA 16546; Vicente C. Rozas, PhD, Centro de<br />

Investigaciones Forestales y Ambientales de Lourizán,<br />

Departamento de Ecología, Aptdo. 127, Pontevedra,<br />

Galicia 36080, Spain<br />

Douglas H. Ubelaker, PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Washington, DC 20560<br />

Kerriann Marden, MA*, and John W. Verano, PhD, Tulane<br />

University, Department of Anthropology, 1021 Audubon<br />

Street, New Orleans, LA 70118<br />

Laura C. Fulginiti, PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Kristen M. Hartnett,<br />

MA, Arizona State University, Department of Anthropology,<br />

PO Box 872402, Tempe, AZ 85287; and Philip E. Keen,<br />

MD, Maricopa County Office of the <strong>Medical</strong> Examiner, 701<br />

West Jefferson Street, Phoenix, AZ 85007<br />

Adam Kolatorowicz, BS*, Carlos J. Zambrano, BA, and<br />

Stephen P. Nawrocki, PhD, Archeology and <strong>Forensics</strong><br />

Laboratory, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Angela Hampton, BS*, University of New Mexico,<br />

Department of Anthropology, MSC01-1040, 1 University of<br />

New Mexico, Albuquerque, NM 87131<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator,<br />

MSC11 6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131<br />

Marie Danforth, PhD*, University of Southern Mississippi,<br />

Department of Anthropology and Sociology, 118 College<br />

Drive, #5074, Hattiesburg, MS 39406<br />

Carlos J. Zambrano, BA*, Archaeology and <strong>Forensics</strong><br />

Laboratory, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Ginesse A. Listi, MA*, Louisiana State University,<br />

Department of Geography and Anthropology, Baton Rouge,<br />

LA 70803; H. Beth Bassett, MA, Louisiana State University,<br />

Department of Geography and Anthropology, Baton Rouge,<br />

LA 70803<br />

Sexing the Zygomatic Bone Rebecca J. Wilson, BS*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Index 81<br />

442<br />

443<br />

444<br />

445<br />

445<br />

446<br />

446<br />

447<br />

447<br />

448<br />

448<br />

449<br />

450


The Morphometric Study of the Hyoid<br />

Bone for Sex Determination of Koreans<br />

Evaluation of the Sternal Rib End Age<br />

Estimation Technique Using a Modern<br />

<strong>Medical</strong> Examiner Sample<br />

A Test of Four Macroscopic Methods for<br />

Age Estimation of Human Skeletal<br />

Remains (Lamendin, Lovejoy Auricular<br />

Surface, Iscan, Suchey-Brooks)<br />

The Application of the Lamendin and<br />

Prince Dental Aging Methods to a Bosnian<br />

Population: Formulas for Each Tooth<br />

Group Challenging One Formula for All<br />

Teeth<br />

Age Determination From Adult Human<br />

Teeth: Interest of Gustafson’s Criteria<br />

Serial Bone Histology: Interand Intra-Bone<br />

Age Estimation<br />

Measure Twice, Cut Once? Measurement<br />

Error Levels in Histomorphometry<br />

The Effects of Cerebral Palsy on Age<br />

Indicators in the Human Skeleton<br />

The Impact of Age Related Changes in<br />

Vertebral Column on Age Determination<br />

for Identification Purposes<br />

Deog-Im Kim*, U-Young Lee, MD, and Je-Hun Lee,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, 505, Banpo-dong, Socho-gu, Seoul, 137701,<br />

South Korea; Dae-Kyoon Park, MD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University,<br />

646 Eupnae-ri, Shinchang-myun, Cheonan, 330090, South<br />

Korea; and Seung-Ho Han, MD, PhD, Department of<br />

Anatomy, Catholic Institute for Applied Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505, Banpo-<br />

dong, Socho-gu, Seoul, 137701, South Korea<br />

Jennifer C. Love, PhD*, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN 38104; Gina Hart, MA,<br />

Regional <strong>Medical</strong> Examiner’s Office, 325 Norfolk Street,<br />

Newark, NJ 07103; and Brian Spatola, MA, 125 5th Street,<br />

NE, Washington, DC 20002<br />

Laurent Martille, MD*, Service de Medecine Legale Chu de<br />

Montpellier, CHU Lapeyronie, 191 Avenue du Doyen<br />

Gaston Giraud, Montpellier, 34295, France; Douglas H.<br />

Ubelaker, PhD, Department of Anthropology, NMNH,<br />

Smithsonian Institution, Washington, DC 20560-0112; and<br />

Fabienne Seguret, MD, and Eric Baccino, MD, Service de<br />

Médecine Légale, CHU Lapeyronie, 191 Avenue du Doyen<br />

Gaston Giraud, Montpellier, 34295, France<br />

Nermin Sarajlic, MD*, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo, 71000, Bosnia<br />

and Herzegovina; Zdenko Cihlarz, PhD, Departmen of<br />

Forensic Medicine, UKC, Tuzla, 75000, Bosnia and<br />

Herzegovina; and Eva E. Klonowski, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and<br />

Herzegovina<br />

Clotilde G. Rougé-Maillart, MD*, Nathalie C. Jousset, MD,<br />

Arnaud P. Gaudin, MD, and Michel P. Penneau, MD, PhD,<br />

Service de Médecine Légale, Centre Hospitalier<br />

Universitaire - 4 rue Larrey, Angers, 49100 Cedex 01,<br />

France<br />

Mariateresa A. Tersigni, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Christian M. Crowder, MA*, University of Toronto,<br />

Department of Anthropology, 100 St. George Street,<br />

Toronto, Ontario M5S 3G3, Canada<br />

Mary S. Megyesi, MS*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824; and Norman Sauer, PhD, Department of<br />

Anthropology, 354 Baker Hall, Michigan State University,<br />

East Lansing, MI 48895<br />

Eva E. Klonowski, PhD*, Nermin Sarajlic, MD, Piotr<br />

Drukier, MS, and Alexandra M. Klonowski, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Index 82<br />

450<br />

451<br />

451<br />

452<br />

452<br />

453<br />

453<br />

454<br />

454


Finding Clues on the Bony Surface: The<br />

Use of Markers of Occupational Stresses as<br />

Aids to Identification and Age<br />

Determination in Skeletonized Remains<br />

Cross-Sectional Diaphyseal Geometry,<br />

Degenerative Joint Disease, and Joint<br />

Surface Area in Human Limb Bones: A<br />

Comparison of American Whites & Blacks<br />

Skeletal Markers of Obesity in the Lower<br />

Leg<br />

Serial Murder With Dismemberment of<br />

Victims in an Attempt to Hinder<br />

Identification: A Case Resolved Through<br />

Multidisciplinary Collaboration<br />

Fifty Years of Questions: The Re-<br />

Evaluation of a Korean War Soldier<br />

Buried in the United States<br />

Diagnosis of Anencephaly, a Common<br />

Lethal Neural Tube Defect, From<br />

Taphonomically Altered Fetal or Neonatal<br />

Skeletal Remains<br />

Utilizing Taphonomy and Context to<br />

Distinguish Perimortem from Postmortem<br />

Trauma in Fire Deaths<br />

Burned Beyond Recognition: Attempts to<br />

Destroy Evidence of Death<br />

Dismembered Bodies - Who, How, and<br />

When<br />

Differential Human Decomposition in the<br />

Early Stages: An Experimental Study<br />

Comparing Sun and Shade<br />

Raccoon (Protocyon lotor) Foraging as a<br />

Taphonomic Agent of Soft Tissue<br />

Modification and Scene Alteration<br />

J. Marla Toyne, MA*, John W. Verano, PhD, and Laurel S.<br />

Hamilton, MA, Tulane University, 1021 Audubon Street,<br />

Department of Anthropology, New Orleans, LA 70118<br />

Heather A. Walsh-Haney, MA*, CA Pound Human<br />

Identification Laboratory, University of Florida, PO Box<br />

112545, Gainesville, FL 32611<br />

Megan K. Moore, MS*, Department of Anthropology, 250<br />

South Stadium Hall, University of Tennessee, Knoxville, TN<br />

37996-0720<br />

John W. Verano, PhD*, Department of Anthropology,<br />

Tulane University, 1021 Audubon Street, New Orleans, LA<br />

70118<br />

Mary H. Manhein, MA*, and Ginesse A. Listi, MA,<br />

Louisiana State University, Department of Geography and<br />

Anthropology, Baton Rouge, LA 70803<br />

J. Christopher Dudar, PhD*, and Steve D. Ousley, PhD,<br />

Department of Anthropology, National Museum of Natural<br />

History, Smithsonian Institution, PO Box 37012, MRC 138,<br />

Washington, DC 20013-7012<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; Alan G. Robinson, MSc,<br />

Guatemalan Forensic Anthropology Foundation,<br />

Guatemala City, Guatemala City, 01002, Central America;<br />

Kate Spradley, MA, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996; and O’Brian C. Smith,<br />

MD, Regional Forensic Center, 1060 Madison, Memphis,<br />

TN 38104<br />

Tzipi Kahana, PhD*, Israel National Police, 67 Ben Zvi<br />

Street, PO Box 8495, Tel Aviv, 61085, Israel; Inmaculada<br />

Aleman, PhD, Department of Anthropology, Faculty of<br />

Medicine, University of Granada, Granada, 18012, Spain;<br />

Miguel C. Botella, MD, PhD, Deptartment of Anthropology,<br />

Faculty of Medicine, University of Granada, Granada,<br />

18012, Spain; and Jehuda Hiss, MD, National Centre of<br />

Forensic Medicine, 67 Ben Zvi, PO Box 8495, Tel Aviv,<br />

61085, Israel<br />

Carrie F. Srnka, MA*, 6352 Iradell Road, Trumansburg,<br />

NY 14886<br />

Jennifer A. Synstelien, MA*, and Walter E. Klippel, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996; and Michelle D.<br />

Hamilton, PhD, Eastern Band of Cherokee Indians, Tribal<br />

Historic Preservation Office, PO Box 455, Cherokee, NC<br />

28719<br />

Index 83<br />

455<br />

456<br />

456<br />

457<br />

457<br />

458<br />

459<br />

459<br />

460<br />

461<br />

461


Interdisciplinary Forensic Science<br />

Workshops: A Venue for Data Collection<br />

Society of Forensic Anthropologists<br />

(SOFA): An Introduction<br />

The Forensic Anthropology Society of<br />

Europe: An Introduction<br />

The Louisiana Identification Data Analysis<br />

Project (IDA): A Comprehensive Analysis<br />

of Missing and Unidentified Cases<br />

FAD - A Database Application for Forensic<br />

Anthropology in Human Rights<br />

New Tools for the Processing of Human<br />

Remains From Mass Graves: Spatial<br />

Analysis and Skeletal Inventory Computer<br />

Programs Developed for an Inter-<br />

Disciplinary Approach to the Reassociation<br />

of Commingled, Disarticulated<br />

and Incomplete Human Remains<br />

Jeffery K. Tomberlin, PhD*, Texas A&M University, 1229<br />

North U.S. Highway 281, Stephenville, TX 76401; A.<br />

Midori Albert, PhD*, University of North Carolina at<br />

Wilmington, 601 South College Road, Wilmington, NC<br />

28403; Jason H. Byrd, PhD, Office of the <strong>Medical</strong><br />

Examiner, 1360 Indian Lake Road, Daytona Beach, FL<br />

32164;and David W. Hall, PhD, David Hall Consultant,<br />

Inc., 3666 Northwest 13th Place, Gainesville, FL 32605<br />

Craig H. Lahren, MA*, North Dakota Department of<br />

Health, Office of the <strong>Medical</strong> Examiner, PO Box 937,<br />

Bismarck, ND 58502; and Thomas E. Bodkin, MA,<br />

Hamilton County <strong>Medical</strong> Examiner’s Office, 3202<br />

Amnicola Highway, Chattanooga, TN 37406<br />

Eric Baccino, MD*, Service de Medicine Legale, Hopital<br />

Lapeyronie Chu de Montpellier, Montpellier, 34295 Cedex<br />

5, France; Christina Cattaneo, Instituto di Medicine<br />

Legale, Via Mangiagalli, Milano, 20133, Itlay; Yves<br />

Schuliar, MD, Institut de Recherche Criminelle de la<br />

Gendarmerie Nationale, 1 Boulevard Theophile Sueur,<br />

Roisny-Sous-Bois, 93110, France; Eugenia Cunha, PhD,<br />

Departamento da Anthropologia, Universitate de Coimbra,<br />

Coimbra, 3000-056, Portugal; Randolph Penning, Institut<br />

Fur Rechtsmedizin, Frauenlobstrasse 8a, Munchen, 80337,<br />

Germany; and Jose Luis Prieto, Instituto de Medicina<br />

Forense, Severo Ochoa s/n, Madrid, 28040, Spain<br />

H. Beth Bassett, MA*, and Mary H. Manhein, MA, Forensic<br />

Anthropology and Computer Enhancement Services<br />

Laboratory, Department of Geography and Anthropology,<br />

Louisiana State University, Baton Rouge, LA 70803<br />

Ute Hofmeister, MA*, Porzellangasse 48/12a, Alipasina<br />

45a, Vienna, 1090, Austria; Anahi Ginarte, Lic., EAAF,<br />

Rivadavia 2443, dpto 3 y 4, Buenos Aires, C1034ACD,<br />

Argentina<br />

Hugh H. Tuller, MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Cecily<br />

Cropper, BSc*, Ute Hofmeister, MA*, Laura Yazedjian,<br />

MSc, Jon Sterenberg, MSc, and Jon M. Davoren, MA*,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Index 84<br />

462<br />

462<br />

463<br />

463<br />

464<br />

464


Skeletons in the <strong>Medical</strong> Examiner’s<br />

Closet: Realities and Merits of<br />

Investigating Human Skeletal Remains<br />

Undergoing Long Term Curation in the<br />

<strong>Medical</strong> Examiner’s Office<br />

Nonmetric Characteristics of the Skull for<br />

Determining Race in Blacks and Whites<br />

3-Dimensional Morphometric Analysis of<br />

the Zygomatic as Used in Ancestral<br />

Identification<br />

Sex Determination of Infants and Juveniles<br />

From the Clavicle<br />

2004<br />

Donna C. Boyd, PhD*, Radford University, Box 6948,<br />

Department of Sociology and Anthropology, Radford, VA<br />

24142; William Massello III, MD, Office of the Chief<br />

<strong>Medical</strong> Examiner, 6600 Northside High School Road,<br />

Roanoke, VA 24019<br />

Nicole D. Truesdell, BA*, 1933 South Brightside View<br />

Drive, Apartment E, Baton Rouge, LA 70820<br />

Summer J. Decker, BA*, Jennifer L. Thompson, PhD, and<br />

Bernardo T. Arriaza, PhD, Department of Anthropology &<br />

Ethnic Studies, University of Nevada at Las Vegas, 4505<br />

Maryland Parkway, Box 455003, Las Vegas, NV 89154-<br />

5003<br />

Natalie R. Langley, MA* and Richard Jantz, PhD,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, 250 South Stadium Hall, Knoxville, TN 37996<br />

Sexual Dimorphism in the Distal Humerus Suzanne S. Ii, BA*, 4198 East Manning Avenue, Fowler, CA<br />

93625- 9631; David R. Hunt, PhD, National Museum of<br />

Natural History, Department of Anthropology, Washington,<br />

DC 21201<br />

Sex vs. Gender: Does it Really Matter? Frank P. Saul, PhD* and Julie M. Saul, BA, Consultants,<br />

Lucas County Coroner’s Office and Wayne County <strong>Medical</strong><br />

Examiner’s Office, 3518 East Lincolnshire Boulevard,<br />

Age at Death Determination Using the<br />

Skeletal Histomorphometry of the Third<br />

Metacarpal and Third Metatarsal From<br />

Autopsy and Cadaver Samples<br />

The Effects of Size in Craniometric<br />

Discriminant Functions<br />

A Tale of Two Museums: Available Fetal<br />

Collections at the National Museum of<br />

Natural History and the Albert Szent-<br />

Gyorgi <strong>Medical</strong> University, Hungary<br />

Skeletal Markers of Parturition: Analysis<br />

of a Modern American Sample<br />

Variation in Cremains Weight: Tennessee<br />

vs. Florida<br />

When DNA is Not Available Can We Still<br />

Identify People? Recommendations for<br />

Best Practice<br />

Variation in Size and Dimorphism in<br />

Eastern European Femora<br />

Local Standards vs. Informative Priors in<br />

Applied Forensic Anthropology<br />

Toledo, OH 43-1203<br />

Adrienne L. Foose, BA*, Robert R. Paine, PhD, and<br />

Richard A. Nisbett, PhD, Texas Tech University,<br />

Department of Sociology, Anthropology, and Social Work,<br />

PO Box 1012, Lubbock, TX 79409- 1012; Sridhar<br />

Natarajan, MD, Texas Tech University Health Sciences<br />

Center, Department of Pathology, Division of Forensic<br />

Pathology, 3601 4th Street, Lubbock, TX 79430<br />

Franklin Damann, MA* and John E. Byrd, PhD, Joint<br />

POW/MIA Accounting Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853<br />

Angie K. Huxley, MA, PhD*, PO Box 493812, Redding, CA<br />

96049-3812<br />

Jonathan D. Bethard, BA*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37916<br />

William M. Bass, PhD*, and Richard L. Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Jose P. Baraybar, BA, MSc*, Office on Missing Persons<br />

and <strong>Forensics</strong> (OMPF), United Nations Mission in Kosovo<br />

(UNMIK), AUCON/KFOR, Kosovo A1503, Austria<br />

Richard L. Jantz, PhD* and Erin H. Kimmerle, MA,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Lyle W. Konigsberg, PhD*, Department of Anthropology,<br />

250 South Stadium Drive, University of Tennessee,<br />

Knoxville, TN 37996-0720<br />

Index 85<br />

466<br />

466<br />

467<br />

468<br />

468<br />

469<br />

470<br />

470<br />

471<br />

471<br />

472<br />

472<br />

473<br />

474


A Bayesian Approach to Calculating Age<br />

Using Pubic Symphyseal Data<br />

Aging the Elderly: A New Look at an Old<br />

Method<br />

Model of Age Estimation Based on Dental<br />

Factors of Unknown Cadavers Among<br />

Iranians<br />

New Formulae for Estimating Age in the<br />

Balkans Utilizing Lamendin’s Dental<br />

Technique<br />

Sternal Rib Standards for Age Estimation<br />

in Balkan Populations: An Evaluation of<br />

U.S. Standards Using Alternative<br />

Statistical Methods<br />

Geometric Morphometric Techniques for<br />

Ancestry Assessment in Sub-Adults<br />

Population Affinities of “Hispanic” Crania:<br />

Implications for Forensic Identification<br />

International Research in Forensic<br />

Anthropology<br />

Preservation in Paradise I: El Marañon<br />

Cemetery, Isla de Coiba, Republic of<br />

Panama<br />

High Velocity Fluvial Transport: A Case<br />

Study From Tennessee<br />

Erin H. Kimmerle, MA*, Lyle Konigsberg, PhD, and<br />

Richard Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; Jose Pablo Baraybar, MSc,<br />

Office of Missing Persons and <strong>Forensics</strong>, Department of<br />

Justice, United Nations Mission in Kosovo, Pristina<br />

Gregory E. Berg, MA*and Erin Kimmerle, MA, University<br />

of Tennessee, 250 South Stadium Way, Knoxville, TN 37996<br />

Babak Faghih Monzavi, DDS*, No 93351 Sanie Zadeh<br />

Lane-Chahar Bagh Bala Avenue, Esfahan 81638-93351,<br />

Iran; Arash Ghodoosi, MD, Fayz Square- Forensic<br />

Medicine Center of Esfahan Province, Esfahan, Iran; Omid<br />

Savabi, DDS, MS, Azadi Square- Hezar Jerib Avenue,<br />

Esfahan University of <strong>Medical</strong> Science, School of Dentistry,<br />

Esfahan, Iran; Asghar Karimi, DDS, Fayz Square -<br />

Forensic Medicine Center of Esfahan Province, Esfahan,<br />

Iran; Akbar Hasanzadeh, MS, Azadi Square- Hezar Jerib<br />

Avenue, Esfahan University of <strong>Medical</strong> Sciences, School of<br />

Health Sciences, Esfahan, Iran<br />

Debra A. Prince, BS, MA* and Lyle W. Konigsberg, PhD,<br />

University of Tennessee, Knoxville, 250 South Stadium<br />

Hall, Department of Anthropology, Knoxville, TN 37996-<br />

0760<br />

Jaime Stuart, MA* and Lyle Konigsberg, PhD, University<br />

of Tennessee, 250 South Stadium Hall, Knoxville, TN 37996<br />

Una Strand Vidarsdottir, BSc, PhD*, Department of<br />

Anthropology, University of Durham, 43 Old Elvet,<br />

Durham, County Durham DH1 3HN, United Kingdom<br />

Dennis E. Slice, PhD*, Wake Forest University School of<br />

Medicine, Department of <strong>Bio</strong>medical Engineering, <strong>Medical</strong><br />

Center Boulevard, Winston-Salem, NC 27157-1022; Ann H.<br />

Ross, PhD, North Carolina State University, Department of<br />

Sociology and Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107<br />

Douglas H. Ubelaker, PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Smithsonian Institution, Washington, DC 20560<br />

Ann H. Ross, PhD*, Department of Sociology and<br />

Anthropology, North Carolina State University, Campus<br />

Box 8107, Raleigh, NC 27695- 8107; Loreto S. Silva,<br />

Director of Anthropology, Comision de la Verdad de<br />

Panama, Balboa, Republic of Panama; Kathryn M.<br />

Jemmott, MA, C.A. Pound Human ID Laboratory,<br />

University of Florida, Gainesville, FL 32611; Lazaro M.<br />

Cotes, Comision de la Verdad de Panama, Balboa,<br />

Republic of Panama<br />

Nicholas P. Herrmann, PhD*, Beth Bassett, MA, and Lee<br />

M. Jantz, PhD, University of Tennessee, 250 South Stadium<br />

Hall, Department of Anthropology, Knoxville, TN 37996<br />

Index 86<br />

474<br />

475<br />

476<br />

477<br />

477<br />

478<br />

478<br />

479<br />

479<br />

480


Investigation of Nocturnal Oviposition by<br />

Forensic Flies in Central Texas<br />

The Ability to Amplify Skeletal DNA After<br />

Heat Exposure Due to Maceration<br />

Home is Where the Bones Are: Rat Nesting<br />

Behavior as a Tool in Forensic<br />

Investigations<br />

Anthropological Tissue Depth<br />

Measurement Standards: A Comparison<br />

For Accurate Facial Reproduction<br />

Silent Slaughter in Guatemala: The<br />

Importance of Sex, Age, and Pathological<br />

Identification in a Case of Large Scale,<br />

Deliberate Starvation of Children<br />

Using Real-Time PCR Quantification of<br />

Nuclear and Mitochondrial DNA to<br />

Develop Degradation Profiles for Various<br />

Tissues<br />

Preservation in Paradise II: A Pre-<br />

Columbian Burial in a Contemporary<br />

Cemetery<br />

Robert S. Baldridge, PhD, Baylor University, PO Box<br />

97388, Waco, TX 76798; Susan G. Wallace, PhD*, Baylor<br />

University, PO Box 97370, Waco, TX 76798; Ryan<br />

Kirkpatrick, BS, Texas A&M University, Department of<br />

Entomology, College Station, TX 77843<br />

Krista E. Latham, MS*, Temple University, Department of<br />

Anthropology, 1115 West Berks Street, Philadelphia, PA<br />

19122; Jennifer L. Harms, BS, Carlos J. Zambrano, BA,<br />

Mary K. Ritke, PhD, and Stephen P. Nawrocki, PhD,<br />

University of Indianapolis, Department of <strong>Bio</strong>logy, 1400<br />

East Hanna Avenue, Indianapolis, IN 46227<br />

Tamara L. Leher, BA* and Turhon A. Murad, PhD,<br />

California State University, Chico, Department of<br />

Anthropology, Chico, CA 95929-400<br />

Stacie Terstegge, MS*, University of New Haven, Public<br />

Safety and Professional Studies, California Campus, 6060<br />

Sunrise Vista Boulevard, Citrus Heights, CA 95610; Brandi<br />

Schmitt, MS, University of California, Department of Cell<br />

<strong>Bio</strong>logy and Human Anatomy, School of Medicine, Davis,<br />

CA 95616<br />

Jason M. Wiersema, MA*, Department of Anthropology,<br />

Texas A&M University, College Station, TX 77840; Mario<br />

Vasquez, MA, Oficina de Derechos Humanos del<br />

Arzobizpado de Guatemala, 115 5th Avenue, Guatemala<br />

City, 33154, Guatemala; Luis Rios, MA, Department of<br />

Anthropology, Universidad Autonima de Madrid, Madrid,<br />

15404, Spain<br />

Elias J. Kontanis, BS, BA*, Cornell University, Department<br />

of Ecology & Evolutionary <strong>Bio</strong>logy, Corson Hall, Ithaca,<br />

NY 14853<br />

Kathryn M. Jemmott, MA*, CA Pound Human ID<br />

Laboratory, University of Florida, Building 114 SW Radio<br />

Road, Gainesville, FL 32611; Ann H. Ross, PhD, North<br />

Carolina State University, Department of Sociology and<br />

Anthropology, Raleigh, NC 27612; Loreto S. Silva,<br />

Comision de la Verdad, Balboa, Panama City, Panama;<br />

Lazaro M. Cotes, Comision de la Verdad, Balboa, Panama<br />

City, Panama; Carlos Fitzgerald, PhD, Patrimonio<br />

Historico, Panama, Panama City, Panama<br />

The Archaeology of Tyranny Lazaro M. Cotes, Comision de la Verdad, Balboa, Panama<br />

City, Panama; Kathryn M. Jemmott, MA, CA Pound Human<br />

ID Laboratory, University of Florida, Building 114 SW<br />

Radio Road, Gainesville, FL 32611; Loreto S. Silva,<br />

Comision de la Verdad, Balboa, Panama City, Panama;<br />

Ann H. Ross, PhD, North Carolina State University,<br />

Department of Sociology and Anthropology, Raleigh, NC<br />

An Historical Perspective on Nonmetric<br />

Skeletal Variation: Hooton and the<br />

Harvard List<br />

27612<br />

Joseph T. Hefner, BS*, Department of Anthropology,<br />

University of Florida, 5007 NW 29th Street, Gainesville, FL<br />

32607; Stephen D. Ousley, PhD, Smithsonian, NMNH<br />

MRCI 138, Washington, DC 20560; Michael W. Warren,<br />

PhD, Department of Anthropology, University of Florida,<br />

Gainesville, FL 32605<br />

Index 87<br />

480<br />

481<br />

481<br />

482<br />

482<br />

483<br />

484<br />

484<br />

485


Nonmetric Trait Frequencies and the<br />

Attribution of Ancestry<br />

Non-Metric Indicators of Ancestry:<br />

Making Non-Metric Traits More User<br />

Friendly in Racial Assessments<br />

Playing the “Race” Card Without a<br />

Complete Deck: The Addition of Missing<br />

Asian Data to Aid Racial Determinations in<br />

Forensic Casework<br />

The Zygomaticomaxillary Suture: A Study<br />

of Variability Within Homo sapiens<br />

Racial Variation in Palate Form and the<br />

Shape of the Transverse Palatine Suture<br />

Femoral Variation Between Whites and<br />

American Indians<br />

Population Variability in the Proximal<br />

Articulation Surfaces of the Human Femur<br />

and Humerus<br />

Racial Assessment Using the Platymeric<br />

Index<br />

Steven N. Byers, PhD*, University of New Mexico at<br />

Valencia, 280 La Entrada Road, Los Lunas, NM 87031<br />

Michael Finnegan, PhD*, Kansas State University,<br />

Osteology Laboratory, 204 Waters Hall, Manhattan, KS<br />

66506<br />

David R. Rankin, MA*, and C.E. Moore, PhD, U.S. Army<br />

Central Identification Laboratory, Hawaii, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530<br />

Amy A. Holborow, BS, MA*, Department of Anthropology,<br />

University of Wyoming, PO Box 3431, Laramie, WY 82071<br />

Kristen J. Rawlings, MA*, University of Wyoming,<br />

Department of Criminal Justice, A&S 223, PO Box 3197,<br />

Laramie, WY 82071<br />

H. Anne Halvorsen, MA* and Rick L. Weathermon, MA,<br />

Department of Anthropology, University of Wyoming,<br />

Laramie, WY 82072<br />

George W. Gill, PhD*, Department of Anthropology,<br />

University of Wyoming, Laramie, WY 82071<br />

Daniel J. Wescott, PhD*, University of Missouri at<br />

Columbia, Department of Anthropology, 107 Swallow Hall,<br />

Columbia, MO 65211; Deepa Srikanta, BA, University of<br />

Missouri at Columbia, Department of <strong>Bio</strong>logy, Columbia,<br />

MO 65211<br />

John M. McCullough, PhD*, University of Utah, 270 South<br />

Race — A New Synthesis for a New<br />

490<br />

Century<br />

1400 East, Salt Lake City, UT 84112-0060<br />

Forensic Anthropology and the Belief in Norman J. Sauer, PhD*, Department of Anthropology, 354 490<br />

Human Races<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824<br />

The Deconstruction of Race: Its Origins Emilie L. Smith, BA*, 1910 Runaway Bay Lane, Apartment 491<br />

and Existence<br />

P, Indianapolis, IN 46224<br />

Race vs. Ancestry: A Necessary Distinction Vicki L. Wedel, MS, MA*, University of California, Santa<br />

Cruz, Department of Anthropology, Social Sciences 1<br />

Faculty Services, 1156 High Street, Santa Cruz, CA 95060<br />

492<br />

Race as a Viable Concept Thomas A. Furgeson, BA, BS*, University of Wyoming,<br />

2109-C East Hancock Street, Laramie, WY 82072<br />

492<br />

Deaths of Undocumented Immigrants in Bruce O. Parks, MD*, Eric Peters, MD, Cynthia<br />

493<br />

Southern Arizona<br />

Porterfield, DO, David Winston, MD, and Diane Karluk,<br />

MD, Pima County Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714; Sam Keim, MD,<br />

University of Arizona Department of Emergency Medicine,<br />

University of Arizona College of Medicine, Tucson, AZ;<br />

Michael Kent, MD, Emergency Department, Northwest<br />

Hospital, Tucson, AZ<br />

Metric Description of Hispanic Skeletons: Richard L. Jantz, PhD*, University of Tennessee,<br />

493<br />

A Preliminary Analysis<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

Ours or Theirs? Walter H. Birkby, PhD*, Forensic Science Center, Office of<br />

the <strong>Medical</strong> Examiner, Pima County, 2825 East District<br />

Street, Tucson, AZ 85714<br />

494<br />

Skull-Photo Superimposition and Border Todd W. Fenton, PhD*, and Norman J. Sauer, PhD, 494<br />

Deaths: Identification Through Exclusion Michigan State University, Department of Anthropology,<br />

and the Failure to Exclude<br />

354 Baker Hall, East Lansing, MI 48824<br />

Index 88<br />

485<br />

486<br />

486<br />

487<br />

488<br />

488<br />

489<br />

489


Reuniting Families: Using Phenotypic and<br />

Genotypic Forensic Evidence to Identify<br />

Unknown Immigrant Remains<br />

Migrant Deaths Along the California-<br />

Mexico Border: An Anthropological<br />

Perspective<br />

Issues Concerning the Skeletal<br />

Identification of Deceased Illegal Aliens<br />

Recovered on the Texas Border<br />

Identifying the Dead: Methods Utilized for<br />

Undocumented Immigrants, 2001-2003<br />

Personal Identification and Death<br />

Investigation of Documented and<br />

Undocumented Migrant Workers in<br />

Florida: Demographic, <strong>Bio</strong>graphic, and<br />

Pathologic Factors<br />

Fatal Footsteps: The Murder of<br />

Undocumented Border Crossers in<br />

Maricopa County, Arizona<br />

Osseous Traumata Caused by a Fall From<br />

a Height: A Case Study<br />

Multidisciplinary Efforts in the<br />

Identification of Three Unidentified<br />

Females in the State of New Jersey<br />

Bullet Wipe on Bone: Production and<br />

Detection<br />

Skeletal Evidence of Homicidal<br />

Compression<br />

Determining Medicolegal Significance:<br />

Human vs. Selkie<br />

Assessment of Saw-Blade Wear Patterns<br />

and Wear-Related Features of the Kerf<br />

Wall<br />

Hereditary Multiple Exostoses: An<br />

Identifying Pathology<br />

Lori E. Baker, PhD*, Department of Anthropology, Baylor<br />

University, PO Box 97370, Waco, TX 76798; Erich J.<br />

Baker, PhD, Department of Computer Science, Baylor<br />

University, Waco, TX 76798<br />

Madeleine J. Hinkes, PhD*, San Diego Mesa College, 7250<br />

Mesa College Drive, San Diego, CA 92111<br />

David M. Glassman, PhD*, Texas State University-San<br />

Marcos, Department of Anthropology, San Marcos, Texas<br />

78666<br />

Bruce E. Anderson, PhD*, Pima County Office of the<br />

<strong>Medical</strong> Examiner, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714<br />

Anthony B. Falsetti, PhD* and Heather Walsh-Haney, MA,<br />

C.A. Pound Human Identification Laboratory, Department<br />

of Anthropology, University of Florida, Gainesville, FL<br />

32601; Martha J. Burt, MD, <strong>Medical</strong> Examiner<br />

Department, Miami-Dade County, Number One on Bob<br />

Hope Road, Miami, FL 33136<br />

Laura C. Fulginiti, PhD*, A.L. Mosley, MD, V. Shvarts,<br />

MD, J. Hu, MD, K.D. Horn, MD, P.E. Keen, MD, and R.M.<br />

Hsu, MD, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Kristen M. Hartnett, MA*, Arizona State University,<br />

Department of Anthropology, PO Box 872402, Tempe, AZ<br />

85287-2402; Laura C. Fulginiti, PhD, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Donna A. Fontana, MS*, New Jersey State Police, River<br />

Road, PO Box 7068, West Trenton, NJ 08628; Raafat<br />

Ahmad, MD, Mercer County <strong>Medical</strong> Examiner Office,<br />

Mercer County Airport, Building #31, West Trenton, NJ<br />

08628; Jay Peacock, MD, Monmouth County <strong>Medical</strong><br />

Examiner Office, Centra State <strong>Medical</strong> Center, Route 537,<br />

Freehold, NJ 07728; Ronald Suarez, MD, Morris County<br />

<strong>Medical</strong> Examiner Office, PO Box 900, Morristown, NJ<br />

07963-0900<br />

David Z.C. Hines, BA*, C.A. Pound Human Identification<br />

Laboratory, PO Box 112545, University of Florida,<br />

Gainesville, FL 32611<br />

Alison Galloway, PhD*, University of California, Social<br />

Science One FS, Santa Cruz, CA 95064; Lauren Zephro,<br />

MA, Monterey County Sheriff’s Office, 1414 Natividad<br />

Road, Salinas, CA 93906-3102<br />

Vincent H. Stefan, PhD*, Lehman College, CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard<br />

West, Bronx, NY 10468<br />

Laurel Freas, BA*, Department of Anthropology, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, PO Box 112545, Gainesville, FL 32611<br />

Melissa L. Gold, BS*, Department of Anthropology, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, PO Box 112545, Gainesville, FL 32611<br />

Index 89<br />

495<br />

495<br />

496<br />

497<br />

497<br />

498<br />

498<br />

499<br />

500<br />

500<br />

501<br />

501<br />

502


Empirical Validation and Application of<br />

the Quality-Control Polymerase Chain<br />

Reaction (qcPCR) Inhibitor Detection<br />

System<br />

Elias J. Kontanis, BS, BA*, Cornell University, Department<br />

of Ecology & Evolutionary <strong>Bio</strong>logy, Corson Hall, Ithaca,<br />

NY 14853; Krista E. Latham, MS, Temple University,<br />

Department of Anthropology, 1115 West Berks Street,<br />

Philadelphia, PA 19122; Mary K. Ritke, PhD, University of<br />

Indianapolis, Department of <strong>Bio</strong>logy, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Defining Perimortem: Blunt Force Trauma Derinna V. Kopp, MA*, Jacquel Arismendi, MA, and<br />

Shannon A. Novak, PhD, Department of Anthropology,<br />

University of Utah, 270 South 1400 East, Room 102, Salt<br />

Footnotes: Diabetic Osteopathy Used in<br />

Human Identification<br />

Diagnosing Degenerative Pathologies in an<br />

Unidentified Skeleton<br />

Symmetrical Fracturing of the Skull From<br />

Self-Inflicted Gunshot Wounds:<br />

Reconstructing Individual Death Histories<br />

From Skeletonized Human Remains<br />

In the Name of the Dead: The Panamanian<br />

Truth Commission’s Search for the<br />

“Disappeared”<br />

Truth, Justice, and Forensic Anthropology<br />

in Latin America<br />

Perspectives and Recommendations From<br />

the Field: Forensic Anthropology and<br />

Human Rights in Argentina<br />

The Development of Forensic<br />

Anthropology in Chile<br />

Lake City, UT 84112<br />

Heather A. Walsh-Haney, MA*, John J. Schultz, PhD, and<br />

Anthony B. Falsetti, PhD, University of Florida, C.A.<br />

Pound Human Identification Laboratory, PO Box 112545,<br />

Gainesville, FL 32611<br />

Sarah A. Kiley, BA*, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Amy Z. Mundorff,<br />

MA and Thomas Gibson, MD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016<br />

Todd W. Fenton, PhD*, Jered B. Cornelison, MS, and<br />

Leslie A. Wood, BS, Michigan State University, Department<br />

of Forensic Science, 560 Baker Hall, East Lansing, MI<br />

48824<br />

Loreto Suarez Silva, Director of Anthropology, Comision de<br />

la Verdad de Panama, Balboa, 27695-8107, Republic of<br />

Panama; Kathrynn M. Jemmott, MA, University of Florida,<br />

C.A. Pound Human ID Laboratory, Gainesville, FL 32611;<br />

Ann H. Ross, PhD*, Department of Sociology and<br />

Anthropology, North Carolina State University, Campus<br />

Box 8107, Raleigh, NC 27695-8107<br />

Clyde Snow, PhD*, c/o ALAF and EAAF, 10 Jay Street<br />

#502, Brooklyn, NY 11201<br />

Mercedes C. Doretti*, Argentine Forensic Anthropology<br />

Team (EAAF), 10 Jay Street #502, Brooklyn, NY 11201;<br />

Luis Fondebrider, c/o ALAF and EAAF, 10 Jay Street #502,<br />

Brooklyn, NY 11201<br />

Isabel Reveco*, Association for Latin American Forensic<br />

Anthropology, c/o EAAF, 10 Jay Street #502, Brooklyn, NY<br />

11201<br />

Forensic Anthropology in Guatemala Fredy Peccerelli *, c/o ALAF and EAAF, 10 Jay Street,<br />

#502, Brooklyn, NY 11201; José Samuel Suasnavar<br />

Bolaños, Lourdes Penados, and Mario Vasquez, c/o ALAF<br />

The Peruvian Forensic Anthropology<br />

Team (EPAF) and the Memory of the<br />

Missing<br />

and EAAF, 10 Jay St #502, Brooklyn, NY 11201<br />

Jose Pablo Baraybar, MSc*, Aldo Bolanos, Carmen Rosa<br />

Cardoza, Mellisa Lund, Giovani Macciotta, and Juan<br />

Carlos Tello, Peruvian Forensic Anthropology Team<br />

(EPAF), c/o ALAF and EAAF, 10 Jay Street #502,<br />

Brooklyn, NY 11201<br />

Forensic Anthropology in Colombia Andres Patiño* and Edixon Quinones Reyes, c/o ALAF and<br />

EAAF, 10 Jay Street #502, Brooklyn, NY 11201<br />

Postmortem and Perimortem Fracture Bruce P. Wheatley, PhD*, Department of Anthropology and<br />

Patterns in the Long Bones of Deer Social Work, University of Alabama, Birmingham, AL<br />

35294-3350<br />

Index 90<br />

502<br />

503<br />

504<br />

504<br />

505<br />

506<br />

506<br />

507<br />

507<br />

508<br />

508<br />

509<br />

509


Healing Following Cranial Trauma Lenore Barbian, PhD*, and Paul S. Sledzik, MS, National<br />

Museum of Health and Medicine, Armed Forces Institute of<br />

Pathology, 6825 16th Street NW, Washington, DC 20306-<br />

Burning Observations of Decomposed<br />

Human Remains: Obscuring the<br />

Postmortem Interval<br />

Experimental Study of Fracture<br />

Propagation in the Human Skull: A Re-<br />

Testing of Popular Theories<br />

The Use of Non-Unique Dental Characters<br />

and Non-Unique DNA Types to Estimate<br />

Probability of Identity<br />

Reassociating Commingled Remains<br />

Separated by Distance and Time: The Tale<br />

of Simon And Steven<br />

Temporomandibular Joint Morphology<br />

and the Assessment of Potential<br />

Commingling<br />

Using GIS Technology to Locate<br />

Clandestine Human Remains<br />

Anthropological Review of Remains From<br />

Srebrenica as Part of the Identification<br />

Process<br />

Exhumation... and What After? ICMP<br />

Model in Bosnia and Herzegovina<br />

Air-Drying as a Means of Preservation for<br />

the Unidentified and Unclaimed Remains<br />

From the World Trade Center<br />

Preliminary Results on the Use of Cadaver<br />

Dogs to Locate Vietnam War-Era Human<br />

Remains<br />

Genes, Nerves, and Bones: Neural<br />

Networks, Genetic Algorithms, and<br />

Forensic Anthropology<br />

U.S. Army Identification Laboratories for<br />

WWII and Korea and the History of<br />

Forensic Anthropology<br />

The ASCLD-LAB Accreditation of the<br />

Joint POW/MIA Accounting Command,<br />

Central Identification Laboratory<br />

Outside Traditional Skeletal Casework: A<br />

Forensic Anthropologist in a <strong>Medical</strong><br />

Examiner’s Office<br />

<strong>Forensics</strong> and Television: A Learning<br />

Experience or Beguiling Obsession?<br />

6000<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; O’Brian C. Smith, MD,<br />

Regional Forensic Center, University of Tennessee, 1060<br />

Madison Avenue, Memphis, TN 38104<br />

Anne M. Kroman, MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Mark D. Leney, PhD* and Bradley J. Adams, PhD, U.S.<br />

Army Central Identification Laboratory, HI, 310<br />

Worchester Avenue, Hickam AFB, HI 96853<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, MSC11 6030, Albuquerque, NM<br />

Vincent H. Stefan, PhD*, Lehman College, CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard<br />

West, Bronx, NY 10468<br />

Ann Marie W. Mires, PhD*, Office of the Chief <strong>Medical</strong><br />

Examiner, 720 Albany Street, Boston, MA 02118; Alberto<br />

Giordano, PhD, Department of Geography, University of<br />

Texas, Austin, TX 77005<br />

Piotr Drukier, MSc*, Eva Klonowski, PhD, Laura<br />

Yazedjian, Rifat Kesetovic, and Edwin F. Huffine, MS,<br />

International Commission on Missing Persons, Alipashina<br />

45a, 71000 Sarajevo, Bosnia and Herzegovina<br />

Eva Klonowski, PhD*, Piotr Drukier, MSc, and Nermin<br />

Sarajlic, MD, MSc, International Commission on Missing<br />

Persons, Alipashina 45a, 71000 Sarajevo, Bosnia and<br />

Herzegovina<br />

Benjamin J. Figura, BA*, PO Box 4423, Chico, CA 95927-<br />

4423<br />

Paul D. Emanovsky, MS*, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853<br />

Suzanne Bell, PhD*, West Virginia University, Department<br />

of Chemistry, PO Box 6045, Morgantown, WV 26506;<br />

Richard L. Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, Knoxville, TN 37996-0720<br />

Christopher M. McDermott, MA*, U.S. Army Central<br />

Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Vincent J. Sava, BS, MA*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Tom E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner<br />

Office, 3202 Amnicola Highway, Chattanooga, TN 37409<br />

Ellen R. Salter-Pedersen, BA, BSc*, Department of<br />

Geography and Anthropology, 227 Howe-Russell,<br />

Louisiana State University, Baton Rouge, LA 70803<br />

Index 91<br />

510<br />

511<br />

512<br />

512<br />

513<br />

513<br />

515<br />

515<br />

516<br />

516<br />

517<br />

517<br />

518<br />

518<br />

519<br />

520


Estimation of Living Body Weight Using<br />

Measurements of Anterior Iliac Spine<br />

Breadth and Stature<br />

Preliminary Observations of Vertebral<br />

Centra Retraction and Its Relationship to<br />

Age<br />

Epiphyseal Closure Rates in the Srebrenica<br />

Youth<br />

An Evaluation of the Greulich and Pyle<br />

Skeletal Aging Standards for the Hand and<br />

Wrist in a Contemporary Multiethnic<br />

Population<br />

A Quantitative Study of Morphological<br />

Variation in the OS Coxa for the Purpose<br />

of Estimating Sex of Human Skeletal<br />

Remains<br />

A Review of Age Estimation Using Rib<br />

Histology: Its Impact on Evidentiary<br />

Examination<br />

Distinguishing Between Human and Non-<br />

Human Secondary Osteons in Ribs<br />

Species Identification of Small Skeletal<br />

Fragments Using Protein<br />

Radioimmunoassay (pRIA)<br />

Developing the “Isotope Fingerprint” in<br />

Human Skeletal Remains<br />

Skeletal Manifestations of Non-Hodgkin’s<br />

Lymphoma and Multiple Myeloma: A<br />

Differential Diagnosis<br />

Computer Assisted Facial Reconstruction<br />

Technique<br />

Testing the Reliability of Frontal Sinuses in<br />

Positive Identification Using Elliptic<br />

Fourier Analysis<br />

Markers of Mechanical Loading in the<br />

Postcranial Skeleton: Their Relevance to<br />

Personal Identification of Human Remains<br />

Jaime A. Suskewicz, BA*, Louisiana State University, 2000<br />

Brightside Drive, #722, Baton Rouge, LA 70820<br />

A. Midori Albert, BS, MA, PhD*, Anthropology Program,<br />

University of North Carolina at Wilmington, 601 South<br />

College Road, Wilmington, NC 28403-5907<br />

Maureen C. Schaefer, BS, MA*, International Commission<br />

on Missing Persons, Alipashina 45a, 71000 Sarajevo,<br />

Bosnia and Herzegovina<br />

Susan M.T. Myster, PhD, Hamline University, MB 196,<br />

1536 Hewitt Avenue, St. Paul, MN 55104; Sarah E. Nathan,<br />

BA*, Department of Forensic Sciences, Nebraska Wesleyan<br />

University, Lincoln, NE 68503<br />

Peer H. Moore-Jansen, PhD* and Amber Harrison, BA*,<br />

Department of Anthropology, Wichita State University, 114<br />

Neff Hall, Wichita, KS 67260-0052<br />

Christian M. Crowder, MA*, University of Toronto, 100 St.<br />

George Street, Toronto, Ontario M5S 3G3, Canada<br />

Elizabeth J. Whitman, MA*, 1044 Eugenia Drive, Mason,<br />

MI 48854<br />

Douglas H. Ubelaker, PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Washington, DC 20560; Jerold M. Lowenstein, MD,<br />

California Pacific <strong>Medical</strong> Center, 2333 Buchanan Street,<br />

San Francisco, CA 94115; Darden G. Hood, BS,<br />

MicroAnalytica, LLC, 4989 SW 74 Court, Miami, FL 33155<br />

Benjamin Swift, MB, ChB*, and Guy N. Rutty, MD,<br />

Division of Forensic Pathology, University of Leicester,<br />

Robert Kilpatrick Clinical Sciences Building, Leicester<br />

Royal Infirmary, Leicester LE2 7LX, United Kingdom;<br />

Richard Harrington, PhD, International Commission on<br />

Missing Persons, Alipasina 45a, 71000 Sarajevo, Bosnia<br />

and Herzegovina<br />

Alaina K. Goff, BA* and Wendy Potter, MS, University of<br />

New Mexico, Department of Anthropology, Albuquerque,<br />

NM 87131; Debra Komar, PhD, Office of the <strong>Medical</strong><br />

Investigator, University of New Mexico, Albuquerque, NM<br />

87131<br />

Yves Schuliar, MD* and Pascal Chaudeyrac, MS, Institut<br />

de Recherche Criminelle de la Gendarmerie Nationale, 1<br />

Boulevard Theophile Sueur, Rosny-sous-Bois 93110,<br />

France; Richard Aziza, MD, 13 Avenue Eylau, Paris 75116,<br />

France; Jean-Noel Vignal, PhD, Institut de Recherche<br />

Criminelle de la Gendarmerie Nationale, 1 Boulevard<br />

Theophile Sueur, Rosny-sous-Bois 93110, France<br />

Angi M. Christensen, PhD*, 301 Taliwa Drive, Knoxville,<br />

TN 37920<br />

Kenneth A.R. Kennedy, PhD*, Cornell University,<br />

Department of Ecology and Evolutionary <strong>Bio</strong>logy, Corson<br />

Hall, Ithaca, NY 14853<br />

Index 92<br />

520<br />

521<br />

522<br />

523<br />

524<br />

524<br />

525<br />

525<br />

526<br />

526<br />

527<br />

527<br />

528


Rapid Responses to International<br />

Incidents: To Go or Not to Go (or When to<br />

Go and How to Go)?<br />

Tal Simmons, PhD*, School of Conservation Sciences,<br />

Talbot Campus, Bournemouth University, Poole, Dorset<br />

BH12 5BB, United Kingdom Panelists: Alison Galloway,<br />

PhD*, University of California, Social Science One FS,<br />

Santa Cruz, CA 95064; Jose Pablo Baraybar, BA, MSc*,<br />

Office on Missing Persons and <strong>Forensics</strong> (OMPF), United<br />

Nations Mission in Kosovo (UNMIK), AUCON/KFOR,<br />

Kosovo A1503, Austria; Laura Bowman, BA*, 3856 Porter<br />

Street NW, E-371, Washington, DC 20016; Melissa<br />

Connor, MA, RPA*, 11101 South 98th Street, Lincoln, NE<br />

68526; Margaret Cox, PhD*; William D. Haglund, PhD*,<br />

20410 25th Avenue, NW, Shoreline, WA 98177; Sara Kahn,<br />

MSW, MPH*, 108 West 76th Street, #2A, New York, NY<br />

10023; Mary Ellen Keough, MPH*, Meyers Primary Care<br />

Institute, 630 Plantation Street, Worcester, MA 01605<br />

Index 93<br />

529


Expressions of Handedness in the<br />

Vertebral Column<br />

Skull vs. Postcranial Elements in Sex<br />

Determination<br />

Race and Ethnicity in Subadult Crania:<br />

When Does Differentiation Occur?<br />

An Examination of the Petrographic<br />

Technique in the Analysis of Cementum<br />

Increments for the Determination of Age<br />

and Seasonality in Human Teeth<br />

A Test of the Auricular Surface Ageing<br />

Method Using a Modern Sample: The<br />

Effect of Observer Experience<br />

Sex, Size, and Genetic Mistakes:<br />

Identifying Disorders of Sexual<br />

Differentiation in Human Skeletal Remains<br />

2003<br />

Jennifer A. Synstelien, MA*, and Michelle D. Hamilton,<br />

MA, Department of Anthropology, University of Tennessee,<br />

250 South Stadium Hall, Knoxville, TN<br />

M. Katherine Spradley, MA*, and Richard L. Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 252<br />

South Stadium Hall, Knoxville, TN<br />

Elizabeth A. Murray, PhD*, Hamilton County Coroner’s<br />

Office, College of Mount St. Joseph, 5701 Delhi Road,<br />

Cincinnati, OH<br />

Tamara L. Leher, BA*, Department of Anthropology,<br />

California State University-Chico, P.O. Box 4036, Chico,<br />

CA<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, Albuquerque, NM; Tim<br />

Petersen, MA, Department of Anthropology, University of<br />

New Mexico, Albuquerque, NM; Suzzette Sturtevant, BSc,<br />

and Britny Moore, BSc, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, Albuquerque, NM<br />

Linda O’Connell, BM, MSc*, Joy Steven, MSc*, and<br />

Margaret Cox, PhD*, School of Conservation Sciences,<br />

Bournemouth University, Poole, Dorset, United Kingdom<br />

The Foot as a Forensic Tool John A. DiMaggio, RPh, DPM*, Forensic Podiatry<br />

Consulting Services, 2600 East Southern Avenue, Suite I-3,<br />

Back to the Basics: Anatomical Siding of<br />

Fragmentary Skeletal Elements From<br />

Victims of the World Trade Center<br />

Disaster<br />

The William M. Bass Donated Collection at<br />

the University of Tennessee - Knoxville<br />

Tempe, AZ<br />

Eric J. Bartelink, MA*, Jason M. Wiersema, MA, and<br />

Maria Parks, MA, Department of Anthropology, Texas A &<br />

M University, College Station, TX; Gaille MacKinnon, BA,<br />

MSc, Department of Conservation Sciences, University of<br />

Bournemouth, Bournemouth, United Kingdom; and Amy<br />

Zelson Mundorff, MA, Office of Chief <strong>Medical</strong> Examiner,<br />

New York City, 520 First Avenue, New York, NY<br />

Helen E. Bassett, MA*, M. Katherine Spradley, MA, and<br />

Lee Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

The Hyoid Bone as a Sex Discriminator Michael Finnegan, PhD*, Department of Sociology,<br />

Anthropology and Social Work, Kansas State University,<br />

The Estimation of Sex From the Proximal<br />

Ulna<br />

The Utility of Nonmetric Cranial Traits in<br />

Ancestry Determination - Part II<br />

Forensic Anthropology, Repatriation, and<br />

the “Mongoloid” Problem<br />

Manhattan, KS<br />

William E. Grant, MA*, Holland Community Hospital, 602<br />

Michigan Avenue, Holland, MI; and Richard L. Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Joseph T. Hefner, BS*, C.A. Pound Human Identification<br />

Laboratory, Department of Anthropology, 1898 Seton<br />

Court, Clearwater, FL<br />

Stephen D. Ousley, PhD*, Smithsonian Institution,<br />

Repatriation Office, Department of Anthropology,<br />

Washington, DC; Jessica L. Seebauer, BS, Department of<br />

<strong>Bio</strong>logy, State University of New York-Geneseo, Geneseo,<br />

NY; and Erica B. Jones, MA, Smithsonian Institution,<br />

Repatriation Office, Department of Anthropology,<br />

Index 94<br />

531<br />

531<br />

532<br />

533<br />

533<br />

534<br />

534<br />

535<br />

535<br />

536<br />

536<br />

537<br />

537


A Strategy for Age Determination<br />

Washington, DC<br />

Laurnet Martrille*, and Tarek Mbghirbi, Service de 538<br />

Combining a Dental Method (Lamendin) médecine légale, CHU Lapeyronie, 191 av, Montpellier,<br />

and an Anthropological Method (Iscan) France; Alain Zerilli, DDS, Faculté d’odontologie, CHU<br />

Brest, cedex , France, Brest, France; F. Seguret,<br />

Département d’information médicale, CHU Montpellier,<br />

France; and Eric Baccino, MD, Service de médecine légale,<br />

CHU Lapeyronie, 191 av, Montpellier, France,<br />

Introducing Daubert to the Balkans Richard J. Harrington, PhD*, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo; Benjamin Swift,<br />

MBChB, Division of Forensic Pathology, Robert Kilpatrick<br />

Clinical Sciences Building, Leicester Royal Infirmary,<br />

Leicester, United Kingdom; and Edwin F. Huffine, MS,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo<br />

538<br />

Dirty Secrets: Identification of Older Hugh H. Tuller, MA*, International Commission on 539<br />

Crime Scenes in the Former Yugoslavia<br />

Through Blood Protein and Volatile Fatty<br />

Acid Soil Analysis<br />

Missing Persons, Alipasina 45a, 71000, Sarajevo<br />

Exhumations in Bosnia and Herzegovina: Eva E. Klonowski, PhD*, Nermin Sarajlic, PhD, and Piotr 540<br />

Unique Challenges in the Recovery From Drukier, MS, International Commission on Missing<br />

Cavern Sites<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Resolution of Large-Scale Commingling John E. Byrd, PhD*, and Bradley J. Adams, PhD, U.S. 540<br />

Issues: Lessons From CILHI and ICMP Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI; and Lisa M. Leppo, PhD, and Richard J.<br />

Harrington, PhD, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Reassociation of Skeletal Remains<br />

Eva E. Klonowski, PhD*, International Commission on 541<br />

Recovered From Graves in Bosnia and Missing Persons, Alipasina 45a, Sarajevo, Muhamed<br />

Herzegovina<br />

Mujkic, MS, Federation Commission on Tracing Missing<br />

Persons, Sarajevo, and Nermin Sarajlic, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

The Influence of Large-Scale DNA Testing Ana Boza Arlotti, PhD*, Edwin F. Huffine, MS, and 541<br />

on the Traditional Anthropological Richard J. Harrington, PhD, International Commission on<br />

Approach to Human Identification: The Missing Persons, Alipasina 45a, Sarajevo, Bosnia and<br />

Experience in Bosnia and Herzegovina Herzegovina<br />

Age-Related Changes in the Adult Male Piotr Drukier, MS*, Nermin Sarajlic, PhD, and Eva E. 541<br />

Vertebral Column<br />

Klonowski, PhD, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Lamendin’s and Prince’s Dental Aging Nermin Sarajlic, MD MSc*, Eva E. Klonowski, PhD, Piotr 542<br />

Methods Applied to a Bosnian Population Drukier, MSc, and Richard J. Harrington, PhD,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, Bosnia and Herzegovina<br />

Impact of Heat and Chemical Maceration Dawnie W. Steadman, PhD*, Jeremy Wilson, BS, Kevin E. 542<br />

on DNA Recovery and Cut Mark Analysis Sheridan, MA, and Steven Tammariello, PhD, Department<br />

of <strong>Bio</strong>logy, Binghamton University, P.O. Box 6000,<br />

Binghamton, NY<br />

Two Miles and Nine Years From Home: Casey Shamblin, BA*, and Mary H. Manhein, MA, 543<br />

The Taphonomy of Aqueous Environments Department of Geography and Anthropology, Louisiana<br />

State University, Baton Rouge, LA<br />

Dissolving Dentition: The Effects of Joy E. Lang, BSc, BA*, and Tosha L. Dupras, PhD, 543<br />

Corrosive and Caustic Agents on Teeth Department of Sociology and Anthropology, University of<br />

Central Florida, Orlando, FL<br />

Index 95


Rituals Among the Santeria: Contextual<br />

Clues and Forensic Implications<br />

Frozen Human Bone: A Histological<br />

Investigation<br />

The Effect of Heat Associated With<br />

Maceration on DNA Preservation in<br />

Skeletal Remains<br />

Using Restriction Enzymes to Reduce the<br />

Inhibitory Properties of Bacterial DNA on<br />

PCR Amplification of Human DNA<br />

Sequences<br />

Fire Scene Management Strategies for the<br />

Recovery of Human Remains From Severe<br />

Vehicle Fires<br />

Peculiar Marine Taphonomy Findings:<br />

Preservation of Human Remains as a<br />

Result of Submersion in Sequestered<br />

Environments<br />

The Landscape’s Role in Dumped and<br />

Scattered Remains<br />

The Role of Textiles in Determination of<br />

Postmortem Interval<br />

It Came Out of the Sky: Cremains as an<br />

Aerial Hazard<br />

The Effect of Human Body Mass on the<br />

Rate of Decomposition<br />

Heather A. Walsh-Haney, MA*, John J. Schultz, MS, and<br />

Anthony B. Falsetti, PhD, C.A. Pound Human Identification<br />

Laboratory/Department of Anthropology, University of<br />

Florida, P.O. Box 112545, Gainesville, FL; and Reinhard<br />

W. Motte, MD, Miami-Dade County, District 11 Office of<br />

the <strong>Medical</strong> Examiner, Number One on Bob Hope Road,<br />

Miami, FL<br />

Mariateresa A. Tersigni, MA*, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN<br />

Krista E. Latham, BS*, Carlos J. Zambrano, BA, and Mary<br />

Ritke, PhD, Department of <strong>Bio</strong>logy, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

Janene Curtis, BS*, Archeology and <strong>Forensics</strong> Laboratory,<br />

and Christine M. Turk, BS, and Mary K. Ritke, PhD,<br />

<strong>Bio</strong>logy Department, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN<br />

Alan Price, MA*, Associate Director, Southern Institute of<br />

Forensic Science, Regional Service Office, 7224 West<br />

Canberra Street Drive, Greeley, CO; and Michael Britt, BS,<br />

Supervisor of Investigations, District 20, <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

Giancarlo Di Vella, MD*, Carlo Pietro Campobasso, MD,<br />

PhD, and Francesco Introna, MD, Section of Legal<br />

Medicine, University of Bari, Policlinico, piazza G. Cesare,<br />

Bari, Italy<br />

Mary H. Manhein, MA*, Ginesse Listi, MA, and Michael<br />

Leitner, PhD, Department of Geography and Anthropology,<br />

Louisiana State University, 227 Howe-Russell, Baton<br />

Rouge, LA<br />

Kellie M. Gordon, BA*, and Mary H. Manhein, MA,<br />

Department of Geography and Anthropology, Louisiana<br />

State University, 227 Howe Russell Geoscience Complex,<br />

Baton Rouge, LA<br />

John A. Williams, PhD*, University of North Dakota, Box<br />

8374, Grand Forks, ND<br />

Jaime Stuart, MA*, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

Understanding Rib Fracture Patterns Jennifer C. Love, PhD*, and Steven A. Symes, PhD,<br />

University of Tennessee, Memphis, Regional Forensic<br />

Center, Memphis, Memphis, TN; and Chantal Ferraro,<br />

PhD, Long Island University, Long Island University,<br />

Features of Preexisting Trauma and<br />

Burned Cranial Bone<br />

Burning Extremities: Patterns of Arms,<br />

Legs, and Preexisting Trauma<br />

Brookville, NY<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR; and O’ Brian C. Smith, MD,<br />

Regional Forensic Center of the University of Tennessee,<br />

1060 Madison Avenue, Memphis, TN<br />

O’ Brian C. Smith, MD, Regional Forensic Center of the<br />

University of Tennessee, 1060 Madison Ave, Memphis, TN;<br />

and Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR<br />

Index 96<br />

544<br />

545<br />

545<br />

546<br />

546<br />

547<br />

548<br />

548<br />

549<br />

549<br />

549<br />

550<br />

551


The Influence of Behavior on Free Fall<br />

Injury Patterns: Possible Implications for<br />

Forensic Anthropological Investigations<br />

Numerical Simulation of Fracture<br />

Propagation in a Test of Cantilevered<br />

Tubular Bone<br />

An Evaluation of the Relationship Between<br />

Human Pelvic Size and Shape and the<br />

Distribution, Type, and Severity of<br />

Vertebral Degenerative Disease in<br />

Archaeological Material<br />

Assessment of Muscular-Skeletal<br />

Robusticity in Personal Identification of<br />

Human Remains<br />

Body Weight Estimation in Forensic<br />

Anthropology<br />

Radiographic Human Identification Using<br />

Bones of the Hand: A Validation Study<br />

Using Amplification of Bacteriophage<br />

Lambda DNA to Detect PCR Inhibitors in<br />

Skeletal DNA<br />

Nuclear DNA Preservation in Soft and<br />

Osseous Tissues<br />

The University of Tennessee/ FBI Human<br />

Remains Recovery School<br />

Presenting Forensic Anthropology<br />

Training Seminars and Workshops to<br />

Forensic Science, Medico-Legal, and Law<br />

Enforcement Professionals: Consequences<br />

for Death Investigations Involving<br />

Decomposed, Skeletal, and Burned Human<br />

Remains<br />

Fifteen Years of Forensic Anthropology<br />

Short Courses at the National Museum of<br />

Health and Medicine/AFIP<br />

Forensic Anthropology for Sale: A<br />

Perspective From Law Enforcement<br />

Supply and Demand: Trends and Training<br />

in Forensic Anthropology<br />

Teaching Forensic Archaeology to the<br />

Masses: The Death Scene Course at<br />

Mercyhurst College After a Decade<br />

Angi M. Christensen, MA*, Department of Anthropology,<br />

The University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

John F. Berryman*, University of Tennessee, Lebanon, TN;<br />

Hugh E. Berryman, PhD, Metropolitan and Davidson<br />

County <strong>Medical</strong> Examiner’s Office, Lebanon, TN; Robert A.<br />

LeMaster, PhD, PE, Department of Engineering, College of<br />

Engineering and Natural Science, Martin, TN; and Carrie<br />

Anne Berryman, MA, Vanderbilt University, Nashville, TN<br />

Linda O’Connell, BM, MSc*, School of Conservation<br />

Sciences, Bournemouth University, Poole, Dorset, United<br />

Kingdom<br />

Kenneth A.R. Kennedy, PhD*, Department of Ecology and<br />

Evolutionary <strong>Bio</strong>logy, Corson Hall, Cornell University,<br />

Ithaca, NY<br />

Phoebe R. Stubblefield, MA*, CA Pound Human<br />

Identification Laboratory, P.O. Box 112545, University of<br />

Florida, Gainesville, FL<br />

Michael G. Koot, BA*, Department of Anthropology,<br />

Michigan State University, Department of Anthropology,<br />

Michigan State University, East Lansing, MI<br />

Krista E. Latham, BS*, Department of <strong>Bio</strong>logy, University<br />

of Indianapolis, 1400 East Hanna Ave, Indianapolis, IN<br />

Elias J. Kontanis, BS, BA*, Department of Ecology &<br />

Evolutionary <strong>Bio</strong>logy, Cornell University, Corson Hall,<br />

Ithaca, NY<br />

Murray K. Marks, PhD*, The University of Tennessee,<br />

Knoxville, TN<br />

Susan M.T. Myster, PhD*, Department of Anthropology,<br />

Hamline University, St. Paul, MN<br />

Lenore T. Barbian, PhD*, and Paul S. Sledzik, MS,<br />

National Museum of Health and Medicine, Armed Forces<br />

Institute of Pathology, Washington, DC<br />

Lauren Rockhold Zephro, MA*, Monterey County Sheriff’s<br />

Department, 1414 Natividad Road, Salinas, CA<br />

Joanne L. Devlin, PhD*, and Michelle D. Hamilton, MA,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Dennis C. Dirkmaat, PhD*, Departments of Anthropology<br />

and Applied Forensic Science, Mercyhurst College, Erie,<br />

PA; and Michael Hochrein, BS, Federal Bureau of<br />

Investigation, St. Louis, MO<br />

The National Forensic Academy Arpad A. Vass, PhD*, Oak Ridge National Laboratory,<br />

P.O. Box 2008, Oak Ridge, TN<br />

Index 97<br />

552<br />

552<br />

553<br />

553<br />

554<br />

555<br />

556<br />

556<br />

557<br />

557<br />

558<br />

559<br />

559<br />

560<br />

561


Advances in Surveying and Presenting<br />

Evidence From Mass Graves, Clandestine<br />

Graves, and Surface Scatters<br />

Cervical Smears as an Alternate Source of<br />

DNA in the Identification of Human<br />

Skeletal Remains<br />

Unusual Sharp Force/Penetrating Trauma<br />

Pattern on a Cranium; Cooperative<br />

Examination and Evaluation by the<br />

Forensic Pathologist and Forensic<br />

Anthropologist<br />

Gunshot Wounds and Other Perimortem<br />

Trauma to the Sub-Adult Skeleton<br />

The “Next Utility” in Field Recovery of<br />

Scattered Human Remains<br />

Ian Hanson, MSc*, School of Conservation Sciences,<br />

Bournemouth University, United Kingdom<br />

Carla R. Torwalt, BSc*, Thambirajah Balachandra, MBBS,<br />

and Janice Epp, RN, HBScN, Office of the Chief <strong>Medical</strong><br />

Examiner, 210-1 Wesley Avenue, Winnipeg, Manitoba,<br />

Canada<br />

Index 98<br />

561<br />

562<br />

Vincent H. Stefan, PhD*, Department of Anthropology, 562<br />

Lehman College - CUNY, 250 Bedford Park Boulevard,<br />

West, Bronx, NY; and Patricia J. McFeeley, MD, Office of<br />

the <strong>Medical</strong> Investigator, University of New Mexico School<br />

of Medicine, Albuquerque, NM<br />

Ambika Flavel, MSc*, 52 Ninth Avenue, Maylands, WA 563<br />

Ginesse A. Listi, MA*, Mary H. Manhein, MA, and Michael<br />

Leitner, PhD, Department of Geography and Anthropology,<br />

Louisiana State University, 227 Howe-Russell, Baton<br />

Rouge, LA<br />

Age Progression: How Accurate Is It? Joanne L. Devlin, PhD, and Murray K. Marks, PhD*,<br />

Department of Anthropology, University of Tennessee, 250<br />

Three-Dimensional Digital Data<br />

Acquisition: A Test of Measurement Error<br />

In Search of Floyd Britton: Investigations<br />

of Human Rights Issues on the Island of<br />

Coiba, Republic of Panama<br />

Reconstructing Facial Freeform Images<br />

Using FREEFORM Software<br />

Operacion Eagle: Clandestine Graves and<br />

a Taphonomy of Tyrants — Part 1: The<br />

Truth Commission of Panama, Witness<br />

Testimony, and Searches in Western<br />

Panama<br />

Operacion Eagle: Clandestine Graves and<br />

a Taphonomy of Tyrants — Part 2:<br />

Searches on Coiba Island, Panama City,<br />

and Vicinity<br />

Utilizing Ground Penetrating Radar and<br />

Three-Dimensional Imagery to Enhance<br />

Search Strategies of Buried Human<br />

Remains<br />

Location, Identification, and Repatriation<br />

of Remains of Victims of Conflict:<br />

Implications for Forensic Anthropology<br />

South Stadium Hall, Knoxville, TN<br />

Denise To, MA*, Department of Anthropology, Arizona<br />

State University, Box 87-2402, Arizona State University,<br />

Tempe, AZ<br />

Ann H. Ross, PhD*, C.A. Pound Human Identification<br />

Laboratory, P.O. Box 112545, Gainesville, FL; and Bruce<br />

Broce, MA*, Comision de la Verdad de Panama, Edificio<br />

No. 37, Panama<br />

Ann Marie W. Mires, PhD*, Chief <strong>Medical</strong> Examiner, 720<br />

Albany Street, Boston, MA; Mary H. Manhein, MA,<br />

Louisiana State University, FACES Laboratory, Baton<br />

Rouge, LA; Greg Mahoney, Boston Crime Laboratory, 720<br />

Albany Street, Boston, MA; and Eileen Barrows, Louisiana<br />

State University, Faces Laboratory, Baton Rouge, LA<br />

Frank P. Saul, PhD*, Lucas County Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH; Sandra Anderson, Canine<br />

Investigation Consultant, 913 East Price Road, Midland,<br />

MI; and Julie M. Saul, BA, Lucas County Coroner’s Office,<br />

2595 Arlington Avenue, Toledo, OH<br />

Julie M. Saul, BA*, Lucas County Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH; Sandra Anderson, Canine<br />

Investigation Consultant, 913 East Price Road, Midland,<br />

MI; and Frank P. Saul, PhD, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue, Toledo, OH<br />

Michelle L. Miller, BS, MA*, The University of Tennessee,<br />

Knoxville, TN<br />

Shuala M. Drawdy, MA*, Department of Anthropology,<br />

University of Florida, Gainesville, FL<br />

563<br />

564<br />

564<br />

565<br />

565<br />

566<br />

567<br />

568<br />

568


This Grave Speaks: Forensic Anthropology<br />

in Guatemala<br />

The Role of Anthropology During the<br />

Identification of Victims From the World<br />

Trade Center Disaster<br />

Anthropology at Fresh Kills: Recovery and<br />

Identification of the World Trade Center<br />

Victims<br />

Scene Recovery Efforts in Shanksville,<br />

Pennsylvania: The Role of the Coroner’s<br />

Office in the Processing of the Crash Site of<br />

United Airlines Flight 93<br />

Roles of the <strong>Bio</strong>logical Anthropologist in<br />

the Response to the Crash of United<br />

Airlines Flight 93<br />

Attack on the Pentagon: The Role of<br />

Forensic Anthropology in the Examination<br />

and Identification of Victims and Remains<br />

of the ‘9/11’ Terrorist Attack<br />

Adriana Gabriela Santos Bremme, BS*, Fundación de<br />

Antropología Forense de Guatemala-Universidad de San<br />

Carlos de Guatemala, Apartado Postal 01901 1830 correo<br />

central Guatemala C.A.<br />

Amy Zelson Mundorff, MA*, Office of Chief <strong>Medical</strong><br />

Examiner, New York City, New York, NY<br />

Michael W. Warren, PhD*, Department of Anthropology,<br />

University of Florida, Gainesville, FL; Leslie E. Eisenberg,<br />

PhD, Wisconsin Historical Society, 816 State Street,<br />

Madison, WI; Heather Walsh-Haney, MA, University of<br />

Florida, C.A. Pound Human Identification Laboratory,<br />

University of Florida, Gainesville, FL; and, Julie Mather<br />

Saul, BA, Lucas County <strong>Medical</strong> Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH<br />

Dennis C. Dirkmaat, PhD*, Departments of Anthropology<br />

and Applied Forensic Science, Mercyhurst College, Erie,<br />

PA; and Wallace Miller, BS, Somerset County Coroner,<br />

Somerset, PA<br />

Marilyn R. London, MA, and Dawn M. Mulhern, PhD,<br />

Smithsonian Institution, Washington, DC; Lenore T.<br />

Barbian, PhD, and Paul S. Sledzik, MS, National Museum<br />

of Health and Medicine, Armed Forced Institute of<br />

Pathology, Washington, DC; Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Erie, PA; Laura Fulginiti, PhD,<br />

<strong>Medical</strong> Examiner’s Office, Phoenix, AZ; Joseph T. Hefner,<br />

BS, University of Florida, Gainesville, FL; and Norman J.<br />

Sauer, PhD, Michigan State University, East Lansing, MI<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, Armed Forces Institute of Pathology,<br />

Washington, DC<br />

Index 99<br />

569<br />

569<br />

570<br />

571<br />

571<br />

572


Falls From Cliffs: Reconstructing<br />

Individual Death Histories From a<br />

Perimortem Fracture Pattern<br />

A Semi-Circular Argument: Patterned<br />

Injuries Explained by an Unusually Large<br />

Murder Weapon and Its Method of Use<br />

Hyperextension Trauma of Upper Cervical<br />

Vertebrae<br />

Can Sharp Force Trauma to Bone Be<br />

Recognized After Fire Modification? An<br />

Experiment Using Odocoileus virginianus<br />

(White-Tailed Deer) Ribs<br />

A Comparison of the Cranial Wounding<br />

Effects of .22 and .38 Caliber Bullets<br />

Forensic Anthropology and Fire<br />

Investigation: Learning About Burning<br />

Using Non-Human Models<br />

The Effects of Temperature on the<br />

Decomposition Rate of Human Remains<br />

Forensic Applications of Ground<br />

Penetrating Radar in Florida<br />

Predicting Mitochondrial DNA (mtDNA)<br />

Recovery by Skeletal Preservation<br />

Masking Identity: The Effects of Corrosive<br />

Household Agents on Soft Tissue, Bone,<br />

and Dentition<br />

Excavation and Analysis of Four Homicide<br />

Victims From Shallow Graves in<br />

Bartholomew County, IN<br />

2002<br />

Todd W. Fenton, PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI;<br />

Walter H. Birkby, PhD, and Bruce E. Anderson, PhD,<br />

Forensic Science Center, Pima County, Tucson, AZ; and<br />

David R. Rankin, MA, U.S. Army Central Identification<br />

Laboratory, Hickam Air Force Base, Honolulu, HI<br />

Christopher M. Casserino, MA*, University of Oregon<br />

Deptartment of Anthropology, 1650 Arthur Street, Eugene,<br />

OR<br />

Amy Zelson Mundorff, MA*, and Corinne Ambrosi, MD,<br />

Office of Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New<br />

York, NY; and Jason Wiersema, MA, Department of<br />

Anthropology, Texas A&M University, 1602 Rock Cliff<br />

Road, Austin, TX<br />

Index 100<br />

574<br />

574<br />

575<br />

Paul D. Emanovsky, BS*, University of Indianapolis 575<br />

Archeology and <strong>Forensics</strong> Laboratory, 1400 East Hanna<br />

Avenue, Indianapolis, IN; Joseph T. Hefner, BS, and Dennis<br />

C. Dirkmaat, PhD, Mercyhurst Archaeological Institute,<br />

Mercyhurst College, 501 East 58th Street, Erie, PA<br />

Maureen Schaefer, MA*, 8549 Wuest Road, Cincinnati, OH 576<br />

Eric J. Bartelink, MA*, 611 Domink, College Station, TX;<br />

Turhon A. Murad, PhD, Department of Anthropology,<br />

California State University, Chico, CA; and Sarah Collins,<br />

MSc, 401 San Diego Avenue, Daly City, CA<br />

Mary S. Megyesi, BA*, University of Indianapolis, East<br />

Lansing, MI<br />

John J. Schultz, MS*, C.A. Pound Human ID Laboratory,<br />

University of Florida, PO Box 112545, Gainesville, FL<br />

Franklin E. Damann, MA*, Mark Leney, PhD, and Ann W.<br />

Bunch, PhD, U.S. Army Central Identification Laboratory,<br />

Hawaii, 310 Worchester Avenue, Hickam Air Force Base,<br />

Honolulu, HI<br />

Tosha L. Dupras, PhD*, Joy E. Lang, and Heather L. Reay,<br />

Department of Sociology and Anthropology, University of<br />

Central Florida, Orlando, FL; John J. Schultz, MS, and<br />

Anthony B. Falsetti, PhD, C.A. Pound Human Identification<br />

Laboratory, University of Florida, Gainesville, FL; and<br />

Noel A. Palma, BS, MD, <strong>Medical</strong> Examiner’s Office,<br />

Pinellas-Pasco County, West Palm Beach, FL<br />

Stephen P. Nawrocki, PhD*, Matthew A. Williamson, PhD,<br />

Christopher W. Schmidt, PhD, Heather A. Thew, MS, and<br />

Gregory A. Reinhardt, PhD, University of Indianapolis<br />

Archeology and <strong>Forensics</strong> Laboratory, 1400 East, Hanna<br />

Avenue, Indianapolis, IN<br />

577<br />

577<br />

578<br />

579<br />

579<br />

580


Homicide for the Holidays: Linkage<br />

Through Multidisciplinary Teamwork<br />

The Impact of Daubert on Testimony and<br />

Research in Forensic Anthropology<br />

Frank P. Saul, PhD*, Regional Commander, USPHS<br />

DMORT 5, and Julie Mather Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue Toledo, OH;<br />

Sandra Anderson, Canine Solutions International, PO Box<br />

50, Sanford, MI; Steven A. Symes, PhD, Forensic<br />

Anthropologist, Regional Forensic Center, 1060 Madison<br />

Avenue Memphis, TN; Cheryl L. Loewe, MD, Wayne<br />

County <strong>Medical</strong> Examiner’s Office, 1300 Warren, Detroit,<br />

MI; James R. Patrick, MD, Lucas County Coroner’s Office,<br />

2595 Arlington Avenue Toledo, OH; and Steven K. Lorch,<br />

PhD, Michigan State Police Laboratory, 42145 West Seven<br />

Mile Road, Northville, MI<br />

Angi M. Christensen, MA*, and Murray K. Marks, PhD,<br />

University of Tennessee Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN<br />

Challenges of the Haitian Courtroom Karen Ramey Burns, PhD*, Department of Anthropology,<br />

University of Georgia, 105 Tamarack Drive, Athens, GA<br />

582<br />

The Effective Forensic Investigation of Jose Pablo Baraybar, MSc*, Carlos Bacigalupo, BA, Aldo 582<br />

Human Rights Violations: A Model for F. Bolanos, Carmen C. Cardoza, BA, and Juan C. Tello,<br />

Training<br />

BA, Equipo Peruano de Antropologia Forense (EPAF),<br />

Calle 2, #369, Monterrico Norte, Lima, Peru, South<br />

America<br />

Confronting the Past in Guatemala: A Adriana Gabriela Santos Bremme, BS*, Apartado postal 583<br />

Challenge for Forensic Science<br />

01901-1830 Correo Central, Guatemala, Central America<br />

Human Remains Sold to the Highest Angie Kay Huxley, PhD*, Pima Community College West 583<br />

Bidder! A Snapshot of the Buying and Campus, Division of Science and Technology, Department<br />

Selling of Human Skeletal Remains on<br />

eBay®, an Internet Auction Site<br />

of <strong>Bio</strong>logy, PO Box 1136, Pomona, CA<br />

Forensic Application for Evaluating Robert R. Paine, PhD*, Physical Anthropology Department 584<br />

Cranial Trauma Cases From the Iron-Age of Sociology, MS1012, Texas Tech University, Lubbock,<br />

Site of Alfedena, Italy<br />

TX; Alfredo Coppa, PhD, Universita La Sapienza di Roma,<br />

Roma, and Mancinelli Domenico, PhD, Universita de<br />

L’Aquila, Italy, Roma<br />

One Unlucky Punch: The Etiology of a Todd W. Fenton, PhD*, Department of Anthropology, Joyce 584<br />

Fatal Depressed Skull Fracture<br />

L. de Jong, DO, Sparrow Health System, Department of<br />

Pathology, and Roger Haut, PhD, Orthopaedic<br />

<strong>Bio</strong>mechanics Laboratories, 354 Baker Hall, Michigan<br />

State University, East Lansing, MI<br />

Fracture Pattern Interpretation in the<br />

Skull: Differentiating Blunt Force From<br />

Ballistics Trauma<br />

Gina O. Hart, BA*, 933 Anchor Lake Road, Carriere, MS 585<br />

Determining Direction of Fire: An<br />

Natalie R. Langley, MA*, 357 South Curson Avenue, Los 586<br />

Anthropological Analysis of Gunshot<br />

Wounds to the Chest<br />

Angeles, CA<br />

Burning Observations of the Head: An Elayne J. Pope, MA*, University of Tennessee, 252 South 586<br />

Experimental Model<br />

Stadium Hall, Knoxville, TN; Steven A. Symes, PhD, and<br />

O’Brian C. Smith, MD, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN<br />

Index 101<br />

581<br />

581


Age Estimation of the Immature<br />

Individuals Starting From the Ratio<br />

Epiphysis Width/Diaphysis Width of the<br />

Bones of the Hand and the Wrist<br />

Contribution of Numeric Measurements to<br />

Fetal Sex Determination<br />

Modern Oral Piercings: The Application of<br />

Their Dental Wear Patterns for Forensic<br />

Anthropology<br />

Robber’s Personal Identification by<br />

Morphometric Analysis of Recorded<br />

Images<br />

Comparison of CT and MR Imaging<br />

Techniques to Traditional Radiographs in<br />

Human Identification<br />

A Comparison of Facial Approximation<br />

Techniques, Part 2<br />

A Comparative Study of Mammalian<br />

Cortical Bone<br />

Ankylosing Spondylitis in Three Forensic<br />

Cases<br />

Forensic Anthropology in Portugal: The<br />

State of Knowledge<br />

Thousands Dead: The Use of Stature in<br />

Individual Identification<br />

Norbert Telmon, MD*, Service de Medecine Legale, CHU<br />

Toulouse, 1 av J. Poulhes, Toulouse Cedex, France; Loic<br />

Lalys, Pascal Adalian,and Marie D. Piercecchi, Universite<br />

de la Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, UMR 6578, 27 Bd J. Moulin, Marseille<br />

Cedex 05, France; Olivier Dutour, Universite de la<br />

Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, CHU Toulouse, 1 av J. Poulhes, Marseille<br />

Cedex 05, France; Daniel Rouge, MD, Service de Medecine<br />

Legale, CHU Toulouse, 1 av J. Poulhes, Toulouse Cedex,<br />

France; and Georges Leonetti, MD, PhD, Universite de la<br />

Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, UMR 6578, 27 Bd J. Moulin, Marseille<br />

Cedex 05, France<br />

Pascal Adalian*, and Marie D. Piercecchi, Universite de la<br />

Mediterranee, Faculte de Medecine, Service de Medecine<br />

Legale, 27 Bd J. Moulin, Marseille Cedex 05, France;<br />

Norbert Telmon, MD, Service de Medecine Legale, CHU<br />

Toulouse, 1 av J. Poulhes, Toulouse Cedex, France; and<br />

Loic Lalys, Yann Ardagna, Michael Signoli, Olivier Dutour,<br />

and Georges Leonetti, MD, PhD, Universite de la<br />

Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, 27 Bd J. Moulin, Marseille Cedex 05,<br />

France<br />

Kristen M. Hartnett, BA*, and Denise To, MA, Department<br />

of Anthropology, Arizona State University, PO Box 872402,<br />

Tempe, AZ<br />

Francesco Introna, MD, University of Bari, Italy, Istituto di<br />

Medicina legale, Policlinico., Bari, Italy<br />

S. Taylor Slemmer, MA*, and Murray K. Marks, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Norman J. Sauer, PhD*, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI<br />

Harald Horni, BA*, and Robert R. Paine, PhD, 112436,<br />

Texas Tech University Department of Sociology, and Social<br />

Work, Box 41012, Lubbock, TX<br />

John J. Schultz, MS, Heather Walsh-Haney, MA*, Suzanne<br />

Coyle, MA, and Anthony B. Falsetti, PhD, C.A. Pound<br />

Human ID Laboratory, University of Florida, PO Box<br />

112545, Gainesville, FL<br />

Eugénia Cunha, PhD*,Universidade de Coimbra,<br />

Departmento de Anthopologia, Universidade de Coimbra,<br />

Portugal and Maria Cristina de Mendonça, PhD,<br />

Departmento de Anthropologia, Universidade de<br />

Coimbra/Instituto Nacional de Medicina Legal, Coimbra,<br />

Portugal<br />

Jose Pablo Baraybar*, MSc, ICTY, Churchillplein 1, Den<br />

Haag Netherlands, and Erin H. Kimmerle, MA, University<br />

of Tennessee, Knoxville, TN<br />

Index 102<br />

587<br />

587<br />

588<br />

589<br />

589<br />

590<br />

590<br />

590<br />

591<br />

591


The Analysis of Ancestry From Skeletal<br />

Remains and the Treatment of the Race<br />

Concept by British Forensic Scientists<br />

Differences in the Os Coxa Between Blacks<br />

and Whites<br />

An Assessment of Craniofacial Nonmetric<br />

Traits Currently Used in the Forensic<br />

Determination of Ancestry<br />

Population-Specific Identification Criteria<br />

for Cuban Americans in South Florida<br />

Age Estimation by the Examination of the<br />

Endocranial Sutures Closure: A North-<br />

African Adult Population Study<br />

Accuracy of Age at Death Estimates<br />

Derived From Human Cementum<br />

Increments<br />

Age Estimation From Long Bone Lengths<br />

in Forensic Data Bank Subadults: Evidence<br />

of Growth Retardation and Implications of<br />

Under Aging<br />

Quantitative Analyses of Human Pubic<br />

Symphyseal Morphology Using Three-<br />

Dimensional Data: The Potential Utility for<br />

Aging Adult Human Skeletons<br />

A Refinement of the Todd Method on a<br />

Sample of Modern Humans<br />

Robert F. Pastor, PhD*, The Calvin Wells Laboratory, and<br />

Jacinta N. Daines, BSc, Department of Archaeological<br />

Sciences, University of Bradford, West Yorkshire BD7 1DP,<br />

Bradford, United Kingdom<br />

Jennifer A. Synstelien, MA*, Department of Anthropology,<br />

250 South Stadium Hall, University of Tennessee,<br />

Knoxville, TN<br />

Joseph T. Hefner, BS*, Mercyhurst College, Forensic<br />

Anthropology Laboratory, 202 Parade Street, Erie, PA<br />

Ann H. Ross, PhD*, and Anthony B. Falsetti, PhD, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, Gainesville, FL; Dennis E. Slice, PhD, Department<br />

of Ecology & Evolution, State University of New York,<br />

Stony Brook, NY; and Douglas H. Ubelaker, PhD,<br />

Department of Anthropology, NMNH, Smithsonian<br />

Institution, Washington, DC<br />

Ali Chadly, MD*, Professor in Legal Medicine, Head of<br />

Department of Legal Medicine, Tarak Mghirbi, Resident, S.<br />

Krimi, Resident, and M. Ben Aycha, Médical Student,<br />

Département de Médicine Légale, Hôpital Universitaire “<br />

F. Bourguiba”, Monastir, Tunisia<br />

Index 103<br />

592<br />

592<br />

593<br />

594<br />

594<br />

Carrie Anne Berryman, MA*, Department of Anthropology, 595<br />

Vanderbilt University, Nashville, TN; and Jerome C. Rose,<br />

PhD, University of Arkansas, Department of Anthropology,<br />

Fayetteville, AR<br />

Martha Katherine Spradley, MA*, Knoxville, TN 595<br />

Matthew W. Tocheri, BA*, and Anshuman Razdan, PhD,<br />

PRISM, Arizona State University, Box 87-5106, Tempe, AZ<br />

Steven N. Byers, PhD*, and Jennifer L. Brady, BA,<br />

University of New Mexico, Department of Anthropology,<br />

Albuquerque, NM<br />

Age Estimation From Pubic Symphysis Alpana Sinha, MBBS, MD*, Assistant Professor,<br />

Department of Forensic Medicine & Toxicology, Lady<br />

Aquatic Decomposition Rates in South<br />

Central Louisiana<br />

The Role of Clothing in Estimating Time<br />

Since Death<br />

The Effects of Lime on the Decomposition<br />

Rate of Buried Remains<br />

Evaluation of Odor as a Time-Since-Death<br />

Indicator<br />

Hardinge <strong>Medical</strong> College, New Delhi, India<br />

Sherice L. Hurst, MA*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, 227 Howe- Russell Geoscience Complex,<br />

Baton Rouge, LA<br />

Robyn A. Miller, BA*, University of Tennessee Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

Heather A. Thew, MS*, and Stephen P. Nawrocki, PhD,<br />

University of Indianapolis, 1400 East Hanna Avenue<br />

Indianapolis, IN<br />

Jennifer C. Love, PhD*, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN<br />

596<br />

596<br />

597<br />

597<br />

598<br />

598<br />

599


Determining Postmortem Interval: A<br />

Preliminary Examination of Postmortem<br />

Thorium, Actinium, and Radium Isotopes<br />

in Bone<br />

Differentiation of Bone and Tooth From<br />

Other Materials Using SEM/EDS Analysis<br />

Factors That Affect mtDNA Recoverability<br />

From Osseous Remains<br />

How Not to Stage a Burial: Lessons From<br />

North Korea<br />

The Pits: Recovery and Examination of<br />

Skeletonized Remains From a Concrete<br />

Filled-Fire Pit<br />

Of Posteriors, Typicality, and Individuality<br />

in Forensic Anthropology<br />

The Validity of Using Unique <strong>Bio</strong>logical<br />

Features as a Method of Identifying<br />

Victims of War Crimes in the Former<br />

Yugoslavia<br />

Testing the Average Methodological<br />

Approach to Facial Approximation<br />

Human Skeleton Found in a Chimney: A<br />

Misidentification Corrected and an<br />

Opportunity to Reevaluate Methods of<br />

Superimposition<br />

Comparative Radiography of the Lateral<br />

Hyoid: A New Method for Human<br />

Identification<br />

Musculoskeletal Stress Markers: An<br />

Exploration of Forensic Applicability<br />

Be Tenacious in Your Searches for<br />

Clandestine Burials: A Lesson From the<br />

Field<br />

Christine N. Rea, MA*, Department of Anthropology, Kent<br />

State University, 228 Lowry Hall, Kent, OH; and H.O.<br />

Back, Department of Physics, Virginia Polytechnic Institute<br />

and State University, Robeson Hall, Blacksburg, VA<br />

Douglas H. Ubelaker, PhD*, Department, Anthropology,<br />

Smithsonian Institution, Washington, DC; Dennis C. Ward,<br />

BS, FBI Laboratory, Washington, DC; Valeria S. Braz,<br />

MSc, Federal University of Rio de Janeiro, Rio de Janeiro,<br />

Brazil; and John Stewart, PhD, FBI, Washington, DC<br />

Mark Leney, PhD*, U.S. Army CILHI, 310 Worchester<br />

Avenue Hickam Air Force Base, Honolulu, HI<br />

James T. Pokines, PhD*, Greg E. Berg, MA, Bradley J.<br />

Adams, MA, Ann W. Bunch, PhD, John E. Byrd, PhD, and<br />

Thomas D. Holland, PhD, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam Air Force<br />

Base, Honolulu, HI<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, Armed Forces Institute of Pathology,<br />

1413 Research Boulevard. Building 102, Rockville, MD<br />

Lyle W. Konigsberg, PhD*, and Richard L. Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Drive, Knoxville, TN<br />

Debra Komar, PhD*, Director, Laboratory of Human<br />

Osteology, Maxwell Museum, Department of Anthropology,<br />

University of New Mexico, Albuquerque, NM<br />

Carl N. Stephan, BHSc, Department of Anatomical<br />

Sciences, The University of Adelaide, Australia; Ian S.<br />

Penton-Voak, PhD, Department of Psychology, The<br />

University of Stirling, Scotland; David Perrett, PhD, and<br />

Bernard Tiddeman, PhD, School of Psychology, The<br />

University of St. Andrews, Scotland; John G. Clement,<br />

PhD*, School of Dental Science, The University of<br />

Melbourne, Australia; and Maciej Henneberg, DSc,<br />

Department of Anatomical Sciences, The University of<br />

Adelaide, Australia<br />

Edward B. Waldrip, PhD*, Southern Institute of Forensic<br />

Science, PO Box 15764, Hattiesburg, MS; Ted A. Rathbun,<br />

PhD, University of South Carolina, Department of<br />

Anthropology, Columbia, SC; Steven A. Symes, PhD,<br />

Regional Forensic Center, 1060 Madison Avenue,<br />

Memphis, TN; and James E. Lee, Adams County, 112 South<br />

Wall Street, Natchez, MS<br />

Jered B. Cornelison, MS*, Todd W. Fenton, PhD, and<br />

Norman J. Sauer, PhD, Department of Anthropology,<br />

Michigan State University, 446 East Fee Hall, East<br />

Lansing, MI; Joyce L. de Jong, DO; and Brian C. Hunter,<br />

MD, Sparrow Hospital, Forensic Pathology Services, 1215<br />

East Michigan Avenue, Lansing, MI<br />

Brian F. Spatola, MA*, Department of Geography and<br />

Anthropology, Louisiana State University, Baton Rouge, LA<br />

Ann W. Bunch, PhD*, and Calvin Y. Shiroma, DMD, U.S.<br />

CILHI, 310 Worchester Avenue, Hickam Air Force Base,<br />

Honolulu, HI<br />

Index 104<br />

599<br />

600<br />

600<br />

600<br />

601<br />

602<br />

602<br />

603<br />

603<br />

604<br />

604<br />

605


The Importance of Recovered Life-Support<br />

Equipment In the Resolution of MIA Cases<br />

Recovery and Identification Challenges in<br />

a Case of Suicidal Self-Cremation<br />

Accident, Suicide, or Homicide: A Case<br />

Study Involving the Investigation of<br />

Skeletonized and Bear-Scavenged Remains<br />

From Caffey (1946) to Kempe (1962):<br />

Historical Perspectives of the Recognition<br />

of Child Abuse<br />

Fracture Patterns in Abused Children: A<br />

Study of Skeletal Trauma Among Battered<br />

Children in a Clinical Cohort From the<br />

Leeds (UK) Metropolitan Area<br />

Diagnostic Imaging of Child Abuse: A<br />

Comparison of Radiographic Views to<br />

Detect Rib Fracture<br />

Recognizing Child Abuse in the Thoracic<br />

Region Through a Multidisciplinary<br />

Approach<br />

A Multidisciplinary Approach to Evaluate<br />

Chronic Malnutrition During Childhood in<br />

a Case of Suspected Fatal Child Abuse<br />

Chester E. Moore, II, PhD*, U.S. Army Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

Air Force Base, Honolulu, HI<br />

Emily A. Craig, PhD*, <strong>Medical</strong> Examiner's Office, 100<br />

Sower Boulevard, Suite 202, Frankfort, KY; and Corky<br />

Deaton, DMD, Consulting Forensic Odontologist, 359-C<br />

South Fourth Street, Danville, KY<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces<br />

<strong>Medical</strong> Examiner, Armed Forces Institute of Pathology,<br />

1413 Research Boulevard. Building 102, Rockville, MD<br />

Steven A. Symes, PhD*, Department of Forensic Pathology,<br />

University of Tennessee, Memphis, 1060 Madison Avenue,<br />

Memphis, TN; C. Ferraro, PhD, Long Island University,<br />

Long Island University, Brookville, NY, Susan B. Patton,<br />

MNSc, and O’Brian C. Smith, MD, Department of Forensic<br />

Pathology, University of Tennessee, Memphis, 1060<br />

Madison Avenue, Memphis, TN; and A.M. Kroman, BA,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, 252 South Stadium Hall, Knoxville, TN<br />

Saskia M. de Jager Burford, BA, MSc*, Department of<br />

Archaeological Sciences, University of Bradford, Bradford,<br />

United Kingdom; Robert F. Pastor, PhD, The Calvin Wells<br />

Laboratory, Department of Archaeological Sciences,<br />

University of Bradford, Bradford, United Kingdom; and<br />

Christopher J. Hobbs, BSc, MB, BS, MRCP, Department of<br />

Community Pediatrics, Saint James University Hospital,<br />

Leeds, United Kingdom<br />

Susan B. Patton, MNSc*, Steven A. Symes, PhD, O’Brian C.<br />

Smith, MD, T.A. Campbell, MD, and Cynthia D. Gardner,<br />

MD, Department of Forensic Pathology, University of<br />

Tennessee, Memphis, 1060 Madison Avenue, Memphis, TN<br />

Dennis C. Dirkmaat, PhD*, Mercyhurst College, 501 East<br />

38th Street, Erie, PA; Steven A. Symes, PhD, University of<br />

Tennessee Regional Forensic Center, 1060 Madison<br />

Avenue, Memphis, TN; Erik Vey, MD, Erie County<br />

Coroner’s Office, Erie County Courthouse, Erie, PA; and<br />

O’Brian C. Smith, MD, University of Tennessee Regional<br />

Forensic Center, 1060 Madison Avenue, Memphis, TN<br />

Susan M.T. Myster, PhD*, Hamline University, Department<br />

of Anthropology, Saint Paul, MN; Susan J. Roe, MD,<br />

Ramsey County <strong>Medical</strong> Examiner’s Office, 300 East<br />

University Avenue, Saint Paul, MN; Barbara H. O’Connell,<br />

PhD, Department of Anthropology, Hamline University,<br />

Saint Paul, MN; Janice J. Ophoven, MD, The Children’s<br />

Hospital, 345 North Smith Avenue, Saint Paul, MN; and<br />

Ann L. Norrlander, DDS, 1553 <strong>Medical</strong> Arts Building, 825<br />

Nicollet Mall, Minneapolis, MN<br />

Index 105<br />

605<br />

606<br />

606<br />

607<br />

608<br />

608<br />

609<br />

610


The Hidden Truth: Mandibular Condyle<br />

Fractures in Child Abuse<br />

A.M. Kroman, BA*, Department of Anthropology,<br />

University of Tennessee, Knoxville, 252 South Stadium<br />

Hall, Knoxville, TN; Steven A. Symes, PhD, O’Brian C.<br />

Smith, MD, and Jennifer C. Love, PhD, Department of<br />

Forensic Pathology, University of Tennessee, Memphis,<br />

1060 Madison Avenue, Memphis, TN; Harry H. Mincer,<br />

DDS, PhD, Division of Oral Pathology, Dunn Dental<br />

Building, Memphis, TN; and J.W. Lemmon, BS, Department<br />

of Forensic Pathology, University of Tennessee, Memphis,<br />

1060 Madison Avenue, Memphis, TN<br />

Child Abuse Case: Multiple Forensic Issues Murray K. Marks, PhD*, and Kathryn H. Haden, MD,<br />

Department of Pathology, The University of Tennessee<br />

<strong>Medical</strong> Center, 250 South Stadium Hall, Knoxville, TN<br />

Child Abuse: It’s All in the Recognition Steven A. Symes, PhD*, Susan B. Patton, MNSc*, T.D.<br />

Campbell, MD, Cynthia D. Gardner, MD, O’Brian C.<br />

Smith, MD, T. Paulette Sutton, MS, MT, and Craig T.<br />

Mallak, JD, MD, Department of Forensic Pathology,<br />

University of Tennessee, Memphis, 1060 Madison Avenue,<br />

Memphis, TN; and A.M. Kroman, BA, Department of<br />

Anthropology, University of Tennessee, Knoxville, 252<br />

South Stadium Hall, Knoxville, TN<br />

Index 106<br />

611<br />

611<br />

612


Index by Presenting Author<br />

Author by Last Name Title Page<br />

Adalian*, Pascal and Marie D. Piercecchi, Universite de Contribution of Numeric Measurements to 587<br />

la Mediterranee, Faculte de Medecine, Service de<br />

Medecine Legale, 27 Bd J. Moulin, Marseille Cedex 05,<br />

France; Norbert Telmon, MD, Service de Medecine<br />

Legale, CHU Toulouse, 1 av J. Poulhes, Toulouse Cedex,<br />

France; and Loic Lalys, Yann Ardagna, Michael Signoli,<br />

Olivier Dutour, and Georges Leonetti, MD, PhD,<br />

Universite de la Mediterranee, Faculte de Medecine, Unite<br />

d’ Anthropologie, 27 Bd J. Moulin, Marseille Cedex 05,<br />

France<br />

Fetal Sex Determination<br />

Adams, Bradley J. PhD*, Christian Crowder, PhD, and; Renewed Search, Recovery, and<br />

287<br />

Frank DePaolo, MPAS, Office of Chief <strong>Medical</strong> Examiner, Identification Efforts Related to the<br />

520 1st Avenue, New York, NY 10016<br />

September 11, 2001 Attacks of the World<br />

Trade Center<br />

Adams, Bradley J. PhD*, Office of Chief <strong>Medical</strong><br />

Quantification of Commingled Human 437<br />

Examiner, 520 First Avenue, New York, NY 10016; and Skeletal Remains: Determining the Most<br />

Lyle W. Konigsberg, PhD, University of Tennessee,<br />

Department of Anthropology, 252 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Likely Number of Individuals (MLNI)<br />

Adams, Bradley J. PhD*, Office of Chief <strong>Medical</strong><br />

Estimation of Living Stature From Selected 366<br />

Examiner, City of New York, 520 First Avenue, New York, Anthropometric (Soft Tissue) Measurements:<br />

NY 10016; and Nicholas P. Herrmann, PhD, University of How do These Compare With Osteometric<br />

Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

(Skeletal) Measurements?<br />

Adlam, Rachel E. MSc*, and Tal L. Simmons, PhD, Assessing the Effect of Repeated Physical 385<br />

University of Central Lancashire, Department of Forensic Disturbance Associated With Data Collection<br />

and Investigative Science, Maudland Building, Preston,<br />

PR1 2HE, United Kingdom<br />

in Experimental Decomposition Studies<br />

Agostini, Gina M. BS*, and Emily J. Gomez, BA, 4500 Forensic Anthropology Academic and 193<br />

Manor Village, Apartment 316, Raleigh, NC 27612 Employment Trends<br />

Agostini, Gina M. MA*, 205 Middle Street, Hadley, MA The Impact of Obesity on Morphology of the 128<br />

01035<br />

Femur<br />

Agostini, Gina M. MA*, 83 Newton Street, Greenfield, MA Can Femoral Shape be Used to Estimate 46<br />

01301<br />

Weight?<br />

Al Na’imi, Khudooma S. BSc*, University of Central Evaluation of Enamel Short Chemical History 156<br />

Lancashire, United Kingdom, Um Ghafa, Abu Dhabi, Al as a Forensic Tool: A Comparative Study of<br />

Ain, Box 16584, UNITED ARAB EMIRATES<br />

Six Countries<br />

Alamo, Ana Del BA*, 4521 Northeast 22 Road, Fort An Assessment of a Simple Model and 95<br />

Lauderdale, FL<br />

Method for Osteometric Sorting<br />

Albert, A. Midori BS, MA, PhD*, Anthropology Program, Preliminary Observations of Vertebral Centra 521<br />

University of North Carolina at Wilmington, 601 South<br />

College Road, Wilmington, NC 28403-5907<br />

Retraction and Its Relationship to Age<br />

Albert, A. Midori PhD*, University of North Carolina - Cervical Vertebral Centra Epiphyseal Union 24<br />

Wilmington, Department of Anthropology, 601 South as an Age Estimation Method in Teenage and<br />

College Road, Wilmington, NC 28403-5907<br />

Young Adult Skeletons<br />

Albert, A. Midori PhD*, University of North Carolina The Role of Adult Age-Related Craniofacial 181<br />

Wilmington, Department of Anthropology, 601 South Changes and the MORPH Database in<br />

College Road, Wilmington, NC 28403-5907<br />

Computer Automated Face Recognition<br />

Research and Development<br />

Index 107


Albert, Midori PhD*, Department of Anthropology,<br />

University of North Carolina Wilmington, 601 South<br />

College Road, Wilmington, NC 28403- 5907; Jeffery K.<br />

Tomberlin, PhD, Department of Entomology, Texas A&M<br />

University, 1229 North U.S. Highway 281, Stephenville, TX<br />

76401; and Christina Johnson, BA, Department of<br />

Sociology and Criminal Justice, University of North<br />

Carolina Wilmington, 601 S College Road, Wilmington,<br />

NC 28403-5978<br />

Algee-Hewitt, Bridget MA*, Rebecca J Wilson, MA, and<br />

Lee Meadows Jantz, PhD, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Algee-Hewitt, Bridget MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Rebecca J. Wilson, MA*, 3108<br />

Rennoc Road, Knoxville, TN 37918; and Megan Katrina<br />

Moore, PhD, University of Tennessee, University of<br />

Tennessee, Department of Anthropology, Knoxville, TN<br />

37996<br />

Allaire, Maria MA*, LSU FACES Laboratory, Louisiana<br />

State University, 227 Howe-Russell Bldg, Baton Rouge, LA<br />

70803; and Mary H. Manhein, MA, Department of<br />

Geography and Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Allaire, Maria T. MA*, 16 Pinedale Lane, Durango, CO<br />

81303<br />

Allaire, Maria T. MA*, 16 Pinedale Lane, Durango, CO<br />

81303; and Mary H. Manhein, MA, and Ginesse A. Listi,<br />

MA, Louisiana State University, Department of Geography<br />

and Anthropology, 227 Howe- Russell Building, Baton<br />

Rouge, LA 70803<br />

Allaire, Maria T. MA*, Louisiana State University FACES<br />

Laboratory, Louisiana State University, 227 Howe-Russell<br />

Building, Baton Rouge, LA 70803; and Mary H. Manhein,<br />

MA, Department of Geography & Anthropology, Louisiana<br />

State University, Baton Rouge, LA 70803<br />

Allbright, Amanda S. BA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Alsup, Kathleen MA*, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 307996<br />

Anderson, Bruce E. PhD*, and Walter H. Birkby, PhD,<br />

Forensic Science Center, 2825 East District Street, Tucson,<br />

AZ 85714<br />

Anderson, Bruce E. PhD*, Pima County Office of the<br />

<strong>Medical</strong> Examiner, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714<br />

Anderson, Bruce E. PhD*, University of Arizona,<br />

Department of Anthropology, Tucson, AZ 85721; and<br />

Thomas P. Gilson, MD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

Index 108<br />

Observations of Decomposition in Southern<br />

Coastal North Carolina<br />

The Donation Dilemma: Academic Ethics<br />

and Public Participation at the<br />

Anthropological Research Facility<br />

The Effects of Ethanol Abuse on Bone<br />

Mineral Density in the Proximal Femur<br />

Accuracy of Regression Formulae for Racing<br />

and Sexing the Cranial Base in a Forensic<br />

Collection<br />

Postmortem Interval Field Research at Three<br />

High Elevation <strong>Bio</strong>geoclimatic Zones in<br />

Southwest Colorado<br />

Blasting Caps: An Alternate Source of High<br />

Velocity Trauma in Human Skeletal Remains<br />

Shark-Inflicted Trauma on Human Skeletal<br />

Remains<br />

396<br />

358<br />

195<br />

273<br />

410<br />

426<br />

164<br />

Sexual Dimorphism in the Vertebral Column 397<br />

Investigation of Second, Fourth, and Eighth<br />

Sternal Rib End Variation Related to Age<br />

Estimation<br />

Forensic Anthropology at the Pima County<br />

(Arizona) Office of the <strong>Medical</strong> Examiner:<br />

The Identification of Foreign Nationals<br />

Identifying the Dead: Methods Utilized for<br />

Undocumented Immigrants, 2001-2003<br />

Modern Day Cranial Trepanation: The<br />

Ventriculosotomy<br />

260<br />

179<br />

497<br />

426


Anderson, Bruce E. PhD, Forensic Science Center, 2825<br />

East District Street, Tucson, AZ 85714; Tamela R. Smith,<br />

BA*, Arizona State University, Tempe, AZ 85281; Walter<br />

H. Birkby, PhD, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714; Todd W. Fenton, PhD,<br />

Michigan State University, 354 Baker Hall, Department of<br />

Anthropology, East Lansing, MI 48824; Carolyn V. Hurst,<br />

BA, Michigan State University, East Lansing, MI 48823;<br />

and Claire C. Gordon, PhD, U.S. Army Natick RD&E<br />

Center, Kansas Street, Natick, MA 01760-5020<br />

Anderson, Bruce E. PhD, Forensic Science Center, Office<br />

of the <strong>Medical</strong> Examiner, 2825 East District Street,<br />

Tucson, AZ 85714; Elizabeth A. Murray, PhD*, College of<br />

Mount Saint Joseph, Department of <strong>Bio</strong>logy, 5701 Delhi<br />

Road, Cincinnati, OH 45233-1670; Susan M.T. Myster,<br />

PhD, Hamline University, MB 196, 1536 Hewitt Avenue,<br />

Saint Paul, MN 55104; and Jennifer C. Love, PhD, Harris<br />

County Institute of Forensic Sciences, 1885 Old Spanish<br />

Trail, Houston, TX 77054<br />

Anderson, Gail S. PhD*, and Lynne S. Bell, PhD, Simon<br />

Fraser University, School of Criminology, 8888 University<br />

Drive, Burnaby, BC V5A 1S6, CANADA<br />

Andronowski, Janna M. BA*, University of Toronto, 19<br />

Russell Street, Toronto, ON M5S 2S2, CANADA; and<br />

Christian Crowder, PhD, New York Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016<br />

Angelis, Danilo De DDS*, and Pasquale Poppa, BSc,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy; Remo Sala, PhDc, Politecnico di Milano<br />

Facolta di Ingegneria Industriale Dipartimento di<br />

Meccanica Sezione di Misure e Tecniche Sperimentali, via<br />

Magiagalli 37, Milano, 20133, Italy; and Cristina<br />

Cattaneo, PhD, MD, Istituto di Medicina Legale, via<br />

Mangiagalli 37, Milano, 20133, Italy<br />

Arlotti, Ana Boza PhD*, Edwin F. Huffine, MS, and<br />

Richard J. Harrington, PhD, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo, Bosnia and<br />

Herzegovina<br />

Arlotti, Ana Boza PhD*, International Commission for<br />

Missing Persons, Alipasina 45a, Sarajevo 71000, Bosnia<br />

and Herzegovina<br />

Austin, Dana PhD*, and Paul E. Coffman, Tarrant County<br />

<strong>Medical</strong> Examiner District, 200 Feliks Gwozdz Place, Fort<br />

Worth, TX 76104-4919<br />

Ayers, Laura E. BA*, 206 B Redbud, New Braunfels, TX<br />

78130<br />

Aziz, Vanessa L. BA*, 11735 Bergamo Court, Las Vegas,<br />

NV 89183<br />

Index 109<br />

Differentiating Between Foreign National<br />

Hispanics and U.S. Hispanics in the<br />

Southwest: The Influence of Socioeconomic<br />

Status on Dental Health and Stature<br />

Involvement of Forensic Anthropologists in<br />

the National Unidentified and Missing<br />

Persons System (NamUs)<br />

Deep Coastal Marine Taphonomy: Interim<br />

Results From an Ongoing Experimental<br />

Investigation of Decomposition in the<br />

Saanich Inlet, British Columbia<br />

The Evaluation of Bone Area as a<br />

Histomorphometric Variable for Estimating<br />

Age at Death<br />

Identification of the Living on Video<br />

Surveillance Systems: A Novel Approach<br />

The Influence of Large-Scale DNA Testing<br />

on the Traditional Anthropological Approach<br />

to Human Identification: The Experience in<br />

Bosnia and Herzegovina<br />

Characterizing Primary and Secondary Mass<br />

Graves and Their Impact on Identification<br />

Methodology: The Experience in Bosnia and<br />

Herzegovina<br />

Resolution of Cold Identity Cases: Resources,<br />

Methodology, and a Review of Some Success<br />

Stories<br />

Differential Decomposition in Terrestrial,<br />

Saltwater, and Freshwater Environments: A<br />

Pilot Study<br />

Tarsal Measurements to Estimate Sex for Use<br />

in a Forensic Setting<br />

156<br />

10<br />

107<br />

55<br />

404<br />

541<br />

400<br />

290<br />

110<br />

160


Baccino, Eric MD*, Service de Medicine Legale, Hopital<br />

Lapeyronie Chu de Montpellier, Montpellier, 34295 Cedex<br />

5, France; Christina Cattaneo, Instituto di Medicine<br />

Legale, Via Mangiagalli, Milano, 20133, Itlay; Yves<br />

Schuliar, MD, Institut de Recherche Criminelle de la<br />

Gendarmerie Nationale, 1 Boulevard Theophile Sueur,<br />

Roisny-Sous-Bois, 93110, France; Eugenia Cunha, PhD,<br />

Departamento da Anthropologia, Universitate de Coimbra,<br />

Coimbra, 3000-056, Portugal; Randolph Penning, Institut<br />

Fur Rechtsmedizin, Frauenlobstrasse 8a, Munchen, 80337,<br />

Germany; and Jose Luis Prieto, Instituto de Medicina<br />

Forense, Severo Ochoa s/n, Madrid, 28040, Spain<br />

Bachmann, Jutta MSc*, Postweg 2, Fellbach, Baden-<br />

Wuerttemberg 70736, GERMANY<br />

Backo, Heather C. MA*, and John Verano, PhD, Tulane<br />

University Anthropology Department, 1021 Audubon<br />

Street, New Orleans, LA 70118<br />

Backo, Heather MA*, Tulane University Deaprtment of<br />

Anthropology, 1326 Audubon Street, New Orleans, LA<br />

70118<br />

Baker, Joan E. PhD*, and Alexander F. Christensen, PhD,<br />

Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Hickam Air<br />

Force Base, HI 96853<br />

Baker, Joan E. PhD*, and Eric B Emery, PhD, Joint<br />

POW/MIA Accounting Command Central Identification<br />

Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

Baker, Joan E. PhD*, and Helen D. Wols, PhD, Joint<br />

POW/MIA Accounting Command Central Identification<br />

Laboratory (JPAC CIL), 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853-5530<br />

Baker, Joan E. PhD*, Joint POW/MIA Accounting<br />

Command Central Identification, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Paul S. Sledzik,<br />

MS, National Transportation Safety Board, Office of<br />

Transportation Disaster Assistance, 490 L’Enfant Plaza,<br />

SW, Washington, DC 20594<br />

Baker, Joan E. PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Alexander F.<br />

Christensen, PhD, JPAC-CIL, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Index 110<br />

The Forensic Anthropology Society of<br />

Europe: An Introduction<br />

Assessment of Differences in Decomposition<br />

Rates of Rabbit Carcasses With and Without<br />

Insect Access Prior to Burial<br />

Lifestyles of the Unidentified: Challenges in<br />

Positive Identification<br />

The Contextual Nature of “Excessive Force”:<br />

Alcohol-Induced Osteopenia, Fracture<br />

Prevalence, and Healing Rates Among In-<br />

Custody and Homicide Deaths From the<br />

Harris County <strong>Medical</strong> Examiner’s Office<br />

An Epidemiological Study of Trauma in U.S.<br />

Casualties of the Korean War<br />

The Importance of Archaeological Site<br />

Formation Processes and Flexible Excavation<br />

Strategies to the Development of Successful<br />

Medicolegal Approaches to Mass Graves<br />

Excavation: Al Hatra, Iraq<br />

Race as a Variable in Dental Health of<br />

Korean War Military Personnel<br />

Morphological Variations of the Cervical<br />

Spine as Racial Indicators: A Validation and<br />

Observer Error Study Using the Terry<br />

Collection<br />

Peri-Mortem Skeletal Trauma in U.S. Korean<br />

War Soldiers: An Epidemiological and<br />

Historical Study of Prisoner-of-War and<br />

Battlefield Casualties<br />

463<br />

145<br />

415<br />

83<br />

281<br />

335<br />

431<br />

207<br />

85


Baker, Lori E. PhD*, Baylor University, Department of<br />

Anthropology and Forensic Science, Forensic Research<br />

Lab, One Bear Place #97388, Waco, TX 76798-7388; Lee<br />

Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996- 0720; Yasmine M. Baktash, BA,<br />

Baylor University, One Bear Place #97388, Waco, TX<br />

76798; and J. Randall Pearce, DDS, 3769 West Andrew<br />

Johnson Highway, Morristown, TN 37814<br />

Baker, Lori E. PhD*, Baylor University, Department of<br />

Anthropology, Forensic Science and Archaeology, One<br />

Bear Place #97388, Waco, TX 76798<br />

Baker, Lori E. PhD*, Baylor University, Forensic<br />

Research Lab, One Bear Place #97388, Waco, TX 76798-<br />

7388; and Yasmine M. Baktash, BA, Baylor University,<br />

One Bear Place #97388, Waco, TX 76798<br />

Baker, Lori E. PhD*, Department of Anthropology, Baylor<br />

University, PO Box 97370, Waco, TX 76798; Erich J.<br />

Baker, PhD, Department of Computer Science, Baylor<br />

University, Waco, TX 76798<br />

Baker, Lori E. PhD, Baylor University, Department of<br />

Anthropology, Forensic Science, and Archaeology, One<br />

Bear Place #97388, Waco, TX 76798; Carolyn P. Skurla,<br />

PhD*, Baylor University, Department of Mechanical<br />

Engineering, One Bear Place #97356, Waco, TX 76798;<br />

Zachary Kelm, BS, Mayo Clinic College of Medicine, 200<br />

1st Street SW, Rochester, MN 55905; Casey Anderson,<br />

Baylor University, Department of Anthropology, Forensic<br />

Science, and Archaeology, One Bear Place #97388, Waco,<br />

TX 76798; David R. Webster, BS, Baylor University,<br />

Department of Mechanical Engineering, One Bear Place<br />

#97356, Waco, TX 76798; Kieran P. McNulty, PhD, Baylor<br />

University, Department of Anthropology, Forensic Science,<br />

and Archaeology, One Bear Place #97388, Waco, TX<br />

76798; Kristy Bernard, BS, University of New Haven,<br />

Department of Forensic Science, 300 Boston Post Road,<br />

West Haven, CT 06516; and Eric A. Schaefer, and Daniel<br />

C. Bland, Baylor University, Department of Mechanical<br />

Engineering, One Bear Place #97356, Waco, TX 76798<br />

Baldridge, Robert S. PhD, Baylor University, PO Box<br />

97388, Waco, TX 76798; Susan G. Wallace, PhD*, Baylor<br />

University, PO Box 97370, Waco, TX 76798; Ryan<br />

Kirkpatrick, BS, Texas A&M University, Department of<br />

Entomology, College Station, TX 77843<br />

Baranoff, Rebekah K. BA*, 10 East 34th Street, Apartment<br />

#1, Erie, PA 16504<br />

Baraybar*, Jose Pablo MSc, ICTY, Churchillplein 1, Den<br />

Haag Netherlands, and Erin H. Kimmerle, MA, University<br />

of Tennessee, Knoxville, TN<br />

Baraybar, Jose P. BA, MS*, and Carmen R. Cardoza, BA,<br />

Equipo Peruano de Antropologia Forense (EPAF),<br />

Arnaldo Marquez 2144-D, Lima, Lima 11, Peru<br />

Index 111<br />

Preservation of Skeletal Collections: The<br />

Viability of DNA Analysis After the<br />

Application of Chemical Preservative<br />

SIRLI (Sistema de Identificación de Restos y<br />

Localización de Individuos): A Review of the<br />

First Year of Mexico’s Database for Missing<br />

Persons<br />

Death on America’s Southern Border: A<br />

Summary of Five Years of Genetic Data<br />

Acquisition and Analysis of the Reuniting<br />

Families Project<br />

Reuniting Families: Using Phenotypic and<br />

Genotypic Forensic Evidence to Identify<br />

Unknown Immigrant Remains<br />

Controlled Fracture of Bones Before and<br />

After Degradation Under Different<br />

Environmental Conditions<br />

Investigation of Nocturnal Oviposition by<br />

Forensic Flies in Central Texas<br />

Prognathism and Prosthion in the Evaluation<br />

of Ancestry<br />

Thousands Dead: The Use of Stature in<br />

Individual Identification<br />

Differential Diagnosis of Torture in Skeletal<br />

Remains<br />

253<br />

334<br />

104<br />

495<br />

310<br />

480<br />

121<br />

591<br />

338


Baraybar, Jose P. BA, MSc*, Office on Missing Persons<br />

and <strong>Forensics</strong> (OMPF), United Nations Mission in Kosovo<br />

(UNMIK), AUCON/KFOR, Kosovo A1503, Austria<br />

Baraybar, Jose P. MSc*, EPAF, Av. Mello Franco 341,<br />

Jesus Maria, PERU; and Ellen Salter-Pedersen, MA,<br />

Department of Anthropology, Indiana University, 701 East<br />

Kirkwood, SB130, Bloomington, IN 47405<br />

Baraybar, Jose P. MSc*, Equipo Peruano de Antropología<br />

Forense, Toribio Pacheco 216, Lima, Lima 18, PERU; and<br />

Bertrand Ludes MD, PhD, Institut de Medicine Légale de<br />

Strasbourg, 11, Rue Humann - 67085 Strasbourg, France<br />

Baraybar, Jose Pablo MSc*, Aldo Bolanos, Carmen Rosa<br />

Cardoza, Mellisa Lund, Giovani Macciotta, and Juan<br />

Carlos Tello, Peruvian Forensic Anthropology Team<br />

(EPAF), c/o ALAF and EAAF, 10 Jay Street #502,<br />

Brooklyn, NY 11201<br />

Baraybar, Jose Pablo MSc*, Carlos Bacigalupo, BA, Aldo<br />

F. Bolanos, Carmen C. Cardoza, BA, and Juan C. Tello,<br />

BA, Equipo Peruano de Antropologia Forense (EPAF),<br />

Calle 2, #369, Monterrico Norte, Lima, Peru, South<br />

America<br />

Barbian, Lenore PhD*, and Paul S. Sledzik, MS, National<br />

Museum of Health and Medicine, Armed Forces Institute of<br />

Pathology, 6825 16th Street NW, Washington, DC 20306-<br />

6000<br />

Barbian, Lenore PhD*, Department of History &<br />

Anthropology, Edinboro University of Pennsylvania,<br />

Edinboro, PA 16444<br />

Barbian, Lenore T. PhD*, and Paul S. Sledzik, MS,<br />

National Museum of Health and Medicine, Armed Forces<br />

Institute of Pathology, Washington, DC<br />

Bartelink, Eric J. MA*, 611 Domink, College Station, TX;<br />

Turhon A. Murad, PhD, Department of Anthropology,<br />

California State University, Chico, CA; and Sarah Collins,<br />

MSc, 401 San Diego Avenue, Daly City, CA<br />

Bartelink, Eric J. MA*, Jason M. Wiersema, MA, and<br />

Maria Parks, MA, Department of Anthropology, Texas A &<br />

M University, College Station, TX; Gaille MacKinnon, BA,<br />

MSc, Department of Conservation Sciences, University of<br />

Bournemouth, Bournemouth, United Kingdom; and Amy<br />

Zelson Mundorff, MA, Office of Chief <strong>Medical</strong> Examiner,<br />

New York City, 520 First Avenue, New York, NY<br />

Bartelink, Eric J. PhD*, 400 West First Street, Department<br />

of Anthropology, Butte #311, CSUC, Chico, CA 95929-<br />

0400; Melanie Beasley, BS, 400 West First Street, Chico,<br />

CA 95929-0400; Chelsey A. Juarez, MA, Department of<br />

Anthropology, UCSC Social Science 1, 1156 High Street,<br />

Santa Cruz, CA 95064<br />

Bartelink, Eric J. PhD*, and Lisa N. Bright, BS, California<br />

State University-Chico, 400 West First Street, Department<br />

of Anthropology, Butte #311, Chico, CA 95929-0400<br />

Index 112<br />

When DNA is Not Available Can We Still<br />

Identify People? Recommendations for Best<br />

Practice<br />

The Need for Holistic Investigations of<br />

Human Rights Violations: An Example From<br />

Peru<br />

Unearthing Peru’s Buried Secrets: La Cantuta<br />

Revisited<br />

The Peruvian Forensic Anthropology Team<br />

(EPAF) and the Memory of the Missing<br />

The Effective Forensic Investigation of<br />

Human Rights Violations: A Model for<br />

Training<br />

472<br />

184<br />

286<br />

508<br />

582<br />

Healing Following Cranial Trauma 510<br />

Long Bone Healing Following Trauma 69<br />

Fifteen Years of Forensic Anthropology Short<br />

Courses at the National Museum of Health<br />

and Medicine/AFIP<br />

Forensic Anthropology and Fire<br />

Investigation: Learning About Burning Using<br />

Non-Human Models<br />

Back to the Basics: Anatomical Siding of<br />

Fragmentary Skeletal Elements From Victims<br />

of the World Trade Center Disaster<br />

Extending the <strong>Bio</strong>logical Profile Using Stable<br />

Carbon and Nitrogen Isotope Analysis:<br />

Prospects and Pitfalls<br />

Taphonomic Signatures of Animal<br />

Scavengers in Northern California<br />

558<br />

577<br />

535<br />

248<br />

205


Bartelink, Eric J. PhD, 400 West First Street, Department<br />

of Anthropology, Butte #311, California State University-<br />

Chico, Chico, CA 95929-0400; and Lisa N. Bright, BS*,<br />

1259 Hobart, Chico, CA 95926<br />

Bass, William M. PhD*, and Richard L. Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Bassett, H. Beth MA*, and Mary H. Manhein, MA,<br />

Forensic Anthropology and Computer Enhancement<br />

Services Laboratory, Department of Geography and<br />

Anthropology, Louisiana State University, Baton Rouge,<br />

LA 70803<br />

Bassett, Helen E. MA*, M. Katherine Spradley, MA, and<br />

Lee Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

Beary, Mark O. MS*, University of Missouri at Columbia,<br />

107 Swallow Hall, Columbia, MO 65211-1440; and Luis L.<br />

Cabo-Pérez, MS, Mercyhurst College, Department Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

Beatty, Jennifer L. JD*, Department of Justice, Criminal<br />

Division, International Criminal Investigative Training<br />

Assistance Program, 1331 F Street NW Suite 500,<br />

Washington, DC 20530; Andrew Tyrrell, PhD, Eric Emery,<br />

PhD, William R. Belcher, PhD, and Derek C. Benedix,<br />

PhD, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, Building 45, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-3350; and Liliana del<br />

Amparo Segura Leal, and Manuel A. Torres Rojas,<br />

Prosecutor General’s Office, Technical Investigation<br />

Corps (CTI), Diagonal 22B No. 52-01, Bogota, DC,<br />

Colombia<br />

Beckett, Sophie MSc*, and Keith D. Rogers, PhD,<br />

Cranfield University, Cranfield Forensic Institute,<br />

Department of Materials and Applied Science, Shrivenham,<br />

Swindon, SN6 8LA, UNITED KINGDOM<br />

Belcher, William R. PhD*, and Derek C. Benedix, PhD,<br />

JPAC-CIL, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853-5530<br />

Bell, Suzanne PhD*, West Virginia University, Department<br />

of Chemistry, PO Box 6045, Morgantown, WV 26506;<br />

Richard L. Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, Knoxville, TN 37996-0720<br />

Beltran, Leilani E. MFS, Forensic Sciences Program,<br />

National University, 11355 North Torrey Pines Road, La<br />

Jolla, CA 92037; and A. Midori Albert, PhD*,<br />

Anthropology Program, University of North Carolina at<br />

Wilmington, 601 South College Road, Wilmington, NC<br />

28403<br />

Benedix, Derek C. PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853-5530; and<br />

William R. Belcher, PhD, JPACCIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853-5530<br />

Index 113<br />

Inter- and Intra-Element Variation in<br />

Carnivore and Rodent Scavenging Patterns in<br />

Northern California<br />

Variation in Cremains Weight: Tennessee vs.<br />

Florida<br />

The Louisiana Identification Data Analysis<br />

Project (IDA): A Comprehensive Analysis of<br />

Missing and Unidentified Cases<br />

The William M. Bass Donated Collection at<br />

the University of Tennessee - Knoxville<br />

Estimation of Bone Exposure Duration<br />

Through the Use of Spectrophotometric<br />

Analysis of Surface Bleaching and its<br />

Applications in Forensic Taphonomy<br />

Creating a Standardized Approach to<br />

Capacity Building Programs in Forensic<br />

Anthropology: Human Rights Investigations<br />

in Colombia<br />

Species Identification of Fragmented Bone:<br />

Evaluation of a New Method of Pyrolysis and<br />

X-ray Diffraction Analysis<br />

Burial Patterns of Korean War Casualties as<br />

an Indicator of the Social Relationships<br />

Between the Dead and the Living<br />

Genes, Nerves, and Bones: Neural Networks,<br />

Genetic Algorithms, and Forensic<br />

Anthropology<br />

Dental Enamel Thickness as a Method of<br />

Subadult Sex Determination<br />

Research Trends During the History of the<br />

Physical Anthropology Section at the AAFS<br />

Annual Meetings<br />

111<br />

472<br />

463<br />

535<br />

230<br />

336<br />

252<br />

400<br />

517<br />

430<br />

374


Berg, Gregory E. MA*, Joint POW/MIA Accounting<br />

Command, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Berg, Gregory E. MA*, Sabrina C. Ta’ala, MA, Elias J.<br />

Kontanis, PhD, and Sardiaa Plaud, BS, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Berg, Gregory E. MA*, US Army Central ID Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Berg, Gregory E. MA*and Erin Kimmerle, MA, University<br />

of Tennessee, 250 South Stadium Way, Knoxville, TN<br />

37996<br />

Berryman*, John F. University of Tennessee, Lebanon, TN;<br />

Hugh E. Berryman, PhD, Metropolitan and Davidson<br />

County <strong>Medical</strong> Examiner’s Office, Lebanon, TN; Robert<br />

A. LeMaster, PhD, PE, Department of Engineering,<br />

College of Engineering and Natural Science, Martin, TN;<br />

and Carrie Anne Berryman, MA, Vanderbilt University,<br />

Nashville, TN<br />

Berryman, Carrie Anne MA*, Department of<br />

Anthropology, Vanderbilt University, Nashville, TN; and<br />

Jerome C. Rose, PhD, University of Arkansas, Department<br />

of Anthropology, Fayetteville, AR<br />

Berryman, Hugh E. PhD*, Department Sociology &<br />

Anthropology, Middle Tennessee State University, Box 89,<br />

Murfreesboro, TN 37132<br />

Berryman, Hugh E. PhD*, Middle Tennessee State<br />

University, Department of Sociology and Anthropology,<br />

Box 10, Murfreesboro, TN 37132; and Alicja K Kutyla,<br />

BS*, Middle Tennessee State University, MTSU Box 60,<br />

Murfreesboro, TN 37132<br />

Berryman, Hugh E. PhD*, Sociology and Anthropology,<br />

PO Box 10, Middle Tennessee State University,<br />

Murfreesboro, TN 37132; and Carrie Anne Berryman, MA,<br />

Department of Anthropology, Vanderbilt University, 2301<br />

Vanderbilt Place, Box 356050, Station B, Nashville, TN<br />

37235<br />

Bethard, Jonathan D. BA*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37916<br />

Bethard, Jonathan D. MA*, and Christine M. Pink, MA,<br />

The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37916<br />

Bethard, Jonathan D. MA*, Pellissippi State Community<br />

College, 10915 Hardin Valley Road, PO Box 22990,<br />

Knoxville, TN 37933<br />

Bethard, Jonathan D. MA*, The University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, Tennessee 37996; and Murray K. Marks, PhD*,<br />

University of Tennessee, Graduate School of Medicine,<br />

1924 Alcoa Highway, Knoxville, TN 37920-6999<br />

Index 114<br />

Discriminant Function Analysis as Applied to<br />

Mandibular Morphology to Assess<br />

Population Affinity<br />

The Curse of the Curvaceous Femur, the<br />

Litigious Line, and the Intrepid Investigator<br />

Discriminant Function Analysis as Applied to<br />

Mandibular Metrics to Assess Population<br />

Affinity<br />

Aging the Elderly: A New Look at an Old<br />

Method<br />

Numerical Simulation of Fracture<br />

Propagation in a Test of Cantilevered Tubular<br />

Bone<br />

Accuracy of Age at Death Estimates Derived<br />

From Human Cementum Increments<br />

Full Time Employment of Forensic<br />

Anthropologists in <strong>Medical</strong><br />

Examiner’s/Coroner’s Offices in the United<br />

States—A History<br />

Gunshot Residue (GSR) on Bone as a<br />

Potential Indicator of Gunshot Trauma in the<br />

Absence of a Bullet Wound Defect — A<br />

Noteworthy Observation<br />

Considerations in Differentiating Negligence<br />

From Deliberate Misconduct — Lessons<br />

Learned From Tri-State Crematorium<br />

Skeletal Markers of Parturition: Analysis of a<br />

Modern American Sample<br />

Hyoid Fusion and the Relationship With<br />

Fracture: Forensic Anthropological<br />

Implications<br />

The American Board of Forensic<br />

Anthropology: Historical Trends in Research<br />

and Training<br />

Aquatic Taphonomy in a Lacustrine<br />

Environment: A Case Study From<br />

Southeastern Tennessee<br />

369<br />

326<br />

264<br />

475<br />

552<br />

595<br />

175<br />

246<br />

357<br />

471<br />

317<br />

8<br />

200


Bird, Cate E. BA*, Michigan State University, 2740 Senate<br />

Drive, #3E, Lansing, MI 48912; and Amy R. Michael, BA,<br />

Michigan State University, 528 West Lapeer Street,<br />

Lansing, MI 48933<br />

Birkby, Walter H. PhD*, Forensic Science Center, Office<br />

of the <strong>Medical</strong> Examiner, Pima County, 2825 East District<br />

Street, Tucson, AZ 85714<br />

Bodkin, Thomas E. MA*, Hamilton County <strong>Medical</strong><br />

Examiner Office, 3202 Amnicola Highway, Chattanooga,<br />

TN 37406; and Gretchen E. Potts, PhD, Kira Shurtz, and<br />

Timothy Brooks, University of Tennessee at Chattanooga,<br />

Department of Chemistry, 404 Grote Hall, Chattanooga,<br />

TN 37403<br />

Bodkin, Thomas E. MA*, Hamilton County <strong>Medical</strong><br />

Examiner Office, 3202 Amnicola Highway, Chattanooga,<br />

TN 37406; Jonathan W. Mies, PhD, University of<br />

Tennessee at Chattanooga, Department of Physics,<br />

Geology, and Astronomy, Department 6556, Chattanooga,<br />

TN 37403<br />

Bodkin, Tom E. MA*, Hamilton County <strong>Medical</strong> Examiner<br />

Office, 3202 Amnicola Highway, Chattanooga, TN 37406;<br />

Timothy Brooks, and Gretchen E. Potts, PhD, University of<br />

Tennessee at Chattanooga, Department of Chemistry, 615<br />

McCallie Avenue, Grote Hall, 4th Floor, Chattanooga, TN<br />

37403; and Stephanie Smullen, PhD, University of<br />

Tennessee at Chattanooga, Department of Computing<br />

Sciences, 615 McCallie Avenue, Department 2302,<br />

Chattanooga, TN 37403<br />

Bodkin, Tom E. MA*, Hamilton County <strong>Medical</strong> Examiner<br />

Office, 3202 Amnicola Highway, Chattanooga, TN 37409<br />

Bongiovanni, Rosanne BA*, 601 University Drive, ELA<br />

232, San Marcos, TX 78666<br />

Borrini, Matteo MS*, via del Mattone 17\a, La Spezia,<br />

19131, ITALY; Maria V. Tumbarello, Via Luigi Calabresi<br />

14, Montecatini (PT), AE 51016, ITALY<br />

Bouwman, Allison BA*, Jessica Dimka, BS, Jennifer<br />

Halpain, BS, Turhon A. Murad, PhD, and Eric J. Bartelink,<br />

PhD, California State University, Chico, 400 West First<br />

Street, Department of Anthropology, Butte #311, Chico, CA<br />

95929-0400<br />

Boyd, Cliff PhD, and; Donna C. Boyd, PhD*, Radford<br />

University, Department of Sociology & Anthropology, Box<br />

6948, Russell Hall 228, Radford, VA 24142<br />

Boyd, Donna C. PhD*, Lindsay Sliwa, BS, and Cliff Boyd,<br />

PhD*, Radford University, Anthropological Sciences<br />

Program, School of Environmental and Physical Sciences,<br />

Radford, VA 24142<br />

Boyd, Donna C. PhD*, Radford University, Box 6948,<br />

Department of Sociology and Anthropology, Radford, VA<br />

24142; William Massello III, MD, Office of the Chief<br />

<strong>Medical</strong> Examiner, 6600 Northside High School Road,<br />

Roanoke, VA 24019<br />

Index 115<br />

A Preliminary Study of the Timing of<br />

Specific Characteristics of Copper and Iron<br />

Discoloration on Bone<br />

Ours or Theirs? 494<br />

Elemental Analysis of Human Cremains<br />

Using Inductively-Coupled Plasma Optical<br />

Emission Spectroscopy (ICP-OES) to<br />

Distinguish Between Legitimate and<br />

Contaminated Cremains<br />

X-ray Diffraction (XRD) Analysis of Human<br />

Cremains and Concrete<br />

Trace Element Analysis of <strong>Medical</strong> School<br />

Cadaver Cremains<br />

Outside Traditional Skeletal Casework: A<br />

Forensic Anthropologist in a <strong>Medical</strong><br />

Examiner’s Office<br />

Estimating Sex of the Human Skeleton Based<br />

on Metrics of the Sternum<br />

Taphonomy Reader Beta-Version: A<br />

Software to Help in Taphonomic Syndromes<br />

Diagnosis<br />

Differential Wound Healing Patterns in Bone:<br />

A Case Study Involving Multiple<br />

Antemortem Injuries<br />

Towards a Comprehensive Theory in<br />

Forensic Anthropology<br />

Differential Decomposition of Non-<br />

Traumatized, Blunt Force, and Sharp Force-<br />

Traumatized Buried Pig Carcasses<br />

Skeletons in the <strong>Medical</strong> Examiner’s Closet:<br />

Realities and Merits of Investigating Human<br />

Skeletal Remains Undergoing Long Term<br />

Curation in the <strong>Medical</strong> Examiner’s Office<br />

64<br />

435<br />

249<br />

402<br />

519<br />

72<br />

50<br />

316<br />

228<br />

89<br />

466


Brand, Heather J. BA*, 422 Queen Anne Heights, Victoria, The Effect of Carcass Weight on the 239<br />

British Columbia V8S 4K6, CANADA<br />

Decomposition of Pigs (Sus scrofa)<br />

Brewer, Victoria L. BSc*, Bournemouth University, School Observed Taphonomic Changes and Drift 414<br />

of Conservational Sciences, Talbot Campus, Poole, Trajectory of Bodies Recovered From the<br />

Doreset BH12 5BB, United Kingdom<br />

Tidal Thames, London England: A 15-Year<br />

Retrospective Study<br />

Briceno*, Claudia M. Departamento Administrativo de Forensic Findings on Illegal Burials in 186<br />

Seguridad, Carrera 28 # 17a-00, BOGOTA, COLOMBIA Colombia<br />

Bright, Lisa N. BS*, 1259 Hobart, Chico, CA 95926 Animal Scavenging and Taphonomic<br />

Interpretation: An Evaluation of the Role of<br />

Scavenger Behavior and Environmental<br />

Context in Outdoor Forensic Scenes<br />

49<br />

Bright, Lisa N. BS*, California State University, Chico, Ancestry Trends in Trophy Skulls in 122<br />

400 West First Street, Chico, CA 95928; Ashley E. Kendell,<br />

BS*, 808 West 2nd Avenue, Apartment 12, Chico, CA<br />

95926; and Turhon A. Murad, PhD, California State<br />

University, Chico, Department of Anthropology, Chico, CA<br />

95929-0400<br />

Northern California<br />

Brogdon, B.G. MD*, University of South Alabama <strong>Medical</strong> Fingering a Murderer: A Successful<br />

183<br />

Center, Department of Radiology, 2451 Fillingim Street, Anthropological and Radiological<br />

Mobile, AL 36617; Marcella H. Sorg, PhD*, Margaret<br />

Chase Smith Policy Center, University of Maine, Orono,<br />

ME 04469; and Kerriann Marden, MA, c/o 23 Flicker<br />

Drive, Topsham, ME 04086<br />

Collaboration<br />

Brown, Carrie A. BA*, Nikki A. Willits, BA, Brenna K. Fractured Frontier: An Analysis of Fracture 218<br />

Blanchard, BA, and Kristin L. Chelotti, BA, California<br />

State University, Department of Anthropology, 400 West<br />

First Street, Butte Hall 311, Chico, CA 95929<br />

Patterns in a Historic Nevada Cemetery<br />

Brown, Carrie A. MA*, Joint POW/MIA Accounting Understanding Uncertainty in Age<br />

125<br />

Command Central Identification Laboratory, 310<br />

Estimation: Error Associated With the Mann<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853 et al. Maxillary Suture Method<br />

Brown, Carrie A. MA*, Joint POW/MIA Accounting Sacral Epiphyseal Fusion at S1-S2:<br />

16<br />

Command Central Identification Laboratory, JPAC-CIL,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853<br />

Classification, Comparability, and Error<br />

Brown, Robert P. MFS*, 22nd Military Police Battalion Evaluation of Purkait’s Triangle Method for 372<br />

(CID), USACIDC, PO Box 331009, Mailstop #84, Fort<br />

Lewis, WA 98433; Douglas H. Ubelaker, PhD,<br />

Smithsonian Institution’s National Museum of Natural<br />

History, Department of Anthropology, 10th and<br />

Constitution Avenue NW, MRC 112, PO Box 37012,<br />

Washington, DC 20013; and Moses S. Schanfield, PhD,<br />

The George Washington University, Department of<br />

Forensic Sciences, 2036 H Street NW, 102 Samson Hall,<br />

Washington, DC 20052<br />

Determining Sexual Dimorphism<br />

Index 116


Bunch, Ann W. PhD*, 164 Albert Brown Building,<br />

Department of Criminal Justice, SUNY Brockport,<br />

Brockport, NY 14420; Mary I. Jumbelic, MD, Onondaga<br />

County <strong>Medical</strong> Examiners Office, 100 Elizabeth Blackwell<br />

Street, Syracuse, NY 13210; Robert D. Willis, DDS, 7282<br />

Oswego Road, Liverpool, NY 13090; Ronald Brunelli,<br />

Onondaga County <strong>Medical</strong> Examiner’s Office, 100<br />

Elizabeth Blackwell Street, Syracuse, NY 13210; and<br />

Jennifer J. VanWie-Dobson, BA, 403 Robinson Road,<br />

Durham, NC 27705<br />

Bunch, Ann W. PhD*, and Calvin Y. Shiroma, DMD, U.S.<br />

CILHI, 310 Worchester Avenue, Hickam Air Force Base,<br />

Honolulu, HI<br />

Bunch, Ann W. PhD*, State University of New York at<br />

Oswego, 310 Mahar Hall, Department of Anthropology,<br />

Oswego, NY 13126<br />

Burke, Kelly L. MSc*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Burke, Rachel M. MA*, 10024 Northeast 120th Sreet #D3,<br />

Kirkland, WA<br />

Burns, Karen R. PhD*, University of Utah, Department of<br />

Anthropology, 270 South 1400 East, Salt Lake City, UT<br />

84112-0060; and Ana C. Guatame-Garcia, MSc, Calle<br />

126A #7C-45, Bogota, COLOMBIA<br />

Burns, Karen Ramey PhD*, Department of Anthropology,<br />

University of Georgia, 105 Tamarack Drive, Athens, GA<br />

Burt, Nicole M. MS*, Forensic Anthropology Laboratory,<br />

Michigan State University, A-439 East Fee Hall, East<br />

Lansing, MI 48824<br />

Byers, Steven N. PhD*, and Jennifer L. Brady, BA,<br />

University of New Mexico, Department of Anthropology,<br />

Albuquerque, NM<br />

Byers, Steven N. PhD*, University of New Mexico at<br />

Valencia, 280 La Entrada Road, Los Lunas, NM 87031<br />

Byrd, John E. PhD*, and Bradley J. Adams, PhD, U.S.<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI; and Lisa M. Leppo, PhD, and Richard J.<br />

Harrington, PhD, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Byrd, John E. PhD*, JPAC Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853; and Bradley J. Adams, PhD, Office of Chief<br />

<strong>Medical</strong> Examiner, 520 First Avenue, New York, NY 10016<br />

Byrnes, Jennifer F. BS*, SUNY University at Buffalo,<br />

Department of Anthropology, 380 MFAC, Ellicott<br />

Complex, Buffalo, NY 14261-0026; and Peter J. Bush, BS,<br />

SUNY at Buffalo, South Campus Instrument Center, B1<br />

Squire Hall, South Campus, Buffalo, NY 14214<br />

Index 117<br />

A Multidisciplinary Test of the Lamendin<br />

Age Estimation Method<br />

Be Tenacious in Your Searches for<br />

Clandestine Burials: A Lesson From the Field<br />

A Preliminary Investigation of<br />

Decomposition in Cold Climate<br />

Schmorl’s Nodes in the Skeletal Remains of<br />

an American Military Population: Frequency,<br />

Formation, and Etiology<br />

Can We Estimate Stature From the Scapula?<br />

A Test Considering Sex and Ancestry<br />

Comparison of Fresh Tissue Autopsy and<br />

Skeletal Analysis Reports in Colombia<br />

174<br />

605<br />

384<br />

Challenges of the Haitian Courtroom 582<br />

Testing the Demirjian Method and the<br />

International Demirjian Method on an Urban<br />

American Sample<br />

A Refinement of the Todd Method on a<br />

Sample of Modern Humans<br />

Nonmetric Trait Frequencies and the<br />

Attribution of Ancestry<br />

Resolution of Large-Scale Commingling<br />

Issues: Lessons From CILHI and ICMP<br />

Osteometric Sorting of Commingled Human<br />

Remains<br />

Practical Considerations in Trace Element<br />

Analysis of Bone by Portable X-Ray<br />

Fluorescence<br />

70<br />

73<br />

51<br />

256<br />

596<br />

485<br />

540<br />

438<br />

151


Byrnes, Jennifer F. MA*, SUNY at Buffalo, Department of<br />

Anthropology, 380 MFAC, Ellicott Complex, Buffalo, NY<br />

14261-0026; Peter J. Bush, BS, SUNY at Buffalo, South<br />

Campus Instrument Center, B1 Squire Hall, South Campus,<br />

Buffalo, NY 14214; Esther J. Lee, MSc, and D. Andrew<br />

Merriwether, PhD, Binghamton University, Department of<br />

Anthropology, PO Box 6000, Binghamton, NY 13902-6000;<br />

and Joyce E. Sirianni, PhD, SUNY at Buffalo, Department<br />

of Anthropology, 380 MFAC, Ellicott Complex, Buffalo, NY<br />

14261-0026<br />

Bytheway, Joan A. PhD*, Sam Houston State University,<br />

1003 Bowers Boulevard, Huntsville, TX 77340; Kathryn E.<br />

Moss, BS*, 4800 Calhoun Street, Houston, TX 77004; and<br />

Stephen M. Pustilnik, MD*, Galveston County <strong>Medical</strong><br />

Examiner’s Office, 6607 Highway 1764, Texas City, TX<br />

77591<br />

Bytheway, Joan A. PhD*, Sam Houston State University,<br />

Chemistry & Forensic Science Building, 1003 Bowers<br />

Boulevard, Box 2525, Huntsville, TX 77340<br />

Bytheway, Joan A. PhD*, Sam Houston State University,<br />

Chemistry & Forensic Science Building, 1003 Bowers<br />

Boulevard, Box 2525, Huntsville, TX 77340; and Ann H.<br />

Ross, PhD*, North Carolina State University, Sociology<br />

and Anthropology, Campus Box 8107, Raleigh, NC 27695-<br />

8107<br />

C. Smith, O’ Brian MD, Regional Forensic Center of the<br />

University of Tennessee, 1060 Madison Ave, Memphis, TN;<br />

and Elayne J. Pope, MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR<br />

Calce, Stephanie E. BSc*, University of Toronto,<br />

Department of Anthropology, 3359 Mississauga Road<br />

North, Mississauga, ON L5L1C6, CANADA<br />

Caldwell, Lindsey L. BA*, 2245 College Drive, Apartment<br />

178, Baton Rouge, LA 70808; MariaTeresa A. Tersigni,<br />

PhD, Department of Anthropology, Univeristy of<br />

Cincinnati, Braunstein 481 PO 210380, Cincinnati, OH<br />

45221; and Mary H. Manhein, MA, Department of<br />

Geography & Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Campos Varela*, Isla Y. and Maria D. Morcillo, MD,<br />

National Institute of Legal Medicine, Calle 7 A Number 12-<br />

61, Piso 3, Bogota, COLOMBIA<br />

Campos Varela*, Isla Yolima Institute of Legal Medicine,<br />

Calle 7A #12- 61, Bogota, COLOMBIA; and Elizabeth A.<br />

DiGangi, PhD*, ICITAP, Calle 125 #19-89, Of. 401,<br />

Bogota, COLOMBIA<br />

Index 118<br />

Validity of Portable X-Ray Fluorescence in<br />

Assistance With Identification of Individuals<br />

in a Burial Setting by Comparison With<br />

mtDNA<br />

What Lies Beneath: Re-Examining a Cold<br />

Case Homicide From a Forensic<br />

Anthropological Perspective - A Case Report<br />

Southeast Texas Applied Forensic Science<br />

Facility (STAFS) at Sam Houston State<br />

University: A New Forensic Anthropology<br />

Human Decomposition Facility<br />

Precision of Coordinate Landmark Data<br />

Acquired From the Os Coxa<br />

Burning Extremities: Patterns of Arms, Legs,<br />

and Preexisting Trauma<br />

Using the Acetabulum to Estimate Age: A<br />

Revised Method<br />

Racial Admixture: A Test of Non-Metric<br />

Ancestry Estimation<br />

Dismemberment: Cause of Death in the<br />

Colombian Armed Conflict<br />

Forensic Anthropology in Colombia:<br />

Working Amidst Armed Conflict<br />

114<br />

170<br />

112<br />

65<br />

551<br />

127<br />

263<br />

30<br />

135


Carter, David O. PhD*, University of Nebraska,<br />

Department of Entomology, 202 Plant Industry Building,<br />

Lincoln, NE 68583-0816; David Yellowlees, PhD, School<br />

of Pharmacy and Molecular Sciences, James Cook<br />

University, Townsville, 4811, AUSTRALIA; and Mark<br />

Tibbett, PhD, Centre for Land Rehabilitation, University of<br />

Western Australia, Crawley, 6009, AUSTRALIA<br />

Carter, Melinda L. PhD*, 302 Heritage Drive, De Soto, IL<br />

62924<br />

Casserino, Christopher M. MA*, University of Oregon<br />

Deptartment of Anthropology, 1650 Arthur Street, Eugene,<br />

OR<br />

Cattaneo, Cristina PhD, Dominic Salsarola, BSc, Davide<br />

J. Porta, PhD, Pasquale Poppa, BSc, and Daniele Gibelli,<br />

MD*, Laboratorio di Antropologia e Odontologia Forense,<br />

V. Mangiagalli, 37, Milan, ITALY; Giovanna Sansoni, BE,<br />

Laboratorio di Optoelettronica, Via Branze 38, 25123<br />

Brescia – Italy, Brescia, ITALY; and Enrico Silingardi,<br />

Laboratorio di Antropologia e Odontologia Forense, V.<br />

Mangiagalli, 37, Milan, ITALY<br />

Cattaneo, Cristina PhD, LABANOF, and Danilo De<br />

Angelis, DDS*, Laboratorio di Antropologia e<br />

Odontologia Forense, via Mangiagalli 37, Milan, 20133,<br />

ITALY; Peter Gabriel, MD, Institut für Rechtsmedizin, im<br />

Uniklinikum Schleswig-Holstein, Campus Kiel, Arnold-<br />

Heller-Str. 12, D-24105, Kiel, ITALY; Stefanie Ritz-Timme,<br />

MD, Institut für Rechtsmedizin, im Uniklinikum Schleswig-<br />

Holstein, Campus Kiel, Arnold-Heller-Str. 12, D-24105,<br />

Kiel, , GERMANY; Janine Tutkuviene, MD, Department of<br />

Anatomy, Histology and Anthropology, Faculty of<br />

Medicine, Vilnius University, Vilnius, , LITHUANIA; and<br />

Daniele Gibelli, MD, LABANOF, Laboratorio di<br />

Antropologia e Odontologia Forense, V. Mangiagalli, 37,<br />

Milan, ITALY<br />

Cattaneo, Cristina PhD, MD*, and Eloisa Marinelli, MD,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy; Salvatore Andreola, MD, Istituto Nazionale<br />

per la Cura Dei Tumori, via venezian 1, Milano, 20133,<br />

Italy; and Pasquale Poppa, BSc, and Marco Grandi, MD,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano,<br />

20133, Italy<br />

Cebra, Karen R. MS, MSFS*, California State University<br />

at Chico, Anthropology Department, 400 West 1st Street,<br />

Chico, CA 95929<br />

Chacon, Shirley C. BA*, and Gillian M. Fowler, MA,<br />

Fundacion de Antropologia Forense de Guatemala,<br />

Avenida Simeon Cañas, 10-64, Zona 2, Guatemala City,<br />

01002, GUATEMALA<br />

Chacón, Shirley C. BA*, and Leonel E. Paiz, BA,<br />

Fundación de Antropología Forense de Guatemala<br />

(FAFG), Avenida Simeón Cañas 10- 64 Zona 2, Guatemala<br />

City, 01002, Guatemala<br />

Index 119<br />

The Reliability of Cadaver Decomposition:<br />

Can Non-Enteric Microbes Rapidly<br />

Contribute to Cadaver Breakdown in Soil?<br />

231<br />

Forensic Bone Toxicology 253<br />

A Semi-Circular Argument: Patterned<br />

Injuries Explained by an Unusually Large<br />

Murder Weapon and Its Method of Use<br />

Evolution of Forensic Archaeology and<br />

Anthropology in Italy: Three Criminal Cases<br />

The Importance of Morphological Traits in<br />

Facial Identification<br />

The Detection of Microscopic Markers of<br />

Haemorrhaging and Wound Age on Dry<br />

Bone: Beating the Barriers Between Forensic<br />

Anthropology and Forensic Pathology<br />

Efficient Processing of Human Remains<br />

Using Dermestid Beetles<br />

Uncovering the Truth Behind the Killings:<br />

Predicting Patterns of Perimortem Trauma<br />

Using Skeletons Exhumed From Ex-Military<br />

Bases in Guatemala<br />

Most Common Variation and Dental<br />

Anomalies in Skeletons Analyzed in the<br />

Laboratory of the Guatemalan Forensic<br />

Anthropology Foundation<br />

574<br />

186<br />

182<br />

380<br />

319<br />

285<br />

348


Chacon, Shirley C. BA*, Avenida Simeon Canas 10-64<br />

zona 2, 2 Avenida 8-28 zona 18 Residenciales Atlantida,<br />

Guatemala, 01002, Guatemala; and Leonel E. Paiz, BA,<br />

Avenida Simeon Canas 10-64 zona 2, Guatemala, 01002,<br />

Guatemala<br />

Chacon, Shirley C. BA*, Leonel E. Paiz, BA, and Renaldo<br />

Acevedo, BA, Fundacion de Anthropology Forense de<br />

Guatemala, Avenida Simeon Cañas 10-64 Zona 2,<br />

Guatemala, 01002, Guatemala<br />

Chadly, Ali MD*, Professor in Legal Medicine, Head of<br />

Department of Legal Medicine, Tarak Mghirbi, Resident, S.<br />

Krimi, Resident, and M. Ben Aycha, Médical Student,<br />

Département de Médicine Légale, Hôpital Universitaire “<br />

F. Bourguiba”, Monastir, Tunisia<br />

Chapman, Katharine A. BA*, Texas State University,<br />

Department of Anthropology, 601 University Drive, San<br />

Marcos, TX 78666<br />

Chibba, Kavita Novinchandra BSc*, 9203 Nile Street,<br />

Extension 10, Lenasia, Johannesburg, 1820, SOUTH<br />

AFRICA<br />

Child, Stephanie L. MA*, The University of Missouri-<br />

Columbia, 701 Swallow Hall, Columbia, Missouri 65211;<br />

and Dana E. Austin, PhD, Tarrant County <strong>Medical</strong><br />

Examiner’s Office, 200 Felix Gwozdz Place, Forth Worth,<br />

Texas 76104<br />

Child, Stephanie L. MA*, University of Missouri, 107<br />

Swallow Hall, Columbia, MO 65211; and Daniel J.<br />

Wescott, PhD, Florida International University,<br />

Department <strong>Bio</strong>logical Sciences, 11200 Southwest 8th<br />

Street, Miami, FL 333199<br />

Cho, Helen PhD*, Department of Anthropology, Davidson<br />

College, Box 6934, Davidson, NC 28035-6934; and Hee-<br />

Kyung Park, DDS, PhD, Seoul National University, 275-1<br />

Yeongeon-dong, Jongno-Gu, Seoul National University,<br />

School of Dentistry, Seoul, 0 110-768, KOREA<br />

Christensen, Alexander F. PhD*, and William R. Belcher,<br />

PhD*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

AFB, HI 96853; and Sarah Bettinger, MSFS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850<br />

Christensen, Alexander F. PhD*, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Ave., Hickam AFB, HI 96853<br />

Index 120<br />

Children’s Traumas Caused During the Civil<br />

War in Guatemala<br />

Disappearance, Torture, and Murder of Nine<br />

Individuals in a Community of Guatemala<br />

Age Estimation by the Examination of the<br />

Endocranial Sutures Closure: A North-<br />

African Adult Population Study<br />

When the Bullet Hits the Bone: Patterns of<br />

Gunshot Trauma to the Infracranium<br />

The Influence of Body Fat on the Rate of<br />

Decomposition in Traumatized Pigs<br />

The Differential Diagnosis of Skullbase<br />

Osteomyelitis Secondary to Necrotizing<br />

Otitis Externa<br />

Detecting Individuals With Reduced Mobility<br />

Using Femoral Morphology<br />

A Test of the FORDISC Sex Discriminant<br />

Function on a Korean Cranial Sample<br />

Analysis of Commingled Remains Using<br />

Archaeology, Anthropology, and DNA: A<br />

Case Study from North Korea<br />

Gooney Birds and Rocky Clouds:<br />

Perimortem Trauma in World War II C-47<br />

Crashes From Papua New Guinea<br />

399<br />

419<br />

594<br />

309<br />

237<br />

396<br />

99<br />

274<br />

349<br />

375


Christensen, Alexander F. PhD, Joint POW/MIA<br />

Accounting Command, Central Identification Lab, 310<br />

Worchester Avenue, Hickam AFB, HI 96853; Suni M.<br />

Edson, MS*, Armed Forces DNA ID Lab, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850; Erica L.<br />

Chatfield, MFS, AFDIL, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850; Audrey L. Meehan,<br />

BGS, JPAC-CIL, 91-1074 Anaunau Street, Ewa Beach, HI<br />

96706; and Suzanne M. Barritt, MS, AFDIL, Armed Forces<br />

DNA ID Lab, 1413 Research Boulevard, Building 101,<br />

Rockville, MD 20850<br />

Christensen, Angi M. MA*, and Murray K. Marks, PhD,<br />

University of Tennessee Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN<br />

Christensen, Angi M. MA*, Department of Anthropology,<br />

The University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

Christensen, Angi M. PhD*, 301 Taliwa Drive, Knoxville,<br />

TN 37920<br />

Christensen, Angi M. PhD*, FBI Laboratory, Trace<br />

Evidence Unit - Anthropology, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Kevin J. Horn, JD*, FBI<br />

Laboratory, Evidence Response Team Unit, 2501<br />

Investigation Parkway, Quantico, VA 22135; and Sarah W.<br />

Myers, BA, Emory University, 201 Dowman Drive, Atlanta,<br />

GA 30322<br />

Christensen, Angi M. PhD*, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Forensic Anthropology Program (TEU), Quantico, VA<br />

22135; Michael A. Smith, PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Chemistry Unit, Quantico, VA 22135; and Richard M.<br />

Thomas, PhD, Federal Bureau of Investigation Laboratory,<br />

Trace Evidence Unit, 2501 Investigation Parkway,<br />

Quantico, VA 22135<br />

Christensen, Angi M. PhD*, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135; and Adam D. Sylvester, PhD, The<br />

University of Tennessee, Department of Mechanical,<br />

Aerospace and <strong>Bio</strong>medical Engineering, 301 Perkins Hall,<br />

Knoxville, TN 37996<br />

Index 121<br />

Field Contamination of Archaeological Bone<br />

Samples Submitted for Mitochondrial DNA<br />

(mtDNA) Analysis<br />

The Impact of Daubert on Testimony and<br />

Research in Forensic Anthropology<br />

The Influence of Behavior on Free Fall Injury<br />

Patterns: Possible Implications for Forensic<br />

Anthropological Investigations<br />

Testing the Reliability of Frontal Sinuses in<br />

Positive Identification Using Elliptic Fourier<br />

Analysis<br />

The Effects of Varying pH on Bone in<br />

Aquatic Environments<br />

Validation of X-Ray Fluorescence (XRF) to<br />

Determine Osseous or Dental Origin of<br />

Unknown Material<br />

Physical Matches of Bone, Tooth, and Shell<br />

Fragments: A Validation Study<br />

152<br />

581<br />

552<br />

527<br />

86<br />

43<br />

354


Christensen, Angi M. PhD*, Federal Bureau of<br />

Investigation Laboratory, Trace Evidence Unit -<br />

Anthropology, 2501 Investigation Parkway, Quantico, VA<br />

22135; Vanessa Ramos, BS, Oak Ridge Associated<br />

Universities, 2501 Investigation Parkway, Quantico, VA ;<br />

Rachealle Sanford, BA, Western Kentucky University,<br />

College Heights Boulevard, Bowling Green, KY 42101;<br />

Candie Shegogue, BS, Oak Ridge Associated Universities,<br />

2501 Investigation Parkway, Quantico, VA 22135; Victoria<br />

A. Smith, MA*, ORAU, Federal Bureau of Investigation<br />

Laboratory, Trace Evidence Unit, 2501 Investigation<br />

Parkway, Quantico, VA 22135; and W. Mark Whitworth,<br />

BS, Federal Bureau of Investigation Laboratory Explosives<br />

Unit, 2501 Investigation Parkway, Quantico, VA 22135<br />

Christensen, Angi M. PhD, FBI Laboratory, 2501<br />

Investigation Parkway, Quantico, VA 22135; and Victoria<br />

A. Smith, MA*, ORAU, 2501 Investigation Parkway,<br />

Quantico, VA<br />

Christensen, Angi M. PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135; Christian M. Crowder, PhD*, New<br />

York City Office of Chief <strong>Medical</strong> Examiner, 520 First<br />

Avenue, New York, NY 10016; and Tracy Rogers, PhD,<br />

Department of Anthropology, University of Toronto at<br />

Mississauga, Mississauga, Ontario L5L 1C6, CANADA<br />

Christensen, Angi M. PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135; Christian M. Crowder, PhD*, Office<br />

of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York,<br />

NY 10016; Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East<br />

38th Street, Erie, PA 16546; and Max M. Houck, PhD,<br />

West Virginia University, 1600 University Avenue, 208<br />

Oglebay Hall, Morgantown, WV 26506-6217<br />

Ciaccio, Frank A. MPA*, Kenyon International Emergency<br />

Services, Inc., 15180 Grand Point Drive, Houston, TX<br />

77090; and Nick Haig, BA, Msc*, Kenyon International<br />

Emergency Services, Inc., 1, The Western Centre, Western<br />

Road, Bracknell, RG12 1RW, England, United Kingdom<br />

Clowes, Andrea BA*, Michigan State University, 16789<br />

Chandler Road, #1422A, East Lansing, MI 48823<br />

Colleran, Peter J. BS*, and Mallory S. Littman, BA, Boston<br />

University School of Medicine, 715 Albany Street, Boston,<br />

MA 02118; Billie L. Seet, MA, Office of the Chief <strong>Medical</strong><br />

Examiner, Boston, MA 02118; Tara L. Moore, PhD,<br />

Boston University School of Medicine, 700 Albany St.,<br />

Boston, MA 02118; Debra A. Prince, PhD, Office of the<br />

Chief <strong>Medical</strong> Examiner, Boston, MA 02118<br />

Congram, Derek MSc*, 706-1850 Comox Street,<br />

Vancouver, BC V6G 1R3, CANADA<br />

Index 122<br />

Primary and Secondary Skeletal Blast<br />

Trauma<br />

Analysis of Primary Blast Rib Fractures 4<br />

Evidentiary Standards for Forensic<br />

Anthropology<br />

Errors, Error Rates, and Their Meanings in<br />

Forensic Science<br />

An Argument for the Increased Involvement<br />

of Forensic Anthropologists in Mass Fatality<br />

Incidents in the United States, United<br />

Kingdom and Europe<br />

Comparison of Two Methods of Age<br />

Determination Using Histomorphology:<br />

Periosteal vs. Endosteal Surface Equations<br />

Decomposition in Water: The Effects of<br />

Climate on the Rate of Decay in New<br />

England<br />

Spatial Patterning of Clandestine Graves in<br />

the Investigation of Large Scale Human<br />

Rights Violations: The Example of the<br />

Spanish Civil War Rearguard Repression<br />

67<br />

282<br />

36<br />

334<br />

290<br />

108<br />

114


Congram, Derek R. BA Honours, MSc, MA*, 393 Pinehurst<br />

Drive, RR4 Belle River, Ontario N0R 2A0, Canada; and<br />

Ambika Flavel, BA, MSc Forensic Archaeology, Regime<br />

Crimes Liaison Office, RCLO/Mass Graves, APO, AE<br />

09342<br />

Conlogue, Gerald J. MHS*, c/o Diagnostic Imaging<br />

Program, Quinnipiac University, 275 Mt. Carmel Avenue,<br />

Hamden, CT 06518; and Mark D. Viner, MSc, Inforce<br />

Foundation, Forensic Science Institute, Cranfield<br />

University, Royal Military College of Science, Shrivenham,<br />

Wiltshire, UNITED KINGDOM<br />

Cope*, Darcy J. and Tosha L. Dupras, PhD, University of<br />

Central Florida, Department of Sociology and<br />

Anthropology, Orlando, FL 32816<br />

Cornelison, Jered B. MS*, Michigan State University,<br />

Department of Anthropology, 204 Olds Hall, East Lansing,<br />

MI 48824; Wendy L. Lackey- Cornelison, MA, Michigan<br />

State University, Department of Anthropology, 426 East<br />

Fee Hall, East Lansing, MI 28824; and Brian C. Hunter,<br />

PhD, 1215 East Michigan Avenue, Lansing, MI 48912<br />

Cornelison, Jered B. MS*, Todd W. Fenton, PhD, and<br />

Norman J. Sauer, PhD, Department of Anthropology,<br />

Michigan State University, 446 East Fee Hall, East<br />

Lansing, MI; Joyce L. de Jong, DO; and Brian C. Hunter,<br />

MD, Sparrow Hospital, Forensic Pathology Services, 1215<br />

East Michigan Avenue, Lansing, MI<br />

Cornell*, Cheslee and Nicole A. Wall, MFS, College of<br />

Saint Mary, Forensic Science Program 7000 Mercy Road,<br />

Omaha, NE 68106<br />

Cosgriff-Hernandez, Meghan-Tomasita J. MS*, The Ohio<br />

State University, Department of Anthropology, 4034 Smith<br />

Laboratory, 174 West 18th Avenue, Columbus, OH 43210;<br />

and Sam D. Stout, PhD, Ohio State University, Department<br />

of Anthropology, 4034 Smith Laboratory, Columbus, OH<br />

43210-1106<br />

Cotes, Lazaro M. Comision de la Verdad, Balboa, Panama<br />

City, Panama; Kathryn M. Jemmott, MA, CA Pound<br />

Human ID Laboratory, University of Florida, Building 114<br />

SW Radio Road, Gainesville, FL 32611; Loreto S. Silva,<br />

Comision de la Verdad, Balboa, Panama City, Panama;<br />

Ann H. Ross, PhD, North Carolina State University,<br />

Department of Sociology and Anthropology, Raleigh, NC<br />

27612<br />

Cotter, Meghan M. MSc*, Burial Sites Preservation<br />

Program, Wisconsin Historical Society, 816 State Street,<br />

Madison, WI 53706<br />

Cox, Margaret PhD*, Cranfield University / Inforce<br />

Foundation, Shrivenham, Swindon, UNITED KINGDOM<br />

Craig, Emily A. PhD*, and Cristin Rolf, MD, Kentucky<br />

<strong>Medical</strong> Examiner’s Office, 100 Sower Boulevard, Suite<br />

202, Frankfort, KY 40601<br />

Index 123<br />

Grave Problems in Iraq 337<br />

Forensic Field Radiography: In the Trenches<br />

With MacGyver<br />

The Effects of Household Corrosive<br />

Substances on Human Bone and Teeth<br />

154<br />

377<br />

Sex Determination From the Hyoid Body 373<br />

Comparative Radiography of the Lateral<br />

Hyoid: A New Method for Human<br />

Identification<br />

Mummification and Palynology: What We<br />

Can Learn in Regards to Time and Location<br />

of Death<br />

Histological Age Estimation: Towards<br />

Standardizing Definitions of Bone<br />

Histological Variables<br />

604<br />

243<br />

The Archaeology of Tyranny 484<br />

Juvenile Idiopathic Arthritis,<br />

Pharmacological Treatments, and the<br />

Potential for Individuation in Forensic<br />

Anthropology<br />

Experiential Education: The Use of<br />

Simulation in Training in Forensic<br />

Anthropology and Archaeology<br />

Putting It All Together: Recovery, Assembly,<br />

and Analysis of Multiple Body Parts<br />

96<br />

427<br />

235<br />

320


Craig, Emily A. PhD*, and Cristin Rolf, MD, State <strong>Medical</strong><br />

Examiner’s Office, 100 Sower Boulevard, Suite 202,<br />

Frankfort, KY 40601; and Warren Mitchell, Kentucky State<br />

Police Laboratory, 100 Sower Boulevard, Suite 202,<br />

Frankfort, KY 40601<br />

Craig, Emily A. PhD*, <strong>Medical</strong> Examiner’s Office, 100<br />

Sower Boulevard, Suite 202, Frankfort, KY 40601<br />

Craig, Emily A. PhD*, <strong>Medical</strong> Examiner's Office, 100<br />

Sower Boulevard, Suite 202, Frankfort, KY; and Corky<br />

Deaton, DMD, Consulting Forensic Odontologist, 359-C<br />

South Fourth Street, Danville, KY<br />

Crawford, Greg MS,; David Raymond, MS*, Chris Van Ee,<br />

PhD, and Cynthia Bir, PhD, Wayne State University, 818<br />

West Hancock, Detroit, MI 48201<br />

Crider, Stephanie M. BA*, 4525 North Leata Lane, La<br />

Canada, CA 91011<br />

Crider, Stephanie M. BA*, Louisiana State University,<br />

Department of Geography and Anthropology, 227 Howe-<br />

Russell, Baton Rouge, LA 70803; and Mary H. Manhein,<br />

MA, Louisiana State University, Department of Geography<br />

& Anthropology, Baton Rouge, LA 70803<br />

Crider, Stephanie Marie MA*, Louisiana State University,<br />

Department of Geography and Anthropology, 227 Howe-<br />

Russell-Kniffen Geosciences Complex, Baton Rouge, LA<br />

70803; and Mary H. Manhein, MA, Department of<br />

Geography & Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

Crist, Thomas A. PhD*, and John H. Johnsen, PhD, Utica<br />

College, 1600 Burrstone Road, Utica, NY 13304<br />

Cross, Peter A. BSc*, 11 Lower Bank Road, Fulwood,<br />

Preston, 0 PR2 8NS, UNITED KINGDOM<br />

Crowder, Christian M. MA*, University of Toronto, 100 St.<br />

George Street, Toronto, Ontario M5S 3G3, Canada<br />

Crowder, Christian M. MA*, University of Toronto,<br />

Department of Anthropology, 100 St. George Street,<br />

Toronto, Ontario M5S 3G3, Canada<br />

Crowder, Christian M. MA, and Zoe H. Morris, BSc*,<br />

University of Toronto, Department of Anthropology, 100<br />

St. George Street, Toronto, ON M5S3G3, Canada<br />

Crowder, Christian M. PhD*, Joint POW/MIA Accounting<br />

Command Central ID Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853-5530<br />

Crowder, Christian PhD*, Benjamin J. Figura, MA,<br />

Bradley J. Adams, PhD, and Frank DePaolo, MS, New<br />

York City, Office of Chief <strong>Medical</strong> Examiner, 520 First<br />

Avenue, New York, NY 10016<br />

Cuff, Abbie K. MSc*, and Tal Simmons, PhD, University of<br />

Central Lancashire, Department of Forensic &<br />

Investigative Science, Preston, PR1 2HE, United Kingdom<br />

Index 124<br />

Microscopic and Cross Section Analysis of<br />

Occult Intraosseous Fracture (Bone Bruise) of<br />

the Skull<br />

Anthropologist/<strong>Medical</strong> Examiner<br />

Collaboration at Isolated, Inaccessible, or<br />

Disrupted Crime Scenes<br />

Recovery and Identification Challenges in a<br />

Case of Suicidal Self-Cremation<br />

<strong>Bio</strong>mechanics of Blunt Ballistic Impacts to<br />

the Forehead and Zygoma<br />

Superficial Ancestral Characteristics of the<br />

Nose<br />

Foramen Magnum Shape as a Potential<br />

Indicator of Ancestry<br />

Ancestry Determination From Foramen<br />

Magnum<br />

Introducing Forensic Anthropology to<br />

Albania Using the Problem-Based Learning<br />

Model<br />

The Influence of Penetrative Trauma on the<br />

Rate of Decomposition<br />

A Review of Age Estimation Using Rib<br />

Histology: Its Impact on Evidentiary<br />

Examination<br />

Measure Twice, Cut Once? Measurement<br />

Error Levels in Histomorphometry<br />

Reducing Intra- and Inter-Observer Error<br />

Through Histomorphometric Variable<br />

Selection<br />

Reducing Observer Error Through Choice of<br />

Histological Evaluation Technique<br />

The Role of Forensic Anthropology in<br />

Disaster Operations<br />

Evidence vs. Identification: The Role of<br />

Humanitarian Organizations in the Balkans<br />

1992-2002<br />

418<br />

177<br />

606<br />

244<br />

378<br />

120<br />

27<br />

335<br />

232<br />

524<br />

453<br />

429<br />

406<br />

177<br />

398


Cunha, Eugenia PhD*, Joan V. Badal, and Andersen<br />

Líryo, Department of Anthropology, University of<br />

Coimbra, Coimbra, 3000-056, PORTUGAL; João<br />

Pinheiro, Instituto Nacional de Medicina Legal, Delegação<br />

de Coimbra, Largo da Sé Nova, Coimbra, 3000,<br />

PORTUGAL; and Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Inst, Mercyhurst College, 501 East 38th,<br />

Erie, PA 16546-0001<br />

Cunha, Eugénia PhD*, Maria Cristina Mendonça, PhD,<br />

and Duarte Nuno Vieira, PhD, Universidade de Coimbra,<br />

Departamento Antropologia, Instituto Nacional de<br />

Medicina Legal, Largo da Sé-Nova, Coimbra, 3000-056,<br />

Portugal<br />

Cunha, Eugénia PhD*,Universidade de Coimbra,<br />

Departmento de Anthopologia, Universidade de Coimbra,<br />

Portugal and Maria Cristina de Mendonça, PhD,<br />

Departmento de Anthropologia, Universidade de<br />

Coimbra/Instituto Nacional de Medicina Legal, Coimbra,<br />

Portugal<br />

Curtin, A. Joanne PhD*, University of West Florida,<br />

Department of Anthropology, 11000 University Parkway,<br />

Pensacola, FL 32514<br />

Curtin, Briana K. BA*, 1901 Elaine Drive, St. Joseph, MO<br />

64505<br />

Curtis, Janene BS*, Archeology and <strong>Forensics</strong> Laboratory,<br />

and Christine M. Turk, BS, and Mary K. Ritke, PhD,<br />

<strong>Bio</strong>logy Department, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN<br />

Curtis, Janene M. MS*, and Owen B. Beattie, PhD,<br />

University of Alberta, Department of Anthropology, 13-15<br />

HM Tory Building, Edmonton, Alberta T6G 2H4, CANADA<br />

Dabbs, Gretchen R. BA, MA*, University of Arkansas, 330<br />

Old Main, Fayetteville, AR 72701<br />

Dabbs, Gretchen R. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; and Michelle A. Granrud,<br />

585 North Scottsdale Drive, Apartment 6, Fayetteville, AR<br />

72701<br />

Daegling, David J. PhD*, Jennifer Hotzman, MA, Casey J.<br />

Self, MA, and Michael W. Warren, PhD, Department of<br />

Anthropology, University of Florida, PO Box 117305, 1112<br />

Turlington Hall, Gainesville, FL 32611<br />

Damann, Franklin E. MA*, and Mark D. Leney, PhD,<br />

JPAC Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530; and Suni M. Edson,<br />

MS, Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Building 101, Rockville, MD 20850<br />

Damann, Franklin E. MA*, Mark Leney, PhD, and Ann W.<br />

Bunch, PhD, U.S. Army Central Identification Laboratory,<br />

Hawaii, 310 Worchester Avenue, Hickam Air Force Base,<br />

Honolulu, HI<br />

Index 125<br />

How Easily Can We Derive Cause and<br />

Manner of Death on the Basis of Dry Bones?<br />

Lessons Derived From Coimbra Identified<br />

Skeletal Collections<br />

Exhumation and Identification of a Particular<br />

Individual in a Mass Grave<br />

Forensic Anthropology in Portugal: The State<br />

of Knowledge<br />

Teaching Forensic Field Methods to<br />

Anthropology Students: The University of<br />

West Florida Model<br />

The Effects of Fire Suppression Techniques<br />

on Burned Bone<br />

Using Restriction Enzymes to Reduce the<br />

Inhibitory Properties of Bacterial DNA on<br />

PCR Amplification of Human DNA<br />

Sequences<br />

Design Perspectives for Obtaining Facial Soft<br />

Tissue Depths From Cadavers Using a New<br />

Approach<br />

Predicting the Location of Scattered Human<br />

Remains: When Will Heads Roll and Where<br />

Will They Go?<br />

Decomposition of Sharpey’s Fibers in<br />

Estimating Postmortem Interval<br />

Bone Fracture Mechanics: In Vitro Strain<br />

Gauge Analysis of the Ribs and Mandible<br />

During Failure<br />

Separating Commingled Remains Using<br />

Ancient DNA Analysis<br />

Predicting Mitochondrial DNA (mtDNA)<br />

Recovery by Skeletal Preservation<br />

286<br />

442<br />

591<br />

77<br />

75<br />

546<br />

226<br />

240<br />

146<br />

402<br />

442<br />

579


Damann, Franklin E. MA*, National Museum of Health<br />

and Medicine, AFIP, PO Box 59685, Washington, DC<br />

20012-0685; and Aphantree Tanittaisong, MS, AFIP<br />

Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Rockville, MD 20850<br />

Damann, Franklin E. MA*, National Museum of Health<br />

and Medicine, Armed Forces Institute of Pathology, 6825<br />

16th Street, NW, Bldg 54, Washington, DC 20306-6000;<br />

and Rebekkah Adler, BS, Derek C. Benedix, PhD, and<br />

Elias J. Kontanis, PhD Joint POW/MIA Accounting<br />

Command (JPAC), Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam Air Force Base, HI 96853-<br />

5530<br />

Damann, Franklin MA* and John E. Byrd, PhD, Joint<br />

POW/MIA Accounting Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853<br />

Danforth, Marie Elaine PhD*, and Andrew R. Thompson,<br />

BA, University of Southern Mississippi, Department of<br />

Anthropology and Sociology, 118 College Drive, #5074,<br />

Hattiesburg, MS 39406<br />

Danforth, Marie PhD*, University of Southern Mississippi,<br />

Department of Anthropology and Sociology, 118 College<br />

Drive, #5074, Hattiesburg, MS 39406<br />

Danner, Elizabeth M. BA*, School of Forensic and<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, PR1 2HE, UNITED KINGDOM<br />

Darrah, Thomas H. MS*, University of Rochester, 227<br />

Hutchison Hall, University of Rochester, Department of<br />

Earth & Environmental Sciences, Rochester, NY 14627;<br />

Jennifer J. Prutsman-Pfeiffer, MA, University of Rochester<br />

<strong>Medical</strong> Center, Autopsy & Neuropathology, 601<br />

Elmwood, Box 626, Rochester, NY 14642; and Robert J.<br />

Poreda, PhD, University of Rochester, 227 Hutchison Hall,<br />

University of Rochester, Department of Earth &<br />

Environmental Sciences, Rochester, NY 14627<br />

Dautartas, Angela M. BS*, and Kanya M Godde, MA*,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Dautartas, Angela M. BS*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Dautartas, Angela M. MA, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; and Kanya<br />

Godde, PhD*, University of Tennessee, 3904 Lonas Drive,<br />

Knoxville, TN 37909<br />

Davy-Jow, Stephanie L. PhD*, Liverpool John Moores<br />

University, James Parsons Building, Byrom Street,<br />

Liverpool, L3 3AF, UNITED KINGDOM; Summer J.<br />

Decker, MS, USF COM Department of Pathology, 12901<br />

Bruce B. Downs Boulevard, MDC 11, Tampa, FL 33612;<br />

and Diane L. France, PhD, Colorado State University,<br />

Human Identification Lab, Department of Anthropology,<br />

Fort Collins, CO 80523<br />

Index 126<br />

Human Decomposition Ecology at the<br />

University of Tennessee Anthropology<br />

Research Facility<br />

Patterns of Perimortem Fracture From<br />

Military Aircraft Crashes<br />

The Effects of Size in Craniometric<br />

Discriminant Functions<br />

Assessment of Determination of Handedness<br />

Using Standard Osteological Measurements<br />

of the Shoulder Girdle and Arm Long Bones<br />

from Individuals of Known Handedness<br />

An Evaluation of Racial Differences in the<br />

Human Mandible Using Discriminant<br />

Function Analysis<br />

Cremated Tooth Morphology: A User’s<br />

Guide to Identification<br />

Characterization of Lead, Transition Metal,<br />

and Rare Earth Element Composition of<br />

Human Bone by ICP-MS and LA-ICP-MS<br />

Are Cranial Morphological Traits Population<br />

Specific? A Reevaluation of Traditional Sex<br />

Estimation Methodology<br />

The Effects of Coverings on the Rate of<br />

Human Decomposition<br />

Secular Trends in Cranial Morphological<br />

Sexing: The Mastoid Process<br />

Forensic Anthropology and Virtual Human<br />

Remains: Ethics in Uncharted Territory<br />

106<br />

240<br />

470<br />

312<br />

448<br />

203<br />

250<br />

265<br />

147<br />

119<br />

11


Day, Kathleen MS*, State of Alaska <strong>Medical</strong> Examiner’s<br />

Office, 4500 South Boniface Parkway, Anchorage, AK<br />

99507; and David McMahan, MA, Alalska Department of<br />

Natural Resources, Office of History & Archaelogy, 3601<br />

C Street, Suite 1278, Anchorage, AK 99503<br />

de Jager Burford, Saskia M. BA, MSc*, Department of<br />

Archaeological Sciences, University of Bradford, Bradford,<br />

United Kingdom; Robert F. Pastor, PhD, The Calvin Wells<br />

Laboratory, Department of Archaeological Sciences,<br />

University of Bradford, Bradford, United Kingdom; and<br />

Christopher J. Hobbs, BSc, MB, BS, MRCP, Department of<br />

Community Pediatrics, Saint James University Hospital,<br />

Leeds, United Kingdom<br />

Decker, Summer J. BA*, Jennifer L. Thompson, PhD, and<br />

Bernardo T. Arriaza, PhD, Department of Anthropology &<br />

Ethnic Studies, University of Nevada at Las Vegas, 4505<br />

Maryland Parkway, Box 455003, Las Vegas, NV 89154-<br />

5003<br />

Decker, Summer J. MA*, Jonathan M. Ford, BA*, and Don<br />

R. Hilbelink, PhD, Department of Pathology and Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC 11, Tampa, FL<br />

33612; and Eric J. Hoegstrom, MSBE, Department of<br />

Chemical Engineering, University of South Florida College<br />

of Engineering, Tampa, FL 33612<br />

Decker, Summer J. MA*, Jonathan M. Ford, BA, BA, and<br />

Don R. Hilbelink, PhD, Department of Pathology and Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL<br />

33612; and Eric J. Hoegstrom, MSBE, Department. of<br />

Chemical & <strong>Bio</strong>medical Engineering, University of South<br />

Florida College of Engineering, Tampa, FL 33612<br />

Decker, Summer J. MA, MABMH*, and Don R. Hilbelink,<br />

PhD, Department of Pathology & Cell <strong>Bio</strong>logy, University.<br />

of South Florida College of Medicine, 12901 Bruce B.<br />

Downs Boulevard, MDC 11, Tampa, FL 33612; and Eric J.<br />

Hoegstrom, MSBE, Department. of Chemical Engineering,<br />

University of South Florida, College of Engineering, 13201<br />

Bruce B. Downs Boulevard Tampa, FL 33612<br />

Decker, Summer J. MA, MS*, University of South Florida<br />

College of Medicine, Department of Pathology & Cell<br />

<strong>Bio</strong>logy, 12901 Bruce B. Downs Boulevard, MDC 11,<br />

Tampa, FL 33612; Stephanie L. Davy-Jow, PhD, School of<br />

<strong>Bio</strong>logical and Earth Sciences, Liverpool John Moores<br />

University, Liverpool John Moores University, James<br />

Parsons Building, 236, Byrum Street, Liverpool, L3 3AF,<br />

UNITED KINGDOM; and Jonathan M. Ford, MS, and<br />

Don R. Hilbelink, PhD, Deptartment of Pathology & Cell<br />

<strong>Bio</strong>logy, University of South Florida College of Medicine,<br />

12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL<br />

33612<br />

Index 127<br />

Even in Alaska! Missing Person or Cremains<br />

and How to Tell the Difference<br />

Fracture Patterns in Abused Children: A<br />

Study of Skeletal Trauma Among Battered<br />

Children in a Clinical Cohort From the Leeds<br />

(UK) Metropolitan Area<br />

3-Dimensional Morphometric Analysis of the<br />

Zygomatic as Used in Ancestral Identification<br />

Three-Dimensional Computer Modeling and<br />

Anthropological Assessment of the National<br />

Library of Medicine’s Visible Human Male<br />

Maintaining Custody: A Virtual Method of<br />

Creating Accurate Reproductions of Skeletal<br />

Remains for Facial Approximation<br />

Virtual Skull Anatomy: Three-Dimensional<br />

Computer Modeling and Measurement of<br />

Human Cranial Anatomy<br />

Virtual Sex: Phenice and Metrics of the<br />

Pelvis From 3D Computed Tomography (CT)<br />

Models<br />

347<br />

608<br />

467<br />

162<br />

180<br />

227<br />

101


Decker, Summer J. MABMH*, and Don R. Hilbelink, PhD,<br />

Department. of Pathology and Cell <strong>Bio</strong>logy, University of<br />

South Florida College of Medicine, 12901 Bruce B. Downs<br />

Boulevard, MDC11, Tampa, FL 33612; Eric J. Hoegstrom,<br />

MSBE, Department of Chemical Engineering, University of<br />

South Florida College of Engineering, Tampa, FL 33612;<br />

Carl K. Adrian, Federal Bureau of Investigation, 2501<br />

Investigation Parkway, Attn: Carl Adrian/IPGU Rm.<br />

#1170, Quantico, VA 22135; and Stephanie L. Davy-Jow,<br />

Department of Archaeology, University of Sheffield,<br />

Northgate House, West Street, Sheffield, S1 4ET, UNITED<br />

KINGDOM<br />

Dedouit, Fabrice MD*, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 avenue du Professeur Jean Poulhès,<br />

TSA 50032, Toulouse Cedex 9, 31059, FRANCE; Pierre<br />

Barrier, Philippe Otal, PhD, Hervé Rousseau, PhD, and<br />

Francis Joffre, PhD, Service de Radiologie Générale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean<br />

Poulhès,TSA 50032, Toulouse Cedex 9, 31059, FRANCE;<br />

and Daniel Rouge, PhD, and Norbert Telmon, PhD,<br />

Service de Médecine Légale, Hôpital de Rangueil, 1<br />

avenue du Professeur Jean Poulhès, TSA 50032, Toulouse<br />

Cedex 9, 31059, FRANCE<br />

Dedouit, Fabrice MD*, Stéphanie Bindel, David Gainza,<br />

MD, and Anthony Blanc, MD, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean<br />

Poulhès, TSA 50032, Toulouse Cedex 9, 31059, France;<br />

Francis Joffre, PhD, Service de Radiologie Générale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean<br />

Poulhès, TSA 50032, Toulouse Cedex 9, 31059, France;<br />

and Daniel Rouge, PhD, and Norbert Telmon, PhD,<br />

Service de Médecine Légale, Hôpital de Rangueil, 1<br />

Avenue du Professeur Jean Poulhès, TSA 50032, Toulouse<br />

Cedex 9, 31059, France<br />

Index 128<br />

Who Is This Person? A Comparison Study of<br />

Current 3-Dimensional Facial Approximation<br />

Methods<br />

Analysis of the Auricular Surface on Multi-<br />

Slice Computed Tomography<br />

Reconstructions for Assessment of Aging: A<br />

Preliminary Study<br />

Utilization of the Iscan Method on Multi-slice<br />

Computed Tomography Reconstructions for<br />

Assessment of Aging: A Preliminary Study<br />

254<br />

225<br />

346


Dedouit, Fabrice Ph D*, Service de Médecine Légale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean<br />

Poulhès, TSA 50032, Toulouse Cedex 9, 31059, FRANCE;<br />

Marie Faruch Bifeld, MS, Service de Médecine Légale,<br />

CHU Toulouse-Rangueil, 1 Avenue Professeur Jean<br />

Poulhès, Toulouse Cedex 9, 31059, FRANCE; José Braga,<br />

PhD, Laboratoire d’Anthropobiologie AMIS, FRE 2960<br />

CNRS, Université Paul Sabatier, 37 allées Jules Guesde,<br />

Toulouse, 31000, FRANCE; Nicolas Sans, PhD, Service de<br />

Radiologie, CHU Toulouse-Purpan, Place du Docteur<br />

Baylac, Toulouse, 31059, FRANCE; Hervé Rousseau, PhD,<br />

Service de Radiologie, CHU Toulouse-Rangueil, 1 Avenue<br />

Professeur Jean Poulhès, Toulouse, 31059, FRANCE; Eric<br />

Crubezy, PhD, Laboratoire d’Anthropobiologie AMIS,<br />

FRE 2960 CNRS, Université Paul Sabatier, 37 allées Jules<br />

Guesde, Toulouse, 31000, FRANCE; Daniel Rouge, PhD,<br />

Service de Médecine Légale, CHU Toulouse-Rangueil, 1<br />

Avenue Professeur Jean Poulhès, Toulouse, 31059,<br />

FRANCE; and Norbert Telmov, PhD, Service Medico-<br />

Judiciaire, CHU Rangueil, 1 Avenue Jean Poulhes,<br />

Toulouse, F-31054, FRANCE<br />

Delabarde, Tania PhD*, Institut Francais d’Etudes<br />

Andines, Whymper 442 y Coruna, Quito, ECUADOR; and<br />

Freddy G.H. Almagro, MD, Departmento Medico Legal de<br />

la Policia, Judicial de Pichincha Av., Mariana de Jesus s/n<br />

y Av., Occidental, ECUADOR<br />

Delvin, Joanne B. PhD*, and Anne Kroman, MA*,<br />

University of Tennessee, Department of Anthropology, 252<br />

South Stadium Hall, Knoxville, TN 37996; Steve Symes,<br />

PhD, Mercyhurst College, Mercyhurst Archaeological<br />

Institute, Department of Applied Forensic Sciences , Erie,<br />

PA 16546; and Nicholas P. Herrmann, PhD, University of<br />

Tennessee, 252 South Stadium Hall, Department of<br />

Anthropology, Knoxville, TN 37996<br />

Derrick, Sharon M. PhD*, Harris County Institute of<br />

Forensic Sciences, 1885 Old Spanish Trail, Houston, TX<br />

77054; John A. Hipp, PhD, <strong>Medical</strong> Metrics, Incorporated,<br />

2121 Sage Road, Houston, TX 77056; Jennifer C. Love,<br />

PhD, and Jason M. Wiersema, PhD, Harris County<br />

Institute of Forensic Sciences, 1885 Old Spanish Trail,<br />

Houston, TX 77054; N. Shastry Akella, PhD, <strong>Medical</strong><br />

Metrics, Incorporated, 2121 Sage Road, Houston, TX<br />

77056; and Luis A. Sanchez, MD, Harris County Institute<br />

of Forensic Sciences, 1885 Old Spanish Trail, Houston, TX<br />

77054<br />

Derrick, Sharon M. PhD*, Harris County <strong>Medical</strong><br />

Examiner’s Office, 1885 Old Spanish Trail, Houston, TX<br />

77054<br />

Derrick, Sharon M. PhD*, Jason M. Wiersema, PhD, Ruth<br />

Mathis, Jennifer C. Love, PhD, and Luis A. Sanchez, MD,<br />

Harris County <strong>Medical</strong> Examiner’s Office, Anthropology<br />

Division, 1885 Old Spanish Trail, Houston, TX 77054<br />

Index 129<br />

Three-Dimensional Geometric Morphometric<br />

Analysis and Multislice Computed<br />

Tomography: Application for Adult Sexual<br />

Dimorphism in Human Coxal Bone<br />

Missing in Amazonian Jungle: A Case Study<br />

of Suspected Dismemberment<br />

Heat Intensity Versus Exposure Duration Part<br />

I: Macroscopic Influence on Burned Bone<br />

New Method of Identification Based on<br />

Computer-Assisted Radiograph Comparison<br />

Supra-Inion Depressions in a Pediatric<br />

<strong>Medical</strong> Examiner Sample: Support for a<br />

Synergy of Developmental and<br />

<strong>Bio</strong>mechanical Etiologies<br />

The Utility of the Identification Unit Concept<br />

in the <strong>Medical</strong> Examiner Setting<br />

17<br />

280<br />

397<br />

54<br />

212<br />

281


Derrick, Sharon M. PhD*, Michele Hunt, BS, and Luis A.<br />

Sanchez, MD, Harris County <strong>Medical</strong> Examiner’s Office,<br />

1885 Old Spanish Trail, Houston, TX 77054<br />

Devlin, Joanne L. PhD*, and Michelle D. Hamilton, MA,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Devlin, Joanne L. PhD, and Murray K. Marks, PhD*,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Dicke, Clarissa R. AD*, 1325 East Orange Street, Tempe,<br />

AZ 85281; Laura C. Fulginiti, PhD, Forensic Science<br />

Center, 701 West Jefferson, Phoenix, AZ 85007; and Mark<br />

A. Fischione, MD, Maricopa County Office of the <strong>Medical</strong><br />

Examiner, 701 West Jefferson Street, Phoenix, AZ 85003<br />

Dickson, Gemma C. BSc*, and Russell T.M. Poulter, PhD,<br />

University of Otago, Department of <strong>Bio</strong>chemistry, PO Box<br />

56, Dunedin, AS 9054, NEW ZEALAND; Jules A. Kieser,<br />

PhD, University of Otago, Sir John Walsh Research<br />

Institute, Faculty of Dentistry, PO Box 647, Dunedin, AS<br />

9054, NEW ZEALAND; Elizabeth W. Maas, PhD, National<br />

Institute of Water & Atmospheric Research, Ltd. (NIWA),<br />

Private Bag 14901, Wellington, AS 9054, NEW ZEALAND;<br />

and P. Keith Probert, PhD, University of Otago,<br />

Department of Marine Science, PO Box 56, Dunedin, AS<br />

9054, NEW ZEALAND<br />

Dickson, Gemma C. BSc*, and Russell T.M. Poulter, PhD,<br />

University of Otago, Department of <strong>Bio</strong>chemistry, PO Box<br />

56, Dunedin, Otago 9054, NEW ZEALAND; Jules A.<br />

Kieser, PhD, University of Otago, Sir John Walsh<br />

Research Institute, Faculty of Dentistry, PO Box 647,<br />

Dunedin, Otago 9054, NEW ZEALAND; Elizabeth W.<br />

Maas, PhD, National Institute of Water & Atmospheric<br />

Research, Ltd. (NIWA), Private Bag 14901, Wellington,<br />

Otago 9054, NEW ZEALAND; and P. Keith Probert, PhD,<br />

University of Otago, Department of Marine Science, PO<br />

Box 56, Dunedin, Otago 9054, NEW ZEALAND<br />

DiGangi, Elizabeth A. MA*, and Jonathan D. Bethard,<br />

MA, University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37916; Erin H.<br />

Kimmerle, PhD, University of South Florida, Department<br />

of Anthropology, 4202 East Fowler Avenue, SOC 107,<br />

Tampa, FL 33620-8100; and Lyle W. Konigsberg, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

DiGangi, Elizabeth A. MA*, Department of Natural and<br />

Behavioral Sciences, 10541 Hardin Valley Road,<br />

Knoxville, TN 37933; Jonathan D. Bethard, MA*, The<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Index 130<br />

Houston Mass Murder Victims: 33 Years<br />

Later<br />

Supply and Demand: Trends and Training in<br />

Forensic Anthropology<br />

295<br />

559<br />

Age Progression: How Accurate Is It? 564<br />

<strong>Bio</strong>logy and Culture in the Modern Era: How<br />

Cultural Evidence Can Conflict With<br />

Forensic Significance<br />

Profiling of Marine Microbial Communities<br />

Associated With Decomposing Remains Can<br />

Indicate Postmortem Submersion Interval<br />

Microbial Marine Decomposition: Marine<br />

Bacteria as an Indicator of Postmortem<br />

Submersion Interval<br />

A New Method for Estimating Age-at-Death<br />

From the First Rib<br />

A Test of an Age-at-Death Method Using the<br />

First Rib<br />

193<br />

60<br />

87<br />

370<br />

267


DiGangi, Elizabeth A. MA*, Pellissippi State Technical<br />

Community College, Department of Natural and<br />

Behavioral Sciences, 10915 Hardin Valley Road,<br />

Knoxville, TN 37993; and Jonathan D. Bethard, MA*, The<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

DiMaggio, John A. RPh, DPM*, Forensic Podiatry<br />

Consulting Services, 2600 East Southern Avenue, Suite I-3,<br />

Tempe, AZ<br />

DiMichele, Daniel L. BS*, Texas State University, 601<br />

University Drive, ELA 232, San Marcos, TX 78666<br />

Dionne, Charles A. BS*, University of Central Florida,<br />

Department of Anthropology, 4000 Central Florida<br />

Boulevard, Orlando, FL 32816<br />

Dionne, Charles A. MA*, and Samantha M. Seasons, BA,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, Soc 107, Tampa, FL 33620;<br />

Leszek Chrostowski, MD, Hillsborough County <strong>Medical</strong><br />

Examiner’s Office, 11025 North 46th Street, Tampa, FL<br />

33617; and Erin H. Kimmerle, PhD, University of South<br />

Florida, Department of Anthropology, 4202 East Fowler,<br />

Soc 107, Tampa, FL 33820<br />

Dirkmaat, Dennis C. PhD*, and Luis L. Cabo, MS,<br />

Mercyhurst College, Department Applied Forensic<br />

Sciences, Zurn 119A, 501 East 38th Street, Erie, PA 16546<br />

Dirkmaat, Dennis C. PhD*, Applied Forensic Sciences<br />

Department, Mercyhurst College, Glenwood Hills, Erie,<br />

PA 16546; Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East<br />

38th, Erie, PA 16546-0001; and Luis L. Cabo-Pérez, MS,<br />

Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

Dirkmaat, Dennis C. PhD*, Departments of Anthropology<br />

and Applied Forensic Science, Mercyhurst College, Erie,<br />

PA; and Michael Hochrein, BS, Federal Bureau of<br />

Investigation, St. Louis, MO<br />

Dirkmaat, Dennis C. PhD*, Departments of Anthropology<br />

and Applied Forensic Science, Mercyhurst College, Erie,<br />

PA; and Wallace Miller, BS, Somerset County Coroner,<br />

Somerset, PA<br />

Dirkmaat, Dennis C. PhD*, Luis M. Cabo, MS, and James<br />

M. Adovasio, PhD, Mercyhurst College, 501 East 38th<br />

Street, Erie, PA 16546; Vicente C. Rozas, PhD, Centro de<br />

Investigaciones Forestales y Ambientales de Lourizán,<br />

Departamento de Ecología, Aptdo. 127, Pontevedra,<br />

Galicia 36080, Spain<br />

Dirkmaat, Dennis C. PhD*, Mercyhurst College, 501 East<br />

38th Street, Erie, PA; Steven A. Symes, PhD, University of<br />

Tennessee Regional Forensic Center, 1060 Madison<br />

Avenue, Memphis, TN; Erik Vey, MD, Erie County<br />

Coroner’s Office, Erie County Courthouse, Erie, PA; and<br />

O’Brian C. Smith, MD, University of Tennessee Regional<br />

Forensic Center, 1060 Madison Avenue, Memphis, TN<br />

Index 131<br />

Skeletal Markers of Parturition II: Reanalysis<br />

of a Modern American Sample<br />

311<br />

The Foot as a Forensic Tool 534<br />

Sex Estimation From the Calcaneus Using 117<br />

Discriminant Function Analysis<br />

Detecting Buried Metallic Weapons in a 194<br />

Controlled Setting Using a Conductivity<br />

Meter<br />

Fusion Patterns in Modern Hyoid Bones 33<br />

The Shallow Grave as an Option for<br />

Disposing of the Recently Deceased: Goals<br />

and Consequences<br />

Forensic Archaeological Recovery of the<br />

Victims of the Continental Connection Flight<br />

3407 Crash in Clarence Center, New York<br />

Teaching Forensic Archaeology to the<br />

Masses: The Death Scene Course at<br />

Mercyhurst College After a Decade<br />

Scene Recovery Efforts in Shanksville,<br />

Pennsylvania: The Role of the Coroner’s<br />

Office in the Processing of the Crash Site of<br />

United Airlines Flight 93<br />

Mass Graves, Human Rights and<br />

Commingled Remains: Considering the<br />

Benefits of Forensic Archaeology<br />

Recognizing Child Abuse in the Thoracic<br />

Region Through a Multidisciplinary<br />

Approach<br />

386<br />

113<br />

560<br />

571<br />

444<br />

609


Dirkmaat, Dennis C. PhD, Luis L. Cabo-Pérez, MS,<br />

Alexandra R. Klales, MS*, Erin Chapman, MS, and Allison<br />

M. Nesbitt, MS, Mercyhurst College, Department of<br />

Applied Forensic Sciences, 501 East 38th Street, Erie, PA<br />

16546<br />

Donno, Antonio De PhD*, and Bruno Morgese, MD,<br />

Section of Legal Medicine - University of Bari, Pizza<br />

Giulio Cesare n.11, Bari, 70124, ITALY; Maurizio Scarpa,<br />

MD, Pizza G. Cesare 11 University of Bari, Bari, ITALY;<br />

and Francesco Introna, PhD, Section of Legal Medicine -<br />

DiMIMP, P.zza Giulio Cesare n.11, Bari, 70124, ITALY<br />

Donno, Antonio De PhD*, and Valeria Santoro, PhD,<br />

Section of Legal Medicine - DiMIMP, P.zza Giulio Cesare<br />

n.11, Bari, 70124, ITALY; Carlo P. Campobasso, PhD,<br />

University of Molise, via De Sanctis, snc, Campobasso,<br />

86100, ITALY; Nunzio Di Nunno, PhD, via Guido Dorso 9,<br />

Bari, 70125, ITALY; and Francesco Introna, PhD, Section<br />

of Legal Medicine - DiMIMP, P.zza Giulio Cesare n.11,<br />

Bari, 70124, ITALY<br />

Donno, Antonio De PhD*, Section of Legal Medicine -<br />

DiMIMP - University of Bari, P.zza Giulio Cesare n.11,<br />

Bari, 70124, ITALY; Simona Corrado, MD, Sezione di<br />

Medicina Legale, Bari, 70100, ITALY; Valeria Santoro,<br />

PhD, Domenico Urso, MD, Piercarlo Lozito, DDS, and<br />

Francesco Introna, MD, Section of Legal Medicine,<br />

Department of Internal and Public Medicine (DiMIMP),<br />

University of Bari, P.zza Giulio Cesare n.11, Bari, 70124,<br />

ITALY; Aldo Di Fazio, MD, Section of legal medicine -<br />

Matera Hospital, via Montescaglioso n.5, Matera, 75100,<br />

ITALY; and Rocco Maglietta, MD, Section of Legal<br />

Medicine - San Carlo Hospital Potenza, via P.Petroni n.6,<br />

Potenza, 85100, ITALY<br />

Doretti*, Mercedes C. Argentine Forensic Anthropology<br />

Team (EAAF), 10 Jay Street #502, Brooklyn, NY 11201;<br />

Luis Fondebrider, c/o ALAF and EAAF, 10 Jay Street<br />

#502, Brooklyn, NY 11201<br />

Dotson, Meryle A. BA*, University of South Florida, 4202<br />

East Fowler Avenue, Soc 107, Tampa, FL 33620; Erin H.<br />

Kimmerle, PhD, University of South Florida, Department<br />

of Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820; and Lyle W. Konigsberg, PhD, University of<br />

Illinois, Department of Anthropology, 109 Davenport Hall,<br />

607 South Mathews Avenue, Urbana, IL 61801<br />

Dowdy, Liotta N.*BS, and Erin H. Kimmerle, PhD,<br />

Department of Anthropology, University of South Florida,<br />

4202 East Fowler Avenue SOC 107, Tampa FL 33620; and<br />

John O. Obafunwa, MD, JD, Department of Pathology and<br />

Forensic Medicine, Lagos State University College of<br />

Medicine, Ikeja, Lagos, NIGERIA<br />

Drawdy, Shuala M. MA*, Department of Anthropology,<br />

University of Florida, Gainesville, FL<br />

Driscoll, Kathryn R.D. MA*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Index 132<br />

New Forensic Archaeological Recovery<br />

Protocols for Fatal Fire Scenes<br />

A New Method for Height Estimation Using<br />

Photogrammetry: Reliability and Validity<br />

Forensic Age Estimation of Living<br />

Individuals: A Retrospective Case Analysis<br />

Homicide by Lapidation in Neolitic Age:<br />

Results of Two Cases<br />

Perspectives and Recommendations From the<br />

Field: Forensic Anthropology and Human<br />

Rights in Argentina<br />

Age Estimation Utilizing Postnatal Dental<br />

Mineralization: An Exploratory Analysis of<br />

Molar Development for a Contemporary<br />

Florida Population.<br />

The Use of Morbidity and Mortality Patterns<br />

in Transitional Justice Initiatives Towards<br />

Human Identification<br />

Location, Identification, and Repatriation of<br />

Remains of Victims of Conflict: Implications<br />

for Forensic Anthropology<br />

Can Bilateral Joint Asymmetry Be Used as an<br />

Estimation of Handedness?<br />

41<br />

21<br />

199<br />

219<br />

507<br />

20<br />

124<br />

568<br />

192


Driscoll, Kathryn R.D. MA*, University of Tennessee,<br />

Knoxville, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Drukier, Piotr MS*, Nermin Sarajlic, PhD, and Eva E.<br />

Klonowski, PhD, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Drukier, Piotr MSc*, Eva Klonowski, PhD, Laura<br />

Yazedjian, Rifat Kesetovic, and Edwin F. Huffine, MS,<br />

International Commission on Missing Persons, Alipashina<br />

45a, 71000 Sarajevo, Bosnia and Herzegovina<br />

Dudar, J. Christopher PhD*, and Steve D. Ousley, PhD,<br />

Department of Anthropology, National Museum of Natural<br />

History, Smithsonian Institution, PO Box 37012, MRC 138,<br />

Washington, DC 20013-7012<br />

Dudley, Mary H. MD*, Sedgwick County Regional<br />

Forensic Science Center, 1109 North Minneapolis,<br />

Wichita, KS 67214; Joy Vetters, BS, Wichita State<br />

University - Department of Anthropology, 1845 Fairmount,<br />

Wichita, KS 67260; and Angela E. Benefiel, BA, Sedgwick<br />

County Regional Forensic Science Center, 1109 North<br />

Minneapolis, Wichita, KS 67214<br />

Dudzik, Beatrix MA*, and Hillary R. Parsons, MA, 508<br />

Chisholm Trail, Knoxville, TN 37919-7050; and Ashley H.<br />

McKeown, PhD, University of Montana, Department of<br />

Anthropology, Missoula, MT 59812<br />

Duhaime, Lauren J. BSc*, 1693 Virginia Drive, Sudbury,<br />

Ontario P3E 4T7, CANADA<br />

Dupras, Tosha L. PhD*, Joy E. Lang, and Heather L.<br />

Reay, Department of Sociology and Anthropology,<br />

University of Central Florida, Orlando, FL; John J.<br />

Schultz, MS, and Anthony B. Falsetti, PhD, C.A. Pound<br />

Human Identification Laboratory, University of Florida,<br />

Gainesville, FL; and Noel A. Palma, BS, MD, <strong>Medical</strong><br />

Examiner’s Office, Pinellas-Pasco County, West Palm<br />

Beach, FL<br />

Dupuis, Diana A. BA*, 2610 110th Avenue, NE, Bellevue,<br />

WA 98004<br />

Durakovic, Nedim BSc*, Rifat Kešetović, MD, Emina<br />

Kurtalić, Amir Hasandžiković, BSc, Adnan Rizvić, BSc, and<br />

Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

E. El-Sheikh, M. Essam MD, PhD*, and Salwa Ramadan,<br />

MD, PO Box 1747, Farwaina 1747, Kuwait<br />

Edson, Suni M. MS*, and Suzanne M. Barritt, MS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850; Mark D.<br />

Leney, PhD, Central Identification Lab, Joint POW/MIA<br />

Accounting Command, 310 Worchester Avenue, Hickam<br />

Air Force Base, HI 96853; and Brion C. Smith, DDS,<br />

Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Building 101, Rockville, MD 20850<br />

Index 133<br />

Bilateral Asymmetry and Handedness: Are<br />

they Really Related?<br />

Age-Related Changes in the Adult Male<br />

Vertebral Column<br />

Anthropological Review of Remains From<br />

Srebrenica as Part of the Identification<br />

Process<br />

Diagnosis of Anencephaly, a Common Lethal<br />

Neural Tube Defect, From Taphonomically<br />

Altered Fetal or Neonatal Skeletal Remains<br />

Exhumation of an Historical Gravesite at<br />

Taos Cemetery<br />

Using the Freeze-Thaw Cycle to Determine<br />

the Postmortem Interval: An Assessment of<br />

Pig Decomposition in West Central Montana<br />

Recollected Versus Actual Stature: How<br />

Does the Height Reported by Next of Kin<br />

Measure Up?<br />

Masking Identity: The Effects of Corrosive<br />

Household Agents on Soft Tissue, Bone, and<br />

Dentition<br />

Decomposition in the Santa Monica<br />

Mountains: A Seasonal Taphonomic Analysis<br />

of Buried and Exposed Remains<br />

Identifying the Missing From Srebrenica:<br />

Family Contact and the Final Identification<br />

Process<br />

Age of Closure of the Spheno-Occipital<br />

Synchondrosis in the Arabian Gulf Region<br />

MtDNA From Degraded Human Skeletal<br />

Remains: Is Quality Affected by Storage<br />

Conditions?<br />

313<br />

541<br />

515<br />

458<br />

296<br />

49<br />

123<br />

579<br />

411<br />

143<br />

364<br />

409


Egaña*, Sofia Silvana Turner, Patricia Bernardi,<br />

Mercedes Doretti, and Miguel Nieva, Argentine Forensic<br />

Anthropology Team (EAAF), Avenue Rivadavia 2443, 2nd<br />

Floor, Office 3-4, Buenos Aires, C1034ACD, Argentina<br />

Eleazer, Courtney D. BS*, and Murray K. Marks, PhD,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, 250 South Stadium Hall, Knoxville, TN 37996<br />

Eleazer, Courtney D. MA*, 7700 Gleason Drive,<br />

Apartment 39G, Knoxville, TN 37919<br />

Emanovsky, Paul D. BS*, University of Indianapolis<br />

Archeology and <strong>Forensics</strong> Laboratory, 1400 East Hanna<br />

Avenue, Indianapolis, IN; Joseph T. Hefner, BS, and<br />

Dennis C. Dirkmaat, PhD, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, 501 East 58th Street, Erie,<br />

PA<br />

Emanovsky, Paul D. MS*, JPAC-CIL, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

Emanovsky, Paul D. MS*, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853<br />

Ern, Stephania BSc, and Luca Trombino, Dipartimento di<br />

Scienze della Terra, Università degli Studi di Milano,<br />

Milan, ITALY; Daniele Gibelli, MD*, Laboratorio di<br />

Antropologia e Odontologia Forense, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY; and<br />

Cristina Cattaneo, PhD, Laboratorio di Antropologia e<br />

Odontologia Forense, Sezione di Medicina Legale,<br />

Dipartimento di Morfologia Umana e Scienze <strong>Bio</strong>mediche,<br />

V. Mangiagalli, 37, Milan, ITALY<br />

Erno, Jeffrey D. MS*, and Peter H. Tu, PhD, GE Global<br />

Research, Imaging Technologies, 1 Research Circle,<br />

Niskayuna, NY 12309; and Terrie Simmons, MA, and<br />

Philip N. Williams, BS, FBI Laboratory, CFSRU, Building<br />

12, Quantico, VA 22135<br />

Espenshade, Jordan N. BS*, 1420 Centre Avenue,<br />

Apartment 103, Pittsburgh, PA 15282; and Lisa Ludvico,<br />

PhD, Duquesne University Department of <strong>Bio</strong>logy, 341<br />

Fisher Hall 600 Forbes Avenue, Pittsburgh, PA 15282<br />

Evison, Martin P. PhD*, University of Toronto at<br />

Mississauga, Forensic Science Program, 3359 Mississauga<br />

Road North, Mississauga, ON L5L 1C6, Canada; and<br />

Richard W. Vorder Bruegge, PhD, Federal Bureau of<br />

Investigation, Forensic Audio, Video and Image Analysis<br />

Unit, Engineering Research Facility, Building 27958A,<br />

Quantico, VA 22135<br />

Falsetti, Anthony B. PhD* and Heather Walsh-Haney, MA,<br />

C.A. Pound Human Identification Laboratory, Department<br />

of Anthropology, University of Florida, Gainesville, FL<br />

32601; Martha J. Burt, MD, <strong>Medical</strong> Examiner<br />

Department, Miami-Dade County, Number One on Bob<br />

Hope Road, Miami, FL 33136<br />

Index 134<br />

Commingled Skeletonized Remains in<br />

Forensic Cases: Considerations for<br />

Methodological Treatment<br />

Age-Related Histomorphometric Changes in<br />

Fetal and Infant Long Bones<br />

Age Related Histomorphometric Changes in<br />

Fetal Long Bones<br />

Can Sharp Force Trauma to Bone Be<br />

Recognized After Fire Modification? An<br />

Experiment Using Odocoileus virginianus<br />

(White-Tailed Deer) Ribs<br />

Prediction of Shoe Size From Tarsals and<br />

Metatarsals<br />

Preliminary Results on the Use of Cadaver<br />

Dogs to Locate Vietnam War-Era Human<br />

Remains<br />

Application of Geopedology to Forensic<br />

Anthropology: Can Vivianite Be a Marker of<br />

Burial in Soil? – Three Case Reports<br />

Automatic Skull Landmark Determination for<br />

Facial Reconstruction<br />

A Pilot Study on Nuclear DNA Recovery<br />

From Charred White-Tailed Deer<br />

(Odocoileus virginianus) Bone Tissue<br />

Three-Dimensional Variation in Face Shape<br />

in a Large Study Sample<br />

Personal Identification and Death<br />

Investigation of Documented and<br />

Undocumented Migrant Workers in Florida:<br />

Demographic, <strong>Bio</strong>graphic, and Pathologic<br />

Factors<br />

441<br />

345<br />

261<br />

575<br />

191<br />

517<br />

90<br />

130<br />

74<br />

355<br />

497


Falsetti, Anthony B. PhD*, and Laurel E. Freas, MA,<br />

University of Florida, C.A. Pound Human Identification<br />

Laboratory, PO Box 112545, Southwest Radio Road,<br />

Gainesville, FL 32611<br />

Fanton, Laurent MD*, Institut of Legal Medicine, 12<br />

Avenue Rockefeller, Lyon, 69008, FRANCE; Marie Paule<br />

Gustin-Paultre, PhD, Lyon University, Lyon 1 University,<br />

Laboratory of <strong>Bio</strong>statistics ISPB, Lyon, F-69008,<br />

FRANCE; Habdelhamid Grait, MD, Milltary Hospital,<br />

Alger, ALGERIA; Aissa Boudabba, MD, Military Hospital,<br />

Alger, ALGERIA; Claire Desbois, MD, Lyon University,<br />

Lyon 1 University, Institut of Forensic Medicine, Lyon, F-<br />

69008, FRANCE; Patrice Stephane Schoendorff, MD,<br />

Institut Medico-Legal de Lyon, 12 Avenue Rockfeller,<br />

Lyon, 69007, FRANCE; Stéphane Tilhet-Coartet, MD,<br />

Institut of Legal Medicine, 12 avenue Rockefeller, Lyons,<br />

69008, FRANCE; Daniel Malicier, MD, Institu Medico<br />

Legal, 12 Avenue Rockfeller, Lyon, 69007, FRANCE<br />

Fenton, Todd W. PhD*, and Norman J. Sauer, PhD,<br />

Michigan State University, Department of Anthropology,<br />

354 Baker Hall, East Lansing, MI 48824<br />

Fenton, Todd W. PhD*, and Norman J. Sauer, PhD,<br />

Michigan State University, Department of Anthropology,<br />

354 Baker Hall, East Lansing, MI 48824<br />

Fenton, Todd W. PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI;<br />

Walter H. Birkby, PhD, and Bruce E. Anderson, PhD,<br />

Forensic Science Center, Pima County, Tucson, AZ; and<br />

David R. Rankin, MA, U.S. Army Central Identification<br />

Laboratory, Hickam Air Force Base, Honolulu, HI<br />

Fenton, Todd W. PhD*, Department of Anthropology,<br />

Joyce L. de Jong, DO, Sparrow Health System, Department<br />

of Pathology, and Roger Haut, PhD, Orthopaedic<br />

<strong>Bio</strong>mechanics Laboratories, 354 Baker Hall, Michigan<br />

State University, East Lansing, MI<br />

Fenton, Todd W. PhD*, Jered B. Cornelison, MS, and<br />

Leslie A. Wood, BS, Michigan State University,<br />

Department of Forensic Science, 560 Baker Hall, East<br />

Lansing, MI 48824<br />

Fenton, Todd W. PhD*, Michigan State University, 354<br />

Baker Hall, Department of Anthropology, East Lansing, MI<br />

48824; Nicholas V. Passalacqua, MS, 3518 Hagadorn<br />

Road, Okemos, MI 48864; and Timothy G. Baumer, BS,<br />

Brian J. Powell, BS, and Roger C. Haut, PhD, Orthopaedic<br />

<strong>Bio</strong>mechanics Laboratories, Michigan State University,<br />

East Lansing, MI 48824<br />

Fernandes, Tricia A. BSc*, Saint Mary’s University, 923<br />

Robie Street, Halifax, Nova Scotia B3H 3C3, CANADA<br />

Figura, Benjamin J. BA*, PO Box 4423, Chico, CA 95927-<br />

4423<br />

Index 135<br />

Lumbosacral Transitional Vertebrae,<br />

Spondylolysis and Spondylolisthesis:<br />

Prevalence in a Modern Forensic Skeletal<br />

Population<br />

Critical Study of Observations of the Sternal<br />

Extremity of the 4th Rib<br />

Identification of the Living From Video Tape<br />

and Photographs: The Dynamic Orientation<br />

Technique<br />

Skull-Photo Superimposition and Border<br />

Deaths: Identification Through Exclusion and<br />

the Failure to Exclude<br />

Falls From Cliffs: Reconstructing Individual<br />

Death Histories From a Perimortem Fracture<br />

Pattern<br />

One Unlucky Punch: The Etiology of a Fatal<br />

Depressed Skull Fracture<br />

Symmetrical Fracturing of the Skull From<br />

Self-Inflicted Gunshot Wounds:<br />

Reconstructing Individual Death Histories<br />

From Skeletonized Human Remains<br />

A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns - Part 1:<br />

Investigations on Infant Cranial Bone<br />

Fracture Initiation and Interface Dependent<br />

Fracture Patterns<br />

Taphonomic Patterns: Can Brush Fires<br />

Mimic the Natural Decomposition of Heavy<br />

Muscle Markers on Bone?<br />

Air-Drying as a Means of Preservation for the<br />

Unidentified and Unclaimed Remains From<br />

the World Trade Center<br />

405<br />

262<br />

401<br />

494<br />

574<br />

584<br />

505<br />

167<br />

80<br />

516


Figura, Benjamin J. MA*, New York City Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

10016<br />

Figura, Benjamin J. MA*, New York City Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

Index 136<br />

World Trade Center Revisited: A Bayesian<br />

Approach to Disaster Victim Identification<br />

New York City Unidentified Decedents From<br />

1980 – 2008<br />

10016<br />

Figura, Benjamin J. MA*, PO Box 538, Empire, MI 49630 An Assessment of DNA Degeneration Due to<br />

Air-Drying Preservation for the Remains of<br />

the World Trade Center<br />

434<br />

Finnegan, Michael PhD*, Department of Sociology,<br />

Anthropology and Social Work, Kansas State University,<br />

Manhattan, KS<br />

The Hyoid Bone as a Sex Discriminator 536<br />

Finnegan, Michael PhD*, Kansas State University, 204 Accuracy of Age Estimates Using the Pubic 305<br />

Waters Hall, Manhattan, KS 66506-4000<br />

Symphysis<br />

Finnegan, Michael PhD*, Kansas State University, Non-Metric Indicators of Ancestry: Making 486<br />

Osteology Laboratory, 204 Waters Hall, Manhattan, KS Non-Metric Traits More User Friendly in<br />

66506<br />

Racial Assessments<br />

Flavel, Ambika MSc*, 52 Ninth Avenue, Maylands, WA Gunshot Wounds and Other Perimortem<br />

Trauma to the Sub-Adult Skeleton<br />

563<br />

Fleischman, Julie M. BA*, Laura C. Fulginiti, PhD, and Callus Treatment: Collaboration Between 168<br />

Jeffrey S. Johnston, MD, Maricopa County Office of the Forensic Anthropology and Forensic<br />

<strong>Medical</strong> Examiner, 701 West Jefferson, Phoenix, AZ 85007 Pathology to Improve the Recognition and<br />

Elucidation of Skeletal Fractures in Infants<br />

and Children<br />

Fleischman, Julie M. BA*, Michigan State University, 560 An Evaluation of the Chen et al. Pubic Aging 16<br />

Baker Hall, East Lansing, MI 48824<br />

Method on a North American Sample<br />

Fletcher, Joanna M. BA*, 9941 Timber Oaks Court, Monitoring the Applicability of Ground- 1<br />

Orlando, FL 32817; William T. Hawkins, BA, 10215 Penetrating Radar on Detecting Shallow<br />

Blanchard Park Trail, Apartment 2314, Orlando, FL<br />

32817; and John J. Schultz, PhD, University of Central<br />

Florida, Department of Anthropology, PO Box 25000,<br />

Orlando, FL 32816<br />

Graves Using Proxy Cadavers<br />

Fojas, Christina L. BA*, Mercyhurst College, Department A Radiographic Assessment of Age Using 97<br />

of Anthropology & Applied Forensic Sciences, 501 East Distal Radius Epiphysis Presence in a<br />

38th Street, Erie, PA 16546<br />

Modern Subadult Sample<br />

Fojas, Christina L. MS*, Department of Anthropology, Using Spatial Analysis to Recognize Normal 41<br />

Binghamton University, PO Box 6000, Binghamton, NY<br />

13902; Christopher W. Rainwater, MS, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016;<br />

Luis L. Cabo-Pérez, MS, Mercyhurst College, Department<br />

of Applied Forensic Sciences, 501 East 38th Street, Erie,<br />

PA 16546; and Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East<br />

38th, Erie, PA 16546-0001<br />

and Abnormal Patterns in Burned Bodies<br />

Fondebrider*, Luis Argentine Forensic Anthropology Personal Identification from Skeletal 137<br />

Team (EAAF), Rivadavia 2443, 2do piso, dpto.3 y 4, Remains in Human Rights Investigations:<br />

(1034) Capital Federal, Buenos Aires, ARGENTINA; and<br />

Soren Blau, PhD*, Victorian Institute of Forensic<br />

Medicine, 57-83 Kavanagh Street, Southbank, Melbourne,<br />

Victoria 3146, AUSTRALIA<br />

Challenges from the Field<br />

40<br />

98


Fontana, Donna A. MS*, New Jersey State Police, Office of<br />

Forensic Sciences, Forensic Anthropology Laboratory,<br />

1200 Negron Drive, Hamilton, NJ 08691<br />

Fontana, Donna A. MS*, New Jersey State Police, River<br />

Road, PO Box 7068, West Trenton, NJ 08628; Raafat<br />

Ahmad, MD, Mercer County <strong>Medical</strong> Examiner Office,<br />

Mercer County Airport, Building #31, West Trenton, NJ<br />

08628; Jay Peacock, MD, Monmouth County <strong>Medical</strong><br />

Examiner Office, Centra State <strong>Medical</strong> Center, Route 537,<br />

Freehold, NJ 07728; Ronald Suarez, MD, Morris County<br />

<strong>Medical</strong> Examiner Office, PO Box 900, Morristown, NJ<br />

07963-0900<br />

Foose, Adrienne L. BA*, Robert R. Paine, PhD, and<br />

Richard A. Nisbett, PhD, Texas Tech University,<br />

Department of Sociology, Anthropology, and Social Work,<br />

PO Box 1012, Lubbock, TX 79409- 1012; Sridhar<br />

Natarajan, MD, Texas Tech University Health Sciences<br />

Center, Department of Pathology, Division of Forensic<br />

Pathology, 3601 4th Street, Lubbock, TX 79430<br />

Fox, Sherry C. PhD*, Wiener Laboratory, American<br />

School of Classical Studies at Athens, 54 Souidias Street,<br />

Athens, Attica GR106-76, Greece; and Sotiris K. Manolis,<br />

PhD, and Constantinos Eliopoulos, PhD, Department of<br />

Animal and Human Physiology, Division of <strong>Bio</strong>logy,<br />

University of Athens, Athens, Attica GR106-76, Greece<br />

Franicevic, Branka MSc*, Department of Archaeology,<br />

Sheffield University, Sheffield, S1 4ET, UNITED<br />

KINGDOM<br />

Franicevic, Branka MSc*, University of Bradford,<br />

Bradford, BD7 1DP, UNITED KINGDOM<br />

Franicevic, Branka MSc*, University of Bradford,<br />

Department of Archaeological Sciences, Bradford, BD7<br />

1DP, United Kingdom; and Robert F. Pastor, PhD,<br />

University of Bradford, <strong>Bio</strong>logical Anthropology Research<br />

Centre, Department of Archaeological Sciences, Bradford,<br />

BD7 1DP, United Kingdom<br />

Franicevic, Branka MSc*, University of Central<br />

Lancashire, Department of Forensic and Investigative<br />

Science, Preston, PR1 2HE, UNITED KINGDOM<br />

Franklin, Daniel PhD*, Centre for Forensic Science,<br />

School of Anatomy and Human <strong>Bio</strong>logy, The University of<br />

Western Australia, MBDP 420, 35 Stirling Highway,<br />

Crawley, Perth, Western Australia 6009, Australia; and<br />

Andrea Cardini, PhD, Functional Morphology and<br />

Evolution Research Unit, The Hull York <strong>Medical</strong> School,<br />

Heslington, York Y010 5DD, United Kingdom<br />

Index 137<br />

The Forensic Anthropologist, the National<br />

Crime Information Center (N.C.I.C.), and<br />

National Missing and Unidentified<br />

Persons\System (NamUs) Databases<br />

Multidisciplinary Efforts in the Identification<br />

of Three Unidentified Females in the State of<br />

New Jersey<br />

Age at Death Determination Using the<br />

Skeletal Histomorphometry of the Third<br />

Metacarpal and Third Metatarsal From<br />

Autopsy and Cadaver Samples<br />

A Simple Technique for Imaging the Human<br />

Skeleton: An Application Using the Auricular<br />

Surface for Aging<br />

Modes of Mutilation in Taphonomic Context:<br />

Can Sharp Force Trauma Decelerate the<br />

Decomposition Process?<br />

Dead on Time? The Repellent Effect of<br />

Liquid Petroleum Gas on Time Since Death<br />

Estimation<br />

Inter-Tidal Decomposition Patterns in<br />

Croatia: An Experiment using Sus scrofa<br />

Pedal Elements<br />

Basement Bodies: The Effect of Light on<br />

Decomposition in Indoor Settings<br />

Mandibular Morphology as an Indicator of<br />

Human Subadult Age: Interlandmark and<br />

Geometric Morphometric Approaches<br />

178<br />

499<br />

470<br />

349<br />

148<br />

109<br />

299<br />

234<br />

344


Franklin, Daniel PhD, and Charles E. Oxnard, MBChB,<br />

PhD, Centre for Forensic Science, School of Anatomy and<br />

Human <strong>Bio</strong>logy, The University of Western Australia, 35<br />

Stirling Highway, Crawley, Perth, Western Australia 6009,<br />

Australia; Paul O’Higgins, MBChB, PhD, Functional<br />

Morphology and Evolution Research Group, The<br />

University of York, Heslington, York Y010 5DD, United<br />

Kingdom; and Ian Dadour, PhD*, and Robin Napper, BA,<br />

Centre for Forensic Science, The University of Western<br />

Australia, 35 Stirling Highway, Crawley, Perth, Western<br />

Australia 6009, Australia<br />

Frazee*, Kathryn Lee 1422 Pearce Park, Apartment # 2,<br />

Erie, PA 16502-2915<br />

Freas, Laurel BA*, Department of Anthropology, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, PO Box 112545, Gainesville, FL 32611<br />

Freas, Laurel MA*, Department of Anthropology, CA<br />

Pound Human ID Laboratory, University of Florida, PO<br />

Box 112545, Gainesville, FL 32611<br />

Fredericks*, Jamie Daniel Lower Bank Road, Fulwood,<br />

Preston, Lancashire PR2 8NS, UNITED KINGDOM; and<br />

Tal Simmons, PhD, Department of Forensic and<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Fredericks, Jamie D. MSc*, Cranfield University, SCR 12,<br />

DASSR, Shrivenham, Swindon, SN6 8LA, UNITED<br />

KINGDOM<br />

Freid, Donna MA*, University of Tennessee, Knoxville,<br />

250 South Stadium Hall, Knoxville, TN 37996; Richard L.<br />

Jantz, PhD, University of Tennessee, Knoxville, 250 South<br />

Stadium Hall, Knoxville, TN 3799<br />

Frelich, Lawrence DDS, PhD, Department of Peridontics,<br />

University of Maryland School of Dentistry, 666 West<br />

Baltimore Street, Baltimore, MD 21201; and David R.<br />

Hunt, PhD*, Smithsonian Institution, Department of<br />

Anthropology, National Museum of Natural History,<br />

Washington, DC 20013-7012<br />

Fulginiti, Laura C. PhD*, 15015 South 14th Place,<br />

Phoenix, AZ 85048; Michael W. Warren, PhD, and Joseph<br />

T. Hefner, MA, Department of Anthropology, University of<br />

Florida, PO Box 117305, Gainesville, FL 32611; Larry R.<br />

Bedore, MS, District 8 Office of the <strong>Medical</strong> Examiner,<br />

Gainesville, FL 32601; Jason H. Byrd, PhD, Department<br />

of Criminology, Law & Society, University of Florida, PO<br />

Box 115950, Gainesville, FL 32611; Vincent Stefan, PhD,<br />

Department of Anthropology, Lehman College, CUNY,<br />

Bronx, NY 10468; and Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Department Applied Forensic<br />

Sciences, Zurn 119A, 501 E 38th Street, Erie, PA 16546<br />

Index 138<br />

Sexual Dimorphism in the Subadult<br />

Mandible: Quantification Using Geometric<br />

Morphometrics<br />

Demographic Expression of the Frontal<br />

Sinuses<br />

Assessment of Saw-Blade Wear Patterns and<br />

Wear-Related Features of the Kerf Wall<br />

Scanning Electron Microscopy of Saw Marks<br />

in Bone: Assessment of Wear- Related<br />

Features of the Kerf Wall<br />

DNA Quantification of Burned Skeletal<br />

Tissue<br />

XRD and FTIR: A Diagnostic Tool to<br />

Determine Whether or Not a DNA Profile<br />

Can Be Successfully Generated From Heat<br />

Treated Bone Prior to DNA Extraction<br />

Classification and Evaluation of Unusual<br />

Individuals Using FORDISC<br />

Morphological Characteristics of Ancestry in<br />

the Fetal/Newborn Human Skeleton<br />

364<br />

268<br />

501<br />

383<br />

238<br />

80<br />

421<br />

326<br />

Anthropology Responds to Hurricane Katrina 392


Fulginiti, Laura C. PhD*, A.L. Mosley, MD, V. Shvarts,<br />

MD, J. Hu, MD, K.D. Horn, MD, P.E. Keen, MD, and R.M.<br />

Hsu, MD, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Fulginiti, Laura C. PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Frank Di Modica,<br />

Phoenix Police Department, 620 West Washington Street,<br />

Phoenix, AZ 85003; Kristen Hartnett, PhD, Office of Chief<br />

<strong>Medical</strong> Examiner, Forensic Anthropology, 520 1st<br />

Avenue, New York, NY 10016; and Diane Karluk, MD,<br />

Maricopa County Office of the <strong>Medical</strong> Examiner, 701<br />

West Jefferson, Phoenix, AZ 85007<br />

Fulginiti, Laura C. PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Kristen Hartnett, PhD,<br />

Office of Chief <strong>Medical</strong> Examiner, Forensic Anthropology,<br />

520 1st Avenue, New York, NY 10016; Frank Di Modica,<br />

Phoenix Police Department, 620 West Washington Street,<br />

Phoeniz, AZ 85003; and Diane Karluk, MD, Maircopa<br />

County Office of the <strong>Medical</strong> Examiner, 701 West<br />

Jefferson, Phoenix, AZ 85007<br />

Fulginiti, Laura C. PhD*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007; Kristen M. Hartnett,<br />

MA, Arizona State University, Department of<br />

Anthropology, PO Box 872402, Tempe, AZ 85287; and<br />

Philip E. Keen, MD, Maricopa County Office of the<br />

<strong>Medical</strong> Examiner, 701 West Jefferson Street, Phoenix, AZ<br />

85007<br />

Fulginiti, Laura C. PhD*, Kristen M. Hartnett, MA, Kevin<br />

D. Horn, MD, and Ruth E. Kohlmeier, MD, Forensic<br />

Science Center, 701 West Jefferson, Phoenix, AZ 85007<br />

Furgeson, Thomas A. BA, BS*, University of Wyoming,<br />

2109-C East Hancock Street, Laramie, WY 82072<br />

Furgeson, Thomas A. MA*, University of Wyoming, 1002<br />

South 3rd Street, Laramie, WY 82070; George W. Gill,<br />

PhD, University of Wyoming, Department of Anthropology,<br />

Laramie, WY 82071; and Rick L. Weathermon, MA,<br />

Department of Anthropology, University of Wyoming, 10<br />

East University Avenue, Department 3431, Anthropology,<br />

Laramie, WY 82071<br />

Galloway, Alison PhD*, University of California, Social<br />

Science One FS, Santa Cruz, CA 95064; Lauren Zephro,<br />

MA, Monterey County Sheriff’s Office, 1414 Natividad<br />

Road, Salinas, CA 93906-3102<br />

Galloway, Alison PhD, Department of Anthropology,<br />

Social Science One FS, University of California, Santa<br />

Cruz, CA 95064; and Lauren Zephro, MA, Monterey<br />

County Sheriff’s Office, 1414 Natividad Road, Salinas, CA<br />

95006<br />

Index 139<br />

Fatal Footsteps: The Murder of<br />

Undocumented Border Crossers in Maricopa<br />

County, Arizona<br />

Sealed For Your Protection II: The Effects of<br />

Corrosive Substances on Human Bone and<br />

Tissue<br />

Sealed for Your Protection, Part I: The<br />

Effects of an Unknown Corrosive Agent on<br />

Human Bone<br />

A Tale of Two Bodies: Separating<br />

Commingled Skeletal Remains With Similar<br />

<strong>Bio</strong>logical Profiles<br />

498<br />

199<br />

243<br />

446<br />

Of Butterflies and Spirals: Interpretation of 376<br />

Fractures in Motor Vehicle vs. Pedestrian<br />

Accidents<br />

Race as a Viable Concept 492<br />

Identification of Multiple Cranial Traumas in<br />

a Recently Closed Homicide Investigation<br />

176<br />

Skeletal Evidence of Homicidal Compression 500<br />

Internal Cranial Fractures 416


Galloway, Alison PhD, University of California, Social<br />

Science One FS, Santa Cruz, CA 95064; Elayne J. Pope,<br />

PhD, University of West Florida, Anthropology Building<br />

13, 11000 University Parkway, Pensacola, FL 32514; and<br />

Chelsey Juarez, MA*, Dept of Anthropology, UCSC Social<br />

Science 1, 1156 High Street, Santa Cruz, CA 95064<br />

Garvin, Heather M. BA, BS*, 1422 Pearce Park,<br />

Apartment # 6, Erie, PA 16502<br />

Garvin, Heather M. MS*, Johns Hopkins University, 1830<br />

East Monument Street, Room 302, Baltimore, MD 21205<br />

Garvin, Heather M. MS*, Johns Hopkins University, 1830<br />

East Monument Street, Room 302, Baltimore, MD 21205;<br />

and Nicholas V. Passalacqua, MS, 3518 Hagadorn Road,<br />

Okemos, MI 48864-4200<br />

Garvin, Heather MS*, 7471 SE 117th Terrace, Morriston,<br />

FL 32668; Luis Lorenzo Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501<br />

East 38th Street, Erie, PA 16546; Kyra Elizabeth Stull, BA,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546;<br />

and Dennis C. Dirkmaat, PhD, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, Glenwood Hills, Erie, PA<br />

16546<br />

Getz, Sara M. BS*, Mercyhurst College, Department of<br />

Applied Forensic Sciences, 501 East 38th Street, Erie, PA<br />

16546<br />

Gibson, Laura E. BS*, 2040 Larchmont Way, Clearwater,<br />

FL 33764; Heather A. Walsh-Haney, and Christen E.<br />

Herrick, BS, Florida Gulf Coast University, Division of<br />

Justice Studies, 10501 FGCU Boulevard South, AB3, Fort<br />

Myers, FL 33965-6565; Katy L. Shepherd, BS, Florida<br />

Gulf Coast University, Division of Justice Studies, 10501<br />

FGCU Boulevard, South, Fort Myers, FL 33965; Gertrude<br />

M. Juste, MD, District 15 Office of the <strong>Medical</strong> Examiner,<br />

3126 Gun Club Road, West Palm Beach, FL 33406; and<br />

Margarita Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100<br />

Jefferson Street, Jacksonville, FL 32206<br />

Giles, Eugene PhD*, Department of Anthropology,<br />

University of Illinois, 607 South Mathews Avenue, Urbana,<br />

IL 61801<br />

Gill, George W. PhD*, Department of Anthropology,<br />

University of Wyoming, Laramie, WY 82071<br />

Giroux, Carolyn L. BA*, 6200 East Richland Road,<br />

Columbia, MO 65201; and Daniel J. Wescott, PhD,<br />

University of Missouri-Columbia, Department of<br />

Anthropology, 107 Swallow Hall, Columbia, MO 65211<br />

Glassman, David M. PhD*, Texas State University-San<br />

Marcos, Department of Anthropology, San Marcos, Texas<br />

78666<br />

Godde, Kanya MA*, and Angela M. Dautartas, BS,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Index 140<br />

The Burning Question: A Case Analysis of<br />

Peri-Mortem Trauma vs. Post Fire Damage<br />

Ossification of Laryngeal Structures: As<br />

Indicators of Age<br />

Variation in Browridge and Chin<br />

Morphologies: Sexual Dimorphism and<br />

Covariation With Body Size<br />

Forensic Anthropology and Age-at-Death<br />

Estimation: Current Trends in Adult Age<br />

Estimation<br />

A Practical Method for Determining Sex<br />

From Human Chest Plate Radiographs<br />

An Investigation and Critique of the DiGangi<br />

et al. (2009) First Rib Aging Method<br />

Necessary Breaks With Conservator<br />

Standards: Cranial Reconstruction in Forensic<br />

Cases<br />

Ur-FORDISC, or Early Statistical Methods in<br />

Forensic Anthropology<br />

Population Variability in the Proximal<br />

Articulation Surfaces of the Human Femur<br />

and Humerus<br />

Stature Estimation Based on Dimensions of<br />

the Bony Pelvis and Proximal Femur<br />

Issues Concerning the Skeletal Identification<br />

of Deceased Illegal Aliens Recovered on the<br />

Texas Border<br />

Secular Trends in Cranial Morphological<br />

Sexing<br />

215<br />

314<br />

48<br />

125<br />

266<br />

24<br />

196<br />

422<br />

489<br />

371<br />

496<br />

158


Godde, Kanya PhD*, Texas State University, San Marcos,<br />

Department of Anthropology, 601 University Drive, San<br />

Marcos, TX 78666<br />

Goff, Alaina K. BA* and Wendy Potter, MS, University of<br />

New Mexico, Department of Anthropology, Albuquerque,<br />

NM 87131; Debra Komar, PhD, Office of the <strong>Medical</strong><br />

Investigator, University of New Mexico, Albuquerque, NM<br />

87131<br />

Goff, Alaina K. BA*, and Debra Komar, PhD, Department<br />

of Anthropology, MSC01-1040, 1 University of New<br />

Mexico, Albuquerque, NM 87131<br />

Gold, Melissa L. BS*, Department of Anthropology, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, PO Box 112545, Gainesville, FL 32611<br />

Gonzalez, Richard A. PhD*, Department of Anthropology,<br />

Saint Lawrence University, 23 Romoda Drive, Canton, NY<br />

13617<br />

Gonzalez, Richard A. PhD*, Saint Lawrence University,<br />

Department of Anthropology, 1 Romoda Drive, Canton, NY<br />

13617<br />

Gordon, Kellie M. BA*, and Mary H. Manhein, MA,<br />

Department of Geography and Anthropology, Louisiana<br />

State University, 227 Howe Russell Geoscience Complex,<br />

Baton Rouge, LA<br />

Grant, William E. MA*, Holland Community Hospital, 602<br />

Michigan Avenue, Holland, MI; and Richard L. Jantz,<br />

PhD, Department of Anthropology, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN<br />

Gray, Deborah W. MA*, Riverside County Sheriff-<br />

Coroner, 800 South Redlands Avenue, Perris, CA 92571;<br />

and Judy M. Suchey, PhD, Department of Coroner, Los<br />

Angeles County, 1104 North Mission Road, Los Angeles,<br />

CA 90033<br />

Greef, Sven De DDS*, Katholieke Universiteit Leuven<br />

Faculty of Medicine, School of Dentistry, Oral Pathology<br />

and Maxillofacial Surgery, Forensic Odontology,<br />

Kapucijnenvoer 7, Leuven, B-3000, Belgium; Peter Claes,<br />

MEng, Wouter Mollemans, MEng, Dirk Vandermeulen,<br />

PhD, and Paul Suetens, PhD, Katholieke Universiteit<br />

Leuven, ESAT, <strong>Medical</strong> Image Computing, Herestraat 49,<br />

Leuven, B-3000, Belgium; and Guy Willems, DDS, PhD,<br />

Katholieke Universiteit Leuven, Faculty of Medicine,<br />

School of Dentistry, Oral Pathology and Maxillofacial<br />

Surgery, Forensic Odontology, Kapucijnenvorer 7, Leuven,<br />

B-3000, Belgium<br />

Greenwald, Kristen E. MA*, 32 10th Street, Hermosa<br />

Beach, CA 90254<br />

Gremillian, Abigail BA*, 17862 East General Forrest,<br />

Baton Rouge, LA 70817; and Robert J. Morton, MS, and<br />

Wayne D. Lord, PhD, FBI NCAVC, FBI Academy,<br />

Quantico, VA 22135<br />

Index 141<br />

Conditions for Breaking Down Mummified<br />

Tissue and the Subsequent Implications for<br />

Time Since Death<br />

Skeletal Manifestations of Non-Hodgkin’s<br />

Lymphoma and Multiple Myeloma: A<br />

Differential Diagnosis<br />

SEM Analysis of Mummified Skin: A<br />

Preliminary Study of Obsidian and Chert<br />

Induced Trauma<br />

Hereditary Multiple Exostoses: An<br />

Identifying Pathology<br />

Determination of Sex From Juvenile Crania<br />

by Means of Discriminant Function Analysis:<br />

A First Study<br />

Regional Variation of the Proximal Femur in<br />

the United States: Analysis of Data From<br />

NHANES III<br />

The Role of Textiles in Determination of<br />

Postmortem Interval<br />

The Estimation of Sex From the Proximal<br />

Ulna<br />

52<br />

526<br />

427<br />

502<br />

262<br />

45<br />

548<br />

536<br />

Mass Disasters and Non-Human Remains 393<br />

Semi-Automated Ultrasound Facial Soft<br />

Tissue Depth Registration: Method and<br />

Preliminary Results<br />

An Experimental Study of Putrefaction and<br />

Decomposition in Aqueous Environments<br />

Insect Colonization of Child-Sized Remains:<br />

Behavioral Analysis of Pig Carcasses via 24<br />

Hour, High Resolution Video Surveillance<br />

437<br />

108<br />

413


Grivas, Christopher R. MS*, and Debra Komar, PhD,<br />

University of New Mexico, Department of Anthropology,<br />

MSC01 1040, Office of the <strong>Medical</strong> Investigator, MSC11<br />

6131, 1 University of New Mexico, Albuquerque, NM<br />

87131-0001<br />

Grivas, Christopher R. MS*, University of New Mexico,<br />

Department of Anthropology, 1 University of New Mexico,<br />

Albuquerque, NM 87131<br />

Grivas, Christopher R. MS*, University of New Mexico,<br />

Department of Anthropology, MSC01-1040, Albuquerque,<br />

NM 87131; Debra Komar, PhD, Office of the <strong>Medical</strong><br />

Investigator, 1 University of New Mexico, MSC11 6030,<br />

Albuquerque, NM 87131<br />

Index 142<br />

Daubert and Kumho: Implications for<br />

Anthropologists in the Courtroom<br />

Differential Diagnosis of Gout in Skeletal<br />

Remains<br />

Evaluating Methods of Age Estimation of<br />

Fetal/Neonate Remains From Radiographs<br />

Using a Diverse Autopsy Sample<br />

Gruenthal, Ariel M. BA*, 2534 E, Eureka, CA 95501 Differential Decomposition Patterns in<br />

Charred Versus Un-Charred Remains<br />

81<br />

Guatame-Garcia, Ana C. BSc*, University of Central Computer Simulation for Drift Trajectories of 235<br />

Lancashire, Calle 9 #0-95, Bogota, COLOMBIA; Luis A.<br />

Camacho, PhD, Universidad Nacional de Colombia at<br />

Bogota, Bogota, COLOMBIA; and Tal Simmons, PhD,<br />

Department of Forensic and, Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, UNITED KINGDOM<br />

Objects in the Magdalena River, Colombia<br />

Guyomarc’h, Pierre MS*, Bruno Dutailly, MS, Christine Prediction of Mouth Shape Using Geometric 57<br />

Couture, PhD, and Helene Coqueugniot, PhD, Universite<br />

Bordeaux 1 - UMR 5199 PACEA, Universite Bordeaux 1,<br />

UMR 5199 PACEA - LAPP, Av des Facultes, Bat B8,<br />

Talence, 33405, FRANCE<br />

Morphometrics for Facial Approximation<br />

Guyomarc’h, Pierre MS*, Universite Bordeaux 1, UMR A Performance Check of Ear Prediction 38<br />

5199 PACEA, UMR 5199 PACEA, Universite Bordeaux 1, Guidelines Used in Facial Approximation<br />

Av des Facultes, Bat B8, Talence, 33405, FRANCE; Carl<br />

N. Stephan, PhD, JPAC - CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Based on CT Scans of Living People<br />

Hackman, Lucina MSc*, Dundee University, WTB/MSI Training the National Disaster Victim 184<br />

Complex, Dow Street, Dundee, DD1 4AH, UNITED<br />

KINGDOM<br />

Identification Team<br />

Haden-Pinneri, Kathryn H. MD*, Jennifer C. Love, PhD*, Forensic Pathology and Anthropology: A 179<br />

Jason M. Wiersema, PhD, and Sharon M. Derrick, PhD,<br />

Harris County <strong>Medical</strong> Examiner’s Office, 1885 Old<br />

Spanish Trail, Houston, TX 77054<br />

Collaborative Effort<br />

Haden-Pinneri, Kathryn MD*, Office of the <strong>Medical</strong><br />

Examiner of Harris County, Joseph A. Jachimiczyk<br />

Forensic Center, 1885 Old Spanish Trail, Houston, TX<br />

77054; and Gregory Berg, MS, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

Ballistics-Induced Depressed Skull Fractures 309<br />

Halvorsen, H. Anne MA* and Rick L. Weathermon, MA, Femoral Variation Between Whites and 488<br />

Department of Anthropology, University of Wyoming,<br />

Laramie, WY 82072<br />

American Indians<br />

Hamilton, Michelle D. PhD*, and Jerry Melbye, PhD, Going Green: Environmentally Sound 203<br />

Texas State University-San Marcos, Department of Practices in Human Decomposition Research<br />

Anthropology, 601 University Drive, ELA 273, San<br />

Marcos, TX 78666-4616<br />

and Laboratory Settings<br />

359<br />

381<br />

271


Hampton, Angela BS*, University of New Mexico,<br />

Department of Anthropology, MSC01-1040, 1 University of<br />

New Mexico, Albuquerque, NM 87131<br />

Hanson, Ian MSc*, School of Conservation Sciences,<br />

Bournemouth University, United Kingdom<br />

Harrington, Richard J. PhD*, International Commission<br />

on Missing Persons, Alipasina 45a, Sarajevo; Benjamin<br />

Swift, MBChB, Division of Forensic Pathology, Robert<br />

Kilpatrick Clinical Sciences Building, Leicester Royal<br />

Infirmary, Leicester, United Kingdom; and Edwin F.<br />

Huffine, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo<br />

Index 143<br />

Testing Determination of Adult Age at Death<br />

Using Four Criteria of the Acetabulum<br />

447<br />

Advances in Surveying and Presenting 561<br />

Evidence From Mass Graves, Clandestine<br />

Graves, and Surface Scatters<br />

Introducing Daubert to the Balkans 538<br />

Hart, Gina O. BA*, 933 Anchor Lake Road, Carriere, MS Fracture Pattern Interpretation in the Skull:<br />

Differentiating Blunt Force From Ballistics<br />

Hart, Gina O. MA*, Regional <strong>Medical</strong> Examiner’s Office,<br />

325 Norfolk Street, Newark, NJ 07103-2701<br />

Hartnett, Kristen M. BA*, and Denise To, MA, Department<br />

of Anthropology, Arizona State University, PO Box<br />

872402, Tempe, AZ<br />

Hartnett, Kristen M. MA*, Arizona State University,<br />

Department of Anthropology, PO Box 872402, Tempe, AZ<br />

85287-2402; Laura C. Fulginiti, PhD, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

Hartnett, Kristen M. MA*, Forensic Science Center, 701<br />

West Jefferson, Phoenix, AZ 85007<br />

Haugen, Gwendolyn M. MA*, Saint Louis County <strong>Medical</strong><br />

Examiner’s Office, 6039 Helen Avenue, Saint Louis, MO<br />

63134; Gina O. Hart, MA, 325 Norfolk Street, Newark, NJ<br />

07103-2701; and Pamela M. Steger, MS, 934 Sycamore<br />

Street, San Marcos, TX 78666<br />

Haugen, Gwendolyn M. MA*, St. Louis County <strong>Medical</strong><br />

Examiner’s Office, 6039 Helen Avenue, St. Louis, MO<br />

63134; Kathleen Diebold, MA*, St. Charles, Jefferson &<br />

Franklin, <strong>Medical</strong> Examiner’s Office, 3556 Caroline<br />

Street, Room C305, St. Louis, MO 63104; Mary E.S. Case,<br />

MD, Chief <strong>Medical</strong> Examiner of St. Louis, St. Charles,<br />

Jefferson, and Franklin Counties in Missouri, 6039 Helen<br />

Avenue, St. Louis, MO 63134; St. Louis County <strong>Medical</strong><br />

Examiner’s Office, 6039 Helen Avenue, St. Louis, MO<br />

63134; and Charles W. Subke, Franklin County Sheriff’s<br />

Office, #1 Bruns Drive, Union, MO 63084<br />

Hawkins, William T. BA*, 10215 Blanchard Park Trail,<br />

Apartment 2314, Orlando, FL 32817; Joanna M. Fletcher,<br />

BA, 9941 Timber Oaks Court, Orlando, FL 32817; and<br />

John J. Schultz, PhD, University of Central Florida,<br />

Department of Anthropology, PO Box 25000, Orlando, FL<br />

32816<br />

Trauma<br />

Death Investigation for Anthropologists:<br />

Examining an Alternative Role for Forensic<br />

Anthropologists in <strong>Medical</strong> Examiner’s and<br />

Coroner’s Offices<br />

Modern Oral Piercings: The Application of<br />

Their Dental Wear Patterns for Forensic<br />

Anthropology<br />

Osseous Traumata Caused by a Fall From a<br />

Height: A Case Study<br />

A Reevaluation and Revision of the Suchey-<br />

Brooks and Loth and Iscan Aging Methods<br />

Diversification: Evolving Professional Roles<br />

for the Forensic Anthropologist in the<br />

Medicolegal System<br />

Identification by the Numbers: A Case Study<br />

in Skeletal Trauma Examination and Surgical<br />

Implant Tracking<br />

Monitoring the Long-Term Applicability of<br />

Ground-Penetrating Radar Using Proxy<br />

Cadavers<br />

585<br />

175<br />

588<br />

498<br />

305<br />

10<br />

219<br />

1


Hayashi, Atsuko BA*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853-<br />

5530<br />

Heaton, Vivienne G. MS*, and Tal Simmons, PhD,<br />

Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, United Kingdom<br />

Hefner, Joseph T. BA, MA*, Department of Anthropology,<br />

University of Florida, Gainesville, FL 32611; and Stephen<br />

D. Ousley, PhD, Department of Anthropology, Smithsonian<br />

Institution, Washington, DC 20560<br />

Hefner, Joseph T. BS*, C.A. Pound Human Identification<br />

Laboratory, Department of Anthropology, 1898 Seton<br />

Court, Clearwater, FL<br />

Hefner, Joseph T. BS*, Department of Anthropology,<br />

University of Florida, 5007 NW 29th Street, Gainesville,<br />

FL 32607; Stephen D. Ousley, PhD, Smithsonian, NMNH<br />

MRCI 138, Washington, DC 20560; Michael W. Warren,<br />

PhD, Department of Anthropology, University of Florida,<br />

Gainesville, FL 32605<br />

Hefner, Joseph T. BS*, Mercyhurst College, Forensic<br />

Anthropology Laboratory, 202 Parade Street, Erie, PA<br />

Hefner, Joseph T. MA*, Forensic Anthropology Center,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37996; Paul D. Emanovsky, MS, and John<br />

Byrd, PhD, Joint POW/MIA Accounting Command, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853;<br />

and Stephen D. Ousley, PhD, National Museum of Natural<br />

History, Smithsonian Institution, PO Box 37012 MRC 138,<br />

Washington, DC 20013<br />

Hefner, Joseph T. MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Natalie M. Uhl, BS, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227; Stanley Rhine, PhD, University of New Mexico,<br />

Department of Anthropology, MSC01-1040 Anthropology,<br />

Albuquerque, NM 87131-0001; and William M. Bass, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Hefner, Joseph T. PhD*, and Natalie Uhl, MS, 1503 North<br />

Pennsylvania Street, Apartment 21, Indianapolis, IN<br />

46202; and Nicholas V. Passalaqua, MS, Michigan State<br />

University, 203 Berkey Hall, East Lansing, MI 48824-1111<br />

Hefner, Joseph T. PhD*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96583;<br />

Kate Spradley, PhD, Department of Anthropology, Texas<br />

State University, 601 University Drive, San Marcos, TX<br />

78666; and Bruce E. Anderson, PhD, Forensic Science<br />

Center, Office of the <strong>Medical</strong> Examiner, 2825 East District<br />

Street, Tucson, AZ 85714<br />

Index 144<br />

Revising Revisions: Modification of the<br />

Measurement of the Sacral Body Height for<br />

Use in Fully’s (1956) Anatomical Method of<br />

Stature Estimation<br />

The Decomposition of Human Remains<br />

Recovered From the River Clyde, Scotland:<br />

A Comparative Study of UK Fluvial Systems<br />

Morphoscopic Traits and the Statistical<br />

Determination of Ancestry II<br />

The Utility of Nonmetric Cranial Traits in<br />

Ancestry Determination - Part II<br />

An Historical Perspective on Nonmetric<br />

Skeletal Variation: Hooton and the Harvard<br />

List<br />

An Assessment of Craniofacial Nonmetric<br />

Traits Currently Used in the Forensic<br />

Determination of Ancestry<br />

The Value of Experience, Education, and<br />

Methods in Ancestry Prediction<br />

Pedagogy of Practicing Forensic<br />

Anthropologists: A Collection of Our History<br />

Beyond Taphonomy: Craniometric Variation<br />

Among Anatomical Specimens<br />

Ancestry Estimation Using Random Forest<br />

Modeling<br />

23<br />

339<br />

369<br />

537<br />

485<br />

593<br />

332<br />

294<br />

232<br />

26


Hefner, Joseph T. PhD*, Statistical Research, Inc., 6099<br />

East Speedway Boulevard, Tucson, AZ 85712<br />

Henderson, Julie A. BA*, PO Box 125, 130 4th Street,<br />

Morton, WA 98356<br />

Herman, Rhett PhD, Radford University, Department of<br />

Chemistry and Physics, Radford University, Radford, VA<br />

24142; Cliff Boyd, PhD, Radford University, Department<br />

of Sociology and Anthropology, Radford University,<br />

Radford, VA 24142; Jarrod Burks, PhD, Ohio Valley<br />

Archaeological Consultants, 4889 Sinclair Road, Suite<br />

210, Columbus, OH 43229; Donna C. Boyd, PhD*,<br />

Department Sociology & Anthropology, Radford<br />

University, Radford, VA 24142; and Doug Drumheller,<br />

MBA, Greatest Generation MIA Recoveries, 2187 Ben<br />

Franklin Drive, Pittsburg, PA 15327<br />

Herrick, Christen E. BS*, and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard AB3, Fort Myers, FL<br />

33965-6565; Katy L. Shepherd, BS, Florida Gulf Coast<br />

University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Marta U.<br />

Coburn, MD, District 20 <strong>Medical</strong> Examiner’s Office, 3838<br />

Domestic Avenue, Naples, FL 34104; and Margarita<br />

Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100 Jefferson<br />

Street, Jacksonville, FL 32206<br />

Herrick, Christen E. BS*, and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard AB3, Fort Myers, FL<br />

33965-6565; Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206;<br />

Marta U. Coburn, MD, District 20 <strong>Medical</strong> Examiner,<br />

3838 Domestic Avenue, Naples, FL 34104; E.H.<br />

Scheuerman, MD, 1856 Colonial Drive, Green Cove<br />

Springs, FL 32043; Jennifer L. Anderson, BS, BA, 4632<br />

Deleon Street, #129, Fort Myers, FL 33907; Jeffrey J.<br />

Brokaw, BA, 2100 Jefferson Street, Jacksonville, FL<br />

32206; Brian Womble, BS, 3838 Domestic Avenue, Naples,<br />

FL 34104; Katy L. Shepherd, BS, Florida Gulf Coast<br />

University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Laura E. Gibson,<br />

BS, 2040 Larchmont Way, Clearwater, FL 33764; and<br />

Minas Iliopoulos, BS, 10501 FGCU Boulevard, South,<br />

Division of Justice Studies, AB3, Fort Myers, FL 33965<br />

Herrick, Christen E. BS*,and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard S, AB3, Fort Myers, FL<br />

33965-6565; and E. Hunt Scheuerman, MD, 1856 Colonial<br />

Drive, Green Cove Springs, FL 32043<br />

Herrmann, Nicholas P. PhD*, Beth Bassett, MA, and Lee<br />

M. Jantz, PhD, University of Tennessee, 250 South Stadium<br />

Hall, Department of Anthropology, Knoxville, TN 37996<br />

Index 145<br />

Morphoscopic Traits: Mixed Ancestry,<br />

Hispanics, and <strong>Bio</strong>logical Variation<br />

Assessing Directionality of Low Velocity<br />

Gunshot Wounds to the Vertebrae: A<br />

Preliminary Study<br />

Geophysical Remote Sensing Applied to the<br />

Forensic Search for WWII Graves in<br />

Guadalcanal<br />

Molar Crenulation as an Attribute of<br />

Ancestry in Forensic Cases: Identification<br />

and Accuracy<br />

Solving <strong>Medical</strong> Examiner Cold Cases:<br />

Modern Resources in the Reanalysis of<br />

Human Skeletal Remains<br />

What Starts as a Homicide Ends as a<br />

Forgotten Cemetery: How <strong>Medical</strong><br />

Examiners, Law Enforcement, and State<br />

Archaeologists Work Together to Protect<br />

Archaeological Sites<br />

High Velocity Fluvial Transport: A Case<br />

Study From Tennessee<br />

208<br />

211<br />

196<br />

102<br />

170<br />

228<br />

480


Hines, David Z.C. BA*, C.A. Pound Human Identification<br />

Laboratory, PO Box 112545, University of Florida,<br />

Gainesville, FL 32611<br />

Hinkes, Madeleine J. PhD*, San Diego Mesa College,<br />

7250 Mesa College Drive, San Diego, CA 92111<br />

Hodgins, Gregory W. PhD*, University of Arizona,<br />

Department of Physics, 1118 East Fourth Street, Tucson,<br />

AZ 85721<br />

Hofmeister, Ute MA*, Morris Tidball-Binz, MD, and<br />

Shuala M. Drawdy, MA, International Committee of the<br />

Red Cross, 19 Avenue de la Paix, Geneva, 1202,<br />

SWITZERLAND<br />

Hofmeister, Ute MA*, Porzellangasse 48/12a, Alipasina<br />

45a, Vienna, 1090, Austria; Anahi Ginarte, Lic., EAAF,<br />

Rivadavia 2443, dpto 3 y 4, Buenos Aires, C1034ACD,<br />

Argentina<br />

Holborow, Amy A. BS, MA*, Department of Anthropology,<br />

University of Wyoming, PO Box 3431, Laramie, WY 82071<br />

Holland, Thomas D. PhD*, DoD JPAC, Central ID Lab,<br />

310 Worchester Avenue, Hickam AFB, HI 96853<br />

Index 146<br />

Bullet Wipe on Bone: Production and<br />

Detection<br />

Migrant Deaths Along the California- Mexico<br />

Border: An Anthropological Perspective<br />

Year-of-Death Determination Based Upon<br />

the Measurement of Atomic Bomb-Derived<br />

Radiocarbon in Human Soft Tissues<br />

An Electronic Data Management Tool for the<br />

Search for Missing Persons and Forensic<br />

Human Identification: The ICRC AM/PM<br />

DB<br />

FAD - A Database Application for Forensic<br />

Anthropology in Human Rights<br />

The Zygomaticomaxillary Suture: A Study of<br />

Variability Within Homo sapiens<br />

The Scientific Working Group for Forensic<br />

Anthropology: An Update<br />

500<br />

495<br />

147<br />

283<br />

464<br />

487<br />

9


Holland, Thomas D. PhD*, DoD JPAC, Central ID Lab,<br />

310 Worchester Avenue, Hickam AFB, HI 96853; Angi M.<br />

Christensen, PhD*, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Bradley J. Adams, PhD,<br />

New York Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016; Bruce E. Anderson, PhD,<br />

Forensic Science Center, 2825 East District Street, Tucson,<br />

AZ 85714; Hugh E. Berryman, PhD, Department Sociology<br />

& Anthropology, Middle Tennessee State University, Box<br />

89, Murfreesboro, TN 37132; John E. Byrd, PhD,<br />

JPAC/CIL, 310 Worchester Avenue, Hickam AFB, HI<br />

96853- 5530; Leslie E. Eisenberg, PhD, 6228 Trail Ridge<br />

Court, Oregon, WI 53575; Todd W. Fenton, PhD,<br />

Michigan State University, Department of Anthropology,<br />

354 Baker Hall, East Lansing, MI 48824; Michael<br />

Finnegan, PhD, Kansas State University, Osteology Lab,<br />

204 Waters Hall, Manhattan, KS 66506; Diane L. France,<br />

PhD, Colorado State University, Human Identification<br />

Lab, Department of Anthropology, Fort Collins, CO<br />

80523; Lisa M. Leppo, PhD, U.S. Army QM Center &<br />

School, Joint Mortuary Affairs Center, 1201 22nd Street,<br />

Fort Lee, VA 23801-1601; Lee Meadows Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996- 0720; Robert W.<br />

Mann, PhD, Joint POW/MIA Accounting Command,<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

AFB, HI 96853-5000; Stephen D. Ousley, PhD, Mercyhurst<br />

College, Department of Anthropology/Archaeology, 501<br />

East 38th Street, Erie, PA 16546; William C. Rodriguez III,<br />

PhD, Armed Forces <strong>Medical</strong> Examiner’s Office, 1413<br />

Research Boulevard, Building 102, Rockville, MD 20850;<br />

Paul S. Sledzik, MS, NTSB, Office ofTransportation<br />

Disaster Assistance, 490 L’Enfant Plaza, Southwest<br />

Washington, DC 20594; Richard M. Thomas, PhD, FBI<br />

Laboratory, DNA Unit II, Room 3220, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Andrew Tyrrell, PhD,<br />

JPAC-CIL, 310 Worchester Avenue, Hickam AFB, HI<br />

96853; Douglas H. Ubelaker, PhD, Department of<br />

Anthropology, NMNH - MRC 112, Smithsonian Institution,<br />

Washington, DC 20560; Michael W. Warren, PhD, C.A.<br />

Pound Human ID Laboratory, 1376 Mowry Road, Room<br />

G17, PO Box 113615, Gainesville, FL 32610; and P.<br />

Willey, PhD, Chico State University, Department of<br />

Anthropology, Chico, CA 95929-0400<br />

Hollands, Nanette BSc*, Flat 8, 5 Bryanstone Road,<br />

Winton, Bournemouth, BH3 7JE, UNITED KINGDOM;<br />

and Piotr D. Drukier, MSc*, Bournemouth University,<br />

C134 Christchurch House, Talbot Campus, Fern Barrow,<br />

Poole, BH12 5BB, UNITED KINGDOM<br />

Hoogewerff, Jurian A. PhD*, University of East Anglia, ,<br />

Norwich, Norfolk NR4 7TJ, UNITED KINGDOM<br />

Index 147<br />

The Scientific Working Group for Forensic<br />

Anthropology<br />

An Evaluation of the Skeletal Aging Method<br />

Using Adult Male Vertebrae as Developed by<br />

Drukier, et al.<br />

Introduction to the Use and Limits of<br />

Elemental and Isotopic Analysis for the<br />

Forensic Provenancing of Unidentified<br />

Human Remains<br />

105<br />

258<br />

247


Horner, Kristin E. MA*, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI 48824<br />

Horner, Kristin E. MA*, Secchia Center, 15 Michigan<br />

Street Northeast, Grand Rapids, MI 49503<br />

Horni, Harald BA*, and Robert R. Paine, PhD, 112436,<br />

Texas Tech University Department of Sociology, and<br />

Social Work, Box 41012, Lubbock, TX<br />

Howard, Sheridan J. BHS*, Centre for Forensic Science,<br />

The University of Western Australia, 35 Stirling Highway,<br />

Crawley, WA 6009, Australia; and Jan Meyer, PhD,<br />

School of Anatomy & Human <strong>Bio</strong>logy, 35 Stirling<br />

Highway, Crawley, WA 6009, Australia<br />

Huard, Aimee E. MA*, Binghamton University, Jeremy J.<br />

Wilson, MA, and Dawnie W. Steadman, PhD, Department<br />

of Anthropology, Binghamton University, PO Box 6000,<br />

Binghamton, NY 13902-6000<br />

Huculak, Meaghan A. BSc*, Saint Mary’s University, 923<br />

Robie Street, Halifax, Nova Scotia B3H 3C3, CANADA<br />

Huel, Rene BA*, Ana Miloš-Bilic MSc, Sylvain Amory<br />

PhD, Stojko Vidović, Tony Donlon, BSc, Adnan Rizvić,<br />

BSc, and Thomas Parsons, PhD, Forensic Sciences<br />

International Commission on Missing Persons, 45A<br />

Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Huffman, Michaela M. BS*, National Museum of Natural<br />

History, Department of Anthropology, MRC112, 10th &<br />

Constitution Avenue NW, Washington, DC 20560-0112;<br />

and David R. Hunt, PhD, National Museum of Natural<br />

History, Department of Anthropology/MRC112, 10th &<br />

Constitution Avenue NW, Washington, DC 20560-0112<br />

Hufnagl, Kevin B. MA*, 601 Lindsay Place, Apartment<br />

B14, Knoxville, TN 37919<br />

Hughes, Cris E. MA*, and Chelsey Juarez, MA,<br />

Department of Anthropology, University of California –<br />

Santa Cruz, Social Science 1, 1156 High Street Room 435,<br />

Santa Cruz, CA 95064<br />

Hughes, Cris E. MA*, and Chelsey Juarez, MA,<br />

Department of Anthropology, University of California –<br />

Santa Cruz, Social Science 1, 1156 High Street Room 435,<br />

Santa Cruz, CA 95064; and Lauren Zephro, MA, Santa<br />

Cruz Sheriff’s Office, 701 Ocean Street, Room 340, Santa<br />

Cruz, CA 95060<br />

Hughes, Cris E. MA*, University of California at Santa<br />

Cruz, 5405 Prospect Road, #7, San Jose, CA 95129; and<br />

Crystal A. White*, University of California at Santa Cruz,<br />

Crown College, 400 McLaughlin Drive, Santa Cruz, CA<br />

95064<br />

Hughes, Cris E. MA*, University of Californiaat Santa<br />

Cruz, 5405 Prospect Road, #7, San Jose, CA 95129<br />

Index 148<br />

The eBay® Mummy: A Case of a Scottish<br />

Mummy From Maryland for Sale in<br />

Michigan<br />

The Accuracy of the Lamendin Method of<br />

Dental Aging in Teeth With Fillings<br />

A Comparative Study of Mammalian Cortical<br />

Bone<br />

Estimating Time Since Death From Human<br />

Skeletal Remains by Radioisotope and Trace<br />

Element Analysis<br />

Diagnosing Peri-Mortem Blunt Force Trauma<br />

in Burnt Remains<br />

In Vivo Facial Tissue Depth Measurements<br />

of African Nova Scotian Children for 3-D<br />

Forensic Facial Reconstruction<br />

High Throughput DNA Typing for Degraded<br />

Skeletal Remains and Victim Reference<br />

Samples in a Large Scale “DNALed” Missing<br />

Persons Identification and Re-Association<br />

Project: The ICMP Work on the Missing<br />

Recovered From Srebrenica Mass Graves<br />

Sex Determination in the Human Sacrum:<br />

Wing Index and Sacral Curvature<br />

Estimating Time Since Injury From Healing<br />

Stages Observed in Radiographs<br />

Frequencies of Non-Metric Characteristics in<br />

Northern California Native Populations:<br />

Establishing a Foundation for Comparison<br />

Past or Present? An Empirical Basis for<br />

Quantitatively Distinguishing Between<br />

Prehistoric and Modern Forensic Cases Using<br />

a California Native American Population<br />

Taphonomy and Dentition: Understanding<br />

Postmortem Crack Propagation in Teeth<br />

Ancestry Informative Markers (AIMs) and<br />

Forensic Anthropologist’s New Competition:<br />

Understanding the Theories, Methods, and<br />

Techniques for Allocating Ancestry in the<br />

Field of Forensic Genetics<br />

285<br />

17<br />

590<br />

347<br />

166<br />

131<br />

141<br />

331<br />

361<br />

157<br />

157<br />

222<br />

247


Hughes, Cris E. PhD*, 2306 East Delaware Avenue,<br />

Urbana, IL 61802; Chelsey A. Juarez, PhD, University of<br />

California Santa Cruz, 1156 High Street, Social Science 1,<br />

Department of Anthropology, Santa Cruz, California<br />

95064; Gillian M. Fowler, MS, Lincoln University,<br />

Brayford Pool Lincoln, Lincolnshire, LN6 7TS, UNITED<br />

KINGDOM; Taylor Hughes, PhD, University of Urbana-<br />

Champaign, 2306 East Delaware Avenue, Urbana, IL<br />

61802; and Shirley C. Chacon, BA, FAFG, Avenida<br />

Simeón Cañas 10-64 zona 2, Guatemala, 01002,<br />

GUATEMALA<br />

Hulsey, Brannon I. MA*, Walter E. Klippel, PhD, and Lee<br />

Meadows Jantz, PhD, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37966-0720<br />

Humphries, Ashley L. BA*, North Carolina State<br />

University, Department of Sociology & Anthropology, 334<br />

1911 Building, Campus Box 8107, Raleigh, NC 27695<br />

Huntington, Sarah M. MSc*, PO Box 961, Kingston, WA<br />

98346; and Tal Simmons, PhD, School of Forensic &<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Hurst, Carolyn V. BA*, 354 Baker Hall, East Lansing, MI<br />

48824<br />

Hurst, Sherice L. MA*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, 227 Howe- Russell Geoscience Complex,<br />

Baton Rouge, LA<br />

Huxley, Angie K. MA, PhD*, PO Box 493812, Redding, CA<br />

96049-3812<br />

Huxley, Angie Kay PhD*, Pima Community College West<br />

Campus, Division of Science and Technology, Department<br />

of <strong>Bio</strong>logy, PO Box 1136, Pomona, CA<br />

Ii, Suzanne S. BA*, 4198 East Manning Avenue, Fowler,<br />

CA 93625- 9631; David R. Hunt, PhD, National Museum<br />

of Natural History, Department of Anthropology,<br />

Washington, DC 21201<br />

Ingvoldstad, Megan MA, Ohio State University,<br />

Department of Anthropology, 244 Lord Hall, 124 West<br />

17th Avenue Columbus, OH 43210; and Christian<br />

Crowder, PhD*, <strong>Medical</strong> Examiner’s Office, 520 First<br />

Avenue, New York, NY 10016<br />

Introna, Francesco MD*, Antonio De Donno, PhD,<br />

Domenico Urso, PhD, and Valeria Santoro, PhD, Section<br />

of Legal Medicine, Department of Internal and Public<br />

Medicine (DiMIMP) - University of Bari, P.zza Giulio<br />

Cesare n.11, Bari, 70124, ITALY<br />

Introna, Francesco MD, University of Bari, Italy, Istituto<br />

di Medicina legale, Policlinico., Bari, Italy<br />

Index 149<br />

A Simulation for Exploring the Effects of the<br />

“Trait List” Method’s Subjectivity on<br />

Consistency and Accuracy of Ancestry<br />

Estimations<br />

Metacarpal and Metatarsal Histology of<br />

Humans and Black Bears<br />

Craniometric Variation in the Caribbean and<br />

Latin America as Influenced by the Trans-<br />

Atlantic Slave Trade<br />

Taphonomic Processes Involved With the<br />

Decomposition of Human Remains Within<br />

the Puget Sound<br />

Non-Metric Trait Expressions Most Prevalent<br />

in Undocumented Border Crossers of<br />

Southwest Hispanic Descent From the Pima<br />

County Office of the <strong>Medical</strong> Examiner<br />

Aquatic Decomposition Rates in South<br />

Central Louisiana<br />

A Tale of Two Museums: Available Fetal<br />

Collections at the National Museum of<br />

Natural History and the Albert Szent- Gyorgi<br />

<strong>Medical</strong> University, Hungary<br />

36<br />

150<br />

44<br />

87<br />

210<br />

597<br />

471<br />

Human Remains Sold to the Highest Bidder! 583<br />

A Snapshot of the Buying and Selling of<br />

Human Skeletal Remains on eBay®, an<br />

Internet Auction Site<br />

Sexual Dimorphism in the Distal Humerus 468<br />

Observer Error Analysis Trends in Forensic<br />

Anthropology<br />

Use of Facial Indices for Comparative Metric<br />

Facial Identification After Parametrical<br />

Superimposition<br />

Robber’s Personal Identification by<br />

Morphometric Analysis of Recorded Images<br />

190<br />

246<br />

589


J. Chan, Wing Nam MA*, 4720 210th Street, Bayside, NY<br />

11361; Mary H. Manhein, MA, Department of Geography<br />

& Anthropology, Louisiana State University, Baton Rouge,<br />

LA 70803; and Ginesse A. Listi, MA, 1723 Lombard Drive,<br />

Baton Rouge, LA 70810<br />

Jaagumagi*, Alyson E. University of Toronto, 100 St.<br />

George Street, Toronto, Ontario M5S 3G3, Canada; Bo<br />

Yeon Kim*, Bryn Mawr College, 101 North Merion<br />

Avenue, Bryn Mawr, PA 19010-2899; Danielle Stollak,<br />

Haverford College, 370 Lancaster Avenue, Haverford, PA<br />

19041-1392; and Meisha Bray*, Grand Valley State<br />

University, 1 Campus Drive, Allendale, MI 49401-9401<br />

Jackson, Daniel W. MA*, and Pamela M. Steger, MS*,<br />

Travis County <strong>Medical</strong> Examiner’s Office, 1213 Sabine<br />

Street, PO Box 1748, Austin, TX 78666<br />

Jans, Miranda M.E. PhD*, Institute for Geology and<br />

<strong>Bio</strong>archaeology, Vrije Universiteit, De Boelelaan 1085,<br />

Amsterdam, 1081 HV, NETHERLANDS; Andrew J. Tyrrell,<br />

PhD, Joint POW/MIA Accounting Command, Central<br />

Identification Lab, 310 Worchester Avenue, Building 54,<br />

Hickam Air Force Base, HI 96853; Odile Loreille, PhD,<br />

Armed Forces DNA Identification Laboratory, 1413<br />

Research Boulevard, Rockville, MD 20850; and Henk<br />

Kars, PhD, Institute for Geology and <strong>Bio</strong>archaeology,<br />

Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081<br />

HV, NETHERLANDS<br />

Jantz, Lee Meadows PhD*, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Jantz, Richard L. PhD* and Erin H. Kimmerle, MA,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Jantz, Richard L. PhD*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

Jantz, Richard PhD*, and Lee Meadows Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

Jasaragic, Edin BA*, Zlatan Bajunovic, Adnan Rizvić, BSc,<br />

and Thomas Parsons, PhD, Forensic Sciences<br />

International Commission on Missing Persons, 45A<br />

Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Jeavons, Emily BS*, Bournemouth University, School of<br />

Conservation Science, Talbot Campus, Poole, Dorset<br />

BH12 5BB, United Kingdom<br />

Jemmott, Kathryn M. MA*, CA Pound Human ID<br />

Laboratory, University of Florida, Building 114 SW Radio<br />

Road, Gainesville, FL 32611; Ann H. Ross, PhD, North<br />

Carolina State University, Department of Sociology and<br />

Anthropology, Raleigh, NC 27612; Loreto S. Silva,<br />

Comision de la Verdad, Balboa, Panama City, Panama;<br />

Lazaro M. Cotes, Comision de la Verdad, Balboa, Panama<br />

City, Panama; Carlos Fitzgerald, PhD, Patrimonio<br />

Historico, Panama, Panama City, Panama<br />

Index 150<br />

In Vivo Facial Tissue Depth Study of Adult<br />

Chinese Americans in New York City<br />

The Problem-Based Learning Approach to<br />

Forensic Anthropology at Butrint National<br />

Park, Albania: The International Student<br />

Perspective<br />

Identifying Sharp Force Trauma on Burned<br />

Bones<br />

Early Diagenesis of Bone and DNA<br />

Preservation<br />

254<br />

341<br />

241<br />

239<br />

Richard Jantz: A Man of Impressive Numbers 327<br />

Variation in Size and Dimorphism in Eastern<br />

European Femora<br />

Metric Description of Hispanic Skeletons: A<br />

Preliminary Analysis<br />

Twentieth Century Change in Facial<br />

Morphology and Its Relationship to Metric<br />

Sexing<br />

473<br />

493<br />

119<br />

The ICMP Identification Coordination 141<br />

Center: A Sample Accessioning and Blind<br />

DNA Matching System for Missing Persons<br />

Identification on a Regional Scale<br />

Age Related Changes of the Distal Humerus 315<br />

Preservation in Paradise II: A Pre-Columbian<br />

Burial in a Contemporary Cemetery<br />

484


Jenny, Lindsey L. MA, Paige V. Wojcik, BS*, and Todd W.<br />

Fenton, PhD, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Jo, Seung Mook MD, PhD, Gachon University of Medicine<br />

and Science, Department of Anatomy, 1198, Kuwol-dong,<br />

Namdong-gu, Incheon, 405760, KOREA; and Yi-Suk Kim,<br />

MD, PhD*, Ewha Womans University, Departement of<br />

Anatomy, School of Medicine, 911-1, Mok6-dong,<br />

Yangcheon-gu, Seoul, 158710, KOREA<br />

Johnson, Amanda MPA*, Sam Houston State University,<br />

PO Box 2296, Huntsville, TX 77340; Joan A. Bytheway,<br />

PhD*, 23936 Northcrest Trail, New Caney, TX 77357; and<br />

Stephen M. Pustilnik, MD, Galveston County <strong>Medical</strong><br />

Examiner’s Office, 6607 Highway 1764, Texas City, TX<br />

77591<br />

Johnston, Cheryl A. PhD*, Western Carolina University,<br />

Department of Anthropology & Sociology, 101 McKee<br />

Building, Cullowhee, NC 28723<br />

Johnston, Cheryl A. PhD*, Western Carolina University,<br />

Department of Anthropology & Sociology, 101 McKee<br />

Building, Cullowhee, NC 28723<br />

Jones, Brannon I. MA*, University of Tennessee, 250 South<br />

Stadium Hall, Department of Anthropology, Knoxville, TN<br />

37996<br />

Jordan, Alison E. BS*, Forensic Institute for Research and<br />

Education, PO Box 89, Middle Tennessee State University,<br />

Murfreesboro, TN 37132; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Juarez, Chelsey A. BA*, UC Santa Cruz, Department of<br />

Anthropology, 1156 High Street, Santa Cruz, CA 95064<br />

Juarez, Chelsey A. MA*, 240 River Street, #1, Santa Cruz,<br />

CA 95060<br />

Juarez, Chelsey A. MA*, Department of Anthropology,<br />

UCSC Social Science 1, 1156 High Street, Santa Cruz, CA<br />

95064<br />

Juarez, Chelsey A. MA*, University of California, Santa<br />

Cruz, 1156 High Street, Santa Cruz, CA 95064<br />

Juarez, Chelsey MA*, University of California - Santa<br />

Cruz, Social Science 1, Department of Anthropology, 1156<br />

High Street, Santa Cruz, CA 95064; and Cris E. Hughes,<br />

MA, 2306 East Delaware Avenue, Urbana, IL 61802<br />

Kahana, Tzipi PhD*, Israel National Police, 67 Ben Zvi<br />

Street, PO Box 8495, Tel Aviv, 61085, Israel; Inmaculada<br />

Aleman, PhD, Department of Anthropology, Faculty of<br />

Medicine, University of Granada, Granada, 18012, Spain;<br />

Miguel C. Botella, MD, PhD, Deptartment of<br />

Anthropology, Faculty of Medicine, University of Granada,<br />

Granada, 18012, Spain; and Jehuda Hiss, MD, National<br />

Centre of Forensic Medicine, 67 Ben Zvi, PO Box 8495,<br />

Tel Aviv, 61085, Israel<br />

Index 151<br />

Comparing Human and Porcine Infant<br />

Parietal Histomorphology to Facilitate<br />

Research on Pediatric Cranial Trauma<br />

Evaluation of Bilateral Differences in<br />

Histomorphometry From the Anterior Cortex<br />

of the Femur of Korean Adults<br />

Skeletal Remains in a Fluvial Environment:<br />

Microscopic Evidence of Glycoproteinous<br />

Adhesive of Balanus Improvisus on the<br />

Occlusal Surface of Mandibular Teeth<br />

Forensic Osteology Research Station<br />

(FOREST): The First Donation<br />

Forensic Osteology Research Station<br />

(FOREST): A New Facility for Studies of<br />

Human Decomposition<br />

The Bone Histology of Bear Paws and<br />

Human Hands<br />

<strong>Bio</strong>nic Remains: Positive Identifications<br />

From Surgical Implants<br />

Stable Strontium and Geolocation: The<br />

Pathway to Identification of Unidentified<br />

Mexican Aliens<br />

Refining the Isotopic Fingerprint in Modern<br />

Mexican Populations: Using Strontium,<br />

Carbon, Nitrogen, and Oxygen to Determine<br />

Region of Origin for Deceased<br />

Undocumented Border Crossers<br />

Studies in Isotopic Variability: Investigating<br />

Human Tooth Enamel<br />

Forensic Anthropology and the Current<br />

Politics of the US- Mexico Border<br />

Defining Intimate Partner Violence: New<br />

Case Studies in IPV<br />

52<br />

93<br />

202<br />

205<br />

243<br />

295<br />

134<br />

432<br />

312<br />

249<br />

401<br />

Dismembered Bodies - Who, How, and When 460<br />

6


Kanchan, Tanuj MD*, Kasturba <strong>Medical</strong> College,<br />

Department of Forensic Medicine, Light House Hill Road,<br />

Mangalore, 575 001, INDIA<br />

Katzmarzyk, Cheryl MA*, Rifat Kešetović, MD, Kerry-Ann<br />

Martin, MSc, Edin Jasaragić, René Huel, BA, Jon<br />

Sterenberg, MSc, and Adnan Rizvić, BSc, International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Mark Skinner, PhD;<br />

Simon Fraser University, Department of Archeology,<br />

Burnaby, BC, V5A 1S6, CANADA; and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Katzmarzyk, Cheryl MA, and Kerry-Ann Martin, MSc,<br />

Forensic Sciences International Commission on Missing<br />

Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-<br />

HERZEGOVINA; Senem Skulj, MSc*, 17 VKB 19/11,<br />

Sanski Most, 79260, BOSNIA-HERZEGOVINA; and Laura<br />

Yazedjian, MSc, Dragana Vučetić, MSc, Adnan Rizvić, MA,<br />

and Thomas Parsons, PhD, Forensic Sciences<br />

International Commission on Missing Persons, 45A<br />

Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Kay, Joanna Yaffa BA*, 222 South 150th Circle, Omaha,<br />

NE 68154<br />

Kaye, Michelle MA*, University of Alaska, Fairbanks,<br />

Department of Anthropology, 310 Eielson Building, PO<br />

Box 757720, Fairbanks, AK 99775-7720; Elayne J. Pope,<br />

MA, University of Arkansas, Department of Anthropology,<br />

330 Old Main, Fayetteville, AR 72701; Frank Cipriano,<br />

PhD, San Francisco State University, Conservation<br />

Genetics Laboratory, Hensill Hall 745, 1600 Holloway<br />

Avenue, San Francisco, CA 94132; and O’Brian C. Smith,<br />

MD, UT <strong>Medical</strong> Group, Inc, Regional Forensic Center,<br />

1060 Madison, Memphis, TN 38104<br />

Kemp, Bobbie J. MS*, University of Pittsburgh,<br />

Department of Anthropology, 3302 Wesley W. Posvar Hall,<br />

Pittsburgh, PA 15260; Luis Lorenzo Cabo-Pérez, MS,<br />

Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546; John J.<br />

Matia, BS, 901 Jancey Street, Pittsburgh, PA 15206; and<br />

Dennis C. Dirkmaat, PhD, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, Glenwood Hills, Erie, PA<br />

16546<br />

Kemp, Bobbie J. MS, Michael I. Siegel, PhD, Margaret A.<br />

Judd, PhD, and Mark P. Mooney, PhD, University of<br />

Pittsburgh, Department of Anthropology, 3302 Wesley W.<br />

Posvar Hall, Pittsburgh, PA 15260, and Luis L. Cabo-<br />

Pérez, MS, Mercyhurst College, Department of Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

Index 152<br />

Sexual Dimorphism of Index to Ring Finger<br />

Ratio in South Indian Children<br />

The Lukavac Re-Association Center: A<br />

Model for a Multidisciplinary Approach in<br />

the Examination of Commingled Remains<br />

The Use of Population-Specific Standards in<br />

Anthropological Examination and Their<br />

Incorporation Into a Multidisciplinary<br />

Mortuary Database<br />

Fracture Patterns in Fleshed and De-Fleshed<br />

Pig Femora Inflicted With Various<br />

Ammunition Types<br />

An Experimental Test of the Accuracy of<br />

Human Forensic Identification Techniques<br />

for Analysis of Burn- Damaged Bone and<br />

Tissue<br />

The Effectiveness of Papain in the Processing<br />

of Remains<br />

The Effects of Papain and EDTA on Bone in<br />

the Processing of Forensic Remains<br />

187<br />

139<br />

140<br />

241<br />

436<br />

244<br />

150


Kendell, Ashley E. BS*, 1253 West 5th Street, Apartment<br />

85, Chico, CA 95928; and Ashley Hutchinson, BA, James<br />

Brill, BA, Eric J. Bartelink, PhD, Turhon A. Murad, PhD,<br />

and P. Willey, PhD, California State University-Chico, 400<br />

West First Street, Department of Anthropology, Butte #311,<br />

Chico, CA 95929-0400<br />

Kennedy, Kenneth A.R. PhD*, Cornell University,<br />

Department of Ecology and Evolutionary <strong>Bio</strong>logy, 231<br />

Corson Hall, Ithaca, NY 14853<br />

Kennedy, Kenneth A.R. PhD*, Cornell University,<br />

Department of Ecology and Evolutionary <strong>Bio</strong>logy, Corson<br />

Hall, Ithaca, NY 14853<br />

Kennedy, Kenneth A.R. PhD*, Department of Ecology and<br />

Evolutionary <strong>Bio</strong>logy, Corson Hall, Cornell University,<br />

Ithaca, NY<br />

Kenyhercz, Michael W. BA*, 6327 Catawba Drive,<br />

Canfield, OH 44406; Michael Pietrusewsky, PhD,<br />

University of Hawaii, Department of Anthropology, 2424<br />

Maile Way, Saunders 346, Honolulu, HI 96822; Franklin<br />

E. Damann, MA, NMHM, AFIP, PO Box 59685,<br />

Washington, DC 20012-0685; and Stephen D. Ousley,<br />

PhD, Mercyhurst College, Department of Applied Forensic<br />

Anthropology, 501 East 38th Street, Erie, PA 16546<br />

Kenyhercz, Michael W. MS*, 6327 Catawba Drive,<br />

Canfield, OH 44406<br />

Kešetović, Rifat MD*, Laura Yazedjian, MSc, Dragana<br />

Vučetić, MSc, Emina Kurtalić, Zlatan Šabanović, Cheryl<br />

Katzmarzyk, MA, Adnan Rizvić, BSc, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Kiley, Sarah A. BA*, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Amy Z. Mundorff,<br />

MA and Thomas Gibson, MD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016<br />

Kiley, Sarah A. BA*, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Nicolette M. Parr,<br />

MS, University of Florida, PO Box 117305, Gainesville,<br />

FL 32611; and Stephen P. Nawrocki, PhD, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227<br />

Kiley, Sarah A. MS*, University of Indianapolis,<br />

Archeology & <strong>Forensics</strong> Laboratory, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Index 153<br />

Analysis of Thirty-Three Years of Forensic<br />

Anthropology Casework at California State<br />

University, Chico (1975-2008)<br />

Traumatic Modifications of Human Remains<br />

of Victims of Mass Disasters and Long-Term<br />

Abuse<br />

Markers of Mechanical Loading in the<br />

Postcranial Skeleton: Their Relevance to<br />

Personal Identification of Human Remains<br />

Assessment of Muscular-Skeletal Robusticity<br />

in Personal Identification of Human Remains<br />

Craniometric Variation Within Southeast<br />

Asia<br />

Sex and Ancestry Estimation Using the<br />

Olecranon Fossa<br />

The Podrinje Identification Project: A<br />

Dedicated Mortuary Facility for the Missing<br />

From Srebrenica<br />

Diagnosing Degenerative Pathologies in an<br />

Unidentified Skeleton<br />

Extensive Rat Modification of a Human<br />

Skeleton From Central Indiana<br />

The Taphonomic Effects of Agricultural<br />

Practices on Bone<br />

194<br />

391<br />

528<br />

553<br />

121<br />

28<br />

139<br />

504<br />

393<br />

230


Kim*, Deog-Im Seung-Ho Han, PhD, Dai-Soon Kwak,<br />

PhD, and Je- Hoon Lee, Department of Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505,<br />

Banpo-dong, Seocho-gu, Seoul, 137701, South Korea; Yi-<br />

Suk Kim, MD, Department of Anatomy, Gahon University<br />

of Medicine and Science, 1198 Guwol-dong, Namdong-gu,<br />

Incheon, 405760, South Korea; Dae-Kyoon Park, PhD,<br />

Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyongdong,<br />

Cheonan-si, Chungcheongnam-do, Seoul, 330946, South<br />

Korea; U-Young Lee, MD, Division of Forensic Medicine,<br />

National Institute of Scientific Investigation, Sinwol 7dong,<br />

Yangcheon-gu, Seoul, 158707, South Korea; and In-Hyuk<br />

Chung, PhD, Department of Anatomy, College of<br />

Medicine, Yonsei University, 134, Sinchon-dong,<br />

Seodaemungu, Seoul, 120752, South Korea<br />

Kim*, Deog-Im U-Young Lee, MD, and Je-Hun Lee,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, 505, Banpo-dong, Socho-gu, Seoul, 137701,<br />

South Korea; Dae-Kyoon Park, MD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University,<br />

646 Eupnae-ri, Shinchang-myun, Cheonan, 330090, South<br />

Korea; and Seung-Ho Han, MD, PhD, Department of<br />

Anatomy, Catholic Institute for Applied Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505,<br />

Banpo-dong, Socho-gu, Seoul, 137701, South Korea<br />

Kim, Deog-Im PhD*, Department of Anatomy, Kwandong<br />

University College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; Yi-Suk Kim, MD, PhD, Ewha<br />

Womans University, Department of Anatomy, School of<br />

Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul,<br />

158710, KOREA; Dae-Kyoon Park, MD, PhD, Department<br />

of Anatomy, College of Medicine, Soonchunhyang<br />

University, 366-1 Sangyong-dong, Cheonan-si, Seoul<br />

330946, KOREA; and U-Young Lee, MD, and Seung- Ho<br />

Han, MD, PhD, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpo-<br />

dong, Seocho-gu, Seoul, 137701, KOREA<br />

Kim, Deog-Im PhD*, Department of Anatomy, Kwandong<br />

University, College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; Dai-Soon Kwak, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Index 154<br />

Identification of the Rib Number by Metric<br />

Study in Korean<br />

The Morphometric Study of the Hyoid Bone<br />

for Sex Determination of Koreans<br />

Sex Determination Using the Calcaneus in<br />

Koreans<br />

Classification of Frontal Sinus Patterns in<br />

Koreans by Three-Dimensional<br />

Reconstruction Using Computed<br />

Tomography<br />

293<br />

450<br />

117<br />

267


Kim, Yi-Suk MD*, Department of Anatomy, Gahon<br />

University of Medicine and Science, 1198, Kuwol-dong,<br />

Namdong-gu, Incheon, 405760, South Korea; Dae-Kyoon<br />

Park, PhD, Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyong-dong,<br />

Cheonan-si, Chungcheongnam-do 330946, South Korea;<br />

and Deog-Im Kim, Je-Hoon Lee, and Seung-Ho Han, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, South Korea<br />

Kim, Yi-Suk MD, MS*, Department of Anatomy, Gachon<br />

University of Medicine and Science, Department of<br />

Anatomy, Gachon University of Medicine, 1198, Kuwoldong,<br />

Namdong-gu, Incheon, 405760, KOREA; Yong-Woo<br />

Ahn, DDS, PhD, and Gi-Yeong Huh, MD, PhD, Institute of<br />

Forensic Medicine, School of Medicine, Pusan National<br />

University, 1-10, Ami-dong, Seo-gu, Busan, 602739,<br />

KOREA; Dai-Soon Kwak, PhD, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Seocho-gu, Seoul, 137701, KOREA;<br />

Dae-Kyoon Park, MD, PhD, Department. of Anatomy,<br />

College of Medicine Soonchunhyang University, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul, 330946 KOREA; and<br />

U-Young Lee, MD, and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Kimmerle, Erin H. MA*, Lyle Konigsberg, PhD, and<br />

Richard Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; Jose Pablo Baraybar, MSc,<br />

Office of Missing Persons and <strong>Forensics</strong>, Department of<br />

Justice, United Nations Mission in Kosovo, Pristina<br />

Kimmerle, Erin H. PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler Avenue,<br />

SOC 107, Tampa, FL 33620- 8100; and Jose Pablo<br />

Baraybar, MSc, Peruvian Forensic Anthropology Team<br />

(EPAF), Toribio Pacheco 216 Lima 18 Peru, Lima, 18,<br />

Peru<br />

Kimmerle, Erin H. PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; and John O. Obafunwa, MD, JD,<br />

Department of Pathology and Forensic Medicine, Lagos<br />

State University College of Medicine, Ikeja, Lagos,<br />

NIGERIA<br />

Kimmerle, Erin H. PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; and Lyle W. Konigsberg, PhD,<br />

University of Illinois, Department of Anthropology, 109<br />

Davenport Hall, 607 South Mathews Avenue, Urbana, IL<br />

61801<br />

Index 155<br />

Assessment of Histomorphological Features<br />

of the Fourth Rib for Age Estimation in<br />

Koreans<br />

Microscopic Age Estimation From the<br />

Anterior Cortex of the Femus in Korean<br />

Adults<br />

A Bayesian Approach to Calculating Age<br />

Using Pubic Symphyseal Data<br />

Blasting Injuries in Human Rights Cases and<br />

Armed Conflicts<br />

Mortality Structure and Age Estimation in<br />

Nigerian Populations<br />

Assumptions and Bias in Recalibrating Age<br />

Standards Across Populations<br />

345<br />

273<br />

474<br />

338<br />

129<br />

15


Kimmerle, Erin H. PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; Anthony B. Falsetti, PhD, C.A. Pound<br />

Human Id Laboratory, C/O Cancer/ Genetics Research,<br />

PO Box 103615, Gainesville, FL 32610; and Ann H. Ross,<br />

PhD, North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107<br />

Kimmerle, Erin H. PhD*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820; Matthias I. Okoye, MD, JD, The<br />

Nebraska Institute of Forensic Sciences, 5925 Adams<br />

Street, Lincoln, NE 68507; John O. Obafunwa, LLB, 5540<br />

South 72nd Street, Lincoln, NE 68516; Thomas L. Bennett,<br />

MD, Yellowstone Pathology Institute, 2900 12th Avenue,<br />

North, Suite 260W, Billings, MT 59101; and Paul F.<br />

Mellen, MD, East Central Indiana Pathologists, PC & PA<br />

Labs, LLC2401 West University Avenue, Muncie, IN 47303<br />

Kirkland, Scott A. MA*, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695; Sarah L. Cunningham, MA,<br />

Binghamton University, Department of Anthropology, PO<br />

Box 6000, Binghamton, NY 13902; Jonathan Cammack,<br />

MS, North Carolina State University, Department of<br />

Entomology, Campus Box 7626, Raleigh, NC 27695; Ann<br />

H. Ross, PhD, North Carolina State University,<br />

Department of Sociology & Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107; and D. Wes Watson, PhD,<br />

North Carolina State University, Department of<br />

Entomology, Campus Box 7626, Raleigh, NC 27612<br />

Klales, Alexandra R. BA*, Jennifer M. Vollner, BS*, and<br />

Stephen D. Ousley, PhD, Mercyhurst College, Department<br />

of Anthropology & Applied Forensic Science Program, 501<br />

East 38th Street, Erie, PA 16546<br />

Klales, Alexandra R. MS*, 501 East 38th Street, Erie, PA<br />

16546; and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East<br />

38th Street, Erie, PA 16546<br />

Kles, Maranda A. MA*, C.A. Pound Human ID Labortory,<br />

1376 Mowry Road, Room G17, University of Florida,<br />

Gainesville, FL 32610; Bruce A. Goldberger, PhD,<br />

Department of Pathology, University of Florida College of<br />

Medicine, 4800 Southwest 35th Drive, Gainesville, FL<br />

32608; Michele Merves, PhD, University of Florida, Rocky<br />

Point Labs, Toxicology, 4800 Southwest 35th Drive,<br />

Gainesville, FL 32608; and Michael W. Warren, PhD, C.A.<br />

Pound Human ID Laboratory, 1376 Mowry Road, Room<br />

G17, PO Box 113615, Gainesville, FL 32610, and John<br />

Krigbaum, PhD, University of Florida, College of Liberal<br />

Arts and Sciences, Department of Anthropology, 1112<br />

Turlington Hall, Gainsville, FL 32611<br />

Klippel, Walter E. PhD*, and Jennifer A. Synstelien, MA,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Index 156<br />

A Population Approach to the Problem of the<br />

Missing and Unidentified With Emphasis on<br />

the Status of Migrant and Undocumented<br />

Workers<br />

Skeletal Fracture Patterns in Documented<br />

Cases of Torture, Assault, Abuse, and<br />

Accidents<br />

No Country for Young Pigs: Identifying the<br />

Use of Captive Bolt Pistols in Non-Natural<br />

Death Occurrences<br />

A New Metric Procedure for the Estimation<br />

of Sex and Ancestry From the Human<br />

Innominate<br />

The Utility of Cohen’s Kappa for Testing<br />

Observer Error in Discrete Data and<br />

Alternatives<br />

Preliminary Studies of the Isolation of Drugs<br />

From Bone and Bone Marrow: A Broadened<br />

Role for the Forensic Anthropologist<br />

Rodent Modification of Human Skeletal<br />

Remains: Brown Rat (Rattus norvegicus) vs.<br />

Gray Squirrel (Sciurus carolinensis)<br />

288<br />

210<br />

6<br />

158<br />

66<br />

85<br />

410


Klonowski, Alexandra M. MS*, and Tal Simmons, PhD,<br />

University of Central Lancashire, Maudland Building,<br />

Preston, Lancashire PR1 2HE, United Kingdom<br />

Klonowski, Eva E. PhD*, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo, Muhamed<br />

Mujkic, MS, Federation Commission on Tracing Missing<br />

Persons, Sarajevo, and Nermin Sarajlic, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Klonowski, Eva E. PhD*, Nermin Sarajlic, MD, Piotr<br />

Drukier, MS, and Alexandra M. Klonowski, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Klonowski, Eva E. PhD*, Nermin Sarajlic, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

Klonowski, Eva PhD*, Piotr Drukier, MSc, and Nermin<br />

Sarajlic, MD, MSc, International Commission on Missing<br />

Persons, Alipashina 45a, 71000 Sarajevo, Bosnia and<br />

Herzegovina<br />

Klonowski, Eva-Elvira PhD*, Nermin Sarajlic, PhD, MD,<br />

and Senem Skulj, BSc, International Commission on<br />

Missing Persons, Alipasina 45A, Sarajevo, 71 000, Bosnia<br />

and Herzegovina<br />

Kolatorowicz, Adam BS*, Carlos J. Zambrano, BA, and<br />

Stephen P. Nawrocki, PhD, Archeology and <strong>Forensics</strong><br />

Laboratory, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Kolatorowicz, Adam MS*, 4510 Marcy Lane, # 41,<br />

Indianapolis, IN 46205<br />

Kolpan, Kate E. BA*, Eric J. Bartelink, PhD, and Georgia<br />

L. Fox, PhD, Department of Anthropology, California State<br />

University, Chico, 400 West First Street, Chico, CA 95929-<br />

0400<br />

Komar, Debra A. PhD*, Office of the <strong>Medical</strong> Investigator,<br />

MSC11 6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131<br />

Komar, Debra A. PhD*, Office of the <strong>Medical</strong> Investigator,<br />

MSC11 6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001<br />

Komar, Debra A. PhD*, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, Albuquerque, NM; Tim<br />

Petersen, MA, Department of Anthropology, University of<br />

New Mexico, Albuquerque, NM; Suzzette Sturtevant, BSc,<br />

and Britny Moore, BSc, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, Albuquerque, NM<br />

Komar, Debra A. PhD*, Office of the <strong>Medical</strong> Investigator,<br />

University of New Mexico, MSC11 6030, Albuquerque, NM<br />

Index 157<br />

Long Bone Ratios for the Bosnian Male<br />

Population<br />

Reassociation of Skeletal Remains Recovered<br />

From Graves in Bosnia and Herzegovina<br />

The Impact of Age Related Changes in<br />

Vertebral Column on Age Determination for<br />

Identification Purposes<br />

Exhumations in Bosnia and Herzegovina:<br />

Unique Challenges in the Recovery From<br />

Cavern Sites<br />

Exhumation... and What After? ICMP Model<br />

in Bosnia and Herzegovina<br />

New Method of Skeletal Age Estimation<br />

Based on Progressive Morphological<br />

Changes in Vertebral Column<br />

Performance of FORDISC 2.0 Using<br />

Inaccurate Measurements<br />

Selection of Variables for Discriminant<br />

Analysis of Human Crania for Determining<br />

Ancestry<br />

Coming Unglued: The Use of Acrylic Resin<br />

Adhesives in Forensic Reconstruction<br />

A Potential New Morphological Indicator of<br />

<strong>Bio</strong>logical Affinity in Human Skeletal<br />

Remains<br />

“The (Almost) Exhumation of Billy the Kid:<br />

Why We Aren’t Digging Him up (and Why<br />

You Shouldn’t Either)”<br />

A Test of the Auricular Surface Ageing<br />

Method Using a Modern Sample: The Effect<br />

of Observer Experience<br />

Reassociating Commingled Remains<br />

Separated by Distance and Time: The Tale of<br />

Simon And Steven<br />

342<br />

541<br />

454<br />

540<br />

516<br />

302<br />

446<br />

363<br />

275<br />

447<br />

405<br />

533<br />

513


Komar, Debra PhD*, and Sarah Lathrop, PhD, University<br />

of New Mexico, Office of the <strong>Medical</strong> Investigator, MSC 11<br />

6030, 1 University of New Mexico, Albuquerque, NM<br />

87131; and Christopher R. Grivas, MS, University of New<br />

Mexico, Department of Anthropology, MSC01-1040,<br />

Albuquerque, NM 87131<br />

Komar, Debra PhD*, Director, Laboratory of Human<br />

Osteology, Maxwell Museum, Department of<br />

Anthropology, University of New Mexico, Albuquerque,<br />

NM<br />

Komar, Debra PhD*, International Criminal Tribunal for<br />

the Former Yugoslavia, Van der Heimstraat 64, The<br />

Hague, NETHERLANDS<br />

Komar, Debra PhD*, United Nations Mission in Timor<br />

Leste, UN House, Dili, EAST TIMOR<br />

Komar, Debra PhD, Office of the <strong>Medical</strong> Investigator,<br />

MSC11-6030, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001; and Wendy E. Potter, MS*, Department<br />

of Anthropology, MSC01-1040, 1 University of New<br />

Mexico, Albuquerque, NM 87131-0001<br />

Konigsberg, Lyle W. PhD*, and Richard L. Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Drive, Knoxville, TN<br />

Konigsberg, Lyle W. PhD*, Department of Anthropology,<br />

250 South Stadium Drive, University of Tennessee,<br />

Knoxville, TN 37996-0720<br />

Kontanis, Elias J. BS, BA*, Cornell University,<br />

Department of Ecology & Evolutionary <strong>Bio</strong>logy, Corson<br />

Hall, Ithaca, NY 14853<br />

Kontanis, Elias J. BS, BA*, Cornell University,<br />

Department of Ecology & Evolutionary <strong>Bio</strong>logy, Corson<br />

Hall, Ithaca, NY 14853; Krista E. Latham, MS, Temple<br />

University, Department of Anthropology, 1115 West Berks<br />

Street, Philadelphia, PA 19122; Mary K. Ritke, PhD,<br />

University of Indianapolis, Department of <strong>Bio</strong>logy, 1400<br />

East Hanna Avenue, Indianapolis, IN 46227<br />

Kontanis, Elias J. BS, BA*, Department of Ecology &<br />

Evolutionary <strong>Bio</strong>logy, Cornell University, Corson Hall,<br />

Ithaca, NY<br />

Koon, Alma BS*, 731 Pond Branch Road, Lexington, SC<br />

29073; and Katherine E. Weisensee, PhD*, Clemson<br />

University, Department of Sociology & Anthropology, 132<br />

Brackett Hall, Clemson, SC 29634<br />

Koot, Michael G. BA*, Department of Anthropology,<br />

Michigan State University, Department of Anthropology,<br />

Michigan State University, East Lansing, MI<br />

Kopp, Derinna V. MA*, Jacquel Arismendi, MA, and<br />

Shannon A. Novak, PhD, Department of Anthropology,<br />

University of Utah, 270 South 1400 East, Room 102, Salt<br />

Lake City, UT 84112<br />

Index 158<br />

The Use of Material Culture to Establish the<br />

Ethnic Identity of Victims in Genocide<br />

Investigations: A Validation Study From the<br />

American Southwest<br />

The Validity of Using Unique <strong>Bio</strong>logical<br />

Features as a Method of Identifying Victims<br />

of War Crimes in the Former Yugoslavia<br />

Reconciling the Discrepancy in Victim<br />

Number Between the S-21 Prison and the<br />

Choeung Ek Killing Fields of Cambodia<br />

Ten Years On: Problems Relating to Victim<br />

Identification in Timor Leste<br />

Percentage of Body Recovered and its Effect<br />

on Identification Rates and Cause/Manner of<br />

Death Determination<br />

Of Posteriors, Typicality, and Individuality in<br />

Forensic Anthropology<br />

Local Standards vs. Informative Priors in<br />

Applied Forensic Anthropology<br />

Using Real-Time PCR Quantification of<br />

Nuclear and Mitochondrial DNA to Develop<br />

Degradation Profiles for Various Tissues<br />

Empirical Validation and Application of the<br />

Quality-Control Polymerase Chain Reaction<br />

(qcPCR) Inhibitor Detection System<br />

Nuclear DNA Preservation in Soft and<br />

Osseous Tissues<br />

Demographic Differences of Homicide<br />

Victims Examined by Forensic<br />

Anthropologists in Comparison to National<br />

Homicide Victim Trends<br />

Radiographic Human Identification Using<br />

Bones of the Hand: A Validation Study<br />

288<br />

602<br />

185<br />

136<br />

321<br />

602<br />

474<br />

483<br />

502<br />

556<br />

25<br />

555<br />

Defining Perimortem: Blunt Force Trauma 503


Kosalka, Renée C. MA*, Sharna Daley, MSc, and Jon<br />

Sterenberg, MSc, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Rick Harrington, PhD,<br />

PO Box 40191, Tucson, AZ 85717; Hugh Tuller, MA,<br />

JPAC CIL, 310 Worchester Avenue, Hickam AFB, HI;<br />

Cecily Cropper, PhD, Forensic Sciences International<br />

Commission on Mission Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Mark Skinner, PhD,<br />

Simon Fraser University, Department of Archeology,<br />

Burnaby, BC, V5A 1S6, CANADA; and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on<br />

Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

Kosalka, Renee MA*, Cheryl Katzmarzyk, MA*, Sharna<br />

Daley, MSc, Jon Sterenberg, MSc, Rifat Kešetović, MD,<br />

Laura Yazedjian, MSc, René Huel, BSc, Edin Jasaragić,<br />

Adnan Rizić, BSc, and Thomas Parsons, PhD, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Kranioti, Elena Fotios MD, Mused Nacional de Ciencias<br />

Naturales, Jose Gutierrez Abascal 2, Madrid, 28006,<br />

SPAIN; Anastasia Efstratios Kastanaki, MSc*, State<br />

Mental Health Hospital of Chania, Psychooncology<br />

Centre, 38, I. Skaltsouni Str., El. Giakoumaki Str., and<br />

DaraTso, Chania, Crete, 73100, GREECE; M. Yasar<br />

Iscan, PhD, Istanbul Universitesi, Adli Tip Enstitusu,<br />

Cerrahpasa Kampusu, PK.10, 34303, Istanbul, 34098,<br />

TURKEY; and Manolis N. Michalodimitrakis, MD, JD,<br />

University of Crete, <strong>Medical</strong> School, Dpt Forensic<br />

Sciences, Heraklion, Crete 71110, GREECE<br />

Kress, Tyler A. PhD*, BEST Engineering, 2312 Craig<br />

Cove Road, Knoxville, TN 37919; David J. Porta, PhD,<br />

Bellarmine University, Department of <strong>Bio</strong>logy, 2001<br />

Newburg Road, Louisville, KY 40205; Anne M. Kroman,<br />

MA, University of Tennessee, Department of Anthropology,<br />

Knoxville, TN 37996; and Bryce O. Anderson, PhD, BEST<br />

Engineering, 2312 Craig Cove, Knoxville, TN 37919<br />

Krishan, Kewal PhD*, Panjab University, Department of<br />

Anthropology, Sectoc-14, Chandigarh, 160 014, INDIA;<br />

Tanuj Kanchan, MD, Kasturba <strong>Medical</strong> College,<br />

Department of Forensic Medicine, Light House Hill Road,<br />

Mangalore, 575 001, INDIA; and Neelam Passi, MSc,<br />

Panjab University, Department of Anthropology, Sector-<br />

14, Chandigarh, HI 160 014, INDIA<br />

Index 159<br />

The Work of the ICMP in the Detection,<br />

Excavation, Documentation, and Analysis of<br />

Clandestine Graves Relating to the 1995 Fall<br />

of Srebrenica: A Review of Activities and<br />

Challenges Encountered<br />

Mapping Forensic Evidence Onto the Stor of<br />

Srebrenica: Augmenting the Historical<br />

Record Through Analysis of Archaeology,<br />

Anthropology, and DNA<br />

Sexual Dimorphism of the Humerus in<br />

Contemporary Cretans<br />

Bone-Breaking Rules: A Report of Six<br />

Fracture Mechanism-of-Injury Axioms<br />

Developed From Experimental Impact<br />

Testing<br />

Estimation of Stature From Foot and its<br />

Segments in a Sub-Adult Population of North<br />

India<br />

138<br />

142<br />

270<br />

353<br />

18


Kroman, A.M. BA*, Department of Anthropology,<br />

University of Tennessee, Knoxville, 252 South Stadium<br />

Hall, Knoxville, TN; Steven A. Symes, PhD, O’Brian C.<br />

Smith, MD, and Jennifer C. Love, PhD, Department of<br />

Forensic Pathology, University of Tennessee, Memphis,<br />

1060 Madison Avenue, Memphis, TN; Harry H. Mincer,<br />

DDS, PhD, Division of Oral Pathology, Dunn Dental<br />

Building, Memphis, TN; and J.W. Lemmon, BS,<br />

Department of Forensic Pathology, University of<br />

Tennessee, Memphis, 1060 Madison Avenue, Memphis, TN<br />

Kroman, Anne M. MA*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; Tyler Kress,<br />

PhD, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, 501 East 38th Street, Erie, PA<br />

16546<br />

Kroman, Anne M. MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Kroman, Anne M. MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Tyler A. Kress, PhD, BEST<br />

Engineering, 2312 Craig Cove Road, Knoxville, TN 37919;<br />

and David J. Porta, PhD, Bellarmine University,<br />

Department of <strong>Bio</strong>logy, 2001 Newburg Road, Louisville,<br />

KY 40205<br />

Kroman, Anne M. PhD*, and Gregory A. Thomspon, DO,<br />

Lincoln Memorial University, De-Busk College of<br />

Osteopathic Medicine, 6965 Cumberland Gap Parkway,<br />

Harrogate, TN 37752<br />

Kroman, Anne PhD*, Lincolm Memorial University-<br />

DeBusk College of Osteopathic Medicine, 6965<br />

Cumberland Gap Parkway, Harrogate, TN<br />

Kutyla, Alicja K. BS*, Middle Tennessee State University,<br />

Department of <strong>Bio</strong>logy, Box 60, Murfreesboro, TN 37132;<br />

and Hugh E. Berryman, PhD, Middle Tennesee State<br />

University, Department of Sociology and Anthropology,<br />

Box 10, Murfreesboro, TN 37132<br />

Kutyla, Alicja K. MS*, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

Kutyla, Alicja K. MS*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Rebecca J. Wilson, MA, 3108<br />

Rennoc Road, Knoxville, TN 37918; and Hugh E.<br />

Berryman, PhD, Department Sociology & Anthropology,<br />

Middle Tennessee State University, Box 89, Murfreesboro,<br />

TN 37132<br />

Index 160<br />

The Hidden Truth: Mandibular Condyle<br />

Fractures in Child Abuse<br />

Mandible and Cranial Base Fractures in<br />

Adults: Experimental Testing<br />

Experimental Study of Fracture Propagation<br />

in the Human Skull: A Re-Testing of Popular<br />

Theories<br />

Propeller Impacts: Injury Mechanics and<br />

Bone Trauma<br />

Cranial Suture Closure as a Reflection of<br />

Somatic Dysfunction: Lessons From<br />

Osteopathic Medicine Applied to Physical<br />

Anthropology<br />

Rethinking Bone Trauma: A New<br />

<strong>Bio</strong>mechanical Continuum Based Approach<br />

Detection of Gunshot Residue (GSR) on<br />

Bone: Potential for Bullet Direction and<br />

Range Estimation<br />

Strontium Particles: Confirmation of Primer<br />

Derived Gunshot Residue on Bone in an<br />

Experimental Setting<br />

Common Household Rope and an Outdoor<br />

Hanging: An Investigation Sparked by a<br />

Skeletal Case Exhibiting Cervical Vertebra<br />

Entrapment<br />

611<br />

417<br />

512<br />

307<br />

173<br />

81<br />

277<br />

32<br />

71


Kutyla, Alicja K. MS*, University of Tennessee, Knoxville,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and Hugh E. Berryman, PhD,<br />

Department Sociology & Anthropology, Middle Tennessee<br />

State University, Box 89, Murfreesboro, TN 37132<br />

L’Abbe, Ericka N PhD*, Marius Loots, BSc, and Natalie<br />

Keough, BSc, University of Pretoria, Faculty of Health<br />

Sciences, Department of Anatomy, PO Box 2034, Pretoria,<br />

0001, South Africa<br />

Lagden, Abigail C. BSc*, and Tal Simmons, PhD,<br />

Department of Forensic and, Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1<br />

2HE, UNITED KINGDOM<br />

Lahren, Craig H. MA*, North Dakota Department of<br />

Health, Office of the <strong>Medical</strong> Examiner, PO Box 937,<br />

Bismarck, ND 58502; and Thomas E. Bodkin, MA,<br />

Hamilton County <strong>Medical</strong> Examiner’s Office, 3202<br />

Amnicola Highway, Chattanooga, TN 37406<br />

Lang, Joy E. BSc, BA*, and Tosha L. Dupras, PhD,<br />

Department of Sociology and Anthropology, University of<br />

Central Florida, Orlando, FL<br />

Langley, Natalie R. MA* and Richard Jantz, PhD,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, 250 South Stadium Hall, Knoxville, TN 37996<br />

Langley, Natalie R. MA*, 357 South Curson Avenue, Los<br />

Angeles, CA<br />

Lanning, Bradley I. MA*, Jolen Anya Minetz, MA, and<br />

Jennie J.H. Jin, PhD, JPAC-CIL, 310 Worchester Avenue<br />

Building 45, Hickam AFB, HI 96835<br />

Latham, Krista E. BS*, Carlos J. Zambrano, BA, and Mary<br />

Ritke, PhD, Department of <strong>Bio</strong>logy, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

Latham, Krista E. BS*, Department of <strong>Bio</strong>logy, University<br />

of Indianapolis, 1400 East Hanna Ave, Indianapolis, IN<br />

Latham, Krista E. MS*, Temple University, Department of<br />

Anthropology, 1115 West Berks Street, Gladfelter Hall,<br />

2nd Floor, Philadelphia, PA 19122; and Luis M. Cabo-<br />

Perez, MS, Jeremy J. Beach, MS, and Dennis C Dirkmaat,<br />

PhD, Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

Latham, Krista E. MS*, Temple University, Department of<br />

Anthropology, 1115 West Berks Street, Philadelphia, PA<br />

19122; Jennifer L. Harms, BS, Carlos J. Zambrano, BA,<br />

Mary K. Ritke, PhD, and Stephen P. Nawrocki, PhD,<br />

University of Indianapolis, Department of <strong>Bio</strong>logy, 1400<br />

East Hanna Avenue, Indianapolis, IN 46227<br />

Ledford, Jennifer A. BS*, Barrett Gobelet, BS*, and Hugh<br />

E. Berryman, PhD, Department Sociology &<br />

Anthropology, Middle Tennessee State University, Box 89,<br />

Murfreesboro, TN 37132<br />

Index 161<br />

The Sacral Auricular Surface: A New<br />

Approach to Aging the Human Skeleton<br />

Matjes River Rockshelter: A Case of<br />

Commingled Remains<br />

Decomposition Scoring as a Method for<br />

Estimating the Postmortem Submersion<br />

Interval of Human Remains Recovered From<br />

United Kingdom Rivers - A Comparative<br />

Study<br />

Society of Forensic Anthropologists (SOFA):<br />

An Introduction<br />

Dissolving Dentition: The Effects of<br />

Corrosive and Caustic Agents on Teeth<br />

Sex Determination of Infants and Juveniles<br />

From the Clavicle<br />

Determining Direction of Fire: An<br />

Anthropological Analysis of Gunshot<br />

Wounds to the Chest<br />

Evaluating the Performance of Population<br />

Estimation Methods in Commingled Skeletal<br />

Assemblages<br />

The Effect of Heat Associated With<br />

Maceration on DNA Preservation in Skeletal<br />

Remains<br />

Using Amplification of Bacteriophage<br />

Lambda DNA to Detect PCR Inhibitors in<br />

Skeletal DNA<br />

Sources of Error in Genetic and Osteological<br />

Sex Determination: Lessons from Physical<br />

Anthropology<br />

The Ability to Amplify Skeletal DNA After<br />

Heat Exposure Due to Maceration<br />

Cervical Vertebrae Entrapment in the Noose<br />

as Evidence of Cause of Death by Hanging in<br />

Skeletal Cases: Three Remarkable Finds<br />

173<br />

316<br />

242<br />

462<br />

543<br />

468<br />

586<br />

22<br />

545<br />

556<br />

310<br />

481<br />

166


Lee, U-Young MD*, Catholic Institute for Applied<br />

Anatomy, Department of Anatomy, College of Medicine,<br />

The Catholic University of Korea, 505, Banpo-dong,<br />

Socho-gu, Seoul, 137701, KOREA; In-Heok Chung, MD,<br />

PhD, Department of Anatomy, Yonsei University College of<br />

Medicine, Department of Anatomy, Yonsei University<br />

College of Medicine, 134 Sinchon-dong, Seodaemoon-gu,<br />

Seoul, 120752, KOREA; Dae-Kyoon Park, MD, PhD,<br />

Deptartment of Anatomy, Colleege of Medicine,<br />

Soonchunhyang Univ, Soonchunhyang University, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul 330946 KOREA; Yi-<br />

Suk Kim, MD, MS, Department of Anatomy, Gachon<br />

University of Medicine, 1198 Kuwol-dong, Namdong-gu,<br />

Incheon, 405760, KOREA; Deog-Im Kim, PhD,<br />

Department of Anatomy, Kwandong University College of<br />

Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

Je-Hoon Lee, MSc, Department of Anatomy, Catholic<br />

Institute for Applied Anatomy, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,,<br />

505 Banpo-dong, Socho-gu, Seoul, 137701, KOREA; and<br />

Seung-Ho Han, MD, PhD, Department of Anatomy,<br />

Catholic Institute for Applied Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpo-<br />

dong, Seocho-gu, Seoul, 137701, KOREA<br />

Lee, U-Young MD*, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Socho-gu, Seoul, 137701, KOREA; Dae-Kyoon Park,<br />

MD, PhD, Soonchunhyang University, College of<br />

Medicine, Department of Anatomy, 366-1 Ssangyong-dong,<br />

Cheonan-si, Seoul 330946 KOREA; Yi-Suk Kim, MD, PhD,<br />

Ewha Womans University, Department of Anatomy, School<br />

of Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul,<br />

158710, KOREA; Sang-Seob Lee, DDS, National Institute<br />

of Scientific Investigation, Shinwol-7-dong, Yancheon-gu,<br />

Seoul, 158707, KOREA; Yong-Woo Ahn, DDS, PhD,<br />

Institute of Forensic Medicine, School of Medicine, Pusan<br />

National University, 1-10, Ami-dong, Seo-gu, Busan,<br />

602739, KOREA; Nak-Eun Jung, PhD, National Institute<br />

of Scientific Investigation, Shinwol-7-dong, Yancheon-gu,<br />

Seoul, 158707, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Index 162<br />

Sex Determination of Talus in Korean Using<br />

Discrimination Function Analysis<br />

Forensic Anthropological Consideration of<br />

Quantification Techniques of Individuals<br />

From Excavated Human Remains in Case of<br />

Burial Place at Daehak-Ro, Korea<br />

269<br />

93


Lee, U-Young MD*, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Socho-gu, Seoul, 137701, KOREA; In-Hyuk Chung,<br />

PhD, Department of Anatomy, Yonsei University College of<br />

Medicine, 134 Sinchon-dong, Seodaemoon-gu, Seoul,<br />

120752, KOREA; Dae-Kyoon Park, PhD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University,<br />

366-1 Sangyong-dong, Cheonan-si, Seoul, 330946,<br />

KOREA; Yi-Suk Kim, PhD, Department of Anatomy,<br />

Gachon University of Medicine & Science, 1198 Kuwoldong,<br />

Namdong-gu, Incheon, 405760, KOREA; Sang-Seob<br />

Lee, MSD, National Institute of Scientific Investigation,<br />

Shinwol-7-dong, Yancheon-gu, Seoul, 158707, KOREA;<br />

Yong-Woo Ahn, PhD, Institute of Forensic Medicine,<br />

School of Medicine, Pusan National University, 1- 10, Amidong,<br />

Seo-gu, Busan, 602739, KOREA; Deog-Im Kim,<br />

PhD, Department of Anatomy, Kwandong University<br />

College of Medicine, 522, Naegok-dong, Gangneug,<br />

201701, KOREA; and Je-Hoon Lee, MSc, and Seung-Ho<br />

Han, PhD, The Catholic University of Korea, Department<br />

of Anatomy, College of Medicine, 505, Banpo-dong,<br />

Seocho-gu, Seoul, 137701, KOREA<br />

Leher, Tamara L. BA* and Turhon A. Murad, PhD,<br />

California State University, Chico, Department of<br />

Anthropology, Chico, CA 95929-400<br />

Leher, Tamara L. BA*, Department of Anthropology,<br />

California State University-Chico, P.O. Box 4036, Chico,<br />

CA<br />

Leigh Moreton*, Reuben Edwin Bournemouth University,<br />

33 Corsair Drive, Dibden, Southampton, Hampshire SO45<br />

5UF, UNITED KINGDOM; and Piotr D. Drukier, MSc*,<br />

Bournemouth University, C134 Christchurch House,<br />

Talbot Campus, Fern Barrow, Poole, 0 BH12 5BB,<br />

UNITED KINGDOM<br />

Leney, Mark D. PhD* and Bradley J. Adams, PhD, U.S.<br />

Army Central Identification Laboratory, HI, 310<br />

Worchester Avenue, Hickam AFB, HI 96853<br />

Leney, Mark D. PhD*, Central Identification Laboratory,<br />

Joint POW/MIA Accounting Command, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

Leney, Mark PhD*, U.S. Army CILHI, 310 Worchester<br />

Avenue Hickam Air Force Base, Honolulu, HI<br />

Listi, Ginesse A. MA*, Louisiana State University,<br />

Department of Geography and Anthropology, Baton<br />

Rouge, LA 70803; H. Beth Bassett, MA, Louisiana State<br />

University, Department of Geography and Anthropology,<br />

Baton Rouge, LA 70803<br />

Listi, Ginesse A. MA*, Mary H. Manhein, MA, and Michael<br />

Leitner, PhD, Department of Geography and<br />

Anthropology, Louisiana State University, 227 Howe-<br />

Russell, Baton Rouge, LA<br />

Index 163<br />

Determination of Sex Using Metric Data of<br />

Greater Sciatic Notch in Koreans<br />

Home is Where the Bones Are: Rat Nesting<br />

Behavior as a Tool in Forensic Investigations<br />

An Examination of the Petrographic<br />

Technique in the Analysis of Cementum<br />

Increments for the Determination of Age and<br />

Seasonality in Human Teeth<br />

A Curve Where No Hand Has Touched -<br />

Vertebral Ageing Method in Females<br />

The Use of Non-Unique Dental Characters<br />

and Non-Unique DNA Types to Estimate<br />

Probability of Identity<br />

Is This Bone Human or What? In Pursuit of<br />

Human vs. Non Human Determinations in<br />

Small Osseous Fragments<br />

Factors That Affect mtDNA Recoverability<br />

From Osseous Remains<br />

Test of an Alternative Method for<br />

Determining Sex in the Hip: Applications for<br />

Modern Americans<br />

The “Next Utility” in Field Recovery of<br />

Scattered Human Remains<br />

159<br />

481<br />

533<br />

259<br />

512<br />

408<br />

600<br />

449<br />

563


Listi, Ginesse A. PhD*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, Baton Rouge, LA 70803<br />

Listi, Ginesse A. PhD*, Louisiana State University, 1723<br />

Lombard Drive, Baton Rouge, LA 70810<br />

Littman, Mallory S. BS*, and Peter J. Colleran, BS, Boston<br />

University School of Medicine, 715 Albany Street, Boston,<br />

MA 02118; and Tara L. Moore, PhD, Boston University<br />

School of Medicine, 700 Albany Street, Boston, MA 02118;<br />

and Billie L. Seet, MA, Office of the Chief <strong>Medical</strong><br />

Examiner, 720 Albany Street, Boston, MA 02118<br />

Lobo, Stany W. MSc*, Department of Anatomy, Melaka<br />

Manipal <strong>Medical</strong> College, Manipal, Karnataka 576104,<br />

INDIA<br />

Loichinger, Jaime L. BA*, and Cynthia A. Wilczak, PhD,<br />

University of Maryland, College Park-Dept. of<br />

Anthropology, 1111 Woods Hall, College Park, MD 20742<br />

London, Marilyn R. MA, and Dawn M. Mulhern, PhD,<br />

Smithsonian Institution, Washington, DC; Lenore T.<br />

Barbian, PhD, and Paul S. Sledzik, MS, National Museum<br />

of Health and Medicine, Armed Forced Institute of<br />

Pathology, Washington, DC; Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Erie, PA; Laura Fulginiti, PhD,<br />

<strong>Medical</strong> Examiner’s Office, Phoenix, AZ; Joseph T.<br />

Hefner, BS, University of Florida, Gainesville, FL; and<br />

Norman J. Sauer, PhD, Michigan State University, East<br />

Lansing, MI<br />

Loucks, Emily J. BA*, University of Tennessee, 250 South<br />

Stadium Hall, Department of Anthropology, Knoxville, TN<br />

37996; and Brannon I. Jones, MA, University of<br />

Tennessee, 250 South Stadium Hall, Department of<br />

Anthropology, Knoxville, TN 37996<br />

Love, Jennifer C. PhD*, and Steven A. Symes, PhD,<br />

University of Tennessee, Memphis, Regional Forensic<br />

Center, Memphis, Memphis, TN; and Chantal Ferraro,<br />

PhD, Long Island University, Long Island University,<br />

Brookville, NY<br />

Love, Jennifer C. PhD*, Jason M. Wiersema, PhD, and<br />

Sharon M. Derrick, PhD, Harris County <strong>Medical</strong><br />

Examiner’s Office, 1885 Old Spanish Trail, Houston, TX<br />

77054; and Heather Backo, MA, Department of<br />

Anthropology, Tulane University, 1326 Audubon Street,<br />

New Orleans, LA 70118<br />

Love, Jennifer C. PhD*, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN<br />

Love, Jennifer C. PhD*, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN 38104; Gina Hart, MA,<br />

Regional <strong>Medical</strong> Examiner’s Office, 325 Norfolk Street,<br />

Newark, NJ 07103; and Brian Spatola, MA, 125 5th Street,<br />

NE, Washington, DC 20002<br />

Index 164<br />

The Use of Vertebral Osteoarthritis and<br />

Osteophytosis in Age Estimation<br />

The Impact of Racial Metric Variation in the<br />

Pelvis on the Morphological Assessment of<br />

Sex<br />

A Study of the Differences Between Fresh<br />

Water and Salt Water Decomposition:<br />

Establishing Time Since Death or Time Since<br />

Submergence<br />

Cephalic Index of Gurung Community of<br />

Nepal: An Anthropometric Study<br />

13<br />

189<br />

88<br />

155<br />

Population Variation in the Sacrum 362<br />

Roles of the <strong>Bio</strong>logical Anthropologist in the<br />

Response to the Crash of United Airlines<br />

Flight 93<br />

The Relationship Between Bone Weight and<br />

Age at Death<br />

571<br />

296<br />

Understanding Rib Fracture Patterns 549<br />

Objective Interpretation of the Striation<br />

Pattern Observed in Experimentally Cut<br />

Costal Cartilage<br />

Evaluation of Odor as a Time-Since-Death<br />

Indicator<br />

Evaluation of the Sternal Rib End Age<br />

Estimation Technique Using a Modern<br />

<strong>Medical</strong> Examiner Sample<br />

83<br />

599<br />

451


Loyd, Kathleen M. MA*, Joint POW-MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Luney Parr, Nicolette Maria BA, MS*, 1305 NE 6th<br />

Terrace, Gainesville, FL 32601-3732; Carlos J. Zambrano,<br />

MS, 5231 NW 56th Court, Gainesville, FL 32653; and<br />

Laurel Freas, MA, 3425 SW 2nd Avenue, #246,<br />

Gainesville, FL 32607<br />

Lynn, Kalan S. BSc*, Mercyhurst College, 501 East 38th<br />

Street, Erie, PA 16546; and Stephen D. Ousley, PhD,<br />

Mercyhurst College, Department of Applied Forensic,<br />

Anthropology, 501 East 38th Street, Erie, PA 16546<br />

MacGregor, Donna M. MSc*, Queensland Police Service,<br />

Scientific Section, 200 Roma Street, Brisbane, 4001,<br />

AUSTRALIA<br />

MacGregor, Donna M. MSc*, Queensland Police Service,<br />

Scientific Section, 200 Roma Street, Brisbane, 4001,<br />

AUSTRALIA<br />

Magnanti, Brooke L. PhD, Newcastle University, Sir James<br />

Spence Institute, Royal Victoria Infirmary, Newcastleupon-Tyne,<br />

Tyne and Wear NE1 4LP, UNITED<br />

KINGDOM; and Anna Williams, PhD*, Cranfield<br />

University, Defence Academy of the United Kingdom,<br />

Shrivenham, Wiltshire SN6 8LA, UNITED KINGDOM<br />

Mahfouz, Mohamed PhD, Ahmed M. Badawi, PhD,<br />

Brandon C. Merkl, MS, Emam ElHak Ali Abd ElFatah, MS,<br />

Emily Pritchard, BS, and Katherine R. Kesler, BS,<br />

Department of Mechanical, Aerospace and <strong>Bio</strong>medical<br />

Engineering, 301 Perkins Hall, University of Tennessee,<br />

Knoxville, TN 37996; and Megan K. Moore, MS*, Richard<br />

L. Jantz, PhD, and Lee Meadows Jantz, PhD, Department<br />

of Anthropology, 250 South Stadium Hall, University of<br />

Tennessee, Knoxville, TN 37996<br />

Mallett, Xanth PhD*, University of Dundee, Centre for<br />

Anatomy & Human Identification, Dow Street, Dundee, UK<br />

DD1 5EH, SCOTLAND<br />

Malone, Christina A. BHS, BA*, Michigan State<br />

University, Forensic Anthropology Lab, A-439 East Fee<br />

Hall, East Lansing, MI 48824<br />

Malone, Christina A. BHS, BA*, Michigan State<br />

University, Forensic Anthropology Laboratory, A-439 E.<br />

Fee Hall, East Lansing, MI 48823<br />

Manhein, Mary H. MA*, and Ginesse A. Listi, MA,<br />

Louisiana State University, Department of Geography and<br />

Anthropology, Baton Rouge, LA 70803<br />

Manhein, Mary H. MA*, and Helen B. Mathews, MA,<br />

Louisiana State University, Department of Geography and<br />

Anthropology, 227 Howe- Russell Building, Baton Rouge,<br />

LA 70803<br />

Manhein, Mary H. MA*, Ginesse Listi, MA, and Michael<br />

Leitner, PhD, Department of Geography and<br />

Anthropology, Louisiana State University, 227 Howe-<br />

Russell, Baton Rouge, LA<br />

Index 165<br />

The Central Identification Unit (CIU) During<br />

the Korean War<br />

Metric Sex Determination From the Mandible 272<br />

Stature Estimation: Are There Any<br />

Advantages to Using Principal Component<br />

Analysis?<br />

Ground Penetrating Radar: A New Tool in<br />

Crime Scene Examination?<br />

Unusual Skeletal Variations Observed in an<br />

Adult Aboriginal Male: Case Study from<br />

Brisbane, Australia<br />

Decomposition and Postmortem Interval: A<br />

Critical Analysis of British Medico-legal<br />

Investigation and Trends in South Yorkshire,<br />

1995-2002<br />

Patella Sex Determination by 3D Statistical<br />

Shape Models and Nonlinear Classifiers<br />

Hand Comparison: The Potential for Accurate<br />

Identification/Recognition in Cases of<br />

Serious Sexual Assault<br />

A Radiographic Assessment of Pediatric<br />

Fracture Healing and Time Since Injury<br />

Deconstructing or Perpetuating Race: The<br />

Status of Race in Forensic Anthropology<br />

Fifty Years of Questions: The Re-Evaluation<br />

of a Korean War Soldier Buried in the United<br />

States<br />

Establishing a Central Database for the<br />

Missing and Unidentified of Louisiana<br />

The Landscape’s Role in Dumped and<br />

Scattered Remains<br />

7<br />

94<br />

153<br />

198<br />

233<br />

341<br />

133<br />

211<br />

274<br />

457<br />

289<br />

548


Marden, Kerriann MA*, 3800 New Hampshire Avenue,<br />

Northwest, Apartment #509, Washington, DC 20011; and<br />

Marcella H. Sorg, PhD, University of Maine, Margaret<br />

Chase Smith Policy Center, 5784 York Complex, Building<br />

#4, Orono, ME 04469<br />

Marden, Kerriann MA*, and John W. Verano, PhD, Tulane<br />

University, Department of Anthropology, 1021 Audubon<br />

Street, New Orleans, LA 70118<br />

Marden, Kerriann MA*, Dept of Anthropology, Tulane<br />

University, 1326 Audubon Street, New Orleans, LA 70118<br />

Marden, Kerriann MA, ABD*, and John W. Verano, PhD,<br />

Tulane University, Department of Anthropology, 1021<br />

Audubon Street, New Orleans, LA 70118<br />

Marks, Murray K. PhD*, and Kathryn H. Haden, MD,<br />

Department of Pathology, The University of Tennessee<br />

<strong>Medical</strong> Center, 250 South Stadium Hall, Knoxville, TN<br />

Marks, Murray K. PhD*, The University of Tennessee,<br />

Knoxville, TN<br />

Marks, Murray K. PhD*, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; Mariateresa A.<br />

Tersigni, PhD, Joint POW/MIA Accounting Command<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Darinka<br />

Mileusnic, MD, PhD, Knox County <strong>Medical</strong> Examiner’s<br />

Office, 1924 Alcoa Highway, U-71, Knoxville, TN 37920<br />

Marks, Murray K. PhD*, University of Tennessee,<br />

Department of Anthropology, 252 South Stadium Hall,<br />

Knoxville, TN 37996; Diana K. Moyers, MA, Visiting<br />

Scientist, CFSRU, FBI Laboratory, FBI Academy, Building<br />

12, Quantico, VA 22135; Peter H. Tu, PhD, GE Global<br />

Research, Imaging Technologies, 1 Research Circle,<br />

Niskayuna, NY 12309; and Philip N. Williams, BS, FBI<br />

Laboratory, CFSRU, Building 12, Quantico, VA 22135<br />

Martille, Laurent MD*, Service de Medecine Legale Chu<br />

de Montpellier, CHU Lapeyronie, 191 Avenue du Doyen<br />

Gaston Giraud, Montpellier, 34295, France; Douglas H.<br />

Ubelaker, PhD, Department of Anthropology, NMNH,<br />

Smithsonian Institution, Washington, DC 20560-0112; and<br />

Fabienne Seguret, MD, and Eric Baccino, MD, Service de<br />

Médecine Légale, CHU Lapeyronie, 191 Avenue du Doyen<br />

Gaston Giraud, Montpellier, 34295, France<br />

Martin, Michael BS*, 4000 Central Florida Boulevard,<br />

Phillips Hall, Room 309, Orlando, FL 32816; and John J.<br />

Schultz, PhD, University of Central Florida, Department of<br />

Anthropology, PO Box 25000, Orlando, FL 32816<br />

Martrille*, Laurnet and Tarek Mbghirbi, Service de<br />

médecine légale, CHU Lapeyronie, 191 av, Montpellier,<br />

France; Alain Zerilli, DDS, Faculté d’odontologie, CHU<br />

Brest, cedex , France, Brest, France; F. Seguret,<br />

Département d’information médicale, CHU Montpellier,<br />

France; and Eric Baccino, MD, Service de médecine<br />

légale, CHU Lapeyronie, 191 av, Montpellier, France,<br />

Index 166<br />

Potential Impact of Regional Ecologies on the<br />

Estimation of Postmortem Interval: Case<br />

Comparisons From Northern New England<br />

Closed Case Files: Sequelae of a Case of<br />

Complex Postmortem Mutilation<br />

62<br />

445<br />

Beating a Dead Pig to Death: An Actualistic 245<br />

Test of Archaeological Assumptions<br />

Anatomy of a Cauldron: Sociocultural 423<br />

Contributions to Understanding a Forensic<br />

Case<br />

Child Abuse Case: Multiple Forensic Issues 611<br />

The University of Tennessee/ FBI Human<br />

Remains Recovery School<br />

Antemortem vs. Perimortem Infant Rib<br />

Fracture: The Histological Evidence<br />

Advances in Computer Graphic Facial<br />

Recognition Software: Matching Facial<br />

Approximations to Antemortem Photographs<br />

A Test of Four Macroscopic Methods for Age<br />

Estimation of Human Skeletal Remains<br />

(Lamendin, Lovejoy Auricular Surface, Iscan,<br />

Suchey-Brooks)<br />

Detecting Various Burial Scenarios in a<br />

Controlled Setting Using Ground- Penetrating<br />

Radar<br />

A Strategy for Age Determination Combining<br />

a Dental Method (Lamendin) and an<br />

Anthropological Method (Iscan)<br />

557<br />

394<br />

255<br />

451<br />

65<br />

538


Martrille, Laurent MD*, Service de Médecine Légale,<br />

CHU Lapeyronie, 191 Avenue du Doyen Gaston Giraud,<br />

Montpellier cedex 5, 34295, France; Cristina Cattaneo,<br />

MD, PhD, Istituto di Medicina Legale, Università Degli<br />

Studi, Via Mangiagali 37, Milano, 30133, Italy; Steven A.<br />

Symes, PhD, Mercyhurst Archaeological Institute, 119<br />

Zurn Hall, Erie, PA 16546; and Eric Baccino, MD, Service<br />

Médecine Légale, CHU Lapeyronie, Montpellier, 34295,<br />

France<br />

Martrille, Laurent MD*, Service de Medecine Legale, Chu<br />

Lapeyronie, 191 Avenue du doyen Gaston Giraud,<br />

Montpellier, 34295, France; Cristina Cattaneo, MD, PhD,<br />

Istituto di Medicina Legale, Università degli Studi di<br />

Milano, via Mangiagali 37, Milano, 20133, Italy; Yves<br />

Schuliar, MD, IRCGN, 1 Boulevard Théophile Sueur,<br />

Rosny Sous Bois, 93111, France; and Eric Baccino, MD,<br />

Service de Medecine Legale, Chu Lapeyronie, 191 Avenue<br />

du doyen Gaston Giraud, Montpellier, 34295, France<br />

Massucci, Charles J. MA*, Tampa Police Department, 411<br />

North Franklin Avenue, Tampa, FL 33602; and Erin H.<br />

Kimmerle, PhD, University of South Florida, Department<br />

of Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

May, Shannon E. BA*, and Richard Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

S Stadium Hall, Knoxville, TN 37996-0720<br />

May, Shannon E. MA*, 250 South Stadium Hall,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37966<br />

May, Shannon E. MA*, 250 South Stadium Hall,<br />

Department of Anthropology, University of Tennessee,<br />

Knoxville, TN 37966<br />

McCarthy, Donna M. MA*, and Richard L. Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720<br />

McCormick, Kyle BA*, Kate E. Kolpan, BA, Karen Smith<br />

Gardner, BA, Eric J. Bartelink, PhD, Beth Shook, PhD,<br />

and Turhon A. Murad, PhD, California State University,<br />

Department of Anthropology, 400 West First Street, Butte<br />

#311, Chico, CA 95929-0400<br />

McCullough, John M. PhD*, University of Utah, 270 South<br />

1400 East, Salt Lake City, UT 84112-0060<br />

McDermott, Christopher M. MA*, U.S. Army Central<br />

Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

McDowell, Jennifer L. BSc, University of Pretoria,<br />

Department of Anatomy, Basic <strong>Medical</strong> Sciences Building,<br />

PO Box 2034, Pretoria, 0001, SOUTH AFRICA; Ericka N.<br />

L’Abbe, PhD*, University of Pretoria, PO Box 5023,<br />

Pretoria, 0001, SOUTH AFRICA; and Michael W.<br />

Kenyhercz, MS, 6327 Catawba Drive, Canfield, OH 44406<br />

Index 167<br />

Bones in Aid of Forensic Pathology: Trauma<br />

Isn’t Only Skin Deep<br />

307<br />

Anthropological Aspect of Mass Disasters 391<br />

Forensic Interviews: Corroborating Evidence<br />

and Collecting Data for Anthropological<br />

Field Work<br />

The Effects of Body Mass Index on<br />

Cremation Weight<br />

A SEM-EDS Trace Elemental Analysis of<br />

Sharp Force Trauma on Bone<br />

Bilateral Asymmetry in Historic Versus<br />

Modern Skeletal Remains: Activity and<br />

Identification<br />

Anatomical Stature Estimation: Why Not<br />

Fully Accurate?<br />

An Assessment of <strong>Bio</strong>logical Ancestry in an<br />

Unmarked Cemetery From Nevada: An<br />

Integrated Approach<br />

39<br />

236<br />

68<br />

189<br />

433<br />

216<br />

Race — A New Synthesis for a New Century 490<br />

U.S. Army Identification Laboratories for<br />

WWII and Korea and the History of Forensic<br />

Anthropology<br />

Morphometric Evaluation of Nasal<br />

Characteristics in 20th Century White and<br />

Black South Africans<br />

518<br />

46


McGowan, Regina L. BA*, 3841 Branson Road, Victoria,<br />

BC V9C 4A7, CANADA<br />

McKeown, Ashley H. PhD*, Department of Anthropology,<br />

University of Montana, Missoula, MT 59812; and Daniel J.<br />

Wescott, PhD, Department of Anthropology, University of<br />

Missouri, Columbia, MO 65211<br />

McKeown, Ashley H. PhD*, University of Montana,<br />

Department of Anthropology, 32 Campus Drive, Missoula,<br />

MT 59812; Walter L. Kemp, MD, Department Of Justice,<br />

State of Montana, Forensic Science Division, 2679 Palmer,<br />

Missoula, MT 59808-6010; and Beatrix Dudzik, MA, and<br />

Hillary R. Parsons, MA, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

McKeown, Ashley H. PhD*, University of Montana,<br />

Department of Anthropology, Missoula, MT 59812; and<br />

Daniel J. Wescott, PhD, Florida International University,<br />

Department of <strong>Bio</strong>logical Sciences, 11200 Southwest 8th<br />

Street, Miami, FL 333199<br />

McManus, Sarah E. BA*, 2019 Stonybrook Road,<br />

Louisville, TN 37777<br />

McNulty, Shauna MA*, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

Meehan, Audrey L. BGS*, 91-1074 Anaunau Street, Ewa<br />

Beach, HI 96706; and Robert W. Mann, PhD, Joint<br />

POW/MIA Acct Command, Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5000<br />

Meehan, Audrey L. BGS*, and Robert W. Mann, PhD,<br />

Joint POW/MIA Accounting Command/Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

AFB, HI 96853<br />

Meehan, Audrey L. BGS*, Joint POW/MIA Accounting<br />

Command/ Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Megyesi, Mary S. BA*, University of Indianapolis, East<br />

Lansing, MI<br />

Megyesi, Mary S. MS*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824; and Norman Sauer, PhD, Department of<br />

Anthropology, 354 Baker Hall, Michigan State University,<br />

East Lansing, MI 48895<br />

Megyesi, Mary S. PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853; Lindsey L.<br />

Jenny, MA, Michigan State University, East Lansing, MI<br />

48823; Cate Bird, MA, 2740 Senate Drive, #3E, Lansing,<br />

MI 48912; Amy Michael, MA, 528 West Lapeer Street,<br />

Lansing, MI 48933; and Angela Soler, MA, and Jane<br />

Wankmiller, MA, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Index 168<br />

Determination of Low Velocity Bullet<br />

Trajectory in Long Bones: An Experimental<br />

Investigation<br />

Morphological Variation in the Cranial Base:<br />

Implications for Sex and Ancestry Estimation<br />

Scavenging and Its Relationship to<br />

Decomposition in the Northern Rockies<br />

Sex and Ancestry Estimation From<br />

Landmarks of the Cranial Base<br />

Ancestry Estimation Using the Femur: A<br />

Pilot Study<br />

Pattern and Distribution of Fractures in the<br />

William M. Bass and Hamann-Todd<br />

Osteological Collections<br />

Skull/ Photo Superimposition Validation<br />

Study<br />

Skull and Photo Superimposition Technique<br />

Used to Aid in the Identification Process<br />

The Technique of Sampling Skeletal Remains<br />

for Mitochondrial DNA Testing<br />

The Effects of Temperature on the<br />

Decomposition Rate of Human Remains<br />

The Effects of Cerebral Palsy on Age<br />

Indicators in the Human Skeleton<br />

Taphonomy of a Mass Grave in Mid-<br />

Michigan: The Case of the Missing Cattle<br />

277<br />

328<br />

61<br />

101<br />

155<br />

5<br />

181<br />

363<br />

356<br />

577<br />

454<br />

2


Melbye, Jerry PhD*, and Michelle D. Hamilton, PhD,<br />

Texas State University-San Marcos, Department of<br />

Anthropology, 601 University Drive, San Marcos, TX<br />

78666-4616<br />

Michaud, Amy L. BS*, Bureau of Alcohol, Tobacco,<br />

Firearms, and Explosives, National Laboratory Center,<br />

6000 Ammendale Road, Ammendale, MD 20705; Douglas<br />

H. Ubelaker, PhD, Department of Anthropology, NMNH-<br />

MRC112, Smithsonian Institution, Washington DC, 20560;<br />

and Norman J. Sauer, PhD, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI 48824<br />

Miller Wieberg, Danielle A. MA*, 4107 Meredith Road,<br />

Knoxville, TN 37921<br />

Miller, Elizabeth A. PhD*, Cal State Los Angeles and Los<br />

Angeles County Coroner, Department of Anthropology,<br />

5151 State University Drive, Los Angeles, CA 90032<br />

Miller, Elizabeth A. PhD*, California State University at<br />

Los Angeles, Department of Anthropology, 5151 State<br />

University Drive, Los Angeles, CA 90032; and Stephen D.<br />

Ousley, PhD, Mercyhurst College, Department of Applied<br />

Forensic, Anthropology, 501 East 38th Street, Erie, PA<br />

16546<br />

Miller, Michelle L. BS, MA*, The University of Tennessee,<br />

Knoxville, TN<br />

Miller, Robyn A. BA*, University of Tennessee Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

Minetz, Jolen Anya MA*, and Jiro Manabe, MA, JPAC-<br />

CIL, 310 Worchester Avenue Building 45, Hickam AFB,<br />

Honolulu, HI 96853<br />

Minetz, Jolen Anya MA*, JPAC/CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853; Bradley I.<br />

Lanning, MA, JPAC-CIL, 310 Worchester Avenue Building<br />

45, Hickam AFB, HI 96835; Kylie Puzzuto, West Virginia<br />

University, PO Box 6201, Morgantown, WV 26506; and<br />

Elizabeth Okrutny, BS, Central Florida University, 4000<br />

Central Florida Boulevard, Orlando, FL 32816<br />

Monzavi, Babak Faghih DDS*, No 93351 Sanie Zadeh<br />

Lane-Chahar Bagh Bala Avenue, Esfahan 81638-93351,<br />

Iran; Arash Ghodoosi, MD, Fayz Square- Forensic<br />

Medicine Center of Esfahan Province, Esfahan, Iran; Omid<br />

Savabi, DDS, MS, Azadi Square- Hezar Jerib Avenue,<br />

Esfahan University of <strong>Medical</strong> Science, School of<br />

Dentistry, Esfahan, Iran; Asghar Karimi, DDS, Fayz<br />

Square - Forensic Medicine Center of Esfahan Province,<br />

Esfahan, Iran; Akbar Hasanzadeh, MS, Azadi Square-<br />

Hezar Jerib Avenue, Esfahan University of <strong>Medical</strong><br />

Sciences, School of Health Sciences, Esfahan, Iran<br />

Index 169<br />

Creating an Open-Air Forensic Anthropology<br />

Human Decomposition Research Facility<br />

Bones of Contention - The Investigation of a<br />

Cadaver Dog Handler<br />

Establishing the Perimortem Interval:<br />

Correlation Between Bone Moisture Content<br />

and Blunt Force Trauma Characters<br />

The Boy in the Chimney: A Case Study in<br />

Human Decomposition<br />

The Use (and Abuse) of the Sacrum in Sex<br />

Determination<br />

Utilizing Ground Penetrating Radar and<br />

Three-Dimensional Imagery to Enhance<br />

Search Strategies of Buried Human Remains<br />

The Role of Clothing in Estimating Time<br />

Since Death<br />

Group Classification Using Traditional<br />

Craniometrics, Angle Measurements,<br />

Geometric Morphometric Techniques, and<br />

the Potential Applications of These Methods<br />

to Fragmentary Crania<br />

Osteometric Analysis of the Vertebral<br />

Column<br />

Model of Age Estimation Based on Dental<br />

Factors of Unknown Cadavers Among<br />

Iranians<br />

149<br />

359<br />

352<br />

340<br />

100<br />

568<br />

598<br />

27<br />

47<br />

476


Mooder, Karen P. PhD*, and Mary-Claire King, PhD,<br />

Division of <strong>Medical</strong> Genetics, University of Washington,<br />

Box 357720, Seattle, WA 98195-7720<br />

Moore, Chester E. II, PhD*, U.S. Army Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam<br />

Air Force Base, Honolulu, HI<br />

Moore, Megan K. MS*, Department of Anthropology, 250<br />

South Stadium Hall, University of Tennessee, Knoxville,<br />

TN 37996-0720<br />

Moore, Megan K. MS*, University of Tennessee, 301<br />

Perkins Hall, Department of Mech, Aero, & <strong>Bio</strong>med<br />

Engineering, Knoxville, TN; and Dixie L. Thompson, PhD,<br />

University of Tennessee, Knoxville, Department of<br />

Exercise, Sports and Leisure Studies, 340 Health, Physical<br />

Education, and Recreation Building, Knoxville, TN 37996<br />

Moore-Jansen, Peer H. PhD* and Amber Harrison, BA*,<br />

Department of Anthropology, Wichita State University, 114<br />

Neff Hall, Wichita, KS 67260-0052<br />

Moore-Jansen, Peer H. PhD, Department of Anthropology,<br />

Wichita State University, 114 Neff Hall, Wichita, KS<br />

67260-0052; Elayne J. Pope, PhD, University of West<br />

Florida, Anthropology Department, 11000 University<br />

Parkway, Building 13, Pensacola, FL 72701; and Laura B.<br />

Bennett, BS*, 1013 Wisteria Drive, Derby, KS 67037<br />

Morcillo, Maria D. MD*, and Isla Y. Campos Varela,<br />

National Institute of Legal Medicine, Calle 7 A Number 12-<br />

61, Piso 3, Bogota, COLOMBIA<br />

Morris, Zoe Hensley HBSc, MA*, University Of Western<br />

Ontario, Department Of Anthropology, Social Sciences<br />

Centre, London, Ontario N6A 5C2, CANADA; Mary H.<br />

Manhein, MA, Department Of Geography & Anthropology,<br />

Louisiana State University, Baton Rouge, LA 70803; and<br />

Ginesse A. Listi, MA, 1723 Lombard Drive, Baton Rouge,<br />

LA 70810<br />

Moss, Kathryn E. BS*, 4800 Calhoun Street, Houston, TX<br />

77004; and Angela D. Rippley, BS, and Joan A. Bytheway,<br />

PhD, Sam Houston State University, Box 2296, Huntsville,<br />

TX 77341-2296<br />

Moyers, Diana K. MA*, and Philip N. Williams, BS,<br />

Federal Bureau of Investigation Laboratory,<br />

Counterterrorism and Forensic Science Research Unit,<br />

Building 12, Quantico, VA 22135<br />

Mundorff, Amy Z MA*, Simon Fraser University,<br />

Department of Archaeology, 8888 University Dr, Burnaby,<br />

BC V5A 1S6, Canada; and Eric J Bartelink, PhD,<br />

California State University, Chico, Department of<br />

Anthropology, Butte Hall 311, Chico, CA 95929<br />

Mundorff, Amy Z. MA*, Robert Shaler, PhD, Erik T.<br />

Bieschke, MS, and Elaine Mar, MS, Office of Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016<br />

Mundorff, Amy Z. MA*, Simon Fraser University, 611-<br />

1485 West 6th Avenue, Vancouver, BC V6H4G1, Canada<br />

Index 170<br />

Applications of DNA Identification to Human<br />

Rights: Additional Informative Sites in the<br />

mtDNA Genome<br />

The Importance of Recovered Life-Support<br />

Equipment In the Resolution of MIA Cases<br />

408<br />

605<br />

Skeletal Markers of Obesity in the Lower Leg 456<br />

Estimating Body Mass From Bone Mineral<br />

Density of Human Skeletal Remains<br />

252<br />

A Quantitative Study of Morphological 524<br />

Variation in the OS Coxa for the Purpose of<br />

Estimating Sex of Human Skeletal Remains<br />

Human Cremains From a Controlled Car Fire 214<br />

Identification vs. Cause of Death in Mass<br />

Graves Where Individuals are Commingled in<br />

Colombia<br />

Quantitative and Spatial Comparison of the<br />

Microscopic Bone Structures Of Deer<br />

(Odocoileus virginianus), Dog (Canis<br />

familiaris), and Pig (Sus scrofa domesticus)<br />

The Effects of Avian and Terrestrial<br />

Scavenger Activity on Human Remains in the<br />

Piney Woods of Southeast Texas<br />

Accuracy Testing of Computerized Facial<br />

Approximations by Comparison With<br />

Antemortem Photographs<br />

DNA Preservation of Skeletal Elements From<br />

the World Trade Center Disaster: Some<br />

Recommendations for Mass Disaster<br />

Management<br />

Marrying of Anthropology and DNA:<br />

Essential for Solving Complex Commingling<br />

Problems in Cases of Extreme Fragment<br />

Anthropologist Directed Triage Teams From<br />

Three Distinct Mass Fatality Events<br />

Involving Human Fragmentation<br />

53<br />

222<br />

57<br />

224<br />

357<br />

443<br />

389


Mundorff, Amy Zelson MA*, and Corinne Ambrosi, MD,<br />

Office of Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New<br />

York, NY; and Jason Wiersema, MA, Department of<br />

Anthropology, Texas A&M University, 1602 Rock Cliff<br />

Road, Austin, TX<br />

Mundorff, Amy Zelson MA*, Office of Chief <strong>Medical</strong><br />

Examiner, New York City, New York, NY<br />

Murad, Turhon A. PhD*, Anthropology Department,<br />

California State University, Chico, CA 95929-0400<br />

Murad, Turhon A. PhD*, California State University -<br />

Chico, Department of Anthropology, 400 West First Street<br />

Chico, Chico, CA 95929-0400<br />

Murray, Elizabeth A. PhD*, College of Mount St. Joseph,<br />

5701 Delhi Road, Cincinnati, OH 45233-1670; and Bruce<br />

E. Anderson, PhD*, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714<br />

Murray, Elizabeth A. PhD*, Hamilton County Coroner’s<br />

Office, College of Mount St. Joseph, 5701 Delhi Road,<br />

Cincinnati, OH<br />

Musse, Jamilly O. PhD*, Jeidson A.M. Marques, PhD,<br />

Faculty of Dentistry, Feira de Santana State University<br />

(UEFS), Fanco Manoel da Silva, 437, Cidade Nova, Feira<br />

de Santana - Bahia, 44053-060, BRAZIL; and Rogério N.<br />

Oliveira, PhD, University of São Paulo, Lineu Prestes,<br />

5081, Cidade Universitária, São Paulo, 05508-000,<br />

BRAZIL<br />

Myster, Susan M.T. PhD*, Department of Anthropology,<br />

Hamline University, St. Paul, MN<br />

Myster, Susan M.T. PhD*, Hamline University,<br />

Department of Anthropology, Saint Paul, MN; Susan J.<br />

Roe, MD, Ramsey County <strong>Medical</strong> Examiner’s Office, 300<br />

East University Avenue, Saint Paul, MN; Barbara H.<br />

O’Connell, PhD, Department of Anthropology, Hamline<br />

University, Saint Paul, MN; Janice J. Ophoven, MD, The<br />

Children’s Hospital, 345 North Smith Avenue, Saint Paul,<br />

MN; and Ann L. Norrlander, DDS, 1553 <strong>Medical</strong> Arts<br />

Building, 825 Nicollet Mall, Minneapolis, MN<br />

Myster, Susan M.T. PhD*, Hamline University, MB 196,<br />

1536 Hewitt Avenue, St. Paul, MN 55104; Erin Kimmerle,<br />

PhD, University of South Florida, Soc 110, 4202 East<br />

Fowler, Tampa, FL 33620; and Ann H. Ross, PhD, North<br />

Carolina State University, Campus Box 8107, Raleigh, NC<br />

27695-8107<br />

Myster, Susan M.T. PhD, Hamline University, MB 196,<br />

1536 Hewitt Avenue, St. Paul, MN 55104; Sarah E.<br />

Nathan, BA*, Department of Forensic Sciences, Nebraska<br />

Wesleyan University, Lincoln, NE 68503<br />

Index 171<br />

Hyperextension Trauma of Upper Cervical<br />

Vertebrae<br />

The Role of Anthropology During the<br />

Identification of Victims From the World<br />

Trade Center Disaster<br />

The Difference Between “Pala” and “Palo” is<br />

the Instrument of Death<br />

The Prosecution of a 28-Year-Old Case of<br />

Shaken Baby Syndrome<br />

Forensic Anthropology in the Courtroom:<br />

Trends in Testimony<br />

Race and Ethnicity in Subadult Crania: When<br />

Does Differentiation Occur?<br />

Contribution of the Maxillary Sinus Analysis<br />

for Human Identification<br />

Presenting Forensic Anthropology Training<br />

Seminars and Workshops to Forensic<br />

Science, Medico-Legal, and Law<br />

Enforcement Professionals: Consequences for<br />

Death Investigations Involving Decomposed,<br />

Skeletal, and Burned Human Remains<br />

A Multidisciplinary Approach to Evaluate<br />

Chronic Malnutrition During Childhood in a<br />

Case of Suspected Fatal Child Abuse<br />

Craniometrics as Jantz Taught Us: Multiple<br />

Lines of Evidence to Deduce the Affiliation<br />

of Painted “Aztec” Skulls<br />

An Evaluation of the Greulich and Pyle<br />

Skeletal Aging Standards for the Hand and<br />

Wrist in a Contemporary Multiethnic<br />

Population<br />

575<br />

569<br />

382<br />

34<br />

294<br />

532<br />

21<br />

557<br />

610<br />

329<br />

523


Nashelsky, Marcus B. MD*, Department of Pathology -<br />

5244 RCP, University of Iowa Hospitals & Clinics, 200<br />

Hawkins Drive, Iowa City, IA 52242; Todd W. Fenton,<br />

PhD, Michigan State University, 354 Baker Hall,<br />

Department of Anthropology, East Lansing, MI 48824;<br />

Nicholas V. Passalacqua, MS, 3518 Hagadorn Road,<br />

Okemos, MI 48864; Carolyn V. Hurst, BA, 3303 Wharton<br />

Street, East Lansing, MI 48823; and Timothy G. Baumer,<br />

BS, and Roger C. Haut, PhD, Orthopaedic <strong>Bio</strong>mechanics<br />

Laboratories, Michigan State University, East Lansing, MI<br />

48824<br />

Nawrocki, Stephen P. PhD*, and Anthony J. Koehl, BS*,<br />

University of Indianapolis, Archeology & <strong>Forensics</strong><br />

Laboratory, 1400 East Hanna Avenue, Indianapolis, IN<br />

46227<br />

Nawrocki, Stephen P. PhD*, Matthew A. Williamson, PhD,<br />

Christopher W. Schmidt, PhD, Heather A. Thew, MS, and<br />

Gregory A. Reinhardt, PhD, University of Indianapolis<br />

Archeology and <strong>Forensics</strong> Laboratory, 1400 East, Hanna<br />

Avenue, Indianapolis, IN<br />

Nugent, Teresa G. BA*, Texas State University, 601<br />

University Drive, ELA 232, San Marcos, TX 78666<br />

Nusse, Gloria L. BFA*, Clay and Bones, 129 Stanford<br />

Avenue, Mill Valley, CA 94941; and Alison Galloway,<br />

PhD*, University of California, Santa Cruz, Anthropolgy<br />

Department, Social Science One FS, Santa Cruz, CA 95064<br />

O’Brien, R. Christopher BA, MFS*, University of Western<br />

Australia, Centre for Forensic Science, 35 Stirling<br />

Highway, Mail Bag M420, Crawley, WA 6009, Australia;<br />

Shari L. Forbes, PhD, University of Ontario Institute of<br />

Technology, Faculty of Science, 2000 Simcoe Street, North,<br />

Oshawa, ON L1H 7K4, Canada; Jan Meyer, PhD,<br />

University of Western Australia, School of Anatomy and<br />

Human <strong>Bio</strong>logy, 35 Stirling Highway, Mail Bag M360,<br />

Crawley, WA 6009, Australia; and Ian Dadour, University<br />

of Western Australia, Centre for Forensic Science, 35<br />

Stirling Highway, Mail Bag M420, Crawley, WA 6009,<br />

Australia<br />

O’Callaghan, Jennifer MFS*, and Jacqueline Raskin-<br />

Burns, MS, Armed Forces DNA Identification Laboratory,<br />

1413 Research Boulevard, Building 101, Rockville, MD<br />

20850; Alexander F. Christensen, PhD, Central<br />

Identification Laboratory, Joint POW/MIA Accounting<br />

Command, Hickam AFB, HI 96853; Audrey Meehan, BGS,<br />

and Mark Leney, PhD, Central Identification Laboratory,<br />

Joint POW/MIA Accounting Command, 310 Worchester<br />

Avenue, Hickam Air Force Base, HI 96853; and Suzanne<br />

M. Barritt, MS, and Brion C. Smith, DDS, Armed Forces<br />

DNA Identification Laboratory, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850<br />

Index 172<br />

Cranial Fracture Patterns in Pediatric<br />

“Crushing” Injuries and Preliminary<br />

<strong>Bio</strong>mechanical Modeling Using a Simple<br />

Finite Element Model<br />

Recovery of Human Remains From Vehicles<br />

Submerged in Fresh Water<br />

Excavation and Analysis of Four Homicide<br />

Victims From Shallow Graves in<br />

Bartholomew County, IN<br />

164<br />

200<br />

580<br />

Burned Beyond Recognition: Can the 75<br />

<strong>Bio</strong>logical Profile Be Estimated From<br />

Unprocessed Human Cremated Remains?<br />

Artists Contribution to Facial Reconstruction 377<br />

Seasonal Variation of Scavenging and<br />

Associated Faunal Activity on Pig Carcasses<br />

in South Western Australia<br />

Resolving Extremely Commingled Skeletal<br />

Remains From the Korean War Through<br />

Mitochondrial DNA (mtDNA) Testing<br />

384<br />

407


O’Connell, Linda BM, MSc*, Joy Steven, MSc*, and<br />

Margaret Cox, PhD*, School of Conservation Sciences,<br />

Bournemouth University, Poole, Dorset, United Kingdom<br />

O’Connell, Linda BM, MSc*, School of Conservation<br />

Sciences, Bournemouth University, Poole, Dorset, United<br />

Kingdom<br />

Olmer, Merissa BA*, Department of Anthropology,<br />

University of Maryland, 1111 Woods Hall, College Park,<br />

MD 20742; Sophia Mavroudas, BA*, Department of<br />

Anthropology, New York University, 25 Waverly Place,<br />

New York, NY; Franklin E. Damann, MA, National<br />

Museum of Heath and Medicine, AFIP, PO Box 59685,<br />

Washington, DC 20012-0685; and Christian Crowder,<br />

PhD, Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016<br />

Olson, Gregory O. MSc*, Office of the Fire Marshal, 2284<br />

Nursery Road, Midhurst, Ontario L0L 1X0, CANADA<br />

Osborn, Michelle L. BA*, Department of Geography and<br />

Anthropology, Louisiana State University, Howe-Russel<br />

Building, Baton Rouge, LA 70803; Mary H. Manhein, MA,<br />

Department of Geography and Anthropology, FACES Lab,<br />

Louisiana State University, E105 Howe- Russell Building,<br />

Baton Rouge, LA 70803; and Michael Leitner, PhD,<br />

Department of Geography and Anthropology, Loiusiana<br />

State University, E111 Howe-Russell Building, Baton<br />

Rouge, LA 70803<br />

Ousley, Stephen D. MA, PhD*, Smithsonian Institution,<br />

Department of Anthropology, PO Box 7012, NMNH MRC<br />

138, Washington, DC 20013- 7012; and Joseph T. Hefner,<br />

MA, Department of Anthropology, CA Pound Human<br />

Identification Laboratory, University of Florida,<br />

Gainesville, FL 32605<br />

Ousley, Stephen D. PhD*, Mercyhurst College,<br />

Department of Applied Forensic Anthropology, 501 East<br />

38th Street, Erie, PA 16546; and Ericka N. L’Abbe, PhD*,<br />

PO Box 5023, Pretoria, 0001, SOUTH AFRICA<br />

Ousley, Stephen D. PhD*, Mercyhurst College,<br />

Department of Applied Forensic Anthropology, 501 East<br />

38th Street, Erie, PA 16546; Kyra E. Stull, MS*,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546;<br />

and Kathryn L. Frazee, MS*, 351 West 22nd Street, Floor<br />

2, Erie, PA 16502<br />

Ousley, Stephen D. PhD*, Smithsonian Institution, NMNH<br />

MRC 138, PO Box 37012, Washington, DC 20013-7012;<br />

and Lisa M. Martinez, Department of Anthropology,<br />

Harvard University, 11 Divinity Avenue, Cambridge, MA<br />

02138<br />

Index 173<br />

Sex, Size, and Genetic Mistakes: Identifying<br />

Disorders of Sexual Differentiation in Human<br />

Skeletal Remains<br />

An Evaluation of the Relationship Between<br />

Human Pelvic Size and Shape and the<br />

Distribution, Type, and Severity of Vertebral<br />

Degenerative Disease in Archaeological<br />

Material<br />

Improving Histomorphometric Age<br />

Estimation: An Application of Osteon<br />

Population Density on Kerley’s Original<br />

Sample Data<br />

The Recovery of Human Remains From a<br />

Fatal Fire Setting Using Archeological<br />

Methodology<br />

Test of a Method Regarding Sex Indication of<br />

the Human Hyoid Body<br />

Morphoscopic Traits and the Statistical<br />

Determination of Ancestry<br />

Craniometric Variation in South African and<br />

American Blacks<br />

A Radiographic Database for Forensic<br />

Anthropology<br />

Morphological, Metric, and Morphometric<br />

Variation in the Midface<br />

534<br />

553<br />

95<br />

212<br />

319<br />

419<br />

103<br />

115<br />

367


Ousley, Stephen D. PhD*, Smithsonian Institution, NMNH,<br />

MRC 138, Washington, DC 20013; and Richard L. Jantz,<br />

MA, PhD, University of Tennessee, Department of<br />

Anthropology, 252 South Stadium Hall, Knoxville, TN<br />

37996-0720<br />

Ousley, Stephen D. PhD*, Smithsonian Institution, PO Box<br />

37012, NMNH MRC 138, Washington, DC 20013-7012;<br />

and John E. Byrd, PhD, Joint POW/MIA Accounting,<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Ousley, Stephen D. PhD*, Smithsonian Institution,<br />

Repatriation Office, Department of Anthropology,<br />

Washington, DC; Jessica L. Seebauer, BS, Department of<br />

<strong>Bio</strong>logy, State University of New York-Geneseo, Geneseo,<br />

NY; and Erica B. Jones, MA, Smithsonian Institution,<br />

Repatriation Office, Department of Anthropology,<br />

Washington, DC<br />

Owings, Charity G. BS*, 2475 TAMU, College Station, TX<br />

77845; Nicole C. Larison, BS*, Sam Houston State<br />

University, Department of <strong>Bio</strong>logical Sciences, Box 2116,<br />

Huntsville, TX 77341; and Joan A. Bytheway, PhD, Sam<br />

Houston State University, Box 2296, Huntsville, TX 77341-<br />

2296<br />

Paine, Robert R. PhD*, Physical Anthropology<br />

Department of Sociology, MS1012, Texas Tech University,<br />

Lubbock, TX; Alfredo Coppa, PhD, Universita La Sapienza<br />

di Roma, Roma, and Mancinelli Domenico, PhD,<br />

Universita de L’Aquila, Italy, Roma<br />

Paolello, Josephine M. MS*, and Luis L. Cabo-Pérez, MS,<br />

Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

Park, Dae-Kyoon MD, PhD*, and Jeong-Sik Ko, PhD,<br />

Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, 366-1, Ssangyong-dong,<br />

Chungcheongnam-do, Cheonan-si, 330946, Korea; and<br />

Deog-Im Kim, MA, U-Young Lee, MD, and Seung-Ho Han,<br />

MD, PhD, Department of Anatomy, Catholic Institute for<br />

Applied Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505 Banpo-dong, Sochogu, Seoul,<br />

137701, Korea<br />

Park, Dae-Kyoon MD, PhD*, Department of Anatomy,<br />

College of Medicine Soonchunhyang University, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul, 330946 KOREA;<br />

Deog-Im Kim, PhD, Department of Anatomy, Kwandong<br />

University College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; U-Young Lee, MD, and<br />

Seung-Ho Han, MD, PhD, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Socho-gu, Seoul, 137701, KOREA<br />

Index 174<br />

The Next FORDISC: FORDISC 3 422<br />

New Statistical Approaches to Sex<br />

Estimation: Multi-Stage Discriminant<br />

Function Analysis<br />

Forensic Anthropology, Repatriation, and the<br />

“Mongoloid” Problem<br />

Taphonomic Changes Observed on Skeletal<br />

Remains in Southeast Texas<br />

Forensic Application for Evaluating Cranial<br />

Trauma Cases From the Iron-Age Site of<br />

Alfedena, Italy<br />

Elliptic Fourier Analysis of Vertebral<br />

Outlines for Victim Identification<br />

Morphometrics Using Radiographic Study of<br />

Thyroid Cartilage for Age-Estimation in<br />

Korean Males<br />

Morphometrics of the Korean Thyroid<br />

Cartilage for Determination of Sex<br />

331<br />

537<br />

48<br />

584<br />

283<br />

378<br />

269


Park, Dae-Kyoon MD, PhD*, Department of Anatomy,<br />

College of Medicine, Soonchunhyang University, 366-1,<br />

Ssangyong-dong, Chungcheongnam-do, Cheonan-si,<br />

330946, Korea; Yi-Suk Kim, MD, and Nak-Eun Chung,<br />

MD, PhD, Division of Forensic Medicine National Institute<br />

of Scientific Investigation, 331-1 Sinwol 7 -dong,<br />

Yangcheon-gu, Seoul, 158707 Korea; and Seung-Ho Han,<br />

MD, PhD, Department of Anatomy, Catholic Institute for<br />

Applied Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505 Banpo-dong, Socho-gu, Seoul<br />

137701 Korea<br />

Park, Dae-Kyoon MD, PhD*, Soonchunhyang University,<br />

Department of Anatomy, College of Medicine, 366-1,<br />

Ssangyong-dong, Cheonan-si, Chungcheongnam-do,<br />

Choenan-si, Seoul 330946 Korea, Republic of Korea; U-<br />

Young Lee, MD, National Institute of Scientific<br />

Investigation, Division of Forensic Medicine, 331-1 Sinwol<br />

7-dong, Yangcheon-gu, Seoul, Seoul 158707 Korea,<br />

Republic of Korea; Yi-Suk Kim, MD, Gachon University of<br />

Medicine and Science, Department of Anatomy, 1198<br />

Guwol-dong, Namdong-gu, Incheon-si, Seoul 405760<br />

Korea, Republic of Korea; Deog-Im Kim, BA, and Seung-<br />

Ho Han, MD, PhD, The Catholic University of Korea,<br />

College of Medicine, Catholic Institute for Applied<br />

Anatomy, Department of Anatomy, 505, Banpodong,<br />

Seocho-gu, Seoul, Seoul 137701 Korea, Republic of Korea;<br />

and In-Hyuk Chung, MD, PhD, Yonsei University College<br />

of Medicine, Department of Anatomy, 134, Sinchon-dong,<br />

Seodaemun-gu, Seoul, Seoul 120749 Korea, Republic of<br />

Korea<br />

Park, Dae-Kyoon PhD*, Department of Anatomy, College<br />

of Medicine, Soonchunhyang University, Department of<br />

Anatomy; U-Young Lee, MD, Department of Anatomy,<br />

College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Socho-gu, Seoul, 137701, KOREA; Yi-<br />

Suk Kim, PhD, Department of Anatomy, Gachon University<br />

of Medicine & Science, 1198 Kuwol-dong, Namdong-gu,<br />

Incheon, 405760, KOREA; Deog-Im Kim, PhD,<br />

Department of Anatomy, Kwandong University College of<br />

Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

Seung-Ho Han, PhD, Department of Anatomy, College of<br />

Medicine, The Catholic University of Korea, 505, Banpodong,<br />

Seocho-gu, Seoul, 137701, KOREA; and In-Hyuk<br />

Chung, PhD, Department of Anatomy, Yonsei University<br />

College of Medicine, 134 Sinchon-dong, Seodaemoon-gu,<br />

Seoul, 120752, KOREA<br />

Parks, Bruce O. MD*, Eric Peters, MD, Cynthia<br />

Porterfield, DO, David Winston, MD, and Diane Karluk,<br />

MD, Pima County Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714; Sam Keim, MD,<br />

University of Arizona Department of Emergency Medicine,<br />

University of Arizona College of Medicine, Tucson, AZ;<br />

Michael Kent, MD, Emergency Department, Northwest<br />

Hospital, Tucson, AZ<br />

Index 175<br />

Results of Forensic Anthropological<br />

Examination in Daegu Subway Disaster<br />

(2003, Korea)<br />

Sex Determination of Koreans Through<br />

Cervical Vertebrae<br />

Sex-Determination of Koreans Using Metric<br />

Analysis of Vertebrae<br />

Deaths of Undocumented Immigrants in<br />

Southern Arizona<br />

362<br />

301<br />

160<br />

493


Parks, Connie L. BA*, 8802 Featherhill Road, Austin, TX<br />

78737; Elizabeth T. Brandt, BA, 232 Evans Liberal Arts,<br />

Anthropology Department 601 University Drive, San<br />

Marcos, TX 78666; Michelle D. Hamilton, PhD, Texas<br />

State University-San Marcos, Department of Anthropology,<br />

601 University Drive, Austin, TX 78666; Jennifer Pechal,<br />

MS, TAMU 2475, Texas A&M University, College Station,<br />

TX 77843- 2475; and Jeffery K. Tomberlin, PhD,<br />

Department of Entomology, TAMU 2475, College Station,<br />

TX 77843-2475<br />

Parr, Nicolette M. MS*, 1305 Northeast 6th Terrace,<br />

Gainesville, Florida ; Katherine Skorpinski, MA, 1626<br />

Southwest 14th Street, Aartment 16, Gainesville, FL<br />

32608; Traci L. Van Deest, MA, 121 Southeast 16th<br />

Avenue, Apartment J201, Gainesville, FL 32601; and<br />

Laurel Freas, MA, 3425 Southwest 2nd Avenue, #246,<br />

Gainesville, FL 32607<br />

Parr, Nicolette M. MS*, Department of Anthropology,<br />

University of Florida, Gainesville, FL 32611<br />

Parr, Nicolette M. MS*, University of Florida, CA Pound<br />

Human Identification Laboratory, 1305 NE 6th Terrace,<br />

Gainesville, FL 32601; and Joseph T. Hefner, PhD,<br />

Statistical Research, Inc., 6099 East Speedway Boulevard,<br />

Tucson, AZ 85712<br />

Parsons, Thomas PhD*, Adnan Rizvić, BSc, Andreas<br />

Kleise, LLM; Adam Boys, MA, and Asta Zinbo, MA;<br />

Forensic Sciences International Commission on Missing<br />

Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-<br />

HERZEGOVINA; Mark Skinner, PhD, Simon Fraser<br />

University, Department of Archeology, Burnaby, BC, V5A<br />

1S6, CANADA; and Kathryne Bomberger, MA, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

Parsons, Thomas PhD*, Andreas Kleiser LLM, Adnan<br />

Rizvić BSc, and Kathryne Bomberger MA, Forensic<br />

Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIAHERZEGOVINA<br />

Passalacqua, Nicholas V. BA*, Mercyhurst College,<br />

Department Applied Forensic Sciences, Zurn 119A, 501<br />

East 38th Street, Erie, PA 16546<br />

Passalacqua, Nicholas V. MS*, 1559 Mount Vernon, East<br />

Lansing, MI 48823; Jennifer M. Vollner, MS, 328 Baker<br />

Hall, East Lansing, MI 48824; Dominique Semeraro, MS,<br />

Office of State <strong>Medical</strong> Examiners, 48 Orms Street,<br />

Providence, RI 02904; and Christopher W. Rainwater, MS,<br />

Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New<br />

York, NY 10016<br />

Index 176<br />

A Study of the Human Decomposition<br />

Sequence in Central Texas<br />

Case Studies and Patterns of Postmortem<br />

Dismemberment<br />

An Assessment of Non-Metric Traits of the<br />

Mandible Used in the Determination of<br />

Ancestry<br />

A Statistical Assessment of Cranial and<br />

Mandibular Morphoscopic Traits Used in the<br />

Determination of Ancestry<br />

The International Commission on Missing<br />

Persons and an Integrated, Multidisciplinary<br />

Forensic Approach to Identification of the<br />

Missing From the 1995 Srebrenica, Bosnia<br />

Mass Execution Event<br />

Lessons and Challenges From Srebrenica: A<br />

Summary and Future Perspectives<br />

Forensic Age-at-Death Estimation From the<br />

European American Male Sacrum: A New<br />

Component System<br />

A Pilot Study in the Forensic Potential of the<br />

Health Index<br />

204<br />

68<br />

368<br />

207<br />

137<br />

144<br />

304<br />

25


Passalacqua, Nicholas V. MS*, 3518 Hagadorn Road,<br />

Okemos, MI 48864-4200; Todd W. Fenton, PhD, Michigan<br />

State University, Department of Anthropology, 354 Baker<br />

Hall, East Lansing, MI 48824; Brian J. Powell, BS, and<br />

Timothy G. Baumer, BS, Orthopaedic <strong>Bio</strong>mechanics<br />

Laboratories, Michigan State University, East Lansing, MI<br />

48824; William N. Newberry, MS, Exponent Failure<br />

Analysis Associates, Inc., Farmington Hills, MI 48331; and<br />

Roger C. Haut, PhD, A407 East Fee Hall, Orthopaedic<br />

<strong>Bio</strong>mechanics, Michigan State University, East Lansing,<br />

MI 48824<br />

Passalacqua, Nicholas Vere MS*, 3518 Hagadorn Road,<br />

Okemos, MI 48864<br />

Pastor, Robert F. PhD*, The Calvin Wells Laboratory, and<br />

Jacinta N. Daines, BSc, Department of Archaeological<br />

Sciences, University of Bradford, West Yorkshire BD7<br />

1DP, Bradford, United Kingdom<br />

Pastor, Robert F. PhD*, University of Bradford, <strong>Bio</strong>logical<br />

Anthropology Research Centre, Department of<br />

Archaeological Sciences, Bradford, West Yorkshire BD7<br />

1DP, United Kingdom; and Angela J. Reynard, MSc*,<br />

Bureau of Forensic Science, Ltd, Temple Chambers, 3-7<br />

Temple Avenue, London, EC4Y OHP, United Kingdom<br />

Pastor, Robert F. PhD*, University of Bradford,<br />

Department of Archaeological Sciences, Bradford, West<br />

Yorkshire BD7 1DP, United Kingdom<br />

Patiño*, Andres nd Edixon Quinones Reyes, c/o ALAF and<br />

EAAF, 10 Jay Street #502, Brooklyn, NY 11201<br />

Patton, Susan B. MNSc*, Steven A. Symes, PhD, O’Brian<br />

C. Smith, MD, T.A. Campbell, MD, and Cynthia D.<br />

Gardner, MD, Department of Forensic Pathology,<br />

University of Tennessee, Memphis, 1060 Madison Avenue,<br />

Memphis, TN<br />

Peccerelli, Fredy c/o ALAF and EAAF, 10 Jay Street,<br />

#502, Brooklyn, NY 11201; José Samuel Suasnavar<br />

Bolaños, Lourdes Penados, and Mario Vasquez, c/o ALAF<br />

and EAAF, 10 Jay St #502, Brooklyn, NY 11201<br />

Penados, Lourdes A. MS*, CAFCA, 2a. calle 6-77 zona 1,<br />

Guatemala, 01001, Guatemala; and Tal L. Simmons, PhD,<br />

University of Central Lancashire, Department of Forensic<br />

and Investigative Sciences, Maudland Building 114,<br />

Preston, Lancashire PR12HE, United Kingdom<br />

Perry, Paula A. BA*, Bournemouth University, Talbot<br />

Campus, Poole, Dorset BH12 5BF, United Kingdom<br />

Pharr, Lauren R. MA*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography &<br />

Anthropology, Baton Rouge, LA 70803; and Wayne L.<br />

Kramer, PhD, Louisiana State University, Department of<br />

Entomology, 404 Life Science Building, Baton Rouge, LA<br />

70803<br />

Index 177<br />

A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns – Part 2:<br />

Fracture Quantification and Further<br />

Investigations on Infant Cranial Bone<br />

Fracture Properties<br />

The Utility of the Samworth and Gowland<br />

Age-at-Death “Look-Up” Tables in Forensic<br />

Anthropology<br />

The Analysis of Ancestry From Skeletal<br />

Remains and the Treatment of the Race<br />

Concept by British Forensic Scientists<br />

Evaluation of the Relationship Between Fifth<br />

Metatarsal Length and Foot Length/ Shoe<br />

Size: A Possible Aid in Human Identification<br />

Sexual Dimorphism in Vertebral Dimensions<br />

at the T12/L1 Junction<br />

82<br />

271<br />

592<br />

394<br />

430<br />

Forensic Anthropology in Colombia 509<br />

Diagnostic Imaging of Child Abuse: A<br />

Comparison of Radiographic Views to Detect<br />

Rib Fracture<br />

608<br />

Forensic Anthropology in Guatemala 508<br />

Forensic Anthropology Investigation of<br />

Human Rights Violations in the Ixil and<br />

Ixcan areas of Guatemala<br />

347<br />

Human Decomposition in the Detroit River 413<br />

Anaerobic and Aerobic Decomposition in 55gallon<br />

Oil Drums: A Two-Year Study on the<br />

Deliberate Concealment of Remains<br />

61


Pinheiro*, João Instituto Nacional de Medicina Legal,<br />

Instit Nacional Medicina Legal, Delegação do Centro,<br />

Largo da Sé Nova, Coimbra, 0 3000, PORTUGAL;<br />

Andersen Lyrio da Silva, and Eugenia Cunha, PhD,<br />

Departamento De Antropologia, Universidade de Coimbra,<br />

Coimbra, 3000-056, PORTUGAL; and Steven A. Symes,<br />

PhD, Mercyhurst Archaeological Institute, Mercyhurst<br />

College, 501 East 38th, Erie, PA 16546-0001<br />

Pinheiro, Joao MD, MS*, Instituto Nacional de Medicina<br />

Legal, Largo da Sé Nova, Coimbra, 3000-213, Portugal;<br />

Eugénia Cunha, PhD, Departamento De Antropologia,<br />

Universidade de Coimbra, Coimbra, 3000-056, Portugal;<br />

Cristina Cattaneo, PhD, Università degli Studi di Milano,<br />

Laboratorio di Antropologia e Odontologia, Università<br />

degli Studi di Milano, Milano, 3330, Italy; and Francisco<br />

Corte Real, PhD, Instituto Nacional de Medicina Legal,<br />

Largo da Sé Nova, Coimbra, 3000-213, Portugal<br />

Pinheiro, João MD, MSc*, Instituto Nacional de Medicina<br />

Legal, Instit Nacional Medicina Legal, Delegação do<br />

Centro, Largo da Sé Nova, Coimbra, 3000, PORTUGAL;<br />

Eugenia Cunha, PhD, Departamento De Antropologia,<br />

Universidade de Coimbra, Coimbra, 3000-056,<br />

PORTUGAL; Hugo Pissarra, DVM, Faculdade de<br />

Medicina Veterinária da Univsersidade Técnica da Lisboa,<br />

Av. da Univsersidade Técnica da Lisboa, Lisbon, AL,<br />

PORTUGAL; and Francisco Corte Real, PhD, Insituto<br />

Nacional de Medicina Legal, Largo da Sé Nova, 3000,<br />

Coimbra, AL, PORTUGAL<br />

Pokines, James T. PhD*, Greg E. Berg, MA, Bradley J.<br />

Adams, MA, Ann W. Bunch, PhD, John E. Byrd, PhD, and<br />

Thomas D. Holland, PhD, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam Air Force<br />

Base, Honolulu, HI<br />

Pokines, James T. PhD*, Kelly L. Burke, MSc, and<br />

Josephine M. Paolello, MS, JPAC/CIL, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Anthropology Department, Fayetteville, AR 72701<br />

Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701<br />

Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; Alan G. Robinson, MSc,<br />

Guatemalan Forensic Anthropology Foundation,<br />

Guatemala City, Guatemala City, 01002, Central America;<br />

Kate Spradley, MA, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996; and O’Brian C. Smith,<br />

MD, Regional Forensic Center, 1060 Madison, Memphis,<br />

TN 38104<br />

Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; O’Brian C. Smith, MD, 381<br />

Cherry Hollow, Cordova, TN 38018; and Kate M.<br />

Spradley, MA, University of Tennessee, 250 South Stadium<br />

Drive, Knoxville, TN 37996<br />

Index 178<br />

Cranial Bone Trauma: Misleading Injuries 279<br />

Forensic Anthropologist and Forensic<br />

Pathologist: Why Work Together? Some<br />

Illustrative Cases of Homicide<br />

Eaten or Attacked By His Own Dogs? From<br />

the Crime Scene to a Multidisciplinary<br />

Approach<br />

How Not to Stage a Burial: Lessons From<br />

North Korea<br />

Patterns of Trauma on the Skeletal Remains<br />

of U.S. Soldiers in the Battle of East Chosin,<br />

North Korea<br />

Burned Human Remains: Myths in Forensic<br />

Science<br />

Utilizing Taphonomy and Context to<br />

Distinguish Perimortem from Postmortem<br />

Trauma in Fire Deaths<br />

Burned Beyond Recognition: Attempts to<br />

Destroy Evidence of Death<br />

Bevel, Bevel in my Bone, Be it Bullet or Be it<br />

Stone? Misidentification of Blunt Force<br />

Trauma as Ballistic Entrance Wounds in<br />

Burned Cranial Bone<br />

429<br />

169<br />

600<br />

84<br />

351<br />

459<br />

459<br />

382


Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR 72701; O’Brian C. Smith, MD,<br />

Regional Forensic Center, University of Tennessee, 1060<br />

Madison Avenue, Memphis, TN 38104<br />

Pope, Elayne J. MA*, University of Arkansas, 330 Old<br />

Main, Fayetteville, AR; and O’ Brian C. Smith, MD,<br />

Regional Forensic Center of the University of Tennessee,<br />

1060 Madison Avenue, Memphis, TN<br />

Pope, Elayne J. MA*, University of Arkansas,<br />

Anthropology Department, 330 Old Main, Fayetteville, AR<br />

72701<br />

Pope, Elayne J. MA*, University of Tennessee, 252 South<br />

Stadium Hall, Knoxville, TN; Steven A. Symes, PhD, and<br />

O’Brian C. Smith, MD, Regional Forensic Center, 1060<br />

Madison Avenue, Memphis, TN<br />

Pope, Elayne J. MA, Trey Batey, MA*, and Jerome C.<br />

Rose, PhD, University of Arkansas, 330 Old Main,<br />

Fayetteville, AR 72701<br />

Pope, Elayne J. PhD*, Anthropology Department,<br />

University of West Florida, Anthropology Building 13,<br />

11000 University Parkway, Pensacola, FL 32514<br />

Pope, Elayne J. PhD*, University of West Florida,<br />

Anthropology Department, 11000 University Parkway,<br />

Building 13, Pensacola, FL 72701<br />

Pope, Elayne J. PhD, Heidi S. Davis, BA, BS*, and Ashley<br />

E. Shidner, BA, University of West Florida, Anthropology<br />

Department,11000 University Parkway, Building 13,<br />

Pensacola, FL 32514<br />

Pope, Melissa A. BA*, University of South Florida,<br />

Anthropology Department, 4202 East Fowler Avenue,<br />

Tampa, Florida 33613; and Liotta N. Dowdy, BA*,<br />

University of South Florida, 3115 Palmira Street, Tampa,<br />

Florida 33629<br />

Pope, Melissa A. BA*, University of South Florida,<br />

Department of Anthropology, 4202 East Fowler Avenue,<br />

Tampa, FL 33612; and Erin H. Kimmerle, PhD, University<br />

of South Florida, Department of Anthropology, 4202 East<br />

Fowler, Soc 107, Tampa, FL 33820<br />

Pope, Melissa A. MA*, University of South Florida,<br />

Anthropology Department, 4202 East Fowler Avenue,<br />

Tampa, FL 33620<br />

Potter, Wendy E. BA, MS*, Department of Anthropology,<br />

MSC01-1040, 1 University of New Mexico, Albuquerque,<br />

NM 87131<br />

Potter, Wendy E. BA, MS*, Department of Anthropology,<br />

MSC01-1040, 1 University of New Mexico, Albuquerque,<br />

NM 87131-0001; and Russell T. Alexander, MD, Office of<br />

the <strong>Medical</strong> Investigator, MSC11-6030, 1 University of<br />

New Mexico, Albuquerque, NM 87131-0001<br />

Index 179<br />

Burning Observations of Decomposed<br />

Human Remains: Obscuring the Postmortem<br />

Interval<br />

Features of Preexisting Trauma and Burned<br />

Cranial Bone<br />

Beyond the Fire: Taphonomic Variables of<br />

Burned Human Remains<br />

Burning Observations of the Head: An<br />

Experimental Model<br />

Non-Destructive Microscopic Differentiation<br />

of Human From Non-Human Fragmentary<br />

Burned Bone<br />

Fatal Fire Modeling: Replicating<br />

Environmental and Human Factors<br />

Associated With the Recovery and Analysis<br />

of Burned Human Remains<br />

From Scene to Seen: Post-Fire Taphonomic<br />

Changes Between the In Situ Context and the<br />

Medicolegal Examination of Burned Bodies<br />

Differentiating Peri- and Postmortem<br />

Fractures in Burned Postcranial Remains<br />

Radiography as a Tool for Contemporary<br />

Anthropological Research<br />

Decomposition Patterns in Indoor<br />

Environments: A Comparative Analysis of<br />

Rodriguez and Bass’s Stages<br />

Decomposition Patterns of Human Remains<br />

Within Enclosed Environments: A<br />

Comparative Analysis of the Midwest and<br />

Southeast<br />

The Potential Diagnostic Value of Scanning<br />

Electron Microscopy in the Differential<br />

Diagnosis of Bone Lesions: A Pilot Study<br />

Nail or Bullet? A Comparison of Typical<br />

Cranial Gunshot Wounds to a Defect<br />

Resulting From a Nail Gun<br />

511<br />

550<br />

229<br />

586<br />

380<br />

77<br />

213<br />

78<br />

191<br />

88<br />

59<br />

317<br />

395


Price, Alan MA*, Associate Director, Southern Institute of<br />

Forensic Science, Regional Service Office, 7224 West<br />

Canberra Street Drive, Greeley, CO; and Michael Britt,<br />

BS, Supervisor of Investigations, District 20, <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

Prince, Debra A. BS, MA* and Lyle W. Konigsberg, PhD,<br />

University of Tennessee, Knoxville, 250 South Stadium<br />

Hall, Department of Anthropology, Knoxville, TN 37996-<br />

0760<br />

Prodhan, Rika BS*, 547 Cedar Branch Road, League City,<br />

TX 77573; Douglas H. Ubelaker, PhD, Department of<br />

Anthropology, MRC 112, National Museum of Natural<br />

History, Smithsonian Institution, Washington, DC 20560;<br />

and Debra A. Prince, PhD, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Prutsman-Pfeiffer, Jennifer J. MA*, University of<br />

Rochester <strong>Medical</strong> Center, Autopsy and Neuropathology,<br />

601 Elmwood Avenue, Box 626, Rochester, NY 14642; and<br />

Peter J. Bush, BS, South Campus Instrument Center,<br />

School of Dental Medicine, State University of New York at<br />

Buffalo, Buffalo, NY 14214<br />

Prutsman-Pfeiffer, Jennifer J. MA*, University of<br />

Rochester, University of Rochester <strong>Medical</strong> Center,<br />

Autopsy & Neuropathology, 601 Elmwood, Box 626,<br />

Rochester, NY 14642; and Thomas H. Darrah, MS,<br />

University of Rochester, 227 Hutchison Hall, University of<br />

Rochester, Department Earth & Environmental Sciences,<br />

Rochester, NY 14627<br />

Quintyn, Conrad Bezekiah PhD*, Bloomsburg University,<br />

Department of Anthropology, 400 East 2nd Street,<br />

Bloomsburg, PA 17815<br />

Rainwater, Christopher W. MS*, and Christian Crowder,<br />

PhD, Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016; and Jeannette S. Fridie,<br />

MA, 520 First Avenue, Forensic Anthropology Unit, New<br />

York, NY 10016<br />

Randolph-Quinney, Patrick PhD*, Centre for Anatomy &<br />

Human Identification, College of Life Sciences, University<br />

of Dundee, Dundee, DD1 5EH, UNITED KINGDOM<br />

Randolph-Quinney, Patrick PhD*, Centre for Anatomy and<br />

Human Identification, College of Life Sciences, University<br />

of Dundee, Dundee, DD1 5EH, UNITED KINGDOM<br />

Rankin, David R. MA*, and C.E. Moore, PhD, U.S. Army<br />

Central Identification Laboratory, Hawaii, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530<br />

Rawlings, Kristen J. MA*, University of Wyoming,<br />

Department of Criminal Justice, A&S 223, PO Box 3197,<br />

Laramie, WY 82071<br />

Index 180<br />

Fire Scene Management Strategies for the<br />

Recovery of Human Remains From Severe<br />

Vehicle Fires<br />

New Formulae for Estimating Age in the<br />

Balkans Utilizing Lamendin’s Dental<br />

Technique<br />

Evaluation of Three Methods of Age<br />

Estimation From Human Skeletal Remains<br />

(Suchey-Brooks, Lamendin, and Two-Step<br />

Strategy)<br />

Trace Element Analysis of Human Bone<br />

Using Portable XRF<br />

Comparison of Portable X-ray Florescence<br />

and Inductively Coupled Plasma Mass<br />

Spectroscopy in the Measurement of Lead in<br />

Human Bone<br />

Admixture and the Growing List of Racial<br />

Categories: Clarity or Confusion for Law<br />

Enforcement (and the Public)<br />

Microscopic Analysis of Sharp Force Trauma<br />

From Knives: A Validation Study<br />

Towards a Standardization of Burnt Bone<br />

Analysis: The Use of Micro-Computed<br />

Tomography and 3-Dimensional Imaging to<br />

Assess Morphological Change<br />

Forensic Characteristics of Hand Shape:<br />

Analysis of Individuation Potential and<br />

Sexual Dimorphism Using Geometric<br />

Morphometrics<br />

Playing the “Race” Card Without a Complete<br />

Deck: The Addition of Missing Asian Data to<br />

Aid Racial Determinations in Forensic<br />

Casework<br />

Racial Variation in Palate Form and the<br />

Shape of the Transverse Palatine Suture<br />

546<br />

477<br />

371<br />

353<br />

251<br />

263<br />

32<br />

78<br />

133<br />

486<br />

488


Raymond, David MS*, Greg Crawford, MS, Chris Van Ee,<br />

PhD; and Cynthia Bir, PhD, Wayne State University, 818<br />

West Hancock, Detroit, MI 48201<br />

Rea, Christine N. MA*, Department of Anthropology, Kent<br />

State University, 228 Lowry Hall, Kent, OH; and H.O.<br />

Back, Department of Physics, Virginia Polytechnic<br />

Institute and State University, Robeson Hall, Blacksburg,<br />

VA<br />

Reeves, Keri MS*, and Jill Haslasm, MS, University of<br />

New Haven, 300 Orange Avenue, West Haven, CT 06516;<br />

Shannon Butler-Williams, BS, University of California,<br />

Davis, Department of Anthropology, 1 Shields Avenue,<br />

Davis, CA 95616; and Brandi J. Schmitt, BS, MS*,<br />

University of California, Davis, School of Medicine,<br />

Anatomical Services Division, Davis, CA 95616<br />

Reeves, Nicole M. BA*, Texas State University-San<br />

Marcos, Anthropology Department, 601 University Drive,<br />

San Marcos, TX 78666<br />

Regan, Laura A. MS*, and Anthony B. Falsetti, PhD, C.A.<br />

Pound Human Identification Lab, Department of<br />

Anthropology, University of Florida, PO Box 112545,<br />

Building 114, Gainesville, FL 32611; and Andrew Tyrrell,<br />

PhD, Joint POW/MIA Accounting Command-CIL, 310<br />

Worchester Avenue, Hickam Air Force Base, HI 96853<br />

Regan, Laura A. PhD*, Armed Forced <strong>Medical</strong> Examiner<br />

System, 1413 Research Boulevard, Building 102, Rockville,<br />

MD 20850; Anthony B. Falsetti, PhD, C.A. Pound Human<br />

Identification Lab, University of Florida, PO Box 103615,<br />

1376 Mowry Road, Gainesville, FL 32601; and Andrew<br />

Tyrrell, PhD, Joint POW/MIA Accounting Command-<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Reineke, Robin MA*, The University of Arizona, School of<br />

Anthropology, 1009 East South Campus Drive, Tucson, AZ<br />

85721; and Bruce E. Anderson, PhD, Pima County Office<br />

of the <strong>Medical</strong> Examiner, 2825 East District Street,<br />

Tucson, AZ 85714<br />

Renke, Sophia G.D. MA*, Faculty of Law, University of<br />

Alberta, Edmonton, AB T6G 2H5, CANADA; Mary H.<br />

Manhein, MA, Department of Geography & Anthropology,<br />

Louisiana State University, Baton Rouge, LA 70803; and<br />

Sibel Bargu-Ates, PhD, Department of Oceanography and<br />

Coastal Sciences, 1235 Energy, Coast and Environment,<br />

Louisiana State University, Baton Rouge, LA 70803<br />

Rennick, Stephanie L. BS*, Michigan State University,<br />

Forensic Science Program, School of Criminal Justice, 560<br />

Baker Hall, East Lansing, MI 48824; Todd W. Fenton,<br />

PhD, Michigan State University, Department of<br />

Anthropology and Forensic Science Program, Baker Hall,<br />

East Lansing, MI 48824; David R. Foran, PhD, Michigan<br />

State University, Forensic Science Program, School of<br />

Criminal Justice and Department of Zoology, 560 Baker<br />

Hall, East Lansing, MI 48824<br />

Index 181<br />

<strong>Bio</strong>mechanics of Blunt Ballistic Impacts to<br />

the Head and Fracture Specific Injury Criteria<br />

Development<br />

Determining Postmortem Interval: A<br />

Preliminary Examination of Postmortem<br />

Thorium, Actinium, and Radium Isotopes in<br />

Bone<br />

An Assessment of Tissue Depth<br />

Measurement Tables Used for Facial<br />

Reconstruction/Reproduction<br />

276<br />

599<br />

425<br />

Taphonomic Effects of Vulture Scavenging 234<br />

Isotopic Determination of Region of Origin in<br />

Modern Peoples: Applications for<br />

Identification of U.S. War-Dead From the<br />

Vietnam Conflict<br />

Isotopic Determination of Region of Origin in<br />

Modern Peoples: Applications for<br />

Identification of U.S. War-Dead From the<br />

Vietnam Conflict II<br />

Sociocultural Factors in the Identification of<br />

Undocumented Migrants<br />

Using Algae to Estimate Postmortem<br />

Submersion Interval in a Louisiana Bayou<br />

The Effects of Skeletal Preparation<br />

Techniques on DNA From Human and<br />

Nonhuman Bone<br />

379<br />

327<br />

99<br />

59<br />

434


Reveal, Malina L. MSc*, PO Box 4493, Chico, CA 95927;<br />

and Ian Hanson, MSc, Bournemouth University, Room<br />

C136, Christchurch House, Talbott Campus, Fern Barrow,<br />

Poole, BH12 5BB, UNITED KINGDOM<br />

Reveco*, Isabel Association for Latin American Forensic<br />

Anthropology, c/o EAAF, 10 Jay Street #502, Brooklyn, NY<br />

11201<br />

Rezos, Mary M. BA*, 12644 Victoria Place Circle,<br />

Apartment 7216, Orlando, FL 32828; John J. Schultz,<br />

PhD, University of Central Florida, Department of<br />

Anthropology, 4000 Central Florida Boulevard, Orlando,<br />

FL 32816; and Ronald A. Murdock, MFS, and Stephen A.<br />

Smith, BS, Orange County Sheriff’s Office, 2500 W<br />

Colonial Drive, Orlando, FL 32804<br />

Rhode, Matthew PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam, AFB, HI 96853<br />

Rhode, Matthew PhD*, JPAC-CIL, 310 Worchester<br />

Avenue, Building 45, Hickam, AFB, HI 96853<br />

Ridgely, Ariana P. BA*, Department of Anthropology, New<br />

York University, 25 Waverly Place, New York, NY 10003<br />

Rizvic, Adnan MA*; Azra Aljić, MSc; Djordje Badza, BsC;<br />

Damir Bolić, BsC; Goran Jotanović, BsC; Muris Pucić,<br />

BsC; Amir Mandzuka, PhD; Zoran Cvijanović, PhD; Edin<br />

Jasaragić, BA, Zlatan Bajunović, Cheryl Katzmarzyk, MA,<br />

Kerry-Ann Martin, MSc, Sharna Daley, MSc, Reneé<br />

Kosalka, MA, René Huel, BA, Tony Donlon, BSc, and<br />

Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

Rodriguez III, William C. PhD*, Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102,<br />

Rockville, MD 20850<br />

Rodriguez III, William C. PhD*, Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102,<br />

Rockville, MD 20850; Tasha Z. Greenburg, MD,<br />

University of Texas Southwestern <strong>Medical</strong> Center, 5323<br />

Harry Hines Boulevard, Dallas, TX 7530; and David R.<br />

Fowler, MD, Office of the Chief <strong>Medical</strong> Examiner, 111<br />

Penn Street, Baltimore, MD 21201<br />

Rodriguez III, William C. PhD*, Armed Forces <strong>Medical</strong><br />

Examiner’s Office, 1413 Research Boulevard, Building<br />

102, Rockville, MD 20850<br />

Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, 1413 Research Boulevard,<br />

Building 102, Rockville, MD 20850<br />

Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, 1413 Research Boulevard,<br />

Building 102, Rockville, MD 21771<br />

Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, 16465 Old Frederick Road,<br />

Building 102, Rockville, MD 20850<br />

Index 182<br />

Protocol for Objective Evidentiary<br />

Photography in Forensic Anthropology<br />

The Development of Forensic Anthropology<br />

in Chile<br />

Controlled Research Utilizing Geophysical<br />

Technologies in the Search for Buried<br />

Firearms and Miscellaneous Weapons<br />

Skeletal Trauma Patterns in a Vietnam-Era<br />

Aircraft Loss: Part I - Lower Extremities<br />

Sex Discrimination Using Patellar<br />

Measurements: Method and Validation Study<br />

Microscopic Characteristics of Hacking<br />

Trauma on Bone: The Potential for<br />

Interpretation and Identification<br />

An Innovative Software Solution for Large<br />

Scale Forensic Identification Efforts<br />

Living With Corpses: Case Report of<br />

Psychological Impairment and Neglect,<br />

Leading to the Death of Two Women<br />

Infanticide and Unclear Law: The Death of<br />

Four Infants<br />

Mama Mia! Murder and Disposal of a Corpse<br />

in a Pizza Oven<br />

The Impact of High Speed-High Resolution<br />

Three Dimensional CT Scans on Forensic<br />

Anthropology<br />

Methods and Techniques for Sorting<br />

Commingled Remains: Anthropological and<br />

Physical Attributes<br />

Odd Man Out: Separation and Identification<br />

of Terrorist Remains in Suicidal Bombings<br />

70<br />

507<br />

223<br />

7<br />

19<br />

298<br />

142<br />

149<br />

34<br />

79<br />

403<br />

440<br />

398


Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, Armed Forces Institute of<br />

Pathology, 1413 Research Boulevard. Building 102,<br />

Rockville, MD<br />

Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, Armed Forces Institute of<br />

Pathology, 1413 Research Boulevard. Building 102,<br />

Rockville, MD<br />

Rodriguez III, William C. PhD*, Office of the Armed<br />

Forces <strong>Medical</strong> Examiner, Armed Forces Institute of<br />

Pathology, Washington, DC<br />

Ross, Ann H. PhD*, and Anthony B. Falsetti, PhD, C.A.<br />

Pound Human Identification Laboratory, University of<br />

Florida, Gainesville, FL; Dennis E. Slice, PhD,<br />

Department of Ecology & Evolution, State University of<br />

New York, Stony Brook, NY; and Douglas H. Ubelaker,<br />

PhD, Department of Anthropology, NMNH, Smithsonian<br />

Institution, Washington, DC<br />

Ross, Ann H. PhD*, C.A. Pound Human Identification<br />

Laboratory, P.O. Box 112545, Gainesville, FL; and Bruce<br />

Broce, MA*, Comision de la Verdad de Panama, Edificio<br />

No. 37, Panama<br />

Ross, Ann H. PhD*, Department of Sociology and<br />

Anthropology, North Carolina State University, Campus<br />

Box 8107, Raleigh, NC 27695- 8107; Loreto S. Silva,<br />

Director of Anthropology, Comision de la Verdad de<br />

Panama, Balboa, Republic of Panama; Kathryn M.<br />

Jemmott, MA, C.A. Pound Human ID Laboratory,<br />

University of Florida, Gainesville, FL 32611; Lazaro M.<br />

Cotes, Comision de la Verdad de Panama, Balboa,<br />

Republic of Panama<br />

Ross, Ann H. PhD*, North Carolina State University,<br />

Department of Sociology & Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107; and Erin H. Kimmerle,<br />

PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

Ross, Ann H. PhD*, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695- 8107; Dennis E. Slice, PhD,<br />

Wake Forest University, School of Medicine, Department<br />

of <strong>Bio</strong>medical Engineering, Division of Radiologic<br />

Sciences, Winston-Salem, NC 27157; and José V. Pachar,<br />

MD, Morgue Judicial, Instituto de Medicina Legal,<br />

Panama-Ancon, Panama<br />

Index 183<br />

The Pits: Recovery and Examination of<br />

Skeletonized Remains From a Concrete<br />

Filled-Fire Pit<br />

Accident, Suicide, or Homicide: A Case<br />

Study Involving the Investigation of<br />

Skeletonized and Bear-Scavenged Remains<br />

Attack on the Pentagon: The Role of Forensic<br />

Anthropology in the Examination and<br />

Identification of Victims and Remains of the<br />

‘9/11’ Terrorist Attack<br />

Population-Specific Identification Criteria for<br />

Cuban Americans in South Florida<br />

In Search of Floyd Britton: Investigations of<br />

Human Rights Issues on the Island of Coiba,<br />

Republic of Panama<br />

Preservation in Paradise I: El Marañon<br />

Cemetery, Isla de Coiba, Republic of Panama<br />

Introducing COFFA: An International<br />

Consortium of Forensic Anthropology<br />

Programs<br />

Forensic Identifications and the Complexity<br />

of Determining <strong>Bio</strong>logical Affinities of<br />

“Hispanic” Crania<br />

601<br />

606<br />

572<br />

594<br />

565<br />

479<br />

8<br />

420


Ross, Ann H. PhD*, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695- 8107; Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, SOC 107, Tampa, FL 33620-<br />

8100; Dennis E. Slice, PhD, Institute for Anthropology,<br />

University of Vienna, Vienna, Austria; and Anthony B.<br />

Falsetti, PhD, University of Florida, CA Pound Human ID<br />

Laboratory, Department of Anthropology, Gainesville, FL<br />

32611<br />

Ross, Ann H. PhD*, North Carolina State University,<br />

Department of Sociology and Anthropology, CB 8107,<br />

Raleigh, NC 27695-8107; and Shanna Williams, MA,<br />

University of Florida, C.A. Pound Human Identification<br />

Laboratory, Gainesville, FL 32611<br />

Ross, Ann H. PhD*, North Carolina State University,<br />

Sociology and Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107; and Shanna E. Williams, PhD, University<br />

of Florida, Department of Anatomy, PO Box 100235,<br />

Gainesville, FL 32610-0235<br />

Ross, Ann H. PhD*, North Carolina State University,<br />

Sociology and Anthropology, Campus Box 8107, Raleigh,<br />

NC 27695-8107; Douglas H. Ubelaker, PhD, Department<br />

of Anthropology, NMNH - MRC 112, Smithsonian<br />

Institution, Washington, DC 20560; and Erin H. Kimmerle,<br />

PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL<br />

33820<br />

Rougé-Maillart, Clotilde G. MD*, Nathalie C. Jousset,<br />

MD, Arnaud P. Gaudin, MD, and Michel P. Penneau, MD,<br />

PhD, Service de Médecine Légale, Centre Hospitalier<br />

Universitaire - 4 rue Larrey, Angers, 49100 Cedex 01,<br />

France<br />

Rougé-Maillart, Clotilde MD*, and Nathalie Jousset, MD,<br />

Service de Médecine Légale, CHU - 4 rue Larrey, Angers,<br />

49933, France; Bruno Vielle, MD, Departement de<br />

Statistique, CHU - 4 rue Larrey, Angers, 49933, France;<br />

Eugénia Cunha, MD, PhD, Departamento de Antropologia<br />

- Faculdade de Ciências, Universidade de Coimbra,<br />

Coimbra, 3000-056, Portugal; and Norbert Telmon, MD,<br />

PhD, Service de Médecine Légale, hôpital de Rangeuil - 1<br />

Avenue Jean Poulhès, Toulouse, 31403, France<br />

Russell, Valerie B. BA*, 8 Thomas Court, Valley Cottage,<br />

NY 10989<br />

Index 184<br />

What Matters - Size or Shape? Three-<br />

Dimensional Analysis of Craniofacial Sexual<br />

Variation Among American Populations<br />

Repeatability and Error of Cranial Landmark<br />

Coordinates<br />

Craniofacial Growth, Maturation, and<br />

Change: Teens to Mid-Adulthood<br />

A Test of Methods: Implications of<br />

Dimorphism, Population Variation, and<br />

Secular Change in Estimating Population<br />

Affinity in the Iberian Peninsula<br />

Age Determination From Adult Human<br />

Teeth: Interest of Gustafson’s Criteria<br />

Age Estimation From the Posterior and<br />

Middle Part of the Ilium<br />

The Difference Between an Individual’s Self-<br />

Reported, Perceived, and Actual Height and<br />

Its Forensic Significance<br />

366<br />

330<br />

171<br />

264<br />

452<br />

306<br />

300


Saint-Martin, Pauline MD*, Service de Médecine Légale,<br />

Hôpital Trousseau, CHRU Tours, Tours, 37044, France;<br />

Norbert Telmon, MD, PhD, and Henri Dabernat, MD,<br />

PhD, Laboratoire d’Anthropobiologie, UMR 8555, CNRS,<br />

39 allees Jules Guesde, Toulouse, 31400, France;<br />

Christian Theureau, Laboratoire d’Archéologie Urbaine,<br />

Chateau de Tours, 25 quai d’Orleans, Tours, 37000,<br />

France; Patrick O’Byrne, MD, Service de Médecine<br />

Légale, Hôpital Trousseau, CHRU Tours, Tours, 37044,<br />

France; and Eric Crubezy, PhD, Laboratoire<br />

d’Anthropobiologie, UMR 8555, CNRS, 39 allees Jules<br />

Guesde, Toulouse, 31400, France<br />

Salter-Pedersen, Ellen R. BA, BSc*, Department of<br />

Geography and Anthropology, 227 Howe-Russell,<br />

Louisiana State University, Baton Rouge, LA 70803<br />

Sanabria, Cesar MA*, Instituto de Medicina Legal y<br />

Ciencias Forenses, Calle 7a #12-61, Segundo Piso,<br />

Bogota, COLOMBIA; and Elizabeth A. DiGangi, PhD*,<br />

ICITAP, Calle 125 #19-89, Office 401, Bogota,<br />

COLOMBIA<br />

Santos Bremme, Adriana Gabriela BS*, Apartado postal<br />

01901-1830 Correo Central, Guatemala, Central America<br />

Santos Bremme, Adriana Gabriela BS*, Fundación de<br />

Antropología Forense de Guatemala-Universidad de San<br />

Carlos de Guatemala, Apartado Postal 01901 1830 correo<br />

central Guatemala C.A.<br />

Sarajlic, Nermin MD MSc*, Eva E. Klonowski, PhD, Piotr<br />

Drukier, MSc, and Richard J. Harrington, PhD,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, Bosnia and Herzegovina<br />

Sarajlic, Nermin MD*, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo, 71000, Bosnia<br />

and Herzegovina; Zdenko Cihlarz, PhD, Departmen of<br />

Forensic Medicine, UKC, Tuzla, 75000, Bosnia and<br />

Herzegovina; and Eva E. Klonowski, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and<br />

Herzegovina<br />

Sarajlic, Nermin MD, PhD*, Eva-Elvira Klonowski, PhD,<br />

and Senem Skulj, BSc, ICMP, Alipasina 45A, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Sauer, Norman J. PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824<br />

Sauer, Norman J. PhD*, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing,<br />

MI<br />

Saul, Frank P. PhD* and Julie M. Saul, BA, Consultants,<br />

Lucas County Coroner’s Office and Wayne County<br />

<strong>Medical</strong> Examiner’s Office, 3518 East Lincolnshire<br />

Boulevard, Toledo, OH 43-1203<br />

Index 185<br />

Paleopathological Diagnosis of Leprosy in<br />

Skeletons From a French Medieval Leper<br />

<strong>Forensics</strong> and Television: A Learning<br />

Experience or Beguiling Obsession?<br />

Development of the Colombian Skeletal<br />

Collection<br />

Confronting the Past in Guatemala: A<br />

Challenge for Forensic Science<br />

This Grave Speaks: Forensic Anthropology in<br />

Guatemala<br />

Lamendin’s and Prince’s Dental Aging<br />

Methods Applied to a Bosnian Population<br />

The Application of the Lamendin and Prince<br />

Dental Aging Methods to a Bosnian<br />

Population: Formulas for Each Tooth Group<br />

Challenging One Formula for All Teeth<br />

Diverse Stature Estimation Formulae Applied<br />

to a Bosnian Population<br />

Forensic Anthropology and the Belief in<br />

Human Races<br />

A Comparison of Facial Approximation<br />

Techniques, Part 2<br />

297<br />

520<br />

12<br />

583<br />

569<br />

542<br />

452<br />

348<br />

490<br />

590<br />

Sex vs. Gender: Does it Really Matter? 469


Saul, Frank P. PhD*, and Julie M. Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

43614-2674; and Steven A. Symes, PhD, Departments of<br />

Anthropology and Applied Forensic Science, Mercyhurst<br />

College, 501 East 38th Street, Erie, PA 16546-0001<br />

Saul, Frank P. PhD*, Lucas County Coroner’s Office,<br />

2595 Arlington Avenue, Toledo, OH; Sandra Anderson,<br />

Canine Investigation Consultant, 913 East Price Road,<br />

Midland, MI; and Julie M. Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

Saul, Frank P. PhD*, Regional Commander, USPHS<br />

DMORT 5, and Julie Mather Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue Toledo, OH;<br />

Sandra Anderson, Canine Solutions International, PO Box<br />

50, Sanford, MI; Steven A. Symes, PhD, Forensic<br />

Anthropologist, Regional Forensic Center, 1060 Madison<br />

Avenue Memphis, TN; Cheryl L. Loewe, MD, Wayne<br />

County <strong>Medical</strong> Examiner’s Office, 1300 Warren, Detroit,<br />

MI; James R. Patrick, MD, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue Toledo, OH; and Steven K.<br />

Lorch, PhD, Michigan State Police Laboratory, 42145<br />

West Seven Mile Road, Northville, MI<br />

Saul, Julie M. BA*, and Frank P. Saul, PhD, Lucas County<br />

(Toledo) Coroners Office and Wayne County (Detroit)<br />

<strong>Medical</strong> Examiners Office, 3518 East Lincolnshire Blvd,<br />

Toledo, OH 4360<br />

Saul, Julie M. BA*, and Frank P. Saul, PhD, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

43614-2674; Steven A. Symes, PhD, Departments of<br />

Anthropology and Applied Forensic Science, Mercyhurst<br />

College, 501 East 38th Street, Erie, PA 16546-0001; and<br />

Carl J. Schmidt, MD, Wayne County <strong>Medical</strong> Examiner’s<br />

Office, 1300 East Warren Avenue, Detroit, MI 48207<br />

Saul, Julie M. BA*, Forensic Anthropology Lab, Lucas<br />

County Coroner’s Office, 2595 Arlington Avenue, Toledo,<br />

OH 43614-2674; Frank P. Saul, PhD, U.S. HHS DMORT<br />

5, 2595 Arlington Avenue, Toledo, OH 43614- 2674; and<br />

Allan J. Warnick, DDS, Wayne & Oakland Counties<br />

<strong>Medical</strong> Examiner’s Office, 31632 Schoolcraft Road,<br />

Livonia, MI 48150<br />

Saul, Julie M. BA*, Frank P. Saul, PhD, and James R.<br />

Patrick, MD, Lucas County Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH 43614-2673<br />

Index 186<br />

The Lady in the Box 428<br />

Operacion Eagle: Clandestine Graves and a<br />

Taphonomy of Tyrants — Part 1: The Truth<br />

Commission of Panama, Witness Testimony,<br />

and Searches in Western Panama<br />

Homicide for the Holidays: Linkage Through<br />

Multidisciplinary Teamwork<br />

566<br />

581<br />

Missing, Present, and Left Behind 374<br />

When Experts Disagree: There May be a<br />

Rodent Involved – Part I: The Request for a<br />

New Trial<br />

424<br />

And a Little Child Shall Lead Them.... 168<br />

A Small Plane Crash With (Unforeseen)<br />

Large Legal Consequences<br />

216


Saul, Julie M. BA*, Lucas County Coroner’s Office<br />

Forensic Anthropology Lab, 2595 Arlington Avenue,<br />

Toledo, OH 43614-2674; Frank P. Saul, PhD*, Lucas<br />

County Coroners Office, US HHS DMORT 5, 2595<br />

Arlington Avenue, Toledo, OH 43614-2674; G. Michael<br />

Pratt, PhD, Heidelberg University, Department of<br />

Anthropology, 310 East Market Street, Tiffin, OH 44993;<br />

Richard P. Brownley, BA, Ohio Peace Officers Training<br />

Academy, 1650 State Route 56, London, OH 43140; and<br />

Lauri M. Martin, PhD, University of Texas, Austin,<br />

Department of Anthropology, Campus Mail Code C3200 1<br />

University Station, Austin, TX 78712<br />

Saul, Julie M. BA*, Lucas County Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH; Sandra Anderson, Canine<br />

Investigation Consultant, 913 East Price Road, Midland,<br />

MI; and Frank P. Saul, PhD, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue, Toledo, OH<br />

Sava, Vincent J. BS, MA*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Sava, Vincent J. MA*, JPAC, Central Identification Lab,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853<br />

Sava, Vincent J. MA*, JPAC, Central Identification Lab,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853; and John E. Byrd, PhD, JPAC, Central<br />

Identification Lab, 310 Worchester Avenue, Hickam AFB,<br />

HI 96853-5530<br />

Schaefer, Maureen C. BS, MA*, International Commission<br />

on Missing Persons, Alipashina 45a, 71000 Sarajevo,<br />

Bosnia and Herzegovina<br />

Schaefer, Maureen C. MA*, University of Dundee,<br />

Anatomy and Forensic Anthropology, Faculty of Life<br />

Sciences, University of Dundee, Dow Street, Dundee, DD1<br />

5EH, Scotland<br />

Schaefer, Maureen MA*, 8549 Wuest Road, Cincinnati,<br />

OH<br />

Schaefer, Maureen MA*, University of Dundee, Anatomy<br />

and Forensic Anthropology, Faculty of Life Sciences,<br />

MSI/WTB Complex, Dundee, DD1 5EH, United Kingdom<br />

Schmidt, Ryan W. BS*, 1424 Santa Anita Drive, Apartment<br />

B, Las Vegas, NV 89119; and Jennifer L. Thompson, PhD,<br />

University of Nevada, Las Vegas, 4505 Maryland Parkway,<br />

Las Vegas, NV 89154<br />

Schuliar, Yves MD* and Pascal Chaudeyrac, MS, Institut<br />

de Recherche Criminelle de la Gendarmerie Nationale, 1<br />

Boulevard Theophile Sueur, Rosny-sous-Bois 93110,<br />

France; Richard Aziza, MD, 13 Avenue Eylau, Paris<br />

75116, France; Jean-Noel Vignal, PhD, Institut de<br />

Recherche Criminelle de la Gendarmerie Nationale, 1<br />

Boulevard Theophile Sueur, Rosny-sous-Bois 93110,<br />

France<br />

Index 187<br />

Rolling Bones: A Field “System” for the<br />

Recovery and Transportation of Fragile<br />

Skeletal Evidence<br />

Operacion Eagle: Clandestine Graves and a<br />

Taphonomy of Tyrants — Part 2: Searches on<br />

Coiba Island, Panama City, and Vicinity<br />

The ASCLD-LAB Accreditation of the Joint<br />

POW/MIA Accounting Command, Central<br />

Identification Laboratory<br />

Proficiency and Competency Testing —<br />

What They Are, What They Are Not<br />

Accreditation of the Small Skeletal<br />

Laboratory: It is Easier Than You Think!<br />

Epiphyseal Closure Rates in the Srebrenica<br />

Youth<br />

Forensic Application of Epiphyseal<br />

Sequencing<br />

A Comparison of the Cranial Wounding<br />

Effects of .22 and .38 Caliber Bullets<br />

Progression of Intra-Epiphyseal Union and its<br />

Predictive Capability in Fragmented Remains<br />

A Case of Historical Homicide in Northern<br />

Nevada<br />

Computer Assisted Facial Reconstruction<br />

Technique<br />

74<br />

567<br />

518<br />

35<br />

255<br />

522<br />

373<br />

576<br />

302<br />

365<br />

527


Schultz, Johh J. PhD*, University of Central Florida,<br />

Department of Sociology and Anthropology, Orlando, FL<br />

32816-1360<br />

Schultz, John J. MS*, C.A. Pound Human ID Laboratory,<br />

University of Florida, PO Box 112545, Gainesville, FL<br />

Schultz, John J. MS, Heather Walsh-Haney, MA*, Suzanne<br />

Coyle, MA, and Anthony B. Falsetti, PhD, C.A. Pound<br />

Human ID Laboratory, University of Florida, PO Box<br />

112545, Gainesville, FL<br />

Scott, Audrey L. MA*, Simon Fraser University,<br />

Department of Archaeology, Simon Fraser University,<br />

Burnaby, British Columbia V5A 1S6, CANADA<br />

Scott, Audrey MA*, Simon Fraser University, Department<br />

of Archaeology, 8888 University Dr., Burnaby, British<br />

Columbia V5A 1S6, CANADA; David Sweet, DMD, PhD,<br />

Bureau of Legal Dentistry Lab, University of British<br />

Columbia, 6190 Agronomy Road, Suite 202, Vancouver,<br />

BC V6T 1Z3, CANADA; Derek Congram, MSc, Simon<br />

Fraser University, Department of Archaeology, 8888<br />

University Drive, Vancouver, BC V5A 1S6, CANADA; and<br />

Stephen Fonseca, Office of the Chief Coroner,<br />

Identification and Disaster Response Unit, 2035-4720<br />

Kingsway, Burnaby, BC V5H 4N2, CANADA<br />

Seasons, Samantha M. BA*, and Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler Avenue, Soc 107, Tampa, FL 33820<br />

Seasons, Samantha M. BA*, University of South Florida,<br />

4202 East Fowler Avenue, Tampa, FL 33620; Charles A.<br />

Dionne, MA, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler Avenue, Soc 107, Tampa,<br />

FL 33620-7200; Leszek Chrostowski, MD, Hillsborough<br />

County <strong>Medical</strong> Examiner’s Office, 11025 North 46th<br />

Street, Tampa, FL 33617; and Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology,<br />

4202 East Fowler, Soc 107, Tampa, FL 33820<br />

Seet, Billie L. MA*, 16 Arcola Street #2, Jamaica Plain,<br />

MA, 02130<br />

Seet, Billie L. MA*, Office of the Chief <strong>Medical</strong> Examiner,<br />

720 Albany Street, Boston, MA 02118; and Jonathan D.<br />

Bethard, MA*, Pellissippi State Community College, 10915<br />

Hardin Valley Road, PO Box 22990, Knoxville, TN 37933<br />

Semeraro, Dominique S. MS*, Office of State <strong>Medical</strong><br />

Examiners, 48 Orms Street, Providence, RI 02904;<br />

Nicholas V. Passalacqua, MS, Department of<br />

Anthropology, Michigan State University, 354 Baker Hall,<br />

East Lansing, MI 48824; Steven A. Symes, PhD,<br />

Mercyhurst Archaeological Institute, Mercyhurst College,<br />

501 East 38th, Erie, PA 16546-0001; and Thomas P.<br />

Gilson, MD, Office of State <strong>Medical</strong> Examiners, 48 Orms<br />

Street, Providence, RI 02904<br />

Shamblin, Casey BA*, and Mary H. Manhein, MA,<br />

Department of Geography and Anthropology, Louisiana<br />

State University, Baton Rouge, LA<br />

Index 188<br />

Forensic GPR: Using Ground-Penetrating<br />

Radar to Search for Buried Bodies<br />

Forensic Applications of Ground Penetrating<br />

Radar in Florida<br />

Ankylosing Spondylitis in Three Forensic<br />

Cases<br />

Taphonomic Degradation to Bone Through<br />

Scavenging by Marine Mollusks of the Class<br />

Polyplacophora<br />

Separately Discovered Skeletal Remains and<br />

the Path to Reassociation: A Case Review<br />

An Evaluation of Facial Features Used for<br />

Facial Recognition Applied to Cases of<br />

Missing Persons<br />

Determining the Epidemiology of Hyoid<br />

Fractures in Cases of Hanging and<br />

Strangulation<br />

Estimating the Postmortem Interval in<br />

Freshwater Environments<br />

And Dens There Were Two: The Utility of<br />

the Second Cervical Vertebra as an Indicator<br />

of Sex and Age-at-Death<br />

Patterns of Blunt Force Trauma Induced by<br />

Motorboat and Ferry Propellers as Illustrated<br />

by Three Known Cases From Rhode Island<br />

Two Miles and Nine Years From Home: The<br />

Taphonomy of Aqueous Environments<br />

365<br />

578<br />

590<br />

202<br />

217<br />

161<br />

33<br />

374<br />

97<br />

165<br />

543


Shattuck, Rebecca E. MA*, 809 Green Meadows Drive,<br />

Apartment #305, Columbia, MO 65201<br />

Shepherd, Katy L. BS*, 10101 Villagio Palms Way, Unit<br />

201, Estero, FL 33928; Heather A. Walsh-Haney, PhD,<br />

Florida Gulf Coast University, Division of Justice Studies,<br />

10501 FGCU Boulevard South, AB3, Fort Myers, FL<br />

33965-6565; and Marta U. Coburn, MD, District 20<br />

<strong>Medical</strong> Examiner, 3838 Domestic Avenue, Naples, FL<br />

34104<br />

Shepherd, Katy L. BS*, and Heather A. Walsh-Haney,<br />

PhD, Florida Gulf Coast University, Division of Justice<br />

Studies, 10501 FGCU Boulevard AB3, Fort Myers, FL<br />

33965-6565; Valerie J. Rao, MD, District 4 <strong>Medical</strong><br />

Examiner’s Office, 2100 Jefferson Street, Jacksonville, FL<br />

32206; Khalil S. Wardak, MD, 5301 SW 31st Avenue, Fort<br />

Lauderdale, FL 33312; Predrag Bulic, MD, District 7<br />

Office of the <strong>Medical</strong> Examiner, 1360 Indian Lake Road,<br />

Daytona Beach, FL 32124; and Christena Roberts, MD,<br />

Office of the Chief <strong>Medical</strong> Examiner of Virginia, Western<br />

District, 6600 Northside High School Road, Roanoke, VA<br />

24019<br />

Shepherd, Katy L. BS*, Heather A. Walsh-Haney, PhD,<br />

and Christen E. Herrick, BS, Florida Gulf Coast<br />

University, Division of Justice Studies, 10501 Florida Gulf<br />

Coast University Boulevard South, AB3, Fort Myers, FL<br />

33965-6565; Marta U. Coburn, MD, District 20 <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

34104; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

Shidner, Ashley E. BA*, and Heidi S. Davis, BA, BS,<br />

University of West Florida, Department of Anthropology,<br />

11000 University Parkway, Pensacola, FL 32514<br />

Shirley, Natalie L. MA*, and Richard L. Jantz, PhD, The<br />

University of Tennessee Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Shirley, Natalie R. MA*, and Richard Jantz, PhD,<br />

University of Tennessee Department of Anthropology,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996<br />

Shirley, Natalie R. MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Brandon C. Merkl, MS, University of<br />

Tennessee, Department of Mechanical, Aerospace, and<br />

<strong>Bio</strong>medica, 414 Dougherty Engineering Building,<br />

Knoxville, TN 37996; and Richard Jantz, PhD, Department<br />

of Anthropology, University of Tennessee, Knoxville, TN<br />

37996-0720<br />

Shirley, Natalie R. PhD*, Alicja K. Kutyla, MS, and<br />

Richard Jantz, PhD, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

Index 189<br />

Peri-Mortem Fracture Patterns in South-<br />

Central Texas: A Preliminary Investigation<br />

Into the Peri-Mortem Interval<br />

Surgical Sutures as a Means of Identifying<br />

Human Remains<br />

Decomposition Variables: A Comparison of<br />

Skeletal Remains Recovered After Long-<br />

Term Submersion in Florida Aquatic<br />

Environments<br />

The Effect of Axial Developmental Defects<br />

on Forensic Stature Estimates<br />

4<br />

218<br />

201<br />

130<br />

Hispanic: History and Use of a Generic Term 154<br />

Age Determination From the Medial and<br />

Lateral Clavicle: A Re-Evaluation of Present<br />

Scoring Systems<br />

Spheno-Occipital Synchondrosis Fusion in<br />

the American Population<br />

Sex Estimation From the Clavicle in Modern<br />

Americans: Traditional Versus Alternative<br />

Approaches<br />

What’s in a Number: Statistical Paradigm<br />

Shifts in Forensic Anthropology<br />

303<br />

259<br />

188<br />

100


Shirley, Natalie R. PhD*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Emam E.A. Fatah, MS, Center for<br />

Musculoskeletal Research, University of Tennessee, 307<br />

Perkins Hall, Knoxville, TN 37996; Richard Jantz, PhD,<br />

University of Tennessee, Department of Anthropology,<br />

Knoxville, TN 37996-0720; and Mohamed Mahfouz, PhD,<br />

Center for Musculoskeletal Research, University of<br />

Tennessee, 307 Perkins Hall, Knoxville, TN 37996<br />

Shirley, Natalie R. PhD*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Emam ElHak Abdel Fatah, BS,<br />

Center for Musculoskeletal Research, University of<br />

Tennessee, Department Mechanical, Aerospace, &<br />

<strong>Bio</strong>medical Engineer, 307 Perkins Hall, Knoxville, TN<br />

37996; and Mohamed Mahfouz, PhD, Center for<br />

Musculoskeletal Research, Department Mechanical,<br />

Aerospace, & <strong>Bio</strong>medical Engineer, University of<br />

Tennessee, 307 Perkins Hall, Knoxville, TN 37996<br />

Sholts, Sabrina B. PhD*, Department of Anthropology,<br />

Santa Barbara, CA 93106-3210; and Sebastian K.T.S.<br />

Wärmländer, PhD, Stockholm University, Division of<br />

<strong>Bio</strong>physics, Stockholm, 10691, SWEDEN<br />

Siegel, Nicole D. DVM*, Cleveland Museum of Natural<br />

History, 1 Wade Oval Drive, Cleveland, OH 44106-1767;<br />

and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East<br />

38th Street, Erie, PA 16546<br />

Silva, Loreto Suarez Director of Anthropology, Comision<br />

de la Verdad de Panama, Balboa, 27695-8107, Republic of<br />

Panama; Kathrynn M. Jemmott, MA, University of Florida,<br />

C.A. Pound Human ID Laboratory, Gainesville, FL 32611;<br />

Ann H. Ross, PhD*, Department of Sociology and<br />

Anthropology, North Carolina State University, Campus<br />

Box 8107, Raleigh, NC 27695-8107<br />

Simmons, Tal PhD*, and Rachel Adlam, MSc, University of<br />

Central Lancashire, Forensic & Investigative Science,<br />

Maudland Building, Preston, Lancashire, PR1 2HE,<br />

UNITED KINGDOM<br />

Simmons, Tal PhD*, Department of Forensic and<br />

Investigative Science, University of Central Lancashire,<br />

Preston PR1 2HE, United Kingdom; and Mark Skinner,<br />

PhD, International Commission on Missing Persons,<br />

Alipašina 45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Simmons, Tal PhD*, Peter A. Cross, MSc, Rachel Adlam,<br />

MSc, and Colin Moffatt, PhD, University of Central<br />

Lancashire, School of Forensic and Investigative Sciences,<br />

Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

Index 190<br />

Improving Sex Estimation From the Cranium<br />

Using 3-Dimensional Modeling From CT<br />

Scans<br />

Ancestry Estimation From the Tibia: Size and<br />

Shape Differences Between American Whites<br />

and Blacks<br />

Investigating Between Group Differences in<br />

Zygomaxillary Suture Form Using Fourier<br />

Analysis<br />

The Importance of Testing and<br />

Understanding Statistical Methods in the Age<br />

of Daubert: Can FORDISC Really Classify<br />

Individuals Correctly Only One Percent of<br />

the Time?<br />

In the Name of the Dead: The Panamanian<br />

Truth Commission’s Search for the<br />

“Disappeared”<br />

29<br />

123<br />

23<br />

38<br />

506<br />

Debugging Decomposition Data 232<br />

The Accuracy of Ante-Mortem Data and<br />

Presumptive Identification: Appropriate<br />

Procedures, Applications and Ethics<br />

390<br />

Bugs Bunny? No Bugs Bunny 145


Simmons, Tal PhD*, School of Conservation Sciences,<br />

Talbot Campus, Bournemouth University, Poole, Dorset<br />

BH12 5BB, United Kingdom Panelists: Alison Galloway,<br />

PhD*, University of California, Social Science One FS,<br />

Santa Cruz, CA 95064; Jose Pablo Baraybar, BA, MSc*,<br />

Office on Missing Persons and <strong>Forensics</strong> (OMPF), United<br />

Nations Mission in Kosovo (UNMIK), AUCON/KFOR,<br />

Kosovo A1503, Austria; Laura Bowman, BA*, 3856 Porter<br />

Street NW, E-371, Washington, DC 20016; Melissa<br />

Connor, MA, RPA*, 11101 South 98th Street, Lincoln, NE<br />

68526; Margaret Cox, PhD*; William D. Haglund, PhD*,<br />

20410 25th Avenue, NW, Shoreline, WA 98177; Sara Kahn,<br />

MSW, MPH*, 108 West 76th Street, #2A, New York, NY<br />

10023; Mary Ellen Keough, MPH*, Meyers Primary Care<br />

Institute, 630 Plantation Street, Worcester, MA 01605<br />

Simmons, Tal PhD*, School of Forensic & Investigative<br />

Sciences, University of Central Lancashire, Preston,<br />

Lancashire PR1 2HE, UNITED KINGDOM; and Elizabeth<br />

A. Walker, BSc, 3 Ruskin Road, Birtley, Co Durham, DH3<br />

1AD, UNITED KINGDOM<br />

Simmons, Tal PhD, Peter A. Cross, MSc*, and Rachel E.<br />

Cunliffe, MSC, University of Central Lancashire, School of<br />

Forensic and Investigative Sciences, Preston, AS PR1 2HE,<br />

UNITED KINGDOM<br />

Simmons, Terrie L. MA*, Counterterrorism and Forensic<br />

Science Research Unit, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Peter H. Tu, PhD, and<br />

Jeffrey D. Erno, MS, GE Global Research, One Research<br />

Circle, Niskayuna, NY 12309; and Philip N. Williams, BS,<br />

and Keith L. Monson, PhD, Counterterrorism and Forensic<br />

Science Research Unit, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135<br />

Simmons, Terrie L. MA*, FBI Laboratory Division,<br />

Counterterrorism and Forensic Science Research Unit,<br />

2501 Investigation Parkway, Quantico, VA 22135; Lisa G.<br />

Bailey, BA, FBI Laboratory, 2501 Investigation Parkway,<br />

SPU/Room 1115, Quantico, VA 22135; and Melissa A.<br />

Torpey, MS, Philip N. Williams, BS, and Keith L. Monson,<br />

PhD, Counterterrorism and Forensic Science Research<br />

Unit, FBI Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135<br />

Sinha, Alpana MBBS, MD*, Assistant Professor,<br />

Department of Forensic Medicine & Toxicology, Lady<br />

Hardinge <strong>Medical</strong> College, New Delhi, India<br />

Skinner, Mark PhD, Simon Fraser University, Department<br />

of Archeology, Burnaby, BC V5A 1S6, CANADA; and<br />

Ariana Fernandez, MPhil, and Derek Congram, MSc*,<br />

706-1850 Comox Street, Vancouver, BC V6G 1R3,<br />

CANADA<br />

Index 191<br />

Rapid Responses to International Incidents:<br />

To Go or Not to Go (or When to Go and How<br />

to Go)?<br />

An Investigation Into the Rate of<br />

Decomposition of Decapitated Heads and<br />

Heads With an Attached Body<br />

Establishing a Taphonomic Research Facility<br />

in the United Kingdom<br />

<strong>Bio</strong>metric Assessment of the Accuracy of a<br />

Large Sample of Three-Dimensional<br />

Computerized Facial Approximations<br />

Results From a Survey on Computerized<br />

Facial Approximation<br />

529<br />

94<br />

112<br />

Age Estimation From Pubic Symphysis 597<br />

Material Culture Analysis in Forensic Cases:<br />

A Call for Formal Recognition by Forensic<br />

Anthropologists<br />

90<br />

91<br />

183


Sledzik, Paul S. MS*, National Transportation Safety<br />

Board, 490 L’Enfant Plaza, SW, Washington, DC 20594;<br />

and Elias J. Kontanis, BS, Oak Ridge Institute for Science<br />

and Education, Joint POW MIA Accounting Command-<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

Sledzik, Paul S. MS*, National Transportation Safety<br />

Board, Office of Transportation Disaster Assistance, 490<br />

L’Enfant Plaza East, SW, Washington, DC 20594; Lee<br />

Meadows Jantz, PhD*, Forensic Anthropology Center,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; Amy Z. Mundorff, MA*, Simon<br />

Fraser University, 611-1485 West 6th Avenue, Vancouver,<br />

BC V6H 4G1, Canada; Giovanna M. Vidoli, MSc*, Office<br />

of Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York,<br />

NY 10016; Thomas D. Holland, PhD*, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory,<br />

310 Worchester Avenue, Hickam AFB, HI 96853; Darinka<br />

X. Mileusnic- Polchan, MD, PhD*, University of Tennessee<br />

<strong>Medical</strong> Center, Department of Pathology/Knox County<br />

Office of the <strong>Medical</strong> Examiner, 1924 Alcoa Highway,<br />

Knoxville, TN 37920; and Mercedes Doretti*, and Luis<br />

Fondebrider*, Equipo Argentino de Antropologia Forense,<br />

Av. Rivadavia 2443, Piso 2 Dep. 4, Buenos Aires, 1034,<br />

Argentina<br />

Index 192<br />

Resolving Commingling Issues In Mass<br />

Fatality Incident Investigations<br />

Working With Family Members of<br />

Decedents: A Discussion of Techniques for<br />

Forensic Scientists<br />

439<br />

388


Sledzik, Paul S. MS*, National Transportation Safety<br />

Board, Office of Transportation Disaster Assistance, 490<br />

L’Enfant Plaza East, SW, Washington, DC 20594-2000;<br />

Todd W. Fenton, PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI<br />

48824; Michael W. Warren, PhD*, Department of<br />

Anthropology, University of Florida, PO Box 117305,<br />

Gainesville, FL 32611; John E. Byrd, PhD*, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Christian Crowder, PhD*, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

10016; Shuala M. Drawdy, MA*, International Committee<br />

of the Red Cross, 19 Avenue de la Paix, Geneva, 1202,<br />

Switzerland; Dennis C. Dirkmaat, PhD*, Department of<br />

Applied Forensic Sciences, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546; Alison Galloway, PhD*,<br />

Chancellor’s Office, University of California, Santa Cruz,<br />

1156 High Street, Santa Cruz, CA 95064; Michael<br />

Finnegan, PhD*, Osteology Laboratory, Kansas State<br />

University, 204 Waters Hall, Manhattan, KS 66506; Laura<br />

C. Fulginiti, PhD*, and Kristen Hartnett, MA*, Maricopa<br />

County Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007; Thomas D. Holland, PhD*, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Murray K. Marks, PhD*, Department of<br />

Anthropology, University of Tennessee, 225 South Stadium<br />

Hall, Knoxville, TN 37996; Stephen D. Ousley, PhD*,<br />

Repatriation Office, Department of Anthropology, NMNH-<br />

MRC 138, Smithsonian Institution, Washington, DC 20013-<br />

7012; Tracy Rogers, PhD*, Department of Anthropology,<br />

University of Toronto at Mississauga, Mississauga,<br />

Ontario L5L 1C6, Canada; Norman J. Sauer, PhD*,<br />

Department of Anthropology, 354 Baker Hall, Michigan<br />

State University, East Lansing, MI 48824; Tal L. Simmons,<br />

PhD*, Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston, Preston PR1<br />

2HE, United Kingdom; Steven A. Symes, PhD*,<br />

Department of Applied Forensic Sciences, Mercyhurst<br />

College, 501 East 38th Street, Erie, PA 16546-0001;<br />

Morris Tidball-Binz, MD*, International Committee of the<br />

Red Cross, 19 Avenue de la Paix, Geneva, 1202,<br />

SWITZERLAND; and Douglas Ubelaker, PhD*,<br />

Department of Anthropology, NMNH-MRC 112,<br />

Smithsonian Institution, Washington, DC 20560<br />

Slemmer, S. Taylor MA*, and Murray K. Marks, PhD,<br />

Department of Anthropology, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN<br />

Index 193<br />

The Fourth Era of Forensic Anthropology:<br />

Examining the Future of the Discipline<br />

Comparison of CT and MR Imaging<br />

Techniques to Traditional Radiographs in<br />

Human Identification<br />

322<br />

589


Slice, Dennis E. PhD*, Wake Forest University School of<br />

Medicine, Department of <strong>Bio</strong>medical Engineering, <strong>Medical</strong><br />

Center Boulevard, Winston-Salem, NC 27157-1022; Ann<br />

H. Ross, PhD, North Carolina State University,<br />

Department of Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107<br />

Smith, Emilie L. BA*, 1910 Runaway Bay Lane, Apartment<br />

P, Indianapolis, IN 46224<br />

Smith, Martin PhD, and Marie Christine Dussault, MSc*,<br />

Bournemouth University, Centre for Forensic Science,<br />

Christchurch House, Poole, BH12 5BB, UNITED<br />

KINGDOM<br />

Smith, Victoria A. MA*, Oak Ridge Associated<br />

Universities, Federal Bureau of Investigation Laboratory<br />

TEU, 2501 Investigation Parkway, Quantico, VA 22135;<br />

Angi M. Christensen, PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

Quantico, VA 22135; and Sarah W. Myers, Emory<br />

University, 201 Dowman Drive, Atlanta, GA 30322<br />

Snow, Clyde PhD*, c/o ALAF and EAAF, 10 Jay Street<br />

#502, Brooklyn, NY 11201<br />

Soler, Angela BS*, and Todd W. Fenton, PhD, Michigan<br />

State University, 354 Baker Hall, East Lansing, MI 48824;<br />

and Joyce L. deJong, DO, Sparrow Hospital, 1215 East<br />

Michigan Avenue, Lansing, MI 48909<br />

Soler, Angela MA*, Michigan State University, Department<br />

of Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

Sorg, Marcella H. PhD*, Margaret Chase Smith Policy<br />

Center, University of Maine, Orono, ME 04469; William<br />

D. Haglund, PhD, 20410 25th Avenue, Northwest,<br />

Shoreline, WA 98177; Edward David, MD, JD, 498 Essex<br />

Street, Bangor, ME 04401; Sarah A. Kiley, MS, 235 Forest<br />

Hill Street, Jamaica Plain, MA 02130; William Parker, BS,<br />

Margaret Chase Smith, Policy Center, University of Maine,<br />

Orono, ME 04469; Harold W. Borns, PhD, Climate<br />

Change Institute, University of Maine, Orono, ME 04469;<br />

John Burger, PhD, Department of Zoology, University of<br />

New Hampshire, Durham, NH 03834; John Dearborn,<br />

PhD, School of Marine Sciences, University of Maine,<br />

Orono, ME 04469; Ann Dieffenbacher-Krall, PhD, Climate<br />

Change Institute, University of Maine, Orono, ME 04469;<br />

Deborah Palman, MS, Maine K-9 Services, PO Box 57,<br />

Aurora, ME 04408; and Touradj Solouki, PhD,<br />

Department of Chemistry, University of Maine, Orono, ME<br />

04469<br />

Sorg, Marcella H. PhD*, University of Maine, Margaret<br />

Chase Smith Policy Center, 5784 York Complex, Building<br />

#4, Orono, ME 04469<br />

Soto, Miriam E. MA*, The University of Tennessee, 250<br />

South Stadium Hall, 1425 South Stadium Drive, Knoxville,<br />

Tennessee 37996<br />

Index 194<br />

Population Affinities of “Hispanic” Crania:<br />

Implications for Forensic Identification<br />

The Deconstruction of Race: Its Origins and<br />

Existence<br />

Blast Injury in Skeletal Remains: The Case of<br />

a Soldier From WWI<br />

The Reliability of Visually Comparing Small<br />

Frontal Sinuses<br />

Truth, Justice, and Forensic Anthropology in<br />

Latin America<br />

Examination of Identification Methods Used<br />

by <strong>Medical</strong> Examiners: A Facility Study<br />

Positive Identification Through Comparative<br />

Panoramic Radiography of the Maxillary<br />

Sinuses: A Validation Study<br />

Developing a Regional Forensic Taphonomy:<br />

Environmental and Climatic Inputs<br />

Scavenging Impacts on the Progression of<br />

Decomposition in Northern New England<br />

Subadult Sexual Dimorphism in Long Bone<br />

Dimensions (The Luis Lopes Collection)<br />

478<br />

491<br />

3<br />

162<br />

506<br />

356<br />

53<br />

106<br />

58<br />

187


Soto, Miriam E. MA*, The University of Tennessee, 250 CPR Fractures in Infants: When Do They<br />

South Stadium Hall, Knoxville, TN 37996<br />

Occur?<br />

Spatola, Brian F. MA*, and Franklin E. Damann, MA*, A Summary of Trauma Specimens at the<br />

Armed Forces Institute of Pathology, National Museum of Armed Forces Institute of Pathology,<br />

Health and Medicine, 6825 16th St. NW, Building 54, National Museum of Health and Medicine<br />

Washington, DC 20306-6000<br />

Spatola, Brian F. MA*, Department of Geography and Musculoskeletal Stress Markers: An<br />

Anthropology, Louisiana State University, Baton Rouge, Exploration of Forensic Applicability<br />

LA<br />

Spradley, Kate PhD*, Department of Anthropology, Texas Hispanic Affiliation: Definitions,<br />

State University - San Marcos, 601 University Drive, San Assumptions, and <strong>Bio</strong>logical Reality<br />

Marcos, TX 78666; and Bruce E. Anderson, PhD, Forensic<br />

Science Center, 2825 East District Street, Tucson, AZ<br />

85714<br />

Spradley, Katherine M. PhD*, and Bridget F.B. Algee- Estimating Geographic Ancestry of Hispanic<br />

Hewitt, MA, The University of Tennessee, Department of Crania Using Geometric Morphometrics<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

Spradley, M. Katherine MA*, and Richard L. Jantz, PhD, Skull vs. Postcranial Elements in Sex<br />

Department of Anthropology, University of Tennessee, 252 Determination<br />

South Stadium Hall, Knoxville, TN<br />

Spradley, Martha K. MA*, and Richard L. Jantz, PhD, <strong>Bio</strong>logical Variation Among Hispanic<br />

University of Tennessee, Department of Anthropology, 250 (Spanish-Speaking) Peoples of the Americas<br />

South Stadium Hall, Knoxville, TN 37996; David M.<br />

Glassmann, PhD, University of Southern Indiana, School<br />

of Liberal Arts, 8600 University Boulevard, Evansville, IN<br />

47712-3596; and Alan G. Robinson, MSc, Fundacion de<br />

Antropologia Forense de Guatemala, Avenida Simon<br />

Canas 10-64 Zona 2, Ciudad de Guatemala, Guatemala<br />

City, 01002, Guatemala<br />

Spradley, Martha Katherine MA*, Knoxville, TN Age Estimation From Long Bone Lengths in<br />

Forensic Data Bank Subadults: Evidence of<br />

Growth Retardation and Implications of<br />

Under Aging<br />

Srnka, Carrie F. MA*, 6352 Iradell Road, Trumansburg, Differential Human Decomposition in the<br />

NY 14886<br />

Early Stages: An Experimental Study<br />

Comparing Sun and Shade<br />

Stafford*, Katelyn A. Sam Houston State Univeristy, Postmortem Interval of Surface Remains<br />

Department of Chemistry, PO Box 2117, 1003 Bowers During Spring in Southeast Texas<br />

Boulevard, Huntsville, TX 77341; Kathryn E. Moss, BS*,<br />

4800 Calhoun Street, Houston, TX 77004; Natalie<br />

Lindgren, BS, Sam Houston State University, College of<br />

Criminal Justice, 1300 Bowers Boulevard, Huntsville, TX<br />

77340; and Joan A. Bytheway, PhD*, Sam Houston State<br />

University, Chemistry & Forensic Science Building, 1003<br />

Bowers Boulevard, Box 2525, Huntsville, TX 77340<br />

Index 195<br />

31<br />

221<br />

604<br />

208<br />

328<br />

531<br />

421<br />

595<br />

461<br />

71


Steadman, Dawnie W. PhD*, Binghamton University,<br />

Department of Anthropology, PO Box 6000, Binghamton,<br />

NY 13902-6000; Camila Oliart, MA, Universidad<br />

Autònoma de Barcelona, Department of Prehistory, Edifici<br />

B, Barcelona, 08193, SPAIN; Elena Garcia-Guixé, MA,<br />

Museu d’Arqueologia de Catalunya, Laboratori de<br />

Paleoantropologia i Paleopatologia, Barcelona, SPAIN;<br />

María Inés Fregeiro, MA, and Elena Sintes, MA,<br />

Universitat Autonoma de Barcelona, Department of<br />

Prehistory, Edifici B, Barcelona, 08193, SPAIN; Jennifer<br />

Bauder, MA, and Aimee E. Huard, MA, Binghamton<br />

University, Department of Anthropology, Binghamton, NY<br />

13902; Jorge Jiménez, MA, Universidad Autònoma de<br />

Barcelona, Department of Prehistory, Barcelona, 08193,<br />

SPAIN; and Carme Boix, PhD, Badley Ashton &<br />

Associates Ltd., Winceby House, Winceby, Horncastle,<br />

Lincolnshire, LN9 6PB, UNITED KINGDOM<br />

Steadman, Dawnie W. PhD*, Binghamton University,<br />

Department of Anthropology, PO Box 6000, Binghamton,<br />

NY 13902-6000; Elena Sintes Olives, MA, and Camila<br />

Oliart Caravatti, MA, Autonomous University of<br />

Barcelona, Department of Prehistory, Edifici B, Barcelona,<br />

08193, Spain; and Jennifer M. Bauder, MA, Binghamton<br />

University, Department of Anthropology, PO Box 6000,<br />

Binghamton, NY 13902-6000<br />

Steadman, Dawnie W. PhD*, Jeremy Wilson, BS, Kevin E.<br />

Sheridan, MA, and Steven Tammariello, PhD, Department<br />

of <strong>Bio</strong>logy, Binghamton University, P.O. Box 6000,<br />

Binghamton, NY<br />

Stefan, Vincent H. PhD*, Department of Anthropology,<br />

Lehman College - CUNY, 250 Bedford Park Boulevard,<br />

West, Bronx, NY; and Patricia J. McFeeley, MD, Office of<br />

the <strong>Medical</strong> Investigator, University of New Mexico School<br />

of Medicine, Albuquerque, NM<br />

Stefan, Vincent H. PhD*, Department of Anthropology,<br />

Lehman College, CUNY, 250 Bedford Park Boulevard,<br />

West, Bronx, NY 10468<br />

Stefan, Vincent H. PhD*, Lehman College - CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard,<br />

West, Bronx, NY 10468<br />

Stefan, Vincent H. PhD*, Lehman College, CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard<br />

West, Bronx, NY 10468<br />

Stefan, Vincent H. PhD*, Lehman College, CUNY,<br />

Department of Anthropology, 250 Bedford Park Boulevard<br />

West, Bronx, NY 10468<br />

Steffensen, Thora S. MD*, University Hospital of Iceland,<br />

Department of Pathology, Rannsoknastofa H.I. vid<br />

Baronsstig, Reykjavik, IS 108, Iceland; and Omar<br />

Palmason, Reykjavik Police Department, Hverfisgata 115,<br />

Reykjavik, IS 108, Iceland<br />

Index 196<br />

Epidemiology of Homicide in the Spanish<br />

Civil War<br />

Investigating the Spanish Civil War: Forensic<br />

Anthropological Investigations in Santaella<br />

Impact of Heat and Chemical Maceration on<br />

DNA Recovery and Cut Mark Analysis<br />

Unusual Sharp Force/Penetrating Trauma<br />

Pattern on a Cranium; Cooperative<br />

Examination and Evaluation by the Forensic<br />

Pathologist and Forensic Anthropologist<br />

Tags and Spurs: Morphological Features of<br />

Cranial Blunt Force Trauma Fractures<br />

Stature Estimation of Hispanics: The Most<br />

Appropriate Stature Regression Equations<br />

Determining Medicolegal Significance:<br />

Human vs. Selkie<br />

Temporomandibular Joint Morphology and<br />

the Assessment of Potential Commingling<br />

The Meeting of Old and New: Luminol<br />

Application to a Suspected Ritualistic<br />

Heathen Stone From Viking Times<br />

134<br />

350<br />

542<br />

562<br />

66<br />

432<br />

501<br />

513<br />

415


Steger, Pamela M BA, MS*, Travis County <strong>Medical</strong><br />

Examiners Office, 934 Sycamore Street, San Marcos, TX<br />

78666; and Daniel Jackson, BA, MA, Travis County<br />

<strong>Medical</strong> Examiners Office, 104 B Ladybird Lane, San<br />

Marcos, TX 78666<br />

Stephan, Carl N. BHSc, Department of Anatomical<br />

Sciences, The University of Adelaide, Australia; Ian S.<br />

Penton-Voak, PhD, Department of Psychology, The<br />

University of Stirling, Scotland; David Perrett, PhD, and<br />

Bernard Tiddeman, PhD, School of Psychology, The<br />

University of St. Andrews, Scotland; John G. Clement,<br />

PhD*, School of Dental Science, The University of<br />

Melbourne, Australia; and Maciej Henneberg, DSc,<br />

Department of Anatomical Sciences, The University of<br />

Adelaide, Australia<br />

Stephan, Carl N. PhD*, and Andrew J. Tyrrell, PhD,<br />

JPAC-CIL, 310 Worchester Avenue, Hickam AFB, HI<br />

96853<br />

Stephan, Carl N. PhD*, Anne Huang, and Paavi Davidson,<br />

School of <strong>Bio</strong>medical Sciences, University of Queensland,<br />

Otto Hirschfeld Building, Brisbane, 4072, AUSTRALIA<br />

Stephan, Carl N. PhD*, Joint POW/MIA Accounting<br />

Command Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Jody<br />

Cicolini, BSc, The University of Queensland, Brisbane,<br />

4072 AUSTRALIA<br />

Stephan, Carl N. PhD*, The University of Queensland,<br />

Anatomy and Developmental <strong>Bio</strong>logy, The University of<br />

Queensland, Brisbane, QLD 4072, Australia; and Ellie K.<br />

Simpson, PhD, Forensic Science South Australia, 21 Divett<br />

Place, Adelaide, SA 5000, Australia<br />

Stewart, John E.B. PhD*, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, DNA Analysis<br />

Unit I, Quantico, VA 22135; Patricia J. Aagaard, BS,<br />

Federal Bureau of Investigation Laboratory, 2501<br />

Investigation Parkway, DNA Analysis Unit II, Quantico,<br />

VA 22135; Deborah Polanskey, BS, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

DNA Analysis Unit II, Quantico, VA 22135; Eric G.<br />

Pokorak, BA, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, DNA Analysis Unit I,<br />

Quantico, VA 22135; and Mark R. Ingraham, MS, and H.<br />

Gill-King, PhD, Laboratory of Forensic Anthropology and<br />

Human Identification, Department of <strong>Bio</strong>logical Sciences,<br />

University of North Texas, Denton, TX 76203<br />

Stolze, Dolly K. MA*, 1900 Huntington Lane, Apartment 4,<br />

Redondo Beach, CA 90278<br />

Index 197<br />

The Mastoid Sinuses and Their Potential in<br />

Comparative Radiology for Forensic<br />

Anthropology<br />

Testing the Average Methodological<br />

Approach to Facial Approximation<br />

Skeletal Identification by Radiographic<br />

Comparison: Blind Tests of a Morphoscopic<br />

Method Using Antemortem Chest<br />

Radiographs<br />

Placement of the Human Eyeball and Canthi<br />

in Craniofacial Identification<br />

The Reproducibility of Results From Facial<br />

Approximation Accuracy Tests That Use<br />

Face-Arrays<br />

Facial Soft Tissue Depths in Craniofacial<br />

Identification: Properties Gleaned From a<br />

Comparative Bottom-Up Approach<br />

Reducing Problems With Osteological and<br />

Dental Samples Submitted to Missing Person<br />

DNA Databases<br />

Sex Estimation Using the Petrous Portion of<br />

the Temporal Bone By Linear Regression<br />

Anaylsis<br />

343<br />

603<br />

131<br />

225<br />

163<br />

355<br />

407<br />

20


Stout, Sam D. PhD*, and Deborrah C. Pinto, MA*;<br />

Department of Anthropology, Ohio State University, 124<br />

West 17th Avenue, 244 Lord Hall, Columbus, OH 43210-<br />

1364; Lara E. McCormick, MA*, The Ohio State<br />

University, 2894 Neil Avenue, #513A, Columbus, OH<br />

43202; and Meghan-Tomasita C. Cosgriff-Hernandez, MA,<br />

and Annamaria C. Crescimanno, MA, Department of<br />

Anthropology, Ohio State University, 124 West 17th<br />

Avenue, 244 Lord Hall, Columbus, OH 43210-1364<br />

Strohmeyer, Dawn M. MS*, 12 Bridge Street, Hitchin,<br />

Hertfordshire SG5 2DE, United Kingdom; and Tal L.<br />

Simmons, PhD, Department of Forensic and Investigative<br />

Science, University of Central Lancashire, Preston,<br />

Lancashire PR1 2HE, United Kingdom<br />

Stuart, Jaime MA* and Lyle Konigsberg, PhD, University<br />

of Tennessee, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

Stuart, Jaime MA*, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

Stubblefield, Phoebe R. MA*, CA Pound Human<br />

Identification Laboratory, P.O. Box 112545, University of<br />

Florida, Gainesville, FL<br />

Index 198<br />

Sternal Rib Histomorphometry: A Test of the<br />

Age Estimation Method of Stout, et al. (1994)<br />

Sex and Stature Estimation Based on the<br />

Calcaneus, Talus, and Metatarsal Length<br />

Sternal Rib Standards for Age Estimation in<br />

Balkan Populations: An Evaluation of U.S.<br />

Standards Using Alternative Statistical<br />

Methods<br />

The Effect of Human Body Mass on the Rate<br />

of Decomposition<br />

Body Weight Estimation in Forensic<br />

Anthropology<br />

273<br />

300<br />

477<br />

549<br />

554


Stubblefield, Phoebe R. PhD*, Department of<br />

Anthropology, University of North Dakota, 236 Centennial<br />

Drive Stop 8374, Grand Forks, ND 58202; Susan C. Anton,<br />

PhD*, New York University, Department of Anthropology,<br />

25 Waverly Place, New York, NY 10003; James J.<br />

Snodgrass, PhD*, Department of Anthropology, University<br />

of Oregon, 1218 University of Oregon, Eugene, OR 97405-<br />

1218; Christian Crowder, PhD, <strong>Medical</strong> Examiner’s<br />

Office, 520 1st Avenue, New York, NY 10016; Anthony Di<br />

Fiore, PhD, Department of Anthropology, New York<br />

University, 25 Waverly Place, New York, NY 10003; Dana<br />

L. Duren, PhD, Departments of Community Health,<br />

Neuroscience, Wright State Boonshoft School of Medicine,<br />

3640 Colonel Glenn Highway, Dayton, OH 45435;<br />

Eduardo Fernandez-Duque, PhD, Department of<br />

Anthropology, University of Pennsylvania, 3260 South<br />

Street, Philadelphia, PA 19104-6398; William R. Leonard,<br />

PhD, Department of Anthropology, Northwestern<br />

University, 1810 Hinman Avenue, Evanston, IL 60208-<br />

1330; Steve Leigh, PhD, Department of Anthropology,<br />

University of Illinois, Urbana-Champaign, 109 Davenport<br />

Hall, 607 South Matthews Avenue, Urbana, IL 61801;<br />

Felicia Madimenos, MS, Department of Anthropology,<br />

University of Oregon, 1218 University of Oregon, Eugene,<br />

OR 97405-1218; Scott McGraw, PhD, Department of<br />

Anthropology, The Ohio State University, 174 West 18th<br />

Avenue Columbus, OH 43210; Emily R. Middleton, MS,<br />

and Chris A. Schmitt, MS, Department of Anthropology,<br />

New York University, 25 Waverly Place, New York, NY<br />

10003; Richard J. Sherwood, PhD, Wright State Boonshoft<br />

School of Medicine, 3640 Colonel Glenn Highway, Dayton,<br />

OH 45435; Trudy R. Turner, PhD, Department of<br />

Anthropology, University of Wisconsin-Milwaukee, PO Box<br />

413, Milwaukee, WI 53201; Claudia R. Valeggia, PhD,<br />

Department of Anthropology, University of Pennsylvania,<br />

3260 South Street, Philadelphia, PA 19104-6398; and<br />

Francis J. White, PhD, Department of Anthropology,<br />

University of Oregon, 1218 University of Oregon, Eugene,<br />

OR 97405-1218<br />

Stull, Kyra E. BA*, 108 Firethorne Drive, Greer, SC<br />

29650; Dustin M. James, BA, 7735 Village Drive,<br />

Knoxville, TN 37919; and Joseph T. Hefner, MA, 241<br />

South Stadium Hall, Knoxville, TN 37996<br />

Stull, Kyra Elizabeth BA*, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546<br />

Suckling, Joanna K. BS*, Texas State University, 601<br />

University Drive, San Marcos, TX 78666<br />

Suskewicz, Jaime A. BA*, Louisiana State University, 2000<br />

Brightside Drive, #722, Baton Rouge, LA 70820<br />

Index 199<br />

Integrative Measurement Protocol<br />

Incorporating Morphometric and Behavioral<br />

Research Tools From Forensic Anthropology,<br />

Human <strong>Bio</strong>logy, and Primatology<br />

The Determination of Age Using the<br />

Acetabulum of the Os Coxa<br />

92<br />

315<br />

Sexual Dimorphism in the Juvenile Skeleton 275<br />

A Longitudinal Study on the Outdoor Human<br />

Decomposition Sequence in Central Texas<br />

Estimation of Living Body Weight Using<br />

Measurements of Anterior Iliac Spine<br />

Breadth and Stature<br />

50<br />

520


Swift, Benjamin MB, ChB*, and Guy N. Rutty, MD,<br />

Division of Forensic Pathology, University of Leicester,<br />

Robert Kilpatrick Clinical Sciences Building, Leicester<br />

Royal Infirmary, Leicester LE2 7LX, United Kingdom;<br />

Richard Harrington, PhD, International Commission on<br />

Missing Persons, Alipasina 45a, 71000 Sarajevo, Bosnia<br />

and Herzegovina<br />

Symes, Steven A. PhD*, and Christopher W. Rainwater,<br />

BA, Mercyhurst College, 501 East 38th Street, Erie, PA<br />

16546; and Susan M. Thurston Myster, PhD, Hamline<br />

University, PO Box 196, St. Paul, MN 55104<br />

Symes, Steven A. PhD*, Department of Applied Forensic<br />

Sciences, Mercyhurst College, 501 East 38th Street, Erie,<br />

PA 16546; Anne M. Kroman, MA, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; Susan M.T. Myster, PhD,<br />

Hamline University, Department of Anthropology, St. Paul,<br />

MN 55104; and Christopher W. Rainwater, BA, and John<br />

J. Matia, MS, Mercyhurst College, Department of<br />

Forensic/<strong>Bio</strong>logical Anthropology, Erie, PA 16546<br />

Symes, Steven A. PhD*, Department of Forensic<br />

Pathology, University of Tennessee, Memphis, 1060<br />

Madison Avenue, Memphis, TN; C. Ferraro, PhD, Long<br />

Island University, Long Island University, Brookville, NY,<br />

Susan B. Patton, MNSc, and O’Brian C. Smith, MD,<br />

Department of Forensic Pathology, University of<br />

Tennessee, Memphis, 1060 Madison Avenue, Memphis,<br />

TN; and A.M. Kroman, BA, Department of Anthropology,<br />

University of Tennessee, Knoxville, 252 South Stadium<br />

Hall, Knoxville, TN<br />

Symes, Steven A. PhD*, Mercyhurst Archaeological<br />

Institute, Mercyhurst College, 501 East 38th, Erie, PA<br />

16546-0001; Christopher W. Rainwater, MS, Office of the<br />

Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY<br />

10016; Erin N. Chapman, BA, 216 Maiden Lane, Erie, PA<br />

16504; Desina R. Gipson, BA, 549 East Grandview<br />

Boulevard, Erie, PA 16504; and Kyra E. Stull, BA,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546<br />

Symes, Steven A. PhD*, Mercyhurst College, Department<br />

of Forensic/<strong>Bio</strong>logical Anthropology, 501 East 38th Street,<br />

Erie, PA 16546; James J. Woytash, DDS, MD, Erie County<br />

<strong>Medical</strong> Examiner’s Office, 462 Grider Street, Buffalo, NY<br />

14214; Anne M. Kroman, MA, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; and Andrew C. Wilson, BS,<br />

Department of Forensic/<strong>Bio</strong>logical Anthropology,<br />

Mercyhurst College, Erie, PA 16509<br />

Index 200<br />

Developing the “Isotope Fingerprint” in<br />

Human Skeletal Remains<br />

Standardizing Saw and Knife Mark Analysis<br />

on Bone<br />

Anthropological Saw Mark Analysis on<br />

Bone: What is the Potential of<br />

Dismemberment Interpretation?<br />

From Caffey (1946) to Kempe (1962):<br />

Historical Perspectives of the Recognition of<br />

Child Abuse<br />

Recognizing Patterned Fire and Heat Damage<br />

to Bone<br />

Perimortem Bone Fracture Distinguished<br />

From Postmortem Fire Trauma: A Case<br />

Study With Mixed Signals<br />

526<br />

308<br />

388<br />

607<br />

280<br />

416


Symes, Steven A. PhD*, Susan B. Patton, MNSc*, T.D.<br />

Campbell, MD, Cynthia D. Gardner, MD, O’Brian C.<br />

Smith, MD, T. Paulette Sutton, MS, MT, and Craig T.<br />

Mallak, JD, MD, Department of Forensic Pathology,<br />

University of Tennessee, Memphis, 1060 Madison Avenue,<br />

Memphis, TN; and A.M. Kroman, BA, Department of<br />

Anthropology, University of Tennessee, Knoxville, 252<br />

South Stadium Hall, Knoxville, TN<br />

Synstelien, Jennifer A. MA*, and Michelle D. Hamilton,<br />

MA, Department of Anthropology, University of Tennessee,<br />

250 South Stadium Hall, Knoxville, TN<br />

Synstelien, Jennifer A. MA*, and Walter E. Klippel, PhD,<br />

University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996; and Michelle D.<br />

Hamilton, PhD, Eastern Band of Cherokee Indians, Tribal<br />

Historic Preservation Office, PO Box 455, Cherokee, NC<br />

28719<br />

Synstelien, Jennifer A. MA*, Department of Anthropology,<br />

250 South Stadium Hall, University of Tennessee,<br />

Knoxville, TN<br />

Synstelien, Jennifer A. MA*, The University of Tennessee,<br />

The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37996-0720<br />

Ta’ala, Sabrina C. MA*, and Gregory E. Berg, MA, Joint<br />

POW/MIA Accounting Command Central ID Lab<br />

(JPAC/CIL), 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Ta’ala, Sabrina C. MA*, and Gregory E. Berg, MA, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530<br />

Taborelli, Anna MD, and Salvatore Andreola, MD, Sezione<br />

di Medicina Legale, Dipartimento di Morfologia Umana e<br />

Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY;<br />

Alessia Di Giancamillo, DVM, Dipartimento di Scienze e<br />

Tecnologie Veterinarie p, Università degli Studi, Milan,<br />

ITALY; Guendalina Gentile, BSc, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, Via Mangiagalli, 37, Milano, ITALY; Daniele<br />

Gibelli, MD*, and Marketa Pechnikova, BSc, Laboratorio<br />

di Antropologia e Odontologia Forense, Sezione di<br />

Medicina Legale, Dipartimento di Morfologia Umana e<br />

Scienze <strong>Bio</strong>mediche, Via Mangiagalli, 37, Milan, ITALY;<br />

Cinzia Domeneghini, DVM, Dipartimento di Scienze e<br />

Tecnologie Veterinarie, Università degli Studi, Milan,<br />

ITALY; Marco Grandi, MD, Sezione di Medicina Legale e<br />

delle Assicurazioni di Milano, Dipartimento di Morfologia<br />

Umana e Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan,<br />

ITALY; and Cristina Cattaneo, PhD, Laboratorio di<br />

Antropologia e Odontologia Forense, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY<br />

Index 201<br />

Child Abuse: It’s All in the Recognition 612<br />

Expressions of Handedness in the Vertebral<br />

Column<br />

Raccoon (Protocyon lotor) Foraging as a<br />

Taphonomic Agent of Soft Tissue<br />

Modification and Scene Alteration<br />

Differences in the Os Coxa Between Blacks<br />

and Whites<br />

Raccoon (Protocyon lotor) Soft Tissue<br />

Modfication of Human Remains<br />

Unusual Cranial Base Trauma in Victims of<br />

the Khmer Rouge<br />

The Current and Potential Role of Forensic<br />

Anthropology in Cambodia<br />

Microscopic Markers of Trauma in<br />

Decomposed Bone and Skin<br />

531<br />

461<br />

592<br />

206<br />

418<br />

337<br />

73


Tallman, Sean D. MA*, and Allysha P. Winburn, MA, Joint<br />

POW/MIA Acct Command, Central ID Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853-<br />

5530<br />

Telmon, Norbert MD*, Service de Medecine Legale, CHU<br />

Toulouse, 1 av J. Poulhes, Toulouse Cedex, France; Loic<br />

Lalys, Pascal Adalian,and Marie D. Piercecchi, Universite<br />

de la Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, UMR 6578, 27 Bd J. Moulin, Marseille<br />

Cedex 05, France; Olivier Dutour, Universite de la<br />

Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, CHU Toulouse, 1 av J. Poulhes, Marseille<br />

Cedex 05, France; Daniel Rouge, MD, Service de<br />

Medecine Legale, CHU Toulouse, 1 av J. Poulhes,<br />

Toulouse Cedex, France; and Georges Leonetti, MD, PhD,<br />

Universite de la Mediterranee, Faculte de Medecine, Unite<br />

d’ Anthropologie, UMR 6578, 27 Bd J. Moulin, Marseille<br />

Cedex 05, France<br />

Tersigni, Mariateresa A. MA*, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN<br />

Tersigni, Mariateresa A. MA*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Tersigni, MariaTeresa A. PhD*, Department of<br />

Anthropology, University of Cincinnati, Braunstein 481,<br />

PO 210380, Cincinnati, OH 45221; Amy Michael, BA, 416<br />

West Genesee, Apartment 1, Lansing, MI 48933; and John<br />

E. Byrd, PhD, JPAC/CIL, 310 Worchester Avenue, Hickam<br />

Air Force Base, HI 96853-5530<br />

Tersigni, MariaTeresa PhD, Department of Anthropology,<br />

University of Cincinnati, Braunstein 481 PO 210380,<br />

Cincinnati, OH 45221; Amy Michael, BA*, 416 West<br />

Genesee, Apartment 1, Lansing, MI 48933; Amber Heard,<br />

BA, 16789 Chandler Road, #1632, East Lansing, MI<br />

48823; Christina Malone, BHS, BA, 180 Arbor Glen Drive,<br />

Apartment 203, East Lansing, MI 48823; and John E.<br />

Byrd, PhD, Joint POW/MIA Accounting Command,<br />

Central Identification Lab, 310 Worchester Avenue,<br />

Hickam Air Force Base, HI 96853-5530<br />

Tersigni-Tarrant, MariaTeresa A. PhD*, MCG/UGA<br />

<strong>Medical</strong> Partnership, 279 Williams Street, Athens, GA<br />

30602; John E. Byrd, PhD, 95-033 Hokuiwa Street, #51,<br />

Mililani, HI 96853-5530; and Jiro Manabe, MA, JPAC-<br />

CIL, 310 Worchester Avenue Building 45, Hickam AFB,<br />

Honolulu, HI 96853<br />

Terstegge, Stacie MS*, University of New Haven, Public<br />

Safety and Professional Studies, California Campus, 6060<br />

Sunrise Vista Boulevard, Citrus Heights, CA 95610;<br />

Brandi Schmitt, MS, University of California, Department<br />

of Cell <strong>Bio</strong>logy and Human Anatomy, School of Medicine,<br />

Davis, CA 95616<br />

Index 202<br />

Applicability of Femur Subtrochanteric<br />

Shape to Ancestry Assessment<br />

Age Estimation of the Immature Individuals<br />

Starting From the Ratio Epiphysis<br />

Width/Diaphysis Width of the Bones of the<br />

Hand and the Wrist<br />

Frozen Human Bone: A Histological<br />

Investigation<br />

Serial Bone Histology: Interand Intra-Bone<br />

Age Estimation<br />

Osteon Area and Circularity: A Method for<br />

the Assessment for Human and Non-Human<br />

Fragmentary Remains<br />

Osteon Area Measurements - A Validation<br />

Study<br />

Test of Osteon Circularity as a Method of<br />

Human/Non-Human Identification<br />

Anthropological Tissue Depth Measurement<br />

Standards: A Comparison For Accurate<br />

Facial Reproduction<br />

29<br />

587<br />

545<br />

453<br />

292<br />

291<br />

55<br />

482


Thew, Heather A. MS*, and Stephen P. Nawrocki, PhD,<br />

University of Indianapolis, 1400 East Hanna Avenue<br />

Indianapolis, IN<br />

Thomas, Tammy S. BS*, 910 San Jacinto Street, Lockhart,<br />

TX 78644; and Tal Simmons, PhD, School of Forensic &<br />

Investigative Sciences, University of Central Lancashire,<br />

Preston, PR1 2HE, UNITED KINGDOM<br />

Tichnell, Tracey A. BS*, Michigan State University,<br />

Department of Anthropology, East Lansing, MI 48824<br />

Tichnell, Tracey BS*, 354 Baker Hall, East Lansing, MI<br />

48824<br />

Tise, Meredith L. BA*, Texas State University, Department<br />

of Anthropology, 601 University Drive, ELA 232, San<br />

Marcos, TX 78666; and Kate Spradley, PhD, Texas State<br />

University, Department of Anthropology, 601 University<br />

Drive, San Marcos, TX 78666<br />

To, Denise MA*, Department of Anthropology, Arizona<br />

State University, Box 87-2402, Arizona State University,<br />

Tempe, AZ<br />

To, Denise MA*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

To, Denise PhD*, JPAC-CIL, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853; and Carrie A.<br />

Brown, MA, Joint POW/MIA Accounting Command,<br />

Central Identification Lab, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Tocheri, Matthew W. BA*, and Anshuman Razdan, PhD,<br />

PRISM, Arizona State University, Box 87-5106, Tempe, AZ<br />

Tomberlin, Jeffery K. PhD*, Texas A&M University, 1229<br />

North U.S. Highway 281, Stephenville, TX 76401; A.<br />

Midori Albert, PhD*, University of North Carolina at<br />

Wilmington, 601 South College Road, Wilmington, NC<br />

28403; Jason H. Byrd, PhD, Office of the <strong>Medical</strong><br />

Examiner, 1360 Indian Lake Road, Daytona Beach, FL<br />

32164;and David W. Hall, PhD, David Hall Consultant,<br />

Inc., 3666 Northwest 13th Place, Gainesville, FL 32605<br />

Torpey, Melissa A. MS*, and Philip N. Williams, BS,<br />

Federal Bureau of Investigation Counterterrorism and,<br />

Forensic Science Research Unit, FBI Academy, Building<br />

12, Quantico, VA 22135<br />

Torpey, Melissa A. MS*, Michigan State University, 7<br />

Gardenwood Drive, Asheville, NC 28803<br />

Torwalt, Carla R. BSc*, Thambirajah Balachandra, MBBS,<br />

and Janice Epp, RN, HBScN, Office of the Chief <strong>Medical</strong><br />

Examiner, 210-1 Wesley Avenue, Winnipeg, Manitoba,<br />

Canada<br />

Toyne, J. Marla MA*, John W. Verano, PhD, and Laurel S.<br />

Hamilton, MA, Tulane University, 1021 Audubon Street,<br />

Department of Anthropology, New Orleans, LA 70118<br />

Index 203<br />

The Effects of Lime on the Decomposition<br />

Rate of Buried Remains<br />

The Relationship Between Directionality of<br />

Force and the Formation of Butterfly<br />

Fractures<br />

Escaping Tennessee: Regions for Taphonomy<br />

Research Beyond Eastern Tennessee<br />

Effect of Loading Environment on the<br />

Healing of Long Bone Fractures<br />

Postcranial Sex Estimation of Individuals<br />

Considered Hispanic<br />

Three-Dimensional Digital Data Acquisition:<br />

A Test of Measurement Error<br />

Sexual Dimorphism of Joint Surface Area<br />

through 3-D Digital Data Modeling<br />

Recovery and Identification of a WWI<br />

American Doughboy in Rembercourt-sur-<br />

Mad, France<br />

Quantitative Analyses of Human Pubic<br />

Symphyseal Morphology Using Three-<br />

Dimensional Data: The Potential Utility for<br />

Aging Adult Human Skeletons<br />

Interdisciplinary Forensic Science<br />

Workshops: A Venue for Data Collection<br />

Identity Crisis: The Number and Quality of<br />

Unidentified Decedent Data and a New<br />

Solution<br />

Stages of Epiphyseal Union in the Cervical<br />

Vertebrae of Young Adult Skeletons<br />

Cervical Smears as an Alternate Source of<br />

DNA in the Identification of Human Skeletal<br />

Remains<br />

Finding Clues on the Bony Surface: The Use<br />

of Markers of Occupational Stresses as Aids<br />

to Identification and Age Determination in<br />

Skeletonized Remains<br />

598<br />

31<br />

412<br />

279<br />

118<br />

564<br />

159<br />

42<br />

596<br />

462<br />

290<br />

301<br />

562<br />

455


Trammell, Lindsay H. MA*, Murray K. Marks, PhD, and<br />

Walter E. Klippel, PhD, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37966-0720; and Darinka Mileusnic-<br />

Polchan, MD, PhD, UTMCK, Department of Pathology,<br />

1924 Alcoa Highway, Knoxville, TN 37920<br />

Trammell, Lindsay H. MA*, University of Tennessee-<br />

Knoxville, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996-0720<br />

Troy, Amanda B. MSc*, 13 Castlerock, Tulla Road, Ennis,<br />

IRELAND; and Colin Moffatt, PhD, and Tal Simmons,<br />

PhD, School of Forensic & Investigative Sciences,<br />

University of Central Lancashire, Preston, PR1 2HE,<br />

UNITED KINGDOM<br />

Truesdell, Nicole D. BA*, 1933 South Brightside View<br />

Drive, Apartment E, Baton Rouge, LA 70820<br />

Tuller, Hugh H. MA*, and Joan Baker, PhD, Joint<br />

POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, Hawaii<br />

96853<br />

Tuller, Hugh H. MA*, International Commission on<br />

Missing Persons, Alipasina 45a, 71000, Sarajevo<br />

Tuller, Hugh H. MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Cecily<br />

Cropper, BSc*, Ute Hofmeister, MA*, Laura Yazedjian,<br />

MSc, Jon Sterenberg, MSc, and Jon M. Davoren, MA*,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Tuller, Hugh H. MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530; Ute<br />

Hofmeister, MA, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and<br />

Herzegovina; and Sharna Daley, MSc, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

Tuller, Hugh MA*, Joint POW/MIA Accounting Command,<br />

Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853-5530; and Jon Sterenberg, MS,<br />

International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

Ubelaker, Douglas H. PhD*, Department of Anthropology,<br />

MRC 112, National Museum of Natural History,<br />

Smithsonian Institution, Washington, DC 20560; Bruce A.<br />

Buchholz, PhD, Center for Accelerator Mass Spectrometry,<br />

Mail Stop L-397, Lawrence Livermore National<br />

Laboratory, PO Box 808, Livermore, CA 94551; and John<br />

Stewart, PhD, Federal Bureau of Investigation, DNA<br />

Analysis Unit II, 2501 Investigation Parkway, Quantico,<br />

VA 22135<br />

Index 204<br />

Cranial Histomorphology: Species<br />

Identification and Age Estimation<br />

A Histological Examination of Odocoileus<br />

virginianus for Forensic Application<br />

The Relationship Between Ambient<br />

Temperature and the Temperature of Maggot<br />

Masses on Decomposing Pig and Rabbit<br />

Carcasses<br />

Nonmetric Characteristics of the Skull for<br />

Determining Race in Blacks and Whites<br />

Bodies and Body Parts: When and How to<br />

Record Them During the Excavation of Mass<br />

Graves<br />

Dirty Secrets: Identification of Older Crime<br />

Scenes in the Former Yugoslavia Through<br />

Blood Protein and Volatile Fatty Acid Soil<br />

Analysis<br />

New Tools for the Processing of Human<br />

Remains From Mass Graves: Spatial Analysis<br />

and Skeletal Inventory Computer Programs<br />

Developed for an Inter-Disciplinary<br />

Approach to the Re-association of<br />

Commingled, Disarticulated and Incomplete<br />

Human Remains<br />

The Importance of Body Deposition<br />

Recording in Event Reconstruction and the<br />

Re-Association and Identification of<br />

Commingled Remains<br />

Not for the Passive: The Active Application<br />

of Electronic Resistivity in the Excavation of<br />

a Mass Grave<br />

Evaluation of Date of Death Through<br />

Analysis of Artificial Radiocarbon in Distinct<br />

Human Skeletal and Dental Tissues<br />

265<br />

293<br />

63<br />

466<br />

320<br />

539<br />

464<br />

441<br />

424<br />

403


Ubelaker, Douglas H. PhD*, Department of Anthropology,<br />

NMNH - MRC 112, Smithsonian Institution, Washington,<br />

DC 20560; and Roberto C. Parra, BA, Instituto de<br />

Medicina Legal del Peru, Av. Abancay 491 6to Piso, Lima,<br />

PERU<br />

Ubelaker, Douglas H. PhD*, Department, Anthropology,<br />

Smithsonian Institution, Washington, DC; Dennis C. Ward,<br />

BS, FBI Laboratory, Washington, DC; Valeria S. Braz,<br />

MSc, Federal University of Rio de Janeiro, Rio de Janeiro,<br />

Brazil; and John Stewart, PhD, FBI, Washington, DC<br />

Ubelaker, Douglas H. PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Smithsonian Institution, Washington, DC 20560<br />

Ubelaker, Douglas H. PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Washington, DC 20560<br />

Ubelaker, Douglas H. PhD*, Smithsonian Institution,<br />

Department of Anthropology, NMNH, MRC 112,<br />

Washington, DC 20560; Jerold M. Lowenstein, MD,<br />

California Pacific <strong>Medical</strong> Center, 2333 Buchanan Street,<br />

San Francisco, CA 94115; Darden G. Hood, BS,<br />

MicroAnalytica, LLC, 4989 SW 74 Court, Miami, FL<br />

33155<br />

Uhl, Natalie M. BS, University of Indianapolis, 1400 East<br />

Hanna Avenue, Indianapolis, IN 46227; Joseph T. Hefner,<br />

MA, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and John J. Schultz, PhD, University<br />

of Central Florida, 4000 Central Florida Boulevard,<br />

Orlando, FL 32816<br />

Uhl, Natalie M. MS*, 308 North Orchard Street,<br />

Apartment 7, Urbana, IL 61801; Nicholas V. Passalacqua,<br />

MS, 1559 Mount Vernon, East Lansing, MI 48823; and<br />

Lyle W. Konigsberg, PhD, University of Illinois, 109<br />

Davenport Hall, 607 South Mathews Avenue, Urbana, IL<br />

61801<br />

Uhl, Natalie MS*, 1503 North Pennsylvania Street,<br />

Apartment 21, Indianapolis, IN 46202<br />

Uhl, Natalie MS*, 308 North Orchard Avenue, Apartment<br />

7, Urbana, IL 68101<br />

Uhl, Natalie MS*, 308 North Orchard Street, Apartment 7,<br />

Urbana, IL 61801<br />

Van Deest, Traci L BA*, California State University,<br />

Chico, Department of Anthropology, 311 Butte Hall,<br />

Chico, CA 95929<br />

Vass, Arpad A. PhD*, and Madhavi Martin, PhD, Oak<br />

Ridge National Laboratory, 1 Bethel Valley Road, 1505,<br />

MS 6038, Oak Ridge, TN 37831- 6038; Jennifer Synstelien,<br />

MA, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; and Kimberly Collins, BS,<br />

Maryville College, College Avenue, Maryville, TN 37804<br />

Vass, Arpad A. PhD*, Oak Ridge National Laboratory,<br />

P.O. Box 2008, Oak Ridge, TN<br />

Index 205<br />

Dental Aging Methods and Population<br />

Variation as Demonstrated in a Peruvian<br />

Sample<br />

Differentiation of Bone and Tooth From<br />

Other Materials Using SEM/EDS Analysis<br />

International Research in Forensic<br />

Anthropology<br />

Advances in the Assessment of Commingling<br />

Within Samples of Human Remains<br />

Species Identification of Small Skeletal<br />

Fragments Using Protein Radioimmunoassay<br />

(pRIA)<br />

Geometric Morphometrics of the Scapula: An<br />

Assessment of Ancestry<br />

A Bayesian Approach to Multifactorial Ageat-Death<br />

Estimation<br />

Multifactorial Determination of Age at Death<br />

From the Human Skeleton<br />

Estimation of Age at Death From the Juvenile<br />

Scapula<br />

New Scapular Measurements for Determining<br />

Sex<br />

Sifting Through the “Ashes”: Age and Sex<br />

Estimation Based on Cremains Weight<br />

Elemental Characterization of Skeletal<br />

Remains Using Laser-Induced Breakdown<br />

Spectroscopy (LIBS)<br />

257<br />

600<br />

479<br />

445<br />

525<br />

311<br />

13<br />

257<br />

198<br />

116<br />

350<br />

435<br />

The National Forensic Academy 561


Vella, Giancarlo Di MD*, Carlo Pietro Campobasso, MD,<br />

PhD, and Francesco Introna, MD, Section of Legal<br />

Medicine, University of Bari, Policlinico, piazza G.<br />

Cesare, Bari, Italy<br />

Verano, John W. PhD*, Brian Pierson, BA, and Anne<br />

Titelbaum, MA, Doris Z. Stone Laboratory of <strong>Bio</strong>logical<br />

and Forensic Anthropology, Department of Anthropology,<br />

Tulane University, 1326 Audubon Street, New Orleans, LA<br />

70118<br />

Verano, John W. PhD*, Department of Anthropology,<br />

Tulane University, 1021 Audubon Street, New Orleans, LA<br />

70118<br />

Vidarsdottir, Una Strand BSc, PhD*, Department of<br />

Anthropology, University of Durham, 43 Old Elvet,<br />

Durham, County Durham DH1 3HN, United Kingdom<br />

Vidoli, Giovanna M. MSc*, 56 Mitchell Avenue,<br />

Binghamton, NY 13903<br />

Vigil, Bianca MFS*, Ismail Sebetan, MD, PhD, and Paul<br />

Stein, PhD, Forensic Sciences Program, National<br />

University, 11255 North Torrey Pines Road, La Jolla, CA<br />

92037<br />

Vincent, Daisy D.M. MA*, 29 rue des Poudrieres,<br />

Neuchatel, 2000, SWITZERLAND<br />

Vollner, Jennifer M. MS*, 328 Baker Hall, East Lansing,<br />

MI 48824; Nicholas V. Passalacqua, MS, 1559 Mount<br />

Vernon, East Lansing, MI 48823; and Christopher W.<br />

Rainwater, MS, Office of the Chief <strong>Medical</strong> Examiner, 520<br />

1st Avenue, New York, NY 10016<br />

Vollner, Jennifer M. MS*, 328 Baker Hall, East Lansing,<br />

MI 48824; Nicholas V. Passalacqua, MS, 3518 Hagadorn<br />

Road, Okemos, MI 48864-4200; and Stephen D. Ousley,<br />

PhD, Mercyhurst College, Department of Applied Forensic<br />

Anthropology, 501 East 38th Street, Erie, PA 16546<br />

W. Mires, Ann Marie PhD*, Chief <strong>Medical</strong> Examiner, 720<br />

Albany Street, Boston, MA; Mary H. Manhein, MA,<br />

Louisiana State University, FACES Laboratory, Baton<br />

Rouge, LA; Greg Mahoney, Boston Crime Laboratory, 720<br />

Albany Street, Boston, MA; and Eileen Barrows, Louisiana<br />

State University, Faces Laboratory, Baton Rouge, LA<br />

W. Mires, Ann Marie PhD*, Office of the Chief <strong>Medical</strong><br />

Examiner, 720 Albany Street, Boston, MA 02118; Alberto<br />

Giordano, PhD, Department of Geography, University of<br />

Texas, Austin, TX 77005<br />

Wagner, Sarah PhD*, University of North Carolina<br />

Greensboro, Department of Anthropology, 437 Graham<br />

Building, Greensboro, North Carolina 27410<br />

Waldrip, Edward B. PhD*, Southern Institute of Forensic<br />

Science, PO Box 15764, Hattiesburg, MS; Ted A. Rathbun,<br />

PhD, University of South Carolina, Department of<br />

Anthropology, Columbia, SC; Steven A. Symes, PhD,<br />

Regional Forensic Center, 1060 Madison Avenue,<br />

Memphis, TN; and James E. Lee, Adams County, 112 South<br />

Wall Street, Natchez, MS<br />

Index 206<br />

Peculiar Marine Taphonomy Findings:<br />

Preservation of Human Remains as a Result<br />

of Submersion in Sequestered Environments<br />

Left Hanging in Mandeville: Multiple<br />

Approaches in Search of a Positive<br />

Identification<br />

Serial Murder With Dismemberment of<br />

Victims in an Attempt to Hinder<br />

Identification: A Case Resolved Through<br />

Multidisciplinary Collaboration<br />

Geometric Morphometric Techniques for<br />

Ancestry Assessment in Sub-Adults<br />

Fragmentation Patterns of Victims From a<br />

Fatal Aviation Accident<br />

Dual Energy X-ray Absorptiometry (DEXA)<br />

Scans for Skeletal Remains Identification of<br />

Anorexia Nervosa<br />

Effects of Heat-Modification on Sharp Force<br />

Trauma in Charred Remains<br />

New Linear Measurements for the Estimation<br />

of Sex From the Human Sacrum<br />

The Use of Geometric Morphometric<br />

Analysis for Subadult Sex Estimation<br />

Utilizing Innominates<br />

Reconstructing Facial Freeform Images<br />

Using FREEFORM Software<br />

Using GIS Technology to Locate Clandestine<br />

Human Remains<br />

The Social Effects of Recognizing<br />

Srebrenica’s Missing<br />

Human Skeleton Found in a Chimney: A<br />

Misidentification Corrected and an<br />

Opportunity to Reevaluate Methods of<br />

Superimposition<br />

547<br />

284<br />

457<br />

478<br />

278<br />

224<br />

76<br />

19<br />

118<br />

565<br />

515<br />

143<br />

603


Walsh-Haney, Heather A. MA*, CA Pound Human<br />

Identification Laboratory, University of Florida, PO Box<br />

112545, Gainesville, FL 32611<br />

Walsh-Haney, Heather A. MA*, John J. Schultz, MS, and<br />

Anthony B. Falsetti, PhD, C.A. Pound Human<br />

Identification Laboratory/Department of Anthropology,<br />

University of Florida, P.O. Box 112545, Gainesville, FL;<br />

and Reinhard W. Motte, MD, Miami-Dade County, District<br />

11 Office of the <strong>Medical</strong> Examiner, Number One on Bob<br />

Hope Road, Miami, FL<br />

Walsh-Haney, Heather A. MA*, John J. Schultz, PhD, and<br />

Anthony B. Falsetti, PhD, University of Florida, C.A.<br />

Pound Human Identification Laboratory, PO Box 112545,<br />

Gainesville, FL 32611<br />

Walsh-Haney, Heather MA*, and Sulekha R. Coticone,<br />

PhD*, Florida Gulf Coast University, 10501 FGCU<br />

Boulevard, Ft. Myers, FL 33965<br />

Wankmiller, Jane C. MA*, Michigan State University,<br />

Department of Anthropology, 354 Baker Hall, East<br />

Lansing, MI 48824<br />

Warnasch, Scott C. MA*, New York City Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 First Avenue, New York, NY<br />

10016; Christian Crowder, PhD, Office of the Chief<br />

<strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016;<br />

and Kristen Hartnett, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, Forensic Anthropology, 520 1st Avenue, New<br />

York, NY 10016<br />

Warren, Michael W. PhD*, Department of Anthropology,<br />

University of Florida, Gainesville, FL; Leslie E. Eisenberg,<br />

PhD, Wisconsin Historical Society, 816 State Street,<br />

Madison, WI; Heather Walsh-Haney, MA, University of<br />

Florida, C.A. Pound Human Identification Laboratory,<br />

University of Florida, Gainesville, FL; and, Julie Mather<br />

Saul, BA, Lucas County <strong>Medical</strong> Coroner’s Office, 2595<br />

Arlington Avenue, Toledo, OH<br />

Watamaniuk, Lelia BSc*, University of Toronto,<br />

Department of Anthropology, 3359 Mississauga Road,<br />

North, NB 226, Mississauga, ON M4V 1R6, CANADA<br />

Waters, Kevin A. BS*, Laura Gibson, BS, and Heather A.<br />

Walsh- Haney, PhD, Florida Gulf Coast University,<br />

Division of Justice Studies, 10501 FGCU Boulevard South,<br />

AB3, Fort Myers, FL 33965-6565<br />

Waxenbaum, Erin B. MA*, C.A. Pound Human<br />

Identification Lab, University of Florida, PO Box 103615,<br />

1376 Mowry Road, Gainesville, FL 32610; Anthony B.<br />

Falsetti, PhD, C.A. Pound Human Identification Lab,<br />

University of Florida, PO Box 103615, 1376 Mowry Road,<br />

Gainesville, FL 32601; and David R. Hunt, PhD, National<br />

Museum of Natural History, Smithsonian Institution,<br />

Department of Anthropology, Washington, DC 20560<br />

Index 207<br />

Cross-Sectional Diaphyseal Geometry,<br />

Degenerative Joint Disease, and Joint Surface<br />

Area in Human Limb Bones: A Comparison<br />

of American Whites & Blacks<br />

Rituals Among the Santeria: Contextual<br />

Clues and Forensic Implications<br />

Footnotes: Diabetic Osteopathy Used in<br />

Human Identification<br />

Correlation of Forensic Anthropologic<br />

Findings With DNA Profiles Obtained From<br />

Cold Cases<br />

Positive Identification Using Radiographs of<br />

the Lumbar Spine: A Validation Study<br />

Archaeological Methodology Used at the<br />

World Trade Center Site During the<br />

2006/2007 Recovery Excavation<br />

Anthropology at Fresh Kills: Recovery and<br />

Identification of the World Trade Center<br />

Victims<br />

The Assessment and Determination of<br />

Forensic Significance in Forensic<br />

Anthropology<br />

Archival Matters: The William R. Maples<br />

Collection at Florida Gulf Coast University<br />

Morphological Variation of the Human Knee:<br />

Implications for Sex and Ancestral<br />

Designations<br />

456<br />

544<br />

504<br />

314<br />

132<br />

39<br />

570<br />

115<br />

221<br />

330


Waxenbaum, Erin B. MA*, C.A. Pound Human<br />

Identification Laboratory, Department of Anthropology,<br />

University of Florida, PO Box 112545, Building 114,<br />

Gainesville, FL 32611; David R. Hunt, PhD, Department<br />

of Anthropology, National Museum of Natural History,<br />

Smithsonian Institution, Washington, DC 20560; and<br />

Anthony B. Falsetti, PhD, C.A. Pound Human<br />

Identification Lab, Department of Anthropology, University<br />

of Florida, PO Box 112545, Building 114, Gainesville, FL<br />

32611<br />

Waxenbaum, Erin B. PhD*, 1810 Hinman Avenue,<br />

Evanston, IL 60208; and Kelsea Linney, BA*,<br />

Northwestern University, 1810 Hinman Avenue, Evanston,<br />

IL 60208<br />

Webb, Nicole M. BS*, 19760 Osprey Cove Boulevard,<br />

Apartment 136, Fort Myers, FL 33967; Heather A. Walsh-<br />

Haney, PhD, Katy L. Shepherd, BS, and Christen E.<br />

Herrick, BS, Florida Gulf Coast University, Division of<br />

Justice Studies, 10501 Florida Gulf Coast University<br />

Boulevard South, AB3, Fort Myers, FL 33965-6565; Alyssa<br />

L. Butler, BA, 9795 Glen Heron Drive, Bonita Springs, FL<br />

34135; Marta U. Coburn, MD, District 20 <strong>Medical</strong><br />

Examiner’s Office, 3838 Domestic Avenue, Naples, FL<br />

34104; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

Wedel, Vicki L. MA*, and Joshua B. Peabody, MA*,<br />

University of California, Santa Cruz, Department of<br />

Anthropology, 1156 High Street, Social Sciences 1 Faculty<br />

Services, Room 361, Santa Cruz, CA 95064<br />

Wedel, Vicki L. MA*, Department of Anthropology,<br />

University of California, 1156 High Street, SS1 Faculty<br />

Services, Santa Cruz, CA 95064-1077; Shannon Bowman,<br />

BA, Texas A&M University, Department of Anthropology,<br />

College Station, TX 77483<br />

Wedel, Vicki L. MS, MA*, University of California, Santa<br />

Cruz, Department of Anthropology, Social Sciences 1<br />

Faculty Services, 1156 High Street, Santa Cruz, CA 95060<br />

Weitzel, Misty A. PhD*, Oregon State University, Waldo<br />

212, Corvallis, OR 97333<br />

Wescott, Daniel J PhD*, University of Missouri-Columbia,<br />

Department of Anthropology, 107 Swallow Hall, Columbia,<br />

MO 65211<br />

Wescott, Daniel J. PhD*, University of Missouri at<br />

Columbia, Department of Anthropology, 107 Swallow Hall,<br />

Columbia, MO 65211; Deepa Srikanta, BA, University of<br />

Missouri at Columbia, Department of <strong>Bio</strong>logy, Columbia,<br />

MO 65211<br />

Wescott, Daniel J. PhD*, University of Missouri-<br />

Columbia, Department of Anthropology, 107 Swallow Hall,<br />

Columbia, MO 65211<br />

Wessling, Roland BSc*, and Ambika Flavel, MSc, Inforce<br />

Foundation, Cranfield University, Cranfield Forensic<br />

Institute, Shrivenham, SN6 8LA, UNITED KINGDOM<br />

Index 208<br />

To Measure or Not to Measure: An Analysis<br />

of Maximum Length of the Tibia<br />

The Condyle Connection: Forensic<br />

Implications for the Association Between the<br />

Condyles of the Femur and Tibia<br />

Dead Man’s Curve: How Scoliosis Affects<br />

Rib Aging<br />

Analysis of Season at Death Using<br />

Cementum Increment Analysis<br />

How to Look a Gift Corpse in the Mouth:<br />

Season at Death Determined by Cementum<br />

Increment Analysis<br />

392<br />

44<br />

129<br />

414<br />

387<br />

Race vs. Ancestry: A Necessary Distinction 492<br />

Temperature Variability in the Burial<br />

Environment<br />

Using Growth Data to Understand Secular<br />

Trends in Femur Diaphyseal Size and Shape<br />

among American Adults<br />

Racial Assessment Using the Platymeric<br />

Index<br />

Ontogeny of Femur Subtrochanteric Shape:<br />

Implications for Determining Ancestry Using<br />

the Platymeric Index<br />

Training in Forensic Archaeology and<br />

Anthropology on a Shoestring: Is It Possible?<br />

Is It Sensible?<br />

386<br />

333<br />

489<br />

370<br />

152


Wessling, Roland MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institutde, Shrivenham, 0<br />

SN6 8LA, UNITED KINGDOM<br />

Wessling, Roland MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institute, Shrivenham, SN6<br />

8LA, UNITED KINGDOM; and Louise Loe, PhD, Oxford<br />

Archaeology, Janus House, Osney Mead, Oxford, OX2<br />

0ES, UNITED KINGDOM<br />

Wessling, Roland MSc*, Inforce Foundation, Cranfield<br />

University, Cranfield Forensic Institute, Shrivenham, SN6<br />

8LA, UNITED KINGDOM; and Louise Loe, PhD, Oxford<br />

Archaeology, Janus House, Osney Mead, Oxford, OX2<br />

0ES, UNITED KINGDOM<br />

Wheat, Amber D. BS*, 232 Evan Liberal Arts, 601<br />

University Drive, San Marcos, TX 78666<br />

Wheatley, Bruce P. PhD*, Department of Anthropology<br />

and Social Work, University of Alabama, Birmingham, AL<br />

35294-3350<br />

White*, Rebecca E. 1 Harlestone Court, Harlestone Road,<br />

Dallington, Northampton, Northamptonshire, NN5 7AP,<br />

United Kingdom<br />

Whitman, Elizabeth J. MA*, 1044 Eugenia Drive, Mason,<br />

MI 48854<br />

Widya, Marcella M.C. BSc*, 14 Stanleyfield Road,<br />

Preston, Lancashire PR1 1QL, UNITED KINGDOM<br />

Wieberg, Danielle A.M. MA*, Knoxville Police<br />

Department, 800 Howard Baker, Jr. Avenue, PO Box 3610,<br />

Knoxville, TN 37927; and Daniel J. Wescott, PhD, Florida<br />

International University, Department of <strong>Bio</strong>logical<br />

Sciences, 11200 Southwest 8th Street, Miami, FL 333199<br />

Wiersema, Jason M. MA*, Department of Anthropology,<br />

Texas A&M University, College Station, TX 77840; Mario<br />

Vasquez, MA, Oficina de Derechos Humanos del<br />

Arzobizpado de Guatemala, 115 5th Avenue, Guatemala<br />

City, 33154, Guatemala; Luis Rios, MA, Department of<br />

Anthropology, Universidad Autonima de Madrid, Madrid,<br />

15404, Spain<br />

Wiersema, Jason M. MA*, Department of Anthropology,<br />

Texas A&M University, College Station, TX 77843-4352<br />

Wiersema, Jason M. PhD*, Harris County <strong>Medical</strong><br />

Examiner, 1885 Old Spanish Trail, Houston, TX<br />

Wiersema, Jason M. PhD*, Harris County <strong>Medical</strong><br />

Examiner, Anthropology Division, Houston, TX 77054; and<br />

Jennifer C. Love, PhD, Sharon M. Derrick, PhD, and Luis<br />

A. Sanchez, MD, Harris County, <strong>Medical</strong> Examiner’s<br />

Office, 1885 Old Spanish Trail, Houston, TX 77054<br />

Index 209<br />

Realism in Simulation Training: Examples of<br />

Mass Grave Excavation and Mass Fatality<br />

Incident Mortuary Simulation Exercises<br />

The Fromelles Project: Organizational and<br />

Operational Structures of a Large Scale Mass<br />

Grave Excavation and On-Site<br />

Anthropological Analysis<br />

The Fromelles Project – The Recovery and<br />

Identification of British and Australian WWI<br />

Soldiers From Mass Graves in Northern<br />

France<br />

Estimating Ancestry Through Nonmetric<br />

Traits of the Skull: A Test of Education and<br />

Experience<br />

Postmortem and Perimortem Fracture<br />

Patterns in the Long Bones of Deer<br />

Decomposition in a Mass Grave and the<br />

Implications for Post Mortem Interval<br />

Estimates<br />

Distinguishing Between Human and Non-<br />

Human Secondary Osteons in Ribs<br />

Predicting the Postmortem Submersion<br />

Interval From the Adipocere Formation on<br />

Rabbits<br />

Interpretation and Confirmation of Patterned<br />

Clothing Stains Observed on Both Tibiae<br />

Silent Slaughter in Guatemala: The<br />

Importance of Sex, Age, and Pathological<br />

Identification in a Case of Large Scale,<br />

Deliberate Starvation of Children<br />

The Human Petrous Temporal Bone:<br />

Potential for Forensic Individuation<br />

The Petrous Portion of the Human Temporal<br />

Bone Revisited: A Bayesian Analysis of its<br />

Potential Value in the Identification of<br />

Human Skeletal Remains<br />

The Role of the Harris County <strong>Medical</strong><br />

Examiner’s Office Forensic Anthropology<br />

Division in Scientific Identification<br />

236<br />

3<br />

43<br />

206<br />

509<br />

339<br />

525<br />

110<br />

64<br />

482<br />

361<br />

343<br />

178


Wiersema, Jason M. PhD*, Harris County <strong>Medical</strong><br />

Examiner, Anthropology Division, Houston, TX 77054;<br />

Jennifer C. Love, PhD, and Luis A. Sanchez, MD, Harris<br />

County, <strong>Medical</strong> Examiner’s Office, 1885 Old Spanish<br />

Trail, Houston, TX 77054<br />

Williams, Anna PhD*, Cranfield University, Defense<br />

Academy of the United Kingdom, Shrivenham, SN6 8LA,<br />

UNITED KINGDOM<br />

Williams, John A. PhD*, Anthropology & Sociology,<br />

Western Carolina University, 101 McKee Hall, Cullowhee,<br />

NC 28723<br />

Williams, John A. PhD*, Anthropology & Sociology,<br />

Western Carolina University, 101 McKee Hall, Cullowhee,<br />

NC 28723<br />

Williams, John A. PhD*, University of North Dakota, Box<br />

8374, Grand Forks, ND<br />

Williams, John A. PhD*, Western Carolina University,<br />

Department of Anthropology and Sociology, Cullowhee,<br />

NC 28723<br />

Williams, Philip N BS*, and Melissa A Torpey, MS,<br />

Federal Bureau of Investigation, Counterterrorism and<br />

Forensic Science Research Unit, Building 12, Quantico,<br />

VA 22135; and Lisa Bailey, BA, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway,<br />

SPU/Room 1115, Quantico, VA 22135<br />

Williams, Shanna E. MA*, University of Florida, C.A.<br />

Pound Human Identification Laboratory, 1376 Mowry<br />

Road, Gainesville, FL 32610<br />

Williams, Shanna E. PhD*, University of Florida,<br />

Department of Anatomy and Cell <strong>Bio</strong>logy, PO Box 100235,<br />

Gainesville, FL 32610- 0235; and Ann H. Ross, PhD,<br />

North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107<br />

Williams, Shanna E. PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235<br />

Williams, Shanna E. PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235; and Ann H. Ross, PhD, North Carolina State<br />

University, Sociology and Anthropology, Campus Box<br />

8107, Raleigh, NC 27695-8107<br />

Williams, Shanna E. PhD*, University of Florida,<br />

Department of Anatomy, PO Box 100235, Gainesville, FL<br />

32610-0235; Dennis E. Slice, PhD, Department of<br />

Scientific Computing, Florida State University,<br />

Tallahassee, FL 32306; and Anthony B. Falsetti, PhD, CA<br />

Pound Human Id Lab, C/O Cancer/Genetics Research, PO<br />

Box 103615, Gainesville, FL 32610<br />

Wilson, Rebecca J. BS*, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Index 210<br />

Practical Consideration of the Daubert<br />

Guidelines on Methods of Identification in<br />

the <strong>Medical</strong> Examiner Setting<br />

Femmes Fatales: Why Do Women Dominate<br />

the Discipline of Forensic Anthropology?<br />

Anthropology for Breakfast: A Semi-<br />

Cautionary Tale<br />

Saw Cut Marks in Bone Created by Atypical<br />

Saws<br />

It Came Out of the Sky: Cremains as an<br />

Aerial Hazard<br />

Bone Fragmentation Created by a Mechanical<br />

Wood Chipper<br />

VICTIMS Identification Project: The<br />

Nation’s Unidentified...Who Are They? And<br />

What Can We Do?<br />

220<br />

11<br />

197<br />

237<br />

549<br />

298<br />

226<br />

A New Method for Evaluating Orbit Shape 325<br />

Shifting Morphological Structure: Comparing<br />

Craniometric Morphology in Founding and<br />

Descendant Populations<br />

The More the Better?: Evaluating the Impact<br />

of Fixed Semi-Landmark Number in Cranial<br />

Shape Variation Analyses<br />

Subadult Ancestry Determinations Using<br />

Geometric Morphometrics<br />

209<br />

37<br />

103<br />

Age-Related Change in Adult Orbital Shape 171<br />

Sexing the Zygomatic Bone 450


Wilson, Rebecca J. MA*, Jonathan D. Bethard, MA, and<br />

Elizabeth A. DiGangi, MA, The University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

Wilson, Teresa V. MA*, and Mary H. Manhein, MA,<br />

Louisiana State University, Department of Geography and<br />

Anthropology, 227 Howe- Russell Building, Baton Rouge,<br />

LA 70803; and Ray E. Ferrell, Jr., PhD, Department of<br />

Geology and Geophysics, Louisiana State University, E235<br />

Howe Russell Building, Baton Rouge, LA 70803<br />

Winburn, Allysha P. MA*, and Carrie A. Brown, MA, Joint<br />

POW/MIA Acct Command, Central Identification Lab, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

Winburn, Allysha P. MA*, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam Airforce Base,<br />

HI 96853; and Carme Rissech, PhD, Universitat de<br />

Barcelona, Avd. Diagonal, 645; 08028, Barcelona, SPAIN<br />

Winburn, Allysha P. MA, BA*, and Carrie A. Brown, MA,<br />

Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

Wolf, Dwayne A. MD, PhD*, Harris County <strong>Medical</strong><br />

Examiner Office, 1885 Old Spanish Trail, Houston, TX<br />

77054; Harrell Gill-King, PhD, University of North Texas,<br />

PO Box 305220, Denton, TX 76203; Lee M. Goff, PhD,<br />

Chaminade University of Honolulu, 3140 Waialae Avenue,<br />

Honolulu, HI 96816<br />

Wood, Brian MS*, University of Tennessee, 315 Pasqua<br />

Engineering Building, Knoxville, TN 37996; Richard Jantz,<br />

PhD, Lee Meadows Jantz, PhD, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; and Mohamed Mahfouz, PhD,<br />

University of Tennessee, Center for Musculoskeletal<br />

Research, 307 Perkins Hall, Knoxville, TN 37996<br />

Yazedjian, Laura N. MSc*, Rifat Kesetovic, MD, Ana Boza-<br />

Arlotti, PhD, and Zeljko Karan, MD, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia-Herzegovina<br />

Zambrano, Carlos J. BA*, Archaeology and <strong>Forensics</strong><br />

Laboratory, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

Zambrano, Carlos J. MS, Nicolette M. Parr, MS*, Laurel<br />

Freas, MA, Anthony B. Falsetti, PhD, and Michael W.<br />

Warren, PhD, C.A. Pound Human Identification<br />

Laboratory, Department of Anthropology, University of<br />

Florida, PO Box 103615, 1376 Mowry Road, Gainesville,<br />

FL 32610<br />

Zephro, Lauren Rockhold MA*, Monterey County Sheriff’s<br />

Department, 1414 Natividad Road, Salinas, CA<br />

Index 211<br />

Orthopedic Devices and the William M. Bass<br />

Donated Skeletal Collection: Implications for<br />

Forensic Anthropological Identification<br />

X-Ray Diffraction as a Tool for the Analysis<br />

of Age-Related Changes in Teeth<br />

Error and Uncertainty in Pelvic Age<br />

Estimation Part II: Younger vs. Older Adult<br />

Females<br />

Estimating Advanced Adult Age-at-Death in<br />

the Pelvis: A Comparison of Techniques on<br />

Known-Age Samples From Iberia<br />

Error and Uncertainty in Pelvic Age<br />

Estimation Part I: Younger vs. Older Adult<br />

Males<br />

Beetle Poop: Interpret With Caution in<br />

Southeast Texas<br />

Improving Forensic Facial Reproductions<br />

Using Empirical Modeling<br />

The Importance of Using Traditional<br />

Anthropological Methods in a DNA-Led<br />

Identification System<br />

Evaluation of Regression Equations to<br />

Estimate Age at Death Using Cranial Suture<br />

Closure<br />

Evaluation of the Mandibular Angle as an<br />

Indicator of Sex<br />

Forensic Anthropology for Sale: A<br />

Perspective From Law Enforcement<br />

376<br />

126<br />

14<br />

172<br />

127<br />

385<br />

56<br />

440<br />

448<br />

318<br />

559


CHICAGO 2011 CHICAGO 2011<br />

<strong>PHYSICAL</strong> <strong>ANTHROPOLOGY</strong><br />

H1 Monitoring the Long-Term Applicability of<br />

Ground-Penetrating Radar Using<br />

Proxy Cadavers<br />

William T. Hawkins, BA*, 10215 Blanchard Park Trail, Apartment 2314,<br />

Orlando, FL 32817; Joanna M. Fletcher, BA, 9941 Timber Oaks Court,<br />

Orlando, FL 32817; and John J. Schultz, PhD, University of Central<br />

Florida, Department of Anthropology, PO Box 25000, Orlando, FL 32816<br />

After attending this presentation, attendees will have a better<br />

understanding of the potential benefits of ground-penetrating radar<br />

(GPR) and its possible limitations in the search for clandestine graves.<br />

This presentation will impact the forensic science community by<br />

providing guidelines concerning investigations utilizing GPR in searches<br />

for clandestine bodies interred over a year.<br />

The goal of this presentation is to demonstrate the applicability of<br />

GPR in grave detection of cadavers that have been buried for a<br />

significant period of time (up to 24 months). By using GPR to monitor<br />

controlled graves with multiple burial scenarios, questions can be<br />

answered concerning the usefulness of this tool in the search for cadavers<br />

that have been interred underground longer than a year. Initial guidelines<br />

are offered for the forensic community concerning investigation utilizing<br />

GPR for clandestine body searches.<br />

Controlled research using pig carcasses as human proxies has<br />

demonstrated that GPR is the best geophysical tool to employ when<br />

searching for clandestine bodies. Ground-penetrating radar provides the<br />

best resolution for subsurface imaging of all geophysical tools used on<br />

land. Additionally, the results are displayed in real-time, and information<br />

about depth and size of target can be inferred. This presentation<br />

continues the second phase of a larger research project involving the<br />

monitoring of controlled graves for a two year period and will focus on<br />

year two of data collection using a 250-MHz antenna.<br />

The GPR unit used was a MALA RAMAC X3 M with a 250-MHz<br />

antenna. The data was processed using REFLEXW and GPR-SLICE<br />

computer programs. REFLEXW was used to display the transect data as<br />

reflection profiles, while GPR-SLICE was used to display the grid data<br />

as horizontal slices (plan view). These data were collected from a<br />

permanent grid measuring 11 m by 22 m containing eight graves total,<br />

buried in a spodic (Spodosol) soil. A total of eight graves were created:<br />

six represented different burial scenarios and containing a single pig<br />

carcass (Sus scrofa) each; the last two represented empty control graves.<br />

The eight graves were arranged in two rows with four graves in each row.<br />

Burial scenarios included a shallow empty control hole (dug at 0.5 m), a<br />

deep empty control (dug at 1.0 m), a shallow pig grave (0.5 m depth), a<br />

deep pig grave (1.0 m), a pig carcass buried underneath a layer of lime,<br />

a pig carcasses buried underneath a layer of gravel, a pig carcasses<br />

wrapped in a blanket, and a pig carcasses wrapped in a tarpaulin. The<br />

final four scenarios were buried at a depth of 1.0 m. Data were collected<br />

following both a west-to-east transect direction and a north-to-south<br />

transect direction with a transect interval of 0.25 m.<br />

Over the first year of grave monitoring, salient grave reflections<br />

were observed for all of the scenarios containing a pig carcass.<br />

Conversely, the second year of grave monitoring showed decreased<br />

responses from the decomposing carcasses. By month 15, a number of<br />

burial scenarios had become difficult to detect; the shallow and deep<br />

carcasses, buried without additional grave items, exhibited the poorest<br />

resolutions. The graves with the best resolution were those with the<br />

carcasses either wrapped or covered. The scenario of the carcass covered<br />

with gravel exhibited the best resolution of all the scenarios. Of the<br />

wrapped carcasses, the tarpaulin exhibited greater resolution than the<br />

carcass wrapped in the blanket. The two empty control graves were<br />

important for the research by showing the difference between an<br />

anomaly produced by disturbed soil and an anomaly produced by an<br />

actual carcass. While the deep control grave exhibited a consistent<br />

response, it was at a lower level of the grave shaft, compared to the<br />

carcass anomalies, and was consistent with the location of the grave<br />

floor. Though the horizontal slices provided a grid view of the burials,<br />

less graves were detected compared to the resolution exhibited by the<br />

reflection profiles. It is therefore recommended that when performing<br />

clandestine body searches with GPR both imagery options should be<br />

utilized and the data should be processed in the lab before making any<br />

definitive conclusions concerning the location of potential targets. This<br />

project was supported by the National Institute of Justice, Office of<br />

Justice Programs, U.S. Department of Justice. The opinions, findings,<br />

and conclusions or recommendations expressed are those of the author(s)<br />

and do not necessarily reflect those of the Department of Justice.<br />

Ground-Penetrating Radar, Controlled Graves, Geophysical<br />

Search Methods<br />

H2 Monitoring the Applicability of Ground-<br />

Penetrating Radar on Detecting Shallow<br />

Graves Using Proxy Cadavers<br />

Joanna M. Fletcher, BA*, 9941 Timber Oaks Court, Orlando, FL 32817;<br />

William T. Hawkins, BA, 10215 Blanchard Park Trail, Apartment 2314,<br />

Orlando, FL 32817; and John J. Schultz, PhD, University of Central<br />

Florida, Department of Anthropology, PO Box 25000, Orlando, FL 32816<br />

After attending this presentation, attendees will have a better<br />

understanding of the benefits and limitations associated with the use of<br />

ground penetrating radar (GPR) in the search for clandestine graves,<br />

specifically in cases involving small bodies and shallow graves.<br />

This presentation will impact the forensic science community by<br />

illustrating the ability of GPR, using a 250-MHz and 500-MHz antenna,<br />

to locate bodies in shallow graves in various burial scenarios.<br />

The goal of this presentation is to demonstrate the ability of GPR to<br />

detect small cadavers buried in shallow graves over a period of six<br />

months. By using GPR to monitor controlled graves with multiple burial<br />

scenarios, questions can be answered concerning its applicability in the<br />

search for small cadavers in shallow graves. Burial scenarios also help<br />

distinguish which component or components of the grave, the disturbed<br />

soil, the body, or the additional material added to the grave, is producing<br />

the geophysical response once the GPR detects the grave.<br />

The use of remote sensing geophysical techniques in the search and<br />

detection of clandestine graves in a forensic context has many<br />

advantages, particularly as it is non-invasive and can highlight smaller<br />

areas for more detailed searching. Controlled research has demonstrated<br />

that GPR is the most accurate geophysical tool in forensic investigations.<br />

Ground-penetrating radar is time efficient, results are displayed in realtime<br />

in the field, it provides the best subsurface-imaging resolution, and<br />

can be used in different scenarios, such as over the concrete of a house<br />

foundation or on a forested landscape. This presentation will focus on<br />

the first six months of data collection for a project evaluating the ability<br />

of GPR, using a 250-MHz and 500-MHz antenna, to locate shallow<br />

graves containing small pig cadavers in various burial scenarios.<br />

The ground-penetrating radar unit used for this research was a<br />

MALA RAMAC X3 M with a 250-MHz and 500-MHz antenna. The<br />

1 * Presenting Author


GPR data was processed using the REFLEXW computer program to<br />

display the data in a reflection profile, showing one transect at a time.<br />

These grid data were collected from a permanent grid, measuring 9 m by<br />

15 m, containing six graves total, five with a single pig (Sus scrofa)<br />

carcass, and one control grave. Multiple-burial scenarios were<br />

incorporated into the project: a pig carcass buried under a layer of lime;<br />

a pig carcass buried under a layer of rocks; a pig carcass wrapped in a<br />

fleece blanket, a pig carcass wrapped in a tarpaulin; and a pig carcass<br />

without additional material. The final grave was an empty control grave<br />

to measure the response of soil disturbance only versus graves<br />

containing bodies. Each grave was 0.5 m deep, and the pig cadavers<br />

weighed an average of 25.8 kg. The soil at the research site is classified<br />

as Spodosol. However, due to the shallow depths of the graves, they<br />

were only buried in sandy horizons. The six graves were arranged in two<br />

rows with three graves in each row. Data was collected following both<br />

a north-to-south transect direction and an east-to-west transect direction<br />

with a transect spacing of 0.25 m.<br />

Over the first six months of monitoring, all graves were detected in<br />

reflection profiles, although some had better resolution than others.<br />

While all of the graves containing a pig carcass produced prominent<br />

reflections for this monitoring period, the graves containing items (rocks<br />

and lime) placed over the pig carcass resulted in slightly better<br />

resolution. Conversely, the grave containing only the pig carcass<br />

produced the lowest resolution, but was easily detected. Throughout the<br />

first few months of data collection, a minimal response was exhibited by<br />

the empty control grave; however, after several months of soil<br />

compaction within the grave shaft, there was no longer a response from<br />

this grave. These results for the control hole were important in<br />

demonstrating that the reflections produced within the graves containing<br />

the pig carcasses were the result of the bodies and items added to the<br />

graves and not the disturbed soil. In terms of antenna performance, the<br />

250-MHz data initially provided a better resolution within the first few<br />

months. However, over time the higher detail provided by the 500-MHz<br />

data consistently resulted in easily discernable reflections. While either<br />

antenna would be a good option when searching for shallow clandestine<br />

graves, the 500-MHz may be a better option depending on<br />

soil conditions.<br />

Ground-Penetrating Radar, Controlled Graves, Geophysical<br />

Shallow Burial Searches<br />

H3 Taphonomy of a Mass Grave in Mid-<br />

Michigan: The Case of the Missing Cattle<br />

Mary S. Megyesi, PhD*, JPAC-CIL, 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853; Lindsey L. Jenny, MA, Michigan State<br />

University, East Lansing, MI 48823; Cate Bird, MA, 2740 Senate Drive,<br />

#3E, Lansing, MI 48912; Amy Michael, MA, 528 West Lapeer Street,<br />

Lansing, MI 48933; and Angela Soler, MA, and Jane Wankmiller, MA,<br />

Michigan State University, Department of Anthropology, 354 Baker<br />

Hall, East Lansing, MI 48824<br />

Forensic anthropology skills can be applied to a variety of medicolegal<br />

situations. The goal of this presentation is to discuss a unique<br />

instance of a mass grave site in Mid-Michigan in order to provide future<br />

investigators with information about the decomposition, taphonomy, and<br />

recovery of deeply buried remains.<br />

This presentation will impact the forensic science community by<br />

providing an example of how forensic anthropology expertise, including<br />

knowledge of decomposition, skeletal anatomy, and recovery techniques,<br />

can aid law enforcement in what may not be a “typical” human remains<br />

case.<br />

In August of 2009, the Michigan State University Forensic<br />

Anthropology Laboratory (MSU FAL) was called to assist the<br />

Livingston County Sheriff’s Department with an ongoing legal dispute<br />

between two parties over the disappearance of approximately 160 head<br />

* Presenting Author<br />

of beef cattle. The plaintiff in this case claimed the defendant had sold<br />

the cattle for profit, while the defendant claimed that these animals had<br />

died approximately two years prior and were buried on his farm. In<br />

order to settle this dispute, the defendant was required to provide<br />

evidence of the buried animals. The excavation was monitored<br />

determine how many animals were present, estimate the time since<br />

death, and to interpret the stratigraphy of the burial pits.<br />

This case was atypical in a number of ways: the individuals were<br />

cows and steers; they were buried in a mass grave; due to the legal issues<br />

surrounding this case, the defendant was responsible for exhuming the<br />

animals; and there was little scientific control over the operation of the<br />

backhoe during the excavation. Regardless, this unique situation<br />

provided important information about the decomposition and taphonomy<br />

of a mass grave excavated with a backhoe that could aid future<br />

researchers.<br />

The mechanical action of the backhoe dispersed and broke up the<br />

cattle remains during the excavation. Some skeletal elements survived<br />

this process better than others. During the excavation, skeletal elements<br />

were organized by element in order to determine a minimum number of<br />

individuals (MNI). This process revealed that skulls and innominates<br />

were recovered less often than long bones such as femora, tibia, or<br />

humeri. This may be due to the fact that, quite often, skulls were crushed<br />

while long bones were more durable. In addition, the animals recovered<br />

were young, growing, feeder cattle, and many innominates were still<br />

separated into their smaller elements which may have made them more<br />

difficult to recover. The MNI was eventually determined by the recovery<br />

of 23 left tibias.<br />

The cattle were buried in a large pit where some animals were very<br />

close to the surface and others were buried quite deep – up to 3 to 4.5<br />

meters. Time since death estimates were based on the degree of<br />

decomposition, taking into account the burial depth where the animals<br />

were recovered. Cattle recovered near the ground surface were<br />

skeletonized, mainly dry, and had some mummified skin and tendons.<br />

Deeply-buried animal bones were wet with black decomposing sludge<br />

and had adhering skin, fur, cartilage, and tendons. This would be an<br />

expected pattern of differential decomposition due to different burial<br />

depths. Age-at-death estimates concluded the animals had most likely<br />

died between 2 to 7 years based on these observations.<br />

One of the important questions regarding this case when it went to<br />

trial was whether there were any additional animals in the pit when the<br />

defendant had finished digging. Decomposition staining of the pit walls<br />

was noticeably black, where it made a strong contrast with the<br />

surrounding lightly-colored soil. It served as a good indicator of where<br />

additional animals were located as the defendant excavated the burial pit.<br />

At the conclusion of the excavations, no additional animals were in the<br />

pit due to the lack of decomposition staining.<br />

This atypical case is one example of how knowledge of skeletal<br />

anatomy and field recovery techniques can assist with a variety of<br />

investigations. This mass cattle grave excavated with a backhoe<br />

presented special challenges to the interpretation of time since death<br />

and MNI.<br />

Taphonomy, Decomposition, Recovery<br />

2


H4 The Fromelles Project: Organizational and<br />

Operational Structures of a Large Scale<br />

Mass Grave Excavation and On-Site<br />

Anthropological Analysis<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield University,<br />

Cranfield Forensic Institute, Shrivenham, SN6 8LA, UNITED<br />

KINGDOM; and Louise Loe, PhD, Oxford Archaeology, Janus House,<br />

Osney Mead, Oxford, OX2 0ES, UNITED KINGDOM<br />

After attending this presentation, attendees will have an increased<br />

understanding of the organizational and operational aspects of a project<br />

that includes the recovery, processing, anthropologically analyses, and<br />

documentation of 250 sets of human remains and over 6,000 artifacts in<br />

a task-specific, on-site laboratory with high security demands in a fixed<br />

timeframe.<br />

This presentation will impact the forensic science community by<br />

demonstrating how organizational and operational planning can lead to<br />

maximizing quality and efficiency, and ensure delivery of results within<br />

given time and budget constraints.<br />

Between July 19 and 20, 1916, British and Australian forces fought<br />

a hopeless battle against German forces while trying to draw attention<br />

away from the Somme. The outcome of this battle was the catastrophic<br />

loss of over 7,000 soldiers in less than 48 hours. The Australians<br />

reported 5,533 killed, wounded, and missing and the British 1,547.<br />

In February 2009, Oxford Archaeology (OA) was awarded the<br />

contract to carry out the recovery of eight mass graves near the village of<br />

Fromelles in Northern France. Within less than two months, the project<br />

planning was finalized and a team of OA staff and external consultants<br />

assembled, including forensic archaeologists and anthropologists,<br />

osteoarchaeologists, finds experts, crime scene investigators, anatomical<br />

pathology technologists, radiographers, IT experts, and many more.<br />

The process was divided into excavation, x-ray, processing, drying,<br />

skeletal and artifact analysis, storage, and DNA. Each section had one or<br />

two section heads. These section heads and project managers, assisted<br />

by specialist, arrived early onsite to ensure that the entire operation was<br />

setup according to their needs. The laboratory and excavation site were<br />

secured through fencing, CCTV, and 24-hour guards. Tool-storage,<br />

office, and facilities for the excavation team were kept within an inner<br />

cordon that could only be entered when team members changed into<br />

work clothing and put on full personal protective equipment, including<br />

paper suits, hair nets, face masks, and surgical gloves.<br />

The laboratory, store rooms, changing rooms, and office space were<br />

set up in April 2009 using connectable office containers. This layout<br />

guaranteed a secure and efficient workflow as well the dignified and<br />

respectful treatment of the human remains. The anthropological analysis<br />

began in late May and had to be completed by the end of November.<br />

Final analysis of artifacts and finalizing of reports went on throughout<br />

the winter and the first soldiers were reburied in January.<br />

Sets of remains and associated artifacts were transferred from the<br />

excavation to the anthropological laboratory using a documented<br />

handover procedure witnessed by a crime scene investigator to order to<br />

guarantee the continuity and integrity of all evidence. The mortuary<br />

manager took charge of the remains and constantly monitored progress<br />

throughout the different mortuary stages. Remains and artifacts were<br />

first x-rayed using a direct-digital x-ray unit, operated by an experienced<br />

radiographer, who also holds a degree in forensic anthropology. All<br />

images were stored digitally and moved onto the secure database to give<br />

access to the anthropologists.<br />

Remains and artifacts were then separated for processing. Human<br />

remains were carefully cleaned to prepare them for anthropological<br />

analysis. To ensure the highest quality processing, only staff with<br />

experience in osteoarchaeology or anthropology were employed at this<br />

stage. After processing and drying, the remains were handed over to one<br />

of the anthropologists. All anthropologists had their own workstation,<br />

consisting of a fixed table, a digital SLR camera permanently fixed to the<br />

ceiling above the table, a PC workstation connected both to the camera<br />

and the database server and all necessary measurement equipment and<br />

reference material. All laboratory space was adequately air-conditioned<br />

to guarantee optimum conditions for both remains and artifacts. All<br />

rooms and equipment was completely cleaned daily using hospital<br />

mortuary protocols.<br />

It was the efficient and effective work flow and data movement that<br />

ensured high quality results within a limited timeframe.<br />

Forensic Anthropology, Forensic Archaeology, DNA Sampling<br />

H5 Blast Injury in Skeletal Remains: The Case<br />

of a Soldier From WWI<br />

Martin Smith, PhD, and Marie Christine Dussault, MSc*, Bournemouth<br />

University, Centre for Forensic Science, Christchurch House, Poole,<br />

BH12 5BB, UNITED KINGDOM<br />

After attending this presentation, attendees can expect to gain an<br />

understanding of the utility of unusual occupation pathologies as an<br />

individuating characteristic in historical missing person’s cases.<br />

Attendee will also learn about the patterns of blast trauma injury that can<br />

be identified in cases of suspected blast injury, as well as, be able to<br />

discuss the potential of the combination of blast trauma analysis and<br />

forensic anthropological techniques for historical cases such as the one<br />

presented.<br />

This presentation will impact the forensic science community by<br />

demonstrating the need and potential for the application of blast trauma<br />

identification and analysis in forensic anthropology. This presentation<br />

demonstrates that forensic anthropologists should be familiar with this<br />

type of trauma as it can be identified in a variety of contexts in which the<br />

forensic anthropologist may be called to contribute. The lack of<br />

knowledge in the field is stressed to outline the importance of<br />

undertaking research on this type of trauma due to its relevance in many<br />

forensic and anthropological situations.<br />

Recent years have seen increasing attention given to the analysis of<br />

many types of skeletal trauma; however, injuries to the skeleton caused<br />

by explosions remain poorly understood. The results of a project with<br />

dual objectives aimed at both identification of a specific individual killed<br />

during the Great War (1914-1918) and understanding the cause of their<br />

death are presented. Assisting in the identification of remains excavated<br />

in 2008 from Plugstreet, Belgium, the remains were located buried in situ<br />

in proximity of the location of the German front lines during the Great<br />

War at St. Yvon, north of the Ultimo crater. The remains were fully<br />

clothed and found buried under soil in a trench. The remains were<br />

accompanied by artifacts such as personal effects, munitions, medical<br />

supplies, and a souvenir Pickelhaube. These artifacts clearly indicated<br />

that this was not a proper burial and the individual was killed at<br />

that location.<br />

Anthropological analyses were performed to determine the age, sex,<br />

stature, and pathology of the remains. A number of individuating<br />

characteristics were identified regarding age and physical type as well as<br />

occupationally-related pathological changes. The biological profile<br />

indicated that the individual was a male with a stature ranging between<br />

5’ 7” and 5’ 10”, aged between 30 and 40, which narrowed down the<br />

potential casualties due to the older age of the individual, a characteristic<br />

which was at odds with the typical enrollment age of soldiers of the time.<br />

The skeletal remains also indicated a bone robusticity that suggesting<br />

that the individual participated in a physically-demanding occupation<br />

during his life. This observation was further supported by the extensive<br />

occupationally-related pathologies observed on the vertebrae, illustrated<br />

by arthritic changes and prominent Schmorl’s Nodes, and arthritic joints<br />

of the legs. These pathologies are unusual for an individual of this age<br />

3 * Presenting Author


and can provide interesting information to add to the identification.<br />

Collectively these observations permitted the exclusion of all possible<br />

identities with the exception for a small number of individuals. The<br />

anthropological analysis was combined with a stable isotope analysis<br />

and a subsequent DNA match to identify Private Alan James Mather, a<br />

grazier or rancher from Inverell in New South Wales, missing-in-action<br />

from Messines, Belgium since June 1917.<br />

Of further interest was a range of evidence for severe skeletal<br />

trauma consistent with the individual being hit by a mortar. Laid out<br />

anatomically, distinct injuries were located on the upper left side of the<br />

body and torso. Path of injury could be accurately located and followed<br />

through the absent humerus and sternum, and the extensively fragmented<br />

ribs. Elements in close association to these, such as the manubrium and<br />

right arm bones, were completely intact, indicating a very specific path<br />

of injury, ending in the torso. Fragments of mortar shell were found<br />

embedded in the left temporal bone and left scapula. A large fragment,<br />

with an intact driving band (typical of German rifled mortars), was found<br />

in the associated grave fill, along the left side of the skeleton, which had<br />

been included in a bag of skeletal elements from the upper arm.<br />

Subsequently examined historical and archaeological information<br />

supports the evidence examined and contributes to the positive<br />

identification. Historical records confirm that on June 8, 1917, Private<br />

Mather’s 33 Battalion was hit by mortar fire. This exemplifies the<br />

application of blast trauma analysis by a forensic anthropologist to a<br />

historical case. This case illustrates the potential for additional work in<br />

this area to further expand understanding of this class of skeletal injury<br />

which remains equally relevant in modern contexts.<br />

Forensic Anthropology, Blast Trauma, Occupational Markers<br />

H6 Peri-Mortem Fracture Patterns in South-<br />

Central Texas: A Preliminary Investigation<br />

Into the Peri-Mortem Interval<br />

Rebecca E. Shattuck, MA*, 809 Green Meadows Drive, Apartment #305,<br />

Columbia, MO 65201<br />

After attending this presentation, attendees will have an<br />

understanding of peri- and postmortem decompositional changes in<br />

bone, and how these alterations are associated with changes in blunt<br />

force trauma fracture patterns. Additionally, attendees will learn which<br />

features proved most diagnostic in placing these fractures in an<br />

appropriate sequence during the peri-mortem interval.<br />

This presentation will impact the forensic science community by<br />

providing tools to estimate the postmortem interval from long bone<br />

fractures, which will help to bring blunt force trauma analysis in line<br />

with the Daubert (2003) criteria for expert witnesses.<br />

There have been several studies investigating long bone fracture<br />

characteristics during the peri-morteminterval (PMI), but none have been<br />

undertaken in the unique climate of southwest Texas. Additionally, the<br />

definition of the term “peri-mortem” as it applies to human remains is<br />

not unanimously agreed upon. Estimates vary regarding how long the<br />

peri-mortem interval lasts. Janjua and Roberts’ (2008) research in<br />

Ontario indicates that it takes bone approximately 200 days to reach a<br />

stage of “advanced decomposition,” which they measured based<br />

primarily on weathering and color change. Conversely, Bell et al. (1996)<br />

claim that buried bones may remain in the ground for five years or more<br />

before they begin showing any sort of postmortem change.<br />

Issues arise because bone decomposition is a continuous process;<br />

however, anthropologists typically rely on non-quantifiable indicators to<br />

establish largely arbitrary divisions separating these three timeframes.<br />

To improve understanding of peri-mortem bone changes, 50 pig femora<br />

were allowed to weather at the Texas State University Forensic<br />

Anthropology Research Facility at Freeman Ranch, in San Marcos, TX<br />

for up to 18 weeks (PMI=126 days). A portion of the sample was<br />

* Presenting Author<br />

fractured at regular 2-week intervals by the mechanical application of a<br />

known dynamic force, and the resulting fracture outlines, angles, and<br />

edges, were methodically examined and documented. Also examined<br />

were the number and size of fragments produced.<br />

A jagged fracture surface proved to be the feature most strongly<br />

indicative of postmortem drying in the short term, appearing<br />

approximately a month after death and appearing at consistently high<br />

rates in all subsequent tests. A significant change in the frequency of<br />

curvilinear versus transverse fracture outlines separates the first two<br />

months of the experiment from the following period. Fracture angle<br />

proved to have poor predictive powers, as obtuse and acute-angled<br />

fractures, indicative of fresh bone, occurred through the final test at<br />

PMI=126 days, though right-angled fractures did begin to appear at<br />

PMI=28 days.<br />

There are essentially two “peaks of activity” when it comes to<br />

timing peri-mortem fractures in south-central Texas. The first peak<br />

occurs around 28 days, and is characterized by the first appearance of a<br />

jagged fracture surface, the first appearance of longitudinal cracking, and<br />

the beginning of a transition from curvilinear to intermediate fracture<br />

outlines. The second peak occurs around 70 days, and is distinguished<br />

by the absence of any smooth fracture surface after that point. Statistical<br />

tests indicated that different features may be diagnostic over a short<br />

period (e.g., 2-week intervals) than those over a longer period (e.g., 8week<br />

intervals).<br />

No one feature proved to have extraordinarily high diagnostic<br />

value, but fracture characteristics analyzed in conjunction with one<br />

another have the potential to time the occurrence of a fracture with some<br />

accuracy. The results of this experiment highlight the need to develop a<br />

shared knowledge base regarding the interpretation of blunt force<br />

trauma, backed by statistically supportable research. This replicable<br />

experimental design and method of quantitative analysis will help to<br />

bring blunt force trauma interpretation in line with the Daubert (1993)<br />

ruling, as well as aid in standardizing trauma analysis criteria.<br />

Peri-Mortem Interval, Blunt Force Trauma, Forensic Taphonomy<br />

H7 Analysis of Primary Blast Rib Fractures<br />

Angi M. Christensen, PhD, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135; and Victoria A. Smith, MA*, ORAU, 2501<br />

Investigation Parkway, Quantico, VA<br />

After attending this presentation, attendees will understand the<br />

results of an analysis of rib fractures associated with primary blast<br />

trauma.<br />

This presentation will impact the forensic science community by<br />

providing a more comprehensive understanding of the mechanisms and<br />

affects of blast trauma, specifically those involving the ribs, resulting in<br />

more accurate interpretations of skeletal trauma.<br />

Worldwide, the prevalence of terrorist attacks employing the use of<br />

explosive devices has served to shift counterterrorism focus from widescale<br />

weapons of mass destruction to conventional explosive attacks. In<br />

2008, bombings alone accounted for more than one-third of all terrorist<br />

attacks, with explosives, vehicle bombs, and improvised-explosive<br />

devices resulting in the majority of injuries. Forensic anthropologists<br />

have become increasingly involved in the identification of blast victims<br />

as well as the interpretation of skeletal trauma caused by exploding<br />

ordinance. Understanding rib fracture patterns associated with such<br />

explosive events would provide significant medical and forensic lead<br />

information. This study investigates the rib fractures associated with<br />

primary blast trauma (i.e., resulting from the blast wave).<br />

Rib fractures are associated with the majority of traumatic thoracic<br />

events and can be important indicators of soft tissue and organ injury.<br />

Despite this, rib fractures have historically received little attention in<br />

medical and anthropological literature. The relatively small amount of<br />

rib fracture research could be due to the habit of viewing ribs as<br />

4


individual bones rather than a protective system for the thoracic cavity,<br />

the cumbersome nature of processing the torso, and the medical practice<br />

of often overlooking rib injuries due to the potential for more severe<br />

injury to the vital thoracic organs. The majority of literature on the<br />

broader topic of blast trauma is in medical journals and focus on<br />

treatment of injuries rather than conducting controlled, empirical studies.<br />

Some researchers have examined the mechanisms of rib fracture in order<br />

to understand their structural failure during different traumatic thoracic<br />

events, but have not specifically considered blast forces.<br />

A bone’s reaction to stress is affected by factors such as force and<br />

the mechanical properties of the bone. The morphology of ribs,<br />

specifically their cross-sectional shape and degree of curvature along<br />

their length, sets them apart from other human bones and suggests that<br />

they should be expected to respond uniquely to applied forces. A recent<br />

study by Christensen et al. 1 examined primary and secondary skeletal<br />

blast trauma and reported the presence of numerous butterfly fractures in<br />

ribs that were most likely caused by ventrally applied blast force.<br />

Building on these findings, the present study involves further analysis of<br />

the previous observations, as well as additional simulated (and more<br />

controlled) primary blast event forces.<br />

Results indicate that in response to blast and blast-type forces, ribs<br />

tend to fracture in the head, neck, and shaft in a manner consistent with<br />

compression, shearing and bending forces. Butterfly fractures, which are<br />

the result of bending, tensile and compression forces, were frequently<br />

observed. This is unsurprising considering that these forces are typically<br />

associated with blast events. Rib fracture patterns differed from those<br />

normally associated with other types of trauma events such as blunt force<br />

(including deceleration), projectile, and sharp force.<br />

These results contribute to a more comprehensive understanding of<br />

the effect of blast forces on ribs and the interpretation of rib fractures in<br />

forensic contexts and may allow forensic anthropologists to differentiate<br />

between blast trauma and trauma resulting from some other cause.<br />

Practitioners should bear in mind; however, that blast traumas involve a<br />

number of complicated variables. If blast injury is suspected,<br />

consideration should be given to bone type, injury location, and all<br />

available contextual and investigative information including the amount<br />

of explosives utilized, the placement of the explosives in relation to the<br />

victim and the presence of potential projectiles.<br />

Reference:<br />

1. Christensen AM, Ramos V, Shegogue CW, Smith VA, Whitworth<br />

WM. Primary and Secondary Skeletal Blast Trauma. Proceedings<br />

of the 62 nd American Academy of Forensic Sciences 62 nd Annual<br />

Scientific Meeting 2010 February 22-27; Seattle, WA.<br />

Forensic Anthropology, Blast Trauma, Rib Fractures<br />

H8 Pattern and Distribution of Fractures in the<br />

William M. Bass and Hamann-Todd<br />

Osteological Collections<br />

Shauna McNulty, MA*, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand whether<br />

aspects of modern life predispose individuals to different patterns of<br />

trauma than earlier, historical populations. The specific patterns and<br />

susceptibilities to injury may be unique to individual populations and<br />

provide a reference in order to gauge quality of life and health status for<br />

the populations under study.<br />

This presentation will impact the forensic science community by<br />

providing information that can be used to determine lifestyle factors that<br />

predisposed modern, as well as earlier historical populations, to injury.<br />

This may allow for predictions to be made as to what types of injuries<br />

will be represented in modern medical institutions, based on the lifestyle<br />

of the populations feeding into those systems.<br />

It is possible that modern activities can predispose certain<br />

populations to different risks, and therefore different injury patterns.<br />

Few studies take into account the effects of ancestry, age, and sex on<br />

frequency and location of these fractures. The goal of this study is to<br />

determine whether aspects of modern life predispose individuals to<br />

different patterns of trauma than earlier populations, as well as whether<br />

differences exist across demographic parameters.<br />

Lifestyle choices, as well as biological and environmental factors,<br />

can predispose different individuals to fracture. Habitual daily activities<br />

combined with poor health characterize the risk factors for many<br />

populations experiencing high fracture rates. These can include a<br />

sedentary lifestyle, tobacco smoking, alcoholism, and poor diet. An<br />

individual’s age, deteriorating senses, osteoporosis, hormonal changes,<br />

poor health, and/or inactivity all contribute to biological predispositions<br />

to fracture. In addition, several non-biological factors can increase an<br />

individual’s rate of fracture, including geographic location, climate,<br />

technology, occupation, and participation in sporting activities. Modern<br />

ways of life have introduced longer lives that are on average less<br />

laborious than earlier time periods, as well as city crowding, violent<br />

crime, automobiles accidents, and accidents attributable to urban<br />

architecture. All of these factors interplay to form an individual’s unique<br />

susceptibility to fracture.<br />

The present investigation was conducted using the Hamann-Todd<br />

Osteological Collection and the William M. Bass Donated Collection.<br />

The analysis of both collections was conducted macroscopically without<br />

the aid of radiographs. Only complete, adult specimens were used to<br />

allow for greater statistical power. Each element of the skeleton, except<br />

for hands and feet, was visually inspected for the presence or absence of<br />

fractures. Demographic information was recorded for each individual<br />

and includes cause of death, age, sex, and ancestry. Statistical analyses<br />

were performed using two statistical analysis software programs. The<br />

frequency data generated by the two collections in this study were<br />

analyzed using cross-tabulations with Chi-square tests, to determine if<br />

any differences occurred between the earlier and later populations, as<br />

well as between age, sex, and ancestry groups.<br />

Among the significant (i.e., Chi-squared test significant) cranial<br />

bones we see several patterns emerge, the first being that white males<br />

tend to have more fractures than expected. In contrast, white females<br />

tended to have fewer fractures than expected in both collections. In the<br />

post-crania, there appears to be higher fracture counts than expected only<br />

for the Bass collection. There seems to be a predisposition toward more<br />

post-cranial fractures in the more modern sample. The highest fracture<br />

counts were attributed to the ribs and nasals with some individuals<br />

experiencing more than one fracture. This has been found in other<br />

studies, since these areas are often susceptible to not only violence, but<br />

traumatic injuries from falls and accidents.<br />

Overall, the results indicate that differences exist across the<br />

demographic categories. The variation inherent in the sample may be<br />

attributed to the fact that the Hamann-Todd collection was created from<br />

a more socio-economically disadvantaged population, as compared to<br />

the Bass-donated collection. Overall, there is significant variation found<br />

between the demographic groups included in this study, which helps<br />

garner a further understanding of modern injury patterns.<br />

Fractures, Age Differences / Sex Differences, Patterns of Injury<br />

5 * Presenting Author


H9 No Country for Young Pigs: Identifying the<br />

Use of Captive Bolt Pistols in Non-Natural<br />

Death Occurrences<br />

Scott A. Kirkland, MA*, North Carolina State University, Department of<br />

Sociology and Anthropology, Campus Box 8107, Raleigh, NC 27695;<br />

Sarah L. Cunningham, MA, Binghamton University, Department of<br />

Anthropology, PO Box 6000, Binghamton, NY 13902; Jonathan<br />

Cammack, MS, North Carolina State University, Department of<br />

Entomology, Campus Box 7626, Raleigh, NC 27695; Ann H. Ross, PhD,<br />

North Carolina State University, Department of Sociology &<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107; and D. Wes<br />

Watson, PhD, North Carolina State University, Department of<br />

Entomology, Campus Box 7626, Raleigh, NC 27612<br />

After attending this presentation, attendees will understand the<br />

similarities and differences in trauma to the skull resulting from gunshot<br />

wounds and wounds inflicted by a tool used in the slaughtering of<br />

livestock, the captive bolt pistol (CBP).<br />

This presentation will impact the forensic science community by<br />

presenting the criteria for differentiating defects produced by handguns<br />

and the captive bolt pistol.<br />

Case studies from Germany, Italy, and Serbia have shown that<br />

different varieties of the CBP have been used in suicides and homicides.<br />

While gunshot wounds (GSW) are much more common forensically in<br />

the United States, the wide availability of captive bolt pistols, found in<br />

commercial livestock slaughterhouses and many family farms, means<br />

these tools could be used as a weapon in a homicide.<br />

In this study, skeletal evidence of gunshot wounds in the skulls of<br />

humans was compared to captive bolt pistol wounds in the skulls of<br />

domestic pigs (Sus scrofa) (n=6). A seventh pig (n=1) was observed for<br />

a month separately from the first group in an effort to determine if the<br />

wound sizes changes over time in an uncontrolled environment, exposed<br />

to the elements. The captive bolt pistol (CBP) produces a characteristic<br />

round, sharp-edged entrance wound with internal beveling that<br />

resembles a GSW entrance defect. The CBP entrance wounds were<br />

measured in an effort to identify the caliber of the weapon used (Ross<br />

1996). While they were classified within the range of a large-caliber<br />

weapon, the CBP mean value of the minimum diameter (13.05 mm) was<br />

found to be greater than the large caliber GSW mean (11.004 mm). The<br />

values obtained when plugging into the Ross (1996) equation was 9.51,<br />

classifying it as large caliber. The individual measurements of the CBP<br />

entrance sites are all larger in diameter than the mean diameters for the<br />

selected small and large caliber weapons (.22, .25, .32, .38) found in<br />

Ross (1996). The size of the CBP bolt used (11.9 mm), is slightly larger<br />

than bullets from common-caliber handguns: 9 mm, .357 Magnum (9.07<br />

mm), .38 Special & ACP (9.65 mm), .40 S&W (10.2 mm), .44 Magnum<br />

(10.9 mm), and .45 ACP & GAP (11.5 mm). While a large caliber value<br />

may indicate a captive bolt pistol, other characteristics that aid in<br />

differentiating the CBP wound from a gunshot wound include: (1) the<br />

absence of radiating fractures from the area of trauma impact; and, (2)<br />

the lack of an exit wound, as the CBP bolt does not travel through and<br />

exit the skull. Interestingly, previous research discovered that the wound<br />

size was equal to or slightly less than the diameter of the bolt (Simic et<br />

al. 2002). However, in this study, it was found that the wound defect<br />

sizes of bolted pigs were observed to be slightly larger than the 11.9 mm<br />

diameter of the bolt itself (mean diameter=13.05 mm). At this point, the<br />

resulting difference in size is still unaccounted for as the observed<br />

taphonomic processes do not appear to be actively modifying the cranial<br />

defects. More research will need to be conducted before a cause can be<br />

more conclusively determined.<br />

Captive Bolt Pistol, Gunshot Wounds, Pigs<br />

* Presenting Author<br />

H10 Defining Intimate Partner Violence: New<br />

Case Studies in IPV<br />

Chelsey Juarez, MA*, University of California - Santa Cruz, Social<br />

Science 1, Department of Anthropology, 1156 High Street, Santa Cruz,<br />

CA 95064; and Cris E. Hughes, MA, 2306 East Delaware Avenue,<br />

Urbana, IL 61802<br />

After attending this presentation, attendees will be familiar with the<br />

most common trends of fracture associated with intimate partner<br />

violence (IPV), in particular the hierarchy of facial fractures and their<br />

types that are indicative of IPV.<br />

This presentation will impact the forensic science community by<br />

presenting the most current data on patterns of skeletal injury common<br />

in cases of IPV and by illustrating the range, and characteristics of these<br />

injuries in three cases studies.<br />

Women are approximately 4 to 5 times more likely to be victims of<br />

intimate partner homicide (IPH) than their male counterparts (Campbell,<br />

et al. 2007). 1 The major risk factor for IPH, regardless of whether the<br />

male or female partner is killed, is the presence of prior domestic<br />

violence. When analyzing human remains for evidence of chronic<br />

physical abuse, forensic anthropologists rely on a temporal range of<br />

trauma and the presence of specific types of skeletal injuries (Cook, et al.<br />

1997; Galloway 1999; Marks et al. 2009). 2,3,4 Likewise, in the majority<br />

of cases, physical IPV occurs over a long period of time resulting in a<br />

documentable history of soft tissue and/or skeletal injuries (Campbell<br />

and Glass 2009). 5 Identification of IPV from skeletal trauma is critical,<br />

because knowing such information increases accurate reporting of IPVrelated<br />

deaths, helps to mitigate abuse of future partners and children,<br />

and may assist in the identification of perpetrators. As first-incident IPV<br />

female homicides increase, it is critical that forensic anthropologists<br />

become aware of the patterns of injury, populations at risk, limitations of<br />

assessment, and their role in the identification of IPV during analysis of<br />

skeletal trauma. The following fracture guidelines may identify IPV<br />

(Juarez and Hughes, in press; Arosarena et al. 2009): 6,7<br />

1) Most victims are female.<br />

2) Most victims are involved in ongoing abuse, which may present<br />

as antemortem trauma to the skeleton.<br />

3) IPV correlates statistically with peri-orbital fractures and<br />

intracranial injury.<br />

4) Fracturing to the nasal bones is not unique to IPV and has been<br />

correlated with motor vehicle accidents, falls, and assaults by<br />

unknown or unidentified assailants.<br />

5) Fracturing to the mandible and zygomatic complex is not unique<br />

to IPV and has been correlated with assaults by unknown or<br />

unidentified assailants.<br />

Three known victims of IPH are examined for evidence of<br />

identifiable trauma associated with IPV. In two cases, clear evidence of<br />

antemortem trauma, both post-cranial and cranial exist, and in both<br />

instances this trauma is consistent with past and recent IPV. However, in<br />

the third case IPV-related trauma was only present perimortem. At the<br />

time of case analysis, the forensic anthropologists were not aware of the<br />

skeletal traumatic patterns often associated with IPV and, therefore, no<br />

suggestion for such a case was made.<br />

References:<br />

1. Campbell, J., Glass, N., Sharps, Phyllis W., Laughon,K.,<br />

Bloom,T. (2007). Intimate Partner Homicide Review and<br />

Implications of Research and Policy. Journal of Trauma and<br />

Abuse, 8(3): 246-269.<br />

2. Crandall, M. L., Nathens, A. B., & Rivara, F. P. (2004). Injury<br />

patterns among female trauma patients: Recognizing intentional<br />

injury. Journal of Trauma Injury, Infection, and Critical Care,<br />

57, 42-45.<br />

3. Galloway A. (1999). The circumstances of blunt forces trauma.<br />

In Broken Bones: Anthropological Analysis of Blunt Force<br />

6


Trauma edited by A. Galloway. Springfield: Charles C Thomas.<br />

224-254.<br />

4. Marks, M., Marden, K., Mileusnie-Polchan, D. (2009). Forensic<br />

Osteology of Child Abuse. In Hard Evidence: Case Studies in<br />

Forensic Anthropology 2nd edition. eddited by D. Wolfe<br />

Steadman. New Jersey: Prentice Hall. 205-220.<br />

5. Campbell, J., Glass, N. (2000). Safety Planning Danger and<br />

Lethality Assessment In Intimate Partner Violence: A Health<br />

Based Perspective (Eds) Mitchell, C., Anglin, D. Oxford<br />

University Press. New York 319-335.<br />

6. Juarez, C. and Hughes, C. (In press). Investigating patterns of<br />

Injury: Identifying Intimate Partner Violence. In Broken Bones:<br />

Anthropological Analysis of Blunt Force Trauma 2 nd edition.<br />

Edited by A. Galloway and VL Wedel. C.C. Thomas,<br />

Springfield IL.<br />

7. Arosarena O, Fritsch TA, Hsueh Y, Aynehchi B, Huag R. (2009).<br />

Maxillofacial injuries and Violence Against Women. Arch Facial<br />

Plastic Surgery. 11(1):48-52.<br />

Domestic Violence, Facial Fracture, Intimate Partner Violence<br />

H11 Skeletal Trauma Patterns in a Vietnam-Era<br />

Aircraft Loss: Part I - Lower Extremities<br />

Matthew Rhode, PhD*, JPAC-CIL, 310 Worchester Avenue, Building 45,<br />

Hickam, AFB, HI 96853<br />

After attending this presentation, attendees will gain a broader<br />

understanding of the types of skeletal trauma exhibited in the lower<br />

extremities of multiple passengers of the same Vietnam era aircraft loss.<br />

In addition, based on consistencies in the patterns of fractures observed,<br />

a model is posited that delimits the types of lower extremity trauma<br />

expected in this type of aircraft loss.<br />

This presentation will impact the forensic science community by<br />

serving as a baseline from which future investigators can compare and<br />

contrast skeletal trauma seen in casework. Specifically, knowledge of<br />

expected trauma patterns for certain aircraft mishaps and military loss<br />

incidents will enhance the interpretation of skeletal trauma throughout<br />

the field.<br />

One feature that is often lacking from scientific literature reviewing<br />

trauma caused in aircraft losses, falls from heights, and automobile<br />

accidents, is specific detail regarding the types of fractures sustained.<br />

This lack of detail limits the interpretation and analysis forensic<br />

scientists can perform on such remains. The paucity of information on<br />

skeletal trauma may be related to an autopsy-based, or soft-tissue,<br />

perspective as well as a lack of sufficient case material covering more<br />

than a few individuals. This project seeks to fill this information gap by<br />

presenting a unique opportunity to describe the skeletal trauma exhibited<br />

across multiple individuals involved in the same aircraft loss incident.<br />

Specifically, this project, involves the analysis of lower extremity trauma<br />

(femur, tibia, and fibula) in a series of skeletal remains recovered from<br />

the 1965 loss of a C-123 cargo plane with 84 passengers on board.<br />

However, due to an incomplete recovery, nine years later in 1974, there<br />

are only approximately 30 individuals represented in the sample.<br />

Review of the remains reveals a combination of peri-mortem<br />

fracturing and postmortem damage but an estimated 80% or more of the<br />

observed fractures are peri-mortemin origin. The nine-year lapse<br />

between the loss and recovery did result in some taphonomic damage;<br />

however, this did not significantly impede the observation of fracture<br />

surfaces and trauma patterns. For each element in the lower extremity,<br />

summary and descriptive statistics describing fracture types and<br />

orientations are presented for the proximal, middle, and distal thirds.<br />

When possible, specific information is given on fracture types in the<br />

femoral head and neck, knee, and ankle.<br />

There is a consistency in fracture patterns across the sample,<br />

indicating a similar array of forces during the crash. Viewed as a group<br />

assemblage, all individuals on the aircraft experienced dynamic, sudden<br />

deceleration, blunt force trauma during the crash resulting in nearly<br />

every bone in the lower extremity exhibiting one, if not multiple,<br />

fractures. Accepting some variability, a majority of the observed<br />

fractures are oblique in orientation, suggesting a predominance of<br />

bending (tension and compression) forces acting on the lower<br />

extremities.<br />

Drawing this information together, a model describing the types of<br />

fractures is posited for this type of aircraft and loss incident. This model<br />

is presented to the greater scientific community as tool for comparison to<br />

other cases. A basic comparison of trauma patterns in other aircraft<br />

losses does indicate similarities, while differences are noted in cases with<br />

published data on falls from heights.<br />

Trauma, Skeletal, Lower Extremity<br />

H12 The Central Identification Unit (CIU)<br />

During the Korean War<br />

Kathleen M. Loyd, MA*, Joint POW-MIA Accounting Command Central<br />

Identification Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

The goal of this presentation is to provide historical insight into the<br />

operations of the United States Army Central Identification Unit (CIU)<br />

during the return of United States (U.S.) deceased from the Korean War,<br />

spanning from 1951 until 1956. Brief descriptions of forensic<br />

anthropologists working at the CIU, Standard Operating Procedures<br />

(SOPs), and insight into the analysis of unknown Korean War deceased<br />

will be examined through historical documents, anecdotes, and period<br />

photographs.<br />

This presentation will impact the forensic science community by<br />

contributing to the historical understanding of the CIU during the return<br />

of deceased U.S. Korean War servicemen. Attendees will understand the<br />

purpose of the CIU, process of analysis and identification, and the<br />

historical legacy of the identifications made by the CIU. In addition, a<br />

brief synopsis will demonstrate how historical documents about the CIU<br />

have been used to develop name associations for Korean War cases<br />

previously categorized as unknowns by investigators at the CIU.<br />

On January 2, 1951, the United States Army (USA) opened a<br />

forensic identification laboratory at Camp Kokura, Japan to analyze,<br />

identify, and return deceased U.S. Korean War servicemen to their<br />

families. The CIU employed a staff of mortuary technicians, forensic<br />

specialists, and forensic anthropologists to analyze and identify the<br />

remains of thousands of U.S. servicemen who lost their lives during the<br />

Korean War. Utilizing developments in forensic anthropology refined by<br />

forensic anthropologists working on the identification of war deceased<br />

from World War II, a small handful of anthropologists at the CIU handled<br />

caseloads of over 100 remains per day. In light of such demands,<br />

stringent SOPs were followed in order to ensure the integrity of<br />

identifications. Official SOPs and CIU documents detail the procedures<br />

for receiving, storing, analyzing, preserving, and identifying remains.<br />

These documents will be captured through summary and copied<br />

examples to demonstrate how remains were recovered, analyzed,<br />

identified, and returned by the CIU.<br />

Candid anecdotes from Dr. Kazuro Hanihara’s book, “Bones Reveal<br />

the Identities of Human Bodies: Scientific Procedures for Identification”<br />

provide insight into the working conditions at the CIU and challenges<br />

faced by anthropologists working on war deceased.<br />

United States Army Signal Corps silent film recordings of the CIU<br />

offer visual reference to the procedures of analyzing remains recovered<br />

from the conflict. Though there is no commentary, the film captures how<br />

the SOP was employed by staff at the CIU, and shows the laboratory as<br />

used by the forensic anthropologists and technicians.<br />

Unknown Korean War deceased presented unique challenges to<br />

investigators at the CIU. Various investigative methods of anthropologic<br />

7 * Presenting Author


analysis and historical research were utilized to examine unknown<br />

remains. When an investigation was unable to result in identification,<br />

these remains were classified as Unknown “X” cases, and were<br />

eventually buried in the National Memorial Cemetery of the Pacific<br />

(Punchbowl) in Honolulu, Hawaii. The Joint POW-MIA Accounting<br />

Command Central Identification Laboratory (JPAC CIL) has continued<br />

to research the unknown cases in an attempt to associate the unknowns<br />

with unaccounted-for servicemen. A brief summary of the JPAC<br />

research process through a case study will demonstrate the critical<br />

importance of historical documents from CIU.<br />

Korean War, Forensic Anthropology, History<br />

H13 Introducing COFFA: An International<br />

Consortium of Forensic Anthropology Programs<br />

Ann H. Ross, PhD*, North Carolina State University, Department of<br />

Sociology & Anthropology, Campus Box 8107, Raleigh, NC 27695-8107;<br />

and Erin H. Kimmerle, PhD*, University of South Florida, Department<br />

of Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820<br />

After attending this presentation, attendees will understand the<br />

challenges faced by young researchers and practitioners in academia.<br />

This presentation will impact the forensic science community by<br />

introducing a consortium with a mission to provide support for faculty in<br />

forensic anthropology in the realms of promotion and tenure and<br />

curriculum development. Additionally, membership information in the<br />

consortium will be presented.<br />

In 2010, the International Consortium of Forensic Anthropology<br />

Programs (COFFA) was founded as a consortium to provide support for<br />

faculty and departments who teach forensic anthropology<br />

(http://www.coffa.usf.edu). The mission is to support the development<br />

and success of fundamental education and training for students, faculty,<br />

and practitioners of forensic anthropology.<br />

In the past decade, many new educational programs have started at<br />

universities where there was not a tradition of teaching or practicing<br />

forensic anthropology. In part, this is the result of the high demand by<br />

students due to the so-called “CSI effect.” For a fresh forensic<br />

anthropology PhD, it can be challenging to navigate through the standard<br />

roles of university responsibilities, when time is divided among teaching,<br />

administration, research, and consulting practice. Even more taxing, can<br />

be negotiating the unique roles and challenges forensic anthropologists<br />

face trying to incorporate case work into an academic model (i.e., the<br />

unique relationship between casework as research and teaching<br />

opportunities for students).<br />

A recent 2009 survey presented by the physical anthropology<br />

section of the AAFS showed that there were 32 academic programs<br />

suited for forensic anthropology training at the time the survey was<br />

conducted (http://aafs.org/sites/default/files/pdf/PAEmploymentTrends.pdf).<br />

The criteria for making it on the list included an AAFS member on<br />

faculty that could mentor students, a graduate level forensic<br />

anthropology course, and a graduate program in anthropology.<br />

However, the number of resources and professional networking<br />

outlets are lacking for forensic anthropologists. Therefore, similar in<br />

model to the Consortium for Practicing and Applied Anthropology<br />

Programs, COFFA started with eleven initial members including:<br />

Hamline University, Department of Anthropology; LSU, Department of<br />

Geography and Anthropology; NCSU, Department of Sociology and<br />

Anthropology; Mercyhurst College, Department of Anthropology; MSU,<br />

Department of Anthropology; Texas State University – San Marcos,<br />

Department of Anthropology; University of Coimbra, Research Centre<br />

for Anthropology and Health; UGA, Department of Anthropology; UCF,<br />

Department of Anthropology; UF, Department of Anthropology; USF,<br />

Department of Anthropology.<br />

* Presenting Author<br />

Most higher learning institutions have specific guidelines for<br />

attaining promotion and tenure, which are evaluated according to the<br />

realms of teaching, research, and service/engagement. Most institutions<br />

incorporate Boyer’s (1996, p. 32) “Scholarship of Engagement,” which<br />

stressed the importance of faculty and universities applying their<br />

expertise to “our most pressing social, civic and ethical problems.”<br />

Although engagement is an evaluation criterion and is outlined in most<br />

university guidelines, most traditional academic departments still do not<br />

count the applied or engaged scholarship, which defines forensic<br />

anthropology during the tenure and promotion process.<br />

COFFA was established to provide faculty support in: (1) tenure<br />

and promotion recommendations for programming in forensic<br />

anthropology; (2) best practices and lessons learned in teaching forensic<br />

anthropology; and, (3) guidelines for training practicing forensic<br />

anthropologists. Over the next year, COFFA will develop a set of<br />

recommendations on: (a) how to develop meaningful ways of defining,<br />

documenting, evaluating, and promoting diverse forms of scholarship in<br />

forensic anthropology; and, (b) how to raise awareness and recognition<br />

for practical applied work in forensic anthropology among department<br />

chairs, deans, and members of tenure and promotion committees (e.g.,<br />

scholarship of engagement). Additionally, COFFA members plan to<br />

develop documents that provide models and suggestions for<br />

undergraduate and graduate level curriculum development in forensic<br />

anthropology. These documents will provide COFFA members<br />

opportunities to share resources and to learn from each others’<br />

experiences in developing guidelines for the design and administration<br />

of degree-granting graduate training programs for practicing<br />

forensic anthropologists.<br />

Forensic Anthropology, Education, Promotion and Tenure<br />

H14 The American Board of Forensic<br />

Anthropology: Historical Trends in<br />

Research and Training<br />

Jonathan D. Bethard, MA*, Pellissippi State Community College, 10915<br />

Hardin Valley Road, PO Box 22990, Knoxville, TN 37933<br />

After attending this presentation, attendees will learn about<br />

historical trends in research and training of Diplomates certified by the<br />

American Board of Forensic Anthropology (ABFA).<br />

This presentation will impact the forensic science community by<br />

providing an historical overview of the ABFA and its Diplomates.<br />

Moreover, this presentation adds to the growing body of literature<br />

describing the development of forensic anthropology in the United<br />

States.<br />

While forensic anthropology continues to advance both<br />

theoretically and methodologically during the twenty-first century,<br />

numerous workers have contributed to the discipline by tracing the<br />

historical developments in the field. 1-8 These careful analyses have<br />

demonstrated that the craft of forensic anthropology has grown from the<br />

peripheral application of physical anthropology in medico-legal contexts<br />

to a legitimate, full-time discipline and profession. While numerous<br />

scholars indicate that 1972 marked a turning point for the discipline, with<br />

the founding of the Physical Anthropology Section of the American<br />

Academy of Forensic Sciences (AAFS), 1977 was also a watershed year,<br />

as the American Board of Forensic Anthropology, Inc. (ABFA) was<br />

founded. 1-8<br />

The ABFA was originally established by seasoned practitioners<br />

interested in creating a board certification process for forensic<br />

anthropologists. Since its inception in 1977, 85 individuals have been<br />

certified as Diplomates, with 63 active individuals as of 2010. The first<br />

two cohorts of Diplomates were automatically granted Diplomate status;<br />

however, since 1979 individuals wishing board certification have had to<br />

pass a rigorous written examination and laboratory practicum.<br />

8


This project traces the academic histories of all 85 Diplomates and<br />

examines trends in research and training. Dissertation titles were used to<br />

decipher broad research patterns and academic institutions were tracked<br />

for the purpose of indicating trends in training. In addition, the number<br />

of years between graduation and board certification was calculated and<br />

each Diplomate’s major professor was noted.<br />

All but one of the 85 Diplomates received the PhD degree. Dan<br />

Morse (now deceased) graduated from Western Reserve <strong>Medical</strong> School<br />

in 1932 and was certified as a Diplomate 45 years later. Of the remaining<br />

Diplomates, dissertation research topics are diverse and variable.<br />

Broadly, topical research interests can be classified into six categories:<br />

(1) skeletal biological studies and bioarchaeology; (2) forensic<br />

anthropology; (3) zooarchaeology; (4) paleoanthropology; (5)<br />

primatology or paleoprimatology; and (6) human biology, human<br />

variation, or dermatoglyphics. Of these, 56.4% fall into the skeletal<br />

biology or bioarchaeology category with 18.8% of dissertations related<br />

to forensic anthropology. These data indicate that board-certified<br />

forensic anthropologists have far-reaching interests that are not solely<br />

devoted to the profession, as over 80% wrote dissertations outside of the<br />

forensic purview.<br />

Regarding institutional training, a total of 36 institutions were<br />

attended for the terminal degree. These schools are geographically<br />

diverse, are found all over the United States, and include both public and<br />

private institutions. Eight Diplomates received their degrees from<br />

institutions outside the US (Canada, United Kingdom, and South Africa).<br />

The number of Diplomates trained at one institution varies with The<br />

University of Tennessee granting the most number of degrees (n=17).<br />

The mean year difference between completing requirements for the<br />

terminal degree and board-certification is 9.4 years and ranges from 2 to<br />

45 years.<br />

This project has demonstrated that board-certified forensic<br />

anthropologists are a broadly trained group of professionals and that the<br />

ABFA represents a diverse group of practitioners with far-reaching<br />

anthropological interests and expertise. Additionally, this historical<br />

analysis has demonstrated that several pioneering individuals have had<br />

far-reaching influence on the field of forensic anthropology and the<br />

development of successful training programs.<br />

References:<br />

1. Buikstra JE, King JL, Nystrom KC. Forensic anthropology and<br />

bioarchaeology in the American Anthropologist: rare but<br />

exquisite gems. American Anthropologist. 2003 Mar;105(1):<br />

38-52.<br />

2. Galloway A, Simmons TL. Education in forensic anthropology:<br />

Appraisal and outlook. Journal of Forensic Sciences. 1997<br />

Sep;42(5):796-801.<br />

3. Reichs KJ. Forensic Anthropology in the 1990s. American<br />

Journal of Forensic Medicine and Pathology. 1992<br />

Jun;13(2):146-53.<br />

4. Reichs KJ. A professional profile of diplomates of the American<br />

Board of Forensic Anthropology - 1984 - 1992. Journal of<br />

Forensic Sciences. 1995 Mar;40(2):176-82.<br />

5. Ubelaker DH. Skeletons testify: Anthropology in forensic<br />

science. AAPA luncheon address: April 12, 1996. Yearbook of<br />

Physical Anthropology, Yearbook Series Vol 39; 1996;229-44.<br />

6. Ubelaker DH. Contributions of Ellis R. Kerley to forensic<br />

anthropology. Journal of Forensic Sciences. 2001 Jul;46(4):<br />

773-6.<br />

7. Willey P. William R. Maples and the development of the<br />

American Board of Forensic Anthropology. Journal of Forensic<br />

Sciences. 1999 Jul;44(4):687-8.<br />

8. Marks MK. William M. Bass and the Development of Forensic<br />

Anthropology in Tennessee. Journal of Forensic Sciences. 1995<br />

Sept;40(5):741-750.<br />

Forensic Anthropology, American Board of Forensic<br />

Anthropology, History<br />

H15 The Scientific Working Group for Forensic<br />

Anthropology: An Update<br />

Thomas D. Holland, PhD*, DoD JPAC, Central ID Lab, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will be familiar with the<br />

recent activities of the Scientific Working Group for Forensic<br />

Anthropology (SWGANTH).<br />

This presentation will impact the forensic science community by<br />

raising awareness of the SWGANTH’s work to establish, identify, and<br />

publish “Best Practices” within the forensic anthropology discipline.<br />

In late 2007, the U.S. Department of Defense Central Identification<br />

Laboratory (DOD CIL) and the Federal Bureau of Investigation (FBI)<br />

cosponsored the creation of the Scientific Working Group for Forensic<br />

Anthropology, or SWGANTH. The group’s by-laws were adopted at its<br />

first formal meeting on January 8, 2008. The 20-member Executive<br />

Board, comprised of professionals from the forensic anthropological<br />

community, represent a broad cross-section of expertise and<br />

jurisdictional involvement. To this end, the permanent members of the<br />

Executive Board were specifically selected to represent large, medium,<br />

and small graduate-level academic programs, large and small medical<br />

examiner offices, the museum and cultural resource communities, as<br />

well as federal, state, and local government agencies. As with other<br />

“Scientific Working Groups,” the SWGANTH does not function as a<br />

regulatory body and lacks any sort of direct coercive authority. Rather,<br />

the purpose of the SWGANTH is to identify and recommend current<br />

“best practice” within the forensic anthropology discipline, to chart a<br />

path into the future, and to bring about voluntary compliance through<br />

education and peer involvement. This is being accomplished primarily<br />

through the work of approximately 20 sub-committees, each chaired by<br />

two or more members of the Executive Board, but populated by forensic<br />

anthropologists from around the United States and world. Ultimately,<br />

the success of the SWGANTH will be directly proportional to the<br />

interest and involvement of the larger forensic anthropology community.<br />

The SWGANTH benefits from having co-sponsors in that it is<br />

relatively well funded. The group’s Executive Board meets twice<br />

annually, in the National Capitol Region in the spring and in Hawaii in<br />

the winter. At the June 2010 meeting, hosted by the National<br />

transportation Safety Board. the SWGANTH Executive Board reviewed<br />

and evaluated the work of the sub-committees, ultimately approving ten<br />

“Best Practice” guidelines for promulgation. These were then posted on<br />

the SWGANTH website for public dissemination. At the most recent<br />

meeting, January 2011, the Board voted on eight additional subcommittee<br />

recommendations, bringing the total number of approved<br />

“Best Practice” guidelines to 18. These are:<br />

1. Code of Ethics and Conduct<br />

2. [Individual] Qualifications<br />

3. [Forensic Anthropology] Laboratory Management and Quality<br />

Assurance<br />

4. Determination of Medicolegal Significance<br />

5. Sex Assessment<br />

6. Pathological Conditions and Anomalies<br />

7. Facial Approximation<br />

8. Age Estimation<br />

9. Skeletal Sampling and Preparation<br />

10. Personal Identification<br />

11. Resolving Commingled Remains<br />

12. Stature Estimation<br />

13. Trauma Analysis<br />

14. Statistical Methods<br />

15. Ancestry Estimation<br />

16. Taphonomy<br />

17. Documentation and Reporting<br />

18. Detection and Recovery of Remains<br />

9 * Presenting Author


The SWGANTH Executive Board also created three new subcommittees<br />

that have been charged with identifying some of the basic<br />

elements common to a well-rounded forensic anthropology educational<br />

program, isolating “gaps” in the underlying practice of our discipline,<br />

and creating a “self assessment” that will aid forensic anthropologists in<br />

evaluating their performance relative to the larger community. As with<br />

previous guidelines, drafts of these documents will be posted for public<br />

comment for at least 45 days prior to a final evaluation and decision by<br />

the SWGANTH Executive Board. No specific timetable was established<br />

for these sub-committees to issue their recommendations.<br />

Best Practices, SWGANTH, Guidelines<br />

H16 Involvement of Forensic Anthropologists in<br />

the National Unidentified and Missing<br />

Persons System (NamUs)<br />

Bruce E. Anderson, PhD, Forensic Science Center, Office of the <strong>Medical</strong><br />

Examiner, 2825 East District Street, Tucson, AZ 85714; Elizabeth A.<br />

Murray, PhD*, College of Mount Saint Joseph, Department of <strong>Bio</strong>logy,<br />

5701 Delhi Road, Cincinnati, OH 45233-1670; Susan M.T. Myster, PhD,<br />

Hamline University, MB 196, 1536 Hewitt Avenue, Saint Paul, MN<br />

55104; and Jennifer C. Love, PhD, Harris County Institute of Forensic<br />

Sciences, 1885 Old Spanish Trail, Houston, TX 77054<br />

After attending this presentation, attendees will better understand<br />

the ways in which forensic anthropologists can engage with NamUs, and<br />

learn more about the current scope of the unidentified persons problem<br />

in the United States, particularly as it relates to the field of forensic<br />

anthropology.<br />

This presentation will impact the forensic science community by<br />

communicating to forensic anthropology professionals the ways in<br />

which they can become involved with NamUs, reporting on unidentified<br />

skeletal remains of forensic interest in various regions of the country that<br />

have not been entered into NamUs; and demonstrating basic NamUs<br />

case entry for unidentified persons.<br />

Throughout the past decade, forensic professionals have<br />

increasingly become aware of the need to create a system that retains and<br />

integrates records of unidentified persons and missing persons<br />

throughout the United States. Out of these and other realizations, and<br />

under the auspices of the Department of Justice, National Institute of<br />

Justice, evolved the “President’s DNA Initiative” in 2003, and the<br />

“Identifying the Missing Summit” in 2005. Later, in 2007, the initial<br />

phases of what was to become the National Missing and Unidentified<br />

Persons System (NamUs) developed. The scope of the missing and<br />

unidentified problem is enormous and has been referred to “the nation’s<br />

silent mass disaster.” Based on records collected in 2004 by the Office<br />

of Justice Programs, it was estimated that as many as 40,000 unidentified<br />

dead may exist in the United States today. Some of these unidentified<br />

persons currently exist only as records; other unidentified decedents lie<br />

buried in public cemeteries throughout the United States without benefit<br />

of tissue sampling for DNA analysis. Additional sets of unidentified<br />

skeletal remains sit in boxes on shelves in police property rooms, county<br />

morgues, museums, and anthropology departments. Many of these<br />

skeletons, though forensically significant, have dates of discovery that<br />

preceded modern anthropological identification methods, and certainly<br />

predated the use of DNA technology.<br />

The advent of the NamUs system, and the resources and technology<br />

it provides, allows the medicolegal system a new and dynamic way to<br />

pursue identification of unknown persons. The responsibility of forensic<br />

anthropologists, in collaboration with the coroners and/or medical<br />

examiners with whom they consult, is to ensure that skeletal remains<br />

within the regions in which they practice are afforded this new<br />

technology, including the fully-funded DNA analyses associated with<br />

this national identification effort. Those who have been entrusted with<br />

* Presenting Author<br />

remains by coroners and medical examiners are empowered to actively<br />

participate in the identification process of the individuals in their charge.<br />

To this end, it is essential that forensic professionals become familiar<br />

with the NamUs system, use it in their casework, encourage the use of<br />

the NamUs system by their colleagues, and that those involved in<br />

forensic anthropology education begin to introduce this tool to their<br />

students.<br />

This presentation will provide an overview of the NamUs system,<br />

with special emphasis on its application to the identification of unknown<br />

skeletal remains. Case data entry will be demonstrated, means of<br />

obtaining free DNA analyses will be outlined, and ways that forensic<br />

anthropologists can become more involved with NamUs will<br />

be discussed.<br />

NamUs, Unidentified Persons, Forensic Anthropology<br />

H17 Diversification: Evolving Professional<br />

Roles for the Forensic Anthropologist in the<br />

Medicolegal System<br />

Gwendolyn M. Haugen, MA*, Saint Louis County <strong>Medical</strong> Examiner’s<br />

Office, 6039 Helen Avenue, Saint Louis, MO 63134; Gina O. Hart, MA,<br />

325 Norfolk Street, Newark, NJ 07103-2701; and Pamela M. Steger, MS,<br />

934 Sycamore Street, San Marcos, TX 78666<br />

After attending this presentation, attendees understand the different<br />

professional roles forensic anthropologists fill in a medical<br />

examiner/coroner office. In light of the current economic climate, the<br />

trend to diversify professional duties is expected to rise.<br />

This presentation will impact the forensic science community by<br />

highlighting the additional professional roles forensic anthropologists<br />

currently serve in the medicolegal system. This trend presents unique<br />

opportunities for cross-training in other forensic specialty areas thereby<br />

increasing overall marketability for the forensic anthropologist.<br />

The role of a Forensic Anthropologist (FA) in the <strong>Medical</strong><br />

Examiner/Coroner (ME/C) Office is an important one, but for many<br />

offices, the work load of such a position is not enough to justify a fulltime<br />

FA staff member. In the past, a FA was used as an external<br />

consultant providing services on an “as needed” basis to the ME/C. This<br />

proved to be problematic in some cases due to chain of custody-related<br />

issues and the long amount of time required for analysis and report<br />

completion if the consultant was not local. Over the last 15 years, this<br />

mode of operation has evolved with many larger offices bringing a FA on<br />

staff to provide case analysis as needed, while also filling an additional<br />

role(s) in the office. This arrangement has proven advantageous for the<br />

ME/C in that they have a specialist on their staff that is available at any<br />

time for FA consults – to include trauma consults with the pathologist<br />

during the autopsy examination. In addition, the FA is also trained in<br />

office policy/procedures (especially those related to the handling of<br />

evidence). The broad educational background of a FA lends itself to<br />

other roles in the office to include, but not limited to, medicolegal death<br />

investigator, DNA coordinator, identification coordinator, mass disaster<br />

planning management, director of photography, trace/evidence/latent<br />

print examiner, autopsy technician and forensic database administrator.<br />

In this way the FA also builds important working relationships with the<br />

entire ME/C staff, police and crime scene personnel, and other<br />

investigative agencies. These relationships also lead to greater education<br />

and understanding of forensic anthropology for outside agencies. As part<br />

of the ME/C staff, the FA is immediately available to assist with the case<br />

from the point of the scene investigation/recovery. In the majority of<br />

cases, this involvement directly leads to the greatest recovery of skeletal<br />

and trace evidence from the scene which is typically correlated with<br />

successful case resolution.<br />

This presentation will discuss the current, diversified roles filled by<br />

FAs in the medicolegal system and the advantages this provides for<br />

10


professional enrichment, new training opportunities, certification options<br />

and diverse employment opportunities. Stresses associated with the<br />

overall unpredictability of the operational movement at an ME/C Office<br />

and the demanding workload requirements diversification of duties<br />

presents will also be explored. The roles and responsibilities of several<br />

FAs currently serving in ME/C offices will be presented and discussed.<br />

In addition, the roles of several FAs currently employed in professional<br />

forensic positions outside of the ME/C system will also be presented to<br />

illustrate the range of opportunities available to the FA.<br />

Diversification of professional duties is a trend that is on the rise, in<br />

part, due to the current economic climate. This trend should not be<br />

looked on as a negative in that professional focus is being split, but as a<br />

positive opportunity to learn and apply additional forensic skills. As will<br />

be shown, this trend presents the FA with unique opportunities to<br />

diversify their forensic proficiency into other areas and increase<br />

overall marketability.<br />

Forensic Anthropology, Medicolegal System, Professional Roles<br />

H18 Forensic Anthropology and Virtual Human<br />

Remains: Ethics in Uncharted Territory<br />

Stephanie L. Davy-Jow, PhD*, Liverpool John Moores University, James<br />

Parsons Building, Byrom Street, Liverpool, L3 3AF, UNITED<br />

KINGDOM; Summer J. Decker, MS, USF COM Department of<br />

Pathology, 12901 Bruce B. Downs Boulevard, MDC 11, Tampa, FL<br />

33612; and Diane L. France, PhD, Colorado State University, Human<br />

Identification Lab, Department of Anthropology, Fort Collins, CO 80523<br />

After attending this presentation, attendees will have an<br />

understanding of some of the ethical considerations that forensic<br />

anthropology as a discipline may be facing as it begins to increase the<br />

use of virtual human remains and imaging technologies.<br />

This presentation will impact the forensic science community by<br />

opening a dialogue in the anthropological community regarding the use<br />

of virtual human remains so as to establish ethical guidelines for<br />

the future.<br />

The use of virtual human remains in forensic anthropology has been<br />

steadily increasing as the technology to capture and view them becomes<br />

more affordable and accessible. Within the next decade, it is anticipated<br />

that medical imaging tools such as multislice computed tomography<br />

(MSCT) and magnetic resonance imaging (MRI) scanners and software,<br />

along with other data capture capabilities such as laser scanning will<br />

become a routine component of the anthropologist’s toolkit in much the<br />

same way as radiographs and photographs. Recent work (Decker et al,<br />

in press; Decker et al, 2008) 1,2 and others (Thali et al, 2003) 3 demonstrate<br />

the potential for virtual remains for the non-invasive examination of<br />

remains, as well as the ability to use imaging as a permanent record of<br />

an individual. It is now possible to scan an entire human body, whether<br />

living or dead, and create a 3D virtual model of it in minutes. This digital<br />

human can be explored in a multitude of unprecedented and heretofore<br />

unimagined ways, both for crime-solving and research purposes. It has<br />

not yet been decided whether these new types of medical images will be<br />

considered a simple increase in sophistication from existing tools, or if<br />

the differences are so marked that they will be subject to a new set of<br />

rules that has yet to be defined.<br />

The discipline must consider the potential contentiousness<br />

surrounding the retention and future use of virtual skeletal remains. The<br />

big question that has yet to be asked – or answered – is “Are virtual<br />

remains governed by same ethics as actual remains?” There are three<br />

main areas in which these issues likely will be encountered: forensic<br />

cases (involving identified and unidentified individuals), use in<br />

education, and use in research. There is potential for a vast amount of<br />

knowledge to emerge from such specimens, but issues must be<br />

considered that may arise surrounding cultural and religious values of<br />

the deceased and the survivors – this is a daunting task in uncharted<br />

territory.<br />

Recent reports and investigations by the National Academy of<br />

Sciences and the United States Congress have made this an even more<br />

pressing issue that must be addressed as the discipline pushes towards<br />

standardization of the forensic sciences.<br />

As a field, there must be transparency in our practices and consider<br />

the values and viewpoints of the public as part of the discipline’s<br />

responsibility. In the modern climate, public dissemination is necessary.<br />

It may be assumed that the treatment of virtual human remains will be<br />

similar to other types of digital evidence in a forensic case. However, real<br />

human remains are often handled differently than other types of<br />

evidence. Also, due to the nature of the work, human remains handled<br />

by a forensic anthropologist are not always part of an investigation so the<br />

circumstances of such remains are different. In this presentation, these<br />

issues are discussed as well as the different issues surrounding the use of<br />

remains in teaching and research.<br />

This presentation will examine current attitudes toward the<br />

treatment and use of virtual human remains and explore the pathways<br />

that the profession can take to ensure that ethical practices continue to<br />

evolve along with laboratory practices.<br />

References:<br />

1. Decker SJ, Davy-Jow SL, Ford JM, Hilbelink DR (In Press)<br />

Virtual Sex Determination: Metric and non-metric traits of the<br />

adult pelvis from 3D computed tomography (CT) models.<br />

Journal of Forensic Sciences.<br />

2. Decker SJ, Hilbelink DR, Hoegstrom E, Ford J (2008) Virtual<br />

Skull Anatomy: 3 Dimensional Computer Modeling and<br />

Measurement of Human Cranial Anatomy. Proceedings of the<br />

American Academy of Forensic Sciences 2008, Washington DC.<br />

3. Thali, MJ, Yen K, Schweitzer W, Vock P, Boesch C, Ozdoba C,<br />

Schroth G, Ith M, Sonnenschein M, Doernhoefer T, Scheurer E,<br />

Plattner T, Dirnhofer R (2003). Virtopsy, a new imaging horizon<br />

in forensic pathology: virtual autopsy by postmortem multislice<br />

computed tomography (MSCT) and magnetic resonance imaging<br />

(MRI)—a feasibility study. Journal of Forensic Sciences 48:<br />

386–403.<br />

Virtual Anthropology, <strong>Medical</strong> Imaging, Ethics<br />

H19 Femmes Fatales: Why Do Women<br />

Dominate the Discipline of<br />

Forensic Anthropology?<br />

Anna Williams, PhD*, Cranfield University, Defense Academy of the<br />

United Kingdom, Shrivenham, SN6 8LA, UNITED KINGDOM<br />

After attending this presentation, attendees will be able to recognize<br />

the global phenomenon showing more women than men are actively<br />

engaged in forensic anthropology education and professional practice in<br />

the United Kingdom, United States, and Europe; and understand the<br />

reasons for this sweeping trend. It is especially obvious that more<br />

women than men are applying for and attending higher education<br />

courses in the United Kingdom and United States. It is anticipated that<br />

the attendees will have observed this trend in their own university<br />

courses, whether as tutors or students, and will have their own views on<br />

the phenomenon and explanations for it. This presentation will explore<br />

the different reasons for the trend, perhaps controversially. Attendees<br />

will gain insight into the determining factors that make more women<br />

choose to study forensic anthropology, remain in the discipline, and<br />

prosper with successful careers, as well as, discover if there are<br />

disincentives for men. It is hoped that this presentation will raise<br />

questions that will stimulate debate and make the attendees think about<br />

the nature of forensic anthropology education and practice.<br />

11 * Presenting Author


This presentation will impact the forensic science community by<br />

discussing the reasons why more women enter university programs and<br />

become professional forensic anthropologists than men. It is undeniable<br />

that, both in the United Kingdom and abroad, undergraduate, and postgraduate<br />

programs are inundated with female applicants, and female<br />

students in courses outnumber male students in the order of at least 2:1,<br />

up to record numbers of even 25:1. This has tremendous implications for<br />

the future of forensic anthropology as a discipline, and for universities<br />

attempting to attract male, as well as, female students. Female-rich<br />

cohorts may positively or negatively influence selection criteria,<br />

numbers enrolled on part-time courses, completion rates, and the quality<br />

of learning. The high numbers of female professional forensic<br />

anthropologists may have positive or negative implications for career<br />

progression, deployment opportunities, membership of professional<br />

organizations, and acceptance by male-dominated institutions such as<br />

police and law enforcement agencies. Although the phenomenon has<br />

undoubtedly been noticed in the classrooms and laboratories of the<br />

United Kingdom and the United States, a systematic analysis of the<br />

reasons behind it has not been carried out to date, and it is vital in order<br />

to understand and prepare for the future of modern forensic<br />

anthropology.<br />

This research aims to discover the cause of the undeniable,<br />

worldwide phenomenon that women dominate the global discipline of<br />

forensic anthropology today. There are more women than men training<br />

to be forensic anthropologists; in academic roles teaching forensic<br />

anthropology; and in professional forensic anthropology practice, in the<br />

United Kingdom, United States, and abroad, which begs the question<br />

“why”? This study is focused on establishing the various motivations for<br />

both men and women contemplating degrees and careers in forensic<br />

anthropology, and discusses their implications for the discipline.<br />

Research questionnaires were circulated among male and female<br />

student and professional forensic anthropologists in the United<br />

Kingdom, United States, and Europe, in order to collate educational<br />

backgrounds and attitudes towards the subject and careers in the<br />

discipline. Admission and attendance statistics from United Kingdom,<br />

United States, and European universities and professional organizations<br />

were also gathered to amass data to chart the progression of the trend, the<br />

steady influx of women, and the decline of male students in<br />

undergraduate and postgraduate forensic anthropology courses since<br />

they began. Preliminary data has shown a steadily increasing majority<br />

of female applicants since the subject was offered as a university degree<br />

in the United Kingdom in 2002. Data from professional organizations in<br />

the United Kingdom and abroad was interrogated to determine whether<br />

applications from women outnumber those from men, and whether<br />

continued attendance and contribution has shown a gender bias over the<br />

last ten to fifteen years. In the handful of professional organizations for<br />

<strong>Bio</strong>logical and Forensic Anthropologists in the United Kingdom, for<br />

example, women outnumber men as many as 3:1.<br />

The questionnaires pinpoint the factors that influence and<br />

encourage women to pursue a career in forensic anthropology, and to<br />

stay in it even if their life circumstances change. Preliminary results<br />

have offered some conflicting evidence, some of which suggests a career<br />

in forensic anthropology is flexible enough to accommodate raising a<br />

family, and some of which implies it may preclude it. It considers the<br />

attractions of the discipline to women, and whether these are different to<br />

those for men. The presentation explores this undeniable and extensive<br />

phenomenon, and investigates how long it has been occurring. It also<br />

discusses the motivation and impetus behind it. It will investigate the<br />

extent of the trend, and whether it exists only in forensic archaeology and<br />

anthropology, or whether it is true for forensic science as a whole, or<br />

indeed all the sciences in general.<br />

Preliminary questionnaire responses raise some important<br />

questions: is the popularity of television crime shows to blame/credit?<br />

What is it about forensic anthropology that appeals to women? Is<br />

forensic anthropology perceived as glamorous? Does forensic<br />

anthropology represent a flexible career for women with families? Is it<br />

* Presenting Author<br />

a recent phenomenon that reflects changing demographic distribution in<br />

most academic subjects? Is the trend to do with changing attitudes<br />

towards science, academic careers, women, or men, or all of the above?<br />

How long will it last? Already, there is a vast pool of opinion regarding<br />

these issues, which shows that although the trend is obvious, the reasons<br />

behind it are not, and/or they may be difficult to accept. Controversially,<br />

it will discuss whether women make better forensic anthropologists, or<br />

whether they are better suited to the subject for any reason, and whether<br />

men cannot compete in the workplace. Are men being put off the<br />

subject? Is there a stigma attached to the discipline for men? Do they<br />

feel at a disadvantage for any reason? Are they feeling ‘crowded out’ or<br />

unwelcome in any way? Are men put off by the sheer numbers of<br />

women in the discipline? And of course, does the dominance of women<br />

in the discipline matter at all?<br />

The answers to these questions have considerable implications for<br />

the future of forensic anthropology in the United Kingdom and abroad,<br />

in terms of education marketing, compliance with Equal Opportunities<br />

legislation and the composition of professional organizations and the<br />

practitioner workforce. This research aims to answer these questions and<br />

more, and to determine the true nature of the apparent complete<br />

dominance of the discipline that has emerged in the last ten to fifteen<br />

years, and above all, it aims to stimulate debate amongst male and<br />

female, student and professional, forensic anthropologists, and “get to<br />

the bottom” of this important and remarkable phenomenon.<br />

Forensic Anthropology, Women, Education<br />

H20 Development of the Colombian<br />

Skeletal Collection<br />

Cesar Sanabria, MA*, Instituto de Medicina Legal y Ciencias Forenses,<br />

Calle 7a #12-61, Segundo Piso, Bogota, COLOMBIA; and Elizabeth A.<br />

DiGangi, PhD*, ICITAP, Calle 125 #19-89, Office 401, Bogota, COLOMBIA<br />

After attending this presentation, attendees will gain knowledge of<br />

the development of the Colombian Skeletal Collection, including the<br />

administrative and technical logistics behind its assembly, the<br />

antemortem information available, and the goals of research projects.<br />

This presentation will impact the forensic science community by<br />

detailing the creation of a new modern skeletal collection in Colombia<br />

available for research with the goal of aiding in the identification process<br />

of victims of the Colombian conflict.<br />

During the past two decades Colombia has been faced with sociopolitical<br />

problems which have led to innumerous violent situations,<br />

resulting in the deaths and disappearances of thousands of individuals.<br />

Many of the recovered individuals are skeletons from clandestine graves<br />

located all over the country. Once excavated and sent to the forensic<br />

laboratories, analysis is done by forensic anthropologists, dentists, and<br />

pathologists who must determine who each individual was and whether<br />

or not they died in a violent context.<br />

As the majority of recovered individuals remain unidentified, it is<br />

necessary to develop a way to augment the ability to answer several<br />

questions, including positive identification and cause and manner of<br />

death. Due to the above, a research collection of modern skeletons is<br />

currently being organized in Colombia. The Colombian Skeletal<br />

Collection is being assembled for several reasons: (1) to develop<br />

standards and validation studies (for age-at-death, sex, stature, etc.) from<br />

the Colombian population because best practice states that standards<br />

developed from one population should only be applied to that particular<br />

population; (2) at this point, there are very few forensic anthropologyrelated<br />

population studies that have been done in Colombia, and<br />

therefore, the standards used to analyze forensic cases here are those<br />

based on American and European populations; and, (3) to allow for the<br />

generation of scientific knowledge with regards to physical/forensic<br />

anthropology for Colombia and to enable research to move forward here<br />

12


in the areas of physical/forensic anthropology, dental anthropology,<br />

radiology, osteopathology and taphonomy, among others.<br />

In order to assemble the collection, an inter-institutional agreement<br />

was entered into between the National Institute of Legal Medicine and<br />

Forensic Sciences and the Public Services Administrative Unit, the entity<br />

which administers the cemeteries within Bogotá. The agreement states<br />

that instead of being placed into collective ossuaries, bodies not claimed<br />

by relatives once a four-year single burial period has lapsed will be<br />

donated to the Institute of Legal Medicine for the purpose of scientific<br />

investigations.<br />

The first phase of the project has a five-year duration (2009-2013)<br />

and will be renewed in 2013 if both parties agree. The goal for Phase 1<br />

is to assemble a collection of 600 individuals. Since 2009, 100 skeletons<br />

have been prepared for the collection (native-born Colombians, males<br />

and females aged 18-65, birth years 1940-1987, death year 2005).<br />

Skeletons are in good to excellent condition.<br />

A large amount of antemortem information is available for each<br />

individual in the collection and is being placed in a searchable database.<br />

This information includes date of birth, place of birth, sex, stature, date<br />

of death, and cause and manner of death. In the instances where the<br />

individual died while under a doctor’s care, the medical records that<br />

show the evolution of the patient’s treatment are available. Likewise,<br />

when an autopsy was performed, this report is also available with<br />

postmortem photographs of the individual’s face. Furthermore,<br />

information from each cemetery regarding where each person was buried<br />

(e.g., in a coffin in the ground or in a mausoleum); climate of the area<br />

where the cemetery is located; type of coffin or burial container; and the<br />

photograph of the individual at the time of exhumation is available<br />

as well.<br />

The collection will be available for research once 150-200<br />

individual skeletons have been prepared, which is anticipated within a<br />

year. The requirement for researchers will be that a project proposal be<br />

presented to and approved by the Division of Scientific Investigation of<br />

the National Institute of Legal Medicine and Forensic Sciences<br />

in Bogotá.<br />

In addition to being the first of its kind in South America, the<br />

Colombian Skeletal Collection will rival other similar modern skeletal<br />

collections in terms of available antemortem information alone. This<br />

will greatly contribute to both the utility and variety of the research<br />

questions that will be investigated.<br />

Colombia, Skeletal Collection, Modern Population<br />

H21 A Bayesian Approach to Multifactorial<br />

Age-at-Death Estimation<br />

Natalie M. Uhl, MS*, 308 North Orchard Street, Apartment 7, Urbana,<br />

IL 61801; Nicholas V. Passalacqua, MS, 1559 Mount Vernon, East<br />

Lansing, MI 48823; and Lyle W. Konigsberg, PhD, University of Illinois,<br />

109 Davenport Hall, 607 South Mathews Avenue, Urbana, IL 61801<br />

The goal of this presentation is to inform attendees about a new<br />

Bayesian approach to multifactorial age-at-death estimation.<br />

This presentation will impact the forensic science community by<br />

presenting a new method for combing several indicators of skeletal ageat-death<br />

to arrive at a single age estimate.<br />

Most forensic anthropologists rely on multiple skeletal indicators of<br />

age-at-death but lack a statistically sound method for combining<br />

individual indicators. Attempts at multifactorial aging (e.g., Brooks,<br />

1955; Lovejoy et al., 1985) have had generally disappointing results<br />

because they typically rely on either non-statistical or linear statistical<br />

methods, creating problems with validity and applicability.<br />

Recently, paleodemographers have been at the forefront of<br />

multifactorial age-at-death estimation. Boldsen and colleagues (2002)<br />

developed a computer program (ADBOU) that collects data on multiple<br />

skeletal indicators scored as discrete ordinal phases and uses Bayesian<br />

inference to calculate the posterior probability density and estimate ageat-death.<br />

Unfortunately, tests of the ADBOU program found it only<br />

moderately effective (Bethard, 2005; Uhl, 2008), in part because the trait<br />

scoring departs from the methods (e.g., Suchey-Brooks) that so many<br />

osteologists are accustomed to. Without extensive practice, intra- and<br />

inter-observer error can be problematic. Further, the ADBOU program<br />

comes with a small choice of prior age-at-death distributions “hardwired”<br />

into the program. Bayesian analyses rely on these prior<br />

probabilities, together with the osteological data, to estimate ages at<br />

death for individual cases. The current research makes use of a more<br />

diverse, and possibly more appropriate, reference sample and familiar<br />

skeletal scoring techniques to estimate age-at-death from multiple<br />

indicators when combined with an appropriate prior age-at-death<br />

distribution.<br />

The present data set consists of age indicator scores for pubic<br />

symphysis (6 phases; Brooks and Suchey, 1990), auricular surface (8<br />

phases; Lovejoy et al., 1985), and sternal rib end (8 phases; İşcan et al.,<br />

1984, 1985) for 623 individuals from four collections: the Hamann-Todd<br />

Collection, the William M. Bass Collection, the R.J. Terry Collection,<br />

and the Pretoria Bone Collection.<br />

Results: One initial issue to address is whether the original scoring<br />

follows a particular transition model. First, a Lagrange multiplier test<br />

indicated that the original six-phase pubic symphysis scoring and the<br />

eight-phase rib end scoring fit well in a cumulative log probit model.<br />

The auricular surface scoring did not fit well, so the first four phases in<br />

the Lovejoy et al. system were collapsed into a single phase. After<br />

making this collapse, the scoring did fit well in a cumulative log probit<br />

model.<br />

Following initial testing, 100 individuals were randomly sampled<br />

structured on age-at-death using a Gompertz model of mortality<br />

estimated from the ages at death for Suchey’s LA County male forensic<br />

data. This Gompertz model was also used as the informative prior in<br />

estimating ages for the 100 individuals. After forming this “hold out”<br />

sample, transition models were fit using the remaining 523 individuals,<br />

and the 95% highest posterior density region was found for each of the<br />

240 morphological patterns (6 pubic symphyseal phases times 5<br />

auricular surface phases times 8 rib phases) combined with the<br />

informative prior. The left and right boundaries were stored in a “lookup<br />

table” and then compared to the actual ages for the hold out sample.<br />

Ninety-five of the 100 individuals had ages that fell within the 95%<br />

highest posterior density regions, indicating proper coverage. The<br />

widths of the 95% highest posterior density regions were sometimes<br />

quite considerable, reaching a maximum of 50 years for anyone in the<br />

final phase for all three indicators. The right side for this region is<br />

entirely determined by the prior age-at-death distribution.<br />

Conclusions: All analyses were done in “R,” which is an open<br />

source package that can be downloaded for free. As such, the lookup<br />

tables, while they are easy to use can also be adjusted to meet individual<br />

researcher’s needs. For example, the density regions can be changed (to,<br />

for example 50% highest posterior density regions) and the Gompertz<br />

model parameters for the prior age-at-death distribution can also<br />

be changed.<br />

Age-at-Death Estimation, Bayesian Inference, Multifactorial Age<br />

Estimation<br />

H22 The Use of Vertebral Osteoarthritis and<br />

Osteophytosis in Age Estimation<br />

Ginesse A. Listi, PhD*, and Mary H. Manhein, MA, Louisiana State<br />

University, Department of Geography & Anthropology, Baton Rouge,<br />

LA 70803<br />

The goal of this presentation is to assess whether or not vertebral<br />

degenerative changes can be used for estimating age.<br />

13 * Presenting Author


This presentation will impact the forensic science community by<br />

demonstrating that a significant but weak correlation exists between age<br />

and vertebral degenerative changes.<br />

For more than 50 years, research has been conducted on various<br />

regions of the human skeleton to establish techniques for determining<br />

age at death; however, the accuracy of those age prediction techniques<br />

generally decreases as chronological age increases. While previous<br />

research on the vertebrae indicates that a correlation exists between age<br />

and osteophyte development (osteophytosis) (Snodgrass 2004, Stewart<br />

1958), 1,2 degenerative changes (osteoarthritis) in the zygapophyses have<br />

not been assessed for patterns associated with age. Additionally, many<br />

of the past studies that assessed vertebral bodies in forensic and<br />

bioarchaeological settings were conducted on skeletal collections from<br />

more than 75 years ago.<br />

The present study examined degenerative changes both in the<br />

bodies and zygapophyses in all 24 vertebrae using a modern forensic<br />

population from the Donated Collection at the University of Tennessee,<br />

Knoxville. Researchers independently examined and scored the superior<br />

and inferior borders of the vertebral bodies and the superior and inferior<br />

facets of each vertebra for 104 individuals aged between 30 and 90 years.<br />

Scoring techniques for osteophytosis and osteoarthritis were based on<br />

Ubelaker (1999). 3 Statistical analyses were used to assess relationships<br />

between age and degenerative change for the bodies and facets, both<br />

separately and in combination, for all vertebrae collectively, as well as<br />

for subcategories of vertebral types. Separate analyses also were<br />

conducted which included only the vertebrae in regions that are most<br />

commonly flexed (for osteophytosis, these regions included C5-6, T8-9,<br />

and L4-5; for osteoarthritis, C6-7, T1-5, L2-4).<br />

Results using all 24 vertebrae indicate the following. Severity of<br />

osteophytosis is significantly correlated to age for all vertebrae<br />

collectively, as well as for each vertebral subcategory (p < .001);<br />

however, the association is not strong (R 2 values range from 0.244 for<br />

cervical vertebrae to 0.393 for lumbar vertebrae). With regard to<br />

osteoarthritis, severity is significantly correlated to age for all vertebrae<br />

collectively, as well as for the cervical and lumbar subcategories (p <<br />

.01); however, once again, the association is not strong (R 2 values range<br />

from 0.168 for all facets combined to 0.305 for cervical facets). Results<br />

do not improve when bodies and facets are considered together: severity<br />

is significantly but not strongly correlated with age in all categories (p <<br />

.05; R 2 ranges from 0.205 for thoracic vertebrae to 0.370 for cervical<br />

vertebrae).<br />

Results of the analyses for areas of common flexion are only<br />

slightly better. Osteophytosis and osteoarthritis are significantly<br />

correlated to age for all categories of data when considered both<br />

separately and together (osteophytosis: p < .001 with R 2 values ranging<br />

from 0.243 in the cervical vertebrae to 0.408 for combined subtypes;<br />

osteoarthritis: p < .01 with R 2 values ranging from 0.116 in the thoracic<br />

facets to 0.244 in the lumbar facets; combined: p < .001 with R 2 values<br />

ranging from 0.217 in the thoracic vertebrae to 0.319 in the lumbar<br />

vertebrae).<br />

The current study assessed the presence and strength of the<br />

relationship between age and vertebral degenerative changes with the<br />

hope of generating predictive models for estimating age in older<br />

individuals. To differentiate from previous research, data from multiple<br />

indicators were considered both individually and collectively and a<br />

contemporary population, composed of individuals whose deaths postdated<br />

1980, was used. In general, results from this study add to, but<br />

ultimately mirror, previous research. That is, both osteophytosis and<br />

osteoarthritis are significantly but not strongly correlated with age (either<br />

singularly or in combination). Therefore, though both types of<br />

degenerative change are believed to be associated with repetitive<br />

movements and stress (and, thus, exacerbated by the aging process), the<br />

relationship is not strong enough to yield predictive power for<br />

establishing age estimates.<br />

* Presenting Author<br />

References:<br />

1. Snodgrass JJ. Sex differences and aging of the vertebral column.<br />

J Forensic Sci 2004;49(3):458-463.<br />

2. Stewart TD. The rate of development of vertebral osteoarthritis<br />

in American whites and its significance in skeletal age<br />

identification. Leech 1958;28(3-5):144-151.<br />

3. Ubelaker DH. Human skeletal remains: excavation, analysis,<br />

interpretation. 3 rd edition. Washington, D.C.: Taraxacum, 1999.<br />

Age Estimation, Vertebrae, Osteoarthritis<br />

H23 Error and Uncertainty in Pelvic Age<br />

Estimation Part II: Younger vs. Older<br />

Adult Females<br />

Allysha P. Winburn, MA*, and Carrie A. Brown, MA, Joint POW/MIA<br />

Acct Command, Central Identification Lab, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will understand how the<br />

error rates of three commonly used pelvic age estimation methods differ<br />

among females of different age groups, and how to quantify uncertainty<br />

in forensic anthropological analysis. Additionally, error rates will be<br />

compared for males and females.<br />

This presentation will impact the forensic science community by<br />

responding to Recommendation 3, of the National Academy of Sciences<br />

Report, “Strengthening Forensic Science in the United States: A Path<br />

Forward,” which calls for research determining causes of bias and work<br />

toward quantification of method error in forensic investigations.<br />

This presentation is the second half of an aging study designed to<br />

test the assumption that adult skeletal age estimation methods have lower<br />

error rates when applied to younger versus older adults. It will focus on<br />

pelvic age estimation methods for adult females; the first part of the<br />

study concerning adult males was presented at the 2010 AAFS meeting.<br />

Skeletal age estimation methods are widely understood to overage<br />

the young and underage the old. This paper supports these assertions by<br />

offering quantified measurements of error for three frequently used<br />

pelvic age estimation methods, as applied to a large sample of female<br />

individuals between the ages of 18 and 101 years. The methods include<br />

the following auricular surface and pubic symphyseal techniques:<br />

Lovejoy et al. (1985); Suchey-Brooks (1990); and Osborne et al. (2004).<br />

The study sample was compiled from several sources: female<br />

individuals sampled from modern known-age Iberian skeletal collections<br />

housed at the Universidad de Valladolid and the Universidad Autònoma<br />

de Barcelona; and identified female individuals from the Forensic Data<br />

Bank (FDB) courtesy of Dr. Richard Jantz at the University of<br />

Tennessee, Knoxville. The combined sample was divided into two broad<br />

age categories: “younger” individuals (≤ 39 years) and “older”<br />

individuals (≥ 40 years). Error with respect to the methods’ assigned<br />

means was analyzed in terms of bias (directionality of error: Σ[estimated<br />

age – actual age]/n) and inaccuracy (absolute mean error in years:<br />

Σ|estimated age – actual age|/n). Percent of correct age classifications<br />

(i.e., the method’s predicted age range included the individual’s actual<br />

age) was also calculated.<br />

All three methods have low mean positive biases and mean<br />

inaccuracies close to five years for the group of females < 39 years of<br />

age. Conversely, all three methods have substantial mean negative<br />

biases and mean inaccuracies greater than 17 years for females > 40<br />

years of age. In all three methods, levels of mean bias and inaccuracy<br />

were statistically significantly different for the two age groups (p ≤<br />

0.001; Student’s t-test). Error rates were always greater for older than for<br />

younger individuals.<br />

14


Use of the Suchey-Brooks method resulted in correct classification<br />

of 95% of individuals ≤ 39 years of age and 76% of individuals ≥ 40<br />

years of age. For the Lovejoy et al. method, the percent of correctly<br />

classified individuals was 49% for individuals ≤ 39 years of age and 53%<br />

for individuals ≥ 40 years of age. The Osborne et al. phase modifications<br />

resulted in a higher amount of correct classifications than the Lovejoy et<br />

al. method for both age groups (90% and 71%, respectively). Full ranges<br />

of error (in years) for each method for individuals ≤ 39 are as follows:<br />

Suchey-Brooks (-11 to 31); Lovejoy et al. (-9 to 19); Osborne et al. (-<br />

14.9 to 24.8). For individuals ≥ 40, full ranges of error (in years) are as<br />

follows: Suchey-Brooks (-43.8 to 20); Lovejoy et al. (-53 to 25);<br />

Osborne et al. (-48 to 18.9).<br />

As compared to adult males, adult females exhibit higher error rates<br />

for all three pelvic age estimation methods. In most instances, females<br />

are also more likely to be incorrectly classified than males when using<br />

these selected methods. An exception is the Lovejoy et al. method<br />

applied to individuals over the age of 40, which results in 53% correct<br />

classification of females and 30% correct classification of males. The<br />

full ranges of error for males and females are similar, though female<br />

ranges are always slightly larger.<br />

This study indicates that three widely used pelvic aging techniques<br />

estimate age in younger adult females (≤ 39) with lower error than older<br />

adult females (≥ 40), but with higher error for females than males.<br />

Auricular surface methods are problematic regardless of age group or<br />

sex. Given that error increases with age, modifications of upper phases<br />

of the Suchey-Brooks method are warranted (e.g., Berg [2008]). It is<br />

important to recognize that there will always be error associated with age<br />

estimation and other forensic anthropology methods. Therefore, the<br />

focus should now move to understanding and quantifying error so as not<br />

to overstate method performance.<br />

Adult Female Age Estimation, Pelvis, Error<br />

H24 Assumptions and Bias in Recalibrating Age<br />

Standards Across Populations<br />

Erin H. Kimmerle, PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820; and Lyle<br />

W. Konigsberg, PhD, University of Illinois, Department of Anthropology,<br />

109 Davenport Hall, 607 South Mathews Avenue, Urbana, IL 61801<br />

The goals of this presentation are to explore the application of<br />

Bayesian analyses in age estimation for human identification and to<br />

demonstrate possible evidentiary biases that result from incorrect<br />

assumptions about the data. This is particularly critical for research into<br />

population variation where investigators attempt to recalibrate age<br />

parameters based on ethnic variation.<br />

This presentation will impact the forensic science community by reanalyzing<br />

published data on age estimation for dental methods. The<br />

correct application of Bayesian statistics and assumptions about<br />

population data are critically important when these methods are applied<br />

to estimate age among living subjects, for human identification among<br />

decedents, and for the courtroom admissibility of anthropological<br />

methods.<br />

In recent years, there have been a number of published articles that<br />

argue for population specific standards, in other words, researchers<br />

suggest that aging methods should be recalibrated when applied across<br />

populations. While Bayesian analyses in forensic anthropology can be<br />

very useful in some contexts, it is generally agreed that if informative<br />

priors are used they need to be clearly delineated. Without making priors<br />

explicit, forensic anthropologists run the risk of introducing biases into<br />

evidentiary processes based on assumptions that may not fit well with<br />

what is known about a particular case. The use of dental age estimation<br />

methods often fail to account for implicit priors. The following study<br />

reexamines data from published studies to demonstrate how<br />

interpretations vary based on prior assumptions about the data and how<br />

results change based on explicit prior information.<br />

For example, summary data from Kasper et al. (2009 Journal of<br />

Forensic Sciences 54(3):651-57) is re-analyzed. Kasper et al. present<br />

data on third molar development for 950 individuals ranging in age (at<br />

the last birthday) from 12 to 22 years including the mean and standard<br />

deviation for age within seven stages of third molar formation (“B”<br />

through “H” from Demirjian et al.’s 1973 scoring system). As<br />

Konigsberg et al. (2008:542) noted “a final problem with any method<br />

that conditions on stage to estimate age is that all of these methods<br />

contain an implicit prior distribution for age.” This is seen in the present<br />

study, particularly for teeth where the root apex is complete (stage “H”).<br />

Kasper et al. assume that age within stage is normally distributed, but<br />

because their sample’s age distribution is truncated at 12 and 22 years,<br />

the mean age within stage “H” must be less than 22 years.<br />

With age data, it is difficult to justify the assumption that the age<br />

distributions within stages are normal, as these distributions depend on:<br />

(1) the age distributions for when individuals move to the next higher<br />

stage; and (2) the overall age distribution of the sample. By Bayes’<br />

Theorem:<br />

15 * Presenting Author<br />

(1)<br />

where p(i|a) is the probability that someone at exact age “a” is in stage<br />

“i,” f(a) is the probability density function for age, and f(a|i) is the<br />

probability density function that someone is exact age “a” given that they<br />

are in stage “i,” and ω is the upper limit of integration (i.e., the maximum<br />

possible age). If a researcher does not wish to include an informative<br />

prior then a uniform prior can be substituted, giving:<br />

(2)<br />

A critical issue for the presentation of aging methods in court when<br />

identifying the age of living suspects is the probability of being a certain<br />

age. Examples of court cases in which age methods have been disputed<br />

are discussed in this presentation. Additionally, other methods of<br />

determining the probability of a given age include the use of a parametric<br />

model for p(i|a). More specifically a cumulative probit model on the log<br />

scale ages can be used to model p(i|a). This is precisely the model that<br />

was used by Moorrees, Fanning, and Hunt in their classic studies of<br />

dental development.<br />

This paper demonstrates that in using estimated “transition<br />

parameters” in log cumulative probit models, the probability that<br />

someone is over the age of 18 years is substantially different than the<br />

reported accuracy in published studies and demonstrates the need for<br />

discussion about the biases implicit in demographic data as well as the<br />

possible evidentiary biases that result from such assumptions about<br />

the data.<br />

Age Estimation, Population Variation, Bayes’ Theorem


H25 Sacral Epiphyseal Fusion at S1-S2:<br />

Classification, Comparability, and Error<br />

Carrie A. Brown, MA*, Joint POW/MIA Accounting Command Central<br />

Identification Laboratory, JPAC-CIL, 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will understand how<br />

sacral fusion can be used properly in age estimation, problems associated<br />

with current techniques, and proposals for best practices when using<br />

sacral fusion as an age estimation technique.<br />

This presentation will impact the forensic science community by<br />

examining sacral fusion age estimation in response to critiques raised by<br />

the National Academy of Sciences Report (NAS) concerning the need to<br />

evaluate the reliability and accuracy of methods used in forensic science.<br />

Epiphyseal fusion as an age estimation method is useful because<br />

fusion generally occurs at the same time for all individuals. The fusion<br />

of the anterior margins of the sacral vertebrae has further potential for<br />

age estimation in young adults because of the delayed union of the first<br />

two sacral segments (S1 and S2). McKern and Stewart’s 1957<br />

publication of Skeletal Age Changes in Young American Males, one of<br />

the first and most comprehensive analyses of age estimation, examined<br />

sacral fusion employing a five-stage system (e.g., Stage 0=nonunion;<br />

Stage 4=complete union). Several more recently published methods also<br />

examine sacral fusion, albeit with the use of different scoring systems<br />

(e.g., Coqueugniot and Weaver (2007) used a three-stage letter system<br />

[a=open, b=partial, c=complete], and Belcastro et al. (2008) used a fourstage<br />

numbering system [e.g., Degree 0=absence of fusion, Degree<br />

1=less than 50% fusion]). These differences complicate comparisons of<br />

results from essentially the same technique.<br />

The current study was designed to examine the performance of the<br />

sacral fusion age estimation method using the scoring system and age<br />

intervals given by McKern and Stewart (1957:148). The known age-atdeath<br />

was compared to the predicted age-at-death based on the recorded<br />

stage of fusion for all individuals identified at the JPAC-CIL between<br />

1972 and 15 June 2010 whose case documentation specifically<br />

referenced the McKern and Stewart (1957) method (n=40). Correct<br />

classification, or the percent of individuals whose known age-at-death<br />

fell within the assigned age interval, was used to test this method.<br />

Additionally, the sample was compared to the overall JPAC-CIL<br />

identified sample and the Korean War identified sample from McKern<br />

and Stewart (1957).<br />

The JPAC-CIL sample for the McKern and Stewart (1957) sacral<br />

fusion method (n=40) has a mean age-at-death of 24.2 years, an age<br />

range of 12 years (youngest individual=18, oldest individual=30), and is<br />

entirely male. There is a statistically significant difference (p=0.002,<br />

Student’s t-test) in mean age-at-death between this sample and the total<br />

known age-at-death sample of JPAC cases (n=979, =27.2); the sample<br />

aged using S1-S2 fusion is younger than the entire identified sample.<br />

Of the 40 individuals whose case files referenced this method, 45%<br />

(n=18) were placed in Stage 0. The second largest group was comprised<br />

of individuals scored as Stage 2 (n=12). Stages 1, 3, and 4 each had three<br />

individuals, and one individual was scored as “Stage 1 or 2.” Compared<br />

to the McKern and Stewart (1957) sample, there were considerably more<br />

individuals observed with nonunion of the S1-S2 joint in the JPAC-CIL<br />

sample.<br />

The age distribution of the samples also differs. For example, in the<br />

McKern and Stewart (1957) sample, Stage 0 (nonunion) was observed<br />

only in individuals between the ages of 17 and 18, whereas nonunion<br />

was seen in the JPAC-CIL sample in individuals up to 30 years of age.<br />

Because of this, the sacral age estimation method based on McKern and<br />

Stewart’s (1957:148) reported ages had a correct classification rate of<br />

32.5% and an incorrect classification rate of 67.5% for the JPAC-CIL<br />

sample. However, when applying a simple “fused versus unfused”<br />

model, the percentage of correct classification increases to 95% for the<br />

* Presenting Author<br />

entire sample (n=40). This model classifies Stages 0, 1, and 2 as<br />

incomplete fusion and Stages 3 and 4 as complete fusion and categorizes<br />

individuals with incomplete fusion as less than 30 years of age and<br />

individuals with complete fusion as 17 years of age or older.<br />

Analyses of the JPAC-CIL case files indicate that employing the age<br />

intervals provided by McKern and Stewart (1957:148) results in largescale<br />

misclassification of age when presented with an S1-S2 joint in any<br />

stage of incomplete (i.e., partial or open) fusion. It is therefore<br />

recommended that incomplete sacral fusion be regarded simply as an<br />

accessory to other more precise methods of age estimation. Incomplete<br />

sacral fusion can be used to establish an upper bound for the age<br />

estimate; in this sample, age 30 was found to be a useful sectioning point.<br />

However, further research in a more varied sample could modify this<br />

sectioning point. Additionally, there is a great need for anthropologists<br />

to agree on methods of age estimation, to include the use of identical<br />

scoring systems. This will alleviate unnecessary complications in data<br />

comparison and the continual redevelopment of these scoring systems.<br />

Sacral Fusion, Age Estimation, Error<br />

H26 An Evaluation of the Chen et al. Pubic<br />

Aging Method on a North American Sample<br />

Julie M. Fleischman, BA*, Michigan State University, 560 Baker Hall,<br />

East Lansing, MI 48824<br />

After attending this presentation, attendees will understand the<br />

Chen et al. (2008) pubic bone aging method and its application for<br />

estimating age-at-death for a North American population.<br />

This presentation will impact the forensic science community by<br />

exploring the utility of the Chen et al. (2008) aging method for males of<br />

European ancestry.<br />

Accurately assessing the age-at-death of adult human skeletons is<br />

fundamental in creating biological profiles for unidentified remains.<br />

There are many methods available to forensic anthropologists to estimate<br />

age-at-death; the most widely used and generally accepted involve<br />

analysis of the pubic bones. Numerous aging methods using the pubic<br />

bones are available, including Chen et al. (2008) which is the focus of<br />

this study.<br />

Chen and colleagues assessed age-at-death for Chinese Han males<br />

based on multiple pubic bone features. The features were scored for 262<br />

pubic bones and were subjected to four types of statistical equations to<br />

estimate age: multiple regression analysis (MRA) and gradual<br />

regression analysis (GRA), with quantification theory model-I (QMI)<br />

and GRA to compare with MRA. One goal of the Chen et al. (2008)<br />

study was to improve upon the Suchey-Brooks method, which is<br />

currently the most accepted technique for estimating age from the pubic<br />

bone. For the Han sample Chen and colleagues claim that with the use<br />

of their statistical formulae, a large sample, evaluating males only, and<br />

subdividing each feature, age-at-death can be quantitatively estimated<br />

with a high degree of accuracy.<br />

The objective of this research is to evaluate the Chen et al. (2008)<br />

method to determine if it can accurately evaluate age-at-death for<br />

individuals outside the original study population. This research<br />

addressed two primary questions: (1) Will the Chen et al. (2008) method<br />

accurately assess age-at-death for non-Chinese males?; and, (2) Will the<br />

revised Chen et al. (2008) method accurately assess age-at-death for<br />

males of European ancestry?<br />

This research is based on a known sample of modern pubic bones<br />

curated at the Maricopa County Forensic Science Center (FSC) in<br />

Phoenix, Arizona. A sample of 296 left male pubic bones of European<br />

ancestry, between the ages of 18 and 70, was selected from the larger<br />

collection. These bones were scored based on nine morphological<br />

indicators (e.g. ridges and furrows on the symphyseal surface, ossific<br />

nodules, and bone density). Each pubic bone was scored blind by four<br />

16


observers with osteological experience ranging from 20+ years to<br />

2 years.<br />

This research generated statistical data concerning the accuracy,<br />

rates of error, and significance of the Chen et al. (2008) model’s utility<br />

for aging male populations of European ancestry. The original Chen et<br />

al. (2008) equations were tested and then four revised equations were<br />

generated from the FSC scores. Accuracy for the revised equations was<br />

evaluated via the percentage correct within brackets of one, five, ten, and<br />

fifteen years from the actual ages. A higher percentage per bracket<br />

translates to higher accuracy.<br />

Results indicate that the Chen et al. (2008) method is fully<br />

replicable for males of European ancestry. The most accurate equation<br />

varies by bracket—one year from actual age: original Chen et al.<br />

MRA+GRA (10.8%); five years: revised QMI+GRA (38.6%); ten and<br />

fifteen years: revised MRA+GRA (65.7% and 87.3%). The revised<br />

model demonstrates only incremental gains over the original model<br />

(revised model MRA+GRA R 2 = .491 and original model MRA+GRA R 2<br />

= .440), and on average the revised model tends to slightly over-age the<br />

specimens. The revised model has an average error of 8 years from<br />

actual ages. Both the original and revised models have lower predictive<br />

values for the FSC sample than Chen and colleagues report for their<br />

sample (Chen et al. MRA+GRA R 2 = .978). All Pearson’s correlations<br />

for inter- and intra-observer error were statistically significant indicating<br />

low error rates between observers.<br />

The Chen et al. (2008) method is challenging and requires<br />

proficient knowledge of the nine pubic bone features and their<br />

development before implementation; however, the model does explain<br />

almost 50% of the variability in the FSC sample. An average error of<br />

eight years from actual age is acceptable for a forensic biological profile,<br />

and the model accurately estimates age within 15 years for over 87% of<br />

individuals. Therefore, this is a viable method for estimating age-atdeath<br />

for males of European ancestry. Future research is required to<br />

determine if this method is more or less accurate than others, such as<br />

Suchey-Brooks.<br />

Pubic Bone, Age Estimation, Male<br />

H27 The Accuracy of the Lamendin Method of<br />

Dental Aging in Teeth With Fillings<br />

Kristin E. Horner, MA*, Secchia Center, 15 Michigan Street Northeast,<br />

Grand Rapids, MI 49503<br />

After attending this presentation, attendees will understand the<br />

results and implications of a study to determine if the presence of a<br />

filling in a tooth effects the accuracy of the Lamendin method (Lamendin<br />

et al., 1992) of dental aging.<br />

This study will impact the forensic science community by providing<br />

validation for the application of a commonly used aging technique to a<br />

unique subset of teeth. This validation is important in the post-Daubert<br />

era, where established error rates are important. Although error rates are<br />

known for the Lamendin method, and some dental aging studies have<br />

included teeth with fillings, no investigation has previously been made<br />

into the effects that these fillings might have on the accuracy of age<br />

estimation.<br />

The purpose of this presentation is to discuss the effects of dental<br />

restorations on the accuracy of the Lamendin dental aging method. The<br />

Lamendin method uses two measurements, tooth root translucency and<br />

periodontosis. Tooth root translucency begins at the tip of the root and<br />

proceeds toward the crown with advancing age, and is believed to be<br />

caused by calcification within dentinal tubules (Bang & Ramm, 1970).<br />

This changes the refractive index within the dentinal tubule so that it is<br />

similar to that of the material surrounding the dentinal tubules, making<br />

the area appear transparent. It has been established that root canal<br />

treatment can have a significant effect on the development of tooth root<br />

translucency (Thomas et al., 1994), but there has been no published work<br />

documenting the effects of fillings.<br />

The utility of the Lamendin method is clear; it is fast, easy to use,<br />

does not require any special equipment, and utilizes a simple formula.<br />

The method provides a relatively accurate estimation of age that is useful<br />

in both forensic and archaeological contexts. However, it is important to<br />

determine if any external factors affect the rate of development of tooth<br />

root translucency. If any factors are discovered that do affect the rate of<br />

translucency, these factors would influence the accuracy of dental aging<br />

methods, such as the Lamendin method, that rely on tooth root<br />

translucency.<br />

Premolar teeth (N = 100) from the William M. Bass Donated<br />

Skeletal Collection were used for this research. The sample consists of<br />

50 teeth with no dental restorations and 50 teeth with fillings. All teeth<br />

were selected from individuals age 30 or older because the Lamendin<br />

method cannot be used in individuals younger than 25, and tends to be<br />

unreliable at younger ages. Measurement of periodontosis and root<br />

height were taken in millimeters with sliding calipers. Measurement of<br />

root translucency was observed using a light box and taken in<br />

millimeters with sliding calipers. Age-at-death was recorded from the<br />

collection database.<br />

Age at the time of death was estimated using the Lamendin method.<br />

The difference between the estimated age and known age was calculated<br />

for each tooth. Error was compared between teeth with no restorations<br />

and teeth with fillings using a student’s T-test. No significant difference<br />

(p < 0.05) was found between the errors of the teeth with fillings and the<br />

teeth without fillings.<br />

It is concluded that the presence of dental fillings does not<br />

significantly impact the accuracy of the Lamendin method, and that teeth<br />

with fillings may be used to estimate age using the Lamendin method.<br />

Lamendin, Dental, Aging<br />

H28 Three-Dimensional Geometric Morphometric<br />

Analysis and Multislice Computed<br />

Tomography: Application for Adult Sexual<br />

Dimorphism in Human Coxal Bone<br />

Fabrice Dedouit, Ph D*, Service de Médecine Légale, Hôpital de<br />

Rangueil, 1 Avenue du Professeur Jean Poulhès, TSA 50032, Toulouse<br />

Cedex 9, 31059, FRANCE; Marie Faruch Bifeld, MS, Service de<br />

Médecine Légale, CHU Toulouse-Rangueil, 1 Avenue Professeur Jean<br />

Poulhès, Toulouse Cedex 9, 31059, FRANCE; José Braga, PhD,<br />

Laboratoire d’Anthropobiologie AMIS, FRE 2960 CNRS, Université<br />

Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000, FRANCE;<br />

Nicolas Sans, PhD, Service de Radiologie, CHU Toulouse-Purpan,<br />

Place du Docteur Baylac, Toulouse, 31059, FRANCE; Hervé Rousseau,<br />

PhD, Service de Radiologie, CHU Toulouse-Rangueil, 1 Avenue<br />

Professeur Jean Poulhès, Toulouse, 31059, FRANCE; Eric Crubezy,<br />

PhD, Laboratoire d’Anthropobiologie AMIS, FRE 2960 CNRS,<br />

Université Paul Sabatier, 37 allées Jules Guesde, Toulouse, 31000,<br />

FRANCE; Daniel Rouge, PhD, Service de Médecine Légale, CHU<br />

Toulouse-Rangueil, 1 Avenue Professeur Jean Poulhès, Toulouse, 31059,<br />

FRANCE; and Norbert Telmov, PhD, Service Medico-Judiciaire, CHU<br />

Rangueil, 1 Avenue Jean Poulhes, Toulouse, F-31054, FRANCE<br />

The goal of this presentation is to present an assessment of the<br />

sexual dimorphism based on the study of the human adult coxal bone, by<br />

three-dimensional (3D) geometric morphometric analysis of clinical<br />

multislice computed tomography (MSCT) explorations. This<br />

presentation illustrates the potentialities of the MSCT with a particular<br />

anthropological tool, the 3D geometric morphometric analysis, and a<br />

particular anthropological application, sexual dimorphism.<br />

17 * Presenting Author


This presentation will impact the forensic science community by<br />

providing an example of anthropological use of the 3D geometric<br />

morphometric analysis, based on clinical MSCT.<br />

Background and Introduction: Multislice computed tomography<br />

is uncommonly used in anthropology and forensic anthropology. With<br />

this in mind, this study demonstrates that the 3D adult coxal shape<br />

differences related to sexual dimorphism can be identified and visualized<br />

objectively with geometric morphometric analysis based on clinical<br />

MSCT explorations.<br />

Materials and Methods: Materials consist of a retrospective study<br />

of coxal bones from adult patients undergoing clinical MSCT in the<br />

authors’ institution. Patients with a known history of bone disease were<br />

excluded. A total of 65 MSCT explorations were included, consisting of<br />

30 males and 35 females, with 16 x 1.5 mm collimation. Scans were<br />

saved as DICOM files and a 3D post-processing was performed.<br />

The methods included standard anthropometric techniques, 15<br />

osteometric landmarks were chosen on the left innominate. The 3D<br />

coordinates of landmarks were identified on the MSCT 3D<br />

reconstructions. The three separate bones of the innominate (e. g., the<br />

anatomical pubis, the anatomical ilium, and the ischium) were first<br />

studied individually. Additionally, a modified ilium shape (consisting in<br />

the ilium and the ischial spine), and a modified pubis shape (including<br />

the ischiopubic ramus) were studied. Finally, complexes from bone parts<br />

were analyzed, including: the ischiopubic complex (consisting of the<br />

modified pubis and the ischium), the iliopubic complex (consisting of the<br />

ilium and the pubis), the ilio-ischial complex (consisting of the ilium and<br />

the ischium), and the complete coxal bone. Males and females were<br />

analyzed separately. Percentage errors were calculated for the 15<br />

landmarks to examine the effects of intra- and inter-observer errors. For<br />

each analysis the recorded landmarks were scaled, rotated and translated<br />

using Generalized Procrustes Analysis. A consensus configuration, or<br />

mean shape configuration, was produced for males and females, so that<br />

sex differences could be compared. The landmark coordinates were<br />

analysed using Principal Components Analysis (PCA) and Canonical<br />

Variates Analysis (CVA). Finally, Goodall’s F-test and Mahalanobis D²<br />

matrices were calculated.<br />

Results and Discussion: Clinical MSCT explorations have not<br />

been previously used with geometric morphometric analysis to study<br />

sexual dimorphism of the adult human coxal bone, using 3D<br />

reconstructions. The advantage of geometric morphometric techniques<br />

is their ease of use, and their reproducibility. In the present case, intraand<br />

inter-observer variabilities were less than 3%. Goodall’s F-test for all<br />

structures studied was significant, suggesting that the sexual dimorphism<br />

of the specific morphological structures of the skeletal elements, are<br />

similar to results achieved in previous studies.<br />

Based on the results of the PCA, CVA, and Malahanobis D²<br />

distances, the most sexually dimorphic anatomical structures were nonisolated<br />

bones: the complete coxal bone, the iliopubic complex, the ilioischial<br />

complex, and finally the ischiopubic complex. Our results agree<br />

with classical sex determination data. The 3D consensus shapes<br />

(masculine or feminine) are intrinsically composed of all the differences<br />

of lengths or length ratio, which explained the high sexual dimorphism<br />

of the innominate. Concerning the ischiopubic complex, our results<br />

completely agreed with previous results, demonstrating it is an important<br />

marker of sexual dimorphism. However, results were surprising in<br />

regards to the iliopubic and ilio-ischial complexes. Data were not found<br />

concerning the sexual dimorphism of those complexes, but those<br />

complexes were highly dimorphic, and particularly more dimorphic than<br />

the previous described ischiopubic complex.<br />

The most discriminating isolated bones of the innominate with<br />

anatomical and embryological definition were the ilium and the pubis.<br />

The modified pubis, including the ischiopubic ramus, had Malahanobis<br />

D 2 distances similar to those of the anatomical ilium. This feature had<br />

never been described before in the literature. Inclusion of the ischiopubic<br />

ramus within the pubis increased its sexual dimorphism. The modified<br />

ilium, including the ischial spine, provided supplementary information<br />

* Presenting Author<br />

concerning the greater sciatic notch, which agreed with the classical<br />

anthropological data. Based on the results of the PCA, CVA, and<br />

Malahanobis D 2 distances, the isolated ischium presented a weak but<br />

significant sexual dimorphism.<br />

Conclusion: The reliability of this method and determined<br />

innominate’s areas with the greatest shape sexual dimorphism are<br />

demonstrated. All the results are on accordance with previous past<br />

studies’ results but bring also new data for sexual dimorphism. Further<br />

studies will be done on supplementary individuals, immature<br />

populations. Furthermore, dimorphism analysis of the innominate shape<br />

with landmarks type III (semi landmarks) will be an additional way<br />

of research.<br />

Forensic Anthropology, Geometric Morphometric, Multislice<br />

Computed Tomography<br />

H29 Estimation of Stature From Foot and its<br />

Segments in a Sub-Adult Population of<br />

North India<br />

Kewal Krishan, PhD*, Panjab University, Department of Anthropology,<br />

Sectoc-14, Chandigarh, 160 014, INDIA; Tanuj Kanchan, MD, Kasturba<br />

<strong>Medical</strong> College, Department of Forensic Medicine, Light House Hill<br />

Road, Mangalore, 575 001, INDIA; and Neelam Passi, MSc, Panjab<br />

University, Department of Anthropology, Sector-14, Chandigarh, HI 160<br />

014, INDIA<br />

After attending this presentation, attendees will understand the<br />

usefulness of stature estimation in forensic examinations especially from<br />

foot and its segments as the literature on this aspect has been scanty.<br />

This presentation will impact the forensic science community by<br />

presenting standards for stature estimation from foot and its segments<br />

when feet or their parts are brought for forensic examination.<br />

Establishing personal identity is one of the main concerns in<br />

forensic investigation process. Estimation of stature forms a basic<br />

domain of investigation process in unknown and commingled human<br />

remains in forensic anthropology case work. The objective of the<br />

present study was to set up standards for estimation of stature from foot<br />

and its segments. Sample for the study constitutes of 154 male and 149<br />

female adolescents from Northern part of India. The subjects were aged<br />

between 13 to 18 years old (Mean age in male and female was 15.8 + 1.7<br />

and 15.5 + 1.6 years respectively). Besides stature, seven<br />

anthropometric measurements that included length of the foot from each<br />

toe (T1, T2, T3, T4, and T5 respectively), foot breadth at ball and foot<br />

breadth at heel were taken on both feet of each subject. All the<br />

measurements were taken with standard procedures and landmarks<br />

according to international texts and research papers. The results indicate<br />

that mean stature in adolescent males (163.1 + 10.1 cm) is significantly<br />

larger than mean stature in females (154.3 + 5.9 cm). All measurements<br />

in the male foot are significantly larger than in females (p


of estimate (SEE), it is observed that stature from foot measurements can<br />

be estimated more accurately in females than males. Among the foot<br />

measurements, T5 in males and T1 in females give the most accurate<br />

estimation of stature by linear regression analysis. Multiple regression<br />

models are derived for estimation of stature from foot length (T1 to T5)<br />

in males and females. Foot breadth measurements (BHEL and BBAL)<br />

are used to derive multiple regression models on the right and left sides<br />

in males and females. Multiple regression models tend to estimate<br />

stature more accurately than the linear regression models. It is observed<br />

that the multiple regression models derived from the measurements of<br />

the foot length (T1 to T5) estimate stature more accurately than models<br />

derived from the measurements of the foot breadth (BHEL and BBAL).<br />

The method may be applied successfully for estimation of stature<br />

whenever foot remains are brought for forensic examination that can<br />

help the investigating agencies primarily in narrowing down the pool of<br />

possible victim matches by establishing the partial identity of<br />

the deceased.<br />

Forensic Anthropology, Foot Anthropometry, Stature Estimation<br />

H30 New Linear Measurements for the<br />

Estimation of Sex From the Human Sacrum<br />

Jennifer M. Vollner, MS*, 328 Baker Hall, East Lansing, MI 48824;<br />

Nicholas V. Passalacqua, MS, 1559 Mount Vernon, East Lansing, MI<br />

48823; and Christopher W. Rainwater, MS, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016<br />

The goal of this presentation is to inform attendees about six new<br />

measurements of the sacrum that were proven to be the most useful for<br />

adult sex estimation through a discriminant function analysis.<br />

The presentation will impact the forensic science community by<br />

demonstrating an accurate method of adult sex estimation from the<br />

sacrum through discriminant function analysis using new linear<br />

measurements derived from three-dimensional inter-landmark distances.<br />

The accurate estimation of sex is crucial to the development of a<br />

biological profile for a set of unidentified skeletal remains. Previous<br />

metric and non-metric methods of sex estimation utilizing the sacrum<br />

have demonstrated the potential of this skeletal element for such an<br />

assessment; but classification rates derived from an appropriate sample<br />

are unknown. This research provides new linear measurements of the<br />

sacrum from a large sample that were shown to be the most useful in the<br />

estimation of sex through a cross-validated discriminant function<br />

analysis.<br />

A geometric morphometric analysis of the sacrum was previously<br />

conducted (Passalacqua et al. 2010) in order to capture the sexual<br />

dimorphism visually apparent in this skeletal element. This method was<br />

able to estimate sex with an 85.75% cross-validated accuracy (89.40%<br />

for males, 82.10% for females). Unfortunately, the use of geometric<br />

morphometric analysis in forensic anthropology casework is often<br />

impractical due to differential preservation, skeletal trauma, or lack of<br />

equipment. Due to these factors, the development of new twodimensional<br />

linear measurements of the sacrum will allow for a wider<br />

application of this method. Thus, the current study utilizes previous<br />

geometric morphometric sacrum data to determine the most useful linear<br />

measurements for sex estimation (Passalacqua et al. 2010).<br />

A sample of 163 adult sacra (85 males, 78 females) was collected<br />

from the Hamann-Todd Collection (Cleveland Museum of Natural<br />

History). Twenty-three three-dimensional (3D) landmarks were<br />

developed and collected on each individual using a digitizer. Interlandmark<br />

distances were then extracted from the 3D data providing 253<br />

measurements for each sacrum. This method of extracting linear<br />

measurements allows for a vast amount of data to be collected in a short<br />

amount of time and in addition creates new measurements which may<br />

not have been otherwise analyzed. These measurements were analyzed<br />

through a forward step-wise (F = 0.05 to enter, F = 0.10 to remove)<br />

discriminant function analysis. This discriminant function analysis<br />

selected six measurements for estimating biological sex. These<br />

measurements focus on the alae especially in relation to the promontory.<br />

This suggests the majority of the sexual dimorphism exhibited in the<br />

sacrum involves this area and effective sex estimation is possible with<br />

fragmentary sacra as the overall size, shape, and curvature were not<br />

necessary. Results indicated an 89.0% cross-validated accuracy of the<br />

correct classification of sex (males were correctly classified at 89.4%<br />

and females were correctly classified at 88.5%). As noted above, this is<br />

slightly higher than the classification rate with 3D geometric<br />

morphometrics and these inter-landmark distances can be measured<br />

using standard sliding calipers allowing for this method to be easily<br />

utilized in the field or laboratory without access to a digitizer.<br />

Sex Estimation, Sacrum, Discriminant Function Analysis<br />

H31 Sex Discrimination Using Patellar<br />

Measurements: Method and Validation Study<br />

Matthew Rhode, PhD*, JPAC-CIL, 310 Worchester Avenue, Building 45,<br />

Hickam, AFB, HI 96853<br />

After attending this presentation, attendees will understand how to<br />

determine the sex of Americans using discriminant functions derived<br />

from common patellar measurements.<br />

This presentation will impact the forensic science community by<br />

introducing a series of easily applicable discriminant functions for use in<br />

determining the sex of Americans using a single patella. Subsequent<br />

validation of the method, using an independent American sample,<br />

indicates the method is robust. The visual inspection of associated ROC<br />

curves provides a means of selecting among the available discriminant<br />

functions. Based on the results of this analysis, the patella is offered as<br />

an alternative method to determine sex when others are not applicable.<br />

Although a number of previous projects have presented<br />

discriminant functions for sexing the patella, these methods are derived<br />

from African and European populations. To date, no specific patella<br />

based sex classification method in the scientific literature is available,<br />

which is both easily applicable and calibrated for use with Americans.<br />

This project addresses this issue using a sample of 182 individuals<br />

combining white and black males (100) and females (82) from the<br />

Hamann-Todd collection. Each individual possessed data on the left and<br />

right patella height, width, and thickness. The left and right values were<br />

later averaged for each measurement to make the applicable to a single<br />

bone of either side. Males possessed an average patellar height of 44.12<br />

mm ± 2.93mm, an average patellar width of 44.57 mm ± 3.17 mm, and<br />

an average patellar thickness of 21.03 mm ± 1.57 mm. Females<br />

possessed an average patellar height of 38.83 mm ± 2.94 mm, an average<br />

patellar width of 39.10 mm ± 2.95 mm, and an average patellar thickness<br />

of 19.01 mm ± 1.57 mm.<br />

The three measurements used in seven different combinations were<br />

examined using discriminant function analysis. The resulting<br />

discriminant functions generated average classification rates between<br />

73.5% and 83.5% when cross-validated with average classification rates<br />

ranging between 73% and 83% for males and 74.4% and 85.4% for<br />

females. These results are similar to previous studies and generally<br />

indicate the method is robust, but a more powerful and convincing test<br />

of the method is by applying it to an independent sample. Here an<br />

independent American sample of patella measurement data from a series<br />

of 300 white and black males (147) and females (153) from the Terry<br />

collection, obtained by O’Connor (1996) was used to test the<br />

classificatory power of the Hamann-Todd patella discriminant functions.<br />

Upon testing, the efficiency drops an average of 3% to achieve values<br />

between 70% and 79%. The correction classification rate among males<br />

ranges between 68% and 80% and for females between 75% and 80%.<br />

19 * Presenting Author


Reduced efficiency is a common result of validation but the overall<br />

classification rates remain relatively high. Among the seven<br />

discriminant functions, the most effective can be identified using the<br />

classification rate, but a visual method comparing ROC curves is used.<br />

The associated statistics indicate that all seven discriminant functions<br />

provide results that are significantly different from random guessing.<br />

The most consistent equations being those developed with patella width<br />

and height.<br />

Although the present method does not yield correct classification<br />

rates of 90%, the best validated discriminant functions does a provide<br />

classification rate of 79%, which suggests the method has potential for<br />

sex discrimination. Since the patella is a small bone, with a dense<br />

structure, and is often recovered intact, the discriminant functions<br />

developed here are offered to the scientific community as an alternative<br />

method, applicable when other more powerful methods cannot be used<br />

due to recovery or preservation issues and as check on the results<br />

obtained using other methods.<br />

Patella, Sex, Validation<br />

H32 Sex Estimation Using the Petrous Portion<br />

of the Temporal Bone By Linear<br />

Regression Anaylsis<br />

Dolly K. Stolze, MA*, 1900 Huntington Lane, Apartment 4, Redondo<br />

Beach, CA 90278<br />

After attending this presentation, attendees will understand how the<br />

petrous portion of the temporal bone can be used to identify sex in<br />

fragmented skeletal remains.<br />

This presentation will impact the forensic science community by<br />

giving the forensic anthropologist another method to estimate sex in<br />

fragmented skeletal remains and provide a jumping-off point for further<br />

evaluation of the use of the petrous portion of the temporal bone in sex<br />

estimation.<br />

When bodies are heavily decomposed, chances increase that not all<br />

of the remains will be recovered. Lengthy postmortem intervals seen in<br />

heavily decomposed or skeletonized remains can impact identification<br />

efforts because essential bones for a biological profile may not be<br />

recovered due to human, animal, and environmental factors. A number<br />

of taphonomic processes that affect skeletal recovery include human and<br />

environmental processes, such as disfigurement of dead bodies,<br />

dismemberment to prevent positive identification, animal scavenging,<br />

and environmental disbursement. Since recent forensic anthropological<br />

studies have shown a metric relationship between temporal bone<br />

morphology and sex, this study investigates the quantitative relationship<br />

of seven measurements of the temporal and occipital bones and sex. 304<br />

crania from the Bass Collection were measured for this study, including<br />

92 females and 212 males. This study used the following seven<br />

measurements: (a) mastoidale to porion; (b)porion to asterion; (c)<br />

asterion to mastoidale; (d) asterion to the intersection of the parietal,<br />

temporal and sphenoid (PST); (e) PST to mastoidale; (f) the length of the<br />

petrous portion from the foramen lacerum (fl) to the mastoidale; and (g)<br />

from the mastoidale to basion. The base of the petrous portion (from its<br />

most anterior point in the foramen lacerum to the mastoidale) is an<br />

insertion point for the levator veli palatini. This muscle elevates,<br />

retracts, and laterally deviates the soft palate, and opens the auditory tube<br />

during swallowing. So the length of the base of the petrous portion may<br />

be larger in males because they have more robust muscle attachments<br />

than females. Five regression formulae were developed using these<br />

seven measurements of the temporal and occipital bones. The fifth<br />

regression equation [0.539 (fl-ms) + 0.265 (ms-po) + 0.157(ast-ms) -<br />

4.137] is statistically significant to determine sex in a fragmented skull.<br />

This formula correctly identified sex in 88% of the cases used for this<br />

study. Three measurements taken on petrous portion of the temporal<br />

* Presenting Author<br />

bone can be used to identify sex in skeletonized and fragmented remains:<br />

(1) the length of the petrous portion from the foramen lacerum to the<br />

mastoidale; (2) from the mastoidale to the porion; and (3) from the<br />

asterion to the mastoidale. This demonstrates the forensic value of the<br />

length of the petrous portion in sex identification in fragmented<br />

skeleton remains.<br />

Sex, Petrous Portion, Linear Regression<br />

H33 Age Estimation Utilizing Postnatal Dental<br />

Mineralization: An Exploratory Analysis of<br />

Molar Development for a Contemporary<br />

Florida Population.<br />

Meryle A. Dotson, BA*, University of South Florida, 4202 East Fowler<br />

Avenue, Soc 107, Tampa, FL 33620; Erin H. Kimmerle, PhD, University<br />

of South Florida, Department of Anthropology, 4202 East Fowler, Soc<br />

107, Tampa, FL 33820; and Lyle W. Konigsberg, PhD, University of<br />

Illinois, Department of Anthropology, 109 Davenport Hall, 607 South<br />

Mathews Avenue, Urbana, IL 61801<br />

After attending this presentation, attendees will understand that a<br />

more accurate construction of dental age estimation standards can be<br />

achieved by considering population age structure and by utilizing<br />

Bayesian analysis. The objectives of this study are to explore the<br />

patterns and timing of dental development for a contemporary Florida<br />

population, to test the accuracy of current dental age estimation<br />

standards for juveniles and young adults devised by Moorrees et al.<br />

(1963), and to evaluate the accuracy of age estimation utilizing third<br />

molar development.<br />

This presentation will impact the forensic science community by<br />

presenting data related to estimating appropriate dental ages for<br />

unknown juveniles and young adults utilizing advanced stages of molar<br />

development. The accurate estimation of age utilizing molar<br />

development can have important legal implications for living individuals<br />

for which chronological age is unknown since the observation of<br />

advanced mineralization stages in third molars can provide insight into<br />

whether or not an individual is likely to have reached 18 years of age.<br />

This information can assist courts within the United States in<br />

determining whether or not an individual is legally considered a minor or<br />

an adult.<br />

Due to the strong genetic component of dental development,<br />

research has shown that mineralization patterns of the human dentition<br />

are relatively buffered against environmental influences that normally<br />

affect bone growth and development (Cardoso 2007). It is because of<br />

this resistance to environmental factors and the continuous growth of the<br />

permanent dentition throughout childhood and adolescence that the<br />

evaluation of dental development patterns has become the preferred<br />

method of age estimation in living and deceased children.<br />

While it has been suggested that the timing of dental development<br />

varies by ancestral descent and geographic populations, further<br />

exploration of the role of statistical modeling in the comparisons of<br />

dental development tempo and patterning among populations is<br />

necessary. For this study, 81 panoramic radiographs of individuals (33<br />

males and 48 females) from a contemporary Florida population ranging<br />

in age from 7.7-20.4 years were reviewed. The mean age for males<br />

included in this study was 15.7 years, while the mean age for females<br />

was 16.1 years. Maxillary and mandibular third molars were observed<br />

and assigned a mineralization score ranging from 1-14 in accordance<br />

with dental development standards devised by Moorrees et al. (1963).<br />

Previous research (Demirjian 1978) suggests that dental development<br />

occurs symmetrically between tooth types in each dental arcade.<br />

Therefore, one score was obtained for each tooth type. Most scores were<br />

obtained from teeth in the left side of the mouth; however, in instances<br />

where the development stage of the left tooth was not clearly visible, the<br />

20


development stage of the corresponding tooth on the right side of the<br />

mouth was scored. Similarly, most scores were obtained by observation<br />

of the mineralization stage of the distal root; however, in instances for<br />

which the mineralization stage of the distal root was not observable, the<br />

mesial root was scored. Of 246 molars observed, 53 were maxillary third<br />

molars, 77 were mandibular first molars, 77 were mandibular second<br />

molars, and 39 were mandibular third molars. Maxillary first and second<br />

molars were not scored due to the difficulty in observing advanced<br />

mineralization stages of maxillary teeth on panoramic radiographs.<br />

Previous research has suggested that females achieve advanced<br />

dental development stages earlier than males (Tompkins 1996).<br />

Therefore, each sex was treated independently, and mean ages for<br />

attained development stages were calculated for each tooth. The mean<br />

age of complete root apex closure of the third maxillary molar (stage 14)<br />

for males was 19.5 years, while the mean age of complete root apex<br />

closure of the third mandibular molar (stage 14) for males was 17.6<br />

years. Similarly, the mean age of complete root apex closure of the third<br />

maxillary molar (stage 14) for females was 18.5 years, while the mean<br />

age of complete root apex closure of the third mandibular molar (stage<br />

14) for females was 18.8 years.<br />

The accurate observation and comparison of stages of molar<br />

development can serve as a noninvasive method for evaluating the<br />

probability of whether or not an unknown individual is likely to have<br />

reached 18 years of age. The refinement of existing dental age<br />

estimation standards can be achieved by incorporating a Bayesian<br />

statistical analysis, transitional analysis, and a cumulative probit model<br />

on the log scale ages.<br />

Dental Mineralization, Age Estimation, Bayesian Analysis<br />

H34 A New Method for Height Estimation Using<br />

Photogrammetry: Reliability and Validity<br />

Antonio De Donno, PhD*, and Bruno Morgese, MD, Section of Legal<br />

Medicine - University of Bari, Pizza Giulio Cesare n.11, Bari, 70124,<br />

ITALY; Maurizio Scarpa, MD, Pizza G. Cesare 11 University of Bari,<br />

Bari, ITALY; and Francesco Introna, PhD, Section of Legal Medicine -<br />

DiMIMP, P.zza Giulio Cesare n.11, Bari, 70124, ITALY<br />

After attending this presentation, attendees will gain knowledge of<br />

a new method, and its reliability, for height estimation using<br />

photogrammetry.<br />

This presentation will impact the forensic science community by<br />

demonstrating how height estimation of the subject videotaped while in<br />

the act of robbery is a parameter that can be accurately estimated using<br />

the proposed method, respecting the experimental conditions described,<br />

and that it can consequently be utilized in probatory inquiries.<br />

The identification of subjects by means of image comparison has<br />

already been used in the past; however, the advent of new software for<br />

the elaboration of images has provided a new impact and new resources<br />

useful for the application of techniques for the identification of the<br />

culprits. The sensitivity of the results of the investigations which, in<br />

association with other evidence, can point the judge towards a verdict of<br />

guilt or innocence, making the use of reliable scientific methods<br />

necessary, without neglecting to highlight the possible objective limits of<br />

the techniques used.<br />

These scientific studies have had a particular impact in Italy, where<br />

the identification of the culprit by means of the comparison between the<br />

images of the arrested suspect and those of the subject videotaped in the<br />

act of robbery is allowed.<br />

The application of such techniques; however, requires the<br />

permission of the suspect to be filmed by the bank surveillance system;<br />

in addition, the images filmed during the robbery need to be of excellent<br />

quality.<br />

When this permission is denied, it might be useful to collect the<br />

information regarding the robber’s stature from the images taken during<br />

the robbery itself.<br />

During this study, the possibility of determining the stature of a<br />

subject by means of photogrammetry was investigated; such technique is<br />

defined as the procedures that make use of photographs in order to obtain<br />

the position, the shape and the dimension of a subject.<br />

Preliminarily, actual heights (in cm) were obtained by measuring a<br />

selection of 288 people including subjects of a height ranging from 150<br />

cm to 200 cm with a metallic pole; they were all photographed while<br />

standing in a doorway, so as to simulate the images of subjects taken in<br />

the doorway of a bank.<br />

The selected subjects were measured by a standardized method.<br />

They were photographed (wearing shoes) positioned both standing still<br />

and in movement; another operator measured the actual height by using<br />

a metric pole, standing still, wearing the same shoes. The photographs<br />

obtained were examined (by another operator who was unaware of the<br />

actual heights) using a professional image editing software to determine<br />

the height of the people selected using the grid technique.<br />

In the assessment of the height of a person in motion, it was<br />

attempted to standardize the measurement by filming the subjects placed<br />

in such a position that their center of gravity corresponded with the<br />

threshold of the door.<br />

From what has been seen so far, the use of photograph for forensic<br />

purposes can be considered useful only when the subject is filmed in a<br />

static position (i.e., inside the bank doorway). The mean differential<br />

values between the actual height and the height measured in people<br />

standing, ranging from – 0.90 cm to + 1.24 cm, confirm the reliability of<br />

the technique. However, the validity of the technique for the<br />

measurement in motion is unreliable, owing to the high variability<br />

between the actual heights and the measurements obtained by a<br />

professional image editing software (ranging from – 3 cm to + 6 cm).<br />

Height Estimation, Photogrammetry, Reliability<br />

H35 Contribution of the Maxillary Sinus<br />

Analysis for Human Identification<br />

Jamilly O. Musse, PhD*, Jeidson A.M. Marques, PhD, Faculty of<br />

Dentistry, Feira de Santana State University (UEFS), Fanco Manoel da<br />

Silva, 437, Cidade Nova, Feira de Santana - Bahia, 44053-060, BRAZIL;<br />

and Rogério N. Oliveira, PhD, University of São Paulo, Lineu Prestes,<br />

5081, Cidade Universitária, São Paulo, 05508-000, BRAZIL<br />

After attending this presentation, attendees will understand and<br />

appreciate how maxillary sinus analysis can contribute to human<br />

identification in forensic cases.<br />

This presentation will impact the forensic science community by<br />

showing one more human identification method, the maxillary sinus<br />

analysis.<br />

The goal of this study is to evaluate the possibility of individual<br />

human identification and sex identification by means of maxillary sinus<br />

and propose three identification methods using the referred structures.<br />

The sample was composed of 656 panoramic radiographs, from 328<br />

adult individuals of both sex, more than 20 years, and divided in: Group<br />

I/ control: formed by radiographs of patients submitted to orthodontic<br />

treatment, but that did not need dental extraction in posterior teeth; and,<br />

Group II/experimental: formed by radiographs of patients submitted to<br />

orthodontic treatment that needed dental extraction in any posterior<br />

teeth. The radiographs had been randomly selected for the sample<br />

composition.<br />

Two radiographs were used from each individual, one from the<br />

beginning of treatment and the other after a two-year-orthodontic<br />

treatment. After that, three methods were employed in each radiograph,<br />

in both groups.<br />

21 * Presenting Author


In the manual technique I, the configuration of the right and left<br />

maxillary sinus was performed, using an acetate sheet on the panoramic<br />

radiography and after that.<br />

Using the trace of maximum height and width in the transparency<br />

on the panoramic radiography from the previous reported technique, in<br />

manual technique II, the aerial cavity of the maxillary sinus was divided<br />

into four quadrants (Q1, Q2, Q3 and Q4). Based on that division, the<br />

quadrant morphology was compared using overlapping of the acetate<br />

sheet related to the radiographs of the same individual.<br />

In the computerized technique, after panoramic digitalization, the<br />

configurations of the maxillary sinus were computer-generated and the<br />

respective areas and perimeters were calculated, using an image<br />

acquisition and analysis software. Besides the previously mentioned<br />

measures, the form factor measurement was also used. The form factor<br />

value is calculated through the relation between area and perimeter, and<br />

expresses how much the morphology of maxillary sinus was preserved if<br />

compared to the radiographs of the same individual.<br />

In the analysis of the results, descriptive statistics techniques were<br />

used (average and standard deviation), Student’s t-test with similar and<br />

non-similar variants and paired Student’s t-test to quantitative variables.<br />

The level of significance used in the statistics tests was 5.0%. Statistical<br />

analysis software was used to obtain statistics calculations. The quadrant<br />

analysis was performed by visual comparison.<br />

In the manual technique I, the measurement results in the initial<br />

radiography and in the radiography after a two-year- treatment were<br />

evaluated separately. In both radiographs, regarding all the variables, the<br />

averages were higher in male than in female sex.<br />

Between sexes, the only significant difference was observed in the<br />

“left width” variable in the experimental group. Differences between the<br />

groups were observed in “right width” in both sex and “left width” in<br />

female. Regarding those variables, it was observed that the averages<br />

were positive in the experimental group and negative in the group<br />

control, except for “left width” in female sex.<br />

In the comparison of the quadrant morphology of maxillary sinus in<br />

both kinds of radiographs, absence of alteration in the registered<br />

individuals as group control was observed. In the experimental group,<br />

the presence of alteration in the sinus morphology was observed in eight<br />

individuals, all of them in inferior quadrants, related to the loss of<br />

dental units.<br />

The computerized technique results shown that in the initial<br />

radiograph and in the one after a two-year-treatment, in most of the<br />

variables, the averages were higher in male than in female sex.<br />

In the experimental group, except from the “form factor” variables,<br />

in both sexes – that presented negative values, all the other averages<br />

were positive. Differences between the groups were checked for “right<br />

perimeter” in both sex; and “right area” in female. Regarding those<br />

variables, it was observed that the averages were positive in the<br />

experimental group and negative in the control group.<br />

The present research techniques can be used in human identification<br />

cases where only skull fragment is available for anthropological analysis.<br />

The incorporation of the analysis added to other evidences may<br />

contribute in a decisive way to cases of forensic human identification.<br />

Forensic Odontology, Human Identification, Maxillary Sinus<br />

H36 Evaluating the Performance of Population<br />

Estimation Methods in Commingled<br />

Skeletal Assemblages<br />

Bradley I. Lanning, MA*, Jolen Anya Minetz, MA, and Jennie J.H. Jin, PhD,<br />

JPAC-CIL, 310 Worchester Avenue Building 45, Hickam AFB, HI 96835<br />

The goal of this presentation is to compare population estimation<br />

results yielded from commingled skeletal assemblages of different sizes.<br />

* Presenting Author<br />

This presentation will impact the forensic science community by<br />

evaluating different methods of estimating the original case population<br />

size represented by skeletal assemblages produced by widely varying<br />

circumstances. Predictive models generated from intact mass graves and<br />

secondary burial mass graves excavated by the Joint POW-MIA<br />

Accounting Command - Central Identification Laboratory (CIL)<br />

anthropologists are compared to portions of large and heavily<br />

commingled skeletal assemblages unilaterally turned over to the CIL by<br />

the Democratic People’s Republic of Korea (DPRK).<br />

The CIL received a series of shipments of skeletal remains from the<br />

DPRK during the early 1990’s. A total of 208 boxes of remains were<br />

turned over dubbed the “K208.” The North Koreans claimed that these<br />

remains represented 208 U.S. servicemen. The original anthropological<br />

analysis of the remains revealed that most of the accessions represented<br />

multiple individuals. When the remains were sampled for mitochondrial<br />

DNA (mtDNA), it confirmed the suspicion that more people were<br />

present in the containers than previously estimated to a substantial<br />

degree. In the analysis and sorting of the K208 assemblage, it is<br />

important to create an accurate estimation of the original population.<br />

Different population estimation methods were used in this study,<br />

with special consideration for the Most Likely Number of Individuals<br />

(MLNI). 1 The MLNI has been shown to estimate the original population<br />

size, while the Minimum Number of Individuals (MNI) estimates the<br />

recovered population size. In cases of taphonomic loss, the MLNI<br />

should provide a more accurate estimation than the MNI. In addition to<br />

a traditional MNI, the Grand Minimum Total (GMT) was also calculated.<br />

The results of these different population estimation methods were<br />

generated from a series of CIL-lead excavations with the purpose of<br />

constructing predictive models. First, two excavations consisted of<br />

intact primary mass graves from the DPRK where commingling was<br />

slight; in both of these cases some remains were retained by DPRK<br />

officials. Second, another excavation consisted of poorly preserved and<br />

fragmentary remains from a World War II bomber crash. Finally, an<br />

excavation of a secondary burial mass grave from the DPRK where<br />

remains had been intentionally planted in the recent past was analyzed.<br />

The population estimation results derived from these models were either<br />

compared to the number of individuals archaeologically determined or to<br />

the minimum number of mtDNA sequences present (MNS).<br />

In both primary mass graves and the World War II bomber case, all<br />

population estimators were accurate and in close agreement. The MNI<br />

only slightly underestimated the original population, while the MLNI<br />

estimated the true original population. This is to be expected given the<br />

high recovery rate. An exception to this trend was recognized in one<br />

mass grave where poor preservation and fragmentation restricted<br />

accurate pair matching, which inflated the population estimation. In the<br />

secondary mass grave, all population estimators drastically<br />

underestimated the original population size, including the MLNI.<br />

For the K208 skeletal assemblage, population estimators usually<br />

underestimated the original population in each purported origin. The<br />

highest MLNI in Chongsung-ni was 23 individuals and the MNS is 22;<br />

however, the overall MLNI is 18. The highest MLNI in Okchang-ni is 5<br />

individuals and the MNS is 12. In Kaljon-ri the highest estimation is 34<br />

individuals and the MNS is 44. The highest MLNI from the combined<br />

villages is 58 individuals and the MNS is 67.<br />

The underestimation is due to a number of factors. The use of<br />

mtDNA to aid in the pair matching of heavily fragmented remains has<br />

helped prevent the method from overestimating the population. In both<br />

the secondary mass grave and the K208, purported individuals were<br />

being constructed from a stockpile of remains of unknown number. This<br />

has produced an effect of selective data loss. While the MLNI can help<br />

more accurately estimate the original population in cases of normal<br />

taphonomic data loss, in situations such as the K208 and the planted<br />

mass grave, the MLNI alone is unable to do so. An avenue for future<br />

research is to increase the discrimination powers of the population<br />

estimator used by combining osteometric sorting and mtDNA analysis<br />

with the MLNI.<br />

22


Reference:<br />

1. Adams, B. J. and L. W. Konigsberg. Estimation of the most likely<br />

number of individuals from commingled human skeletal remains.<br />

Am J Phys Anthropol 2004; 125(2):138-151.<br />

Commingling, Population Estimation, MLNI<br />

H37 Revising Revisions: Modification of the<br />

Measurement of the Sacral Body Height for<br />

Use in Fully’s (1956) Anatomical Method of<br />

Stature Estimation<br />

Atsuko Hayashi, BA*, Joint POW/MIA Accounting Command Central<br />

Identification Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853-5530<br />

After attending this presentation, attendees will understand how the<br />

pelvis should be properly reconstructed in anatomical position, and how<br />

measurement of the height of the first sacral body is unnecessary for use<br />

with a revision of Fully’s Anatomical Method of stature estimation.<br />

This presentation will impact the forensic science community by<br />

clarifying some of the uncertainty of Fully’s measurement instructions.<br />

Increasing the precision of the Anatomical Method can provide<br />

numerous opportunities to conduct comparative group (including sex<br />

differences) studies using skeletal collections that lack records of living<br />

stature.<br />

When applicable, the Anatomical Method can provide more<br />

accurate results than that of “mathematical methods” (i.e., single element<br />

regression-based methods). This is because measurements are taken for<br />

all bones contributing to stature, and varying allometric patterns<br />

within/among groups and between the sexes, therefore should not be<br />

affected by these factors. The method also compensates for individuals<br />

with extra vertebrae. Recent studies called for a revision of the protocols<br />

described by Fully (1956), as the method tended to underestimate living<br />

or cadaveric statures in known-stature skeletal collections (Bidmos<br />

2005; Raxter et al. 2006). This revision is necessary in part, because<br />

utilizing the sacral height, rather than reconstructing the pelvis, does not<br />

compensate for a gap between the first transverse line of sacrum to<br />

superior margin of acetabulum. The Raxter et al. (2006) revision of the<br />

Fully method attempted to account for this gap; however, it is unclear<br />

which procedure for reconstruction of the pelvis was utilized,<br />

furthermore, it did not systematically employ a new measurement, but<br />

rather introduced a correction factor based on a subsample of their<br />

dataset to compensate for the gap.<br />

The current study explores a revision of the Raxter et al. (2006) in<br />

order to measure the gap between the first transverse line of the sacrum<br />

and the superior margin of the acetabulum. First, the anatomical position<br />

of the pelvis was reconstructed following Hiramoto (1972) which<br />

substitutes the 2 mm thickness of cartilage with clay placed between<br />

auricular surfaces and sacroiliac joints, and approximately 7 mm<br />

between the pubic symphyses. The pelvis was placed in a sand box for<br />

support, while the anterior superior iliac spine of the ilium and pubic<br />

tubercle were held on same plane/perpendicular in lateral view<br />

(Bannister et al. 1995: 673). The pelvis was next turned toward the<br />

researcher in the anterior view, then a perpendicular scale and another<br />

scale to make a right angle for the measurement of the height of the first<br />

sacral vertebra from the anterior midline of the promontory to the first<br />

transverse line of sacrum and parallel line of the left and right superior<br />

margins of the acetabulum.<br />

Measurements were taken using the standard Fully (1956) method<br />

with this revised criterion on a skeletal sample of 102 Japanese<br />

individuals (males: n=76 and females: n=36) from the University of<br />

Chiba School of Medicine and the University of Jikei School of<br />

Medicine. Paired-sample t-tests show that there are significant<br />

differences (p


and subjected to Fourier analysis. Fourier coefficients were used to<br />

create discriminant functions that most effectively separate the European<br />

and American Indian crania in the sample by side and by sex, and the<br />

validity of the functions were tested with the leave-one-out technique.<br />

The purpose of this study was to test the hypothesis that a<br />

quantitative analysis of zygomaxillary suture form is equally effective in<br />

discriminating European and Native American crania as a qualitative<br />

analysis. Thus, the results of the discriminant analysis were compared<br />

with the results of a traditional visual assessment, in which both<br />

evaluations identified “angled” or “curved” suture forms in the sample<br />

and calculated the within-group frequencies of each type. Based on<br />

these comparisons, it was possible to evaluate the relative merits of these<br />

methods of purposes of human identification. In addition, new<br />

information was obtained on the diagnostic capabilities of the<br />

zygomaxillary suture in males versus females and in the right side of the<br />

skull versus the left side, which has not previously been investigated.<br />

Zygomaxillary Suture, Fourier Analysis, 3D Models<br />

H39 An Investigation and Critique of the<br />

DiGangi et al. (2009) First Rib<br />

Aging Method<br />

Sara M. Getz, BS*, Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will be familiar with the<br />

DiGangi et al. (2009) first rib aging method and will have been presented<br />

with a study that investigates and critiques this method.<br />

This presentation will impact the forensic science community by<br />

making attendees aware of the pros and cons of this newly developed<br />

method and the direction of future aging research in the field of forensic<br />

anthropology.<br />

Most commonly used methods of age estimation have several<br />

shortfalls. They tend to over-estimate the age of young individuals,<br />

under-estimate the age of older individuals, utilize terminal age<br />

categories, such as 50+, provide age ranges which are too precise or too<br />

wide to be of practical use in a forensic setting, and fail to provide<br />

prediction intervals based on an explicit probability. To address these<br />

issues, the DiGangi et al. (2009) 1 first rib aging method utilizes transition<br />

analysis on features of the first rib previously investigated by Kunos et<br />

al. (1999) 2 in the Hamann-Todd collection. The newly developed<br />

method was first applied to positively and presumptively identified<br />

males of Balkan ancestry collected in the former Yugoslavia (n=470).<br />

The application of the method, as described in the original publication,<br />

requires only that observers familiarize themselves with descriptions of<br />

the traits to be scored and the example photos found in the appendix,<br />

score the features of the ribs as described, and refer to the table of<br />

posterior densities provided in the article to find the appropriate age<br />

prediction range and the point estimate of age. The purpose of this study<br />

is to evaluate the performance of this method.<br />

To assess inter- and intra-rater agreement, four graduate students<br />

with advanced osteological training scored 113 ribs of white males from<br />

the Hamann-Todd collection ranging from 21 to 88 years. Sub-samples<br />

of individuals were re-coded from the total sample by each observer to<br />

allow for the calculation of intra-observer agreement. The ‘irr’ package<br />

in R.2.10.10 (2009) 3 was used to assess levels of agreement for the costal<br />

face, tubercle facet, and combined scores. The data was analyzed using<br />

tests for both nominal and ordinal data. Despite the fact that the<br />

published 95% probability intervals for each combination of scores<br />

range from 35 to 50 years, individuals were only placed into an age range<br />

that contained their true age on average 87% of the time. With the<br />

exception of four younger adults between 20 and 35 years of age who<br />

were problematic for all observers, all individuals incorrectly aged were<br />

above 55 years of age.<br />

* Presenting Author<br />

Due to the large overlap in the age ranges provided for each unique<br />

combination of costal face and tubercle facet scores, it is possible for<br />

observers to correctly age an individual while having only minimal<br />

agreement in their scores for each rib feature. The highest inter-observer<br />

values for any agreement statistic (Cohen’s Kappa) were 0.74 for the<br />

costal face and 0.56 for the tubercle facet. Despite the apparent<br />

simplicity of the coding system provided, the use of stages with multiple<br />

features and ambiguous descriptions results in high inter-observer error<br />

and a method that is generally unreliable. Also, the use of arbitrary<br />

stages containing multiple features that may or may not be present as<br />

opposed to specific ordinal variants directly violates the fundamental<br />

assumptions of transition analysis and is inappropriate.<br />

The discrepancies between the performance of the method as<br />

described in the original article and the results of this study may be due<br />

in part to genetic differences between the males of Balkan ancestry in the<br />

original publication and the American white males of the Hamann-Todd<br />

collection used in this study. The definitions provided should also be<br />

reviewed and revised as necessary to lower inter-observer error rates to<br />

acceptable levels. Also, concentrating on ordinal features that change<br />

over time is preferred to using an agglomerated “stage” approach.<br />

Despite the disappointing performance of this method for age-at-death<br />

estimation, transition analysis and other statistically based methods of<br />

age-estimation represent the most promising new frontier for the<br />

development of new standards.<br />

Funding for this research was provided by the Faculty-Led Student<br />

Research Grant Program at Mercyhurst College.<br />

References:<br />

1. DiGangi EA, Bethard JD, Kimmerle EH, and Konigsberg LW.<br />

A New Method for Estimating Age-at Death from the First Rib.<br />

Am J of Phys Anthropol 2009 138:164-176.<br />

2. Kunos C, Simpson S, Russell K, Hershkovitz I. First rib<br />

metamorphosis: its possible utility for human age-at-death<br />

estimation. Am J Phys Anthropol 1999 110:303–323.<br />

3. R Development Core Team. R: A language and environment for<br />

statistical computing. R Foundation for Statistical Computing,<br />

Vienna, Austria. 2009 http://www.R-project.org.<br />

Age-at-Death Estimation, Transition Analysis, Forensic Anthropology<br />

H40 Cervical Vertebral Centra Epiphyseal<br />

Union as an Age Estimation Method in<br />

Teenage and Young Adult Skeletons<br />

A. Midori Albert, PhD*, University of North Carolina - Wilmington,<br />

Department of Anthropology, 601 South College Road, Wilmington, NC<br />

28403-5907<br />

After attending this presentation, attendees will gain an<br />

understanding of the pattern, sequence, and timing of maturation of<br />

cervical vertebral centra and how it may be used to estimate skeletal age<br />

at death.<br />

This presentation will impact the forensic science community by<br />

introducing a supplemental method of estimating skeletal age-at-death of<br />

teenagers and young adults, which when used with other skeletal age<br />

indicators may improve the accuracy of age estimation in human<br />

identification.<br />

This study examined epiphyseal union of the inferior centrum of the<br />

second cervical vertebra (C2 or the axis), and the superior and inferior<br />

centra of the third though seventh cervical vertebrae, C3-C7. The sample<br />

comprised 55 individuals of known sex, ethnicity, and age at death.<br />

There were 23 females (2 American European, 21 African American) and<br />

32 males (5 European American, 27 African American), aged 14 to 27<br />

years from the Robert J. Terry Skeletal Collection housed at the National<br />

Museum of Natural History, Smithsonian Institution, Washington, DC.<br />

24


A four stage method was used to code the progress of epiphyseal<br />

union of the vertebral centra or “ring epiphyses”. Stage 0 represented the<br />

absence of any epiphyseal union activity. Vertebral centra in Stage 0<br />

were completely bare with no epiphyseal attachment. Stage 1 signified<br />

beginning union or union in progress. Beginning union was<br />

characterized by the slightest adherence of any portion of the epiphyses,<br />

and union in progress included partial to full epiphyseal rings present<br />

with gaps—adhesion in some areas and open spaces in other areas along<br />

the surfaces of the vertebral centra. Stage 2 denoted epiphyses that were<br />

almost completely united or recently united. Beginning union and union<br />

in progress were consolidated into one stage, Stage 1, and almost<br />

complete union and recent union were also consolidated into one stage,<br />

Stage 2, since the timing of fusion seemed to occur over the course of<br />

only a few months. Stage 3 corresponded to epiphyses that were fully<br />

fused for some time. The distinction between recently united epiphyses<br />

(Stage 2) and fusion that had been complete for some time (Stage 3) was<br />

important in that noting recent union allowed for more age information<br />

to be extracted from the sample and may yield greater accuracy in<br />

estimating age at death. That an individual may skeletally show signs of<br />

youth in adulthood (recently completed union, Stage 2) is more<br />

informative than simply recognizing an individual as adult (complete<br />

union, Stage 3) since that adult skeletal status could have occurred many<br />

years ago.<br />

Results indicated that: (1) females matured at an earlier age than<br />

males; (2) there was no identifiable sequence of union—various ring<br />

epiphyses of C2-C7 fused in seemingly random order; and, (3) cervical<br />

vertebral ring epiphyseal union correlated with known age-at-death<br />

moderately well (r=0.63). Thoracic and first two lumbar vertebral ring<br />

epiphyseal union data for the same sample, however, yielded a higher<br />

correlation with known age-at-death (r=0.70) probably due to there being<br />

more data for thoracic and lumbar centra—28 epiphyses—versus 11<br />

epiphyses for the cervical vertebrae. Cervical vertebral ring union data<br />

correlated rather poorly with thoracic and first two lumbar vertebral ring<br />

union data for the same sample (r=0.41). While these results may not<br />

fare as well as other skeletal age estimation methods as a stand alone<br />

method, cervical vertebral ring epiphyseal union is still a viable option<br />

inasmuch as it may be used to corroborate findings from other skeletal<br />

age indicators and or it can provide a general idea of an age range if<br />

cervical vertebrae are the only bones available for analysis.<br />

Age Estimation, Epiphyeal Union, Cervical Vertebrae<br />

H41 A Pilot Study in the Forensic Potential of the<br />

Health Index<br />

Nicholas V. Passalacqua, MS*, 1559 Mount Vernon, East Lansing, MI<br />

48823; Jennifer M. Vollner, MS, 328 Baker Hall, East Lansing, MI<br />

48824; Dominique Semeraro, MS, Office of State <strong>Medical</strong> Examiners, 48<br />

Orms Street, Providence, RI 02904; and Christopher W. Rainwater, MS,<br />

Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York,<br />

NY 10016<br />

The goal of this presentation is to inform attendees about the<br />

potential utility of applying the Health Index to skeletal remains<br />

recovered from forensic contexts.<br />

This presentation will impact the forensic science community by<br />

describing the results of a pilot study applying the health index to a small<br />

forensic sample of individuals with known backgrounds and health<br />

statuses. Further, a general comparison will be made of the overall<br />

health index score of an aggregate modern forensic population to health<br />

scores of past, bioarchaeological populations from North America.<br />

In bioarchaeology the health index developed by Steckel et al.<br />

(2002), ranks aggregations of individuals clustered into sites, time<br />

periods, etc., in order to understand relative rankings in biological<br />

“health.” However, Steckel and Rose (2002:62) speculate “if estimated<br />

for [single] individuals, it could be used to assess not only average health<br />

but inequality of health within groups.” Here, health is measured by a<br />

number of dental and skeletal variables including: age-at-death and<br />

stature, as well as presence and severity of dental and bony pathologies,<br />

degenerative joint disease and skeletal trauma (See Steckel et al. 2002<br />

for further details).<br />

Previous studies have had limited success when investigating<br />

applications of life history and activity pattern models to forensic<br />

remains. However, trends in skeletal pathology such as healed fractures,<br />

marked vertebral osteophytic activity, and/or poor dental care often<br />

appear in decedent’s remains from similar cultural contexts such as<br />

homelessness and individuals with a history of drug addiction problems.<br />

The goal of this project is to apply the health index to a number of known<br />

forensic cases which include some background of the decedent’s health<br />

prior to death. Doing so will not only demonstrate potential differences<br />

in antemortem health status among individuals, but this will also serve as<br />

a test of the forensic efficacy of the Health Index. Nearly 50 forensic<br />

cases with antemortem health statuses ranging from what would be<br />

considered “good” to “poor” have been assessed and the sample size will<br />

increase by time of presentation.<br />

These contemporary individuals will also be grouped into a forensic<br />

population and compared to other ranked health index scores of past<br />

bioarchaeological populations (bioarchaeological health index scores<br />

obtained from Steckel and Rose (2002)). This will demonstrate the<br />

relative health of a modern North American forensic population in<br />

comparison to historical populations from North America.<br />

Preliminary individual health index results suggest that while less<br />

healthy individuals generally score below those considered healthier,<br />

there does not appear to be a strong enough trend to recommend the<br />

health index as a tool for interpreting individual forensic antemortem<br />

health statuses. When considering a single forensic population, the<br />

group “% of max” falls above the bioarchaeological mean value (using<br />

n=65 archaeological sites), but within a one standard deviation interval.<br />

This suggests the health ranking is not significantly greater than North<br />

American bioarchaeological scores. This is also true when only<br />

considering bioarchaeological heath index scores of samples within the<br />

last 200 years (n=20). It may be important to note that a forensic sample<br />

is likely biased and thus not a true representation of the health status of<br />

the entire contemporary United States population from which it is<br />

derived. Further research based on the potential of these results may be<br />

to examine a larger U.S. population from a contemporary donated nonforensic<br />

sample and thus compare these health index scores of those of<br />

the forensic sample.<br />

Health Index, Pathology, Demography<br />

H42 Demographic Differences of Homicide<br />

Victims Examined by Forensic<br />

Anthropologists in Comparison to National<br />

Homicide Victim Trends<br />

Alma Koon, BS*, 731 Pond Branch Road, Lexington, SC 29073; and<br />

Katherine E. Weisensee, PhD*, Clemson University, Department of<br />

Sociology & Anthropology, 132 Brackett Hall, Clemson, SC 29634<br />

After this attending this presentation, attendees will appreciate<br />

differences in demographic parameters, regional differences, and<br />

temporal changes between homicide victims examined by forensic<br />

anthropologists and national homicide statistics.<br />

This presentation will impact the forensic science community by<br />

informing practitioners of the unique demographic profile of homicide<br />

victims examined by forensic anthropologists in comparison with<br />

national homicide trends.<br />

This study examines the demographic parameters of individuals<br />

that were victims of homicide, examined by forensic anthropologists,<br />

and reported to the Forensic Data Bank (FDB). The FDB is a centralized<br />

25 * Presenting Author


database to which forensic anthropologists from around the country<br />

report information from recent cases. The data used in this study<br />

contains individuals that were examined by forensic anthropologists<br />

between 1961 and 1991. By virtue of the fact that individuals in the<br />

databank were examined by forensic anthropologists, the postmortem<br />

interval of the average homicide victim in the databank is longer in<br />

comparison to other homicide victims. This is because forensic<br />

anthropologists are typically involved in cases where individuals are<br />

partially to completely decomposed, and when identification through<br />

other methods is not feasible. The sex ratio, age, and ancestry of<br />

individuals in the FDB is compared with national homicide statistics in<br />

order to determine if the demographic profile of individuals examined by<br />

forensic anthropologists is unique in comparison to national<br />

homicide trends.<br />

Preliminary results of the demographic characteristics of homicide<br />

victims show that 53% of homicide victims in the FDB are female, in<br />

comparison to national statistics where females make-up only 24% of<br />

homicide victims. In addition, the mean age of individuals in the FDB<br />

is 28.3 years, while nationally the mean age of homicide victims is 33.8<br />

years. Finally, in the FDB, 65.8% of homicide victims were reported as<br />

White, 22.6% as Black, and 11.6% as other. Nationally, the ancestry<br />

profile of homicide victims is 52.9% White, 45.3% Black, and 1.7%<br />

other. In addition to these preliminary results, the FDB will be compared<br />

to national trends to examine changes over time in the demographic<br />

parameters of the two samples. Also explored is the regional variation in<br />

order to determine if there are differences in FDB demographic<br />

parameters in difference areas of the country.<br />

These preliminary results suggest that in general, homicide victims<br />

that are examined by forensic anthropologists are more likely to be<br />

female than other homicide victims. Moreover, they are somewhat<br />

younger and more likely to be White in comparison to other homicide<br />

victims. Given that the main difference between individuals in the FDB<br />

compared to other homicide victims is that FDB individuals have a<br />

longer postmortem interval, a number of possible causes for these<br />

differences are explored. The clear female-bias in the FDB suggests that<br />

female victims of homicide are more likely to be concealed following<br />

death and the period between death and discovery is longer for females.<br />

Furthermore, the results suggest that female victims of homicide are<br />

more often killed in private settings, perhaps related to sexual violence<br />

associated with the homicide, and therefore there is a longer period until<br />

the body is discovered. Social theory research on intimate partner<br />

homicide and violence against women will be used to contextualize the<br />

results of this comparison.<br />

Homicide, Demographics, Comparison<br />

H43 Ancestry Estimation Using Random<br />

Forest Modeling<br />

Joseph T. Hefner, PhD*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96583; Kate Spradley, PhD, Department of Anthropology,<br />

Texas State University, 601 University Drive, San Marcos, TX 78666;<br />

and Bruce E. Anderson, PhD, Forensic Science Center, Office of the<br />

<strong>Medical</strong> Examiner, 2825 East District Street, Tucson, AZ 85714<br />

After attending this presentation, attendees will be introduced to the<br />

use of Random Forest Modeling (RFM) and the performance of RFM in<br />

ancestry estimation.<br />

This presentation will impact the forensic science community by<br />

providing an additional method for the estimation of ancestry.<br />

Compared to other exploratory and classification methods used in<br />

anthropological research, for example, principal component analysis<br />

(PCA) and linear discriminant function analysis (lDFA), Random Forests<br />

may be more appropriately applied to datasets frequently encountered in<br />

forensic anthropology. The suitability of Random Forest models to<br />

* Presenting Author<br />

forensic anthropological data is due in large part to the rather rigid<br />

assumptions of parametric methods (i.e., observation independence,<br />

normal distribution, and homogeneity of variance), which do not hold for<br />

many of the datasets encountered during forensic anthropological<br />

research and method development. Fortunately, these assumptions are<br />

not required for nonparametric methods like Random Forest modeling.<br />

The most promising potential of Random Forest models is their ability to<br />

handle all variable types (categorical, continuous, count, etc.) seamlessly<br />

and to relate the various observations in highly non-linear ways to a<br />

response variable. Ancestry estimation as practiced by forensic<br />

anthropologists regularly incorporates both metric (continuous) and<br />

morphoscopic (categorical) data. In reality, most analysts prefer—or<br />

trust!—one method over the other. Only after one method (e.g.,<br />

morphoscopic analysis) has provided results does the analyst turn to the<br />

next (e.g., metric analysis) for confirmation or refutation. Combining<br />

metric and morphoscopic predictor variables into a single classification<br />

analysis is generally not possible because of the differences in the<br />

distribution of the data. RFM avoids these issues using a nonparametric<br />

classification algorithm (a classifier consisting of a collection of treestructured<br />

classifiers) relying on majority voting and bootstrapping to<br />

assign cases to a response class after the initial model is produced from<br />

a randomly selected training set. Further randomness is introduced<br />

during initial variable selection and tree construction by randomly<br />

selecting predictor variables, resulting in a ‘forest’ of trees contrasted of<br />

randomly selected individuals. A classification matrix (and various<br />

classification statistics) is then constructed to assess how well the model<br />

classifies all individuals in the dataset. Two supplementary measures<br />

produced during Random Forest analysis provide additional information:<br />

a measure of the importance of each predictor variable and a proximity<br />

measure (measure of the internal structure of the data). These statistics<br />

provide the analyst a great deal of information on the structure of the data<br />

(proximity measure) while identifying the most important variables—<br />

continuous and categorical, combined—to consider when estimating<br />

ancestry.<br />

To examine the usefulness of Random Forest modeling in ancestry<br />

estimation, we applied the RFM classification algorithm to 34 standard<br />

cranial measurements and 16 standard morphoscopic traits collected<br />

from 149 crania. The sample represents modern American Whites (n =<br />

72) and Blacks (n = 38) from the William M. Bass Donated Skeletal<br />

Collection in Knoxville, Tennessee and identified and unidentified<br />

border crossers representing Southwestern Hispanics (n = 39) from the<br />

Pima County <strong>Medical</strong> Examiner’s Office in Tucson, Arizona. Using<br />

Random Forest, 89.5% of the cross-validated groups (by group:<br />

American Whites (AW) = 84.0%; American Blacks (AB) = 92.8%;<br />

Hispanic (H) = 92.6%) were correctly classified, substantially improving<br />

classifications compared to using traditional methods independently<br />

(craniometric = 76.1% [by group: AW = 81.0%, AB = 75.0%, and H =<br />

69.2%]; morphoscopic = 72.7% [by group: AW = 70.0%, AB = 61.5%,<br />

and H = 85.7%]). Heuristically setting a threshold value at 0.50, thirtyfour<br />

variables (seven morphoscopic, 27 craniometric) derived from the<br />

RFM variable importance measure were examined for underlying<br />

patterns to better understand their significance. The significant<br />

morphoscopic traits are all mid-facial (NAS, INA, IOB, NBC, NAW,<br />

ORB, and NSF), quantifying Brues (1990) assertion that the mid-facial<br />

skeleton is the most important area to consider when estimating ancestry,<br />

at least anthroposcopically. The significant craniometric variables are<br />

facial breadth (ZYB), orbital breadth (OBB), alveolar length (MAL),<br />

vault width (WFB, STB, ASB) and vault length (NOL, GOL), and<br />

alveolar prognathism (BPL). The metric variables do not follow the<br />

same pattern of the morphoscopic variables as they are not isolated to<br />

one specific area, but rather the craniometric variables seem to describe<br />

overall cranial morphology.<br />

The results of the analysis using Random Forest modeling to<br />

estimate ancestry indicate that the combination of morphoscopic and<br />

craniometric datasets—which have for so long been diametrically<br />

opposed—greatly enhances the estimation of ancestry, allowing<br />

26


esearchers to quantify the process of variable selection. In other words,<br />

the advantage of Random Forest modeling as a practicable classification<br />

alternative to traditional methods, such as morphoscopic trait lists and<br />

discriminant function analysis, is that analysts are freed from the<br />

obligation of defending method selection while maintaining the principle<br />

of ancestry estimation.<br />

Forensic Anthropology, Ancestry Estimation, Quantitative Method<br />

H44 Ancestry Determination From<br />

Foramen Magnum<br />

Stephanie Marie Crider, MA*, Louisiana State University, Department<br />

of Geography and Anthropology, 227 Howe-Russell-Kniffen<br />

Geosciences Complex, Baton Rouge, LA 70803; and Mary H. Manhein,<br />

MA, Department of Geography & Anthropology, Louisiana State<br />

University, Baton Rouge, LA 70803<br />

After attending this presentation, attendees will become aware of<br />

possible cranial base changes and of the usefulness of the foramen<br />

magnum shape as a non-metric characteristic of ancestry to aid in the<br />

identification of unknown human remains.<br />

This presentation will impact the forensic science community by<br />

presenting results that suggest possible localized change in cranial base<br />

dimensions and explore the potential for an eliminating non-metric<br />

characteristic for ancestry determination.<br />

Ancestry estimation is a crucial part of creation of a biological<br />

profile in forensic anthropology. Improper classification of ancestry can<br />

affect other aspects of the biological profile, such as stature. Several<br />

metric and non-metric techniques are used by forensic anthropologists to<br />

determine ancestry of unidentified human remains. Some<br />

anthropologists believe the cranium to be an excellent indicator of<br />

ancestry (Rhine 1990). 1 Previous studies have explored the effectiveness<br />

of using the cranial base’s occipital condyles for ancestry assignment of<br />

an individual. Holland (1986) 2 studied the Terry Collection, housed at<br />

the Smithsonian, to develop five multiple-regression equations for<br />

determining ancestry from osteological landmarks on the cranial base.<br />

The current presentation focuses on the utility of the foramen magnum<br />

region on the cranial base as a positive indicator of ancestry.<br />

This research utilizes the same measurements as the study<br />

conducted by Holland (1986) to analyze four modern skeletal collections<br />

consisting principally of whites, blacks, and Hispanics. A total of 12<br />

measurements were taken from 465 cranial bases from collections of<br />

modern forensic remains housed at the William M. Bass Donated<br />

Skeletal Collection at the University of Tennessee, Knoxville, the<br />

Louisiana State University Forensic Anthropology and Computer<br />

Enhancement Services (FACES) Laboratory, Pima County Office of the<br />

<strong>Medical</strong> Examiner, in Tucson, Arizona, and the Maxwell Museum of<br />

Anthropology’s Osteology Laboratory at the University of New Mexico.<br />

All measurements were taken with a sliding caliper unless the<br />

osteological landmarks were missing or incomplete. These<br />

measurements included: length of the left and right occipital condyles,<br />

maximum width of the left and right occipital condyles, minimum width<br />

of the left and right occipital condyles, maximum distance between<br />

occipital condyles, minimum distance between occipital condyles,<br />

maximum interior distance between occipital condyles, foramen<br />

magnum width, foramen magnum length, and length of the basilar<br />

process. A Student’s t-test indicates that variation of the foramen<br />

magnum width among blacks, whites, and Hispanics is significant (p <<br />

0.05). Also, when comparing results of the measurements of blacks and<br />

whites from the modern forensic collections with those from Holland<br />

(1986), 2 variation was significant (p < 0.05) in two of the 12<br />

measurements for both sex and ancestry. These results suggest that<br />

localized changes on the cranial base may have occurred. The maximum<br />

distance between occipital condyles increased in length and the<br />

maximum interior distance between occipital condyles has decreased<br />

in length.<br />

Finally, to assess non-metric variation of the shapes of the foramen<br />

magnum, five different shape categories were defined to classify each<br />

foramen magnum: Arrowhead, Circle, Diamond, Egg, and Oval. A<br />

Pearson’s chi-square test showed a significant relationship between<br />

black, white, and Hispanic ancestral groups and foramen magnum shape<br />

(p < 0.05) based on shape analysis as defined by the researchers. To test<br />

the practicality of applying such a non-metric assessment of ancestry<br />

based upon the shape of the foramen magnum, a survey was conducted<br />

at the 62 nd American Academy of Forensic Sciences Annual Meeting.<br />

That survey asked participants, ranging in experience from<br />

undergraduate students to experts, to classify a group of foramen<br />

magnums into one of the five categories. The results from the survey<br />

showed that the five foramen magnum shape categories are highly<br />

subjective and that the Diamond and Arrowhead categories should be<br />

combined. Interestingly, since none of the 37 presumed Hispanic skulls<br />

(either self-identified or defined by the Pima County Office of the<br />

<strong>Medical</strong> Examiner) possessed an Egg-shaped foramen magnum, an Egg<br />

shape has the potential to be used as an eliminating non-metric<br />

characteristic.<br />

References:<br />

1. Rhine, Stanley. “Non-Metric Skull Racing.” Skeletal Attribution<br />

of Race: Methods for Forensic Anthropology. Albuquerque:<br />

Maxwell Museum of Anthropology Press, 1990.<br />

2. Holland, T.D. “Race Determination of Fragmentary Crania by<br />

Analysis of the Cranial Base.” Journal of Forensic Sciences. Vol<br />

31, No 2. (1986): 719-725.<br />

Ancestry, Foramen Magnum, <strong>Bio</strong>logical Profile<br />

H45 Group Classification Using Traditional<br />

Craniometrics, Angle Measurements,<br />

Geometric Morphometric Techniques, and<br />

the Potential Applications of These Methods<br />

to Fragmentary Crania<br />

Jolen Anya Minetz, MA*, and Jiro Manabe, MA, JPAC-CIL, 310<br />

Worchester Avenue Building 45, Hickam AFB, Honolulu, HI 96853<br />

After attending this presentation, attendees will have a greater<br />

understanding of the utility of various craniometric methods as they<br />

pertain to differentiating populations as well as associating fragmentary<br />

crania with specific groups. The goal of this presentation is to examine<br />

the morphological variation evident in the crania of three groups and the<br />

utility of several craniometric techniques: (1) traditional craniometric<br />

measurements; (2) angles acquired for cranial landmarks; and, (3)<br />

geometric morphometric techniques to differentiate between groups and<br />

assist with the assessment of race in a biological profile.<br />

This presentation will impact the forensic science community by<br />

contributing to the continuous evaluation of the utilization of<br />

craniometric analyses and emphasize the importance of developing<br />

diverse craniometric methods for the analysis of fragmentary crania.<br />

The purpose of this research is to test the discriminatory ability of<br />

these analyses in the classification of three groups, and evaluate the<br />

ability for these methods to classify fragmentary crania. The reference<br />

sample consists of 198 dry male skulls representing three groups:<br />

Japanese (n=105), American White (n=42) and American Black (n=51).<br />

Cranial landmarks were collected in Cartesian coordinates using a<br />

Microscribe G2X digitizer. The three dimensional coordinates were<br />

deposited into a formatted spreadsheet that computed inter landmark<br />

distances for 24 standard cranial measurements and angles between<br />

27 * Presenting Author


landmarks for as 8 angle variables. A generalized procrustes analysis<br />

was also conducted on the data in Morphologika2 to obtain principle<br />

components for using in discriminant function analyses.<br />

A discriminant function analysis was performed using SPSS<br />

statistical software. The classification rate for the three groups using the<br />

standard measurements alone ranged from 78.6% for American White to<br />

90.2% for American Black. The classification rate for the angles was<br />

between 80.0% for Japanese and 86.3% for American Black, and when<br />

the analysis was performed in a combined model (standard<br />

measurements and angles), each of these groups were correctly classified<br />

above 90%. The 3D data classified the three groups at a higher rate than<br />

the standard craniometric analysis but not as well as the combined<br />

method; the predicted group member ship ranged from 82.4% for the<br />

American Black group to 94.3% for the Japanese group.<br />

The utility of the different methods was tested in the analysis of<br />

several fragmentary crania. Different models were used depending on<br />

the portion of the cranium preserved. If portions of the crania, such as<br />

the craniofacial area or cranial vault are preserved, then measurements<br />

and landmarks are generally abundant enough to be analyzed using all of<br />

the models. However, in more heavily fragmentary crania where the<br />

midsagittal plane was compromised or lateral fragmentation obscured<br />

the contralateral point of a paired craniometric point, then metric<br />

analysis was only capable with geometric morphometric analysis.<br />

Heavily fragmentary crania that exhibited these patterns tended to retain<br />

very few non metric traits that could assist with race determination. The<br />

cranial fragments were analyzed by inputting a database into FORDISC<br />

3.0 comprised of the principle components produced by the geometric<br />

morphometric analysis of the aforementioned groups and cranial<br />

fragment and running a discriminant function analysis. The results were<br />

then compared to the mtDNA haplogroup of the cranial fragment, and in<br />

some cases to the antemortem records. Overall, the classification results<br />

were useful, but the discriminating powers of the landmarks ranged<br />

based on the location and number of obtainable landmarks. For future<br />

research it would be valuable to assess the utility of all combinations of<br />

landmarks and how the combinations relate to the underlying<br />

morphology in order to better predict the classification potential for any<br />

fragmentary crania. It would also be valuable to compute and analyze a<br />

variety of inter landmark angles in order to understand the relationship<br />

of small areas of the cranium in relation to the overall morphology and<br />

provide more minute measurements to assist with the classification of<br />

fragmentary crania.<br />

The development and validation of these methods in the future will<br />

greatly assist with the biological profile of fragmentary remains. Since<br />

the cranium is the most important aspect of the skeleton for determining<br />

race, advancing these techniques for the purpose of evaluating cranial<br />

fragments that retain little information otherwise, could be a great help<br />

in a variety of forensic contexts where remains have been compromised<br />

and may not yield an mtDNA sequence.<br />

Geometric Morphometrics, Cranial Angles, Craniometrics<br />

H46 Sex and Ancestry Estimation Using the<br />

Olecranon Fossa<br />

Michael W. Kenyhercz, MS*, 6327 Catawba Drive, Canfield, OH 44406<br />

After attending this presentation, attendees will learn methods for<br />

quantifying shape measures in the olecranon fossa through GIS and<br />

elliptical Fourier analysis and their application to sex estimation.<br />

This presentation will impact the forensic science community by<br />

testing the Rogers method on the distal humerus and also offering a<br />

method to quantify complex shapes.<br />

Forensic anthropologists generally work with either partially or<br />

fully skeletonized human remains. Their task is to generate a biological<br />

profile consisting of age, sex, stature, and ancestry for law enforcement<br />

* Presenting Author<br />

to aid in a positive identification. Due to the Daubert standards for the<br />

admissibility of expert opinion, the measures of the biological profile<br />

should ideally have a quantifiable basis and associated levels of<br />

confidence (Daubert v. Merrell Dow Pharmaceuticals, Inc 1993).<br />

Therefore, forensic anthropologists are constantly looking for new<br />

techniques and also ways to improve previous methods (i.e., ways to<br />

quantify non-metric methods) to aid in their investigation.<br />

The distal end of the humerus is often found through recovery<br />

efforts due to its durability in withstanding environmental factors.<br />

Through this durability, the distal humerus is frequently used in sex<br />

estimation. The morphology of the humerus has been previously studied<br />

by Rogers (1999, 2006, 2009) as a means to estimate sex in adults and<br />

adolescents. Using four criteria (trochlear constriction, trochlear<br />

symmetry, angle of medial epicondyle and olecranon fossa shape and<br />

depth), Rogers has reported sex estimation accuracy rates as high as<br />

92%. The most significant of the aforementioned traits was determined<br />

to be the shape and depth of the olecranon fossa; however, her study is<br />

based on visual observations with no quantifiable measurements. For<br />

example, the male olecranon fossa form is described as a “shallow<br />

triangle,” while the form of the female olecranon fossa is described as a<br />

“deep oval” and Rogers concluded that, “shape is more important than<br />

depth” (Rogers 1999). Beyond these simple descriptions, there are no<br />

guidelines on how this trait is to be examined and evaluated. Her method<br />

results in subjective characteristics by offering only qualitative data,<br />

especially regarding shape.<br />

This study was conducted to evaluate the Rogers method in regard<br />

to olecranon fossa depth and shape for sex estimation. A sample of 140<br />

(35 black males, 35 black females, 35 white males, 35 white females) left<br />

humeri were digitized from the Hamann-Todd Osteological Collection<br />

curated at the Cleveland Museum of Natural History, Cleveland, OH.<br />

The coordinate data for each humerus was uploaded into ArcGIS (ESRI<br />

2008) and ArcMap was used to define the olecranon fossa outline, or rim,<br />

and to calculate the output variables maximum and mean slope,<br />

maximum curvature, and surface volume. Outlines were also analyzed<br />

using Elliptical Fourier Analysis (EFA) through the program Shape 1.3<br />

(Iwata and Ukai 2002) where principle components of shape were<br />

calculated and visualized. The programs TPSdig (Rohlf 2010) and<br />

GMTP (Taravati 2009) were used to calculate centroid size from the<br />

outlines. In all, 13 variables representing size, shape, and depth of the<br />

olecranon fossa were obtained and used for sex and ancestry estimation.<br />

FORDISC 3.0 (Jantz and Ousley 2005) was then used to perform<br />

discriminant function analysis from the 13 variables. Forward Wilks<br />

stepwise selection was used to select the appropriate variables for each<br />

analysis and all percent correct classifications were cross validated. A<br />

four-way sex and ancestry estimation for all groups classified 48.3%<br />

correctly and a two-way sex estimation of the individuals classified<br />

82.5% correctly. Two-way sex and ancestry specific ranged from 58.3%<br />

to 82.5% correct classification.<br />

The Elliptical Fourier results show that shape of the olecranon fossa<br />

rim had no correlation with either sex. Both sexes showed similar ranges<br />

of shape variation, only being separated by size. Between ancestral<br />

groups there were significant differences in shape through slope,<br />

curvature and the principle components generated through the EFA. This<br />

study presents an objective means to record the olecranon fossa form and<br />

demonstrates that sex and ancestry can be determined through the<br />

olecranon fossa alone while also meeting the Daubert standards for<br />

court admissibility.<br />

Sex Estimation, Humerus, GIS<br />

28


H47 Applicability of Femur Subtrochanteric<br />

Shape to Ancestry Assessment<br />

Sean D. Tallman, MA*, and Allysha P. Winburn, MA, Joint POW/MIA<br />

Acct Command, Central ID Laboratory, 310 Worchester Avenue,<br />

Building 45, Hickam AFB, HI 96853-5530<br />

After attending this presentation, attendees will understand the<br />

advantages and limitations of utilizing femur subtrochanteric shape in<br />

distinguishing between ancestral groups during the analysis of<br />

fragmentary and/or incomplete skeletonized remains.<br />

This presentation will impact the forensic science community by<br />

testing the applicability of the platymeric index, a relatively common<br />

postcranial ancestry determination method, on samples of modern<br />

Southeast Asian and white American individuals.<br />

The determination of ancestry from postcranial skeletal remains<br />

presents a significant challenge to forensic anthropologists in the<br />

analysis of fragmentary and/or incomplete remains. Morphological and<br />

metric observations from the femur can be used to differentiate between<br />

broad ancestral groups. In particular, metric dimensions of the<br />

subtrochanteric region are believed to assist in distinguishing between<br />

individuals of Asian and non-Asian descent (Bass 2005; Brothwell 1981;<br />

Gilbert and Gill 1998; Wescott 2005). To determine the shape of the<br />

subtrochanteric region, the platymeric index is calculated by dividing the<br />

subtrochanteric antero-posterior diameter by the subtrochanteric mediolateral<br />

diameter and multiplying by 100 (Wescott 2005). It is believed<br />

that individuals of Asian descent typically exhibit a medio-laterally<br />

broad (platymeric) subtrochanteric region with platymeric indices below<br />

84.9, while non-Asian individuals typically exhibit a more rounded<br />

(eurymeric) subtrochanteric region with platymeric indices between 84.9<br />

and 99.9. Less frequently, individuals may exhibit an antero-posteriorly<br />

broad (stenomeric) subtrochanteric region with platymeric indices over<br />

100; however, the data to support the association of platymeria with<br />

Asian ancestry were collected from small samples composed largely of<br />

pre-contact Native American individuals. This can be partially attributed<br />

to the makeup of the skeletal collections used for skeletal biology<br />

research in the United States, which lack significant numbers of<br />

Northeast and Southeast Asian individuals. Ancestry assessment<br />

methods derived from North American samples, such as the platymeric<br />

index, have not been rigorously tested on other Asian samples. Thus, it<br />

is unclear whether such methods can be utilized to identify individuals of<br />

Northeast and Southeast Asian descent in a forensic context.<br />

This dearth in research is of particular concern to the forensic<br />

anthropologists at the Joint POW/MIA Accounting Command’s Central<br />

Identification Laboratory (JPAC-CIL), where casework routinely<br />

requires ancestry assessment of highly fragmented or incomplete<br />

remains that were recovered from, or unilaterally turned over by, Asian<br />

countries. The primary goal of the JPAC-CIL is to recover and identify<br />

U.S. service members killed during past conflicts, including the World<br />

Wars, Korean War, and Vietnam conflict. The ability to distinguish<br />

between the remains of Southeast Asian and Black and White American<br />

males is integral to accomplishing this goal.<br />

As many JPAC-CIL cases exhibit extensive peri-mortemtrauma<br />

(i.e., from aircraft crashes and projectile trauma) and originate from<br />

extreme postdepositional environments (i.e., highly acidic soils and<br />

humid jungle environments), fragmentation of remains is common.<br />

However, due to its robusticity, the femur is often represented in<br />

casework assemblages, making it an important skeletal element for sex,<br />

age, race, and stature estimation.<br />

This study tests the applicability of the platymeric index on a<br />

sample of 128 modern Southeast Asian males (age 23-96 years) housed<br />

at Khon Kaen University (KKU), Khon Kaen, Thailand, and 77 White<br />

American males (age 18-41 years) identified by the JPAC-CIL, Hickam<br />

AFB, Hawaii. The KKU skeletal collection consists of more than 600<br />

known individuals from northern Thailand. The JPAC-CIL sample<br />

consists of U.S. servicemembers who died during World War II, the<br />

Korean War, and the Vietnam conflict. Measurements were obtained<br />

with standard anthropometric sliding calipers and rounded to the nearest<br />

millimeter. The platymeric index of the left femur was calculated;<br />

however, the right femur was substituted if the left was damaged<br />

or missing.<br />

While results indicate that the KKU sample contains a larger<br />

number of platymeric femora, both samples exhibit variability in<br />

subtrochanteric form. In the KKU individuals, platymeric indices range<br />

from 64.1 to 109.6 and are normally distributed (mean = 83.9; S.D. =<br />

7.36), with 58% exhibiting platymeric, 39% exhibiting eurymeric, and<br />

3% exhibiting stenomeric femora. In the JPAC-CIL sample, platymeric<br />

indices range from 76.5 to 118.4 and are normally distributed (mean =<br />

91.6; S.D. = 10.2), with 44% of individuals exhibiting eurymeric, 36%<br />

exhibiting platymeric, and 19% exhibiting stenomeric femora.<br />

Differences in the mean platymeric indices for the two samples are<br />

statistically significant (p ≤ 0.001), with the KKU platymeric index<br />

range generally lower, and the JPAC-CIL range generally higher;<br />

however, the considerable overlap in the ranges urges caution when<br />

using platymeric indices in ancestry assessment.<br />

Ancestry Determination, Femur, Southeast Asia<br />

H48 Improving Sex Estimation From the<br />

Cranium Using 3-Dimensional Modeling<br />

From CT Scans<br />

Natalie R. Shirley, PhD*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Emam<br />

E.A. Fatah, MS, Center for Musculoskeletal Research, University of<br />

Tennessee, 307 Perkins Hall, Knoxville, TN 37996; Richard Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, Knoxville, TN<br />

37996-0720; and Mohamed Mahfouz, PhD, Center for Musculoskeletal<br />

Research, University of Tennessee, 307 Perkins Hall, Knoxville,<br />

TN 37996<br />

After attending this presentation, attendees will learn about the<br />

utility of alternative approaches in exploring and quantifying sexual<br />

dimorphism in the human skeleton, particularly the cranium. This<br />

presentation will offer the forensic community simple and effective<br />

measurement techniques for improving sex estimation from the cranium<br />

providing measurements with the highest discriminatory power for sex<br />

estimation, as well as precise descriptions of how to take the<br />

measurements accurately using radiographs and/or calipers.<br />

This presentation will impact the forensic science community by<br />

facilitating more accurate sex estimation techniques for the cranium than<br />

those used most frequently in forensic practice today. In addition, this<br />

study uses a large sample of modern Americans, thereby increasing<br />

statistical power of the discriminant functions. Finally, reducing the<br />

number of measurements needed to accurately discriminate sex from the<br />

cranium will lend these functions useful for fragmentary crania, as well.<br />

Among the skeletal elements used for sex estimation, postcranial<br />

elements are generally superior to cranial elements. Therefore, when<br />

cranial and postcranial elements are present forensic anthropologists<br />

typically give more weight to postcrania, especially os coxae; however,<br />

skeletal forensic cases often consist of a skull only, or a skull and<br />

fragmentary/incomplete postcranial remains. A query of cases submitted<br />

to the Forensic Data Bank showed that 45% of cases consist of a skull<br />

with no sexable postcranial elements.<br />

Metric sexing of crania using statistical procedures came to forensic<br />

anthropology via Giles and Elliott’s classic paper on the American<br />

population. 1 Their success rate was in the high 80%, a rate typical of<br />

subsequent cranial sexing analyses. In general, accuracy rates exceeding<br />

90% are rare in sexing crania, whether using morphological traits or<br />

measurements. Several studies have shown lateral radiographic<br />

29 * Presenting Author


cephalometry to be more accurate than traditional techniques for cranial<br />

sex estimation. 2-4 Hsiao et al. reported 100% accuracy in sexing<br />

Taiwanese adults with 18 variables, as well as rates ranging from 94% to<br />

98% using between one and three variables only. A subsequent<br />

validation study on a European population achieved 96% accuracy. 4 A<br />

unique aspect of lateral cephalometry is that it allows the practitioner to<br />

take endocranial measurements and calculate angles that are informative<br />

of skull shape. In view of these promising reports, the present study<br />

conducts a similar analysis on the William M. Bass Donated skeletal<br />

population using computed tomography (CT) scans and an innovative<br />

3D bone-modeling algorithm (the bone atlas). CT scanning technology<br />

enables the crania to be examined more thoroughly than has heretofore<br />

been possible and to examine structures that are not easily accessible in<br />

traditional evaluation.<br />

The study sample consists of CT scans of adult skeletons from the<br />

William M. Bass Donated Collection. Each scanned cranium was<br />

rendered as a 3D model and then added to the cranial atlas. A statistical<br />

bone atlas is an average mold that captures the primary shape variation<br />

in the bone and facilitates rapid and accurate generation of automated<br />

measurements. An atlas consists of a sample of bones that all contain the<br />

same number of points and share the same spatial relationship. At the<br />

writing of this abstract, the cranial atlas contains 40 individuals; the<br />

projected atlas size upon completion will be 600-700 individuals<br />

(January 2011). A combination of linear and angular measurements was<br />

calculated from the atlas and t-tests and discriminant function analysis<br />

with cross-validation and stepwise variable selection were performed on<br />

these measurements. T-test results showed basion-nasion, metopionglabella<br />

to glabella-basion angle, and the linear distance between the tips<br />

of the mastoid processes to be the most significant measurements<br />

(p


H50 CPR Fractures in Infants: When Do<br />

They Occur?<br />

Miriam E. Soto, MA*, The University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will be more aware of<br />

characteristics that may indicate which infants are more susceptible to<br />

CPR related rib fractures.<br />

This presentation will impact the forensic science community by<br />

contributing information which may be helpful for differentiating<br />

between abuse and CPR related rib fractures.<br />

The literature indicates that CPR related rib fractures in infants and<br />

children are rare, occurring in only 0-2% of studied samples. To test<br />

these findings, this study examined all autopsy records of infants and<br />

children, up to the age of two years, that came into the Harris County<br />

Institute of Forensic Sciences (HCIFS) office during a one year period<br />

(n=186). The purpose of this evaluation was to identify characteristics<br />

which may be contributory to CPR fractures. In addition, this study<br />

compared the bone quality of infants/children that had CPR fractures and<br />

those that received CPR but did not exhibit fractures. Since CPR<br />

fractures often occur in ribs 4-6, an effort was made to examine ribs from<br />

these positions; however, in a single case rib two had to be examined due<br />

to availability. There was no preference for side. The samples for this<br />

study were taken from the osteological material stored in the<br />

Anthropology Laboratory of the HCIFS. It is hypothesized that infants<br />

that were in poor health for extended periods of time will be more<br />

susceptible to rib fractures due to a lower quality of bone. Gross<br />

observations with and without a stereoscope of the ribs of infants with<br />

CPR fractures was used to assess bone quality.<br />

Of the 186 infant/child cases that entered the HCIFS office in 2009,<br />

162 received CPR. Only seven of these 162 cases had CPR related rib<br />

fractures. These results indicate that cases in which infants/children<br />

received CPR fractures are indeed rare, occurring in 4% of infant/child<br />

cases that received CPR.<br />

Regarding the direct comparison of ribs for the evaluation of bone<br />

quality, the rib specimens of six infants aged two to five months that<br />

received CPR fractures were compared to the rib specimens of four<br />

infants aged two to four months that received CPR without receiving<br />

CPR fractures. All infants without CPR fractures were born at ≥36<br />

weeks gestation while four out of the six infants with CPR fractures were<br />

born at


information that can be attained by their examination can accurately be<br />

used in the determination of mechanisms of injury.<br />

Butterfly Fractures, Blunt Force Trauma, Mechanism of Injury<br />

H52 Microscopic Analysis of Sharp Force<br />

Trauma From Knives: A Validation Study<br />

Christopher W. Rainwater, MS*, and Christian Crowder, PhD, Office of<br />

the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY 10016; and<br />

Jeannette S. Fridie, MA, 520 First Avenue, Forensic Anthropology Unit,<br />

New York, NY 10016<br />

The goal of this presentation is to present error rates in determining<br />

blade class characteristics from tool mark impressions made by knives.<br />

The presentation will impact the forensic science community by<br />

providing a baseline study with which known error rates for determining<br />

knife class characteristics from tool marks can be referenced.<br />

Forensic anthropologists are often asked to examine defects on<br />

bone and cartilage created as a result of sharp force trauma. Previous<br />

research has established the precedent for analyzing cut mark<br />

morphology on bone and cartilage and has promoted the use of class<br />

characteristics (Andahl 1978; Symes 1992). While this research has<br />

been invaluable in advancing toolmark analysis in bone, it has largely<br />

focused on tool marks left by saws as they are more variable than knives<br />

and thus have the capability to leave more class characteristics.<br />

Although a general anthropological approach to tool mark analyses has<br />

been established and accepted, there is a lack of method validation and<br />

known error rates for correctly identifying these characteristics,<br />

particularly in reference to knives. This is necessary in light of the<br />

recommendations of the recent National Academy of Sciences Report<br />

(2009) and considering that analytical results are subject to Daubert<br />

standards of courtroom-acceptable scientific evidence (1993).<br />

Researchers have noted this deficiency, but previous efforts have<br />

suggested no correlation between serrations on a blade and the regularity<br />

of striation patterns in experimentally cut pig cartilage (Love et<br />

al. 2010).<br />

This research attempts to establish a baseline study to assess the<br />

accuracy of associating a tool mark with a particular blade class under<br />

optimal conditions. Experimental defects will be evaluated for class<br />

characteristics that relate to only two blade characteristics: blade<br />

serration (serrated, partially serrated, and non-serrated) and direction of<br />

blade bevel (left, right, or both). A medium-to-soft casting wax is<br />

presented as an optimal material when it is necessary to transect material<br />

with an experimental cut. Wax blocks were impacted in two ways: (1)<br />

in a single impact transecting the wax block (to mimic a stab wound);<br />

and, (2) in a repetitive, reciprocating motion (to mimic dismemberment).<br />

Impacts were made for each of the fourteen knives in the study sample<br />

and coded to be unknown to the researchers (four partially serrated<br />

blades, five non-serrated blades, and five serrated blades with a variety<br />

of different bevels and serration patterns). The test cuts were then<br />

assessed by three researchers with varying degrees of experience<br />

analyzing sharp force trauma. Additionally, two microscopes were used<br />

to test the necessary level of technology for these analyses (a digital<br />

microscope offering an increased depth of field and the ability to<br />

reconstruct defects in three dimensions and a standard light microscope).<br />

Cuts were analyzed at the observer’s preference between 10x and 50x<br />

magnification with the assistance of fiber optic lights to produce oblique<br />

lighting. In total, 168 cut marks were observed. Error rate was assessed<br />

as the number of misclassifications divided by the total number of<br />

observations.<br />

Serrated blades were generally distinguishable from non-serrated<br />

blades due to their distinct, patterned striations whereas non-serrated<br />

blades leave fine, unpatterned striae. Distinct striations can generally be<br />

considered as equidistant, but the angle of the impact of the blade is the<br />

most influential aspect of the distance between striae left by blade teeth,<br />

* Presenting Author<br />

so pattern recognition was favored over measurements. Two observers<br />

misclassified two of the four partially serrated blades as serrated blades<br />

while the third misclassified all four as serrated blades. Blade bevel was<br />

assessed by determining the corresponding direction change in the vshaped<br />

kerf. The average raw error rates (misidentification of class) for<br />

all three observers was 19% for the assessment of blade serration using<br />

both the digital and light microscopes. Partially serrated blades were<br />

particularly problematic in this study as the impact may not have left<br />

both a serrated and a non-serrated signature. When the adjusted error<br />

rates are considered from only serrated and non-serrated blades, the<br />

average error rate for determining blade serration was 2% on both the<br />

digital and light microscopes. Average error rates were 18% for<br />

determining blade bevel on the digital microscope and 10% on the light<br />

microscope, but this corresponded to the experience level of the<br />

observer. These preliminary results show that, under optimal conditions<br />

and an appropriate level of experience, assessments of blade serration<br />

and blade bevel can be made with a high level of accuracy. This research<br />

will be supplemented by experimental cuts in bone and cartilage.<br />

Tool Marks, Sharp Force Trauma, Validation Study<br />

H53 Strontium Particles: Confirmation of<br />

Primer Derived Gunshot Residue on Bone<br />

in an Experimental Setting<br />

Alicja K. Kutyla, MS*, Department of Anthropology, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN 37996-0720; and<br />

Hugh E. Berryman, PhD, Department Sociology & Anthropology,<br />

Middle Tennessee State University, Box 89, Murfreesboro, TN 37132<br />

After attending this presentation, attendees will appreciate the<br />

potential of using Scanning Electron Microscopy (SEM) with Energy<br />

Dispersive X-Ray Analysis (EDXA) to confirm both visually and by<br />

elemental composition, the presence of primer derived gunshot residue<br />

(GSR) on bone.<br />

This presentation will impact the forensic science community by<br />

discussing how the use of an SEM and EDXA on bone fractures has the<br />

potential of providing a means of determining whether a bullet was<br />

involved and a mechanism of trauma.<br />

Motivation for this project was derived from recent research that<br />

resulted in two papers presented at the 60th annual meeting of the<br />

American Academy of Forensic Sciences held in Washington, DC. This<br />

research was first undertaken to demonstrate the presence of primer<br />

derived GSR deep within the wound tract (Berryman et al., 2010); a<br />

finding that is counter to the generally-held belief that it is found only on<br />

clothing, skin, or at the subcutaneous level. The GSR examined in this<br />

study is solely primer-derived and not other general soot-related particles<br />

that can arise from multiple sources including propellant, lubricants, and<br />

metals found in the bullet, bullet jacket, cartridge casing, and gun barrel.<br />

It is vital to differentiate the sources of GSR, as it is only primer derived<br />

GSR that are considered unique to the shooting environment. It is these<br />

unique particles measuring 0.1 µm to 55 µm in diameter that are<br />

examined in this study.<br />

The current research was directed at confirming the original<br />

findings of primer derived GSR (Berryman et al., 2010). The<br />

experimental design is essentially the same as the original one. Pork ribs<br />

with intact muscle tissue were used in an experimental attempt to<br />

identify bullet wipe on bone at distances from one to six feet. Instead of<br />

the barium/antimony/lead-based primers used in the initial study, bullets<br />

with strontium-based primers were used since this element is not readily<br />

present in the shooting environment. In addition, the authors devised a<br />

rigorous protocol both in the shooting and processing environments to<br />

eliminate the potential risk of contamination. The presence of strontium<br />

therefore, would confirm that the GSR particles observed on bone are<br />

derived solely from primer components, and not from elements present<br />

in the bullet, bullet casing, or gun barrel.<br />

32


After processing, which involved the forceful removal of<br />

periosteum and drying of the ribs, each fragment was placed in the<br />

Hitachi S-3400 SEM for visual analysis. With backscattered electrons,<br />

the intensity of the signal is directly related to the atomic number of the<br />

material being illuminated by the electron beam. By adjusting the<br />

contrast, brightness, gain, and scan rate, particles containing heavy<br />

elements, having a higher atomic number, in this case Strontium, will<br />

glow brightly as compared to the rest of the field, specifically the bone.<br />

Particles that glowed brightly using this process were then examined for<br />

their elemental composition using the Oxford INCA Energy 200<br />

Dispersive X-Ray Analyzer.<br />

Strontium particles were found on ribs shot at gun-to-target<br />

distances of one to six feet confirming the original findings of Berryman<br />

et al. (2010), that primer derived GSR occurs well below the level of<br />

subcutaneous tissue and is present on bone, even after the forceful<br />

removal of the periosteum in gun-to-target distances of up to 6 feet. This<br />

research is ongoing with expanded sample size and an increase in gunto-target<br />

distances to determine the maximum range primer-derived GSR<br />

can be detected on bone. Further research could provide a method for<br />

determining gun to victim distance although this could be extremely<br />

complicated due to the wide variety of ammunition available, including<br />

variations in primer composition, caliber and bullet type; however, this<br />

technique could prove useful in situations where ammunition type is<br />

known permitting test firings to establish case-specific distances.<br />

Additionally, if GSR particles are present after decomposition then these<br />

observations can be used to verify a gunshot wound to bone in the<br />

absence of a typical gunshot wound fracture pattern.<br />

This research was supported by the Forensic Science Foundation<br />

Lucas Grant.<br />

Gunshot Residue, Terminal Ballistics, Gunshot Trauma<br />

H54 Determining the Epidemiology of Hyoid<br />

Fractures in Cases of Hanging<br />

and Strangulation<br />

Samantha M. Seasons, BA*, University of South Florida, 4202 East<br />

Fowler Avenue, Tampa, FL 33620; Charles A. Dionne, MA, University of<br />

South Florida, Department of Anthropology, 4202 East Fowler Avenue,<br />

Soc 107, Tampa, FL 33620-7200; Leszek Chrostowski, MD,<br />

Hillsborough County <strong>Medical</strong> Examiner’s Office, 11025 North 46th<br />

Street, Tampa, FL 33617; and Erin H. Kimmerle, PhD, University of<br />

South Florida, Department of Anthropology, 4202 East Fowler, Soc 107,<br />

Tampa, FL 33820<br />

After attending this presentation, attendees will become familiar<br />

with literature in forensic science concerning injuries to the hyoid bone<br />

following hanging or strangulation; will learn about local hanging or<br />

strangulation cases from recent years exhibiting fracture of the hyoid<br />

bone; and, will learn about possible epidemiological causes for the<br />

trauma seen in the hyoid following hanging or strangulation.<br />

This presentation will impact the forensic science community by<br />

providing age ranges for unilateral and bilateral fusion of the greater<br />

cornua to the hyoid body, discussing the effect of demographic variables<br />

on the fusion patterns, and improving the interpretation of traumatic<br />

injuries to the neck.<br />

A review of the forensic literature on neck trauma in hanging and<br />

strangulation cases showed two distinct patterns. Overall, there appears<br />

to be little debate that hyoid fractures are more common when the cause<br />

of death is strangulation. Traumatic injuries to the hyoid bone following<br />

strangulation have been described as being frequent and previous studies<br />

have shown that up to one third of strangulations cases lead to a fracture;<br />

however, in cases of hangings, opinions are much more varied. Some<br />

studies argue that fractures in hanging cases are much fewer than in<br />

strangulations cases, while other authors mention that trauma to the<br />

hyoid bone is common following hanging. Population variation may be<br />

responsible for the divergent literature and this study attempts to identify<br />

the variables that may be responsible for the variation.<br />

To study local cases of hanging and strangulation, data collection<br />

was performed at the Hillsborough County <strong>Medical</strong> Examiner’s Office in<br />

Tampa, Florida. The Hillsborough County <strong>Medical</strong> Examiner’s Office<br />

services a population of more than one million people and investigated<br />

an average of 1,915 cases between 2004 and 2009. A total of 148 cases<br />

between fall 2004 and spring 2010 listed hanging, ligature strangulation,<br />

manual strangulation, asphyxia, or compression of neck as the cause of<br />

death. Autopsy reports were analyzed to obtain a series of variables from<br />

each case. In addition to sex, age, and ancestry of the victim, cause and<br />

manner of death, past or present history of substance abuse, description<br />

and location of the hyoid bone trauma if present, and if noted by the<br />

medical examiner, fusion of the hyoid bone were collected.<br />

The vast majority of cases, 134 out of 148 (91.0%), were classified<br />

as hangings. An additional eight were indicated as strangulations, two as<br />

ligature strangulation, and four were classified as a combination of<br />

suffocation, asphyxia, and compression of neck and chest. Similarly,<br />

134 cases were listed as suicides. Nine cases were homicides, four were<br />

classified as accidents, and one case remained undetermined. From the<br />

148 cases reviewed, only eight contained a fractured hyoid bone while<br />

another two autopsy reports made no mention of the hyoid bone. Six of<br />

the eight fractured hyoid bones were from hanging cases while the<br />

remaining were classified as manual strangulations. Overall, 2.05% of<br />

strangulations cases contained a traumatic injury to the hyoid bone,<br />

while damage was present in only 4.0% of suicides cases analyzed. In<br />

half of the hanging cases exhibiting trauma to the hyoid, force exerted on<br />

the ligature implement appeared to be a significant cause for the damage.<br />

In one case, the victim hung them self from a bridge while in two<br />

additional cases, the men weighed well over 200 lbs. Age could possibly<br />

be a factor as an ossified hyoid bone is more prone to traumatic injuries<br />

than an unfused one. Unfortunately, the autopsy report discussed the<br />

fusion of the hyoid in only five cases. Seven out of eight fractured hyoid<br />

bones were males, but this is representative of the sample used. Through<br />

a better understanding of the variables that affect hyoid fractures in<br />

hanging and strangulation cases, forensic anthropologists may be able to<br />

better interpret a fracture found on a skeletonized hyoid.<br />

Hyoid Bone, Hanging, Strangulation<br />

H55 Fusion Patterns in Modern Hyoid Bones<br />

Charles A. Dionne, MA*, and Samantha M. Seasons, BA, University of<br />

South Florida, Department of Anthropology, 4202 East Fowler Avenue, Soc<br />

107, Tampa, FL 33620; Leszek Chrostowski, MD, Hillsborough County<br />

<strong>Medical</strong> Examiner’s Office, 11025 North 46th Street, Tampa, FL 33617;<br />

and Erin H. Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820<br />

The goal of this presentation is to examine how unilateral and<br />

bilateral fusion patterns in the hyoid bone vary with age within a<br />

population, and how the ossification process can help forensic<br />

anthropologists understand fracture patterns of the hyoid in traumatic<br />

cases.<br />

This presentation will impact the forensic science community by<br />

providing age ranges for unilateral and bilateral fusion of the greater<br />

cornua to the hyoid body, discussing the effect of demographic variables<br />

on the fusion patterns, and improving the interpretation of traumatic<br />

injuries to the neck.<br />

The fusion of primary and secondary ossification centers is one of<br />

the commonly used methods by forensic anthropologists to age<br />

adolescents and young adults due to the specific age ranges at which<br />

elements of long bones and vertebrae fuse together; however, few studies<br />

have looked at the fusion process in the hyoid bone. Ossification of the<br />

hyoid bone occurs slowly over time and as the greater cornua fuse with<br />

33 * Presenting Author


the hyoid body, chances of traumatic injuries increase. This project was<br />

designed to study the fusion pattern of the greater cornua to the body of<br />

the hyoid bone using a modern North American sample, determine how<br />

variation arises between individuals of various sexes and ancestries, and<br />

determine probabilities of trauma to the hyoid bone from patterns of<br />

unilateral and bilateral fusion of the greater cornua.<br />

Data collection was performed in collaboration with the<br />

Hillsborough County <strong>Medical</strong> Examiner’s Office in Tampa, Florida.<br />

During a five-month period, all hyoid bones were collected during<br />

autopsy for the study regardless of demographics or cause of death. A<br />

sixth month was later added to collect additional hyoid bones to increase<br />

the percentage of juveniles and African-Americans in this sample. For<br />

each hyoid bone, demographic information, cause and manner of death,<br />

and past or present abuse of alcohol and drugs were noted. A total of 264<br />

hyoid bones were processed and used for analysis. The hyoid bones<br />

were processed by removing the majority of the excess soft tissue and<br />

then boiling each hyoid to facilitate the removal of the remaining tissue.<br />

A mobility test was performed during processing to assess the fusion of<br />

each greater cornua: a positive test occurred when the cornua was still<br />

slightly movable while a negative result was associated with a greater<br />

cornua that was completely immobile. Once the hyoid bones were dry,<br />

photographs and radiographs were taken of each hyoid using superior<br />

and posterior views to observe the joints between the hyoid body and<br />

each greater cornua. The radiographs were used to assess the fusion of<br />

each greater cornua to the hyoid body. Each cornua was scored<br />

independently by two anthropologists: a score of “0” indicated a<br />

completely unfused cornua, while presence of fusion, whether complete<br />

or incomplete, was scored as “1.” In addition, a linear regression was<br />

used to determine how much variation in age can be explained through<br />

unilateral and bilateral fusion.<br />

Results indicate that a wide variation exists in the unilateral and<br />

bilateral fusion patterns of the hyoid bone. Unilateral fusion was<br />

observed as early as at eight years of age while bilateral fusion was first<br />

visible in a 23-year-old. As a previous study demonstrated, the majority<br />

of hyoid bones are fully fused in the elderly but in some cases the hyoid<br />

may remain only partially fused. Two males from our sample, one in his<br />

70s and one is his 80s, still exhibited a unilaterally fused hyoid at the<br />

time of death. Overall, the number of individuals displaying unilateral<br />

fusion increased steadily until the 40-49-age bracket and decreased<br />

afterwards. Conversely, the percentage of individuals with bilateral<br />

fusion constantly increased from 65.0% in the 20-29-age bracket to over<br />

90.0% in the 70-79 and 80+ age ranges. In both ancestral groups the<br />

mean age for bilateral fusion occurred approximately five years earlier in<br />

men, and in both sexes, African-American individuals exhibited bilateral<br />

fusion two years earlier. The regression formula demonstrated that 30%<br />

of the variation in age is explained by greater cornua fusion patterns.<br />

Through the understanding of the pattern in which the greater cornua<br />

fuse to the hyoid bone, anthropologists can better understand estimate<br />

the risk of fractures to neck structures according to the ossification of the<br />

hyoid bone.<br />

Hyoid Bone, Fusion Pattern, Age Estimation<br />

H56 The Prosecution of a 28-Year-Old Case of<br />

Shaken Baby Syndrome<br />

Turhon A. Murad, PhD*, California State University - Chico,<br />

Department of Anthropology, 400 West First Street Chico, Chico, CA<br />

95929-0400<br />

After attending this presentation, attendees will have addressed the<br />

events leading to the successful prosecution of an older male who was<br />

responsible for the death of a nine-month-old infant 28-years earlier.<br />

The presentation will impact the forensic science community as<br />

well as those family members who have lost an infant in a suspicious<br />

* Presenting Author<br />

death by suggesting that after a lengthy period of grief, noteworthy<br />

skeletal evidence of a death due to shaken-baby can be revealed<br />

following an earlier diagnosis of death as being due to a case of SIDS.<br />

On November 28, 1979, a nine-month-old infant, David Drew<br />

Dickson, died while temporarily in the care of his day-care provider’s<br />

husband. It appeared the day-care provider’s husband demanded his<br />

wife leave him in charge of three infants while she left to purchase beer.<br />

When the wife returned, one of the children was found dead in an<br />

adjacent room. The husband did not provide an immediate explanation<br />

other than to suggest the child must have fallen from the sofa where he<br />

was sleeping. Furthermore, the husband stated that he had attempted<br />

CPR when he noticed the child had stopped breathing. The infant was<br />

taken to the local hospital and pronounced dead. The death was deemed<br />

suspicious and the infant’s body was autopsied. In spite of evidence of<br />

trauma (i.e., broken ribs and cranial hemorrhage), the pathologist<br />

concluded that the death was due to SIDS.<br />

Although the child’s parents were suspicious of the incident, no<br />

further investigation was conducted and David Drew Dickson was<br />

buried the following week. Years later a forensic pathologist from a<br />

neighboring county requested the exhumation of the infant’s body. The<br />

forensic pathologist stated that new testimony from the day-care<br />

provider suggested a different interpretation of the evidence. On May 2,<br />

2006, the requesting pathologist, various staff of the California State<br />

University, Chico Human Identification Laboratory (CSUC-HIL), along<br />

with local sheriff and district attorney investigators conducted the<br />

exhumation.<br />

The infant’s remains had very little flesh and only a minor amount<br />

of adipocere adhering to the largely skeletonized remains; therefore, the<br />

remains were transported to the CSUC-HIL for skeletal analysis. The<br />

analysis revealed a complete set of skeletal remains of a nine-month-old<br />

infant still in their correct anatomical position. Of particular note, greenstick<br />

and complete rib fractures were noted among right ribs Nos. 2, 3,<br />

5, 6, and 7, as well as left ribs Nos. 2 and 3. Furthermore, a deformed<br />

fracture was discovered on the right side of the occipital bone near the<br />

temporal-occipital junction of the lambdoidal suture. All the fractures<br />

were determined to be peri-mortem due to the combination of their<br />

location, deformation, and/or lack of healing. The result of the skeletal<br />

analysis suggested that the child likely died from a combination of being<br />

shaken and/or squeezed around the chest/abdomen along with blunt<br />

force trauma to the head.<br />

Armed with these two new lines of evidence (testimony from the<br />

day-care provider, as well as the skeletal analysis) the day-care<br />

provider’s ex-husband was charged with the murder of David Drew<br />

Dickson.<br />

The suspect pled guilty to California Penal Code 192a. In addition<br />

to murder, the Code addresses voluntary manslaughter, or the killing of<br />

a human being without malice, and in such an instance permits a<br />

maximum term of eleven years in state prison. In this specific case, the<br />

defendant’s sentence was suspended; he was placed on five-year<br />

probation, and ordered to pay a fine of $5,200.00.<br />

Exhumation, Shaken Baby, Cold Case<br />

H57 Infanticide and Unclear Law: The Death of<br />

Four Infants<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong> Examiner, 1413<br />

Research Boulevard, Building 102, Rockville, MD 20850; Tasha Z.<br />

Greenburg, MD, University of Texas Southwestern <strong>Medical</strong> Center, 5323<br />

Harry Hines Boulevard, Dallas, TX 7530; and David R. Fowler, MD, Office<br />

of the Chief <strong>Medical</strong> Examiner, 111 Penn Street, Baltimore, MD 21201<br />

The goal of this presentation is to provide details on the<br />

investigation, recovery, and forensic examination of the remains of four<br />

infants, three of which were discovered in a skeletal state. Examination<br />

34


procedures involving locating hidden or buried remains will be discussed<br />

in addition to the sorting and aging of the skeletal remains of three full<br />

term babies. Also, to be discussed is the importance of social services,<br />

law enforcement, and community in observing clues to infanticide<br />

behavior<br />

Impact of this presentation will provide present and future forensic<br />

investigations insight as to the forensic analysis of decomposed and<br />

skeletonized remains of newborn and term infants. The forensic<br />

community will benefit from the knowledge that specialized recovery is<br />

required for remains of fetus and infants, and that proper handling and<br />

detailed analyses is required when dealing with such cases<br />

Recovery of decomposed remains of late term fetus and newborns<br />

can be quite challenging for forensic scientists and investigators. The<br />

small size of such deceased and their skeletal elements, and the limited<br />

ossification of skeletal elements, provides for easy disposal and rapid<br />

degradation of the remains compared to that of adults.<br />

In July of 2007 hospital personnel in Ocean City, Maryland alerted<br />

authorities of a possible infanticide of a newborn child as a result of<br />

treating a 37-year-old woman who had arrived at the emergency room<br />

with vaginal bleeding. Examination of the local resident by physicians<br />

revealed that the woman had recently given birth, which she denied. The<br />

police searched the woman’s residence and discovered a deceased<br />

newborn hidden beneath a bathroom vanity. Further searching of the<br />

residence by police led to the discovery of two additional infants<br />

wrapped in plastic and placed in a clothing trunk; a fourth body was<br />

found in a motor home parked at the residence. The finding of the<br />

multiple sets of remains prompted law enforcement officials, including<br />

the FBI, to conduct an intensive search of the suspect’s house and entire<br />

property. A search of the house included removal of various walls and<br />

ceilings. Fiber-optic cameras and cadaver dogs were utilized to search<br />

inside of the residence. A preliminary search of the ground property was<br />

conducted utilizing a combination of ground penetrating radar, cadaver<br />

dogs, and soil probing. Suspicious areas of the ground property were<br />

examined by establishing a marked grid followed by hand excavation.<br />

Fetal skeletal elements can be difficult to recover; thus, this multipronged<br />

approach to recovery allows complex surfaces and subsurface<br />

areas to be examined thoroughly and efficiently.<br />

The female suspect was arrested and initially charged with murder<br />

for the death of one of the infants a male fetus (aged at 26 weeks of<br />

gestation), recovered from beneath the bathroom vanity. The woman,<br />

who worked as a cab driver and was the mother of four other children,<br />

was never suspected of being pregnant by her live-in boyfriend during<br />

the four pregnancies. According to neighbors, the suspect always wore<br />

extra large and loose fitting clothing and made up various excuses during<br />

her pregnancies to hide her condition.<br />

Anthropological examination of the three sets of skeletal remains<br />

revealed them to represent full term fetuses, between 37 to 40 weeks of<br />

age based on osteological development. No apparent skeletal<br />

abnormalities were noted and no clear evidence of skeletal trauma was<br />

present. At the Grand Jury hearing the criminal charges against the<br />

woman were dismissed as a result of insufficient evidence after a<br />

medical examiner’s report. The defendant did admit the children were<br />

hers; however, she insisted that she did not kill them. An additional<br />

complication leading to dismissal of the charges is that “Maryland law<br />

expressly protects woman who abort their own unborn children from<br />

criminal prosecution.” Also, it unclear whether it was a crime to retain<br />

the remains of miscarried children. As a result of this case, the Maryland<br />

law was modified to address the two issues.<br />

Anthropology, Fetal Remains, Pediatric<br />

H58 Proficiency and Competency Testing —<br />

What They Are, What They Are Not<br />

Vincent J. Sava, MA*, JPAC, Central Identification Lab, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

After attending this presentation, attendees should be able to<br />

understand the basic differences between competency and proficiency<br />

test programs. Attendees will learn the basic concepts and procedures<br />

related to competency and proficiency testing, especially as they relate to<br />

the human identification discipline, and how to meet the criteria and<br />

expectations of laboratory accreditation agencies. Additionally, drawing<br />

from experiences and lessons learned from the JPAC Central<br />

Identification Laboratory, participants will learn best practices and<br />

practices to avoid. Attendees should be able to utilize the material<br />

presented to formulate and manage competency and proficiency test<br />

programs for their staff.<br />

This presentation will impact the forensic science community by<br />

advancing quality assurance in forensic laboratories and forensic<br />

programs. It will allow human identification laboratories to expedite the<br />

planning and implementation of competency and proficiency test<br />

programs in their organizations. These programs, when properly<br />

established and managed, will ultimately strengthen and elevate the<br />

forensic profession as a whole.<br />

Quality assurance programs in forensic laboratories and activities<br />

have been a growing trend over the past decade. The publication of the<br />

National Academy of Sciences Report, “Strengthening Forensic Science<br />

in the United States: A Path Forward” and its recommendations have<br />

made quality assurance programs and accreditation relevant and thus an<br />

increasing priority for forensic human identification laboratories. Since<br />

1999, the Joint POW/MIA Accounting Command, Central Identification<br />

Laboratory (JPAC-CIL) has implemented a stringent quality assurance<br />

program to ensure the scientific integrity of its casework. The CIL’s<br />

quality assurance program ultimately led to its accreditation by the<br />

American Society of Crime Laboratory Directors Laboratory<br />

Accreditation Board (ASCLD-LAB) Legacy Program in 2003–the first<br />

forensic skeletal identification laboratory to be so credentialed. In 2008<br />

the CIL was re-accredited under the ASCLD-LAB International<br />

Program using ISO 17025 (General Requirements for the Competence of<br />

Testing and Calibration Laboratories) and criteria from the ASCLD-<br />

LAB supplement, Supplemental Requirements for the Accreditation of<br />

Forensic Science Testing and Calibration Laboratories.<br />

Informal surveys and queries within the human identification<br />

discipline includiing discussions during sessions of the Scientific<br />

Working Group for Forensic Anthropology (SWGANTH), reveal that<br />

there are many misconceptions and misunderstandings about<br />

competency and proficiency test programs. During its accreditation<br />

efforts, the CIL gained vast experience with competency and proficiency<br />

testing programs. While these programs are a key component to any<br />

successful quality assurance program and its accreditation, at the same<br />

time they have the potential to negatively consume resources if not<br />

properly understood and effectively managed and administered. To that<br />

end, the CIL recognizes that it is imperative that laboratories first<br />

understand the basic differences between competency and proficiency<br />

testing programs—what they are, and what they are not. As such, this<br />

presentation will demonstrate the differences between competency and<br />

proficiency test programs from a standpoint of their intents and purposes,<br />

discuss minimal program requirements that human identification<br />

laboratories need to meet for ASCLD-LAB accreditation, outline criteria<br />

and considerations for training, testing, and corrective action, as well as<br />

discuss similarities between the two programs.<br />

Administration and management considerations of competency and<br />

proficiency test programs are also addressed. For example, competency<br />

and proficiency test programs need to strike a reasonable balance<br />

35 * Presenting Author


etween their intended outcomes, the resource expended, laboratory<br />

productivity, and satisfying accreditation requirements.<br />

Competency Test, Proficiency Test, Quality Assurance<br />

H59 Errors, Error Rates, and Their Meanings in<br />

Forensic Science<br />

Angi M. Christensen, PhD, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, Quantico, VA 22135; Christian M.<br />

Crowder, PhD*, Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue,<br />

New York, NY 10016; Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East 38th Street,<br />

Erie, PA 16546; and Max M. Houck, PhD, West Virginia University, 1600<br />

University Avenue, 208 Oglebay Hall, Morgantown, WV 26506-6217<br />

After attending this presentation, attendees will gain a clearer<br />

understanding of the different classes of errors pertinent to forensic<br />

methods and practice, and will be provided a better taxonomy for method<br />

development, validation, and quality issues in their daily work.<br />

This presentation will impact the forensic science community by<br />

providing a clearer understanding of the different types of errors. This<br />

understanding will make error easier for practitioners to identify, control<br />

for and discuss, and will provide the courts with a better understanding<br />

of how to interpret the classes of error introduced in scientific testimony.<br />

Overall, this presentation will result in a higher quality of forensic<br />

practice.<br />

The discussion of errors and error rates has gained momentum in<br />

forensic science following the rulings from the Daubert trilogy (Daubert<br />

v. Merrell Dow Pharmaceuticals, Inc., General Electric Co. v. Joiner,<br />

and Kumho Tire Co., Ltd. v. Carmichael) and has accelerated with the<br />

National Academy of Sciences National Research Council’s Report<br />

“Strengthening Forensic Science in the United States: A Path<br />

Forward.” While the concepts of testing, standards, peer review, and<br />

general acceptance are fairly easy to understand, identify, and evaluate,<br />

the issue of error has proven to be more problematic. It has become clear<br />

that a discussion of what “error” means and how it is applied in forensic<br />

sciences is warranted. Furthermore, the convergence of science and law<br />

has made the identification and interpretation of error in the courtroom<br />

an even greater challenge. This paper presents an overview of the<br />

concept of method error as it pertains to forensic science techniques and<br />

attempts to clarify the difference between method error and other types<br />

of error that may be encountered in a forensic examination. As part of<br />

this clarification, the notion of the so-called “zero error rate” is<br />

addressed, and why this is an impossible and inherently non-scientific<br />

claim.<br />

Too often, forensic practitioners themselves misunderstand the<br />

meaning of technique or method error (method validity), often confusing<br />

it with practitioner (human) error. Statistical error (unexplained<br />

variation) inherent in a statistical model is yet another type of error that<br />

the practitioner needs to consider. Misunderstanding or conflating<br />

different classes of error may lead practitioners to be reluctant to address<br />

the issue of error as it relates to their discipline or their individual case<br />

results. This confusion can also been seen in the courts, where attempts<br />

have been made to derive a measure of method error from things like<br />

practitioner proficiency testing results. Certainly the courts are<br />

concerned with both method error and practitioner error, but practitioner<br />

error is not error in the scientific sense and, for the most part, does not<br />

relate to method validity.<br />

Misunderstanding (and misuse) of the concept of method error by<br />

forensic practitioners is particularly evident in claims of a “zero error<br />

rate” for particular forensic techniques. What some practitioners fail to<br />

realize is that despite the strength of the basis for certain forensic<br />

association techniques (e.g., the uniqueness of fingerprints as a basis for<br />

their use in identification), experts can still make false matches. The<br />

issue of method error does not relate to the uniqueness of a particular<br />

* Presenting Author<br />

feature, but to how reliable and valid the methods of comparison are in<br />

determining a positive match, exclusion, or concluding that there is no<br />

scientific basis for either determination. Most forensic examination<br />

results require tempered conclusions, and practitioners need to<br />

demonstrate caution and distinguish errors from uncertainty<br />

and probability.<br />

Error, Daubert, Validation<br />

H60 A Simulation for Exploring the Effects of<br />

the “Trait List” Method’s Subjectivity<br />

on Consistency and Accuracy of<br />

Ancestry Estimations<br />

Cris E. Hughes, PhD*, 2306 East Delaware Avenue, Urbana, IL 61802;<br />

Chelsey A. Juarez, PhD, University of California Santa Cruz, 1156 High<br />

Street, Social Science 1, Department of Anthropology, Santa Cruz,<br />

California 95064; Gillian M. Fowler, MS, Lincoln University, Brayford<br />

Pool Lincoln, Lincolnshire, LN6 7TS, UNITED KINGDOM; Taylor<br />

Hughes, PhD, University of Urbana-Champaign, 2306 East Delaware<br />

Avenue, Urbana, IL 61802; and Shirley C. Chacon, BA, FAFG, Avenida<br />

Simeón Cañas 10-64 zona 2, Guatemala, 01002, GUATEMALA<br />

After attending this presentation, attendees will have a clear<br />

understanding of the specific aspects of applying the trait list method that<br />

potentially incur bias. The sources of bias are tested by simulating the<br />

application of the trait list method, and the results will provide attendees<br />

with empirical information on the overall consistency of the trait list<br />

method.<br />

This presentation will impact the forensic science community by<br />

providing a mathematical analysis of the bias embedded in a commonly<br />

used forensic anthropological method for assessing ancestry. The results<br />

of the analysis allow the authors to make specific conclusions regarding<br />

the consistency of the method, as well as recommendations for how to<br />

avoid bias when utilizing the trait list method.<br />

The nonmetric “trait list” methodology is widely used for assessing<br />

ancestry of skeletal remains. Although, recent valid critiques have been<br />

made, 1-3 the method has endured because of its ease of application and<br />

the familiarity of traits to the anthropologist. For a given unidentified<br />

skeleton, a checklist of traits is completed, noting each trait’s state of<br />

expression. The distribution of the trait states among three geographic<br />

ancestries (Asian, African, and European) are typically used in<br />

conjunction with additional lines of evidence (such as metric analysis) to<br />

arrive at an ancestry estimation for the unidentified skeleton. While the<br />

application seems straightforward, there are both theoretical and<br />

logistical issues with this approach. Trait states are not exclusive to a<br />

single ancestry; instead, the trait list method is grounded in the belief that<br />

individuals of a specific ancestry more often express a particular trait<br />

state than other ancestries. Because nonmetric traits are considered<br />

heritable, albeit to various degrees, genetic drift and gene flow must be<br />

considered when accounting for shifts in distributions of trait state<br />

expressions. The polygenic nature of nonmetric traits maintains a<br />

complex path for variation in expression. The evolutionary premise of<br />

trait state distribution within a population and the influential genetic<br />

nuances are often lost in the application of the trait list method, such as<br />

with the use of “mixed” or “admixed” ancestries. 4 This designation<br />

implicitly relies on the concept that trait states are unique to a given<br />

ancestry and that “Asian,” “African,” or “European” parental ancestries<br />

actually existed at some point in the past. 5<br />

Choosing to incorporate the admixture approach into their research,<br />

because whether this is a theoretically sound approach or not, it is an<br />

approach that has been generally practiced over the decades. Thus, this<br />

research is based on the typical application of the trait list method, not<br />

the theory-bound approach that has recently found support. 6,7 The effects<br />

of the method’s embedded subjectivity on subsequent accuracy and<br />

36


consistency are largely unknown. Trait list ancestry assessment involves<br />

a series of decisions (how many and which traits to use) and<br />

interpretations (how to describe the ancestry based on the trait states),<br />

but there is no protocol. 4 For example, if 10 out of 10 observed traits<br />

express the Asian state, the associated skeleton would typically be<br />

classified as being of Asian ancestry, but what if only 9, 8, or 7 out of 10<br />

are associated with Asian ancestry? What is the threshold for<br />

considering the conventional admixture estimations when using the “trait<br />

list” methodology?<br />

Using a mathematical simulation that realistically represents the<br />

possible analytical variations of trait list ancestry estimation. The<br />

simulation explores: (1) trait selection; (2) number of traits employed;<br />

and, (3) ancestry choice thresholds affect the ancestry estimation of a<br />

skeleton. The relative accuracy of the trait list method in actual<br />

casework has not been comprehensively examined. The current study is<br />

a simulation of this accuracy, and tests how ancestry estimations for a<br />

given skeleton can differ from practitioner to practitioner when<br />

methodological choices vary. Using two temporally and geographically<br />

diverse samples comprising over 100 individuals, the simulation<br />

demonstrated that trait selection, quantity of traits, threshold choices, and<br />

the exclusion of high-frequency traits within a given sample had minimal<br />

effect on consistency in ancestry determination. For all datasets and<br />

Runs, accuracy AS was maintained above 90%.<br />

References:<br />

1. Hefner J. An Assessment of Craniofacial Nonmetric Traits<br />

Currently Used in the Forensic Determination of Ancestry. Proc<br />

Am Acad For Sci; 2002.<br />

2. Wheat A. Estimating Ancestry Through Nonmetric Traits of the<br />

Skull: A Test of Education and Experience. Proc Am Acad For<br />

Sci; 2009.<br />

3. Williams S. A New Method for Evaluating Orbit Shape. Proc Am<br />

Acad For Sci; 2007.<br />

4. Hefner J, Emanovsky P, Byrd J, and Ousley SD. The Value of<br />

Experience, Education, and Methods in Ancestry Prediction.<br />

Proc Am Acad For Sci; 2007.<br />

5. Long J and Kittles R. Human Genetic Diversity and the<br />

Nonexistence of <strong>Bio</strong>logical Races. Hum <strong>Bio</strong>l 2003; 75(4):449-71.<br />

6. Hefner J, Emanovsky P, Byrd J, and Ousley SD. Morphoscopic<br />

Traits the Statistical Determination of Ancestry Using Cranial<br />

Nonmetric Traits. Proc Am Acad For Sci; 2006.<br />

7. Hefner J. Morphoscopic Traits: Mixed Ancestry, Hispanics, and<br />

<strong>Bio</strong>logical Variation. Proc Am Acad For Sci; 2009.<br />

Nonmetric Cranial Traits, Ancestry Estimation, Bias<br />

H61 The More the Better?: Evaluating the<br />

Impact of Fixed Semi-Landmark Number<br />

in Cranial Shape Variation Analyses<br />

Shanna E. Williams, PhD*, University of Florida, Department of<br />

Anatomy, PO Box 100235, Gainesville, FL 32610-0235<br />

The goal of this presentation is to refine the applicability of fixed<br />

semi-landmark-based techniques in biological profiling.<br />

This presentation will impact the forensic science community by<br />

highlighting several important factors which contribute to the<br />

effectiveness of fixed semi-landmarks in characterizing morphological<br />

variation in cranial curvature.<br />

Geometric morphometrics (GM) often utilizes anatomical landmark<br />

coordinates, in either two or three dimensions, to capture biological<br />

shape. Anatomical landmark coordinates exhibit biological homology<br />

across specimens and are categorized into three groups: Type I - discrete<br />

juxtapositions of tissue; Type II - points of maximal curvature; and Type<br />

III – extremal points (Bookstein, 1991). However, some anatomical<br />

regions, such as boundaries and surface curvature, lack well-defined<br />

landmarks. GM addresses this obstacle via the application of semilandmarks<br />

to such regions. The simplest form of semi-landmark data are<br />

represented by the placement of equally-spaced points on curves or<br />

surfaces. An algorithm resamples raw curve data into a manageable<br />

number of evenly-distributed fixed points. The number of fixed semilandmarks<br />

is user-defined and reflects just enough points to maintain the<br />

original curve’s “shape.” However, exactly what constitutes enough<br />

points is arbitrary and thus entirely at the researcher’s discretion.<br />

The present study examines the relationship between the number of<br />

fixed semi-landmarks utilized and their effectiveness in detecting sex<br />

and population differences in cranial curvature. Three-dimensional fixed<br />

semi-landmarks were captured on the orbital rims, zygomatic arches,<br />

nasal aperture, and maxillary alveolar ridge of 193 crania embodying a<br />

mix of socially-determined race (Black, White) and biologicallydetermined<br />

sex from the Terry, Hamann-Todd, Maxwell Museum, and<br />

W.M. Bass skeletal collections of known individuals. Curvature data<br />

was gathered as continuous stream data using a portable digitizer. Fixed<br />

semi-landmarks were then extracted utilizing a beta program (Slice<br />

2005), which applies an algorithm that re-samples each curve into a userdefined<br />

number of evenly-distributed points. Two separate resampling<br />

sessions were performed on the original dataset. During the first session<br />

of resampling (S1) the following numbers of fixed semi-landmarks were<br />

extracted for each region: orbits = 40; zygomatic arches = 64; nasal<br />

aperture = 16; maxillary alveolar ridge =16. These amounts were halved<br />

during the second resampling session (S2) (orbits = 20; zygomatic arches<br />

= 32; nasal aperture = 8; maxillary alveolar ridge =8).<br />

The resultant regional semilandmark data from each session were<br />

fit into a common coordinate system via a generalized Procrustes<br />

analysis (GPA), which filters out the effects of location, scale, and<br />

rotation. A principal component analysis (PCA) was performed on the<br />

covariance matrix of the GPA-aligned coordinates in order to reduce<br />

dimensionality. The resulting principal component (PC) scores, which<br />

accounted for 85% of the total variance in each region, were employed<br />

in subsequent multivariate statistical analyses. A multivariate analysis of<br />

variance (MANOVA) of the PC scores from both sessions detected<br />

significant race and sex effects in all of the regions (Pr>F=


H62 A Performance Check of Ear Prediction<br />

Guidelines Used in Facial Approximation<br />

Based on CT Scans of Living People<br />

Pierre Guyomarc’h, MS*, Universite Bordeaux 1, UMR 5199 PACEA,<br />

UMR 5199 PACEA, Universite Bordeaux 1, Av des Facultes, Bat B8,<br />

Talence, 33405, FRANCE; Carl N. Stephan, PhD, JPAC - CIL, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853<br />

The goal of this presentation is to report quantified data on<br />

established ear prediction methods used in facial approximation.<br />

This presentation will impact the forensic science community by<br />

communicating to peers the strength and weaknesses of ear prediction<br />

methods.<br />

Facial approximation is the method used to predict the appearance<br />

of the face from a skull. This face can then be advertised in the hope that<br />

somebody recognizes it, possibly generating leads that may assist in the<br />

identification of the skeletal remains. For facial approximation to work<br />

effectively, it is important for prediction methods to be valid and<br />

accurate. This applies to all components of the face, including the ears.<br />

Currently several prediction rules have been published and widely<br />

employed with respect to the pinna or outer part of the ear, but few<br />

empirical validation studies have been conducted.<br />

In this study, previously published ear prediction methods using<br />

seventy-eight living individuals of known age and sex who had been<br />

subjected to CT-scans were examined. The sample is composed of 43<br />

males and 35 females with a mean age of 41.4 years (18-84 years, SD =<br />

18.8 years). Osseous and cutaneous surfaces were reconstructed using<br />

the half-maximum height algorithm of the TIVMI software (Treatment<br />

and Increased Vision in <strong>Medical</strong> Imaging, developed by Bruno Dutailly,<br />

Université de Bordeaux). Landmarks and associated angles and<br />

measurements were collected to quantify the orientation and size of the<br />

mastoid process, nasal bones, nose and outer ear regions. Lobe<br />

attachment and supramastoid crest development were also visually<br />

assessed. These data enabled us to examine the following well-known<br />

ear prediction rules:<br />

1. The main axis of the ear is oriented parallel to the major axis of<br />

the posterior mandibular ramus (Welcker 1883).<br />

2. The height of the ear approximates the height of the nose (and a<br />

variation using an additional two millimeters (Ullrich and<br />

Stephan, in press) and the width of the ear equals half its height<br />

(Gerasimov 1949, 1955).<br />

3. A large and broad ear is related to a massive and prominent<br />

mastoid process and the inverse regarding small ears; upper ear<br />

protrusion is also related to a strong development of the<br />

supramastoid crest (Gerasimov 1955).<br />

4. Anterior projection of the mastoid process is associated with free<br />

lobes; and inferior projection of the mastoid process with<br />

attached lobes (Fedosyutkin and Nainys 1993).<br />

5. The ear is oriented parallel to the profile angle of the nose<br />

(Wilkinson 2004).<br />

Student t-tests, correlation matrices and cross table analysis were<br />

performed to evaluate the above mentioned prediction rules and to assess<br />

asymmetry, sexual dimorphism, and age trends within the sample. None<br />

of the empirical rules concerning the reconstruction of the ears reported<br />

in the literature proved reliable in our sample. The gross approximation<br />

of the height of the ears from the height of the nose was observed (mean<br />

error = 5 mm), however, no correlation was found between these two<br />

measurements. Although the width of the ear is not half of its height, the<br />

two were correlated (r = 0.56), and the width averaged 0.6 of the height<br />

(mean error of the estimate = 2 mm). In addition, no bony dimensions<br />

collected on the mastoid region were found to correlate with ear<br />

dimensions (r < 0.3). The only additional relationships between the soft<br />

and hard tissue that we observed were that a strong supramastoid crest<br />

appears to be linked with a free ear lobe (χ² = 5.65; df = 1; p-value =<br />

* Presenting Author<br />

0.02). However, the inverse is not true, subtle mastoid crests are<br />

associated with both free and attached ear lobes and height and width of<br />

the ear appears to be influenced by age (r < 0.38) and sex (p-value <<br />

0.01).<br />

These findings indicate that classic ear prediction rules hold little<br />

value for accurate prediction in facial approximation. Future efforts<br />

should be made to examine other relationships between the ear and<br />

the skull.<br />

Facial Approximation, Facial Reconstruction, Pinna<br />

H63 The Importance of Testing and<br />

Understanding Statistical Methods in the<br />

Age of Daubert: Can FORDISC Really<br />

Classify Individuals Correctly Only One<br />

Percent of the Time?<br />

Nicole D. Siegel, DVM*, Cleveland Museum of Natural History, 1 Wade<br />

Oval Drive, Cleveland, OH 44106-1767; and Stephen D. Ousley, PhD,<br />

Mercyhurst College, Department of Applied Forensic, Anthropology, 501<br />

East 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will avoid future<br />

misunderstandings in the use of FORDISC and will be better able to use<br />

the program correctly and effectively.<br />

This presentation will impact the forensic science community by<br />

exploring common misunderstandings in statistical analysis, particularly<br />

FORDISC.<br />

Fordisc 3.1 (Jantz and Ousley 2005) uses discriminant function<br />

analysis, as has previous versions, and FORDISC has provided more and<br />

more additional information in addition to the classification results<br />

during its evolution. Failure to understand this additional information<br />

has led to a claim that challenges the accuracy of FORDISC. The recent<br />

publication of a series of FORDISC tests by Elliott and Collard (2009) is<br />

a result of their failure to appropriately interpret statistical results.<br />

Elliott and Collard classified individuals from five groups in the<br />

Howells database (Berg, Northern Japan, Santa Cruz, Tasmania, and<br />

Zulu) into all Howells groups. They used all 56 craniometric variables<br />

in FORDISC as well as three groups of 10 variables from different<br />

cranial regions (basicranium, neurocranium, and face). Due to a<br />

misunderstanding of posterior probabilities, they reported very low<br />

percentage correct classification in general and concluded that<br />

FORDISC classifies less than 1% of individuals correctly. Their<br />

criterion was that classifications showing a typicality probability of less<br />

than 0.01 or a posterior probability of less than 0.8, no matter which<br />

group was most similar, were considered incorrect. Unlike typicality<br />

probabilities, the posterior probability does not have a threshold<br />

requirement. Higher posterior probabilities generally reflect higher<br />

probability of correct classification, but there are no specific<br />

recommendations or discrete cut-off values. In the statistical literature,<br />

having a posterior probability of at least 0.8 is merely considered a<br />

“strong” classification. Their test conditions seem rigged for failure:<br />

when using 56 variables, they were using more variables than many of<br />

Howells sample sizes, resulting in lower typicality probabilities, and<br />

when using only 10 variables form certain areas of the cranium, they<br />

were extremely unlikely to get high posterior probabilities. Additionally,<br />

they classified Howells individuals from the five groups using every<br />

other Howells group to ascertain if groups showed geographic similarity.<br />

However, they designated only one specific group from each region that<br />

should theoretically be the most similar one, and any other classifications<br />

were deemed incorrect. For instance, in Europe, only a classification of<br />

Howells’ Berg individuals into Norse was considered correct.<br />

Elliott and Collard’s methods were followed as closely as possible<br />

using both FORDISC 3.1 (2005) and SAS 9.1 (2003), using the Howells<br />

38


database. Individuals from the same five ancestral groups were used,<br />

and run against all individuals in the Howells database. The analyses<br />

were conducted with all 56 variables and the same three groups of 10<br />

variables representing the basicranium, neurocranium, and face.<br />

Because Elliott and Collard did not state which typicality probability was<br />

used, the chi-square typicality was used in this study. Correct analysis of<br />

the results resulted in correct cross-validated classification percentages<br />

of 18 to 32%, which is significantly greater than random, and greater<br />

than 1%. Classifications with higher posterior probabilities showed<br />

higher correct percentages, and regionally patterned variation was<br />

strongly indicated. The disparity between Elliott and Collard’s<br />

conclusions and those of the current study is clearly a result of their<br />

misuse of posterior and typicality probability thresholds. Further, the<br />

geographic affinities of the test groups were confirmed when a more<br />

flexible criterion of regional similarity was accepted. Unlike Elliott and<br />

Collard’s results, the current study showed that when the reference group<br />

is excluded, the percentage correct regional classifications is comparable<br />

to or slightly higher than the percentage correct classifications when the<br />

group is included in the analysis.<br />

With the advent of Daubert standards, it is critical for forensic<br />

anthropologists to validate methods. The current analysis has shown that<br />

it is imperative to thoroughly understand the statistical underpinnings of<br />

any method, and that faulty criteria and test procedures can lead to false<br />

conclusions of low validity for a method. The number of measurements<br />

and stipulations for classification correctness used by Elliott and Collard<br />

resulted from a statistical misunderstanding that virtually guaranteed a<br />

low classification accuracy rate.<br />

FORDISC, Discriminant Function Analysis, Statistics<br />

H64 Forensic Interviews: Corroborating<br />

Evidence and Collecting Data for<br />

Anthropological Field Work<br />

Charles J. Massucci, MA*, Tampa Police Department, 411 North<br />

Franklin Avenue, Tampa, FL 33602; and Erin H. Kimmerle, PhD,<br />

University of South Florida, Department of Anthropology, 4202 East<br />

Fowler, Soc 107, Tampa, FL 33820<br />

After attending this presentation, attendees will learn which<br />

forensic interviewing techniques can be applied by anthropologists who<br />

are interviewing international populations in anticipation of field<br />

excavation. The same techniques can also be considered by investigators<br />

in the United States who are reviewing cold case homicides and missing<br />

person investigations involving immigrant and migrant populations.<br />

The presentation will impact the forensic science community by<br />

discussing the validity of memory recall from survivors or witnesses of<br />

genocide, massacre, torture, murder, and other acts of violent crime after<br />

an extended period of time has elapsed. This presentation will examine<br />

techniques for developing a forensic interview strategy when<br />

approaching witnesses and survivors of violent crimes and international<br />

atrocities.<br />

From November of 2008 through July of 2010, investigators from<br />

the University of South Florida conducted interviews with Nigerians<br />

who survived or witnessed a massacre that occurred in Asaba, Nigeria on<br />

October 7, 1967. The process of creating an oral record began with a<br />

review of the known literature and the development of an interview<br />

strategy. The interviewers established a general interview protocol that<br />

was used to establish the witness’ role during the event, ascertain specific<br />

information that could assist with a field excavation, and open a forum<br />

that offered the interviewees the opportunity to recount their experience.<br />

The research team conducted more than 40 interviews for this project<br />

and these interviews were used for the analysis presented in this research<br />

paper.<br />

This paper will address the benefits of conducting a directed, goal<br />

oriented interview that also allows interviewees the opportunity of tell<br />

their stories (in the oral tradition). This technique allows for the broadest<br />

opportunity to gather information and identify evidence. Investigators<br />

who attempt to gather legal truth from events which have occurred in the<br />

past are faced with the challenge of corroboration and will be limited by<br />

the existence of evidence. These types of forensic interviews are a<br />

starting point for the anthropologists who are searching for physical<br />

evidence, or it can be used by law enforcement to corroborate physical<br />

evidence.<br />

Interviewing survivors or witnesses to genocide, massacre, torture<br />

or other acts of violent crime presents specific problems of memory<br />

recollection, legal reliability, and/or credibility. The role of<br />

anthropologists in these types of investigations is more varied than in<br />

typical American casework. Therefore, the ability of anthropologists,<br />

pathologists, and investigators to successfully interview family members<br />

and survivors is critical to successfully completing the mission.<br />

Each interview for the Asaba project was developed in a unique<br />

manner and the interviewers were required to direct the process so the<br />

established interview goals were met, while not interfering with the<br />

natural process of the interview. The interviewers were also required to<br />

connect the common points of each interview (in real time) and to<br />

address any points of discrepancy between the interviews.<br />

The investigators who are developing a forensic interview strategy<br />

must consider the following factors before they consider the validity of<br />

episodic memory: the elapsed amount of time between the event and the<br />

interview, the psychological effects of trauma, the potential of outside<br />

influence upon the memory, cultural perspectives of the interviewees, the<br />

age of the interviewee at the time of the event and the time of the<br />

interview, and any other hidden agendas brought to the interview<br />

process. The investigators and anthropologists have to understand that<br />

information (or evidence) provided these witnesses has the greatest<br />

potential for being unreliable and this presents very specific challenges<br />

to the interviewer. This challenge is the purpose for creating a defined<br />

forensic interview strategy.<br />

The paper will also address the methodology for documentation of<br />

the data, including the creation of missing person(s) questionnaire and<br />

victim databases, and the best practice standards for obtaining, sharing,<br />

and analyzing such data.<br />

The initial results from this interview project suggest that the<br />

forensic interview strategy did establish the reliability of the witness,<br />

corroborated known facts, and directed the anthropologists with the field<br />

excavation plan.<br />

Interview, Massacre, Cold Case<br />

H65 Archaeological Methodology Used at the<br />

World Trade Center Site During the<br />

2006/2007 Recovery Excavation<br />

Scott C. Warnasch, MA*, New York City Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016; Christian Crowder,<br />

PhD, Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York,<br />

NY 10016; and Kristen Hartnett, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, Forensic Anthropology, 520 1st Avenue, New York, NY 10016<br />

After attending this presentation, attendees will be presented an<br />

overview of the archaeological methods used during the 2006/2007<br />

Human Remains Recovery Operation at the World Trade Center (WTC)<br />

site. Additionally, some of the findings, including the relationships<br />

between the buried deposits of WTC material and human remains<br />

recovered during the excavation and specific situations and activities<br />

conducted during the 2001/2002 recovery operation that lead to their<br />

omission will be presented.<br />

39 * Presenting Author


This presentation will impact the forensic science community by<br />

providing a body of information and protocols, developed and tested in<br />

the field that could be adapted to future mass disaster situations, built<br />

upon, and potentially used to improve recovery efforts, especially where<br />

a high degree of fragmentation is involved.<br />

This presentation will provide an overview of the archaeological<br />

methods used during the ongoing Human Remains Recovery Operation<br />

at the World Trade Center site conducted by the New York City Office of<br />

Chief <strong>Medical</strong> Examiner (OCME) since 2006 and will discuss findings<br />

from the excavation. The topics addressed will include the<br />

archaeological methods used to identify, delineate and document the site,<br />

the identification of WTC debris patterns and their relationship to the<br />

recovered human remains concentrations, and what these patterns reveal<br />

about the original recovery effort that took place immediately following<br />

the terrorist attacks.<br />

The primary objective of the WTC operation was to recover<br />

victims’ remains and personnel effects for identification. The excavation<br />

also presented an opportunity to test which archaeological methods<br />

would be most effective in a large-scale mass disaster recovery<br />

operation. In addition, the archaeological investigation provided insight<br />

into aspects of the initial response and recovery conducted in 2001/2002.<br />

Although the OCME operation was not intended to analyze or critique<br />

the original recovery operation, but when understood within the larger<br />

site context it provided general explanations for why much of the<br />

remnant WTC material and remains were not originally removed<br />

from site.<br />

A total of 952 potential human remains have been recovered from<br />

the excavation during sifting operations conducted in 2006 and 2007.<br />

Potential human remains were recovered from 49 (83%) of the 59<br />

excavated units. In addition, 29 potential remains were recovered from<br />

subterranean structures located on and adjacent to the site. The three<br />

main contexts where WTC debris and human remains were found were:<br />

(1) sections of intact paved pre-9/11/2001 surfaces; (2) pre-9/11/2001<br />

unpaved areas; and, (3) voids caused by debris impact, machine<br />

excavation and pre-9/11/2001 subterranean structures. Many of these<br />

contexts were found to be partly the results of recovery activities carried<br />

out during the 2001/2002. Photographs of the original recovery effort<br />

clearly support the excavations findings and illustrate these relationships.<br />

Many of the archaeological contexts exposed during the excavation<br />

were not necessarily unique to the WTC disaster and could be<br />

encountered in other mass disaster situations. These insights regarding<br />

the original recovery effort including the assessments of the strategies<br />

used in the OCME operation provide a body of information that could be<br />

adapted to future situations, which could be used to improve mass<br />

disaster recovery efforts, especially where a high degree of<br />

fragmentation is involved. The OCME WTC operation demonstrates the<br />

strength and practicality of using archaeological methods as a framework<br />

for systematic mass disaster recovery operations. In addition, the<br />

operation demonstrates that archaeologists properly trained in forensic<br />

protocols are uniquely effective at carrying out the variety of tasks it<br />

takes to ensure that the scene has been accurately defined, cleared and<br />

documented. Attendees will gain an appreciation for the practical<br />

benefits of archaeological methods in such tasks as defining horizontal<br />

and vertical site boundaries using stratigraphic analysis and artifact<br />

identification, as well as some conceptual ideas regarding how pre- and<br />

post-disaster land use factor into an urban mass disaster<br />

recovery operation.<br />

It is not suggested that a mass disaster response and recovery<br />

operation similar to the WTC disaster should, or could, be conducted<br />

solely by archaeologists, but that those leading forensic investigations<br />

and recovery operations might consider the benefit of adopting<br />

archaeological methodology, as well as including uniquely trained<br />

professional archaeologists in future mass disaster response teams.<br />

Archaeology, World Trade Center, Mass Disaster<br />

* Presenting Author<br />

H66 World Trade Center Revisited: A Bayesian<br />

Approach to Disaster Victim Identification<br />

Benjamin J. Figura, MA*, New York City Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

The goal of this presentation is to demonstrate to attendees the<br />

potential of a multivariable identification process using Bayesian<br />

statistics in a mass fatality context. The specific variables presented<br />

include anthropological estimates of age and sex, dental information, and<br />

recovery location and uses the World Trade Center disaster as an<br />

example.<br />

This presentation will impact the forensic science community by<br />

providing an alternative approach to victim identification for disasters<br />

featuring highly fragmented and/or degraded remains and where<br />

traditional identification methods have reached their limits. The<br />

approach presented utilizes fragments of data deemed insufficient for<br />

identification based on a single modality.<br />

Disaster victim identification (DVI) for mass fatality incidents<br />

involving highly fragmented and/or degraded remains is a difficult<br />

process because the individuating information that is required by the<br />

various identification disciplines is often limited. For example, the<br />

roughly 9,000 unidentified remains from the World Trade Center (WTC)<br />

disaster possess varying amounts of anthropological, odontological,<br />

and/or DNA data that go unused because none is sufficient for<br />

identification on their own. Further, information such as recovery<br />

location is often available but never directly utilized in the identification<br />

process. Steadman et al. (2006) 1 recently demonstrated how age, sex,<br />

stature, pathology, and dental data may be combined in a Bayesian<br />

framework to generate a statistical statement regarding the relative<br />

strength of a single circumstantial identification. The goal of this<br />

research is to apply the Steadman et al. approach to combine age, sex,<br />

dental, and recovery location data in a mass fatality context, where a<br />

defined victim population presents practical and statistical advantages.<br />

This approach incorporates the concept of a statistical threshold for<br />

identification as currently used for direct DNA-based identifications of<br />

WTC remains (Posterior Odds > 4x10 9 ).<br />

Ante- and postmortem data from the WTC disaster were utilized in<br />

this research. Likelihood ratios were calculated for each theoretical<br />

combination for the following variables:<br />

Age: Likelihood ratios were calculated for age based on estimates<br />

using the Suchey-Brooks (1990) 2 method for the pubic symphysis for<br />

each theoretical combination of Age and Phase. The WTC victim age<br />

distribution was used as the prior odds and data collected by Hartnett<br />

(2010) 3 was used as a reference sample.<br />

Sex: Likelihood ratios were calculated for sex based on estimates<br />

using the Phenice (1969) 4 characteristics with the WTC victim sex<br />

distribution as the prior odds. Data collected by Konigsberg et al (2002) 5<br />

was used as a reference sample.<br />

Dental: Likelihood ratios were calculated for the available dental<br />

patterns of the unidentified WTC remains based on the expected pattern<br />

frequencies in the “population-at-large” according to the Odontosearch<br />

application (Adams 2003). 6<br />

Recovery Location: The WTC victim population was divided into<br />

subgroups based on known location at the time of the incident (Tower 1,<br />

Tower 2, AA 11, UA 175, etc). Likelihood ratios were calculated for<br />

membership within a particular WTC subgroup based on the recovery<br />

location of the remains (grid system established by the New York City<br />

Fire Department). Likelihood ratios were determined for each<br />

combination of group and location using the location of identified<br />

remains as a known sample and the total number of remains recovered at<br />

each location as the prior odds.<br />

The average likelihood ratios calculated for age, sex, and recovery<br />

location are comparable to the contribution of individual CODIS STR<br />

40


alleles. The available dental patterns were more informative, with<br />

likelihood ratios ranging from just above 1 up to 37,956. Combining<br />

these variables using the Product Rule under a theoretical “best-case”<br />

scenario produces a likelihood ratio of 8.3x10 6 , which does not meet the<br />

established threshold for identification (4x10 9 ). However, it does result<br />

in a smaller required contribution from any potential DNA evidence.<br />

These results suggest that partial DNA profiles may be sufficient for<br />

identification if other available information is considered within a<br />

Bayesian framework.<br />

The consideration of additional variables beyond DNA in a<br />

quantitative manner allows for a truly multidisciplinary DVI process and<br />

has the potential to allow for identification of highly fragmented and/or<br />

degraded remains that might not otherwise be identified. The<br />

quantification of these variables also has the potential benefit of<br />

providing a mechanism for ranking of database search results similar to<br />

dental identification applications.<br />

References:<br />

1. Steadman, D. W., B. J. Adams, and L. W. Konigsberg 2006<br />

Statistical basis for positive identification in forensic<br />

anthropology. Am J Phys Anthropol 131(1):15-26.<br />

2. Brooks, S., and J.M. Suchey 1990 Skeletal age determination<br />

based on the os pubis: a comparison of the Acsádi-Nemeskéri and<br />

Suchey-Brooks methods. Human Evolution 5(3):227-238.<br />

3. Hartnett, K. 2010 Analysis of Age-at-Death Estimation Using<br />

Data from a New, Modern Autopsy Sample - Part I: Pubic Bone.<br />

J Forensic Sci doi: 10.1111/j.1556-4029.2010.01399.x<br />

4. Phenice, T. W. 1969 A newly developed visual method of sexing<br />

the os pubis. Am J Phys Anthropol 30(2):297-301.<br />

5. Konigsberg, L.W., N.P. Herrmann, and D.J. Wescott 2002<br />

Commentary on McBride et al. “Bootstrap Methods for Sex<br />

Determination from the Os Coxae using the ID3 Algorithm.”<br />

2001 J Forensic Sci 46(3):427-431. J Forensic Sci 47(2):<br />

424-426.<br />

6. Adams, B. J. 2003 Establishing personal identification based on<br />

specific patterns of missing, filled, and unrestored teeth. J<br />

Forensic Sci 48(3):487-96.<br />

Disaster Victim Identification (DVI), World Trade Center (WTC),<br />

Bayesian Statistics<br />

H67 New Forensic Archaeological Recovery<br />

Protocols for Fatal Fire Scenes<br />

Dennis C. Dirkmaat, PhD, Luis L. Cabo-Pérez, MS, Alexandra R. Klales,<br />

MS*, Erin Chapman, MS, and Allison M. Nesbitt, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501 East 38th Street,<br />

Erie, PA 16546<br />

After attending this presentation, attendees will be familiar with<br />

new forensic archaeological techniques applicable to fatal fire scenes<br />

that result in efficient and effective evidence recovery.<br />

This presentation will impact the forensic science community by<br />

pointing out the benefits of employing forensic archaeology in the<br />

documentation and recovery of all types of outdoor crime scenes,<br />

including fatal fire scenes.<br />

Victim remains at fatal fire scenes are typically difficult to detect,<br />

recover, and handle. All of the burned material at the scene, including<br />

biological tissue, is often modified to a similar appearance and bones, in<br />

particular, become discolored, brittle, and highly fragmented. As a<br />

consequence, these remains are often missed, disturbed, altered, or even<br />

destroyed during scene processing with standard crime scene protocols.<br />

The added postmortem fracturing, fragmentation, and bone loss resulting<br />

from these recovery techniques hinder the already difficult task of<br />

autopsy and laboratory analysis of burned human remains. This is<br />

especially problematic for bone trauma analysis, as its most immediate<br />

goal is distinguishing peri-mortem(forensically significant) trauma, from<br />

postmortem (not forensically significant) alteration. The substantial<br />

addition of trauma features created by fire and then recovery can result<br />

in a daunting analytical task.<br />

Lack of on-scene recordation of relevant information related to<br />

body positioning and contextual relationships of the remains as well as<br />

of other physical evidence at the scene, further complicates trauma<br />

analysis, biological profile estimation, and event reconstruction.<br />

New scene recovery protocols drawn from forensic archaeological<br />

methods are described in this presentation. Six tests of specific scene<br />

recovery methodologies were conducted in the last two years in which<br />

evidence, including spent bullet cartridges, knives, and euthanized pigs,<br />

were placed in house structures that were then burned to the ground.<br />

Following a search for evidence by trained fire investigators, forensic<br />

archaeologists then excavated the burned matrix and carefully mapped<br />

the evidence found in situ. The method that yielded the most efficient<br />

and effective recovery involved the hands and knees “search/excavation”<br />

in which burned matrix was excavated using a “cake-cutting” (i.e.,<br />

cutting a vertical face) technique working from the outer edges of the<br />

excavation corridor or room, inward. This process allowed for the rapid<br />

excavation of debris in areas where no significant evidence was located.<br />

The excavated debris was removed by buckets and placed on tarps,<br />

sorted by provenience unit, where it was quickly sorted by hand and<br />

discarded if no evidence was detected or sieved. The matrix from these<br />

areas bypassed the tarp hand sorting and was directly sent for careful<br />

screening on ¼ in mesh screens. The debris over the victim was<br />

removed via a “top-down” excavation method, thus exposing fully the<br />

remains. The remains were photographically documented in situ, and<br />

mapped both by hand and with electronic instrumentation such as a total<br />

station or survey-grade GPS units. Head, distal limbs and any other<br />

fragile body regions were protected with heavy-duty plastic wrap to<br />

maintain the integrity of the bone. The remains were then placed on a<br />

sheet of plywood in a body bag in efforts to reduce further disruption of<br />

the remains during transport.<br />

These new protocols were demonstrated to: (1) improve evidence<br />

detection and recovery; (2) limit disturbance and further fragmentation<br />

of the remains during the recovery; and, (3) provide precise and detailed<br />

information regarding the position and orientation of the body and<br />

related evidence, as well as on their contextual relationship at the scene.<br />

Further, these improvements are realized within an efficient timeline.<br />

This project was funded by the National Institute of Justice, U.S.<br />

Department of Justice.<br />

Forensic Archaeology, Fatal Fire, Human Remains<br />

H68 Using Spatial Analysis to Recognize Normal<br />

and Abnormal Patterns in Burned Bodies<br />

Christina L. Fojas, MS*, Department of Anthropology, Binghamton<br />

University, PO Box 6000, Binghamton, NY 13902; Christopher W.<br />

Rainwater, MS, Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue,<br />

New York, NY 10016; Luis L. Cabo-Pérez, MS, Mercyhurst College,<br />

Department of Applied Forensic Sciences, 501 East 38th Street, Erie, PA<br />

16546; and Steven A. Symes, PhD, Mercyhurst Archaeological Institute,<br />

Mercyhurst College, 501 East 38th, Erie, PA 16546-0001<br />

After attending this presentation, attendees will be introduced to the<br />

utility of spatial data in recognizing normal and abnormal patterns in<br />

burned bodies.<br />

This presentation will impact the forensic science community by<br />

quantifying the progression of heat alteration in burned bodies,<br />

independent of the circumstances of death or area of heat exposure, thus<br />

suggesting criteria for identifying normal and abnormal burn patterns. A<br />

mapping approach will demonstrate the utility of geographic information<br />

system (GIS) technology for the analysis and quantification of heat<br />

alteration to human remains.<br />

41 * Presenting Author


Recognizing the typical pattern of heat alteration in burned bodies<br />

under normal circumstances is important in a forensic context.<br />

Deviations from this pattern may imply special burning conditions such<br />

as protective shielding, the presence of accelerants or pre-existing<br />

trauma. Symes and colleagues (2008) provided a preliminary model for<br />

the normal sequence of bone exposure and heat alteration resulting from<br />

tissue thickness and limb position (i.e., body posture). While an<br />

invaluable resource, that model is merely derived from observation<br />

(based on extensive case experience) and has not been empirically<br />

quantified or tested. This study employs GIS to achieve these goals.<br />

The sample data were collected at the Office of Chief <strong>Medical</strong><br />

Examiner (OCME) in New York City. Burned body information with<br />

detailed documentation and known circumstances of death were<br />

compiled from cases spanning from January 2005 to July 2009. After<br />

excluding superficially burned victims and deaths due to smoke<br />

inhalation with little or no heat alteration to the body, the final sample<br />

included 74 forensic cases. Cases consisted of accidents (including<br />

vehicular accidents), homicides, suicides, and undetermined manners of<br />

death at both indoor and outdoor crime scenes. The burn patterns were<br />

charted in homunculi diagrams, with an anterior and posterior chart for<br />

each body. The degree of heat alteration was coded into five categories:<br />

1 = no burning/minimal burning; 2 = charred tissue; 3 = charred tissue<br />

with burned bone visible; 4 = charred tissue with calcined bone visible;<br />

and, 5 = missing or fragmentary bone. Polygon shapefiles of the body<br />

outlines and burn patterns were created in a GIS application for each<br />

case. The vector data were converted to raster data and added together,<br />

and the surface areas for each heat alteration category for each case were<br />

calculated.<br />

A composite image of the 74 cases illustrates the areas of the body<br />

that are more severely altered by heat, as well as the extent of this<br />

modification. As predicted by Symes and colleagues (2008), the degree<br />

and anatomical pattern of heat alteration can be most accurately<br />

predicted from tissue thickness, principally in relation to the sequence in<br />

which the areas exposed to heat will attain a particular degree of<br />

alteration. In this way, deviations from this sequence can be marked as<br />

suspicious, regardless of the overall degree of heat exposure. In order to<br />

test this, individuals were ranked based on degree of burning and that<br />

rank was compared with the total area burned. Results indicate a strong<br />

correlation (R 2 = 0.98, p-value < 0.001) between the degree and<br />

extension (area) of heat alteration, in such cases where the whole body<br />

was exposed to fire, but not at a temperature or period long enough to<br />

result in the alteration of the entire body surface. These bodies,<br />

therefore, provide a baseline for the normal sequence and intensity of<br />

heat alteration. After approximately 80% of the body shows heat<br />

alteration, any degree of burning to the body is not uncommon.<br />

Abnormal burn patterns are recognized when less than 80% of the body<br />

is burned yet a category of 3 or higher of heat alteration is observed. The<br />

examination of cases meeting this proposed criteria for the detection of<br />

abnormal patterns revealed that they include a homicide with the<br />

victim’s legs bound by a ligature, a vehicular accident in which the<br />

victim sustained extensive blunt force injuries, and accidents with<br />

evidence of substantial clothing on the body.<br />

This research was partially funded by a grant from the National<br />

Institute of Justice.<br />

Burned Body, Pattern Recognition, Spatial Analysis<br />

* Presenting Author<br />

H69 Recovery and Identification of a WWI<br />

American Doughboy in Rembercourt-sur-<br />

Mad, France<br />

Denise To, PhD*, JPAC-CIL, 310 Worchester Avenue, Building 45,<br />

Hickam AFB, HI 96853; and Carrie A. Brown, MA, Joint POW/MIA<br />

Accounting Command, Central Identification Lab, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

The goal of this presentation is to provide the attendee with a case<br />

example involving the remarkable recovery and identification of an<br />

individual from World War I. After this presentation, attendees will gain<br />

a better understanding of the complexity of cold cases, a greater<br />

awareness of the importance of the multiple lines of evidence that are<br />

required for identification, and a heightened appreciation for community<br />

responsibility.<br />

This presentation will impact the forensic science community by<br />

providing an example of a successful forensic recovery in the<br />

international setting, by demonstrating how a positive identification was<br />

attained despite having multiple name associations, by broadening our<br />

understanding of factors that may influence preservation of remains, and<br />

by further demonstrating the significance of proper archaeological<br />

techniques and methodical data collection. With this case, the forensic<br />

community may gain additional approaches that can be applied to a<br />

variety of cold cases or cases in the international setting.<br />

The Joint POW/MIA Accounting Command’s Central Identification<br />

Laboratory (JPAC-CIL) has the mission to search, recover, and identify<br />

service-personnel still missing as a result of past U.S. conflicts.<br />

Anthropologists at the CIL regularly conduct recovery missions around<br />

the world related to World War II and the Korean and Vietnam conflicts.<br />

However, recoveries and identifications from earlier conflicts are<br />

uncommon. Even more uncommon are those that result in a well<br />

preserved burial of a World War I American Doughboy Marine whose<br />

identification was obfuscated by dog tags recovered with his remains<br />

that were inscribed with the name of another marine.<br />

Shortly after a discovery by French relic hunters, JPAC was notified<br />

in September 2009 of an alleged burial of a World War I American<br />

Marine in the village of Rembercourt-sur-Mad in northeastern France.<br />

Initial verification of the plausibility of the burial involved investigation<br />

of archival records. This confirmed that the first U.S.-led offensive of<br />

the war by the American Expeditionary Forces, under the command of<br />

General John J. Pershing, occurred on September 12, 1918, at St. Mihiel,<br />

approximately 17 miles northeast of Rembercourt-sur-Mad. Among the<br />

approximately 7,000 Allied casualties were 2,000 American KIA. Fortysix<br />

U.S. Marines are memorialized at the Saint Mihiel cemetery (with 11<br />

listed as unaccounted for).<br />

Anthropologists from the JPAC-CIL traveled to Rembercourt-sur-<br />

Mad, France, where they recovered a superbly preserved human burial.<br />

Thirty-five kinds of artifacts were recovered from the burial; their in situ<br />

locations on the skeleton mimicked where they would have been worn<br />

on the body during life, including a wallet, dog tag, and badge in the<br />

front left breast pocket, a first-aid kit, shaving kit, canteen, and side arm<br />

ammunition on the hips, and six complete clips of rifle ammunition still<br />

slung across the chest. In addition, tree roots had grown, over time,<br />

through the burial site. Some had penetrated the thorax, but rather than<br />

damaging the remains, they gently moved and shifted skeletal elements.<br />

This preservation was welcome, as roots can be a very disruptive<br />

taphonomic force. All archaeological signs pointed to a considerate<br />

burial by friendly forces.<br />

After international transport, the skeletal remains and artifacts were<br />

analyzed at the CIL. A name engraved on the badge and initials inside<br />

the wallet were consistent with one of the 11 unaccounted-for U.S.<br />

Marines, but a different person’s name engraved on the dog tag<br />

warranted caution of any presumptive identification. After further<br />

investigation, and using numerous lines of evidence, the individual was<br />

42


identified in March 2010. Personnel records included a letter written to<br />

the individual’s brother by a witness to the death incident. In that letter,<br />

the witness recounted their hasty but respectful burial of the individual,<br />

as well as a map of its location. Shortly after the war, a search for his<br />

burial using this map was unsuccessful. Ninety-two years later, his<br />

remains were found, recovered, and identified. He was buried in June<br />

2010 in Arlingtion National Cemetery with full military honors.<br />

Cold Case, WWI American Doughboy, Presumptive Identification<br />

H70 The Fromelles Project – The Recovery and<br />

Identification of British and Australian<br />

WWI Soldiers From Mass Graves in<br />

Northern France<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield University,<br />

Cranfield Forensic Institute, Shrivenham, SN6 8LA, UNITED<br />

KINGDOM; and Louise Loe, PhD, Oxford Archaeology, Janus House,<br />

Osney Mead, Oxford, OX2 0ES, UNITED KINGDOM<br />

After attending this presentation, attendees will have a greater<br />

understanding of how forensic anthropological and archaeological<br />

methods can be used to not only excavate eight mass graves, document,<br />

and recover 250 sets of remains and thousands of artifacts, but also<br />

manage to positively identify almost 100 of the soldiers through<br />

interdisciplinary evidence collection.<br />

This presentation will impact the forensic science community by<br />

demonstrating up-to-date and progressive excavation and<br />

anthropological analysis methods and by showing the possibilities of<br />

positively identifying individuals after being buried almost 100 years.<br />

On July 19 and 20, 1916, British and Australian Forces fought a<br />

hopeless battle against German forces trying to draw attention away<br />

from the Somme. The outcome of this battle was the catastrophic loss of<br />

over 7,000 soldiers in less than 48 hours.<br />

In the past two decades professional and amateur historians<br />

managed to locate eight possible mass grave pits adjacent to a small<br />

village of Fromelles in Northern France. The presence of multiple<br />

remains was confirmed in 2007-08 and in February 2009, Oxford<br />

Archaeology (OA) was awarded the contract to carry out the recovery at<br />

Pheasant Woods. A team of OA staff and external consultants was<br />

assembled, including forensic archaeologists and anthropologists,<br />

osteoarchaeologists, finds experts, crime scene investigators, anatomical<br />

pathology technologists, radiographers, IT experts, and many more.<br />

A second contract was awarded for analyzing ante- and postmortem<br />

DNA samples. The goal was to extract sufficient amounts of<br />

uncorrupted DNA from the soldiers as well as trying to find second or<br />

third generation direct relatives. Both aspects of the program were<br />

extremely challenging but turned out very successful.<br />

After the site was made secure in April, two teams of around five to<br />

six archaeologists and one supervisor each began excavations of the first<br />

two graves. All stages of the excavation were carefully documented by<br />

professional surveyors and photographers. The excavation was<br />

conducted under strict forensic archaeological rules. All data was<br />

immediately entered onto a secure database system and therefore<br />

instantly available to all relevant staff in the anthropological laboratory.<br />

DNA sampling was carried out using a specifically developed<br />

protocol that ensured that samples were taken within a few minutes of<br />

being uncovered and exposed to oxygen and to eliminate contamination<br />

as much as possible. All personnel involved on site had to wear full<br />

personal protective equipment at all times when within less than 10<br />

meters of the grave.<br />

To ensure that all human remains and artifacts were recovered,<br />

metal detectors were used extensively throughout the excavation and all<br />

soil that was removed from around remains or artifacts was scrutinized<br />

in great detail. Soil was collected from around and underneath remains<br />

and x-rayed to make certain that even the smallest finds would not be<br />

lost. The excavation and recovery phase resulted in 250 sets of human<br />

remains and over 6,000 artifacts.<br />

The laboratory, store rooms, and office space was set up in March<br />

and April. The layout guaranteed a secure and efficient workflow as well<br />

the dignified and respectful treatment of the human remains. Sets of<br />

remains and associated artifacts were transferred from the excavation to<br />

the anthropological laboratory using a documented handover procedure<br />

witnessed by a crime scene investigator to guarantee the continuity and<br />

integrity of all evidence. Remains and artifacts were first x-rayed using<br />

a direct-digital x-ray unit, operated by an experienced radiographer. All<br />

images were stored digitally and moved onto the secure database to give<br />

access to the anthropologists.<br />

Human remains were then carefully cleaned to prepare them for<br />

anthropological analysis. All anthropologists had their own workstation,<br />

consisting of a fixed table, a digital SLR camera permanently fixed to the<br />

ceiling above the table, a PC workstation connected both to the camera<br />

and the database server.<br />

The newly build cemetery is located in close proximity to the mass<br />

grave site. Each soldier was buried individually with full military<br />

honors. DNA analysis took place throughout the project and the results,<br />

together with the anthropological and artifact analysis results were<br />

presented to an Identification Commission in March 2010. To date, 97<br />

soldiers have been positively identified. The cemetery was officially<br />

dedicated and opened in a ceremony in July 2010.<br />

Forensic Anthropology, Forensic Archaeology, DNA Sampling<br />

H71 Validation of X-Ray Fluorescence (XRF) to<br />

Determine Osseous or Dental Origin of<br />

Unknown Material<br />

Angi M. Christensen, PhD*, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, Forensic Anthropology<br />

Program (TEU), Quantico, VA 22135; Michael A. Smith, PhD, Federal<br />

Bureau of Investigation Laboratory, 2501 Investigation Parkway,<br />

Chemistry Unit, Quantico, VA 22135; and Richard M. Thomas, PhD,<br />

Federal Bureau of Investigation Laboratory, Trace Evidence Unit, 2501<br />

Investigation Parkway, Quantico, VA 22135<br />

After attending this presentation, attendees will understand the<br />

results of a study conducted to validate the use of x-ray fluorescence<br />

(XRF) in determining whether unknown material is osseous (bone) or<br />

dental (tooth) in origin or some other type of material (such as mineral,<br />

plastic, wood, etc.).<br />

This presentation will impact the forensic science community by<br />

supplying an additional analytical tool for forensic anthropologists or<br />

other experts to quickly and effectively assess the potential skeletal<br />

origin of unknown material.<br />

Forensic anthropological examinations typically involve the<br />

analysis of human skeletal remains, but it is sometimes necessary to first<br />

determine whether the material in question is even osseous or dental in<br />

origin (i.e., whether it is, in fact, part of a skeleton). This is especially<br />

relevant in cases where the material may be submitted for DNA analysis.<br />

Tissue identification can usually be achieved through visual macroscopic<br />

and/or microscopic (and in some cases radiographic) examination by a<br />

trained anthropologist when specimens are sufficiently large and in good<br />

condition. Occasionally, however, specimens are very small and/or<br />

taphonomically compromised, making this determination difficult. Xray<br />

fluorescence spectrometry (XRF) is a technique that reveals the<br />

elemental composition of materials and is hypothesized to have utility in<br />

these analyses. Validation of the XRF technique for identifying osseous<br />

or dental tissue would impact the forensic community by supplying an<br />

additional analytical tool for forensic anthropologists or other experts to<br />

43 * Presenting Author


quickly and effectively assess the potential skeletal origin of unknown<br />

material.<br />

In this study, XRF analysis was conducted on a variety of tissues of<br />

known osseous and dental origin in good condition including human<br />

bones, human teeth, non-human bones, non-human teeth, and ivory. In<br />

addition, other biological hard tissues such were analyzed as horn, beak,<br />

coral, and shell, as well as other materials that may appear similar to<br />

osseous or dental tissue when in small fragments or altered states such as<br />

wood, minerals, plastic, metal, and glass. XRF was also conducted on<br />

these same tissues and materials in thermally, chemically, and<br />

taphonomically altered states. These states included various degrees of<br />

burning (e.g., charred, calcined), weathering (e.g., bleached, exfoliated),<br />

antiquity (up to 9,000 years old), and exposure to several destructive<br />

chemicals.<br />

Analysis of the human and non-human osseous and dental tissues in<br />

good, burned and weathered conditions revealed characteristic levels of<br />

calcium and phosphorous. Osseous and dental tissue samples also<br />

commonly (though not always) contained trace levels of strontium.<br />

Significantly compromised osseous and dental tissue, such as ancient<br />

samples, showed very low or virtually absent phosphorous levels, as did<br />

the coral and shell samples. Horn, plastic, wood, metal, and other<br />

materials in either good or compromised conditions did not contain these<br />

characteristic levels of calcium, phosphorous or strontium. Because<br />

there was no sample preparation involved in the analysis, many<br />

specimens contained low levels of various other elements due to surface<br />

contamination. These levels did not substantially affect the results.<br />

Materials were accurately identified as osseous or dental in origin<br />

based on the calcium and phosphorous levels identified by XRF using<br />

the analytical parameters of this study, with no other material showing<br />

profiles that might be mistaken for osseous or dental tissue. In other<br />

words, preliminary results suggest that osseous and dental tissue in<br />

altered states may be misclassified as some other material (due to its<br />

similarity to materials like shell and coral), but non-bone or non-tooth<br />

materials are unlikely to be misclassified as osseous or dental tissue. It<br />

is concluded that XRF analysis is a valid and effective means of<br />

determining osseous or dental origin of unknown material.<br />

Forensic Anthropology, X-Ray Fluorescence, Elemental Composition<br />

H72 The Condyle Connection: Forensic<br />

Implications for the Association Between<br />

the Condyles of the Femur and Tibia<br />

Erin B. Waxenbaum, PhD*, 1810 Hinman Avenue, Evanston, IL 60208;<br />

and Kelsea Linney, BA*, Northwestern University, 1810 Hinman Avenue,<br />

Evanston, IL 60208<br />

After attending this presentation, attendees will have observed the<br />

results of comparisons between the condyles of the distal femur with<br />

those of the proximal tibia for a given individual as well as the developed<br />

predictive formula which have practical applications for the medical<br />

community, archaeological research, and forensic casework.<br />

This presentation will impact the forensic science community by<br />

providing an analysis of the relationship and correlation between the<br />

individual skeletal components of the functional unit of the knee.<br />

The knee is one of the most functionally important and largest joints<br />

in the body. Previous research has investigated the distal femur and<br />

proximal tibia with regards to sex assessment, ancestry and<br />

morphological differences (Waxenbaum et al., 2007), but the<br />

relationship among the condyles specifically has not been addressed.<br />

Given the robusticity with which these components of the lower limb<br />

survive in both archaeological and mass disaster scenarios, this<br />

investigation into the degree of their association is particularly<br />

important.<br />

* Presenting Author<br />

The populations examined include segments of the Terry White<br />

(n=94) and Terry Black (n=100) anatomical collections, a component of<br />

the South Dakota Arikara (n = 120) and Native Alaskan groups (n = 201)<br />

(all remains included in this analysis are housed at the National Museum<br />

of Natural History, Smithsonian Institution). Individuals were sampled<br />

from both sexes and were separated into “older” and “younger”<br />

categories for age analysis given the archaeological nature of the Alaska<br />

and South Dakota remains. Measurements of the left medial and lateral<br />

condyles of the distal femur and proximal tibia were taken on all<br />

individuals and compared through correlations analysis, Tukey’s<br />

procedure and reduced major axis regression.<br />

The present research found that the medial and lateral condyles of<br />

the proximal tibia and the distal femur show a statistically significant<br />

relationship across sex (p


criminal investigations, and provides family and friends with closure. As<br />

the application of forensic anthropology increases worldwide, the need<br />

for population specific methods and population specific research has<br />

become more paramount, particularly those concerned with ancestry.<br />

Until recently, ancestral categories have been loosely based on<br />

linguistics, regional, and/or continental affinity. For example, the terms<br />

Hispanic and African provide broad categories which assign a missing<br />

person as coming from a Spanish speaking population or the entire<br />

continent of Africa. Increasingly, investigations have shown that<br />

humans are far more diverse than these broad categories account for and<br />

have shown that modern statistical methods can more narrowly identify<br />

intra-regional variation as well as answer broader questions concerning<br />

human migration and expansion (Ousley 2010, Spradley et al. 2008,<br />

Kenyhercz et al. 2010, Ross et al. 2003, Ross et al. 2008).<br />

During the 16 th and 19 th centuries, nearly 10 million African slaves<br />

were transported to the Americas drastically changing the biological<br />

composition of the region. This event brought together Europeans,<br />

indigenous Americans, and various African groups to create a blend of<br />

cultural and biological diversity. One approach to investigating this<br />

biological diversity is through the comparison of cranial inter-landmark<br />

distances.<br />

In order to investigate the biological diversity found within the<br />

Caribbean and Latin America and elucidate the specific African origins,<br />

several samples of African origin, contemporary Mexicans (n=21),<br />

nineteenth-century Cubans (n=23), contemporary Panamanians (n=12),<br />

contemporary Afro-Antillean Panamanians (n=6), and contemporary<br />

Ecuadorians (n=54) were compared using traditional craniometrics. The<br />

African data include the Teita from Southeast Kenya (n=83), the Dogon<br />

tribe from Mali West Africa (n=99), the Zulu from South Africa (n=101),<br />

the Bushman from South Africa (n=90), individuals from Angola (n=68),<br />

individuals from São Tomé (n=5). All African data (excluding Angola<br />

and São Tomé) were collected by W.W. Howells and can be easily<br />

accessed online at http://konig.la.utk.edu/howells.htm. Inter-landmark<br />

distances (ILDs) from the Howells data were collected using the<br />

traditional 2D caliper-derived methods. On nearly all of the remaining<br />

crania, 3D data was collected using a Microscribe digitizer in which the<br />

traditional ILDs were simultaneously recorded. To evaluate group<br />

similarities and differences, Mahalanobis D 2 were calculated using SAS<br />

9.13 (2001). Mahalanobis D 2 is a function of the group means as well as<br />

pooled variances and covariances that measures the degree of<br />

differentiation observed between the considered populations. Results<br />

show that all African groups are significantly different from one another<br />

at the


endocortical diameter and narrow neck endocortical diameter account<br />

for group differences in the sample. In CAN2, narrow neck width and<br />

femoral shaft width account for regional differences.<br />

The results of the present study are consistent with previous works<br />

by demonstrating that regional variation has a strong effect in the<br />

morphology of the proximal femur. While the overall pattern in sexual<br />

dimorphism is not affected by region, the pattern of group affiliation is,<br />

which in turn, influences sex variation. In both males and females, the<br />

sample breaks down according to group affiliation. However, the pattern<br />

of group affiliation is determined by regional membership. This study<br />

demonstrates the importance of using data from living populations to<br />

create biological profiles of skeletal remains. The creation of biological<br />

profiles is not possible without an understanding of variation from<br />

living populations.<br />

Proximal Femur, Sexual Dimorphism, Group Affiliation<br />

H75 Morphometric Evaluation of Nasal<br />

Characteristics in 20th Century White and<br />

Black South Africans<br />

Jennifer L. McDowell, BSc, University of Pretoria, Department of<br />

Anatomy, Basic <strong>Medical</strong> Sciences Building, PO Box 2034, Pretoria,<br />

0001, SOUTH AFRICA; Ericka N. L’Abbe, PhD*, University of<br />

Pretoria, PO Box 5023, Pretoria, 0001, SOUTH AFRICA; and Michael<br />

W. Kenyhercz, MS, 6327 Catawba Drive, Canfield, OH 44406<br />

After attending this presentation, attendees will gain a variation of<br />

knowledge in mid-facial characteristics of black and white South<br />

Africans, and will understand the statistical framework used to describe<br />

similarities and/or differences within these groups.<br />

This presentation will impact the forensic science community in<br />

contributing to knowledge of human variation within a modern South<br />

African population, in providing a more scientific evaluation of this<br />

variation, and in presenting a mathematical approach to the classification<br />

of population groups.<br />

With more than 49 million people of various social identities,<br />

languages, and belief systems, South Africa is an ideal country in which<br />

to evaluate human variation and the statistical relationship between<br />

social identity and biological characteristics. With the world’s highest<br />

rate of homicide and a large number of unidentified persons, a need<br />

exists for accurate and reliable methods to assess ancestry from skeletal<br />

remains of sub-Saharan Africans. Since patterns of variation within and<br />

between populations are shaped by culture, language, geography and<br />

secular change, it is necessary to define the effect these parameters on the<br />

reliability and accuracy of our methods for estimating ancestry as well as<br />

sex, stature, and age at death.<br />

With a large database of population groups, FORDISC 3 has<br />

addressed problems regarding osteometric differences among<br />

populations. However, the accuracy of non-metric features, such as<br />

inter-orbital breadth and nasal aperture width, in describing variation<br />

among black and white groups outside of North America has not been<br />

adequately described. In North American populations, mid-face and<br />

nasal morphology has been shown to be the most accurate region of the<br />

cranium from which to sort population groups.<br />

The purpose of this study was to assess variation in mid-facial<br />

shape, namely nasal bone structure, interorbital breadth and nasal shape,<br />

among black and white South Africans using Elliptical Fourier Analysis,<br />

Discriminant Function Analysis (DFA) and Geometric Morphometrics<br />

(GM).<br />

The mid-facial region of 151 crania of black and white South<br />

Africans (75 males; 76 females) from the Pretoria Bone and Raymond A.<br />

Dart research collections were photographed in the Frankfort plane, at a<br />

distance of 46 cm, using an Olympus 305 digital camera. Standard<br />

landmarks, which include subspinale, inferior point of nasal borders,<br />

* Presenting Author<br />

alare, nasale inferius, dacryon, nasal superius, nasion and glabella, along<br />

with three nasal arcs were digitized using a MicroScribe G2. Inter- and<br />

intra-observer error was evaluated.<br />

Geometric Morphometric (GM) analyses including Procrustes fit<br />

and Elliptical Fourier analysis (EFA) were used to obtain shape<br />

variables. These variables as well as linear measures were imported into<br />

FORDISC 3.1 for linear discriminant function analysis (DFA).<br />

Statistical significance was assessed within and between ancestral<br />

groups. Each group was tested for normality and each was proven to be<br />

normally distributed. Outliers were identified through box plots.<br />

Student’s t-test between whites and blacks were performed for each<br />

measurement and each proved to be statistically significant. A two-way<br />

analysis demonstrated 95% correct cross-validated classification. The<br />

differences observed between these groups may be used as a tool for<br />

estimating ancestry among South Africans.<br />

To approach the evaluation of ancestry from unknown skeletal<br />

remains, the relationship between social and biological race has to be<br />

examined, understood, and continually evaluated on modern groups.<br />

Large databases are needed, and an understanding of the cultural history<br />

of the population is crucial for the interpretation of these differences.<br />

Morphometrics, Nasal Aperture, South Africans<br />

H76 Can Femoral Shape be Used to<br />

Estimate Weight?<br />

Gina M. Agostini, MA*, 83 Newton Street, Greenfield, MA 01301<br />

The goals of this presentation are to investigate the relationship<br />

between body mass index and femoral shape, and to determine the utility<br />

of using cross-sectional measurements in body mass index estimations.<br />

This presentation will impact the forensic science community by<br />

providing evidence that being overweight or obese significantly impacts<br />

external femoral shape in a specific pattern. Despite poor classification<br />

results, these significant shape differences necessitate further<br />

investigation into the use of long bone shape to estimate weight, a visible<br />

trait that could be integrated into the biological profile and used to aid in<br />

forensic identification efforts.<br />

It has been known for several decades that long bone shape is<br />

affected by body mass; however, there has been limited investigation<br />

into the impact that obesity has on load-bearing bones despite its high<br />

prevalence in modern populations. Given that obesity is a condition that<br />

clearly affects how an individual appeared to others in life, this research<br />

can benefit the forensic community by investigating whether bone<br />

geometry is sufficient to estimate weight, potentially adding another trait<br />

for use in biological profile determinations.<br />

Previous research in this concentration demonstrated a significant<br />

positive relationship between body weight and mediolateral (ML)<br />

dimensions of the proximal femur. Using a larger sample with increased<br />

representation of obese individuals, this project sought: (1) to further<br />

investigate the relationship between body mass index (BMI) and femoral<br />

shape; and, (2) to determine the utility of using cross-sectional<br />

measurements to estimate BMI classification. This project was designed<br />

under the null hypothesis that individuals from all BMI classes would<br />

have the same mean anteroposterior (AP) and ML dimensions. Using<br />

standards largely devised by Ruff (1983), external AP and ML<br />

measurements were taken at 20%, 35%, 50%, 65% and 80% bone shaft<br />

length, with 20% and 80% indicating the distal-most and proximal-most<br />

measurement, respectively.<br />

Four categories were formed based on BMI: underweight (BMI <<br />

17.5), normal weight (BMI = 19 - 24.5), overweight (BMI = 26 - 30) and<br />

obese (BMI > 31.5). Age was controlled for in all statistical tests.<br />

Control for ancestry, sex and secular trends was effectuated through<br />

sampling, as only males of European ancestry with a date of death within<br />

the last century were included for this research. The final sample<br />

46


consisted of 268 total individuals, 37 obese, 88 overweight, 86 normal<br />

weight and 57 underweight.<br />

After controlling for age, multivariate statistics show a significant<br />

(p-value < 0.01) relationship between midshaft and proximal ML<br />

dimensions and BMI. MANOVA results also report a significant Wilk’s<br />

λ (p-value < 0.05) for BMI. T-tests with an LSD correction for uneven<br />

sample sizes confirm ML dimensions are significantly larger in the<br />

overweight and obese BMI classes (p-value < 0.05). Additionally, size<br />

and shape variables were computed according to Mosimann and<br />

colleagues (Mosimann 1979; Darroch and Mosimann 1985). ANOVA<br />

results show that BMI has a significant effect on overall ML size (pvalue<br />

< 0.01). MANOVA results report a significant effect of BMI on<br />

shape-standardized variables at all five ML locations (p-value < 0.05)<br />

with a significant Wilk’s λ (p-value < 0.05).<br />

There was a significant effect of BMI on AP dimensions at all five<br />

diaphyseal locations (p-value < 0.05) using the raw data. However, a<br />

significant interaction between age and BMI was observed at all five AP<br />

locations (p-value < 0.01) when using the transformed size-standardized<br />

data, invalidating any further analysis of BMI effect alone. These results<br />

suggest that the femora of overweight individuals undergo abnormally<br />

high rates of ML stress irrespective of age, but that both age and BMI<br />

operate in conjunction to impact AP dimensions. It is also possible that<br />

pelvic movements in overweight/obese individuals create abnormally<br />

high ML torques of the femur, rendering any age effect irrelevant.<br />

Finally, a discriminant function analysis with cross-validation was<br />

conducted to assess the classificatory power of using ML measurements<br />

to discern BMI status. Poor classification results were obtained, with<br />

58% correct classification for underweight, 57% for normal weight, 50%<br />

for overweight and 36% for obese. Collapsing underweight and normal<br />

weight individuals into one category and overweight and obese<br />

individuals into another resulted in little difference, with 58% correct<br />

classification into the underweight/normal weight BMI category, and<br />

45% into the overweight/obese BMI category.<br />

Three important conclusions are drawn from this research: (1) there<br />

is a significant relationship between femoral shape and BMI, but this<br />

relationship differs for AP and ML dimensions; (2) this relationship has<br />

poor use in classifying individuals into their respective BMI categories;<br />

and, (3) these femoral shape changes correlate well with documented<br />

biomechanical modifications made by overweight/obese individuals<br />

during locomotion. Given that previous research has demonstrated the<br />

importance of internal cross-sectional geometry in bone strength<br />

properties, it is possible that use of external measurements alone is not<br />

sufficient to estimate BMI classification.<br />

Obesity, Bone Morphology, Weight Classification<br />

H77 Osteometric Analysis of the<br />

Vertebral Column<br />

Jolen Anya Minetz, MA*, JPAC/CIL, 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853; Bradley I. Lanning, MA, JPAC-CIL, 310<br />

Worchester Avenue Building 45, Hickam AFB, HI 96835; Kylie Puzzuto,<br />

West Virginia University, PO Box 6201, Morgantown, WV 26506; and<br />

Elizabeth Okrutny, BS, Central Florida University, 4000 Central Florida<br />

Boulevard, Orlando, FL 32816<br />

After attending this presentation, attendees will have a greater<br />

understanding of the relationship of measurements within a vertebral<br />

column, as well as, the relationships and correlations of those<br />

measurements with other postcranial elements.<br />

This presentation will impact the forensic science community by<br />

introducing the utilization of novel measurements for osteometric<br />

analysis.<br />

The Joint POW/MIA Accounting Command’s Central Identification<br />

Laboratory (JPAC-CIL) is analyzing a heavily commingled skeletal<br />

assemblage that was unilaterally turned-over to U.S. officials from North<br />

Korea. Prior to their turnover, the remains were manipulated in such a<br />

way as to appear as single individuals, but gross observations detected<br />

major discrepancies. Multiple rounds of mtDNA sampling were<br />

conducted in order to sort major elements. Now, in addition to the<br />

mtDNA results, analysts use a variety of tools including osteometric<br />

sorting, pair matching, articulations, taphonomic and radiographic<br />

comparisons to sort the remains. These methods are very useful for<br />

sorting the major elements, but are not used as often with the association<br />

of vertebrae. In this context, a vertebral column can be associated with<br />

a set of remains if a single vertebra in a column segment is cut for<br />

mtDNA and yields a valid sequence, or if the column is continuous and<br />

has a terminal end that articulates with a major element. However,<br />

isolated vertebra and fragmentary columns are much more difficult to<br />

associate to individuals or combine.<br />

The purpose of this research is to determine how well a metric<br />

analysis classifies a vertebra within a column and how well vertebrae<br />

correlate with one another and other postcranial elements within an<br />

individual in order to determine the associative value of these<br />

measurements and analyses. The sample consists of 19 intact vertebral<br />

columns of unknown race, sex and age, sixteen of which have associated<br />

postcranial remains. Twelve to eighteen discrete measurements were<br />

taken per vertebra throughout the entire vertebral column. Canonical<br />

discriminant function analyses were conducted to evaluate the<br />

classification and discriminating powers of the combined measurements<br />

of vertebrae within a column. In the primary analysis, all of the<br />

compatible measurements (14 distinct variables) for C3 through L5 were<br />

utilized. Wilks’ lambda was significant in the testing of the first seven<br />

iterations of discriminant functions (λ = 0.000, df = 308, p < 0.001, based<br />

on functions 1 through 14 and λ = 0.518, df = 128, p < 0.001, based on<br />

functions 7 through 14). The first fourteen canonical discriminant<br />

functions were used in the analysis and the first four of those functions<br />

account for 95% of the variation, with the first accounting for 64%. The<br />

variables that are the most correlated with this discriminant function and<br />

therefore the most discriminating are related to the vertebral centrum.<br />

The classification results for predicted group membership revealed<br />

76.1% of the original grouped cases were classified correctly, and 58.0%<br />

of the cross-validated grouped cases were correctly classified. The<br />

discrepancy is due in large part to the small sample size. The overall<br />

results of the canonical discriminant function analyses reveal that it is<br />

best to run the analyses using the optimum number of variables that are<br />

the most significant and highly correlated. The level of inter observer<br />

error was evaluated for the vertebral measurements by comparing the<br />

differences in the measurements of a single column between analysts.<br />

Overall the error was minimal (


H78 Variation in Browridge and Chin<br />

Morphologies: Sexual Dimorphism and<br />

Covariation With Body Size<br />

Heather M. Garvin, MS*, Johns Hopkins University, 1830 East<br />

Monument Street, Room 302, Baltimore, MD 21205<br />

After attending this presentation, attendees will be presented with a<br />

new method to quantify sexual dimorphism in browridge and chin<br />

morphology using 3D surface scans and geometric morphometrics.<br />

Upon attending the presentation, attendees will have a better<br />

understanding of brow and chin shape differences exhibited in males and<br />

females of American black and white ancestries. Knowledge will also be<br />

gained regarding the relationship between these features and postcranial<br />

body size.<br />

This presentation will impact the forensic science community by<br />

discussing how in traditional sex determination methods, the browridge<br />

and chin are scored using ordinal categories presented in a universal set<br />

of line drawings, as well as, objectively quantifying these shape changes,<br />

thus providing an opportunity to formulate population-specific standards<br />

and overall gain a better knowledge of existing morphological variation.<br />

Sexual dimorphism exists among modern humans in body size and<br />

cranial features, but varies in degree of expression across populations.<br />

Robusticity of craniofacial traits has been shown to be related to ancestry<br />

and geographic origins, but variations between groups in degree of<br />

sexual dimorphism of these traits have not been well documented.<br />

Besides degree of expression, studies have also shown that populations<br />

differ in the pattern of craniofacial traits. For example, one population<br />

may display robust brows and gracile chins, while another displays the<br />

reverse pattern. Therefore, documenting the variation of within and<br />

between population differences could be important for sex determination<br />

methods.<br />

While linear cranial measurements have been proven to be<br />

correlated with postcranial size, evidence for a relationship between<br />

body size and discrete craniofacial traits is equivocal. This suggests that<br />

craniofacial traits may be influenced by different factors or display a<br />

different degree of plasticity than postcranial size. Understanding the<br />

relationship between body size and craniofacial traits, dimorphism in<br />

these variables, and the factors affecting each, will provide knowledge<br />

regarding population differences and observed secular and evolutionary<br />

trends.<br />

This project examines variation in human skeletal sexual<br />

dimorphism using metric and morphometric approaches. The sample<br />

consisted of 19 th -20 th century blacks and whites from the Terry<br />

collection. A method was developed to isolate and quantify sexually<br />

dimorphic craniofacial traits (browridge and chin morphology) using 3D<br />

laser surface scans and geometric morphometrics. Once quantified, coexpression<br />

between the traits was evaluated and the relationship between<br />

the craniofacial traits and postcranial size was analyzed for allometric<br />

effects. The use of semi-landmarks across the brow and chin regions and<br />

principal component analyses, allowed visualization of shape changes<br />

between sexes and ancestries.<br />

Preliminary results suggest that the browridge can be sexually<br />

differentiated by size, volume, and degree of projection relative to size.<br />

Morphometric analyses also suggest shape changes across the brow<br />

differ between the sexes. The chin, however, displayed a much higher<br />

degree of morphological variation and asymmetry. The majority of the<br />

variation between the sexes was confined to the lateral tubercles, which<br />

are responsible for the traditional “squared” or “pointed” chin shapes.<br />

When individual principal components were compared to body size, it<br />

was found that some of the most sexually diagnostic components<br />

displayed no significant relationship with postcranial or cranial size.<br />

However, Spearman rank correlations between cranial trait and body size<br />

discriminant function scores suggest there is a relationship between<br />

overall “maleness” and “femaleness” between the variables. Terry<br />

* Presenting Author<br />

whites displayed a significantly lower degree of postcranial dimorphism<br />

than the blacks. Overall dimorphism in cranial robusticity was not<br />

significantly different between the groups, although trends suggest more<br />

masculine brows in the Terry white males thereby slightly increasing<br />

dimorphism. This could be evidence for separate factors affecting<br />

postcranial and craniofacial trait dimorphism, or different responses in<br />

the skeletal regions to the influences.<br />

Browridge, Chin, Sex<br />

H79 Taphonomic Changes Observed on Skeletal<br />

Remains in Southeast Texas<br />

Charity G. Owings, BS*, 2475 TAMU, College Station, TX 77845;<br />

Nicole C. Larison, BS*, Sam Houston State University, Department of<br />

<strong>Bio</strong>logical Sciences, Box 2116, Huntsville, TX 77341; and Joan A.<br />

Bytheway, PhD, Sam Houston State University, Box 2296, Huntsville, TX<br />

77341-2296<br />

After attending this presentation, attendees will better understand<br />

taphonomic changes, in particular how sun-bleaching of skeletal remains<br />

can be attributed to the clothes worn by the decedent during<br />

decomposition.<br />

This presentation will impact the forensic science community by<br />

potentially providing a link between the last known attire worn by a<br />

missing person to sun-bleached patterns on skeletal remains.<br />

Few studies focus directly on the taphonomic process of sunbleaching<br />

and the resulting patterns produced on human bone (Calce and<br />

Rogers 2007, Janjua 2008, Quatrehomme and Iscan 1997). The goal of<br />

this study is to expand upon the current taphonomic literature as well as<br />

enhance the interpretation of sun-bleaching patterns observed on skeletal<br />

remains. During the course of a year in Southeast Texas, it is expected<br />

that an individual exposed to the environment would undergo<br />

taphonomic alterations during decomposition.<br />

Taphonomy is the study of processes affecting an organism from the<br />

time of death to the time of discovery (Calce and Rogers 2007, Haglund<br />

and Sorg 1997). Forensic anthropologists, as well as other death<br />

investigators, rely on taphonomic studies in order to properly interpret<br />

alterations sustained by skeletal remains. The extent of alteration to<br />

skeletal remains is dependent upon weathering processes, such as the<br />

amount of moisture, sun, and soil type to which the remains are exposed<br />

(Janjua 2008, Calce and Rogers 2007). Taphonomy also includes<br />

modifications by carnivore activity, fluvial transport, and trampling<br />

(Haglund and Sorg 1997, Janjua 2008), though these processes were not<br />

the focus of the present study.<br />

This study revolved around an individual involved in a fatal<br />

vehicular accident. The remains of the individual were donated to the<br />

Southeast Texas Applied Forensic Science (STAFS) Facility where they<br />

were clothed in shorts, a short-sleeved button-up shirt, and flip-flops.<br />

The remains were placed within the maximum security outdoor research<br />

facility on July 14, 2009 and were removed on June 2, 2010. Throughout<br />

the eleven-month duration of the study, scavenger activity was inhibited<br />

by the placement of a hardware cloth cage over the remains. At the time<br />

of removal, the remains were skeletonized with mummified tissue<br />

remaining on the skull and both hands and legs. A visual examination of<br />

the remains revealed sun-bleaching on areas of the bone that were not<br />

protected by clothing, thereby creating a color pattern consistent with the<br />

decedent’s postmortem attire. The sun-bleached bones include facial<br />

bone fragments not covered by desiccated tissue, clavicles, cervical and<br />

lumbar vertebral bodies, sternal rib ends, distal portions of both arms,<br />

portions of the pelvic girdle, and portions of the distal legs not covered<br />

by desiccated tissue. Algal growth was also observed on two left ribs,<br />

several vertebrae, the superior sacrum, distal portions of the left ulna,<br />

two carpals and eleven tarsals and metatarsals. It is important to note<br />

that algal growth occurred only on bones that were bleached by the sun.<br />

48


Facial bones sustained blunt force trauma with comminuted fractures as<br />

a result of the vehicular accident in which the individual was involved.<br />

Several of these facial bone fragments, as well as the proximal and distal<br />

ends of the left ulna and the proximal end of the left radius, exhibited<br />

uniform sun-bleaching. It was determined in a recent study that<br />

perimortem-inflicted blunt force trauma to pig skulls (Sus scrofa) also<br />

revealed uniform sun-bleaching of fracture sites (Calce and Rogers<br />

2007). Postmortem trauma; however, can result in inconsistent sunbleaching<br />

or coloration of the fractured bone (Quatrehomme and Iscan<br />

1997). Acknowledging this phenomenon could be potentially beneficial<br />

to the forensic investigator by providing a means to differentiate between<br />

peri-mortemand postmortem trauma of skeletal remains.<br />

The sun-bleaching patterns observed on the skeletal remains can<br />

possibly reflect clothing worn by the decedent which, in turn, can<br />

provide seasonal clues as to when the person may have died. This<br />

information can be related to clothing details provided in a missing<br />

persons report and can thereby link skeletonized remains to an<br />

individual’s identity.<br />

Taphonomy, Sun-Bleaching, Blunt Force Trauma<br />

H80 Using the Freeze-Thaw Cycle to Determine<br />

the Postmortem Interval: An Assessment<br />

of Pig Decomposition in West<br />

Central Montana<br />

Beatrix Dudzik, MA*, and Hillary R. Parsons, MA, 508 Chisholm Trail,<br />

Knoxville, TN 37919-7050; and Ashley H. McKeown, PhD, University of<br />

Montana, Department of Anthropology, Missoula, MT 59812<br />

The goal of this presentation is to educate attendees about the<br />

variables of human decomposition in west central Montana during the<br />

freeze-thaw cycle of winter and spring. Previous decomposition studies<br />

have found that temperature is the most influential factor on the rate of<br />

decomposition; however systematic research in cold, dry climates has<br />

yet to be conducted. West Central Montana represents a climatic region<br />

characterized by cold winters and hot, arid summers. This presentation<br />

provides information from the second half of a two-part systematic study<br />

conducted on two Sus scrofa in west central Montana.<br />

This presentation will impact the forensic science community<br />

extending the knowledge and comprehension of decomposition patterns<br />

in an array of geographic climates. Establishing the postmortem<br />

interval, or PMI, is one of the most important factors used when<br />

attempting to identify human remains for the medicolegal field as it can<br />

establish the time period and context surrounding a death. The study of<br />

human decomposition is crucial to understanding the postmortem<br />

interval, and outdoor human decomposition has been most notably<br />

assessed at the Anthropology Research Facility at the University of<br />

Tennessee in Knoxville, an area characterized by warm temperatures and<br />

high humidity.<br />

This study investigated the decomposition pattern of pig carcasses<br />

during the freeze-thaw cycle of winter, spring, and summer in west<br />

central Montana. Data collection focused on the particular physical<br />

changes associated with colder temperatures and the decomposition<br />

stasis that occurs during the late fall and winter months. The preliminary<br />

findings suggest the stasis that occurs during periods of subfreezing<br />

temperatures can result in an inaccurate assessment of decomposition<br />

and an imprecise estimation of the PMI. Analysis of the pattern of the<br />

decomposition cycle after the spring thaw was carried out to assess<br />

differential patterns of previously frozen remains.<br />

This baseline project suggests that the rate at which a body becomes<br />

frozen during the freeze-thaw cycle of the Montana winter and spring<br />

alters the expected decomposition pattern. These observations can be<br />

used to differentiate between remains that experience the freeze cycle<br />

quickly as opposed to remains that experience a delayed freeze. This<br />

indicates whether or not remains had become exposed to taphonomic<br />

forces before or after the onset of subfreezing temperatures in this<br />

region. To establish an accurate postmortem interval in west central<br />

Montana the impact of the freeze-thaw cycle and the unique<br />

decomposition patterns associated with delayed and rapid freezing of<br />

remains must be understood.<br />

Decomposition, Freeze-Thaw Cycle, Postmortem Interval<br />

H81 Animal Scavenging and Taphonomic<br />

Interpretation: An Evaluation of the Role of<br />

Scavenger Behavior and Environmental<br />

Context in Outdoor Forensic Scenes<br />

Lisa N. Bright, BS*, 1259 Hobart, Chico, CA 95926<br />

The goals of this presentation are to provide an assessment of<br />

taphonomic predictions in relation to animal scavenging behavior, an<br />

evaluation of the role of animal behavior and environmental factors on<br />

human remains; and a discussion of actualistic experimental data that<br />

demonstrate patterns of damage and dispersal of skeletal elements from<br />

outdoor contexts.<br />

This presentation will impact the forensic science community by<br />

providing a critical evaluation of taphonomic theory and discussing the<br />

benefits of a multidisciplinary approach to taphonomic analysis.<br />

The goals of this research include: (1) an assessment of taphonomic<br />

predictions in relation to animal scavenging behavior; (2) an evaluation<br />

of the role of animal behavior and environmental factors on human<br />

remains; and, (3) a discussion of actualistic experimental data that<br />

demonstrate patterns of damage and dispersal of skeletal elements from<br />

outdoor contexts.<br />

Taphonomy has become an integral area of research within forensic<br />

anthropology since the late 1980s. Previous studies have generally<br />

focused on field or laboratory-based experiments, retrospective case<br />

reviews, or case reports. However, little attention has been devoted to<br />

evaluating aspects of taphonomic theory, such as scavenging behavior,<br />

using rigorous experimental methodology. Sorg and Haglund (2002) 1<br />

advocate the use of a bioenvironmental and idioecological approach to<br />

forensic taphonomic analysis. By focusing on the context specific<br />

features of an environment and the scavengers inhabiting that area, a<br />

more accurate interpretation of outdoor forensic scenes is possible. The<br />

incorporation of models from other disciplines, such as ecology and<br />

paleontology, provides a more detailed perspective.<br />

This research was conducted at the Big Chico Creek Ecological<br />

Reserve (BCCER). The BCCER, owned and maintained by California<br />

State University, Chico, currently encompasses 3,950 acres of diverse<br />

habitats, which support more than 140 animal species. Common<br />

carnivores include the black bear, western spotted skunk, gray fox,<br />

coyote, raccoon, as well as the domestic dog and cat. Although the black<br />

bear and raccoon are omnivorous, they are known to actively scavenge<br />

animal carcasses, and are treated as carnivores for the purpose of this<br />

study. Less common scavengers include the bobcat, mountain lion,<br />

marten, fisher, and badger. Mountain lions excepted, these carnivores<br />

are thought to minimally contribute to the scavenging of human remains<br />

in northern California.<br />

A pilot study was conducted in October of 2009 to document animal<br />

scavenging behavior at the BCCER. The carcass of a single adult mule<br />

deer (Odocoileus heminous) was placed at a site where animal<br />

scavengers are known to frequent. A motion sensitive digital infra-red<br />

game camera was positioned within the site to identify carnivore species<br />

and to monitor scavenger behavior. The site included a 15 meter clearing<br />

protected by vegetation, which provided a suitable environment for<br />

scavengers to feed without being disturbed. This location is also a<br />

known popular habitation spot for bears inhabiting the BCCER, with<br />

easily visible game trails and access to water. To prevent the immediate<br />

49 * Presenting Author


emoval of the carcass from the camera position, it was tied down to<br />

rebar stakes with lengths of barbed wire wrapped around the forelimbs<br />

and hind limbs. The site was monitored for three days, and data such as<br />

time, temperature, and precipitation were recorded as well as notes on<br />

decomposition, surface scatter, and scavenging damage. The carcass<br />

was collected at the end of the three days, and was completely devoid of<br />

soft tissue. Many of the elements were scattered within the site, and a<br />

few elements, including the right and left scapula, left forelimb, eight<br />

ribs, thoracic vertebrae No. 12, and a small portion of the skull could not<br />

be located. The remains were transported to the CSU-Chico human<br />

identification laboratory for analysis of scavenging patterns. .<br />

The game camera recorded two different species: black bear (Ursus<br />

americanus) and the gray fox (Urocyon cinereoargenteus). The black<br />

bear was the only species documented actively scavenging the carcass.<br />

The carcass was not investigated until it had been exposed for seven<br />

hours, but once scavenging began it continued unabated for more than an<br />

hour. A majority of the activity occurred at night, and during the 24-48<br />

hour exposure period. Bears ranging from a first year cub to the<br />

reserve’s alpha male were documented feeding. The camera recorded<br />

significant damage, including tooth impact marks and breakage resulting<br />

from manipulation of the carcass.<br />

The photographic, climatic, and osteological data in conjunction<br />

with biological, ecological, and anthropological theory, is being used to<br />

generate a model for scavenging behavior of human remains in Northern<br />

California. This model will be further tested using the remains of ten<br />

feral pigs (Suc scrofa) as models for human remains.<br />

Reference:<br />

1. Marcella Sorg and William Haglund. Advancing Forensic<br />

Taphonomy: Purpose, Theory, and Process. In: Haglund W and<br />

Sorg M, editors. Advances in Forensic Taphonomy Method,<br />

Theory, and Archaeological Perspectives. Boca Raton: CRC<br />

Press, 2002;3-30.<br />

Taphonomy, Scavenging, Animal Behavior<br />

H82 A Longitudinal Study on the Outdoor<br />

Human Decomposition Sequence in<br />

Central Texas<br />

Joanna K. Suckling, BS*, Texas State University, 601 University Drive,<br />

San Marcos, TX 78666<br />

After attending this presentation, attendees will gain a better<br />

understanding of human decomposition in the climate of Central Texas<br />

as learned through a longitudinal experimental study.<br />

This presentation will impact the forensic science community by<br />

presenting the observed stages of decomposition for a specific climate<br />

while providing insight regarding how geographic regions may influence<br />

human decomposition. Results from this study will allow forensic<br />

anthropology practitioners to better understand environmental factors<br />

present in Central Texas and similar geographic regions that complicate<br />

the estimation of the postmortem interval, or PMI, also known as the<br />

time since death.<br />

Forensic anthropologists may be consulted in the estimation of the<br />

PMI. In this estimation forensic anthropologists employ decomposition<br />

stages. PMI is dependent upon local climate conditions, such as<br />

temperature, humidity, and scavengers (Megyesi et al. 2005; Reeves<br />

2009). Although decomposition sequences have been proposed for<br />

specific geographic regions including Tennessee (Mann et al. 1990; Vass<br />

et al. 1992; Love and Marks 2003), New Mexico (Rhine and Dawson<br />

1998), and Arizona (Galloway 1997), these sequences may not be<br />

applicable in other regions. The Forensic Anthropology Research<br />

Facility (FARF) at Texas State University-San Marcos is located in an<br />

area subject to various weather conditions characteristic of a sub-tropical<br />

* Presenting Author<br />

climate, in which the humid climate may be punctuated by periods of<br />

drought leading to semi-arid conditions (Dixson 2000).<br />

A systematic longitudinal study on the decay of the human body<br />

was conducted with a sample of ten donated human cadavers (N = 10).<br />

The objective of the research was to monitor each donated cadaver upon<br />

arrival at the FARF by using the decomposition scoring method<br />

developed by Megyesi et al. (2005) based on Galloway’s (1997) arid<br />

environment decomposition stages. For each day, decomposition was<br />

scored using the same scoring categories developed by Megyesi et al.<br />

(2005) to represent the overall condition of remains and determine if<br />

there is a sequential order to human decomposition. Decomposition<br />

stage was assessed for the torso, limbs, and head separately to account<br />

for different areas of the body decomposing at different rates (Megyesi<br />

et al. 2005). The decomposition stages used were divided into Fresh,<br />

Early, Advanced, Skeletonization, and Extreme Decomposition<br />

(Galloway 1997; Megyesi 2005). Donations were observed until<br />

skeletonization, defined as less than one half of the skeleton covered by<br />

desiccated or mummified tissue (Galloway 1997).<br />

Previous decomposition studies (Galloway et al. 1989; Rhine and<br />

Dawson 1998; Megyesi et al. 2005) could not control for scavengers in<br />

a natural environment, but longitudinal data collection permitted a<br />

comparison between scavenged and non-scavenged human remains.<br />

Both caged donations and those exposed to scavenging were included in<br />

the sample. Time delayed photography on a wildlife camera was used to<br />

photo document specific scavengers and their effect on the rate of<br />

decomposition. Accounting for the behavior and effects of scavengers<br />

will provide anthropologists and future researchers’ data on how to<br />

properly evaluate the postmortem interval when scavengers have access<br />

to a body (Reeves 2009).<br />

The present study supports Galloway’s (1997) assertion that beyond<br />

broad categories of early decomposition, advanced decomposition,<br />

skeletonization, and decomposition of skeletal material, secondary<br />

characteristics, such as coloration and mummified tissues, do not<br />

necessarily follow a sequential order of appearance. Decomposition in<br />

Central Texas also appears to coincide with incidences of high humidity<br />

as observed by Galloway et al. (1989), with a rapid onset of advanced<br />

decomposition, high rates of maggot activity when avian scavengers do<br />

not have access, accelerated autolysis, and rapid skeletonization or<br />

adipocere formation. The results of the study also demonstrate that<br />

decomposition in Central Texas can progress rapidly. In one case of an<br />

autopsied donation, without the variable of scavenging, the first sign of<br />

bone exposure was noted within four days after placement outdoors.<br />

With scavenging, bone exposure to the point of skeletonization can occur<br />

within 24 hours. The results of the study also assert that the variable of<br />

insect activity is not the only major factor that may disrupt or accelerate<br />

decomposition estimates. Temperature, humidity, and access to<br />

scavenging animals can all significantly distort time since death<br />

estimations in outdoor environments.<br />

Forensic Anthropology, Decomposition, Postmortem Interval<br />

H83 Taphonomy Reader Beta-Version:<br />

A Software to Help in Taphonomic<br />

Syndromes Diagnosis<br />

Matteo Borrini, MS*, via del Mattone 17\a, La Spezia, 19131, ITALY;<br />

Maria V. Tumbarello, Via Luigi Calabresi 14, Montecatini (PT), AE<br />

51016, ITALY<br />

After attending this presentation, attendees will value the benefits of<br />

using a free software that assists reading the alterations on human bones<br />

to reconstruct the taphonomic process.<br />

This presentation will impact the forensic science community and<br />

students in this discipline by offering a Beta version of a free software<br />

50


that presents the possibility of recognizing taphonomic imprints on<br />

bones, a combination of which can indicate one or more taphonomic<br />

syndromes and is useful to redevelop the postmortem life of<br />

skeletal remains.<br />

As demonstrated by numerous articles and the AAFS Workshop in<br />

2010, taphonomy has an important role in the study of skeletal human<br />

remains from historical and forensic settings. The natural and artificial<br />

alterations readable on osseous remains can make understandable the<br />

changes and the events that a body suffered in its death onwards; to<br />

individuate taphonomic imprints on bones and their classification in<br />

taphonomic syndromes, it is necessary in forensic anthropological<br />

investigation to estimate the postmortem interval and forensic<br />

pertinence, to contextualize the remains, and to recognize the natural and<br />

human agents that acted upon the remains.<br />

Taphonomy is a very complex discipline and in its application on<br />

archaeological and forensic study, it is possible to recognize two<br />

different lines: depositional and contextual taphonomy. The depositional<br />

taphonomy analyzes the position of the remains and the preservation of<br />

articulations that helps to recognize the type of the burial (i.e. primary,<br />

secondary, a dressed or nude body, in an empty space). The contextual<br />

taphonomy analyzes the specific imprints left on the bones by the<br />

interaction between the remains and the environment such as soil, water,<br />

atmosphere, fire, and human activity as well. The software presented is<br />

called Taphonomy Reader and has been developed to help the<br />

anthropologist (students or professionals), the archaeologist, and the<br />

forensic investigatory in the contextual taphonomy analysis by creating<br />

the base for a common language in this discipline.<br />

Taphonomy Reader has been written in HyperText Markup<br />

Language (HTML), the predominant markup language for web pages;<br />

this language allows the software to be used on every kind of computer<br />

and platform (Windows, Linux, Macintosh) using a simple browser. The<br />

HTML has embedded scripts using JavaScript, a different language that<br />

affects the behavior of HTML pages, which creates an elaborate “results<br />

page.” JavaScript has been used to avoid developing a database that<br />

requires use online; in this way, users can download the software on their<br />

computer and use it either on- or off-line.<br />

When run, Taphonomy Reader shows the “main window” with the<br />

most common taphonomic imprints: marrow or soft tissue presence;<br />

complete degreasing; fossilization and sub-fossilization; soil adherence;<br />

soil staining; mineral incrustation; warping; melted elements adherence;<br />

roots invasion; roots erosion; soil infiltration on fractures; mineral<br />

staining; unilateral soil adherence; unilateral soil staining; bleaching;<br />

algal growth; punctures; parallel striations (rodent gnawing marks);<br />

longitudinal splitting; weathering; blackening with smoke; ash<br />

accumulation, calcination; carbonization; crisscross cracking; shrinkage<br />

fractures or bull-eye fractures; sand adhesion; water staining;<br />

circumferential staining; surface erosion; rounded margins; marine taxa<br />

incrustation. If the user is uncertain about the meaning of each pattern,<br />

it’s possible to click on the pattern’s name to open a new page with a<br />

synthetic description and a picture of the typical appearance of each<br />

taphonomic modification. The pictures are from several Italian historical<br />

or forensic cases and from the sample collection of the MercyHurst<br />

College.<br />

Examining a case, the user can tick off the patterns that are singledout<br />

on the analyzed remains and then push the verification button. The<br />

script recognizes the choices of the user and creates a new virtual “result<br />

page.” The taphonomic changes present in the software can correspond<br />

to eight different taphonomic syndromes: forensic interest; possible<br />

forensic interest; historical remains; burial; surface exposure; animal<br />

activity; cremation or fire alteration; and, aquatic taphonomy.<br />

The “result page” presents the selected taphonomic changes<br />

tabulated in a schedule where it can be visualized and each taphonomic<br />

syndrome imprint is presented. The syndromes are clickable to open a<br />

page with a short explanation and references. As some imprints are<br />

common to more than one syndrome, the user can choose the most<br />

appropriate syndrome or if two or more possible syndromes are present,<br />

they can be listed sequentially.<br />

A preliminary version of the software will be presented that is able<br />

to analyze 32 different taphonomic imprints tracing them back to eight<br />

different taphonomic syndromes. The software is free and downloadable<br />

at the web site www.restiumani.it. As it is an open source, the software<br />

can and will be improved by the scientific community over time.<br />

Taphonomy, Software, Forensic Anthropology<br />

H84 Comparison of Fresh Tissue Autopsy and<br />

Skeletal Analysis Reports in Colombia<br />

Karen R. Burns, PhD*, University of Utah, Department of Anthropology,<br />

270 South 1400 East, Salt Lake City, UT 84112-0060; and Ana C.<br />

Guatame-Garcia, MSc, Calle 126A #7C-45, Bogota, COLOMBIA<br />

After attending this presentation, attendees will be presented with a<br />

set of recent cases from Colombia that provide the rare opportunity to<br />

compare postmortem examinations of skeletonized remains with freshtissue<br />

autopsy reports of the same individuals at the time of death. The<br />

attendees will be able to compare and identify disagreements, additions,<br />

and omissions between types of analysis. This presentation will help the<br />

forensic scientists who are focused on human identification and<br />

determination of circumstances of death to anticipate differences in<br />

reports and adjust expectations and methods accordingly. It will also<br />

highlight the value of multidisciplinary teams in postmortem exams.<br />

This presentation will impact the forensic science community by<br />

demonstrating the need for flexibility and cooperation between experts<br />

in the analysis of human remains. Problems concerning both human<br />

identification and circumstances of death are highlighted.<br />

In the summer of 2008, eighteen cases of unidentified combat dead<br />

from 1995-2003 were disinterred from a cemetery in the Department of<br />

Antioquia, Colombia. All were analyzed by standard anthropological<br />

methods. The skeletal analyses were then compared with the records of<br />

forensic autopsies (necropsies), which had been conducted locally near<br />

the time of death. The autopsies provided a superficial description of the<br />

remains, including skin and hair color, tattoos, and scars. The autopsy<br />

reports then focused on superficial peri-mortem trauma (recent wounds),<br />

but did not include radiographs. The anthropological analyses included<br />

a basic description of sex, age, race, and stature. They then focused on a<br />

more detailed analyses of bone trauma, both antemortem and<br />

perimortem. (Postmortem trauma did not present a problem because the<br />

bodies had been maintained in crypts and carefully removed from the<br />

original coffins.)<br />

Of the eighteen research cases, the autopsy reports of fifteen<br />

individuals contained enough material for serious comparison. Of the<br />

fifteen, there was complete agreement in sexual identity, but 31 percent<br />

disagreement regarding age at death. Part of this can be attributed to the<br />

differences in method of reporting. The autopsy reports tended to state<br />

a unique age and the anthropology reports stated an age range. Another<br />

problem is the lack of local population data. The stature estimates were<br />

surprisingly inconsistent and cannot be easily explained. The error<br />

might have been introduced by overly rapid estimations during autopsy,<br />

or the errors may be the result of the lack of local population data. It was<br />

almost impossible to compare the conclusions regarding race. The<br />

vocabulary used by the pathologists was based on skin color and local<br />

terminology. The vocabulary used by the anthropologists was based on<br />

cranial observations and measurements described in terms of global<br />

populations. The anthropological reports revealed 54 elements of<br />

additional information potentially critical to success in personal<br />

identification.<br />

The most significant report differences were in the analysis of perimortem<br />

trauma. The anthropology reports revealed that many of the<br />

discrepancies and errors were in the original (autopsy) trauma analysis.<br />

51 * Presenting Author


Forty-nine injuries were not recorded in the autopsies; fourteen gunshot<br />

trajectories were reported to have occurred in the wrong direction; and<br />

two injuries were recorded in autopsy on the wrong side of the body<br />

(left/right error). There were also five differences of opinion about the<br />

specific weapon of injury, and several inconsistencies in the general<br />

interpretation of injuries.<br />

Methods, materials, and often motives differ between fresh tissue<br />

autopsy and skeletal analysis. The result is a separate set of findings,<br />

sometimes congruent, but sometimes very different. As expected,<br />

autopsies provide more information about soft tissues, whereas<br />

osteoanalyses provide more information about both antemortem and<br />

peri-mortem trauma to osseous tissues. The combination of reports<br />

provides a more complete description of the circumstances of death,<br />

significantly improves accuracy, and increases the probability of<br />

personal identification. Cooperation between professionals as utilized<br />

for example, in DMORT post-disaster operations, is recommended.<br />

Osteoanalysis, Autopsy, Colombia<br />

H85 Conditions for Breaking Down Mummified<br />

Tissue and the Subsequent Implications for<br />

Time Since Death<br />

Kanya Godde, PhD*, Texas State University, San Marcos, Department of<br />

Anthropology, 601 University Drive, San Marcos, TX 78666<br />

The goal of this presentation is to inform attendees of the methods<br />

and conditions favorable to soften mummified tissue for easy removal<br />

from bone.<br />

This presentation will impact the forensic science community by<br />

demonstrating how the application of this technique will quicken and<br />

simplify the bone cleaning process for skeletal collections. Moreover,<br />

the findings from this project suggest that traditional time since death<br />

estimates may need to be adjusted based on the state of mummified<br />

remains.<br />

As more decomposition facilities are launched across the nation, the<br />

need for establishing effective techniques for removing debris, tissue,<br />

and organic matter from skeletal remains increases. In order to run a<br />

successful facility, the director must maintain a delicate balance between<br />

incoming donations and those ready to be cleaned for curation.<br />

Mummified tissue has a tough texture, is challenging to remove, and<br />

slows the process of cleaning skeletons. Efforts to soften the tissue<br />

typically occur after the skeleton is removed from the outdoor<br />

environment and transferred to an indoor lab for cleaning. Attempts to<br />

remove tissue can include heating it in water and picking it off the bone.<br />

Unfortunately, these strategies still result in an increase in the time it<br />

takes to clean donations. Thus, the need for finding a more suitable<br />

means to remove this type of tissue is necessary to prevent a processing<br />

backlog. Based on observations of processing techniques, the most<br />

effective variables for softening mummified tissue are heat and moisture.<br />

This project involved testing a variety of variables, including heat and<br />

moisture, prior to the removal of the donation from an outdoor<br />

environment. As a result of the effectiveness of heat and moisture<br />

application in indoor lab procedures, the author expected these variables<br />

to play a similar role in the outdoor environment.<br />

Over the course of one year, donations were observed at the<br />

Anthropological Research Facility (ARF) at University of Tennessee,<br />

Knoxville. Each donation was prescreened to ensure that at least one<br />

anatomical region (e.g., a hand, etc.) was mummified. After the<br />

donations were collected, they were placed into two bags: the inner bag<br />

was clear plastic (allowing for observations of changes in the tissue);<br />

and, the outer bag was a tan biohazard bag (to designate the nature of the<br />

contents). Observations of moisture, light, insects, and amount of soil<br />

were made at the time of placement into the bag and approximately every<br />

week until the remains were deemed suitable for processing or were<br />

* Presenting Author<br />

skeletal. Donations were placed in several locations at the ARF to<br />

provide differing amounts of exposure to the variables. Categorical<br />

statistics were applied to the data to isolate the most effective variables<br />

for breaking down the toughness of the tissue in the shortest amount of<br />

time.<br />

The results of this project were consistent with the findings during<br />

processing; both light and moisture (in conjunction with one another)<br />

were significant variables in speeding up the decomposition process.<br />

Surprisingly, partial sun was the most effective amount of light, while<br />

both small and medium amounts of moisture were successful. This<br />

discovery is consistent with the hypothesis that both heat (as generated<br />

by the amount of light) and moisture are crucial elements for the decay<br />

of mummified tissue. Donations that are placed in bags in a location<br />

with partial sun and light to moderate moisture will break down the<br />

tough tissue in intervals between two weeks and two months, based on<br />

seasonality.<br />

The purpose of this methodology is to ease the burden of the<br />

processing crew. Instead of spending weeks working on removing tissue<br />

from one mummified skeleton, the processing crew can focus on mostly<br />

skeletal remains that only require a few hours to clean. The mummified<br />

donations can be placed into bags with the optimal conditions listed<br />

above and left while the natural moisture and light break down the tissue.<br />

The implications for these findings extend beyond mere processing<br />

techniques; they are also significant for time since death estimations.<br />

Assessing individuals with tissue that appears mummified<br />

(discoloration, patches of toughness, etc.), except for a soft texture,<br />

should take into account the possibility of a longer postmortem interval<br />

than those remains that are mummified with a tough texture. This project<br />

demonstrates that softening of mummified tissue can occur after a body<br />

has mummified and been exposed to key environmental elements.<br />

Mummification, Time Since Death, Decomposition<br />

H86 Comparing Human and Porcine Infant<br />

Parietal Histomorphology to Facilitate<br />

Research on Pediatric Cranial Trauma<br />

Lindsey L. Jenny, MA, Paige V. Wojcik, BS*, and Todd W. Fenton, PhD,<br />

Michigan State University, Department of Anthropology, 354 Baker<br />

Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will understand<br />

similarities and differences in histomorphology between human infant<br />

and porcine infant parietal bones as well as histomorphology’s<br />

relationship to trauma research.<br />

This presentation will impact the forensic science community by<br />

indicating that infant porcine parietal bones are an appropriate analog to<br />

human infant parietal bones up to 24 months of age when conducting<br />

pediatric cranial trauma research. Because it is difficult to obtain human<br />

pediatric skeletal material for trauma and biomechanics research, it is<br />

important to understand the histological relationships between the<br />

human infant skull and the porcine infant skull, which is often used as an<br />

analog in these types of studies.<br />

This study established the baseline histomorphological properties of<br />

the human infant parietal bones and the porcine infant parietal bone,<br />

which did not previously exist. Histomorphology, the study of<br />

microscopic features of bone, is useful in determining the growth and<br />

developmental patterns of the porcine infant and human infant skulls.<br />

This information is essential to understand the manifestations of cranial<br />

injury on a histomorphological as well as biomechanical level.<br />

Previous research at Michigan State University suggests a<br />

correlation in cranial bone development between 1-day-old porcine<br />

skulls and 1-month-old human skulls based on biomechanical properties.<br />

This research tests the hypothesized correlation by comparing porcine<br />

bone histology to human bone histology. By comparing the appearance<br />

52


and thickness of diploe, endocranial thickness, ectocranial thickness, and<br />

secondary osteon size, number, and arrangement, it was determined if the<br />

hypothesized correlation in cranial bone development is valid in a<br />

histomorphological context.<br />

Human infant and porcine infant parietal bones were thin sectioned<br />

using a saw and examined using light microscopy at 100x. Images were<br />

captured using image analysis software. Image analysis software was<br />

also used to measure endocranial and ectocranial thickness and osteon<br />

size and density.<br />

The main goal of this research was to determine whether the porcine<br />

infant skull is a reasonable analog for the human infant skull in<br />

conducting research on pediatric cranial trauma. It is necessary to use<br />

the porcine skull as an animal model of the human skull due to a lack of<br />

pediatric cadaveric material available for research and experimentation.<br />

Paired t-tests found no significant differences between the human<br />

and porcine skulls in the ratios between the ectocranial, endocranial, and<br />

diploe thickness to total parietal thickness. Results indicate that there<br />

was a correlation in the appearance of diploe between nine-day-old pigs<br />

and twelve month old humans. However, parietal development<br />

permanently diverged at two years in humans and twenty-four days in<br />

pigs. There was no correlation in osteon density as infant pigs had more<br />

osteons than human infants. Differences in osteon size and density have<br />

been reported between species in long bones (Hillier and Bell, 2007) but<br />

the skull requires further exploration.<br />

In conclusion, this study indicates that infant porcine parietal bones<br />

are an appropriate analog to human infant parietal bones up to 24 months<br />

of age when conducting pediatric cranial trauma research. Because it is<br />

difficult to obtain human pediatric skeletal material for trauma and<br />

biomechanics research, it is important to understand the histological<br />

relationships between the human infant skull and the porcine infant skull,<br />

which is often used as an analog in these types of studies.<br />

Pediatric, Trauma, Histology<br />

H87 Identification vs. Cause of Death in Mass<br />

Graves Where Individuals are Commingled<br />

in Colombia<br />

Maria D. Morcillo, MD*, and Isla Y. Campos Varela, National Institute<br />

of Legal Medicine, Calle 7 A Number 12-61, Piso 3,<br />

Bogota, COLOMBIA<br />

The goal of this presentation is to demonstrate the importance of<br />

determining cause of death of commingled individuals from mass graves<br />

from the Colombian armed conflict.<br />

This presentation will impact the forensic science community by<br />

discussing the approach used to individuate remains that will impact the<br />

forensic community in those countries with mass graves issues and low<br />

resources.<br />

In Colombia, graves were commingled and/or incomplete<br />

individuals were buried to increase the complexity of forensic analyses.<br />

Of the reasons that can explain the existence of these type of graves is<br />

the practice used by paramilitary groups where victims are dismembered<br />

alive or as a method to dispose and hide the remains. Consequently,<br />

several individuals are sometimes buried in one or more graves in a<br />

disorganized and random manner. Other reasons are the cultural<br />

traditions of the community and circumstances of the victim’s family,<br />

who bury their loved ones in one grave on their own property or in local<br />

cemeteries, even when they have died in different events or<br />

circumstances, including natural death. Sometimes the community is<br />

forced to carry out mass burials in a short period of time when threatened<br />

by armed groups that may strike again. On other occasions, forcibly<br />

displaced families exhume their dead relatives in order to rebury them in<br />

the area where they relocate. Lastly, particularly in rural cemeteries,<br />

bodies are often exhumed and disposed of with other remains, in order to<br />

open space for the recently deceased. No record is kept on the conditions<br />

in which these individuals are buried or found.<br />

These graves are characterized by the presence of commingled and<br />

incomplete bodies at different stages of preservation and with various<br />

types of injuries. Frequently, the climate of the tropical forest where the<br />

conflict takes place deteriorates the bony structures and hinders the<br />

determination of the biological profile and prevents articulation of body<br />

segments.<br />

During lab analyses, remains are individualized based on the<br />

morphological and metric characteristics in order to determine the<br />

minimum number of individuals. The most likely number of individuals<br />

is not used because graves usually have three to five bodies. In cases<br />

where individualization/sorting is impossible, the remains of each<br />

individual are classified as INDIVIDUAL X; groups of anatomically<br />

associated structures where it is impossible to determine to which<br />

individual they belong are classified as GROUP X; and disarticulated<br />

structures that may correspond to any individual are classified as<br />

MISCELLANEOUS. Both INDIVIDUAL and GROUP skeletal samples<br />

are kept for purposes of genetic analysis. However, due to the high cost<br />

and volume of cases, DNA labs give higher priority to INDIVIDUAL<br />

samples than to GROUP samples. Consequently, INDIVIDUALS<br />

samples are identified, but in most cases the cause of death may not be<br />

established, particularly if the injuries that caused death remain<br />

unassociated.<br />

The medical-anthropological teams are frequently faced with these<br />

two problems: sorting and determination of the individual’s cause of<br />

death. Returning complete skeletons to family members is very often not<br />

possible and cannot rely on genetics because of sample processing<br />

limitations. Additionally, the cause of death of these individuals is<br />

frequently undetermined. The proposal is to take bone samples from the<br />

skull and injured structures for identification purposes. This would<br />

require the enhancement of DNA extraction techniques from small<br />

structures, and a coordinated effort with DNA experts. Processing<br />

samples in this way may contribute to victim identification and explain<br />

the circumstances of death. Additionally, it would meet the requirements<br />

of the administration of justice and each family’s need to know the truth<br />

about what happened to their loved ones.<br />

Commingled, Cause of Death, Armed Conflict in Colombia<br />

H88 Positive Identification Through<br />

Comparative Panoramic Radiography of<br />

the Maxillary Sinuses: A Validation Study<br />

Angela Soler, MA*, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will learn the results of<br />

a validation study among forensic anthropologists and forensic<br />

odontologists conducting positive identifications by comparing<br />

antemortem and postmortem panoramic radiographs of the maxillary<br />

sinuses.<br />

This presentation will impact the forensic science community by<br />

providing accuracy rates for the use of panoramic radiography and the<br />

maxillary sinuses to establish positive identification of unknown<br />

decedents. In addition, this presentation will discuss the effects of<br />

educational background and experience in comparative radiography<br />

when making a positive identification using panoramic radiographs and<br />

the maxillary sinuses.<br />

According to Daubert v. Merrell Dow Pharmaceuticals (1993) all<br />

court admissible forensic techniques must comply with four standards:<br />

they have been or have the potential to be empirically tested; have known<br />

error rates; have been subjected to peer review; and have been generally<br />

accepted in the scientific literature. Furthermore, with the 2009<br />

recommendations of the National Academy of Sciences and the 2010<br />

53 * Presenting Author


Draft Outline of Forensic Reform Legislation there is an increasing push<br />

for the standardization and validation of forensic methods. As a result<br />

many studies have been conducted to validate positive identification in<br />

forensic anthropology and odontology. Validation studies on the use of<br />

comparative radiography have included a range of anatomical regions<br />

including: the lumbar spine (Wankmiller 2010); chest (Keuhn et. al.<br />

2002); hand (Koot et. al. 2005); hyoid (Cornelison 2002); frontal sinuses<br />

(Christensen 2005); and the dentition (MacLean et. al. 1994, Soomer et.<br />

al. 2003). In recent years panoramic radiography has become a standard<br />

of care in many dental offices throughout the United States and now a<br />

larger percentage of positive identifications are being made through the<br />

comparison of panoramic antemortem radiographs. In addition, new<br />

technology is increasing the efficiency and use of postmortem panoramic<br />

radiography in the medical examiner setting (Du Chesne et. al. 2000,<br />

Mincer et. al. 2008). Although the dentition in panoramic radiographs<br />

has been validated as a viable positive identification method (Lee et. al.<br />

2004), the use of the maxillary sinuses and other osteological features<br />

has never been investigated.<br />

This study evaluates panoramic radiography and the maxillary<br />

sinuses in positive identification by comparing antemortem and<br />

postmortem radiographs. Twenty fully skeletonized skulls from<br />

Michigan State University were selected for this project. Simulated<br />

“antemortem” panoramic radiographs were obtained using a Panorex<br />

radiography machine. The skulls were placed on a table and propped up<br />

with foam blocks. All crania were positioned in the Frankfurt horizontal<br />

plane with the central incisors resting on a notched bite stick. The frontal<br />

was placed onto a forehead block and the skull was steadied using the<br />

device’s parietal head supports. Horizontal linear light beams on the<br />

lower border of the nasal aperture and vertical linear light beams on the<br />

left canine were used to maintain consistent positioning of the skull. Five<br />

crania were then randomly selected to simulate the “postmortem”<br />

matching films. Each of the five skulls were repositioned in the machine<br />

using the above method. All radiographs were digitized and then cropped<br />

to exclude viewing of the teeth. A web-based study was designed to<br />

invite forensic anthropologists and odontologists to match five<br />

“postmortem” radiographs from one of the twenty “antemortem” films.<br />

Data regarding the most helpful features, like the borders of the<br />

maxillary sinuses, nasal aperture, and inferior orbits was collected.<br />

Additional data regarding the participant’s field of expertise, level of<br />

education, years practicing in forensics, and experience with positive<br />

identification was also analyzed.<br />

Although the study is ongoing, so far a total of thirty-five forensic<br />

anthropologists, odontologists, and graduate students have participated<br />

in this study. The overall accuracy rate for correctly matching all five of<br />

the postmortem films was 65.7%; however, when the most challenging<br />

radiograph was withdrawn, the accuracy rate reached 91.4%. Only<br />

57.1% of participants accurately identified postmortem film C, and<br />

14.3% chose not to answer based on the poor quality of the antemortem<br />

film. Postmortem radiograph C was the most difficult to match due to a<br />

slight difference in the radiographic angulation and distance from the xray;<br />

however it highlights an important point. The ability to accurately<br />

identify individuals based on panoramic radiography of skeletal features<br />

other than the teeth relies heavily on the clarity of the films and exact<br />

duplication of the antemortem position of the skull within the panoramic<br />

radiography machine. Contingency tables and chi-square test results<br />

suggest that observer education, years in the field of forensics, and<br />

experience in positive identification did not significantly affect the<br />

ability to accurately identify the correct match for any of the postmortem<br />

radiographs, including postmortem film C. In addition, there was no<br />

significant difference in the way that experienced forensic<br />

anthropologists or odontologists performed in the study. However, it<br />

does appear that the key to correctly matching antemortem and<br />

postmortem films in this research was the ability to determine whether<br />

the antemortem films were of sufficient quality to perform an<br />

identification, which often comes with experience in<br />

comparative radiography.<br />

Positive Identification, Panoramic Radiography, Validation<br />

* Presenting Author<br />

H89 New Method of Identification Based on<br />

Computer-Assisted Radiograph Comparison<br />

Sharon M. Derrick, PhD*, Harris County Institute of Forensic Sciences,<br />

1885 Old Spanish Trail, Houston, TX 77054; John A. Hipp, PhD,<br />

<strong>Medical</strong> Metrics, Incorporated, 2121 Sage Road, Houston, TX 77056;<br />

Jennifer C. Love, PhD, and Jason M. Wiersema, PhD, Harris County<br />

Institute of Forensic Sciences, 1885 Old Spanish Trail, Houston, TX<br />

77054; N. Shastry Akella, PhD, <strong>Medical</strong> Metrics, Incorporated, 2121<br />

Sage Road, Houston, TX 77056; and Luis A. Sanchez, MD, Harris<br />

County Institute of Forensic Sciences, 1885 Old Spanish Trail, Houston,<br />

TX 77054<br />

After attending this presentation, attendees will have received a<br />

detailed description of the basis for the computer-assisted radiograph<br />

comparison method, explanation of the proposed practical application of<br />

the method in medical examiner/coroner offices, and a discussion of the<br />

pilot study results.<br />

The presentation will impact the forensic science community by<br />

introducing a new and practical identification method that is responsive<br />

to the recent National Academy of Science Report recommendations and<br />

post-Daubert evidence admissibility standards.<br />

A crucial need exists for a statistically validated, time-sensitive, and<br />

relatively inexpensive scientific identification method for routine use in<br />

the medical examiner/coroner setting. <strong>Medical</strong> examiner/coroner<br />

reliance on scientific identification extends far beyond the completely<br />

unknown medicolegal decedent. Tentatively identified decedents are<br />

often unrecognizable due to disfiguring facial trauma, charring, or<br />

advanced decomposition. In cases of multiple fatalities, scientific<br />

identification methods are used because there is increased potential for<br />

incorrect assignment of identity. In the aftermath of a mass fatality<br />

event, scientific identification of the casualties becomes paramount.<br />

This presentation describes a new quantitative approach to identification<br />

achieved through modification of existing clinically-tested computer<br />

technology. Attendees will receive a detailed description of the basis for<br />

the computer-assisted radiograph comparison method, the proposed<br />

practical application of the method in medical examiner/coroner offices,<br />

and a discussion of the pilot study results.<br />

The foundation of the proposed identification method is<br />

“Quantitative Motion Analysis” (QMA ® ) software (<strong>Medical</strong> Metrics,<br />

Incorporated). The performance of the software has been validated in<br />

multiple clinically based peer-reviewed studies of spinal biomechanics<br />

and spinal treatments. QMA ® allows for computer-assisted matching of<br />

specific skeletal elements, such as vertebral bodies, by tracking them<br />

through multiple radiographic images. The first step in transforming<br />

QMA ® into a forensic identification tool has been to program the<br />

software to generate quantitative match scores for a statistically<br />

sufficient number of tracked skeletal elements per comparison.<br />

The ongoing pilot study began with the development of a<br />

processing algorithm that provides QMA ® with the ability to<br />

successfully calculate the required match scores. The fourth cervical<br />

vertebra (C4) was selected as the first test element. The goal of this<br />

initial work was simply to develop and test the algorithm, a timeconsuming<br />

process that required testing of a large number of rejected<br />

algorithms. Once a satisfactory algorithm was developed, it was tested<br />

on five unique sets of lateral cervical radiographs or fluoroscopic images<br />

of 10 individual subjects. The anonymized radiographs were assembled<br />

from archived spine research image sets. There were no implants or<br />

surgical alterations in any of the views. The sets of images were of<br />

subjects between the ages of 22 and 89 years, loosely grouped into<br />

“younger” and “older” subjects for comparison purposes. Each set of<br />

images contained two different images of the same index subject and an<br />

array of nine images from nine different subjects. During the QMA ®<br />

tracking process, variations in magnification between images were<br />

adjusted so that the C4 was approximately the same size in all of the<br />

images. Following the tracking process, a region of interest was defined<br />

54


around the C4, the images were rotated so that the endplates were<br />

approximately horizontal, and histogram equalization was applied to all<br />

of the images, using the combined histogram for the entire set of images.<br />

This process standardized the orientation of the vertebrae and equalized<br />

brightness and contrast of the images in each set. A contrast<br />

enhancement filter was then applied that maximized contrast for<br />

horizontally aligned image features. This filter weights the contribution<br />

of the vertebral endplates more heavily than other features. An image<br />

match score was then calculated between the first image and each of the<br />

other images in the set.<br />

For each set of 10 images, the maximum match score was returned<br />

for the two index images, representing a correct comparison match for<br />

the index subject in each set. The maximum score was scaled to 100 and<br />

all other match scores were normalized to that score. After<br />

normalization, all matches returned a score of 99-100 and non-match<br />

scores ranged from 77-98. The results of the pilot study show that<br />

QMA ® can successfully be adapted to establish positive identification in<br />

the medical examiner/coroner system.<br />

Radiograph Identification, Forensic Anthropology, QMA ®<br />

H90 Test of Osteon Circularity as a Method of<br />

Human/Non-Human Identification<br />

MariaTeresa A. Tersigni-Tarrant, PhD*, MCG/UGA <strong>Medical</strong><br />

Partnership, 279 Williams Street, Athens, GA 30602; John E. Byrd, PhD,<br />

95-033 Hokuiwa Street, #51, Mililani, HI 96853-5530; and Jiro Manabe,<br />

MA, JPAC-CIL, 310 Worchester Avenue Building 45, Hickam AFB,<br />

Honolulu, HI 96853<br />

After attending this presentation, attendees can expect to learn how<br />

new osteon area and circularity tests can help with the identification of<br />

fragmentary remains and how to utilize the proposed method on<br />

fragmentary skeletal casework.<br />

This presentation will impact the forensic science community in<br />

terms of knowledge, competence, and performance by describing to the<br />

attendees how osteon measurements can be used to distinguish between<br />

human and non-human fragmentary remains, educating the attendees on<br />

the proper method of application of the proposed method, and providing<br />

a standard operating procedure for the implementation of this method in<br />

forensic practice.<br />

Due to increased need for the identification of highly fragmentary<br />

skeletal remains, more laboratories are turning to histological techniques<br />

for fast, accurate species identification tests. This research adds to the<br />

body of knowledge by focusing on the overall shape and areas of the<br />

osteons. Human bone specimens from known individuals were utilized<br />

to develop reference data. Each of the limb bones from five individuals<br />

was histologically sampled, yielding slides from 30 specimens. Digital<br />

images of a random location on each slide were captured at 100x<br />

magnification using a color digital camera.<br />

Osteon area was measured with Image J program (NIH). The<br />

program requires the perimeter of each osteon be traced. The perimeter<br />

outline provides the basis for calculation of area and other<br />

measurements. The assessment of shape, called the circularity index<br />

(CI), was obtained using Image J’s circularity measurement option. Area<br />

and circularity data were obtained for 1204 osteons from the 30 samples<br />

from five individuals to form the reference data set. These individuals<br />

were selected from the Bass Collection (UTK). The same procedures<br />

were used to obtain area and circularity from 1,442 osteons in 37<br />

samples from 35 individuals from JPAC-CIL (calculating the mean<br />

values for area and circularity from a random sample of 30 osteons<br />

drawn from each sample image). This mean is compared to the mean<br />

and “standard error of the mean” calculated from the reference data. A<br />

bootstrap step was taken to generalize the reference data and make the<br />

statistical tests meaningful (i.e., to avoid the trap with large sample sizes<br />

whereby any difference is statistically significant). The 1,204 osteon<br />

measurements for each variable had independent samples of size 30,<br />

randomly drawn 1,000 times. Each time a sample was selected, the<br />

mean was calculated. Specimen mean values were compared to the<br />

grand mean (e.g. mean of means) utilizing the standard deviation (SD) of<br />

the 1,000 means (bootstrap standard error of the mean) as the basis for a<br />

formal test of the null hypothesis that the case specimen is human (e.g.<br />

has osteons that are within the bounds of natural variation for area or<br />

circularity).<br />

The grand mean value obtained for human osteons was 37,365<br />

microns and the standard deviation of the bootstrap means was 2,728<br />

microns. The distribution closely approximates normality.<br />

Consequently, it was decided to conduct a one-sided test of the null<br />

hypothesis (e.g., specimen is human) in the direction of smaller mean<br />

areas. The resulting cutoff values for osteon area were set as follows:<br />

mean < 31,909 for p


one microarchitecture have been reported in the anthropological<br />

literature, the evaluation of trabecular bone area has not been included in<br />

histological age-estimation methods.<br />

With advancing age cortical bone is architecturally modified<br />

through the process of trabecularization. This conversion increases the<br />

endosteal area and displays a network of interconnecting trabecular<br />

struts that are not included in the measurement of cortical bone area. The<br />

traditional measurement of cortical area requires the observer to<br />

subjectively determine where cortical bone ends and cancellous<br />

(trabecular) bone begins, producing measurement variability between<br />

observers. By including trabecular bone in area measurements, this<br />

subjectivity is removed. Furthermore, it is believed that incorporating<br />

both cortical and trabecular bone in area measurements to produce a<br />

bone area variable will provide more information for histological<br />

analysis of age-related bone loss.<br />

It has been demonstrated that histological age estimation methods<br />

based on osteon counts (OPD) are limited when applied to older<br />

individuals. This is attributed to the nature of bone remodeling and the<br />

osteon population density (OPD) variable used for histological age<br />

estimation. Osteon counts from the rib eventually reach an asymptotic<br />

value in individuals of advanced age. Two factors exist that determine<br />

the age at which osteon counts will reach an asymptote value: (1) cortical<br />

area; and, (2) osteon area (size). Including trabecular bone area in<br />

histological measurements may improve future histological age<br />

estimation methods for the ribs, especially in older individuals where the<br />

OPD value becomes less reliable. The objectives of this study are: (1) to<br />

remove the subjectivity caused by measuring cortical area; and, (2) to<br />

determine if bone area has a stronger correlation with age than cortical<br />

area alone.<br />

The sample consisted of midshaft sixth rib cross-sections from 31<br />

known age individuals, ranging from 16-87 years of age (mean age 46.4<br />

+/- 3.2 SD years). These included 26 men and 5 women. All data was<br />

collected from a pre-existing collection of sixth rib bone samples at the<br />

Office of Chief <strong>Medical</strong> Examiner in New York City. The following<br />

histomorphometric variables were collected: (1) total subperiosteal area<br />

(TA); (2) cortical area (CA); (3) bone area (BA); (4) relative bone area<br />

(rBA); (5) relative cortical area (rCA); and, (6) endosteal area (EA).<br />

The rib cross-sections were prepared following standard protocols<br />

for histological sample preparation. The cross-sectional area of two rib<br />

samples per individual was evaluated. Only thin sections with suffice<br />

microstructural preservation and an intact cortex were utilized. Thin<br />

sections were photographed using a transmitted light microscope and a<br />

mounted digital camera attachment (x40 magnification). A series of<br />

sectional photographs were merged using digital imaging software.<br />

Cortical and trabecular bone areas were measured using a modular<br />

imaging software and a digitizing tablet.<br />

Statistical analyses were completed using statistical software. A<br />

one-way analysis of variance (ANOVA) with age as the predictor<br />

variable was fit for rBA, rCA, CA, BA, EA, and TA to determine the<br />

strongest correlation with known age. When significant effects were<br />

detected, paired t-tests were utilized to identify significant differences<br />

between age categories. Relationships between known age and the<br />

respective variables were evaluated by linear regression analysis.<br />

Results from this preliminary research indicate that cross-sectional<br />

area measurements were found to decrease with advancing age.<br />

Although the sample size is small, individuals greater than 40 years of<br />

age were found to have significantly smaller mean BA than those who<br />

were less than 40 years of age. Overall, a negative correlation was<br />

observed between known age and sixth rib BA (R=-0.34), and CA (R=-<br />

0.35). rBA and rCA displayed highly significant negative correlations<br />

with increasing age. The correlation strength was slightly higher<br />

between known age and rBA (R=-0.65) compared to known age and rCA<br />

(R=-0.59). Known age and TA displayed a positive correlation<br />

(R=.0.25). With one-way ANOVA, both rBA and rCA show significant<br />

difference among age groups at P=.039 and P=.025, respectively.<br />

* Presenting Author<br />

Previous studies have demonstrated that sixth rib cortical bone area<br />

significantly decreases with age and therefore, the variable has been<br />

applied to more recent age estimation equations. This overall age-related<br />

decrease in bone mass can be attributed to trabecularization of the<br />

cortical bone which results in endosteal expansion. The results of this<br />

study suggest that evaluating bone area may improve the accuracy of<br />

histological methods. Including rBA in future studies will provide a<br />

more relevant measure of bone area as it is independent of bone size.<br />

Finally, subjectivity and interobserver error may be reduced if the BA<br />

and rBA variables are included in future methods.<br />

Histology, Histomorphometry, Bone Area<br />

H92 Improving Forensic Facial Reproductions<br />

Using Empirical Modeling<br />

Brian Wood, MS*, University of Tennessee, 315 Pasqua Engineering<br />

Building, Knoxville, TN 37996; Richard Jantz, PhD, Lee Meadows<br />

Jantz, PhD, University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37996-0720; and Mohamed<br />

Mahfouz, PhD, University of Tennessee, Center for Musculoskeletal<br />

Research, 307 Perkins Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand the<br />

benefits of using empirical modeling to produce more accurate soft facial<br />

tissue thicknesses that are used in facial reproductions.<br />

This presentation will impact the forensic science community by<br />

presenting how empirical modeling improves the accuracy of forensic<br />

facial reproductions and can have a positive impact on the identification<br />

rate of unknown skeletal remains.<br />

Forensic facial reconstruction has been used for many years to<br />

identify skeletal remains. The face of the unknown person can be<br />

reproduced based on the soft facial tissue thickness, which overlays the<br />

bony structure of the skull. Currently, forensic artists place average<br />

facial tissue markers at 21 specific anatomical locations on the skull and<br />

use clay to model the face based on the length of the markers. The<br />

purpose of this study was to develop a new method for estimating the<br />

facial soft tissue thickness at the 21 traditional craniometrical landmarks<br />

used in forensic facial reconstruction. This newly developed method<br />

uses a non-parametric modeling technique to predict the facial tissue<br />

depths based on a unique skull input.<br />

Computed Tomography (CT) images of 100 American White male<br />

subjects’ skulls were used to build a database of facial tissue thicknesses<br />

and input predictors for the non-parametric model. The inputs to the<br />

model are various cranial bone thicknesses and measurements along<br />

specific anatomical lines, which are then used to predict the facial tissue<br />

thicknesses at the traditional landmarks using a Non-Parametric Kernel<br />

Regression model. The tissue and bone measurements were performed<br />

using a software package being developed at the Center for<br />

Musculoskeletal Research (CMR) at The University of Tennessee.<br />

Hetero-Associative Kernel Regression (HAKR) and Inferential Kernel<br />

Regression models were built using the measurements from the 100 male<br />

subjects.<br />

Two results were computed for each model; one including age,<br />

height, weight and BMI as predictors in the model and the other<br />

removing them from the model. This was done because, in many cases,<br />

the demographics of an unknown skull are not known. The Root Mean<br />

Squared Error (RMSE) when not using the demographics as an input to<br />

the model was 2.21mm for the HAKR architecture and 2.19 mm for the<br />

inferential model. When including the demographics, the RMSE for the<br />

HAKR architecture was 2.04mm and 1.89mm for the inferential<br />

architecture. The HAKR and Inferential model’s RMSE were both less<br />

than the currently used tabled tissue thickness RMSE from the actual<br />

measured tissue thicknesses of 3.07 mm. The developed inferential<br />

56


model provided forensic facial tissue thickness approximations with an<br />

average of 38% less error when using demographics or 29% less error<br />

when not using demographics. The error reduction is based on the tabled<br />

tissue thicknesses that are used in facial reconstructions today. The<br />

average prediction uncertainty from the LOOCV was computed to be<br />

19.7% for the HAKR model and 20.5% for the inferential model.<br />

Three male skulls from the William Bass Donated Collection at The<br />

University of Tennessee were used to visualize the model’s performance.<br />

A certified forensic artist performed the facial reconstructions. The<br />

facial reconstructions using tabled tissue thicknesses were compared to<br />

the reconstructions of the same subject using the inferential model’s<br />

predicted tissue thicknesses. The reconstructions were then compared to<br />

an actual photograph of each respective subject. The results show an<br />

overall more accurate representation of the actual subject face when<br />

using the empirical model tissue thicknesses. The findings from this<br />

pilot study have shown a proof of principal for using non-parametric<br />

empirical modeling to predict facial soft tissue thickness. This<br />

technology has the promise, with further research, to produce more<br />

accurate forensic facial reproductions. More accurate facial<br />

reproductions will hopefully have a positive effect on the identification<br />

rate of unknown skeletal remains.<br />

Facial, Reconstruction, Modeling<br />

H93 Prediction of Mouth Shape Using<br />

Geometric Morphometrics for<br />

Facial Approximation<br />

Pierre Guyomarc’h, MS*, Bruno Dutailly, MS, Christine Couture, PhD,<br />

and Helene Coqueugniot, PhD, Universite Bordeaux 1 - UMR 5199<br />

PACEA, Universite Bordeaux 1, UMR 5199 PACEA - LAPP, Av des<br />

Facultes, Bat B8, Talence, 33405, FRANCE<br />

After attending this presentation, attendees will be introduced to the<br />

advantages of geometric morphometrics when applied to facial<br />

approximation issues and the possibilities to enhance the accuracy of a<br />

prediction with the mouth shape as a practical example.<br />

This presentation will impact the forensic science community by<br />

emphasizing the importance of taking the bone morphology into account<br />

in a multivariate way prior to the reconstruction of a face based on the<br />

skull.<br />

Facial approximation specialists base their research on the principle<br />

that the facial form is directly related to the morphology of the<br />

underlying bony features. The applicability of such techniques is<br />

hindered by a lack of accuracy and reproducibility. The new advances<br />

and software availability in the geometric morphometrics field<br />

contiguously, with the development of 3D medical imaging, offer many<br />

possibilities to enhance the precision of forensic techniques. The<br />

purpose of this research is to introduce a semi-automatic face<br />

approximation method, using objective analysis strictly based on skull<br />

morphology.<br />

Several hundred computed tomography (CT) scans were collected<br />

in French hospitals. A homogeneous sub-sample of 140 known age and<br />

sex individuals was extracted. The mean age of the sample is 54 years<br />

(min = 18; max = 96; SD = 21) and the sex ratio is 1:1. Patients showing<br />

pathological or traumatic conditions were excluded. Forty 3D landmarks<br />

were collected on the mouth region of each individual directly on the<br />

reconstructed osseous and cutaneous surfaces. TIVMI software was<br />

used to obtain reliable surfaces, based on the half-maximum height<br />

algorithm in 3D (Dutailly et al. 2009). The extracted coordinates were<br />

imported into MorphoJ software (Klingenberg 2008) for analysis. The 7<br />

cutaneous and 33 osseous landmarks were checked for intra- and interobserver<br />

error and the configurations were normalized with a Procrustes<br />

superimposition. The resulting residuals and centroid sizes were used to<br />

study sexual dimorphism (with discriminant function analysis), age<br />

trends (with canonical variate analysis), asymmetry (with a Procrustes<br />

ANOVA), allometry (with multivariate regression) and covariation<br />

between the different sets of landmarks (with Partial Least Squares or<br />

PLS analysis). Results indicate the lower facial skeleton is influenced by<br />

age (mainly reflected by bone remodeling due to loss of teeth), subtle<br />

localized allometry (size-related shape changes) and sexual dimorphism<br />

(more pronounced on the mandible and consistent with allometric shape<br />

changes). Lips show some specific changes with age (wider mouth and<br />

thinner lips in older individuals) and a subtle allometry (mouth corners<br />

more posterior and thinner lips when centroid size is high) but no<br />

significant differences between males and females. PLS results suggest<br />

a good correlation between shape changes of the lips and shape changes<br />

of the facial skeleton; significant covariation in the regions studied was<br />

detected by this method.<br />

Based on these results, a prediction technique was employed (by<br />

multivariate regressions) using principal components of the osseous<br />

landmarks configuration and the Procrustes coordinates of the cutaneous<br />

landmarks. The mean correlation (r) of the regressions attains 0.69 (r² =<br />

0.48). Based on its specific morphology, it is possible to extract the<br />

shape variables from a skull to make an approximation of the coordinates<br />

of the lips. This methodology was applied to 5 CT scans (out of the 140<br />

sub-sample) in order to compare the estimated shape of the lips to the<br />

true coordinates. The differences can be evaluated through a Principal<br />

Component Analysis in order to visually assess the distance between the<br />

true shape and the predicted shape. In terms of metric proportions,<br />

distances between landmarks can be calculated and multiplied by the<br />

centroid size of the true subject to get appreciable data. For example, the<br />

width of the mouth which is the largest measurement that can be<br />

extracted from the lips, displays a mean absolute error of 2.3 mm (4.3 %<br />

of the mean mouth width in the tested individuals).<br />

This methodology offers an accurate and objective tool to<br />

approximate the shape of facial features from the skull. Further<br />

assessment of the shape of facial features using outlines or semilandmarks<br />

might enhance the precision of the results. In order to<br />

implement this approach, the next step is to develop software for<br />

computer-assisted (semi-)automatic technique for facial approximation.<br />

Facial Reconstruction, Stoma, Procrustes Superimposition<br />

H94 The Effects of Avian and Terrestrial<br />

Scavenger Activity on Human Remains in<br />

the Piney Woods of Southeast Texas<br />

Kathryn E. Moss, BS*, 4800 Calhoun Street, Houston, TX 77004; and<br />

Angela D. Rippley, BS, and Joan A. Bytheway, PhD, Sam Houston State<br />

University, Box 2296, Huntsville, TX 77341-2296<br />

After attending this presentation, attendees will understand the<br />

impact scavenger activity has on human decomposition rates in the<br />

Southeast region of Texas. By recognizing soft tissue and skeletal<br />

trauma caused by scavengers, as opposed to those caused by humans,<br />

investigators will be able to interpret taphonomic events more accurately.<br />

This presentation will impact the forensic science community by<br />

presenting research which illustrates the impact several species of<br />

scavenging animals, native to the Southeast area of Texas, has on human<br />

decomposition. Investigators, such as pathologists, law-enforcement<br />

officers, and forensic anthropologists must understand all of the factors<br />

which influence decomposition, including wildlife, in order to correctly<br />

interpret taphonomic events for the establishment of accurate<br />

postmortem interval (PMI) estimates.<br />

There have been many studies conducted which examine the effects<br />

scavenger activity has on human and nonhuman decomposition.<br />

However, to date, no such research has ever been conducted which<br />

57 * Presenting Author


examines these effects in the subtropical humid climate of Southeast<br />

Texas. This research project will, for the first time, examine the effects<br />

terrestrial and avian scavenger activity has on human decomposition.<br />

Data collected during this study will not only help investigators<br />

understand the agents involved in scavenger modified scenes, but also<br />

help to establish the time standards of decomposition as they relate<br />

specifically to the Piney Woods of Southeast Texas. This information is<br />

crucial to investigators such as medical examiners, law-enforcement<br />

personnel, and forensic anthropologists who need to determine the<br />

postmortem interval (PMI) for recovered human remains.<br />

During the time period of August 2009 to January 2010, ten<br />

cadavers were placed outdoors at the Southeast Texas Applied Forensic<br />

Science facility for observation. The research subjects were<br />

photographed with a camera for decomposition stage assessment while<br />

scavenger activity was monitored via motion-sensing stealth cameras.<br />

These stealth cameras recorded a sequence of still photos each time an<br />

object moved into the camera’s field of vision throughout the day and<br />

night. Scattered skeletal elements were observed and distance from<br />

primary placement was recorded utilizing photographs, linear<br />

measurements, and mapping software taken in the field. By recording<br />

activity with a stealth camera, the authors were able to unobtrusively<br />

observe several different scavenging animals in the field including the<br />

American black vulture (Coragyps atratus), turkey vulture (Cathartes<br />

aura), bobcat (Lynx rufus), and opossum (Didelphis virginiana). The<br />

results showed that patterns in scavenger activity leading to complete<br />

disarticulation seem to have been influenced by environmental<br />

conditions such as temperature, lunar phases, vegetation, and levels of<br />

sun exposure. Those placed outdoors during the fall season achieved<br />

disarticulation much faster than those placed during the winter. For<br />

example, one cadaver placed during the fall reached skeletonization and<br />

complete disarticulation in approximately two months whereas those<br />

placed during the winter required over six months. Among those<br />

cadavers included in winter placement, scavenging activity and<br />

decomposition noticeably slowed during the colder months until warmer<br />

temperatures returned in the spring. By this time, vegetation in two of<br />

the placement units had grown tall enough to obscure the location of the<br />

cadaver. This growth in vegetation seems to have camouflaged the area<br />

and negatively impacted scavenger activity.<br />

Findings regarding scavenger behavior showed that turkey vultures<br />

were among the first to arrive but would observe the area of cadaver<br />

placement from a tree nearby before their descent. Once their interaction<br />

with the cadaver began, they would visit throughout the day along with<br />

the American black vultures. These two species of vultures would often<br />

scavenge together however it was usually the American black vulture<br />

who took the initiative to disarticulate the skeletal elements. Their<br />

forceful behavior often led to turkey vultures leaving the scene while<br />

American black vultures flocked in and dominated the area. One fallplaced<br />

cadaver was photographed with as many eighteen vultures during<br />

one such scavenging scene. Over the course of one weekend, this same<br />

cadaver was almost completely disarticulated through vulture activity<br />

alone. At the completion of this research subject’s participation in the<br />

field, the skeletal elements were recovered and processed in the lab. By<br />

observing the photographic evidence along with the skeletal analysis, the<br />

trauma was able to be associated with the animal that caused it and at the<br />

specific stage of decomposition it occurred.<br />

This study shows the effects environmental conditions and<br />

scavenger activity has on human decomposition. As more data is<br />

compiled with the completion of future studies, a time-line of activity<br />

along with a decomposition stage assessment specific to this region of<br />

Texas will be established. By understanding and correctly interpreting<br />

the trauma on modified remains and the scene of activity, investigators<br />

will be able to establish a more accurate PMI based on the taphonomic<br />

evidence documented from research such as this.<br />

Scavengers, Taphonomy, Postmortem Interval<br />

* Presenting Author<br />

H95 Scavenging Impacts on the Progression of<br />

Decomposition in Northern New England<br />

Marcella H. Sorg, PhD*, University of Maine, Margaret Chase Smith<br />

Policy Center, 5784 York Complex, Building #4, Orono, ME 04469<br />

After attending this presentation, attendees will better understand<br />

the potential effects of scavenging on differential decomposition, and<br />

how these modifications may influence estimations of postmortem<br />

interval (PMI).<br />

This presentation will impact the forensic science community by<br />

illustrating how regional ecological variation can affect accurate<br />

estimation of PMI.<br />

Many researchers acknowledge the critical role scavengers can play<br />

in the scattering of remains and postmortem modification. However, few<br />

studies document the impact of scavenging on PMI estimates. Recent<br />

research and experimental studies in the Midwest have demonstrated the<br />

utility of estimating accumulated degree days (ADD), by assessing of<br />

decomposition. Megyesi et al. (2005) and Sheil (2008) have proposed an<br />

ordinal scale (“total body score,” referred to as TBS) to assess the extent<br />

of decomposition in three body zones (head and neck, torso, and limbs)<br />

and use the resulting score in a regression formula to calculate an<br />

ADD range.<br />

With more than 90 percent of its land covered in forest, Maine’s<br />

outdoor forensic cases are usually (70 – 80% percent) modified by<br />

scavengers, making it an extremely important taphonomic issue. Often,<br />

whole regions of the body are consumed, scattered, or missing.<br />

Megygesi’s methodology was piloted with a small sample of nine<br />

forensic cases from Maine with a known PMI and an ADD calculated<br />

from nearest weather station data. A recently developed Regional<br />

Taphonomy Geographic Information System (GIS) was used to assess<br />

the macroenvironmental context and calculate the weather station-based<br />

ADD for the PMI dates in each case. Five cases lacked representative<br />

elements for one or more of the anatomic regions. When all regions are<br />

represented, these preliminary data show that formula-calculated ADD<br />

ranges tend to be much lower than the actual ADD range.<br />

Maine’s “scavenger guild” includes both mammalian and avian<br />

animals, predominantly coyote (Canis latrans), black bear (Ursus<br />

americanus), fox (Vulpes vulpes), bobcat (Lynx rufus), raven (Corvus<br />

corax) crow (Corvus brachyrhynchos), turkey vulture (Cathartes aura)<br />

and bald eagle (Haliaeetus leucocephalus), as well as smaller mammals.<br />

In far southern and coastal areas, as well as during winter months<br />

statewide, the scavenger guild is coyote-dominant. In spring, summer<br />

and fall, it is potentially bear-dominant in most of the state. Particularly<br />

in early spring, bears are more apt to seek protein-rich meals when they<br />

first emerge from hibernation. In warmer weather, bears are more likely<br />

to be attracted to a carcass by a maggot mass, rather than decomposing<br />

flesh. Raptors and corvids participate in the scavenger guild throughout<br />

the state. Corvid presence can signal other scavengers, particularly<br />

eagles, which lack olfactory capacity, that there is a meat source in the<br />

proximity. With their sharp beaks, corvids easily “open up” a body, even<br />

when frozen, enhancing access to the viscera for other avian taxa.<br />

Coyotes are common throughout the state and are very frequent<br />

scavengers, along with other canids.<br />

Similar to canid patterns modeled by Haglund (1997) for the<br />

Northwest, limbs are often removed beginning with the upper limbs,<br />

which are easier to disarticulate and lighter to carry (if removed from the<br />

site). Bones with a thinner cortex and narrower diameter, such as ribs,<br />

require little expenditure of energy on the part of the scavenger and are<br />

generally consumed on-site early on in the process. The cranium and<br />

limb bones are often scattered, and the limb bones and extremities are<br />

often completely consumed, missing, or cached. Although most scatter<br />

tends to be within a 50 meter radius, it can range up to a mile, creating<br />

extreme challenges for search and recovery.<br />

Results indicate that scavenging can both accelerate and decelerate<br />

progression towards skeletonization, potentially interfering with<br />

58


estimates of PMI. In Maine cold temperatures as well as the<br />

involvement of large mammalian scavengers can preclude, or<br />

considerably diminish, insect infestation. Frequently, one or more<br />

anatomic regions are entirely missing, which can also bias<br />

decomposition assessment and PMI estimates.<br />

This research was supported in part by the National Institute of<br />

Justice, Office of Justice Programs, U.S. Department of Justice. The<br />

opinions, findings, and conclusions or recommendations expressed in<br />

this presentation are those of the authors and do not necessarily reflect<br />

those of the Department of Justice.<br />

Scavenging, Decomposition, Taphonomy<br />

H96 Decomposition Patterns of Human Remains<br />

Within Enclosed Environments: A<br />

Comparative Analysis of the Midwest<br />

and Southeast<br />

Melissa A. Pope, MA*, University of South Florida, Anthropology<br />

Department, 4202 East Fowler Avenue, Tampa, FL 33620<br />

The goals of this presentation are to explore the patterns and timing<br />

of the effects of decomposition for enclosed settings in both the Midwest<br />

and Southeast, and to identify taphonomic factors that will be useful for<br />

predicting the accumulated degree days (ADD). Attendees will be<br />

presented with predictive models for estimating ADD and a blueprint for<br />

retrospective decomposition studies.<br />

This presentation will impact the forensic science community by<br />

presenting trends in human decay within two distinct geographical<br />

regions for an environment that has been largely unexplored. The<br />

identified patterns accentuate the need for generating comparative<br />

samples and engaging in collaborative research to create context-specific<br />

standards for estimating the postmortem interval (PMI).<br />

Retrospective case studies from autopsy records were utilized to<br />

assess human decay trends in different geographical regions. The 2003-<br />

2008 Nebraskan autopsy records revealed 69 cases within enclosed<br />

settings, and Florida’s Hillsborough County <strong>Medical</strong> Examiner records<br />

for 2009 yielded 87 cases. Five outliers were removed (Nebraska: n=67;<br />

Florida: n=84). The reliability of Bass’ (1997) model was tested for a<br />

correlation between time ranges (first day, 2–7 days, 8–31 days, and >31<br />

days) and decay stages (fresh, bloated, advanced) to determine whether<br />

a context-specific standard can be applied to enclosed settings in varied<br />

U.S. regions. To test variation in decomposition, relationships between<br />

PMI (time in days) and Bass’ stages were tested using Spearman’s<br />

Correlations for each state, and differences in PMI among decay stages<br />

were tested with Kruskal-Wallis and Mann-Whitney U tests. The role of<br />

insect activity was described by location. Spearman’s Correlations were<br />

further used to identify factors that may be powerful in predicting ADD<br />

in Nebraska and PMI in Florida. For Florida, preliminary trends were<br />

identified. For Nebraska, a multiple regression model was constructed<br />

for the prediction of ADD.<br />

For Nebraska cases, the investigation of decompositional phases<br />

revealed that there were 49.3% (33/67) fresh, 37.3% (25/67) bloated, and<br />

13.4% (9/67) advanced. PMI ranged from one to 66 days (mean<br />

PMI=4.84 days, n=64). For Florida cases, there were 6.0% (5/84) fresh,<br />

77.4% (65/84) bloated, and 16.7% (14/84) advanced. PMI ranged from<br />

2–26 days (mean PMI=6.27 days, n=81).<br />

For both regions, Bass’ decay stages were significantly correlated<br />

with time ranges (Nebraska: r=0.829, n=64, p≤0.000; Florida: r=0.366,<br />

n=81, p=0.001). For both regions, relationships between PMI and<br />

decomposition were identified (Nebraska: r=0.772, p≤0.000, n=64;<br />

Florida: r=0.512, p≤0.000, n=81). For Nebraska, there were significant<br />

differences in PMI days among all decomposition stages (X²=37.818,<br />

df=2, p≤0.000). Florida possessed differences in PMI between bloated<br />

and advanced cases (MW-U=165.500, p≤0.000). Fresh cases could not<br />

be considered, due to small sample size.<br />

For Nebraska, only 12.3% (7/57) cases with fly colonization were<br />

documented: 11.1% (2/18) within bloat and 71.4% (5/7) within<br />

advanced. The Florida sample included flies, ants, gnats and beetles;<br />

73.56% (64/87) of cases had insect activity. Insect activity was more<br />

prevalent among Florida depositions.<br />

For Nebraska, several factors were identified as significantly<br />

correlated with the transformed log 10 ADD. Ultimately, brain<br />

liquefaction, marbling, decompositional odor, mummified tissue and the<br />

use of A.C. or heat were selected for a predictive model (Adjusted R 2<br />

=0.952; F=40.807, df=5, 5 and p≤0.000). For Florida, taphonomic<br />

variables identified as having a relationship with PMI include:<br />

necrophagy (r=0.268, p=0.015, n=81), livor mortis (r=0.234, p=0.035,<br />

n=81), bloating (r=-0.251, p=0.024, n=81), mummified tissue<br />

(r=0.527, p≤0.000, n=81), brain liquefaction (r=0.285, p=0.038, n=53),<br />

and organ decomposition (r=0.281, p=0.038, n=55). Although<br />

preliminary, these decomposition variables may be powerful predictors<br />

of ADD for Florida.<br />

Correlations between stages of decay and PMI, as well as the<br />

disparity in PMI days among stages indicate that retrospective data are<br />

well suited for identifying what taphonomic effects have a relationship<br />

with time and would serve as powerful predictors of the PMI. Although<br />

Bass’ model for outdoor Tennessee decomposition accounted for a<br />

significant portion of the variation for both locations, the low<br />

Spearman’s rho score for Florida indicated that Bass’ model cannot<br />

adequately address decomposition rates for enclosed settings in Florida.<br />

The disparity in insect activity and the selection of different<br />

decomposition variables as predictors of PMI and ADD for both<br />

locations suggest that taphonomic factors vary in influence over decay<br />

rates by geographical region. Collectively, these results lend support for<br />

the need to create quantitative models for predicting ADD that are<br />

geographically and contextually specific. Predictive models can be<br />

constructed by identifying taphonomic influences and effects that best<br />

characterize decompositional change in a given environment.<br />

Florida Decomposition, Enclosed Environments, Postmortem Interval<br />

H97 Using Algae to Estimate Postmortem<br />

Submersion Interval in a Louisiana Bayou<br />

Sophia G.D. Renke, MA*, Faculty of Law, University of Alberta,<br />

Edmonton, AB T6G 2H5, CANADA; Mary H. Manhein, MA, Department<br />

of Geography & Anthropology, Louisiana State University, Baton Rouge,<br />

LA 70803; and Sibel Bargu-Ates, PhD, Department of Oceanography<br />

and Coastal Sciences, 1235 Energy, Coast and Environment, Louisiana<br />

State University, Baton Rouge, LA 70803<br />

After attending this presentation, attendees will recognize the utility<br />

of algae in the estimation of postmortem submersion interval (PMSI).<br />

This presentation will impact the forensic science community by<br />

highlighting an often overlooked resource for the prediction of time<br />

since death, promoting collaboration between forensic anthropologists<br />

and algologists for the estimation of PMSI.<br />

When a body is found in a terrestrial setting, the forensic<br />

anthropologist has a wide array of taphonomic information available to<br />

assist in the estimation of postmortem interval (PMI). Yet,<br />

decomposition in water is far less understood, with the estimation of<br />

PMSI more difficult to determine. While insects are a principal<br />

contributor to the data on terrestrial decomposition, few truly<br />

sarcophagous aquatic insects have been documented (Wallace et al.<br />

2008). 1 Water is a highly variable habitat, being affected by numerous<br />

factors such as sunlight, temperature, wind, pollution, and geographic<br />

location. The position of a body in water is also highly variable, with<br />

some bodies floating or sinking naturally, while others are trapped or<br />

59 * Presenting Author


deliberately weighted to sink to the water floor. Depth, salinty, pH<br />

content, current, and micro and macro organisms all affect how quickly<br />

a body will decompose, and disarticulation coupled with fluvial transport<br />

make submerged cases particularly challenging. However, researchers<br />

have identified stages of underwater decomposition, such as the six-stage<br />

system suggested by Payne and King (1972). 2<br />

The current study used fetal pigs as models for humans to assist in<br />

evaluating the potential for using algae growth as an indicator of PMSI,<br />

examining three questions: (1) will a decomposing pig have different<br />

algae growth than a non-decomposing object; (2) does a clothed<br />

substrate have different algae growth than an unclothed substrate; and,<br />

(3) is algae growth different in spring and fall? Pigs were placed in a<br />

Louisiana bayou in spring and fall, some clothed in cotton and others<br />

unclothed. Each season, one clothed pig and one unclothed pig were<br />

sampled for algae accumulation daily for ten days, then once weekly<br />

until no flesh remained. In addition, submerged clothed and unclothed<br />

slate tiles were sampled for algae during the same time period, acting as<br />

comparative, non-decomposing objects. In laboratory, the algae samples<br />

were quantified through chlorophyll a concentration, while microscopic<br />

analysis qualified diatoms as the primary algae in both seasons.<br />

Additionally, each season a neighboring clothed pig and an unclothed pig<br />

were not sampled but rather visually assessed for stages of<br />

decomposition. These unsampled pigs provided a control for<br />

observation into the effects of algae sampling on the rate of<br />

decomposition.<br />

Statistical analyses were conducted to examine the effects of<br />

clothing and season on chlorophyll a on the pigs and tiles. Positive,<br />

linear relationships existed between the amount of time submerged and<br />

the accumulation of chlorophyll a l substrates in both seasons, meaning<br />

that chlorophyll a potentially can indicate time since submersion.<br />

Results also demonstrate that the presence of clothing has a greater<br />

impact on algae growth rate than the presence of decomposing matter,<br />

with the clothed pigs and clothed tiles having more growth than the<br />

unclothed pigs and tiles, especially in spring. Season was also found to<br />

highly impact algae growth, with the light rainfall and warm<br />

temperatures of spring creating ideal growing conditions compared to<br />

the heavy rainfall and cool temperatures of fall. Finally, the act of<br />

experimental algae sampling did not influence the process of<br />

decomposition.<br />

In summary, this study shows that algae growth, measured through<br />

chlorophyll a, has tremendous potential for the estimation of PMSI.<br />

References:<br />

1. Wallace JR, Merritt RW, Kimbirauskas R, Benbow ME,<br />

McIntosh M. Caddisflies assist with homicide case: determining<br />

apostmortem submersion interval using aquatic insects. Journal<br />

of Forensic Sciences 2008;53(1):609-614.<br />

2. Payne JA, King EW. Insect succession and decomposition of pig<br />

carcasses in water. Journal of the Georgia EntomologicalSociety<br />

1972;7:153-162.<br />

Postmortem Interval, Algae, Taphonomy<br />

* Presenting Author<br />

H98 Profiling of Marine Microbial Communities<br />

Associated With Decomposing<br />

Remains Can Indicate Postmortem<br />

Submersion Interval<br />

Gemma C. Dickson, BSc*, and Russell T.M. Poulter, PhD, University of<br />

Otago, Department of <strong>Bio</strong>chemistry, PO Box 56, Dunedin, AS 9054,<br />

NEW ZEALAND; Jules A. Kieser, PhD, University of Otago, Sir John<br />

Walsh Research Institute, Faculty of Dentistry, PO Box 647, Dunedin, AS<br />

9054, NEW ZEALAND; Elizabeth W. Maas, PhD, National Institute of<br />

Water & Atmospheric Research, Ltd. (NIWA), Private Bag 14901,<br />

Wellington, AS 9054, NEW ZEALAND; and P. Keith Probert, PhD,<br />

University of Otago, Department of Marine Science, PO Box 56,<br />

Dunedin, AS 9054, NEW ZEALAND<br />

After attending this presentation, attendees, will have a better<br />

understanding of the role that extrinsic microbial communities play in<br />

the rate and pattern of decomposition of remains in New Zealand coastal<br />

marine environments and how such information may enable forensic<br />

investigators to more accurately determine the postmortem submersion<br />

interval (PMSI).<br />

This presentation will impact the forensic science community by<br />

extending the currently limited knowledge of aquatic decomposition of<br />

bodies and/or body parts mediated by marine microorganisms while<br />

introducing a novel framework through which PMSI may be determined<br />

by analyzing the marine microbial community present on submerged<br />

remains at the time of body recovery.<br />

Microbial communities play a central ecological role in the<br />

recycling of nutrients and organic matter in aquatic ecosystems. Despite<br />

the clear importance of bacteria in the decomposition process, a detailed<br />

understanding of the postmortem microbiology of decomposing remains<br />

in aquatic environments is currently lacking. A previous study in a<br />

coastal marine environment showed that marine microbes display<br />

successional colonization patterns which can be linked to particular<br />

submersion intervals, but highlighted the need to develop a more highthroughput<br />

methodology, if this concept is to be utilized in a forensic<br />

setting.<br />

One such methodology is terminal restriction fragment length<br />

polymorphism (TRFLP) analysis. TRFLP is a molecular fingerprinting<br />

technique that examines the 16S rRNA genes of virtually all bacteria in<br />

a microbial community, producing a community profile or “fingerprint”<br />

which consists of different length fragments for different bacterial<br />

phyloypes. TRFLP has the advantage of being a fast, reliable and<br />

relatively quick and inexpensive technique that produces digital output<br />

and could potentially be used for forensic analysis.<br />

This study aimed to identify, using TRFLP analysis, successional<br />

changes in microbial community composition on submerged pig remains<br />

as they decomposed in the sea, and to assess whether unique components<br />

of the community existed for particular stages of decomposition or<br />

periods of submersion.<br />

Adult domestic pig (S. scrofa L.) carcasses, used as models for<br />

partial human remains, were placed in cages encompassed by mesh, so<br />

as to deny larger scavengers access and achieve the longest postmortem<br />

submersion interval possible for the collection of colonizing bacteria.<br />

Cages were submerged in the Otago Harbour in water 5-7 m deep in<br />

January (summer) 2009 and July (winter) 2010, and in Wellington<br />

Harbour in water 8-10 m deep in February (summer) 2009. The study<br />

was performed in two geographic coastal locations, and in one of these<br />

locations, during two seasons, in order to explore the general<br />

applicability this technique would have across time and space. Bacterial<br />

samples were taken by swabbing the skin of the carcasses before entry<br />

into the water, after 1, 2 and 3 days, then at 2-4 day intervals until<br />

skeletonization. DNA from the bacterial community present on the<br />

carcass at each time point was extracted from the swabs and subjected to<br />

TRFLP analysis. On sampling days, observations of gross<br />

60


decomposition changes and the presence of any small marine scavengers<br />

in or on the cage were also noted. During the course of the experiments,<br />

environmental data such as seawater temperature and pH were also<br />

monitored.<br />

Clustering analysis of TRFLP microbial community profiles from<br />

early, mid and late periods of submersion formed distinct clusters and<br />

could be distinguished based on the presence of certain bacterial<br />

phylotypes. There appeared to be very little difference in the pattern of<br />

community change over time between carcasses deployed in the two<br />

different geographic locations, suggesting this concept has broad spatial<br />

applicability. Many phylotypes present on the skin before submersion<br />

disappeared within the first few days, indicating significant and rapid<br />

disruption of the original skin microbiome following submersion of the<br />

remains in salt water. Extrinsic marine microbes colonized the remains<br />

immediately. Dynamic shifts in the structure of the microbial<br />

community present on the remains were seen during the early<br />

submersion period (Fresh to Early Putrefaction stages), with a number of<br />

short-lived, time-specific phylotypes observed. The mid-submersion<br />

period (Advanced Putrefaction) was characterized by much more<br />

gradual shifts in community composition, with colonization by unique<br />

phylotypes not observed before particular submersion intervals, but<br />

which persisted on the remains for longer periods of time. As well as the<br />

continued presence of mid-phase colonizers, the late submersion period<br />

(Advanced Decay and Skeletonized Remains) saw the arrival and<br />

subsequent disappearance of many short-lived, time-specific phylotypes;<br />

thus the microbial community present on the decomposing remains once<br />

again underwent noticeable and rapid compositional changes.<br />

Preliminary results from a comparison of decomposition events during<br />

summer and winter in Otago Harbour found substantial differences in<br />

bacterial phylotypes within TRFLP profiles, suggesting there is a strong<br />

seasonal aspect to colonization. However the overall pattern of<br />

compositional change over time was similar.<br />

The use of TRFLP as a microbial community profiling tool has<br />

enabled the first characterization, at a community level, of the<br />

postmortem microbiology of submerged mammalian remains over the<br />

course of an aquatic decomposition event. This reproducible, highthroughput<br />

technique is cost-effective and could be easily implemented<br />

in the modern forensic laboratory. Microbial community presence,<br />

abundance and successional dynamics, coupled with temperature data,<br />

have the potential to provide detailed information regarding length of<br />

submersion time of immersed bodies and/or body parts recovered from<br />

coastal marine waters of New Zealand and beyond in cases where a<br />

specific PMSI is in doubt.<br />

Decomposition, Postmortem Submersion Interval,<br />

Microbial Communities<br />

H99 Scavenging and Its Relationship to<br />

Decomposition in the Northern Rockies<br />

Ashley H. McKeown, PhD*, University of Montana, Department of<br />

Anthropology, 32 Campus Drive, Missoula, MT 59812; Walter L. Kemp,<br />

MD, Department Of Justice, State of Montana, Forensic Science<br />

Division, 2679 Palmer, Missoula, MT 59808-6010; and Beatrix Dudzik,<br />

MA, and Hillary R. Parsons, MA, University of Tennessee, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will better understand<br />

the need for assessing scavenging as an aid to discerning the postmortem<br />

interval in regions such as Montana, where mummification is a normal<br />

part of the early decomposition process and often becomes the static,<br />

long term condition of remains not exposed to scavenging.<br />

This presentation will impact the forensic science community by<br />

demonstrating many cases of partially and completely skeletonized<br />

remains in Montana are likely the result of large carnivore scavenging as<br />

opposed to extended periods of exposure as previously thought.<br />

Accurate estimation of time since death can be an important component<br />

of a forensic investigation and the processes by which soft tissue is lost<br />

from the skeleton need to be well understood, particularly for areas with<br />

variable decomposition patterns and the presence of large carnivores.<br />

Recent research by Parsons (2009) and Dudzik (2009) has<br />

demonstrated that decomposition rates and patterns in the Northern<br />

Rockies of Montana vary from those known elsewhere in the United<br />

States. The arid and cool climate not only slows the general rate of soft<br />

tissue decomposition, but also results in mummification of the external<br />

tissues very early in the decomposition process. Nevertheless, partially<br />

or fully skeletonized remains are recovered, even when the postmortem<br />

interval has been relatively brief (3-6 months). Typically these remains<br />

have been scavenged by one or more of the large carnivores native to<br />

Montana, including brown bears, grizzly bears, mountain lions, and<br />

wolves.<br />

A retrospective review of twelve cases, with established<br />

postmortem intervals, analyzed by the medical examiners of Montana’s<br />

Forensic Science Division and forensic anthropologists at the University<br />

of Montana over a six year period was undertaken. Based on reports,<br />

case notes and photographs, degree of mummification was scored by<br />

percentage of the body retaining mummified tissue and degree of<br />

scavenging was scored as percentage of the skeleton bearing evidence<br />

for carnivore scavenging activity. Eight (66%) of the total cases<br />

reviewed had either not been subject to scavenging or were only<br />

minimally scavenged (scored as 10% or less) with postmortem intervals<br />

ranging from three weeks to two years. Of these cases, 75% of the<br />

individuals retained mummified tissue covering more than 50% of the<br />

body. In the cases where scavenging had significantly affected the<br />

remains (scored as 25% or greater), the retention of mummified tissue<br />

was limited to 50% or less, with two of these cases having postmortem<br />

intervals of less than one year. In summary, remains that do not<br />

experience scavenging tend to retain the external layer of mummified<br />

tissue, even years after death, while remains that are subject to large<br />

carnivore scavenging can be completely or partially skeletonized within<br />

a few months.<br />

Therefore, estimations of the postmortem interval for human<br />

remains in Montana and similar regions must consider not only the<br />

unusual decomposition pattern associated with the climatic conditions of<br />

the Northern Rockies, but also the degree of scavenging by large<br />

carnivores as this is a likely factor responsible for the absence of soft<br />

tissue as opposed to decomposition due to an extended period of<br />

exposure. This will assist efforts to identify human remains or to<br />

pinpoint the timeframe for a crime.<br />

Decomposition, Scavenging, Postmortem Interval<br />

H100 Anaerobic and Aerobic Decomposition in<br />

55-gallon Oil Drums: A Two-Year Study on<br />

the Deliberate Concealment of Remains<br />

Lauren R. Pharr, MA*, and Mary H. Manhein, MA, Louisiana State<br />

University, Department of Geography & Anthropology, Baton Rouge, LA<br />

70803; and Wayne L. Kramer, PhD, Louisiana State University,<br />

Department of Entomology, 404 Life Science Building, Baton Rouge,<br />

LA 70803<br />

After attending this presentation, attendees will learn about the<br />

unique stages of decomposition occurring inside an above ground, manmade<br />

container used for concealment purposes. Using pigs as human<br />

models, this research focuses on both anaerobic and aerobic decay inside<br />

an above ground container and reveals how such decomposition can<br />

mimic antemortem or peri-mortemtrauma.<br />

This presentation will impact the forensic science community by<br />

providing new criteria for estimating the postmortem interval for bodies<br />

concealed in above ground, man-made containers such as an oil drum.<br />

61 * Presenting Author


Gaining insight into this under-researched decompositional context is<br />

important for forensic anthropologists involved in estimating the<br />

postmortem interval (PMI).<br />

Numerous studies have focused on the process of decomposition,<br />

but few studies have focused on decomposition within above ground<br />

containers used for concealment purposes. Moreover, no forensic<br />

studies have focused on decomposition within 55-gallon oil drums.<br />

For the past two years, three, one-year-old male pigs weighing 80.0,<br />

80.8, and 84.2 pounds, respectively, have been decomposing inside 55gallon<br />

black, metal, oil drums placed on a cattle farm in Baton Rouge,<br />

Louisiana; each drum contains one pig. Oil drums were chosen for this<br />

study because federal regulations require that oil drums have an airtight<br />

seal to prevent the leakage of chemicals and oil during transport (U.S.<br />

Department of Transportation, 49 CFR 178.540(6)). 1 Prior to the start of<br />

this study, 1-ft 2 lexan observation windows were installed in the lids of<br />

two of the three oil drums to allow observations of anaerobic<br />

decomposition. Drum A (containing pig A) was sealed at the initiation<br />

of the project. Drum B (containing pig B) was also sealed at the<br />

initiation of the project and then was opened one month later. Drum C<br />

(containing pig C) was sealed at the top but had four holes drilled in the<br />

sides to allow for insect access.<br />

During the first six months of this study (September 22, 2008 –<br />

March 13, 2009), daily visits were made to the research site and detailed<br />

observations of the anaerobic and aerobic decomposition stages<br />

occurring inside each oil drum were recorded. A full collection effort of<br />

forensically-important insects was made during each visit; over 1,000<br />

arthropods were collected and identified. Seasonal visits to the site have<br />

been made since March 13, 2009. A brief summary of the findings for<br />

each of the three pigs provides insight into the great variation in<br />

decomposition seen in each of the three drums.<br />

Drum A was sealed on September 22, 2008; pig A currently is still<br />

sealed inside, and oil drum A has never been opened. The lexan window<br />

on the oil drum’s lid has allowed the process of anaerobic decay to be<br />

observed. During the first two weeks after placement, pig A’s intestines<br />

were forced outside of the body as a result of decompositional gases, but<br />

neither bloating nor the expected color changes of the skin occurred<br />

during the first year of concealment. Pig A gradually began to liquefy<br />

during the second year of concealment. No insects have been observed<br />

inside the oil drum.<br />

Drum B was also sealed on September 22, 2008; pig B underwent<br />

one month of anaerobic decay prior to intentional removal of the drum’s<br />

lid. During the first two weeks of placement, the pig’s abdomen<br />

exploded as a result of gas pressure build up. This “explosion” was<br />

vastly different from the intestinal expulsion viewed in pig A with pig<br />

B’s body tissue adhering to the drum’s walls. No insects were observed<br />

inside the oil drum during the month of anaerobic decay. However, once<br />

the drum was opened, insects were immediately attracted to the exposed<br />

carrion following lid removal. Nevertheless, unlike pigs A and C, pig B<br />

gradually mummified during the five months following lid removal.<br />

Drum C contained pig C and was sealed September 22, 2008. Prior<br />

to the pig’s placement in the drum, four evenly spaced ½-inch holes were<br />

drilled into the oil drum’s upper perimeter. Within 24 hours of placing<br />

pig C inside the oil drum, the pig’s intestines were found resting outside<br />

of the body, though no explosion had taken place. Complete<br />

skeletonization occurred in one week; however, the liquefied remains<br />

and bones have undergone a series of taphonomic changes during the<br />

past two years. Most noticeably, the bones changed from black in color<br />

to white without ever having been removed from the oil drum or exposed<br />

directly to the sun. Two years after beginning this study, the skeleton<br />

inside this oil drum is no longer visible because the liquefied soft tissues<br />

have solidified and expanded to the top of the drum.<br />

Finally, results from this study provide new insight into the effects<br />

anaerobic and aerobic environments have on decomposition within<br />

above ground containers used for concealment purposes. This research<br />

reveals that attempts to conceal remains can result in liquefaction of<br />

* Presenting Author<br />

tissues, mummification, and, under-certain conditions, postmortem<br />

explosion of soft tissue.<br />

Reference:<br />

1. U.S. Department of Transportation, Research and Special<br />

Programs Administration. Code of Federal Regulations. Title 49,<br />

vol. 2, pt. 178, sec. 504, Standards for Steel Drums. Washington,<br />

D.C.: Government Printing Office, 1999,<br />

(49CFR178.504).http://frwebgate.access.gpo.gov/cgibin/getcfr.cgi?TITLE=49&Part=178&SECTION=504&YEAR=1999<br />

&TYPE=TEXT<br />

Forensic Anthropology, Postmortem Interval, Anaerobic Environment<br />

H101 Potential Impact of Regional Ecologies on<br />

the Estimation of Postmortem Interval:<br />

Case Comparisons From Northern<br />

New England<br />

Kerriann Marden, MA*, 3800 New Hampshire Avenue, Northwest,<br />

Apartment #509, Washington, DC 20011; and Marcella H. Sorg, PhD,<br />

University of Maine, Margaret Chase Smith Policy Center, 5784 York<br />

Complex, Building #4, Orono, ME 04469<br />

After attending this presentation, attendees will better understand<br />

the potential effects of microenvironment on differential decomposition,<br />

and how regional differences can influence taphonomic condition and<br />

estimation of postmortem interval (PMI).<br />

This presentation will impact the forensic science community by<br />

illustrating how regional ecological variation can affect accurate<br />

estimation of PMI in a medicolegal context.<br />

Estimation of postmortem interval is among the most important—<br />

and among the most complex—tasks performed by forensic<br />

anthropologists. An accurate PMI can help the medical examiner to<br />

determine a timeline for events surrounding a death and can inform the<br />

direction of medicolegal investigation. However, PMI estimation is<br />

complicated by numerous factors, many of which vary geographically,<br />

including temperature, precipitation, elevation, terrain, and soil<br />

characteristics. These combined factors all contribute to the ecology of<br />

plant, insect and animal communities that impact the condition of a<br />

corpse. A multi-year research initiative to develop regional taphonomic<br />

standards for northern New England has selected comparative case<br />

examples where time of death and ecological context is known to<br />

illustrate representative patterns.<br />

This presentation examines the effects of regional ecosystem<br />

variables using a Maine case involving the body of a young woman<br />

found partially submerged in a shallow stream in a area of light-growth,<br />

mixed deciduous-evergreen woods. Data from a weather station six<br />

miles away was used to calculate the accumulated degree days (ADD).<br />

Investigation of daily temperatures showed a cold October, with belowfreezing<br />

temperatures, but a warmer-than-average November. With a<br />

late September death, a 65-day PMI, and an ADD total of 536, the body<br />

demonstrated four distinct taphonomic zones, ranging from fleshed with<br />

intact internal organs to skeletonization of the head and arms. Large<br />

scavengers, primarily coyote, had removed flesh from the arms, back,<br />

and buttocks. The head was skeletonized but showed no evidence of<br />

carnivore activity, suggesting that this area may have been defleshed by<br />

insects or putrefaction prior to canid involvement. However, evidence of<br />

insect involvement was absent.<br />

Microenvironmental factors help to explain differences between<br />

this case and selected comparison cases from the same geographic area<br />

and/or the same timeframe. This case is compared with two other cases<br />

found in the woods in the same local area. One is from roughly the same<br />

autumn timeframe, with a shorter PMI (about 30 days) and no evidence<br />

of mammalian scavengers. Decomposition is at the decay stage, and<br />

62


larvae are present but not abundant. The other comparison case is from<br />

the same area, and has a similar amount of decomposition on average,<br />

but was exposed in the summer and for a shorter time frame (15 days).<br />

Mammalian scavengers were minimally involved, and fly larvae were<br />

abundant on the body.<br />

The importance of scavenger involvement and the cold, often<br />

freezing temperatures are critical variables in interpreting cases in the<br />

northeast. Many actualistic taphonomic studies used to calibrate the PMI<br />

estimation have been conducted at the scavenger-protected University of<br />

Tennessee Anthropological Research Facility, yet natural experiments in<br />

the arid regions of the southwest United States (Galloway 1997; Rhine<br />

and Dawson 1998), the southeast (Manhein 1997) and the northeast<br />

(Sorg et al., 1998) amply demonstrate tremendous regional variations in<br />

the taphonomic factors that influence the rate and characteristics of<br />

decomposition. Temperature has been demonstrated to alter the speed of<br />

decomposition, and Micozzi (1997) has shown that freezing<br />

temperatures can cause cellular breakdown and reverse the order in<br />

which decomposition occurs within a body, so that more external and<br />

peripheral parts decompose earlier. Comparative rates of thawing of<br />

anatomical parts may also reverse scavenging order, and colder<br />

temperatures and resulting food scarcity can enhance the intensity of<br />

scavenger activity (Klepinger 2006; Bass 1997).<br />

In sum, regional variation in ecological and climatological factors<br />

necessitates a more fine-grained examination of case context in order to<br />

estimate PMI. Results of actualistic studies, particularly those conducted<br />

in other regions, need local testing and adjustments before they can be<br />

applied.<br />

This research was supported in part by the National Institute of<br />

Justice, Office of Justice Programs, U.S. Department of Justice. The<br />

opinions, findings, and conclusions or recommendations expressed in<br />

this presentation are those of the authors and do not necessarily reflect<br />

those of the Department of Justice.<br />

Taphonomy, Postmortem Interval, Regional Ecology<br />

H102 The Relationship Between Ambient<br />

Temperature and the Temperature of<br />

Maggot Masses on Decomposing Pig and<br />

Rabbit Carcasses<br />

Amanda B. Troy, MSc*, 13 Castlerock, Tulla Road, Ennis, IRELAND;<br />

and Colin Moffatt, PhD, and Tal Simmons, PhD, School of Forensic &<br />

Investigative Sciences, University of Central Lancashire, Preston, PR1<br />

2HE, UNITED KINGDOM<br />

After attending this presentation, attendees will gain an<br />

understanding of the effect of maggot mass temperature on the<br />

development of Diptera larvae and will be aware of the need for a more<br />

accurate measurement of accumulated degree hours (ADH) from Diptera<br />

larval development in maggot masses.<br />

This presentation will impact on the forensic science community by<br />

outlining the influence ambient and maggot mass temperatures have on<br />

Diptera larval development, which will aid in establishing a realistic<br />

postmortem interval (PMI) from entomological specimens originating<br />

within maggot masses at crime scenes.<br />

Forensic anthropologists often estimate PMI by determining the<br />

accumulated degree days (ADD) to which a cadaver has been subject<br />

during decomposition. Insect activity is one of the most significant<br />

factors affecting the decompositional process. The examination of larval<br />

maturation is particularly important, as investigators have previously<br />

used the correlation of insect development rates over ADD to obtain an<br />

estimation of PMI. Diptera are of a particular forensic importance, as<br />

they are among the first insects to colonize a corpse. Temperature has a<br />

major influence on the rate of development of Diptera larvae. To date,<br />

estimating PMI from Diptera larval development has been proven to be<br />

inaccurate. The heat generated from maggot mass formation accelerates<br />

maggot developmental rate, significantly reducing the maturation time,<br />

and therefore altering the estimated PMI.<br />

This study was conducted in the North West of England using<br />

domestic pigs (Sus scrofa domestica) and European rabbits (Oryctolagus<br />

cuniculus). Two experimental groups, one pig group (N=6) and one<br />

rabbit group (N=6) were left to decompose on a grass surface. When<br />

maggot masses formed, a thermal probe connected to a data logger was<br />

inserted into a mass on each carcass to record the temperature generated<br />

by the maggot activity. A pig control group (N=3) and a rabbit control<br />

group (N=3) were placed outdoors in a cage constructed from a wooden<br />

frame and covered in a fine wire mesh, in order to exclude insects and<br />

therefore assess the temperature generated by non-insect mediated<br />

decomposition processes. The internal body temperatures of the control<br />

groups were recorded.<br />

The results demonstrated that the maggot masses were comprised of<br />

three species of Diptera, Calliphora vomitoria, Calliphora vicina and<br />

Protophormia terraenovae. Oviposition occurred at natural creases at the<br />

limbs, in the head, and along the back of the neck in the pig carcasses.<br />

ADD was used to standardize all calculations in order to compare<br />

groups. The ADD of the maggot masses in the experimental groups was<br />

calculated, as was the ADD of the corresponding internal temperatures in<br />

the control groups. The results were statistically analyzed against the<br />

ADD of the ambient temperature.<br />

Analysis of the mean daily temperatures in the pig control group<br />

compared to mean daily ambient temperatures showed no significant<br />

difference (ANOVA, p= 0.07). This would indicate that any resulting<br />

rise in temperature in the experimental pig group over ambient<br />

temperature is from maggot mass activity. The increase in the<br />

experimental pig group ADD over ambient ADD was 38.5%. An<br />

estimation of ADD from larval development, based on the ambient<br />

temperature, would have lead to an overestimation of PMI by over 13<br />

days in a 6-week period. The difference between ambient ADD and<br />

experimental pig ADD for this research can be defined as:<br />

Difference in Ambient ADD Versus Exp. Pig ADD ( 0 C) =<br />

(0.0461x + 0.2106) 2 where R 2 =0.96301: The rabbit carcasses yielded<br />

similar results, with the ADD of the rabbit experimental group showing<br />

an increase of 29.4% over the ambient temperature ADD, with no<br />

statistical difference between the mean daily ambient temperatures and<br />

the control rabbit daily temperatures (ANOVA, p=0.8). The difference<br />

between ambient ADD and experimental rabbit ADD for this research<br />

can be defined as:<br />

Difference in Ambient Versus Exp. Rabbit ADD ( 0 C) = 0.4335x<br />

– 2.6092 where R 2 = 0.99254: Rabbits were shown to be poor<br />

models for this type of research, as it was not feasible to visually<br />

examine the maggot masses due to the fur and the maggot masses could<br />

not be sustained due to the size of the carcasses.<br />

Investigators must be aware of the ineffectiveness of using previous<br />

ADD calculations of Diptera larval development in order to establish a<br />

PMI. It is recommended that the investigator should determine the ADD<br />

of maggot masses as opposed to ambient ADD when establishing PMI.<br />

Temperature, Maggot Mass, Postmortem Interval<br />

63 * Presenting Author


<strong>PHYSICAL</strong> <strong>ANTHROPOLOGY</strong><br />

Seattle 2010 Seattle 2010<br />

H1 Interpretation and Confirmation of<br />

Patterned Clothing Stains Observed on<br />

Both Tibiae<br />

Danielle A.M. Wieberg, MA*, Knoxville Police Department, 800 Howard<br />

Baker, Jr. Avenue, PO Box 3610, Knoxville, TN 37927; and Daniel J.<br />

Wescott, PhD, Florida International University, Department of<br />

<strong>Bio</strong>logical Sciences, 11200 Southwest 8th Street, Miami, FL 333199<br />

After attending this presentation, attendees will observe how<br />

staining observed on skeletal remains was positively attributed to the<br />

victim’s last known attire and how different patterns were linked to<br />

various parts of the garment.<br />

This presentation will impact the forensic science community by<br />

providing an additional means of linking the description of an individual<br />

reported missing to unidentified skeletal remains. Investigators could<br />

potentially use this information as a means of ruling out individuals<br />

when attempting to make an identification.<br />

Compared to the typical case received by a medical examiner,<br />

forensic anthropologists are at a considerable disadvantage when<br />

attempting to establish the identity of the human remains they receive.<br />

Usually there is very little soft tissue remaining. This eliminates the<br />

presence of identifying scars, marks and tattoos; makes it difficult to<br />

determine a subject’s weight; and makes visual identification difficult<br />

without reconstruction. Dental records and radiographs can only be<br />

compared if you have a pool of potential victims to compare them with.<br />

Furthermore, skeletal remains are often discovered devoid of any<br />

contextual evidence, such as clothing or jewelry.<br />

On a positive note, anthropologists can use skeletal measurements<br />

to determine height and several discrete skeletal features to determine<br />

sex. Several different skeletal features can help determine an<br />

individual’s age at death, but the estimate typically includes +/- five<br />

years in each direction, if not more. Often, they are able to determine<br />

what type of build an individual had while based on the bone structure<br />

and degree of gracility or robusticity of the skeleton. Additionally, some<br />

features on the skull and some of the long bones may indicate what<br />

“race” an individual may have identified themselves as during life.<br />

Unfortunately, all of that information can still leave several possible<br />

“victims.”<br />

When a person is reported missing, it is standard to provide a<br />

description of the clothing the victim was last seen in. Therefore,<br />

associating skeletal remains with a missing individual can be easier if<br />

there is clothing accompanying those remains. Additionally, if the<br />

remains belong to an individual that was not reported missing, the type<br />

of clothing may provide an indication of the season or temperature at the<br />

time the individual died.<br />

Analysis of remains in this case indicated a middle-aged white male<br />

with multiple gun shot wounds and several fractures, both peri-mortem<br />

and postmortem. Furthermore, staining patterns on the tibiae of the<br />

victim in this case indicated an object, possibly a material, with a gridlike<br />

pattern had lain against the bones for some time. The stains were<br />

light brown in color and showed two distinct patterns, a very small or<br />

tight-knit square pattern, and a larger square pattern higher up on the<br />

tibia. One author postulated that the larger square pattern looked like the<br />

waffle pattern of thermal underwear, while the smaller squares<br />

resembled the cuffs. As is typical in forensic anthropology cases, any<br />

clothing accompanying the remains had not been provided so the<br />

analysis would not be influenced or biased in any way. Once the analysis<br />

was finished and the report turned in, the authors reviewed the photos<br />

* Presenting Author<br />

taken at the recovery scene. These photos showed insulated pants that<br />

had a thermal underwear-like lining in which the decedent’s legs were<br />

enclosed at the time of recovery.<br />

The exact method through which the staining occurred is unknown,<br />

but it is most likely due to differential exposure to the sun because of the<br />

varying thickness of the fabric. Observing such patterns in the future and<br />

associating them with certain clothing items could assist anthropologists<br />

and law enforcement agencies with identification.<br />

Anthropology, Patterns, Stains<br />

H2 A Preliminary Study of the Timing of<br />

Specific Characteristics of Copper and Iron<br />

Discoloration on Bone<br />

Cate E. Bird, BA*, Michigan State University, 2740 Senate Drive, #3E,<br />

Lansing, MI 48912; and Amy R. Michael, BA, Michigan State University,<br />

528 West Lapeer Street, Lansing, MI 48933<br />

After attending this presentation, attendees will understand the early<br />

stages of copper and iron alloy corrosion and their transfer to bone.<br />

This pilot study will impact the forensic science community by<br />

contributing to the understanding of the postmortem interval in forensic<br />

cases in which skeletal remains are recovered with associated metal<br />

objects.<br />

Metal objects are often found in association with human skeletal<br />

remains in forensic contexts. Due to the presence of these objects,<br />

evaluation of the processes of metal discoloration on bone should be<br />

further explored. This preliminary qualitative analysis evaluates the<br />

timing and extent of stains on bone over a one year period from two<br />

general metal classes: copper and iron alloy. Specifically, this research<br />

evaluates the timing of discoloration, the reflection of the object form,<br />

the depth of cortical penetration, and the persistence of the stain through<br />

cleaning.<br />

Five common metal object types, with different chemical<br />

compositions and forms, were affixed with non-metallic mesh on a<br />

sample of defleshed non-human (Bos taurus) bones. These objects<br />

included steel shot, steel utility knives, copper zippers, copper-plated<br />

shot, and copper-jacketed bullets. Bone samples were placed on the<br />

ground surface in secure enclosures that allowed for exposure to yearround<br />

environmental conditions in mid-Michigan. One bone sample<br />

from each metal category was then collected monthly and evaluated in a<br />

laboratory setting. Monthly climatic data were documented at each<br />

collection episode through the use of an on-site weather station.<br />

Macroscopic changes related to metal staining on the bone surfaces<br />

were photographed and recorded by two observers. Microscopic changes<br />

related to the penetration of the metal discoloration into the cortical<br />

surface of the bone were documented using histological analysis.<br />

Samples exhibiting extensive staining were thin sectioned and observed<br />

microscopically to determine the diffusion of the stain into the cortical<br />

bone.<br />

Discolorations were consistent with the corrosion of the specific<br />

metal type. Both metal classes exhibited evidence of corrosion within<br />

the first month of exposure, but only the corrosive product of the iron<br />

alloy objects stained the cortical surface of the bone. The iron alloy<br />

objects consistently produced deep-penetrating red-brown stains: the<br />

steel shot closely mirrored the shape of the corresponding metal object,<br />

while the utility knife did not. All of the iron stains persisted through the<br />

subsequent cleaning process. Conversely, the rate of stain for copper<br />

64


objects was inconsistent. Although the teal-green corrosive product was<br />

visible superficially on both the metal object and the adhering soft tissue<br />

within the first few months of exposure, the copper stains rarely persisted<br />

through the subsequent cleaning process. When visible, the copper<br />

stains vaguely reflected the form of the corresponding object.<br />

Metal staining on bone may provide forensic investigators with<br />

vital clues concerning secondary burials or primary burials where metal<br />

artifacts associated with human remains are transported away from the<br />

crime scene. Although this pilot study does not reflect the total breadth<br />

of crime scene recoveries, it does contribute to understanding the<br />

phenomenon of metal corrosion and its effect on bone in a controlled<br />

environment. With further studies, this research may help investigators<br />

interpret the postmortem interval when known metals are discovered in<br />

close proximity to skeletal remains.<br />

Metal Corrosion, Human Osteology, Taphonomy<br />

H3 Detecting Various Burial Scenarios in a<br />

Controlled Setting Using Ground-<br />

Penetrating Radar<br />

Michael Martin, BS*, 4000 Central Florida Boulevard, Phillips Hall,<br />

Room 309, Orlando, FL 32816; and John J. Schultz, PhD, University of<br />

Central Florida, Department of Anthropology, PO Box 25000, Orlando,<br />

FL 32816<br />

The goal of this presentation is to demonstrate the effectiveness of grave<br />

detection using ground-penetrating radar (GPR) at a controlled research<br />

site that incorporates multiple burial scenarios. Ground-penetrating<br />

radar can be a useful geophysical instrument used by forensic<br />

investigation teams in the search for buried bodies. After attending this<br />

presentation, attendees will gain a better understanding of the<br />

capabilities of ground-penetrating radar (GPR) to detect a variety of<br />

common grave scenarios that involve buried bodies.<br />

This presentation will impact the forensic science community by<br />

providing guidelines to death investigation personnel on the benefits of<br />

the use of GPR when searching for buried bodies.<br />

The field of forensic archaeology has proven vital for the improvement<br />

of forensic searches by conducting controlled research with various<br />

geophysical technologies. In particular, controlled research has<br />

determined that GPR is the best geophysical tool used to locate<br />

clandestine burials of homicide victims. One advantage of using GPR is<br />

that it provides the best resolution out of all geophysical instruments<br />

because real-time data is displayed on a monitor for immediate<br />

assessment in the field. The objective of this research project is to<br />

investigate the capability of GPR to detect a variety of grave scenarios<br />

utilizing buried pig carcasses. This presentation focuses on one aspect<br />

of a larger research project involving monitoring controlled graves for a<br />

two-and-a-half year period, and will focus solely on the first six months<br />

of data collection using a 500-MHz antenna.<br />

The ground-penetrating radar unit chosen for this research was the<br />

[Mala RAMAC X3M] with a 500-MHz antenna. GPR grid data were<br />

processed using REFLEXW and GPR-SLICE computer programs, and<br />

were displayed using radargrams (the GPR transects collected over the<br />

two rows of graves), Z-slices (planview representations of the grid that<br />

can be displayed at different depths), and fence diagrams (data viewed<br />

simultaneously in multiple planes). A permanent grid measuring 11 m<br />

by 22 m containing six graves, each with a single pig carcass, and two<br />

control graves was set up in two rows. Data were collected in both a<br />

west to east direction and a north to south direction utilizing a transect<br />

interval spacing of 0.25 m. The six graves containing pig carcasses and<br />

the two control graves were devised to test a number of common forensic<br />

scenarios involving buried bodies. The eight scenarios consisted of a<br />

deep (1.0 m) blank control grave containing only disturbed backfill to<br />

determine the geophysical response of only the disturbed soil; a shallow<br />

(0.50 m) blank control grave consisting of only disturbed backfill to<br />

determine the geophysical response of only the disturbed soil; a deep<br />

grave containing only a pig carcass; a shallow grave containing only a<br />

pig carcass; a deep pig carcass wrapped in a vinyl tarpaulin; a deep pig<br />

carcass wrapped in a cotton blanket; a deep pig carcass with a layer of<br />

lime placed over the carcass; and a deep pig carcass with a layer of rocks<br />

placed over the carcass.<br />

Initial results using the radargrams for months one to six showed<br />

that the graves containing items over the pig carcasses (rocks or lime)<br />

displayed the best resolution out of the six scenarios with pig carcasses.<br />

The grave containing a pig carcass wrapped in a tarpaulin displayed a<br />

greater resolution compared to the grave that contained a carcass<br />

wrapped in a cotton blanket as well as both graves that contained<br />

carcasses with nothing added to the graves. When viewing the shallow<br />

Z-slices, the disturbed backfill of all of the test graves is detected.<br />

Furthermore, the Z-slices demonstrated that each of the deep graves were<br />

easily discernable compared to the shallow graves. Finally, the fence<br />

diagrams showed that each of the deep graves containing a pig carcass<br />

were easily discernable, with the graves containing rocks and lime<br />

displaying the best resolution. Overall, the combination of radargrams,<br />

Z-slices and fence diagrams provided maximum resolution and<br />

delineation of the various grave scenarios.<br />

Forensic Archaeology, Ground-Penetrating Radar, Controlled<br />

Graves<br />

H4 Precision of Coordinate Landmark Data<br />

Acquired From the Os Coxa<br />

Joan A. Bytheway, PhD*, Sam Houston State University, Chemistry &<br />

Forensic Science Building, 1003 Bowers Boulevard, Box 2525,<br />

Huntsville, TX 77340; and Ann H. Ross, PhD*, North Carolina State<br />

University, Sociology and Anthropology, Campus Box 8107, Raleigh, NC<br />

27695-8107<br />

The goal of this presentation is to show that traditional and novel<br />

landmarks located on the human adult os coxa are repeatable and that<br />

researchers with at least moderate experience in landmark identification<br />

can locate varying types of landmarks on the human adult os coxa with<br />

minimal observer error.<br />

This presentation will impact the forensic anthropological<br />

community by revealing new landmarks (as well as the use of traditional<br />

ones) located on the human adult os coxa that are repeatable and can be<br />

located with minimal observer error. These 36 landmarks provide a clear<br />

representation of the adult os coxa shape and some landmarks are located<br />

in regions that previously have not been metrically considered for sex<br />

determination. These landmarks can be used with a high percentage of<br />

accuracy in the assessment of sex.<br />

In a recent sexing study using three-dimensional landmark<br />

coordinate data collected from 200 human adult os coxae, Bytheway and<br />

Ross (in print JOFS July 2010) found that sex and size have a significant<br />

effect on shape for both European Americans and African Americans.<br />

They achieved a sexing accuracy of 98% for both males and females of<br />

European Americans and 98% for African American females and 100%<br />

for African American males.<br />

In this study, a total of 36 landmarks were chosen that would best<br />

capture the complete shape variation of the os coxa. Thirteen of the 36<br />

landmarks are newly described landmarks identified by the first author.<br />

Landmarks were chosen because: (1) they are considered useful and<br />

significant in the literature; (2) they are repeatable; (3) they represent the<br />

object being studied; (4) they represent regions that are considered<br />

reliable for sexing the pelvis; and, (5) they represent regions that have<br />

not been metrically considered for sex determination but are addressed<br />

in this research. The landmarks fell into the general categories of<br />

Traditional or Type 2, Constructed, and Extremal or Type 3 landmarks<br />

according to Lele and Richtsmeier (2001) and Bookstein’s (1991)<br />

65 * Presenting Author


landmark classifications. Traditional and Extremal landmarks are single<br />

points identified by biological description whereas Constructed<br />

landmarks are points identified once maximum values are established.<br />

The purpose of the present study is to test the precision of<br />

consistently locating the 36 landmarks on a single form between the<br />

repeated measures of the same individual used in the morphometric<br />

sexing study. Nineteen individuals were randomly selected and each<br />

individual was digitized three times with a wait period of at least 30<br />

minutes between digitizing sessions. The os coxa were “fixed” or not<br />

moved between digitizing sessions. A [Microscribe® 3D digitizer] was<br />

used to register the x, y, and z coordinates. Each os coxa was clamped<br />

into a vertically oriented vise and the 36 landmarks were digitized. Prior<br />

to digitizing the Constructed landmarks, each was measured with a<br />

sliding caliper to obtain maximum measurements. Once maximum value<br />

was obtained both points were marked with a pencil. Because the object<br />

was not moved between digitizing sessions, it is not necessary to bring<br />

each digitized object into the same coordinate system and the estimation<br />

of error along each axis can be calculated (Corner et al. 1992). Error was<br />

evaluated by calculating the standard deviation of each coordinate for the<br />

36 landmarks across digitizing sessions and individuals. The maximum<br />

standard deviation, which is a measure of measurement error, for the X<br />

axis is 0.26mm with a mean of 0.180mm, 0.48mm for the Y axis with a<br />

mean of 0.240mm and 0.40mm for the Z axis with a mean of 0.260mm.<br />

These results show that for the 36 landmarks no one axis or direction is<br />

prone to error confirming consistency in locating the landmarks. Both<br />

authors were experienced in locating the landmarks, however, a less<br />

experienced observer would be expected to have less precision.<br />

Precision, Coordinate Landmarks, Os Coxa<br />

H5 The Utility of Cohen’s Kappa for Testing<br />

Observer Error in Discrete Data<br />

and Alternatives<br />

Alexandra R. Klales, MS*, 501 East 38th Street, Erie, PA 16546; and<br />

Stephen D. Ousley, PhD, Mercyhurst College, Department of Applied<br />

Forensic, Anthropology, 501 East 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will learn to use caution<br />

in the application of Cohen’s Kappa (1960) for assessing interobserver<br />

error for ordinal scoring and will learn of the utility in forensic<br />

anthropology of alternative methods that can be applied to data for error<br />

testing.<br />

This presentation will have an impact on the forensic anthropology<br />

community by presenting methods that can be reliably used to test interand<br />

intra-observer error for discrete data, which is frequently used in sex<br />

and age estimation. Additionally, this study will encourage the use of<br />

appropriate tests of error for discrete data that can then be applied to<br />

make forensic anthropological studies Daubert compliant.<br />

Compliance with the Daubert criteria requires the validation of all<br />

medico-legal methods through error testing. However, Ingvoldstad and<br />

Crowder (2009) have revealed a lack of consistency in the field for<br />

testing observer error in forensic anthropological research. While there<br />

is a clear trend to increase error testing in recent years, many studies fail<br />

to test both inter- and intra- observer error, or to use reliable methods for<br />

some specific data sets. Among the latter, testing inter- and intraobserver<br />

error in discrete data, such as the qualitative or ordinal data<br />

often employed to assess sex or age, poses a particular challenge.<br />

Cohen’s Kappa (1960) is one of the most popular methods to test<br />

observer error in discrete data in disciplines such as clinical medicine<br />

and psychology, to name a few, yet its application within forensic<br />

anthropology has been limited.<br />

* Presenting Author<br />

The goal of this study is to examine the utility of Cohen’s Kappa for<br />

assessing observer error and also to compare it with those of other<br />

alternative methods. This evaluation is based on the analysis of newly<br />

recorded data and the original datasets from Klales et al. (2009) and<br />

Vollner et al. (2009) to develop new methods for sex estimation from the<br />

human pelvis. A sample of 170 innominates of known, adult individuals<br />

from the Hamann-Todd Collection (HTH), housed at the Cleveland<br />

Museum of Natural History, was used for this study. Each of the Phenice<br />

(1960) traits was scored from the HTH material on separate occasions by<br />

two to four different individuals. Scores from one to five were assigned<br />

following the scale and corresponding illustrations and written<br />

descriptions in the previously mentioned studies. Different estimates of<br />

intra- and inter- observer error were obtained, as well as the percentages<br />

of correct classification for each specimen observed.<br />

In the prior studies, sex estimation was based on linear discriminant<br />

function analysis and provided correct classification rates above 99%.<br />

However, Cohen’s Kappa in these studies rendered low values: ventral<br />

arc 0.53, subpubic concavity 0.40, and medial aspect of the ischio-pubic<br />

ramus 0.43 (i.e., high inter-observer errors), therefore questioning the<br />

likelihood of replicating this high correct classification rates when the<br />

variables are scored by other researchers. Specifically, the low Kappa<br />

values did not seem to reflect differences in the end result, a highly<br />

accurate method of estimating sex; therefore, using this method of<br />

measuring reliability, specifically, inter-observer differences, may itself<br />

not be reliable for discrete data, because differences in scoring minimally<br />

affected classification accuracy. Unreliable methods cannot be valid and<br />

in this case, a low indication of reliability was contradicted by a high<br />

indication of validity. When evaluating reliability, one should not be<br />

discouraged by a “low” Kappa value, but must also look at other<br />

statistics and the practical consequences of inter-observer differences.<br />

Results suggest that in spite of the low Cohen’s Kappa figures<br />

originally obtained for these data sets, correct classification rates remain<br />

high and fairly constant independent of the observer. Cohen’s Kappa<br />

was clearly outperformed by some of the alternative error estimation<br />

methods, which provided results more consistent with the observed<br />

correct classification rates. This suggests that Cohen’s Kappa should be<br />

interpreted with caution, or even abandoned, when analyzing ordinal and<br />

other discrete data in forensic contexts.<br />

Observer Error, Cohen’s Kappa, Discrete Data<br />

H6 Tags and Spurs: Morphological Features of<br />

Cranial Blunt Force Trauma Fractures<br />

Vincent H. Stefan, PhD*, Department of Anthropology, Lehman College,<br />

CUNY, 250 Bedford Park Boulevard, West, Bronx, NY 10468<br />

After attending this presentation, the attendees will be aware of<br />

unique, morphological features observed through the examination of<br />

several forensic cases that may serve as diagnostic features of cranial<br />

blunt force traumas.<br />

This presentation will impact the forensic community by<br />

introducing and discussing morphological features, “Tags” & “Spurs”,<br />

which can be utilized to identify cranial fractures produced through blunt<br />

force traumas when complete crania or isolated cranial fragments are<br />

recovered and/or examined.<br />

The ability to recognize, identify and interpret cranial fracture<br />

patterns is instrumental in the correct and accurate assessment of the type<br />

of trauma(s) which produced those fracture. Berryman and Symes<br />

(1998) provide a comprehensive discussion on recognizing gunshot and<br />

blunt cranial trauma through fracture interpretation, while Galloway<br />

(1999) provides a detailed discussion of blunt force fracture patterns and<br />

cranial morphology which influence their generation and propagation.<br />

Several fracture types and patterns have been documented that are<br />

frequently utilized to identify blunt force trauma (i.e., linear, depressed,<br />

66


stellate, ring, Le Fort, contra-coup, internally beveled concentric, etc.),<br />

however through the course of examination of several forensic cases<br />

additional morphological features have been observed which may be of<br />

diagnostic importance for blunt force trauma recognition. Presented here<br />

will be two morphological features, “Tags” and “Spurs”, and the<br />

probable mechanisms of their production.<br />

Tags are small, hinge-fracture segments of the fracture margin,<br />

found on the inner or outer table of the cranium. After a linear, radiating<br />

and/or concentric fracture has divided a cranium into several pieces there<br />

is the potential for shearing, edge-to-edge movement of the fragments<br />

internally and externally through the application of force. This shearing<br />

movement along the fracture may not be smooth and even, and<br />

occasionally the fracture margins may snag creating hinge-fracture<br />

segments as force continues to be applied.<br />

As previously noted, internally-beveled concentric fractures are<br />

associated with blunt force traumas, with the degree of beveling<br />

appearing slight to moderate. However, occasionally localized large<br />

bevels are produced along fracture margins creating what could be<br />

termed spurs. As force is applied to a cranium and a cranial fragment is<br />

created, the internal or external movement of the fragment may produce<br />

a relatively large spur or flake of the internal table attached to the margin<br />

of the fragment or adjacent fragment. These spurs are analogous to the<br />

“break-away” spurs frequently produced at the terminal aspect of saw<br />

cuts of long bones (Symes, Berryman & Smith, 1998).<br />

Two forensic cases will be utilized to illustrate the “Tags” and<br />

“Spurs” discussed above. Case No. 1 involves a probable Caucasian,<br />

possible Hispanic female, 30-45 years of age, with multiple blunt force<br />

traumas of the left parietal, which possesses several distinctive “tags”<br />

along fracture margins and one fragment with a moderately large “spur.”<br />

Case No. 2 involves an adult, probable Caucasian, possible Hispanic<br />

female with multiple blunt force traumas of the left parietal and frontal,<br />

which produced a fragment with very large “spur” and a small “spur”<br />

along a fracture margin. Each case clearly illustrates one of these unique<br />

fracture features of blunt force trauma.<br />

Though there are several well know and documented fracture types<br />

and patterns that can be directly attributable to either blunt or gunshot<br />

wound traumas, two additional fracture types where noted during the<br />

course of examination of forensic cases involving blunt force trauma that<br />

have not been addressed in the forensic literature (at least to this<br />

researcher’s knowledge). These fractures types, “Tags” and “Spurs,”<br />

appear to be unique to blunt force trauma and may serve as additional<br />

diagnostic features in the identification of blunt force trauma in complete<br />

and/or more importantly fragmentary crania.<br />

Blunt Force Trauma, Fracture, Tag & Spur<br />

H7 Primary and Secondary Skeletal<br />

Blast Trauma<br />

Angi M. Christensen, PhD*, Federal Bureau of Investigation<br />

Laboratory, Trace Evidence Unit - Anthropology, 2501 Investigation<br />

Parkway, Quantico, VA 22135; Vanessa Ramos, BS, Oak Ridge<br />

Associated Universities, 2501 Investigation Parkway, Quantico, VA ;<br />

Rachealle Sanford, BA, Western Kentucky University, College Heights<br />

Boulevard, Bowling Green, KY 42101; Candie Shegogue, BS, Oak Ridge<br />

Associated Universities, 2501 Investigation Parkway, Quantico, VA<br />

22135; Victoria A. Smith, MA*, ORAU, Federal Bureau of Investigation<br />

Laboratory, Trace Evidence Unit, 2501 Investigation Parkway,<br />

Quantico, VA 22135; and W. Mark Whitworth, BS, Federal Bureau of<br />

Investigation Laboratory Explosives Unit, 2501 Investigation Parkway,<br />

Quantico, VA 22135<br />

After attending this presentation, attendees will understand some of<br />

the basic principles of explosives, blast trauma, skeletal injury<br />

mechanisms, and fracture patterns, and will learn the results of an<br />

experimental study on primary and secondary blast trauma, specifically<br />

skeletal fracture and dismemberment patterns resulting from various<br />

controlled explosive events.<br />

This presentation will impact the forensic science community by<br />

assisting anthropologists in interpreting skeletal fracture patterns related<br />

to blast trauma.<br />

Forensic anthropologists have become increasingly involved in<br />

criminal, humanitarian, and conflict-related investigations that involve<br />

human skeletal remains. Skeletal trauma interpretation is often an<br />

important aspect of these investigations. In recent wars and terror<br />

events, most injuries of the skeletal system have been caused by<br />

exploding ordnance. Within the anthropological literature, however,<br />

studies of skeletal trauma emphasize blunt, sharp and ballistic trauma,<br />

with little mention of skeletal trauma resulting from blasts. Explosive<br />

weapons are designed to be destructive through the sudden pressure<br />

change caused by the blast, or by spreading shrapnel which acts as small<br />

projectiles, both of which may result in skeletal fractures and<br />

dismemberment. In order to properly interpret skeletal fracture patterns<br />

resulting from blasts, it is important to understand the mechanisms of<br />

skeletal blast trauma, and to document known blast trauma patterns.<br />

While there is an abundance of literature on blast trauma,<br />

particularly in medical and orthopedic journals, the focus of these studies<br />

is generally mortality and treatment of blast injuries. Moreover, most of<br />

these papers are case reviews, with very few controlled, empirical<br />

studies having been conducted. This project examines primary (resulting<br />

from blast wave) and secondary (resulting from disintegrated,<br />

penetrating fragments) blast trauma to bone in semi-controlled<br />

environments, and documents skeletal fracture and dismemberment<br />

patterns.<br />

Pigs (Sus scrofa) procured from a local farmer were used as test<br />

specimens. Specimens were exposed to explosive events of varying<br />

explosive type (including C4, det cord, PETN, and pipe bombs), charge<br />

size (ranging from 0.5-10lbs of C4, up to 120 feet of det cord, and 1ft 2 of<br />

PETN), and distance (ranging from contact to several feet away).<br />

Specimen and test preparation were carried out in conjunction with and<br />

under the supervision of explosives experts. Following the explosive<br />

events, the remaining biological material was retrieved and transferred to<br />

the FBI Laboratory where the specimens were macerated in warm water,<br />

and reconstructed using Duco cement. Specimens were examined<br />

radiographically, visually, and microscopically. The extent and pattern<br />

of skeletal fracture and dismemberment was documented, along with any<br />

other pertinent observations.<br />

Skeletal trauma from the blast events observed in this study tended<br />

to be extensive, presenting as complex, comminuted fractures with<br />

numerous small, displaced bone splinters and fragments. Traumatic<br />

amputation of the limbs and cranium was also observed. Skeletal<br />

injuries were concentrated in areas nearer the explosion, but there was<br />

generally no identifiable point of impact. Fracture patterns were more<br />

random in appearance than those typically associated with ballistic or<br />

blunt force injury events. Fractures tended to be more extensive on long<br />

bone shafts, though proximal and distal ends were also affected.<br />

The patterns found appear to be uniquely associated with blast<br />

trauma, or at least differ enough in quality and extent to appear distinct<br />

from other types of well-documented skeletal trauma (such as ballistic,<br />

sharp force, and blunt force). These results may therefore assist forensic<br />

anthropologists and other forensic examiners in the interpretation of<br />

skeletal trauma by enabling them to differentiate between blast trauma<br />

and trauma resulting from some other cause. It is important, however; to<br />

consider the various factors affecting trauma and trauma variation<br />

including the bone type, injury location, and all available contextual<br />

information.<br />

Forensic Anthropology, Blast Trauma, Skeletal Fractures<br />

67 * Presenting Author


H8 Case Studies and Patterns of<br />

Postmortem Dismemberment<br />

Nicolette M. Parr, MS*, 1305 Northeast 6th Terrace, Gainesville,<br />

Florida ; Katherine Skorpinski, MA, 1626 Southwest 14th Street,<br />

Aartment 16, Gainesville, FL 32608; Traci L. Van Deest, MA, 121<br />

Southeast 16th Avenue, Apartment J201, Gainesville, FL 32601; and<br />

Laurel Freas, MA, 3425 Southwest 2nd Avenue, #246, Gainesville,<br />

FL 32607<br />

The goal of this presentation is to present three case studies on<br />

postmortem dismemberment through the joint surfaces, and discuss the<br />

patterns of tool mark damage to the soft tissue and surrounding and/or<br />

underlying bone.<br />

This presentation will impact the forensic science community by<br />

suggesting a protocol for processing and analyzing cases of<br />

dismemberment through the joint surfaces.<br />

Two patterns of postmortem dismemberment are commonly<br />

discussed in the cutmark literature: one in which the bones of the limbs<br />

or torso are transected, and the other in which dismemberment is<br />

executed via disarticulation through the joint capsules. However, the<br />

latter method is observed at much lower frequencies. A survey of cases<br />

from the C.A. Pound Human Identification Laboratory identified 34<br />

instances of postmortem dismemberment over the past 37 years. Of<br />

these, 27 (79%) occurred through the bone, while 7 (21%) were through<br />

the joint capsules. Recently; however, the Pound Lab has seen an<br />

increase in cases of postmortem dismemberment through the joints, with<br />

four such cases since August 2007.<br />

The majority of the literature on cutmark analysis focuses primarily<br />

on the characteristics of marks made directly in the bone. As such,<br />

analysis and interpretation of dismemberment through the joint capsule<br />

is often difficult, as many of the cutmarks are often found in cartilage<br />

rather than in bone. Additionally, implements typically used to cut<br />

through the joints, such as knives or scalpels, have fewer diagnostic class<br />

characteristics than saws, making them more difficult to differentiate.<br />

With the involvement of the soft tissue, a different approach to the<br />

processing and analysis of the remains may aid in identifying<br />

characteristics of the tools used in the dismemberment event. The<br />

current study provides an overview on how to process and analyze<br />

dismemberments through the joints by presenting three case studies,<br />

each involving a slightly different approach.<br />

The remains from Case 1 were preserved in formalin by the medical<br />

examiner prior to arrival at the lab in September 2008. Dismemberment<br />

occurred at the major limb joints and between two cervical vertebrae.<br />

Cutmarks were found in the articular cartilage or in the non-articular<br />

bone immediately adjacent to the joint surfaces, and had characteristics<br />

consistent with a straight-edged (non-serrated) blade. While some tissue<br />

was removed during analysis, preservation in formalin precluded a more<br />

detailed analysis of the underlying bone.<br />

Case 2, in April 2009, provided an opportunity for exploring<br />

different methods of preserving cutmarks in cartilage. Some of the<br />

remains were submerged in formalin; other joint surfaces were covered<br />

with damp towels to prevent drying and permit eventual examination of<br />

the subchondral bone. A cross-cut saw was used to transect the lumbar<br />

spine; a knife was used to dismember the shoulder and hip joints. The<br />

knife cutmarks were highly variable in morphology, ranging from<br />

smooth, straight margins to very ragged, irregular margins. This<br />

variability may be an artifact of the remains’ exposure to the differing<br />

preservation conditions, however the use of two different implements<br />

cannot be ruled out. Analysis of the underlying bone failed to provide<br />

any further distinguishing characteristics of the knife.<br />

In June 2009, Case 3 arrived at the Pound Lab completely<br />

skeletonized. As the remains were fully fleshed at initial recovery,<br />

photos provided by the medical examiner’s office were used to visually<br />

assess the articular cartilage of the major joints. This case displays both<br />

* Presenting Author<br />

patterns of dismemberment, with the shoulders and knees disarticulated<br />

through the joint capsules and the proximal femora transected below the<br />

lesser trochanters with a hacking implement. The articular cartilage<br />

displayed incised defects, gouges and scrape marks, some of which<br />

corresponded with defects in the subchondral bone. The morphology of<br />

the cutmarks observed within and adjacent to the joint surfaces is<br />

consistent with the use of a finely serrated blade.<br />

After examining these three different cases, it appears that the best<br />

approach is a two phase analysis starting with an in-depth examination<br />

of the soft tissue followed by an analysis of the underlying bone after<br />

processing. As the soft tissue must be kept hydrated prior to processing,<br />

a prolonged period of analysis can lead to differential preservation<br />

conditions that may alter the appearance of the cutmarks. If the analysis<br />

is conducted over an extended period of time, preservation of the<br />

remains in formalin may be ideal to better preserve the diagnostic<br />

features of the cutmarks. It is important to note; however, that this<br />

approach largely precludes an analysis of the underlying bone. Further<br />

research on knife marks in cartilage and other soft tissue is needed, as<br />

these types of cutmarks may contribute valuable information to tool<br />

mark analyses in dismemberment cases.<br />

Dismemberment, Tool Mark Analysis, Soft Tissue<br />

H9 A SEM-EDS Trace Elemental Analysis of<br />

Sharp Force Trauma on Bone<br />

Shannon E. May, MA*, 250 South Stadium Hall, Department of<br />

Anthropology, University of Tennessee, Knoxville, TN 37966<br />

The goal of this presentation is to apply the scanning electron<br />

microscope, with energy dispersive spectroscopy (SEM-EDS) to trace<br />

elemental analysis of sharp force trauma on bone.<br />

This presentation will impact the forensic community by expanding<br />

the use of the SEM beyond that of cutmark analysis and to apply EDS to<br />

sharp-force injuries specifically. This study furthermore aims to provide<br />

another method for identifying tools used to inflict trauma.<br />

The study of cutmarks on bone, as evidence of sharp forces, has a<br />

long history in anthropological studies. Forensic anthropologists have a<br />

particular interest when medico-legal questions are raised concerning the<br />

presence of cutmarks along with circumstances surrounding death. The<br />

unifying goal of these studies is to match diagnostic features of the tool<br />

with unique impressions left in the resulting cut. 1 It is crucial that<br />

forensic practitioners become familiar with recent technological<br />

innovations which could potentially meet these goals.<br />

The scanning electron microscope (SEM) is a high-powered<br />

visualization tool typically applied to engineering, microbiological, and<br />

material sciences. Energy Dispersive Spectroscopy (EDS) is an<br />

additional technique that may be used concurrently with the SEM to<br />

identify the elemental composition of scanned materials by collecting the<br />

fluorescent X-rays generated in the SEM process. While SEM has been<br />

used extensively for cutmark analysis, few studies have applied EDS for<br />

the principles of forensic anthropology in published literature. EDS has<br />

determined the presence and chemical ratio of elements present in dental<br />

restorative resins, 2,3 and has additionally been used to authenticate or<br />

eliminate a possible set of human cremains. 4,5 In 2007 Berryman et al.<br />

identified several elements characteristic of gunshot residue on bones<br />

which had been impacted by gunshot trauma. 6 However, research has<br />

not yet applied SEM-EDS to additional forms of trauma on bone,<br />

particularly sharp force trauma.<br />

Most contemporary metallic instruments are composed of steel or a<br />

similar alloy, which will rust upon exposure to aquatic environments.<br />

External layers of rust can easily be shed through contact, as well<br />

superficial metallic particles that deteriorate through the corrosion<br />

process. Sharp force trauma was preferentially selected for this analysis<br />

because the incision often resembles a trough, in which trace particles<br />

68


are more likely to become imbedded and preserved in the bone matrix.<br />

Even when a sufficient amount of force is used, sharp instruments rarely<br />

obliterate or completely destroy point of contact.<br />

Osteological material was provided by the University of Tennessee<br />

Zooarchaeological Laboratory. One Bos taurus limb (humerus, radius,<br />

ulna, and metapodials) was disarticulated and flesh was removed,<br />

leaving periosteum intact. Eight sharp tools of known metallic<br />

composition, with various shapes, sizes, and level of rust development,<br />

were selected to induce sharp force trauma to samples. Each tool was<br />

used to strike a single area of bone, leaving cut marks relatively<br />

perpendicular to the shaft. Samples were either fully processed by<br />

boiling and removing residual tissue, or minimally process by removing<br />

periosteum only. Samples were then dried, and vacuum-pumped for 72<br />

hours prior to scanning. SEM was performed using a [Hitachi VP-SEM<br />

S-3400N microscope] and elemental analysis was performed using the<br />

[Oxford INCA Energy 200 Dispersive X-Ray Spectroscope.]<br />

The SEM successfully imaged the cutmarks on bone at<br />

magnifications 200x – 500x. EDS found organic compounds (Ca, C, O,<br />

P, Na) in the control samples at generally expected ratios. Inorganic<br />

elements (Fe, Ni, Mn, Cr) were determined in samples cut with metallic<br />

hand-axes, and the highest amount of iron (Fe) and elevated oxygen<br />

(together creating corrosive rust compounds) were seen in the samples<br />

where a rusty instrument was used. The presence of inorganic elements<br />

was greatly reduced by the full processing method. Future research will<br />

include comparisons of various corroded tools to potentially<br />

individualize a source, and investigation of other metallic substances in<br />

addition to steel.<br />

Results suggest that EDS may successfully be used to identify<br />

inorganic elements resulting from sharp force trauma. This methodology<br />

will lend to class-level identification, or negate alternative explanations<br />

for bone pathology. This work may potentially support other<br />

corroborating evidence when attempting to identify an instrument used<br />

in forensic contexts.<br />

References:<br />

1 Boyd A, Jones S. 1996. Scanning Electron Microscopy of Bone:<br />

Instrument, Specimen, and Issues. Microsc Res Tech 33:92-120.<br />

2 Ubelaker DH. The Evolving Role of the Microscope in Forensic<br />

Anthropology. In: Reichs KJ, editor. Forensic Osteology. 2 ed.<br />

Springfield, IL: Charles C. Thomas, 1997:514-532.<br />

3 Bush MA, Miller, RG, Prutsman-Pfeiffer J, Bush PJ. Identification<br />

through X-Ray fluorescence analysis of dental restorative resin<br />

materials: A comprehensive study of noncremated, cremated, and<br />

processed-cremated individuals. J Forensic Sci 52(1):157-165.<br />

4 Warren MW, Falsetti AB, Kravchenko II, Dunnam FE, Van Rinsvelt<br />

HA, Maples WR. Elemental analysis of bone: proton-induced X-ray<br />

emission testing in forensic cases. Forensic Sci Int 2002;125(1):<br />

37–41.<br />

5 Brooks TR, Bodkin TE, Potts GE, Smullen SA. Elemental analysis<br />

of human cremains using ICP-OES to classify legitimate and<br />

contaminated cremains. J Forensic Sci 2006 Sept ;51(5):967-973<br />

6 Berryman H, Kutyla, A. Detection of Gunshot Residue (GSR) on<br />

Bone: Potential for Bullet Direction and Range Estimation; 2008<br />

February 18-23; American Academy of Forensic Sciences Annual<br />

Meetings, Washington DC. p 360-361. Colorado Springs, CO:<br />

American Academy of Forensic Sciences, 2008.<br />

Sharp Force Trauma, Scanning Electron Microscopy (SEM), Energy<br />

Dispersive Spectroscopy (EDS)<br />

H10 Long Bone Healing Following Trauma<br />

Lenore Barbian, PhD*, Department of History & Anthropology,<br />

Edinboro University of Pennsylvania, Edinboro, PA 16444<br />

The goal of this presentation is to offer information on the timing of<br />

macroscopically observable osseous changes related to long bone<br />

healing for an historic skeletal sample and compare these observations to<br />

those previously reported for cranial fractures.<br />

This presentation will impact the forensic community by<br />

contributing to the available research on fracture healing rates by<br />

providing a non-destructive method to assess fracture healing. The data<br />

presented here can be used to aid investigators in more accurately<br />

predicting time since injury in forensic settings.<br />

The analysis of fractures in dry bone is of considerable medicolegal<br />

importance and can contribute significant information on the cause and<br />

timing of death. However, much remains to be learned about the timing<br />

of specific bony responses during the healing process. A previous study<br />

has already explored the timing of initial bony response to injury in<br />

regard to cranial fractures (Barbian and Sledzik 2008). 1 Using the same<br />

historic sample, this study further investigates the macroscopic timing<br />

and appearance of fracture healing in long bone specimens.<br />

The Civil War skeletal collection at the National Museum of Health<br />

and Medicine, Washington, DC represents a collection with detailed<br />

case history reports that make it possible to compute the time elapsed<br />

from insult to recovery, amputation, or death. From this collection, a<br />

sample of humeri and femora specimens with gunshot wound fractures<br />

were selected for observation (n=262). Each specimen was<br />

macroscopically examined and scored for the presence or absence of any<br />

bony response. This presentation will report on the rates of four bony<br />

responses around the fracture area: osteoblastic response, osteoclastic<br />

response, line of demarcation, and sequestration. Osteoblastic response<br />

was defined as any bone building response including the deposition of<br />

subperiosteal new bone, rounding of the fracture margins, or the<br />

presence of areas of woven bone. Osteoclastic response was defined as<br />

areas of pitting, exposure of the diploë, or other bone resorptive<br />

response. A line of demarcation was seen as an “etched” line running<br />

adjacent to the fracture margins and appearing as a shallow depression.<br />

Sequestration was noted when a segment of bone was becoming<br />

necrosed.<br />

A comparison of the findings from this study with the previous one<br />

reveals that the osteoclastic, osteoblastic, and line of demarcation<br />

responses show a similar pattern to that recorded for cranial fractures.<br />

Specifically for the clastic and blastic responses, there is a clear trend of<br />

increasing frequency in the weeks post-fracture with over 80% of the<br />

sample demonstrating a response by the sixth week post-fracture. For<br />

the line of demarcation, there is an increasing prevalence of this response<br />

through the fifth week post-fracture followed by a decrease in frequency<br />

in the sixth and subsequent weeks.<br />

Different from the cranial fracture study is the onset and prevalence<br />

rates of the bony responses. The cranial fracture healing study found that<br />

the osteoclastic response can occur earlier than the osteoblastic response.<br />

While this finding is not supported by the long bone data, the frequency<br />

of osteoclastic response in long bones is slightly higher than that of the<br />

osteoblastic response through the second week post-fracture. The most<br />

notable finding from this study is the prevalence of all the bony<br />

responses during the first week post-fracture. In fact all four bony<br />

responses were scored as present during the first week post-fracture and<br />

over 41% of the first week post-fracture specimens displayed at least one<br />

osseous response. In comparison, the cranial fracture study found an<br />

initial latency period of approximately one to two weeks for each of the<br />

four osseous responses scored. Although it has been long recognized<br />

that cranial bone responds differently to fracture (Sevitt 1981), 2 the long<br />

bone rates of osseous response during the first week post-fracture still<br />

seem remarkable. The cranial healing study found that the earliest bony<br />

response occurred five days post-fracture. However, the long bone data<br />

suggest that some individuals are manifesting a bony response in less<br />

than five days. This occurs most frequently for the osteoclastic (n=33)<br />

and osteoblastic (n=32) responses although line of demarcation (n=3)<br />

and sequestration (n=3) are also represented. This appears to be in direct<br />

contradiction to our current understanding of the bone healing process.<br />

While these results may seem surprising, it should be noted that at<br />

least some of the bony responses scored during the first five days post-<br />

69 * Presenting Author


fracture do not appear to be consistent with the initial osseous response<br />

to trauma, but rather appear to be more consistent with longer term bony<br />

changes. This would appear to be the case with the observations of<br />

sequestration as well as the some of the osteoblastic responses which<br />

were associated with rounded fracture margins (n = 8) or the deposition<br />

of areas of woven bone (n=8). It, therefore, seems likely that some of<br />

the bony lesions scored represent pre-existing conditions unrelated to the<br />

bony fracture per se. It is known that the health of Civil War soldiers was<br />

compromised due to a number of factors including nutrition, sanitation,<br />

and infectious disease vectors (Bollet 2002), 3 and these factors may help<br />

to explain the observations reported here. In forensic contexts<br />

determining the timing of multiple fractures is often important, and the<br />

initial results of this study suggests that macroscopic bony responses on<br />

fractured long bones may reflect more than simply fracture healing.<br />

References:<br />

1 Barbian L, Sledzik P. Healing following cranial trauma. J Forensic<br />

Sci 2008; 53: 263-268.<br />

2 Sevitt S. Bone repair and fracture healing in man. Edinburgh:<br />

Churchill Livingstone, 1981.<br />

3 Bollet AJ. Civil War medicine: challenges and triumphs. Tucson,<br />

Arizona: Galen Press, Ltd., 2002.<br />

Long Bone Fracture, Fracture Healing, Gunshot Wounds<br />

H11 Schmorl’s Nodes in the Skeletal Remains of<br />

an American Military Population:<br />

Frequency, Formation, and Etiology<br />

Kelly L. Burke, MSc*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

After attending this presentation, attendees will understand the<br />

patterns of occurrence of a frequent pathological condition, the<br />

Schmorl’s node, in a U.S. military population.<br />

This presentation will impact the forensic science community by<br />

broadening our understanding of factors which may cause and influence<br />

the frequency of Schmorl’s nodes.<br />

This research considers multiple hypotheses regarding the etiology<br />

of Schmorl’s nodes. Schmorl’s nodes result from herniation of the<br />

nucleus pulposus of the intervertebral disc through the cartilaginous<br />

endplate and into the cancellous bone of the vertebral centrum. The<br />

author hypothesizes that the frequency of Schmorl’s nodes in military<br />

populations will be higher than that seen in most non-military<br />

populations, since physical stressors, such as those experienced by those<br />

in military training and operations, may increase the incidence of this<br />

pathological condition. Schmorl’s nodes might also be expected to<br />

appear more frequently in farming and athletic populations.<br />

This research investigates the frequency of Schmorl’s nodes in<br />

differing populations, with new data from a skeletal sample from the<br />

Central Identification Laboratory (CIL) at the Joint POW/MIA<br />

Accounting Command (JPAC) in Hawaii. The sample consists of U.S.<br />

servicemembers (the majority of whom are young Caucasoid males) who<br />

served during World War II, the Korean War, and the Vietnam War, with<br />

additional servicemembers from the Civil War and World War I. The<br />

remains derive from JPAC recoveries of battlefield burials, cemetery<br />

exhumations, and turnovers from foreign and domestic citizens and<br />

governments.<br />

The current study consists of two samples, a broader study of<br />

instances of this pathological condition in CIL case reports and a more<br />

specific study examining intact skeletal remains. In the broader sample,<br />

34 of 172 individuals (19.8%) had at least one vertebra affected by a<br />

Schmorl’s node. This frequency has of course been depressed by<br />

instances of incomplete skeletal recovery and poor preservation. In this<br />

sample, the greatest concentration of Schmorl’s nodes was seen in the<br />

* Presenting Author<br />

lower thoracic region. In the smaller sample of nearly complete<br />

skeletons, 28 of 38 individuals (73.3%) had at least one Schmorl’s node<br />

present. The greatest concentration of Schmorl’s nodes was again seen<br />

in the lower thoracic region, with diminishing frequencies seen as the<br />

vertebrae get higher and lower in number from this point. Several<br />

Schmorl’s nodes were also seen in the cervical vertebrae, a finding that<br />

has not often been reported.<br />

In a comparison of other studies charting the occurrence of<br />

Schmorl’s nodes, it was found that the frequency of these lesions can<br />

range from 8% to 79% of a population. A number of processes have been<br />

implicated in causing Schmorl’s nodes, including trauma, the aging<br />

process, disease, intrinsic factors, and unknown causes. Of these<br />

processes, it is hypothesized that both rapid-loading events on the axial<br />

skeleton and repeated stress injuries due to hard physical labor over time<br />

are the predominant causes. Age does not appear to be a factor in the<br />

formation of these lesions, with similar frequencies found in young and<br />

old populations.<br />

Schmorl’s Node, Paleopathology, Trauma<br />

H12 Protocol for Objective Evidentiary<br />

Photography in Forensic Anthropology<br />

Malina L. Reveal, MSc*, PO Box 4493, Chico, CA 95927; and Ian<br />

Hanson, MSc, Bournemouth University, Room C136, Christchurch<br />

House, Talbott Campus, Fern Barrow, Poole, BH12 5BB,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will understand the need<br />

for photographic procedural guidelines and protocols within the field of<br />

forensic and biological anthropology and will gain insight into proposed<br />

photography protocols that are straightforward and user-friendly to<br />

produce objective photographic documentation for a court of law.<br />

This presentation will impact the forensic science community by<br />

demonstrating the importance of establishing professional standards for<br />

producing objective photographic documentation to visually substantiate<br />

scientific findings in a court of law.<br />

This presentation will help attendees gain a better insight into the<br />

current limited availability of standardized photographic procedural<br />

guidelines and protocols within the field of forensic and biological<br />

anthropology and will demonstrate the importance to the forensic<br />

community of establishing professional standards for producing<br />

objective photographic documentation to visually substantiate scientific<br />

findings in a court of law by outlining specific, reproducible, userfriendly<br />

photographic procedural guidelines, and protocols.<br />

Currently, there is no generally accepted protocol for the<br />

photographic evidentiary documentation of human remains analyzed by<br />

the forensic and biological anthropologist in the determination of a<br />

biological profile. A detailed analysis of existing photography<br />

procedural guidelines and protocols (PG&P) from a variety of forensic<br />

professions was conducted and elements of these protocols were<br />

synthesized, supplemented, and organized into straightforward and<br />

accessible procedural guidelines and protocols specific to the forensic<br />

and biological anthropologist that are applicable for the field or the<br />

laboratory. Procedural guidelines and a photography protocol for use in<br />

the documentation of a biological profile, as well as a digital image<br />

processing PG&P were also developed.<br />

The proposed photography PG&P were used to produce digital<br />

images at the California State University, Chico Human Identification<br />

Laboratory (CSUC-HIL). Photographs were taken of the human skeletal<br />

remains of a single individual curated at the CSUC-HIL. [The following<br />

equipment was used: a Canon Digital Rebel, 35 mm camera, Canon EFS<br />

18-55 mm normal lens and a Canon 50 mm Compact-Macro EF lens.] In<br />

this instance, the more common JPEG photographic format was used,<br />

although TIFF is recommended. A ScanDisk Flash 4 GB memory card<br />

was used to store all photographs.<br />

70


Following the laboratory protocol, initial photographs of the human<br />

remains were taken with a 35 mm normal lens. All four corners, seals<br />

and the inside of the box containing the remains were photographed to<br />

ensure chain of custody. The human remains were photographed in<br />

anatomical position from head to foot and foot to head. The protocol<br />

recommends taking 100% orientation photographs using a 35 mm<br />

normal lens. This is achieved by photographing each skeletal element<br />

from all possible views to create a permanent visual record of all<br />

elements present.<br />

Next, a 50 mm Compact-Macro EF lens was used to photograph all<br />

trauma, pathological conditions, and developmental anomalies. Using<br />

the 35 mm normal lens and the macro lens, photographs of all<br />

taphonomic changes present on all bones, the facial skeleton, maxillae<br />

and the mandible were taken. Photographs of the skull/cranium using a<br />

35 mm normal lens were taken in the following order: Frankfurt plane,<br />

left and right lateral views, sagittal plane, occipital region, frontal plane,<br />

and basilar view. The photographs produce detailed visual and<br />

permanent documentation of fragile skull/cranial bones and of longs<br />

bones, flat bones and irregular bones.<br />

The PG&P recommended for the photographic documentation of<br />

the biological profile incorporates elements of the laboratory procedural<br />

guidelines adapted to each skeletal element used in determining ancestry,<br />

sex, stature, age at death, and individuating characteristics.<br />

The protocols worked well in the CSUC-HIL; however, the<br />

laboratory tables were low and could not be configured to reduce back<br />

strain and fatigue. Many photographs are needed to fully document<br />

human remains, thus it is important that the photography station facilitate<br />

the taking of many photographs. The protocols are straightforward and<br />

can be easily followed. Therefore, even if the Forensic anthropologist is<br />

not available to attend the recovery of the remains, detailed visual<br />

inventory and documentation of the human remains can be established<br />

for a court of law.<br />

Forensic anthropologists are called upon to testify as expert<br />

witnesses in legal proceedings related to medico-legal death<br />

investigations and often use photographs of skeletal elements to<br />

document their findings regarding a biological profile. It is anticipated<br />

that the recommended photography procedural guidelines suggested here<br />

will be expanded and modified as the situation dictates, and as<br />

technology and the profession advance. The wide-spread and consistent<br />

application of these guidelines and protocols will, hopefully, lead to the<br />

speedy adoption of standardized photography procedural guidelines and<br />

protocols as part of the established methodologies in the profession.<br />

Anthropology, Photography, Standards<br />

H13 Postmortem Interval of Surface Remains<br />

During Spring in Southeast Texas<br />

Katelyn A. Stafford*, Sam Houston State Univeristy, Department of<br />

Chemistry, PO Box 2117, 1003 Bowers Boulevard, Huntsville, TX<br />

77341; Kathryn E. Moss, BS*, 4800 Calhoun Street, Houston, TX 77004;<br />

Natalie Lindgren, BS, Sam Houston State University, College of<br />

Criminal Justice, 1300 Bowers Boulevard, Huntsville, TX 77340; and<br />

Joan A. Bytheway, PhD*, Sam Houston State University, Chemistry &<br />

Forensic Science Building, 1003 Bowers Boulevard, Box 2525,<br />

Huntsville, TX 77340<br />

After attending this presentation, attendees will learn the effect of<br />

environmental factors on decomposing human remains located on the<br />

ground surface in southeast Texas during the spring season. In the past,<br />

decomposition studies have been conducted mostly on pig carcasses in<br />

different types of climates. Southeast Texas has a subtropical humid<br />

climate which is quite different than climates in previous studies. The<br />

present study was conducted on a human cadaver in the spring season in<br />

a sun-exposed location at the Southeast Texas Applied Forensic Science<br />

Facility (STAFS), located in the Center for <strong>Bio</strong>logical Field Studies at<br />

Sam Houston State University, Huntsville, Texas.<br />

This presentation will impact the forensic science community<br />

because the data collected from the surface remains will show the<br />

postmortem interval and body changes that occur while exposed<br />

outdoors during the spring season in southeast Texas. This data will be<br />

informative information that can be used in law enforcement<br />

investigations involving human decomposition in southeast Texas or<br />

other geographic areas with similar climates.<br />

A previous study done in Saskatchewan, Canada on pig carcasses<br />

(Sharanowski et. al, 2008) measured the rate of decomposition and insect<br />

activity in the fall, spring, and summer in a shaded and sun-exposed<br />

location. There were three pig carcasses placed at each location and<br />

secured to the ground so that scavengers could not remove the carcasses.<br />

The pig carcasses were clothed in long sleeve shirts when placed for the<br />

observation period. The spring season in the Saskatchewan experiment<br />

(sun-exposed area) related most to the research done on the subject at the<br />

STAFS facility. The spring season time frame recorded for the<br />

Saskatchewan, Canada study was May 17, 2000 until June 18, 2000. The<br />

average temperature at the sun-exposed site was 17.8 degrees Celsius.<br />

The conclusion of the study conducted in Canada was that<br />

decomposition occurred at a much faster rate during the spring season<br />

with little insect activity.<br />

Sam Houston State University recently began research at Southeast<br />

Texas Applied Forensic Science Facility (STAFS) to study<br />

decomposition and insect activity on various human cadavers under<br />

different environmental conditions. The test subject was an unclothed<br />

middle-aged male. He was placed on the ground surface in the outdoor<br />

facility, in an unobstructed, open area, in direct sunlight. The subject was<br />

placed during the spring from March 9, 2009 until May 29, 2009. The<br />

average temperature during the study time period was 19.22 degrees<br />

Celsius and the average rain fall was 0.0134 inches. Climate data was<br />

recorded at two hour intervals, twenty four hours per day over the three<br />

month period. Vigorous insect activity was seen throughout the study.<br />

At the conclusion of the study some skeletal elements were<br />

exposed, but the majority of bone elements remained covered by<br />

desiccated tissue. Portions of the upper and lower limbs of the body,<br />

skull mandible, and cervical vertebrae had been moved from their<br />

original positions as a result of scavenger activity. A similar<br />

decomposition pattern was seen on the STAFS’ subject as was recorded<br />

in the Canadian study with skin and soft tissue desiccated. The<br />

decomposition findings were not expected in the humid climate of<br />

Southeast Texas.<br />

With heavy rain in mid-March the desiccating body tissue<br />

moistened, but once the rain ceased, it immediately dried and remained<br />

desiccated for the remainder of the study.<br />

Decomposition, Surface Remains, Southeast Texas<br />

H14 Common Household Rope and an Outdoor<br />

Hanging: An Investigation Sparked by a<br />

Skeletal Case Exhibiting Cervical<br />

Vertebra Entrapment<br />

Alicja K. Kutyla, MS*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Rebecca J.<br />

Wilson, MA, 3108 Rennoc Road, Knoxville, TN 37918; and Hugh E.<br />

Berryman, PhD, Department Sociology & Anthropology, Middle<br />

Tennessee State University, Box 89, Murfreesboro, TN 37132<br />

After attending this presentation, attendees will appreciate the<br />

limitations imposed by the type of rope used in outdoor hanging<br />

contexts.<br />

This presentation will impact the forensic science community by<br />

providing data on the limitations of the type of rope used in outdoor<br />

71 * Presenting Author


hanging contexts, and insight into the clues important in determining<br />

whether skeletal remains decomposed on the surface or while being<br />

suspended.<br />

Despite the fact that most suicidal hangings occur indoors, outdoor<br />

suicidal hangings are a relatively common occurrence (Komar et al.,<br />

1999; Spitz and Fisher, 2004). The purpose of this study was to recreate<br />

a skeletal forensic case involving an outdoor suicidal hanging that<br />

presented with a cervical vertebra entrapped in a cotton and belt<br />

makeshift noose (Berryman, 2008). In this type of case the presence of<br />

the entrapped cervical vertebra is thought to provide clear evidence of<br />

hanging as the cause of death (Ledford et al., 2009); however, it is<br />

unclear what conditions are required for this to occur. In the absence of<br />

a feature of this type, especially in anthropological cases where the bones<br />

and associated cultural items have been scattered, it would be difficult to<br />

attribute hanging as a cause of death as the pattern of skeletal deposition<br />

of a hanging individual is virtually unknown.<br />

This preliminary investigation attempted to recreate a skeletal<br />

forensic case that presented with an entrapped cervical vertebra in an<br />

outdoor context. In order to do so, a 10-foot high wooden device was<br />

built to bear a maximum load of over 600 pounds with a pulley/crank<br />

system to ease the force required to lift an individual into the hanging<br />

position (1 to 2 feet above the ground surface). This study was designed<br />

to test whether a cotton rope, commonly used in indoor hanging contexts,<br />

can be used to recreate a “true hanging” where both feet are off the<br />

ground. Although a cotton rope was not used in the case that precipitated<br />

this research, it is thought to be an adequate substitute for the actual<br />

cotton material (rolled to form a cord approx. 3/8 inch in diameter) that<br />

appears to be the point of failure, having been broken or cut. This<br />

research was conducted at the Anthropological Research Facility at the<br />

University of Tennessee using cadavers from the Forensic Anthropology<br />

Center body donation program.<br />

Results indicate that a cotton rope 3/8 inch in diameter is unable to<br />

sustain the full weight of a hanging, adult individual. In most<br />

circumstances the tensile strength of a particular rope is made available<br />

by manufacturers and can be used to assess whether an individual was<br />

fully suspended, or suggest a positional asphyxiation scenario, where<br />

feet remain on the ground. It is impossible to determine how a rope will<br />

respond to an outdoor hanging situation based solely on its tensile<br />

properties, especially in situations where common household items have<br />

been strung together to form makeshift asphyxiation devices. The cotton<br />

clothesline rope used in this study is common in indoor hanging<br />

scenarios, but it seems that it does not possess the tensile strength to<br />

withstand a fully suspended load.<br />

As forensic practitioners—particularly in anthropological cases in<br />

an outdoor setting–the possibility of hanging as a potential cause of death<br />

is not considered without the presence of obvious features such as a<br />

noose. An understanding of the decomposition process and subsequent<br />

skeletal deposition in hanging cases is essential in order to differentiate<br />

between remains originally decomposing on the surface from those that<br />

decomposed while being suspended. Expanding our understanding of<br />

the decomposition process and subsequent skeletal deposition in<br />

situations other than an individual lying on the ground is necessary.<br />

Investigations of this nature may enable the discovery of other tell tale<br />

markers to differentiate situations where an individual decomposed on<br />

the surface as opposed to a hanging situation, and vice-versa. Identifying<br />

tell tale markers indicative of decomposition while suspended, and<br />

understanding the variables that the hanging condition presents (e.g.,<br />

distance from the ground, positioning of the body in relation to the<br />

asphyxiation device, the type of noose used, and how these affect the<br />

decomposition process) may allow a more accurate evaluation of these<br />

types of cases.<br />

Outdoor Hanging, Cause of Death, Forensic Anthropology<br />

* Presenting Author<br />

H15 Estimating Sex of the Human Skeleton<br />

Based on Metrics of the Sternum<br />

Rosanne Bongiovanni, BA*, 601 University Drive, ELA 232, San<br />

Marcos, TX 78666<br />

After attending this presentation, attendees will understand the call<br />

for utilization of the sternum as a viable estimate of sex in a recent<br />

forensic sample from North America and be introduced to the necessary<br />

measurements of the sternum, reasons preventing the taking of<br />

measurements, the process and reasoning behind the collection of data,<br />

and subsequent statistical analysis employed in this study.<br />

This presentation will impact the forensic science community by<br />

showing that the sternum provides a viable estimate of sex in a recent<br />

forensic sample from North America and is a useful addition to the<br />

methods employed in human identification.<br />

Estimating the sex of an adult skeleton is a critical facet in creating<br />

the biological profile of an individual. To date, there are different<br />

methods used on select elements of the skeleton to assess the sex of the<br />

individual. Studies performed on an Indian population (Jit et al 1980)<br />

indicate that analyzing the sternum may lead to an accurate estimation of<br />

sex. Therefore, the method is not population specific and may not prove<br />

useful on a recent forensic sample from North America, hence the<br />

motivation for this study.<br />

Sternal measurements were collected from the William M. Bass<br />

Skeletal Collection located at The University of Tennessee, Knoxville.<br />

This is a collection of recent forensic skeletons with known age at death,<br />

ancestry, and sex. The metric definitions provided by Schwartz (2007)<br />

and Bass (1987) were followed so that others attempting to replicate this<br />

research will be able to reliably measure the sternum. The measurements<br />

include length of the manubrium, length of the body, sternebra 1 width,<br />

and sternebra 3 width. A digital sliding caliper was utilized to take these<br />

measurements. Time was designated at the beginning of the second and<br />

third days to employ the test-retest method in order to calculate the intraobserver<br />

error rate and ensure reliability of these measurements.<br />

In this study, comparisons of the proportion of the length of the<br />

manubrium to the length of the body of the sternum were performed to<br />

determine if there are measureable differences between males and<br />

females. Based on the work of Dahiphale et al. (2002), it is hypothesized<br />

that the body of the sternum in an American population will be greater<br />

than twice the length of the manubrium in male samples, but that in<br />

female samples, the length of the manubrium will be greater than half the<br />

length of the body. This is referred to as Hyrtl’s Law. In addition,<br />

comparisons of these measurements between individuals identified as<br />

American Black and White were analyzed to determine whether or not<br />

this method could be used on both population groups.<br />

The study contained 412 sterna (289 males, 123 females; 377<br />

White: 35 Black). The data was entered into the Statistical Analysis<br />

Software (SAS) computer program, version 9.1.2. A discriminate<br />

function analysis (DFA), using all variables, produced an overall crossvalidation<br />

classification rate of 84.12% for sex estimation. The crossvalidation<br />

classification rates for males and females were 80.00% and<br />

88.24%, respectively. The applicability will be discussed of utilizing the<br />

sternum as a method of sex estimation and propose specialists in the field<br />

adopt it as a supplementary method for use in human identification.<br />

Forensic Anthropology, Sex Estimation, Sternum<br />

72


H16 Microscopic Markers of Trauma in<br />

Decomposed Bone and Skin<br />

Anna Taborelli, MD, and Salvatore Andreola, MD, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze <strong>Bio</strong>mediche, V.<br />

Mangiagalli, 37, Milan, ITALY; Alessia Di Giancamillo, DVM,<br />

Dipartimento di Scienze e Tecnologie Veterinarie p, Università degli<br />

Studi, Milan, ITALY; Guendalina Gentile, BSc, Sezione di Medicina<br />

Legale, Dipartimento di Morfologia Umana e Scienze <strong>Bio</strong>mediche, Via<br />

Mangiagalli, 37, Milano, ITALY; Daniele Gibelli, MD*, and Marketa<br />

Pechnikova, BSc, Laboratorio di Antropologia e Odontologia Forense,<br />

Sezione di Medicina Legale, Dipartimento di Morfologia Umana e<br />

Scienze <strong>Bio</strong>mediche, Via Mangiagalli, 37, Milan, ITALY; Cinzia<br />

Domeneghini, DVM, Dipartimento di Scienze e Tecnologie Veterinarie,<br />

Università degli Studi, Milan, ITALY; Marco Grandi, MD, Sezione di<br />

Medicina Legale e delle Assicurazioni di Milano, Dipartimento di<br />

Morfologia Umana e Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan,<br />

ITALY; and Cristina Cattaneo, PhD, Laboratorio di Antropologia e<br />

Odontologia Forense, Sezione di Medicina Legale, Dipartimento di<br />

Morfologia Umana e Scienze <strong>Bio</strong>mediche, V. Mangiagalli, 37,<br />

Milan, ITALY<br />

The goal of this presentation is to detect the vitality of soft tissue<br />

and bone lesions in an advanced state of decomposition using a<br />

monoclonal anti-human Glycophorine A antibody in order to evaluate<br />

the presence and distribution of blood cells.<br />

This presentation will impact the forensic science community by<br />

showing an attempt at detecting a vital reaction in decomposed skin and<br />

bone in order to distinguish between antemortem and postmortem<br />

lesions in difficult situations.<br />

The diagnosis of the vitality of a wound, or rather the identification<br />

of a vital reaction that enables one to differentiate an intravital wound<br />

from a postmortem wound, is a crucial issue in forensic pathology and<br />

more so in forensic anthropology. In fresh skin the macroscopic<br />

examination of hemorrhage infiltration can be sufficient to reveal the<br />

vitality of the wound but in many other cases histological and<br />

histochemical analyses are required. Bone injuries may follow similar<br />

“laws” as concerns the evolution of the macroscopic and histological<br />

picture.<br />

The scope of this study was to detect the vitality of soft tissue and<br />

bone lesions in an advanced state of decomposition using a monoclonal<br />

anti-human Glycophorine A antibody in order to evaluate the presence<br />

and distribution of blood cells.<br />

Six samples of bone fractures and two samples of skin wounds were<br />

taken from cadavers with a known time of survival between trauma and<br />

death, and then submitted to a simulated decomposition procedure.<br />

Negative controls were also included. The samples were left to<br />

decompose for 30 days in air and in water and analized at a time interval<br />

of 3-6-15 and 30 days. The bones were decalcified in a specific solution<br />

consisting of water, HCl, and Formic acid. Bone samples were stained<br />

with HE, Perls’, PTAH, Weigert technique and PAS. Skin samples were<br />

stained with HE, Trichrome stain. Both bone and skin samples were<br />

stained with immunohistochemical technique. Skin and bone samples<br />

from four real cases of blunt and gunshot trauma were also included in<br />

the study.<br />

Results showed, in the bone samples, red blood cell residues on the<br />

fractured margins and within Haversian canals may contribute to the<br />

diagnosis of a vital reaction. In the skin samples, red blood cells were<br />

visible until the 6 th day in air and granular deposits of glycophorin<br />

reactive material after six days in air and in all samples in water. The<br />

general microscopic structure of bone was assessed in order to verify<br />

traumatic alterations in osteons.<br />

In conclusion, this study may begin to shed some light on the issue<br />

of detecting a vital reaction in decomposed skin and bone in order to<br />

distinguish between antemortem and postmortem lesions in difficult<br />

situations.<br />

Bone Fracture, haemorrhagic Infiltration, Glycophorine<br />

H17 Can We Estimate Stature From the<br />

Scapula? A Test Considering Sex<br />

and Ancestry<br />

Rachel M. Burke, MA*, 10024 Northeast 120th Sreet #D3, Kirkland, WA<br />

After attending this presentation, attendees will better understand<br />

why multiple techniques for estimating stature are important, what<br />

measurements of the scapula are potentially useful for estimating stature,<br />

and how to use different regression formula to estimate stature based on<br />

scapular measurements.<br />

This presentation will impact the forensic science community by<br />

providing a new method for estimating stature based on measurements of<br />

the scapula in order to create a more thorough biological profile.<br />

The biological profile is one of the most important things that<br />

forensic anthropologists accomplish in their work. This includes the<br />

determination of age, race, sex, and stature. These four components of<br />

the biological profile aid in the identification of an individual in the<br />

forensic context. Since the beginnings of the field of physical<br />

anthropology, osteologists and anatomists have studied human remains<br />

in order to provide new and innovative ways of building the biological<br />

profile.<br />

Two published studies have attempted to estimate stature from<br />

measurements of the scapula. Campobasso et al. (1998) found that<br />

certain measurements of the scapula were highly accurate in estimating<br />

the stature of males and females from an Italian population. Shulin and<br />

Fangwu (1982) concluded that other measurements of the skeleton were<br />

more useful in estimating stature than the maximum scapular breadth for<br />

a Chinese population.<br />

The current research expands upon both of these previous studies<br />

using an American population collected from the Hamann-Todd<br />

Osteological Collection at the Cleveland Museum of Natural History. In<br />

so doing, this researcher hypothesized that there was a significant<br />

relationship between one or more measurements of the scapula and<br />

living stature. Additionally, significant measurements were submitted<br />

for multiple regression analysis in order to create regression formulae<br />

useful in estimating stature.<br />

After taking eleven measurements of the scapula, these variables<br />

were regressed against the stature measurements (N=223) provided in<br />

the Hamann-Todd Human Collection Database. The results show that<br />

several variables including the length of the scapular spine, the<br />

maximum acromion-coracoid distance, the length of the axial border, the<br />

length of the coracoid, and the maximum scapular breadth significantly<br />

contribute to stature. Additionally, race also significantly contributes to<br />

stature. Regression formulae were calculated for populations when race<br />

is both known and unknown. After applying each of these formulae to a<br />

smaller test sample, results show that, unlike the findings of Campobasso<br />

et al. (1998), stature could be predicted for all individuals with an<br />

accuracy of 27%, for blacks with an accuracy of 50%, and for whites<br />

with an accuracy of 36%.<br />

Stature, Scapula, <strong>Bio</strong>logical Profile<br />

73 * Presenting Author


H18 A Pilot Study on Nuclear DNA Recovery<br />

From Charred White-Tailed Deer<br />

(Odocoileus virginianus) Bone Tissue<br />

Jordan N. Espenshade, BS*, 1420 Centre Avenue, Apartment 103,<br />

Pittsburgh, PA 15282; and Lisa Ludvico, PhD, Duquesne University<br />

Department of <strong>Bio</strong>logy, 341 Fisher Hall 600 Forbes Avenue, Pittsburgh,<br />

PA 15282<br />

After attending this presentation, attendees will understand<br />

recovery of compromised DNA from charred bone remains from three<br />

commonly used incendiary liquids.<br />

This presentation will impcat the forensic science community by<br />

identifying if certain bones yield more DNA than others, especially after<br />

being burnt, although this study uses white-tail deer as an animal mode.<br />

Criminals often attempt to hide proof of the crime by burning evidence.<br />

Both wildlife and human homicide investigators will benefit from the<br />

results charred bone DNA analysis can give to their respective forensic<br />

inquiry.<br />

The proposed study utilizes White-tail deer (Odocoileus<br />

virginianus) as an animal model to study the effects of different<br />

accelerants on long bones. The sample location (i.e., tibia, femur, and/or<br />

patella) was also compared to determine the best area from which to<br />

extract DNA. The population for the proposed study is legs from whitetail<br />

deer recovered from road kill. Samples were obtained in conjunction<br />

with the Pennsylvania Game Commission from Pennsylvania roadways.<br />

Time of death was estimated using ocular fluid reflectivity based on an<br />

established index used by wildlife officers. One of the legs was reserved<br />

as a control from each specimen. The remaining three legs were<br />

incinerated with gasoline, kerosene, or lighter fluid respectively. These<br />

accelerants are considered to be the most commonly used to conceal<br />

criminal behavior by investigators. This study will comprise a total of<br />

ten deer, with an associated sample size of 40 appendages, using three<br />

bone fragments from each appendage.<br />

Appendages were soaked in a heated solution of water and sodium<br />

carbonate to ease removal of the soft tissue surrounding the bone. After<br />

elimination of all adhering tissue, each bone fragment was pulverized in<br />

a sterile coffee grinder. DNA from the subsequent bone powder was<br />

extracted using the standard silica ancient DNA protocol (Paablo and<br />

Moss). Each sample was genotyped using a custom designed STR<br />

multiplex. Multiplexing utilized primers previously designed by<br />

Anderson et al (2002) for white-tail deer populations. The modified<br />

multiplexes consisted of eleven STR primers separated into two PCR<br />

panels determined by base pair (bps) size and fluorescent label color.<br />

The white-tailed deer STR panel utilized two primer mix cocktails,<br />

which were run through an Edge<strong>Bio</strong> filter cartridge. These cartridges are<br />

essential when working with in-house multiplexes as they remove any<br />

unincorporated fluorescent labels. Stacking of salts, which is a common<br />

problem associated with non-commercial multiplexes, is also diminished<br />

via the filter cartridge. The samples were then run on an ABI 3100 Avant<br />

genetic analyzer. Allele sizes were binned and exported to a computer<br />

spreadsheet. Complete and partial genetic profiles were identified and<br />

scored for each appendage bone fragment.<br />

Although this study uses white-tail deer as an animal model, it<br />

impacts the forensic community by identifying if certain bones yield<br />

more DNA than others, especially after being burnt. Criminals often<br />

attempt to hide proof of the crime by burning evidence. Both wildlife<br />

and human homicide investigators will benefit from the results charred<br />

bone DNA analysis can give to their respective forensic inquiry. This<br />

study purports to demonstrate that nuclear DNA can be extracted from<br />

remains containing extremely degraded DNA and previously only typed<br />

for mitochondrial DNA sequencing. It also outlines the development of<br />

a microsatellite multiplex, which will be used as part of Duquesne<br />

University’s service learning component. In this capacity, future<br />

students can assist Pennsylvania game commission officers on white-tail<br />

* Presenting Author<br />

deer poaching cases, incorporating collection and documentation<br />

techniques learned in another two semester long course, Criminal<br />

Investigations.<br />

Charred Bone, DNA, Accelerants<br />

H19 Rolling Bones: A Field “System” for the<br />

Recovery and Transportation of Fragile<br />

Skeletal Evidence<br />

Julie M. Saul, BA*, Lucas County Coroner’s Office Forensic<br />

Anthropology Lab, 2595 Arlington Avenue, Toledo, OH 43614-2674;<br />

Frank P. Saul, PhD*, Lucas County Coroners Office, US HHS DMORT<br />

5, 2595 Arlington Avenue, Toledo, OH 43614-2674; G. Michael Pratt,<br />

PhD, Heidelberg University, Department of Anthropology, 310 East<br />

Market Street, Tiffin, OH 44993; Richard P. Brownley, BA, Ohio Peace<br />

Officers Training Academy, 1650 State Route 56, London, OH 43140;<br />

and Lauri M. Martin, PhD, University of Texas, Austin, Department of<br />

Anthropology, Campus Mail Code C3200 1 University Station, Austin,<br />

TX 78712<br />

After attending this presentation, attendees will be better able to<br />

preserve, recover, document, and transport fragile skeletal remains and<br />

other evidence encountered in field situations.<br />

This presentation will impact the forensic community by<br />

demonstrating how an inexpensive, easily available material (aluminum<br />

foil) can be used as the basis for a “system” to protect the integrity of<br />

fragile evidence.<br />

Skeletal remains are encountered. Usually, local and other law<br />

enforcement recover them and bring them to the nearest coroner or<br />

medical examiner – maybe even to the nearest forensic anthropologist.<br />

How often do they arrive jumbled in a body bag, paper bag or a box,<br />

where the bones rattle around, break themselves up and in general<br />

destroy the direct evidence that bones provide? How to preserve the<br />

integrity of fragile, even fragmentary, skeletal remains? How to<br />

document the relationship of bones and fragments to each other and to<br />

other material evidence in or on the ground? How to safely recover<br />

fragmented and fragile material evidence other than bone?<br />

In 1976, the Sauls excavated their first ancient Maya skeletons<br />

(Cuello site in northern Belize). 1 They encountered poor bone<br />

preservation due to the destructive actions of plant root penetration,<br />

burrowing critters, and alternating rainy and dry seasons. Skeletal<br />

remains were fragile, fragmentary and incomplete.<br />

During the late 1970s and early 1980s, they received and analyzed<br />

shipments of additional burials from Cuello that were excavated by the<br />

project in their absence. The chemical impregnation techniques in use at<br />

the time were not easily reversed, damaged the bone, and potentially<br />

interfered with molecular analysis. The traditional wrapping of remains<br />

with toilet tissue, often while wet with preservative, made things even<br />

worse. Traditional field diagrams were based on the assumption (often<br />

wrong) that the excavators had identified each fragmentary, bone or bone<br />

fragment and its orientation in situ.<br />

This research was motivated to develop a different approach when<br />

next in the field at Cuello. The technique was further refined during<br />

several excavation seasons at various sites in the Maya area, and<br />

subsequently applied it to forensic work. This procedure involves the use<br />

of aluminum foil for both retained alignment of fragmentary bones<br />

during removal from the grave, and packaging of the bone for transport.<br />

During removal the foil becomes the package, maintaining the<br />

relationships of bone fragments and protecting them from further<br />

breakage. A technique of “rolling out” and lifting fragile, fragmented<br />

bone (or other evidence) using foil was also developed, further<br />

maintaining integrity and preserving information.<br />

A number and orientation end-mark can be written on individual<br />

foil packages with a felt-tip marker, corresponding to the number and<br />

74


end-mark recorded on the “rough working” burial plan. When the<br />

packages are appropriately labeled and field mapped in situ, the<br />

orientation of each bone (and therefore the body) in the grave can be<br />

more easily determined in the laboratory. In essence, the bones can be<br />

“put back the way they were in the ground”, revealing finer nuances of<br />

body position and other relationships. This “rough working burial plan<br />

is the one that goes with the bones to aid in analysis”. “A more carefully<br />

drawn official” burial plan is also produced for reports.<br />

This very simple and inexpensive system for preservation, recovery,<br />

documentation, and transport of skeletal (especially fragmentary<br />

skeletal) remains has been field tested in both archaeologic and forensic<br />

situations for more than 30 years. Useful with postcranial bones, skulls<br />

also lifted and packaged in foil retain their teeth, cranial fragments are<br />

held in position, and fragile facial bones are protected.<br />

This training and this technique have paid off. Remains recovered<br />

by individuals who have taken our course are coming to us in much<br />

better condition. Skulls wrapped in foil have all the teeth they were<br />

found with and facial bones are not broken en route. Other bones are not<br />

breaking each other up inside paper or plastic bags. Important<br />

relationships are maintained within the packages. More information<br />

(evidence) can be obtained.<br />

Those who have taken the OPOTA course are often assisted by<br />

other investigators in recoveries, and now some of these other<br />

individuals have begun to carry foil with them in their kits.<br />

Reference:<br />

1 Saul, JM, Saul, FP, Thompson, LM. Recovery and Documentation<br />

of Skeletal Remains: A Brief Field Guide, Programme for Belize<br />

Archaeological Project Field Guide Series 1, Occasional Papers,<br />

Number 7, Mesoamerican Archaeological Research Laboratory,<br />

The University of Texas at Austin, Austin; 2007.<br />

Skeletal Recovery, Skeletal Preservation, Skeletal Transport<br />

H20 The Effects of Fire Suppression Techniques<br />

on Burned Bone<br />

Briana K. Curtin, BA*, 1901 Elaine Drive, St. Joseph, MO 64505<br />

After attending this presentation, attendees will understand the<br />

causes and types of secondary fractures produced on burned pig (Sus<br />

scrofa) bones by two distinct fire suppression techniques: (1) water from<br />

a portable fire engine with a pressurized hose; and (2) hand-held<br />

compressed air/chemical portable fire extinguishers.<br />

This presentation will impact the forensic community by presenting<br />

the differences of fracture patterns produced by natural burn, natural<br />

cooling, handling, pressurized water, and hand-held compressed dry<br />

chemical portable fire extinguishers. Results from this study will allow<br />

forensic anthropology practitioners to better discriminate between<br />

fractures caused by heat exposure and those caused by fire suppression<br />

techniques. In particular, this research will clarify the description and<br />

identification of fracture patterns resulting from the two most common<br />

suppression techniques employed at fire scenes.<br />

Pope and Smith (2004) discuss five typical fire scene events that<br />

damage bone: (1) falling debris; (2) heat embrittlement; (3) types of fire<br />

extinguishments; (4) manual handling of the burned remains; and, 5)<br />

transport of the burned remains. This research will focus upon fire<br />

extinguishment methods. It will be shown that burned remains<br />

extinguished by pressurized water or portable fire extinguishers produce<br />

differences in secondary trauma fragmentation and fractures compared<br />

to burned remains allowed to cool naturally (i.e., no fire suppression<br />

technique employed).<br />

This study examines the results from experimentally burning four<br />

intact fleshed pig carcasses for four hours on mattresses. Test one<br />

involves burning the fleshed remains of one whole pig with no method<br />

of fire suppression employed, with the remains allowed to cool naturally.<br />

Test two involves physical removal of the burned remains from the fire<br />

and allowed to cool, which simulates conditions where firefighters<br />

hastily remove remains from the fire scene. Test three examines the<br />

effects of using pressurized water extinguishment from a fire engine.<br />

Test four examines the postmortem condition of burned remains that<br />

were extinguished using a hand-held compressed air/chemical portable<br />

fire extinguisher.<br />

Several variables are held constant for each of the four tests: size<br />

of the fire and amount and type of fuel, size of the pig, temporal exposure<br />

of the body, and condition of the bone (DeHaan 2002). In addition to<br />

these variables, the duration of the fire will be held constant for tests two<br />

through four, which will be allowed to burn for four hours, the<br />

approximate time it will take for the majority of appendicular bones to<br />

be defleshed and fractured from heat (de Gruchy and Rogers 2002).<br />

Comparisons between the burned bones from each of the four tests<br />

(natural cooling, cooling and manual removal from the fire, pressurized<br />

water, and hand-held compressed dry chemical portable fire<br />

extinguisher) will be outlined. Examination of secondary post-fire<br />

fractures caused by the different types of suppression techniques will be<br />

performed through both macroscopic and microscopic comparative<br />

analyses, with variables including bone fracture type and size,<br />

fragmentation degree, length, width, and external/internal color scored<br />

for each bone. Type of trauma, distinguished between heat-related<br />

fractures caused by fire, post-fire fractures caused by handling/external<br />

pressure due to fire suppression and post-fire fractures caused by<br />

handling and transport alone will be demonstrated. This ability to<br />

distinguish between heat-related, post-fire extinguishment, and post-fire<br />

handling fractures is important to forensic anthropologists who are<br />

confronted with burned bones, and this research will allow practitioners<br />

a better understanding of the mechanisms of bone fracture caused by fire<br />

suppression techniques.<br />

Burned Bone, Fire Suppression, Secondary Fractures<br />

H21 Burned Beyond Recognition: Can the<br />

<strong>Bio</strong>logical Profile Be Estimated From<br />

Unprocessed Human Cremated Remains?<br />

Teresa G. Nugent, BA*, Texas State University, 601 University Drive,<br />

ELA 232, San Marcos, TX 78666<br />

After attending this presentation, attendees will understand the<br />

potential for determination of biological profile from bones that are<br />

believed to be “burned beyond recognition” based on macroscopic<br />

observations of unprocessed, cremated human skeletal remains.<br />

This presentation will impact the forensic community by providing<br />

investigators with an indication of the skeletal elements that most<br />

frequently survive high temperature fires of lengthy duration and the<br />

patterning of preservation of the bony elements that are typically used to<br />

estimate the biological profile.<br />

The biological profile of unidentified human skeletal remains is an<br />

integral part of forensic investigations and analyses. Cremation makes<br />

establishing a biological profile difficult due to the thermal destruction<br />

and associated fragmentation of bone. However, Stewart (1979:67) 1<br />

emphasized that a “good number of skeletal parts often survive the firing<br />

with characteristic features intact enough to be recognizable as human.”<br />

Because there are a limited number of publications that corroborate<br />

Stewart’s observations (Bass 1984; Bass and Jantz 2004; Bohnert 1998;<br />

Brickley 2007; Eckert et al 1988; Murat 1998; Warren and Schultz<br />

2002), 2 this study evaluates the potential for estimation of the biological<br />

profile based on macroscopic observations of unprocessed cremated<br />

human skeletal remains from contemporary commercial cremations.<br />

This presentation will impact the forensic community by providing<br />

investigators with an indication of the skeletal elements that most<br />

frequently survive high temperature fires of lengthy duration and the<br />

75 * Presenting Author


patterning of preservation of the bony elements that are typically used to<br />

estimate the biological profile.<br />

Data for this study were gathered from blind macroscopic analyses<br />

of 18 individuals from the collection of documented human cremains<br />

from the University of Tennessee’s William M. Bass skeletal collection.<br />

These individuals were cremated using standard crematory procedures at<br />

temperatures between 1600-1700 o F (870-926 o C) for similar duration and<br />

were not mechanically pulverized. Use of these cremains allowed for an<br />

in depth examination of burned bone without debris such as building<br />

materials, soil, melted glass, and plastic that often confound the recovery<br />

of human remains at fatal fire scenes. Specific skeletal elements (pelvic,<br />

cranial, mandibular, vertebral, and certain long bone epiphyses) were<br />

selected as the focus of this study due to their standard use in estimating<br />

the biological profile. Because of the fragmentary nature of the sample,<br />

elements were not laid out in anatomical position, instead each element<br />

was reconstructed to the extent that preservation allowed and examined<br />

on its own. Each set of cremains was inventoried using the fragmentary<br />

remains inventory procedure described in Ubelaker and Buikstra’s<br />

Standards for Data Collection of Human Skeletal Remains (1994). Once<br />

an element was identified and sided, the completeness was determined<br />

and scored as 1 = > 75% present (or “complete”), 2 = 25%-75% present<br />

(or “partial”), and 3 = < 25% present (or “poor”). Paired elements were<br />

scored separately. In addition, degenerative changes, skeletal age<br />

markers, and pathology were recorded. Data reported here include: (1)<br />

the frequency of which skeletal elements relating to the biological profile<br />

most often survived cremation; (2) whether there was consistency in<br />

preservation of particular elements from one cremain to the next; and, (3)<br />

whether preserved elements included features that could be used to<br />

estimate age and sex.<br />

Results showed that the bones of the cranial vault preserved in over<br />

90% of the individuals in the sample. Cranial preservation frequencies<br />

were 94.4% for parietals, 91.6% for frontal, 91.6% for occipital, and<br />

91.6% for temporals. Of the postcranial elements, only the proximal<br />

femur had a preservation frequency above 90%. Postcranial preservation<br />

frequencies were 94.4% for proximal femora, 88.8% for proximal<br />

humeri, 86.1% for ischia, and 82.8% for acetabulae. Age and sex<br />

indicators from the pelvis and cranium were less frequent, but<br />

observable. The following indicators of sex were observed from the<br />

pelvis: ventral arc (8.3%), subpubic concavity (2.7%), ischiopubic ramus<br />

ridge (8.3%), greater sciatic notch (16.6%), and preauricular sulcus<br />

(13.8%). The following indicators of age were observable from the<br />

pubic bone: auricular surface (52.7%) and pubic symphysis (27.7%).<br />

The following indicators of sex were observable from the cranium:<br />

nuchal area (27.7%), mastoid processes (22.2%), supraorbital margins<br />

(38.8%), and glabellar region (5.5%).<br />

The results from this study clearly support earlier work done on<br />

estimation of the biological profile using human cremains. From this<br />

presentation, attendees will take away a greater understanding of the<br />

potential for determination of biological profile from bones that are<br />

believed to be “burned beyond recognition.”<br />

References:<br />

1 Stewart, T.D. 1979. Essentials of Forensic Anthropology.<br />

2 Springfield: Charles C. Thomas.<br />

Cremains, <strong>Bio</strong>logical Profile, Burned Remains<br />

H22 Effects of Heat-Modification on Sharp<br />

Force Trauma in Charred Remains<br />

Daisy D.M. Vincent, MA*, 29 rue des Poudrieres, Neuchatel, 2000,<br />

SWITZERLAND<br />

The goal of this presentation is to evaluate the significance of heatmodification<br />

on sharp force trauma found in charred remains.<br />

This presentation will impact the forensic community by<br />

demonstrating that the influence of heat on sharp force trauma found in<br />

* Presenting Author<br />

charred remains is minimal and that the forensic analysis may be carried<br />

out with accuracy.<br />

Postmortem criminal burning holds a prominent place in attempts to<br />

delay the identification of the victim and the cause of death. Previous<br />

experiments have focused on the microstructure of the bone, qualitative<br />

changes such as color, shrinkage and warping, and to a lesser extent,<br />

trauma in relation to fire modification. Due to the reaction of bone<br />

microstructure to fire, it is expected that trauma would be affected as<br />

well, which may have an effect on the accuracy of its analysis.<br />

This experiment explores qualitative and quantitative differences<br />

between sharp force trauma found on heated bone and on normal bone.<br />

The first part of this project focuses on the qualitative effects of heat and<br />

fire modification on sharp force trauma. Variability of color shades, as<br />

well as the shape of the edges and extremities were documented. The<br />

quantitative analysis includes measurements of the defects and of their<br />

related morphological features. Depth at each extremity, width of the<br />

internal extremity, width at the border of the rib and size of the bone<br />

raising at border were recorded. A count of associated fractures and a<br />

measurement of the angle of penetration were also included in the<br />

quantitative analysis.<br />

Forty-eight fresh domestic pig carcasses were stabbed four times in<br />

the left ribs with a utility kitchen knife mounted on a guillotine to obtain<br />

stabs of similar orientation and force. The carcasses were stabbed<br />

perpendicularly to the ribs. Half the sample (24) was subsequently<br />

charred using Propane UN1978 blowtorches. They were superficially<br />

charred on their entire side and exposed to flames directed into the<br />

trauma sites for 10 to 20 minutes. The process was stopped when the<br />

epidermis flaked off and the trauma sites had opened into oval-shaped,<br />

gaping wounds with deeper charring on the neighboring soft tissues. The<br />

interface temperature of the blowtorches varied between 985 and 1070<br />

degrees Celsius. The carcasses were monitored during decomposition at<br />

the TRACES facility in northwest England, and the ribs were collected<br />

at various stages of decomposition. After maceration, the trauma sites<br />

were analyzed both macroscopically and microscopically. Microscopic<br />

analysis included light microscopy qualitative observations and scanning<br />

electron microscope measurements. The final sample contained 50<br />

control cut marks and 92 experimental cut marks.<br />

A detrended correspondence analysis and an analysis of similarity<br />

(ANOSIM) were used to interpret the qualitative data. The ANOSIM,<br />

using the Bray-Curtis dissimilarity coefficient, showed that there is no<br />

significant difference between the groups based upon location,<br />

morphology and color (R=0.01372, p=0.28394).<br />

A multivariate analysis of variance (MANOVA) and a principle<br />

components analysis were used to analyze the quantitative data and<br />

identify the significant variables. The multivariate analysis of variance<br />

showed that there is no significant difference between the groups.<br />

(Pillai=0.27526, F8,57=1.16417, p=0.33656). A principle components<br />

analysis identified two variables explaining 99% of the variance between<br />

the cuts marks: width of the defect at the border of the rib and size of the<br />

raising at border.<br />

The results of this experiment show that in charred remains, heat<br />

does not seem to affect the shape, size and characteristics of the trauma<br />

defects. This discovery is significant as it indicates that tool mark<br />

analysis and sharp force trauma analysis can be carried out with the same<br />

level of accuracy than on normal bone. It is however expected that a<br />

modification of the trauma features may be observed at higher degrees of<br />

temperature and longer exposure to heat and fire. More data needs to be<br />

collected to evaluate at which stage heat modification may start to<br />

significantly affect sharp force trauma features and the accuracy of<br />

forensic analyses.<br />

Sharp Force Trauma, Charred Remains, Scanning Electron<br />

Microscope<br />

76


H23 Teaching Forensic Field Methods to<br />

Anthropology Students: The University of<br />

West Florida Model<br />

A. Joanne Curtin, PhD*, University of West Florida, Department of<br />

Anthropology, 11000 University Parkway, Pensacola, FL 32514<br />

After attending this presentation, attendees will understand the<br />

scope of forensic anthropological field training offered at University of<br />

West Florida.<br />

The purpose of this presentation is to describe the field methods<br />

course currently offered at University of West Florida, and to open a<br />

dialogue with other institutions offering similar courses, with the<br />

ultimate goal of improving the training of undergraduate and graduate<br />

students in forensic anthropology.<br />

Continuing education courses (“short courses”) in the<br />

documentation and recovery of human skeletal remains are offered for<br />

law enforcement personnel at numerous institutions across the United<br />

States. Academic courses devoted to training anthropology students in<br />

forensic field methods are fewer in number, and more variable in their<br />

content. The purpose of this presentation is to describe the field methods<br />

course currently offered at the University of West Florida (UWF), and to<br />

open a dialogue with other institutions offering similar courses, with the<br />

ultimate goal of improving the training of undergraduate and graduate<br />

students in forensic anthropology.<br />

Since 2008 UWF has offered a dedicated forensic field school<br />

whose goal is to train graduate students and senior undergraduates in the<br />

skills required to handle forensic field recoveries. These situations<br />

require solid project management skills. Each forensic case is unique, so<br />

responders must be able to assess each scene, make an informed decision<br />

as to whether skeletal elements are human or not, devise an efficient<br />

strategy for locating, recording and recovering remains, work<br />

collaboratively as team members with other anthropology students, and<br />

with professionals from other fields (forensic investigators from the<br />

medical examiner’s office, crime scene specialists from law<br />

enforcement, dog handlers, etc.). The data collected must be accurate<br />

and meet contemporary evidence standards. Finally, responders must be<br />

able to communicate the results of their investigations clearly and<br />

unambiguously.<br />

At UWF, students receive training in technical skills such as<br />

compass use, line search, establishment of grids, setting up/running an<br />

optical survey instrument, excavation, measurement, and field<br />

photography, and broader project management skills (ability to assess<br />

needs, determine efficient solutions, delegate tasks, contribute<br />

constructively to team dynamic, and communicate effectively). Students<br />

first receive classroom instruction in relevant field techniques, and then<br />

are required to apply their knowledge and skills initially in a series of<br />

“mock” forensic scenes including both surface scattered remains and<br />

clandestine burials, and later in a real cemetery excavation. Finally, each<br />

student is required to write two case reports, one describing the recovery<br />

of surface remains, and one for buried remains. Once they have<br />

successfully completed the course, students may assist in actual forensic<br />

case work, under the supervision of faculty members.<br />

Forensic Field School, Survey Methods, Excavation Techniques<br />

H24 Fatal Fire Modeling: Replicating<br />

Environmental and Human Factors<br />

Associated With the Recovery and Analysis<br />

of Burned Human Remains<br />

Elayne J. Pope, PhD*, Anthropology Department, University of West<br />

Florida, Anthropology Building 13, 11000 University Parkway,<br />

Pensacola, FL 32514<br />

The goal of this presentation is to present replicative modeling of<br />

structural and vehicular fires provides forensic scientists with the<br />

opportunity to identify specific variables that are directly correlated with<br />

the production of burn patterns, which serves to improve the overall<br />

accuracy and reliability of our analysis of burned human remains.<br />

This presentation will impact the forensic science community by<br />

showing that just as each fire scene is unique, so are the burn patterns<br />

produced on the body, which directly result from being exposed to<br />

different types of environmental conditions during and after the fire.<br />

A year ago, a report by the National Academy of Sciences called for<br />

higher standards and increased accuracy of scientific research in the<br />

forensic sciences. Experimental replication of known and realistic<br />

conditions is but one of several solutions that forensic anthropologists<br />

can use to address these concerns. Traditionally, our investigation of<br />

burned human remains begins in a laboratory setting, which is far<br />

removed from the in situ context of the taphonomic changes that<br />

originally produced the skeletal burn patterns used in our analysis. This<br />

presentation will show that just as each fire scene is unique, so are the<br />

burn patterns produced on the body, which directly result from being<br />

exposed to different types of environmental conditions during and after<br />

the fire. Replicative modeling of structural and vehicular fires provides<br />

forensic scientists with the opportunity to identify specific variables that<br />

are directly correlated with the production of burn patterns, which serves<br />

to improve the overall accuracy and reliability of our analysis of burned<br />

human remains.<br />

A total of eight donated human cadavers were burned different<br />

environments that replicated actual forensic casework using two<br />

vehicles, four furnished burn cells (structures), a travel trailer, a<br />

dumpster, and a light craft airplane that had crashed into a building.<br />

Though these seem like random scenarios, many of these environments<br />

produced patterned similarities, as well as differences, depending on the<br />

types of combustible fuels, objects in contact with the body, duration,<br />

and methods of extinguishment. All of the experiments went to<br />

flashover (where all contents ignite), and burned for a duration of 15-30+<br />

minutes.<br />

Combustibles and Points of Contact: Initially during the fire,<br />

certain surfaces of the body remained protected from heat, since they<br />

were in direct contact with other objects (floor/furniture/fabrics/seats).<br />

However, these points of contact gradually changed as the furnishings<br />

burned away and from limb flexion into the pugilistic posture, which<br />

exposed more surfaces of the body directly to heat. Bodies that remained<br />

elevated from the floor on exposed mattress springs, seating frames<br />

(household and vehicular) had more uniform heat-related damage to soft<br />

tissues and bone than those that remained directly in contact with a flat<br />

surface (metal bench/floor/stove/trunk) during the fire.<br />

Fallen Debris: During the fire, especially after flashover, various<br />

types of debris collapsed onto and around the body, more so for<br />

structural fires than vehicular. This process created two different<br />

taphonomic artifacts of fragmentation and protection. Collapse of fire<br />

debris increased fragmentation of brittle burned bone from impacts to the<br />

body and/or from the body shifting position as supportive materials<br />

77 * Presenting Author


urned away. Debris also provided more areas of protection from direct<br />

flame and dehydrated the remaining soft tissues. For example, the<br />

aircraft crash fire burned for 20 minutes with temperatures over 2000° F<br />

that destroyed the body of the plane and part of the building, yet the<br />

human body remained well protected from being buried in fire debris,<br />

leaving only the face, hands, and knees exposed.<br />

Human Factors: Scenes were realistically extinguished by<br />

firefighters with pressurized water, then searched and excavated by fire<br />

and death investigators, who had no prior knowledge of the original<br />

conditions. Each of these activities contributed to the further breakdown<br />

and alteration of burned human remains. This inherent problem was<br />

minimized with extensive photographic documentation of the original in<br />

situ context of the victim and the entire field investigative process.<br />

Results from these documented structural and vehicular fires will be<br />

presented to illustrate the how each kind of fire environment produces<br />

different types of burn patterns and should be considered when analyzing<br />

burned human remains, along with postmortem changes from human<br />

factors during recovery.<br />

Fatal Fire Investigation, Burned Human Remains, Taphonomy<br />

H25 Differentiating Peri- and Postmortem<br />

Fractures in Burned Postcranial Remains<br />

Elayne J. Pope, PhD, Heidi S. Davis, BA, BS*, and Ashley E. Shidner,<br />

BA, University of West Florida, Anthropology Department,11000<br />

University Parkway, Building 13, Pensacola, FL 32514<br />

The goal of this presentation is to examine how preexisting skeletal<br />

trauma alters the normal heat-related changes of the soft and skeletal<br />

tissues, causes limb deformation, and produces characteristic burn<br />

patterns in the bone that are discernable from normal heat-related<br />

fractures.<br />

This presentation will impact the forensic science community by<br />

demonstrating how there are identifiable characteristics of peri-mortem<br />

trauma in poscranial remains that alter the normal burn patterns for each<br />

limb and leave permanent evidence of injury after the fire.<br />

The classic characteristics of peri-mortem and postmortem fractures<br />

are relatively easy to determine in skeletonized long bones, however this<br />

distinction becomes more difficult to assess in burned human remains.<br />

When bone is exposed to heat, it undergoes systematic biochemical and<br />

structural changes from pyrolysis that can result in charring, calcination,<br />

heat-related fractures, and fragmentation, all of which makes it very<br />

brittle during and after the fire. This presentation examines how<br />

preexisting skeletal trauma alters the normal heat-related changes of the<br />

soft and skeletal tissues, causes limb deformation, and produces<br />

characteristic burn patterns in the bone.<br />

Blunt force trauma was intentionally produced in long bones of 10<br />

limbs prior to burning and documented for their post-fire condition as<br />

they would appear at an actual scene, followed by laboratory analysis.<br />

The characteristics of preexisting trauma was evaluated for the type of<br />

wound (closed or open), contextual soft and skeletal anatomy for the<br />

upper and lower limbs, degree of limb deformation (in situ and after<br />

recovery), heat-related color changes, and morphology of the fracture<br />

margins. These were then compared to characteristics of normal<br />

postmortem heat-related and post-fire handling fractures that are<br />

commonly produced during and after the fire.<br />

Peri-mortem Skeletal Trauma Characteristics: It takes a<br />

considerable amount of external force to produce fractures in living and<br />

green bone, especially while being protected within soft tissues. Long<br />

bones of the appendicular skeleton have been shown to fracture<br />

* Presenting Author<br />

predictably based on variable of area and amount of force, cortical and<br />

trabecular thicknesses, injury types, and other biomechanical factors<br />

(Galloway 1999). This study found that additional factors contribute to<br />

the heat-related changes of peri-mortem trauma in burned postcranial<br />

remains. One of the biggest influences was the anatomical arrangement<br />

of muscle and soft tissues around the bone itself.<br />

Muscle Protection: Muscle is dense and fibrous, and heat<br />

exposure causes it to gradually shrink and retract, regardless if the bone<br />

is intact or not. It was observed that in thicker musculature of the thigh<br />

that the broken margins pulled over one another in the charred muscle.<br />

In contrast, limbs that had differential amounts of soft tissue, such as the<br />

lower leg, the fractured ends of the anterior tibia protruded into the fire<br />

environment as the thicker musculature of the calf continued to shrink<br />

and opened the broken areas open like a hinge. Both conditions caused<br />

marked limb deformation that is observable after the fire.<br />

Open or Closed Wounds: The soft tissue wound around the<br />

fractured bone also influences the heat-related changes of limb<br />

deformation and condition of the fractured margins. Open wounds<br />

(compromised layers of soft tissue) exposed the fractured margins the<br />

earliest and longest to the fire, thus producing abnormal burn patterns<br />

and heat-related changes to the bone. Closed wounds did not always<br />

expose the fractured ends to the fire, since they remained protected and<br />

overlapped within charred muscle, but still shows marked limb<br />

deformation.<br />

Limb Anatomy: The upper arm and leg both have a singular bone,<br />

which are more uniformly protected by musculature. In contrast, the<br />

lower arm and legs have two bones with irregular distributions of<br />

musculature around each bone, particularly the lower leg. One of the<br />

variables tested was to examine the differences of breaking one or both<br />

bones within the same distal limb. Fractures to both bones resulted in<br />

marked limb distortion, while fractures to a single bone resulted in<br />

partial limb deformation. Neither condition affected the pugilistic<br />

position of distal joints below the traumatized sites.<br />

Fracture Morphology: Fractured margins from peri-mortem<br />

trauma exhibited one or several identifiable characteristics of (1)<br />

fractures in or extending into unburned bone; (2) stark color differences<br />

divided by a fracture; (3) pieces of fractured bone present in charred<br />

musculature; and/or, (4) deformation/erosion of the fracture margin and<br />

sometimes color differences (in charred and calcined bone).<br />

Postmortem Heat-related Characteristics: Heat-related fractures<br />

in bone result from direct exposure and the depletion of organic<br />

components during the process of pyrolysis, thus causing the external<br />

surfaces of cortical bone to shrink and split. At this point, minimal force<br />

applied to burned bone can result in fracturing and fragmentation during<br />

and after the fire. These and other postmortem fracture characteristics of<br />

burned human remains will be presented.<br />

Peri-mortem Skeletal Trauma, Fractured Long Bones, Burned Bone<br />

H26 Towards a Standardization of Burnt Bone<br />

Analysis: The Use of Micro-Computed<br />

Tomography and 3-Dimensional Imaging to<br />

Assess Morphological Change<br />

Patrick Randolph-Quinney, PhD*, Centre for Anatomy & Human<br />

Identification, College of Life Sciences, University of Dundee, Dundee,<br />

DD1 5EH, UNITED KINGDOM<br />

After attending this presentation attendees will learn of the issues<br />

surrounding analysis of burnt bone from a forensic anthropological basis,<br />

78


and methods which may be applied using advanced 3D imaging<br />

techniques in order to standardize and obviate some of these issues.<br />

This presentation will impact the forensic science community by<br />

presenting a novel standardization method for the quantitative analysis<br />

of burnt bone, and raise significant issues with the methodology<br />

expounded by the current and historical literature.<br />

An understanding of the heat induced alterations to bone is a<br />

necessary prerequisite for the subsequent identification of burned human<br />

remains. Fire, or any form of combustion, has the capability to alter,<br />

damage, or destroy evidence that is vital to the identification process.<br />

However, since bone undergoes extensive alterations when exposed to<br />

heat, the accuracy of standard identification methods will therefore be<br />

detrimentally affected. In spite of this, there is still a great deal not fully<br />

understood regarding the transformative processes that heat causes to<br />

bone and the most appropriate method for study. This is in part due to<br />

the large variation in experimental models used by investigators.<br />

Different temperature intervals, recorded measurements, and statistical<br />

analysis have lead to confusion in the literature regarding the typical<br />

mechanism and expression of heat alteration. Although there is a<br />

growing corpus now available to facilitate more accurate interpretation<br />

and analyses of burned bone, these studies are largely based on<br />

qualitative features and are, at best, misleading. Without quantitative<br />

measurements, there is no way to account accurately for the heat induced<br />

alterations that bone experiences, or modify current anthropological<br />

techniques. Recording quantitative measurements can therefore help to<br />

standardise burnt bone analysis, improve current analytical methods and,<br />

in the process, meet the imperative need to develop more accurate<br />

identification techniques for burned human remains.<br />

The primary goal of this research was to quantify morphological<br />

and morphometrical differences between pre-burn and post-burn skeletal<br />

specimens (before and after burning comparison) using advanced microimaging<br />

and three-dimensional volumetric techniques. The<br />

experimental investigation was conducted on a data set of porcine<br />

skeletal elements burned between 300°C and 1200°C. Differences<br />

between the use of embalmed and unembalmed specimens were also<br />

investigated. The material was scanned before and after burning using<br />

Micro-Computed Tomography and 3D surface laser scanning. The<br />

resulting pre- and post-burn CT and surface scans were analyzed using<br />

volumetric reconstruction software in order that a comprehensive<br />

qualitative and metrical assessment could be carried out between the pre<br />

and post-burn homologues. Numerical data, which could be statistically<br />

analysed for the quantification of heat-induced alterations, was obtained<br />

by generating volumes of interest (VOI). Interpolation and resampling<br />

was applied to the resulting VOI. This allowed us to investigate and<br />

quantify the percentage change in standard histomorphological skeletal<br />

characteristics between the pre- and post-burn states. The cortical<br />

thickness of each specimen was also measured in order to calculate<br />

average volume change. Changes in surface shape, morphology, and<br />

distortions were quantified using Geomagic best-fit contour alignments.<br />

The study found recognizable quantifiable morphological change<br />

between the pre- and post-burn homologues, some of which run counter<br />

to established expectations of thermal alteration from published sources.<br />

In particular, although an increase in trabecular thickness and subsequent<br />

decrease in trabecular separation was expected (due to the welldocumented<br />

loss of carbonates during inversion and fusion) this trend<br />

was not achieved during this investigation. The results show a decrease<br />

in trabecular thickness at 600°C and 900°C, and although recorded to<br />

initiate at 500°C, both features showed a marked change at temperature<br />

as low as 300°C. These deviations from the normal trend can all be<br />

explained by the high presence of bone marrow in the rib sections; this<br />

reflects the process of “normal” anatomical burning whereby tissues<br />

contain their full complement of inorganic and organic components<br />

(including marrow and fat), highlighting the need to establish element<br />

specific models for each anatomical region.<br />

Burnt Bone, Computed Tomography, Forensic Anthropology<br />

H27 Mama Mia! Murder and Disposal of<br />

a Corpse in a Pizza Oven<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong> Examiner’s<br />

Office, 1413 Research Boulevard, Building 102, Rockville, MD 20850<br />

The goal of this presentation is to provide the attendee with a case<br />

example involving the dismemberment and burning of the remains of an<br />

adult male in a commercial pizza oven. As a result of the remains being<br />

burnt to a near carbonized state, determination of personal identification<br />

and cause of death were found to be somewhat problematic. As a result<br />

of the condition of the remains, forensic anthropologists were consulted<br />

so as to assist not only in the identification but to make to determinations<br />

as to the temperatures required to render the remains in their burnt state.<br />

Forensic anthropological methodology, utilized in this case will be<br />

presented to the attendee to demonstrate its importance in the<br />

investigation of fire death and disposal of human remains by fire.<br />

This presentation will impact the forensic science community by<br />

greatly assisting the attendee with forensic anthropological concepts and<br />

techniques which can be applied to a variety of cases involving the<br />

burning of human remains.<br />

In cases involving homicide, the body of the victim is often burned<br />

as a means of hiding the crime and eradicating features of personal<br />

identification. Various methods of disposing of a corpse by burning have<br />

been reported, including burning of the deceased in a house, car,<br />

fireplace, or in a fire pit or fire barrel. The degree of body cremation is<br />

dependent on a number of factors ranging from the type of heat source,<br />

temperature, time, and position of the body within the heat source. This<br />

case involves a unique case of body cremation in which the deceased was<br />

cut up into several portions and placed on aluminum pizza trays in a 600<br />

degree fahrenheight commercial pizza oven. In August of 1993 in the<br />

city of Surrey British Columbia, a fire was reported at the “pizza king” a<br />

local pizzeria. Local fire fighters responded to the scene and quickly<br />

extinguished the fire which was observed roaring from the large pizza<br />

oven in the back of the restaurant. Inspection of the oven to determine<br />

the cause of the fire, revealed the badly burnt skeletal remains of a<br />

human body. Police were summoned to the ghastly scene only to<br />

discover additional evidence of a brutal murder. A search at the rear of<br />

the restaurant led to the recovery of a large plastic trash bag containing<br />

clothing items of the deceased which were stained with blood. A total of<br />

four large pizza pans were recovered from the oven, each holding<br />

multiple burnt skeletal elements. Additional burnt human remains<br />

located on the floor of the oven were also recovered.<br />

Examination of the remains at the coroner’s facility revealed that<br />

the body had been cut into the following segments: head, arms plus<br />

upper thorax to the bottom of the rib cage, remaining thorax, spine and<br />

pelvic girdle, the left leg, and right leg. Anthropological analysis of the<br />

remains found them to represent that of a senior adult male.<br />

Identification of the deceased was later established via odontological<br />

comparisons as that of a recent immigrant from India. The antemortem<br />

height and weight of the deceased was reported to be approximately 65<br />

inches and 130 pounds respectively. The temperature conditions in the<br />

pizza oven not only reduced the copse to cremains, but were great<br />

enough to produce partial melting of the heavy aluminum pizza trays.<br />

One of the key questions concerning the investigation of the murder was<br />

the time and temperature required to reduce the human remains to their<br />

present burnt state. Data utilized to interpret the cremation of the<br />

remains included information on the construction and operation of the<br />

gas fueled oven, maximum obtainable temperature, and coloration and<br />

density changes observed in the cremains. The cremation findings will<br />

be presented along with other details regarding the murder investigation.<br />

Cremains, Forensic Anthropology, Homicide<br />

79 * Presenting Author


H28 XRD and FTIR: A Diagnostic Tool to<br />

Determine Whether or Not a DNA Profile<br />

Can Be Successfully Generated From Heat<br />

Treated Bone Prior to DNA Extraction<br />

Jamie D. Fredericks, MSc*, Cranfield University, SCR 12, DASSR,<br />

Shrivenham, Swindon, SN6 8LA, UNITED KINGDOM<br />

After attending this presentation, attendees will understand the<br />

effects that temperature has on the material and physical properties of<br />

bone and their subsequent correlation with DNA amplification and<br />

typing.<br />

This presentation will impact the forensic science community by<br />

demonstrating that XRD and FTIR can be used to predict whether or not<br />

a DNA profile can be obtained from heat treated bone, prior to DNA<br />

extraction.<br />

Deoxyribonucleic Acid (DNA) from skeletal tissue can be<br />

invaluable, as it is often the only available source of information for<br />

individual identification. Bone is considered a tri-phase composite, made<br />

up from collagen (protein), hydroxyapatite (mineral) and water. Unlike<br />

soft tissue, osteocyte cells, which are the source of DNA in bone, can be<br />

protected from external environmental factors by the protein-mineral<br />

matrix. However, when skeletal tissue is exposed to extreme conditions,<br />

including high temperature or long periods of submersion in water, the<br />

potential for generating a useful ‘DNA profile’ can be adversely affected.<br />

Although heating has been shown to cause damage to DNA through<br />

oxidation and hydrolysis, there has been very little detailed research into<br />

the amplification of DNA from bone compromised by heat. Studies have<br />

often lacked appropriate controls or were based on case studies where<br />

accurate environmental parameters, such as temperature and/or the<br />

exposure period were unknown.<br />

To date, DNA-based identification from badly decomposed remains<br />

has often been reliant on the use of mitochondrial DNA (mtDNA), which<br />

exists within cells in much higher abundance than nuclear DNA (nDNA).<br />

However, mtDNA is only inherited through the maternal line. This<br />

reduces the usefulness of identifications made using mtDNA, as<br />

matrilineal relatives cannot be distinguished from one another. nDNA<br />

profiling of such samples would greatly improve the specificity of<br />

identification.<br />

By comparison to soft tissue, the protocols for extracting DNA from<br />

bone are often time-consuming and laborious, usually requiring a<br />

demineralization step prior to extraction, which can take a number of<br />

days. In the case of skeletal tissue that has been compromised by<br />

environmental insults, even more time can be ‘wasted’ as not all the<br />

samples extracted will successfully produce a useable DNA profile. In<br />

individual cases, time may not be a critical issue. However, in cases<br />

where hundreds or thousands of samples are processed, such as in the<br />

World Trade Centre attacks (2001) where 13,000 samples were<br />

processed, a large amount of time and money was wasted on<br />

unsuccessful profiles.<br />

The goal of this project is to develop a diagnostic tool that can<br />

reliably predict the likelihood of successfully obtaining a useable DNA<br />

profile from a compromised skeletal tissue sample. Mechanical<br />

properties, such as hardness and elastic modulus and material properties,<br />

such as collagen content and mineral content, of bone that has been<br />

compromised through heat treatment, will be correlated with the results<br />

of nDNA profiling.<br />

Using Bos taurus as an animal model, sections of femora were heat<br />

treated, using a muffle furnace, at 50 °C intervals to 600 °C for periods<br />

of one and two hours. Post treatment, Vicker’s hardness was recorded,<br />

and the Crystallinity Index (CI) of samples’ mineral content measured<br />

using X-ray diffraction (XRD) and Fourier Transform Infrared imaging<br />

Spectroscopy (FTIR). These properties were then correlated with the<br />

presence of detectable nDNA as determined by the PCR amplification of<br />

100, 300 and 500 base pair fragments and STR based DNA profiling.<br />

* Presenting Author<br />

The results of this study show that the characteristics of bone<br />

change when heat-treated. XRD and FTIR findings showed that the<br />

crystallinity of hydroxyapatite increased with temperature, while<br />

Vicker’s hardness was seen to increase until 200 °C then suddenly<br />

decrease before a rapid increase at 300 °C. The ability to amplify DNA<br />

and hence obtain a DNA profile genotyping was lost above 200 °C.<br />

Using logistic regression both FTIR and XRD were shown to produce a<br />

CI value that could be used to successfully predict whether or not a DNA<br />

profile could be obtained.<br />

The ultimate goal of this study is to produce a diagnostic tool that<br />

can be performed quickly and cheaply, in order to determine whether<br />

subsequent DNA profiling is a viable/cost effective option for<br />

identification purposes. Such a tool would not only save time and<br />

money, but would increase the overall success rate of DNA profiling.<br />

Predicting DNA, HeatTreated Bone, Temperature<br />

H29 Taphonomic Patterns: Can Brush Fires<br />

Mimic the Natural Decomposition of Heavy<br />

Muscle Markers on Bone?<br />

Tricia A. Fernandes, BSc*, Saint Mary’s University, 923 Robie Street,<br />

Halifax, Nova Scotia B3H 3C3, CANADA<br />

After attending this presentation, attendees will understand that<br />

brush fires are capable of creating discoloration patterns similar to those<br />

which occur on human bones from the natural progression of<br />

decomposition. This will be evaluated using three stages of<br />

decomposition: fresh, advanced decomposition, and skeletonization.<br />

This presentation will impact the forensic community by<br />

introducing ground breaking heat related skeletal trauma research that<br />

has not previously been evaluated. Although heat related skeletal trauma<br />

has been studied in house, crematorium, and car environments, it has<br />

rarely, been studied in outdoor environments and never examined in a<br />

maritime environment. This research will impact the forensic<br />

community by helping discern the stage of decomposition for burned<br />

human remains that were exposed to a brush fire. It will also contribute<br />

to the breadth of information available on the identification of heat<br />

related skeletal trauma and the interpretation of morphological color<br />

characterizations.<br />

Brush fires in Nova Scotia typically occur from April to June. Rare,<br />

but still occurring, is that humans fall victim to brush fire injuries. These<br />

injuries may result in an individual’s demise or mask their unique<br />

deposition, if deceased in an outdoor environment before exposure to a<br />

brush fire. This study evaluates: (1) whether or not brush fires create<br />

unique burn patterns at specific stages of decomposition; and, (2)<br />

whether the discoloration patterns on bone, from burning, mimic<br />

naturally decomposing muscle tissue on skeletal remains. Therefore,<br />

caution must be adopted in the interpretation of taphonomic processes in<br />

outdoor environments that are frequented by brush fires.<br />

This project was conducted during the summer months, of June to<br />

September 2009, to isolate one Maritime season. Eight 50 kg pigs were<br />

used as the experimental specimen due to their similarity in weight<br />

ranges, percentages of fat content, and body hair texture to human<br />

cadavers. The pigs were placed into four paired groups for evaluation:<br />

(1) control, non-burned pigs; (2) fresh, burned pig; (3) advanced<br />

decomposition, burned pigs; and (4) skeletonization, burned pigs. Each<br />

pig was secured and protected under a custom-made cage throughout the<br />

decomposition process. However, when the pigs were exposed to the<br />

simulated brush fires, the cages were removed for a brief period of time.<br />

To quantitatively determine the decomposition stages of the pigs, they<br />

were scored using Megyesi et al.’s (2005) method that was broken into<br />

three different anatomical areas. The control pair was allowed to<br />

proceed from fresh to skeletonization in an undisturbed manner, and<br />

once the optimum characteristics were observed in the other three groups<br />

80


(fresh, advanced, and skeletonized) their cages were removed and they<br />

were exposed to simulated brush fires. The pigs were visited on a daily<br />

basis, at the same time, to keep decomposition data and photo<br />

documentation consistent. The local weather station was also consulted<br />

on a daily basis so that data pertaining to the minimum and maximum<br />

temperature and relative humidity, total precipitation, and wind speed<br />

was collected.<br />

Once all four paired groupings reached the dry stage of<br />

skeletonization they were dry macerated to remove any remaining flesh<br />

that remained on the bone surfaces. This was to avoid disturbing or<br />

removing any discoloration patterns on the surface of the bone that may<br />

be otherwise damaged due to exposure to water or chemical treatment.<br />

Once prepared, the cleaned bones were observed for burn pattern<br />

analysis and characterized using a Munsell Color Chart for<br />

standardization of colors. Bones exposed to the simulated brush fires<br />

were compared to the taphonomic discolorations that occurred in the<br />

naturally decomposing, control, paired grouping. As well, surveyors (a<br />

forensic anthropologist and a forensic pathologist) then scored the<br />

discoloration patterns on a selection of various bones, anonymously, as<br />

either coming from a burned or natural decomposed pig.<br />

Burn analysis revealed: (1) no significant burn pattern on skeletal<br />

remains that have been exposed to fire while at various stages of the<br />

decomposition: but, (2) that brush fires can mimic the natural<br />

decomposition patterning of heavy muscle markers on bone.<br />

Brush Fires, Taphonomy, Decomposition<br />

H30 Differential Decomposition Patterns in<br />

Charred Versus Un-Charred Remains<br />

Ariel M. Gruenthal, BA*, 2534 E, Eureka, CA 95501<br />

The goal of this presentation is to provide attendees with a method<br />

for both recognizing differential decomposition patterns indicative of<br />

fire modification and estimating the postmortem interval in charred<br />

remains.<br />

This presentation will impact the forensic science community by<br />

providing awareness concerning the process of decomposition in fire<br />

modified remains, and allowing for more accurate postmortem interval<br />

estimation in charred remains. The pattern of decomposition in fire<br />

modified remains will be discussed in order to provide a greater<br />

understanding of the taphonomy of burning and subsequent<br />

decomposition.<br />

In recent years there has been a renewed interest in fire modification<br />

of human remains, focus has primarily centred on early soft tissue<br />

changes during a fire and the effect of fire modification on bone. There<br />

is a paucity of literature on the subsequent decomposition of fire<br />

modified remains. This study established a scale by which investigators<br />

may determine the postmortem interval (PMI) from the appearance of<br />

charred remains, using visual markers of decomposition. The scale is<br />

based on accumulated-degree days (ADD) for standardization and<br />

applicability across disparate geographic and environmental regions.<br />

Additionally, the unique pattern of decomposition in charred remains is<br />

proposed as a means by which investigators may distinguish areas<br />

exposed to the most intense levels of burning from those which sustained<br />

less intense fire damage.<br />

For the purposes of this study, a total of forty eight pig carcasses<br />

(Sus scrofa) were designated to either a control group (N=24) or an<br />

experimental burn group (N=24). Experimental pigs were charred for<br />

approximately ten minutes using a propane blowtorch (at sustained<br />

temperatures between 985-1070 ºC) to Crow-Glassman Scale (CGS)<br />

levels 1 (for the head, neck and limbs) and 2 (for the torso) (Glassman<br />

and Crow, 1996). These levels have been associated with the term<br />

charred for the purposes of this study, as opposed to burned, which<br />

suggests more extensive muscle tissue damage. Decomposition was<br />

assessed visually every 50 ADD for all carcasses, with weights and pH<br />

samples taken in subgroups (N=3) every 100 ADD for both charred and<br />

uncharred carcasses.<br />

A Charred Body Scale (CBS) for decomposition, paralleling that of<br />

Megyesi et al. (2005), was created and visual observations utilized to<br />

score charred carcasses at 50 ADD intervals. Carcasses in the control<br />

group were scored using the Megyesi et al. (2005) scoring system at the<br />

same ADD interval. The total body scores (TBS) for the control group<br />

and the total charred body scores (TCBS) for the experimental group<br />

were statistically analyzed to determine whether a significant difference<br />

existed in the rate of decomposition between the two groups.<br />

Preliminary results indicate that there is a slight but significant<br />

difference (p


thorax/upper body trauma, human phalanges, an lower limb fractures.<br />

The results show the importance of the variables (“engineering inputs”);<br />

force, surface area, and acceleration/deceleration, on the fracture patterns<br />

(“anatomical outputs”) of the human body.<br />

Force: The human body is subjected to a variety of forces in<br />

everyday activities; however, injury occurs when these forces exceed the<br />

tolerance levels for the tissues of the body. The amount of force<br />

influences the severity of fracture. In the cranial base, the impact force<br />

determined extent of fracturing. In forensic anthropology, clues to the<br />

amount of force may be seen in the extent of the fractures. In the vault,<br />

fracture patterns with numerous radiating and concentric fractures may<br />

be indicative of higher force than a single linear fracture. However,<br />

anthropologists must keep in mind that it is not always a one to one<br />

comparison. The intrinsic properties of the bone (such as geometry,<br />

location, quality of bone) come into play and can explain differences in<br />

fracture patterns caused by equal force.<br />

Surface Area of Impacting Interface: The variable of surface<br />

area between the impacting object and the bone is crucial in fracture<br />

analysis. This variable explains the differences between blunt and sharp<br />

trauma. An impact to the skull of 12 lbs, but a large surface area may<br />

cause a typical blunt trauma fracture pattern with a point of impact,<br />

radiating, and concentric fractures. However, an impact to the skull with<br />

an identical force of 12 lbs, but a very small surface area (i.e., the edge<br />

of a knife or axe) will create an incising type wound with straight<br />

margins. While the force remains the same, a change to the surface area<br />

of the impact interface alters the pounds per square inch (psi) influencing<br />

the bone. As frequently and aptly noted, sharp trauma is simply a beating<br />

with a sharp object (Symes et al 1989, Symes et al 2002). The variable<br />

that dictates the difference between a sharp trauma wound and a blunt<br />

trauma wound is simply surface area. It is possible to have sharp trauma<br />

wounds that also contain characteristics of blunt trauma. In testing, this<br />

variable played an important role in understanding the mechanics of<br />

impacts to the thorax.<br />

Acceleration/Deceleration: The variables of acceleration or<br />

deceleration are important for understanding how a change in velocity<br />

over time can influence how bone responds to trauma. Since bone is a<br />

viscoelastic material, it has different mechanical properties dependant on<br />

the rate of loading (acceleration/deceleration). Anthropologists are<br />

accustom to looking for plastic deformation to indicate blunt trauma, and<br />

an absence of deformation to indicate ballistic trauma. These differences<br />

are created by the differences in acceleration/deceleration rates between<br />

the two. Instead of viewing these categories as independent, they can be<br />

visualized as a continuum; influenced by how the deceleration of the<br />

impacting object influences the fracture mechanics of the bone. When<br />

conceptualized in this manner, it is easy to understand how a bullet can<br />

create plastic deformation and “blunt trauma” when it has slowed down<br />

(i.e., reached terminal velocity) to an acceleration/deceleration rate<br />

consistent with blunt trauma.<br />

In conclusion, there is a need for a “rethinking” in regards to<br />

trauma, with a shift in focus from a categorical weapons based approach<br />

to a biomechanically based continuum.<br />

Fracture <strong>Bio</strong>mechanics, Bone Trauma, Blunt Trauma<br />

* Presenting Author<br />

H32 A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns – Part 2:<br />

Fracture Quantification and Further<br />

Investigations on Infant Cranial Bone<br />

Fracture Properties<br />

Nicholas V. Passalacqua, MS*, 3518 Hagadorn Road, Okemos, MI<br />

48864-4200; Todd W. Fenton, PhD, Michigan State University,<br />

Department of Anthropology, 354 Baker Hall, East Lansing, MI 48824;<br />

Brian J. Powell, BS, and Timothy G. Baumer, BS, Orthopaedic<br />

<strong>Bio</strong>mechanics Laboratories, Michigan State University, East Lansing,<br />

MI 48824; William N. Newberry, MS, Exponent Failure Analysis<br />

Associates, Inc., Farmington Hills, MI 48331; and Roger C. Haut, PhD,<br />

A407 East Fee Hall, Orthopaedic <strong>Bio</strong>mechanics, Michigan State<br />

University, East Lansing, MI 48824<br />

The goal of this presentation is to inform attendees about further<br />

research on fracture propagation caused by impulsive loading of the<br />

parietal bone in a developing porcine (pig, Sus scrofa) model.<br />

This presentation will impact the forensic community by describing<br />

directions and patterns of fracture propagation in the developing porcine<br />

model and demonstrate the GIS image-analysis method to quantify<br />

fracture patterns.<br />

Pediatric deaths involving head injury with associated cranial<br />

fractures represent one of the greatest challenges to forensic<br />

professionals. The ability of the forensic investigator to establish the<br />

circumstances of death in these cases is severely hampered by the lack of<br />

skull fracture standards for infants and young children. In many of these<br />

situations the most likely cause of trauma is interpreted by examining the<br />

overall patterns of bone fracture and comparing them to descriptions of<br />

the incident, however these analyses are both qualitative and anecdotal,<br />

leaving the final interpretation up to a best guess by the experienced<br />

professional. This research aims to understand the basic principles<br />

behind infant cranial fractures in the porcine model which may then be<br />

used to guide later human research.<br />

Previously findings were reported that identified multiple fracture<br />

initiation sites on the porcine cranium away from the impact site, and<br />

also demonstrated that a compliant interface caused relatively more<br />

fracture damage to the developing porcine cranium than did a rigid<br />

interface at equal energy levels (Fenton et al. 2009). The phenomenon<br />

of remote fracture initiation in the infant porcine specimen has also been<br />

documented using high-speed video. This next phase of research deals<br />

with fracture propagation at higher input energy levels. The generated<br />

porcine fracture patterns from both the previous low energy (initiation)<br />

and new high energy (propagation) impacts have been quantified using a<br />

GIS image-analysis model. In addition, fracture propagation and the<br />

relationship between input energy and fracture length has been explored<br />

through these higher energy impacts.<br />

In order to examine higher energy fracture propagation, a gravity<br />

accelerated mass (GAM) drop-tower was employed. Only rigid impacts<br />

have been conducted to date. To produce more input energy for the<br />

impacts, the drop height of the mass was doubled. Based on a sample<br />

size of 34 porcine specimens aged under 28 days, the preliminary data of<br />

total damage to the cranium (both bony fracture and diastatic fractures)<br />

followed similar patterns as the previous rigid impacts but with four<br />

times more measured damage than documented in our earlier studies.<br />

In an attempt to quantify these porcine fracture patterns, a GIS<br />

model was employed using an image-analysis approach, as previously<br />

described by Marean et al. (2001). Using this method, each fracture<br />

82


configuration was traced onto an individual outline of the porcine<br />

cranium. The GIS model then superimposes each cranial outline and<br />

sums the overlying fractures, generating an overall fracture pattern.<br />

Results indicate that more fracture damage occurred in the younger aged<br />

specimens, particularly more diastatic fractures. The fracture patterns<br />

for each corresponding age class were similar to the previous initiation<br />

impact fracture patterns. Interestingly, the higher energy impacts<br />

generated more fracture co-occurrence between specimens. This<br />

suggests that with more input energy, the tendency for repeated fracture<br />

configurations increases.<br />

The location of fracture initiation has been in question due to<br />

conflicting viewpoints in the literature. Recently, Kroman (2007)<br />

documented fracture initiation beginning at the impact site for adult<br />

human cadaveric specimens. From gross observation of the current<br />

infant porcine model, fracture initiation appeared to occur at remote sites<br />

and radiate back toward the site of impact. Fracture initiation and<br />

propagation was then recorded using high-speed video on six drop-tower<br />

impacts to infant porcine crania of differing ages. Each impact was<br />

recorded at a speed of 8,000 frames per second with a resolution of<br />

512x128 pixels. Results indicate that fracture initiation occurred at the<br />

surrounding bone-suture boundary and propagated back towards the<br />

point of impact. It is, however, currently unclear if this translates to<br />

infant human crania.<br />

The opinions, findings, and conclusions or recommendations<br />

expressed in this presentation are those of the authors and do not<br />

necessarily reflect the views of the Department of Justice.<br />

Child Abuse, Fracture Patterns, Bone <strong>Bio</strong>mechanics<br />

H33 Objective Interpretation of the Striation<br />

Pattern Observed in Experimentally Cut<br />

Costal Cartilage<br />

Jennifer C. Love, PhD*, Jason M. Wiersema, PhD, and Sharon M.<br />

Derrick, PhD, Harris County <strong>Medical</strong> Examiner’s Office, 1885 Old<br />

Spanish Trail, Houston, TX 77054; and Heather Backo, MA, Department<br />

of Anthropology, Tulane University, 1326 Audubon Street, New Orleans,<br />

LA 70118<br />

The goal of this presentation is to introduce a quantitative method<br />

developed for the analysis of tool mark impression evidence in cut costal<br />

cartilage. The method is designed in consideration of the federal<br />

guidelines for admissibility of forensic evidence.<br />

This presentation will impact the forensic community by presenting<br />

a method that transitions a traditionally subjective analytical test to an<br />

objective test, an approach that can be translated to other areas of visual<br />

analysis, i.e., ballistic and fiber analysis.<br />

Published literature on tool mark impression examination<br />

demonstrates the generally accepted theory that class and individual<br />

characteristics of a weapon’s cutting edge are recorded in the cut surfaces<br />

of cartilage and bone and can be identified using microscopic analysis.<br />

Several studies have correlated variation in striation pattern observed in<br />

the cut surface to the cutting edge design and wear defects of a tool,<br />

while others have gone so far as to conclude the striation pattern is<br />

unique to the tool. Despite the general acceptance, limitations of the<br />

current methodology are lack of quantitative analysis, failure to measure<br />

error rate, and minimal independent testing.<br />

Federal guidelines regarding admissibility of forensic evidence<br />

have become more rigorous in recent years and as a result tool mark<br />

impression evidence has been found inadmissible on multiple occasions.<br />

A recent conviction was overturned by the Supreme Court of Florida<br />

because of what was determined to be the invalid admission of expert<br />

testimony regarding tool mark impression analysis. The expert witness<br />

identified a particular knife as a murder weapon based on a technique of<br />

microscopic analysis of the markings left by the knife in a piece of cut<br />

cartilage. The expert for the defense testified that the methodology used<br />

was not generally accepted as reliable and did not therefore satisfy the<br />

federal guidelines. The Florida Supreme Court ruled that while the knife<br />

itself was admissible, the interpretation of the cut marks provided by the<br />

witness was inadmissible. The Court found that no scientific precedent<br />

existed to support the opinion that a specific knife can be identified from<br />

marks made on cartilage (Ramirez I, 542 So.2d at 354-55). 1<br />

The inadmissibility of cut mark impression evidence is a threat to<br />

the successful adjudication of countless violent crimes. In 2008, Harris<br />

County <strong>Medical</strong> Examiner’s Office Forensic Anthropology Division<br />

received forty cut mark cases for tool mark impression evidence analysis<br />

and six suspect weapons for direct comparison. Given the limitations of<br />

the current methodology and need for admissible analysis, a quantitative<br />

method to analyze cut mark impression evidence in costal cartilage is<br />

developed. The goal of the project is to quantitatively discern between<br />

striation patterns made with knives of different cutting edge design.<br />

Experimental incised wounds were made in pig (Sus scrofa) costal<br />

cartilage using a serrated, non-serrated, and micro-serrated kitchen knife.<br />

Thirty incised wounds were made with each knife. Each cut surface was<br />

cast with [Mikrosil Casting Material.] Each cast was photographed<br />

using a digital camera attached to a stereomicroscope. The images were<br />

imported into [Adobe Photoshop CS Extended software.] Using the<br />

Ruler function of the Photoshop program, the distances between the<br />

striations were measured. Presence of striations, regularity of the<br />

striation pattern and presence of primary and secondary striation patterns<br />

were documented. Presence and absence of striation and distances<br />

between striations were statistically evaluated using [SPSS 16.0 Basic<br />

software.]<br />

A pilot study was conducted using ten cut marks. Four analysts<br />

(three practicing forensic anthropologists and one doctorate level<br />

anthropology intern) independently analyzed the ten cut marks (twenty<br />

cut surfaces). The results of the pilot study showed 100% agreement<br />

among the analysts for striation recognition and 85% agreement in<br />

regularity of the pattern (std. error 0.124). No correlation between the<br />

presence of serrations in the knife’s cutting edge and regularity of<br />

striation patterns was found (r = -0.05). In light of the very small sample,<br />

sampling error cannot be excluded as a possible cause.<br />

The pilot study shows striation patterns are easily recognized within<br />

cut costal cartilage surfaces. Evaluation of the correlation between the<br />

cutting edge design and striation pattern, observer error, and repeatability<br />

will be possible following the examination of the complete sample of cut<br />

marks.<br />

Reference:<br />

1 Ramirez v. State of Florida 2001 WL 1628609, 27 Fla. L. Weekly S<br />

18 Supreme Court of Florida, Dec. 20<br />

Forensic Anthropology, Tool Marks, Impression Evidence Analysis<br />

H34 The Contextual Nature of “Excessive<br />

Force”: Alcohol-Induced Osteopenia,<br />

Fracture Prevalence, and Healing Rates<br />

Among In-Custody and Homicide Deaths<br />

From the Harris County <strong>Medical</strong><br />

Examiner’s Office<br />

Heather Backo, MA*, Tulane University Deaprtment of Anthropology,<br />

1326 Audubon Street, New Orleans, LA 70118<br />

After attending this presentation, attendees will better understand<br />

the mechanism by which alcohol affects bones, and what those effects<br />

are. In addition, they will understand the impact of alcohol-induced bone<br />

disease on fracture incidence rates in a medico-legal setting.<br />

83 * Presenting Author


This presentation will impact the forensic science community by<br />

reviewing the consequence of chronic ethanolism on bone health, and<br />

non-destructive techniques by which bone quality can be assessed.<br />

The effect of chronic ethanolism on the skeleton is well documented<br />

in the medical literature. Although the exact mechanism is unknown,<br />

excessive amounts of alcohol appear to inhibit the bone building<br />

capabilities of osteoblasts, leading to a noticeable decrease in bone<br />

density and a concomitant decrease in the mechanical strength of bone.<br />

Published rates of alcohol induced bone disease among chronic ethanol<br />

users vary from 25-100%, depending upon the type and size of the study.<br />

Comorbidity factors such as liver disease, smoking and malnutrition<br />

exacerbate this loss in bone capability, but are not uniformly present.<br />

This decrease in bone density and altered mechanical properties,<br />

including reduced load capabilities, increases fracture prevalence among<br />

chronic ethanol users, especially those diagnosed with clinical grade<br />

osteopenia and osteoporosis. The inhibition of osteoblast activity will<br />

also affect the healing rates of the fractured bones in the form of delayed<br />

union and non-unions. Chronic ethanol users with bone fractures may<br />

require increased time for healing, altering the rate at which the<br />

characteristic markers such as sub-periosteal bone deposition and callus<br />

formation will appear.<br />

Four cases of in-custody or unlawful death examined by the Harris<br />

County <strong>Medical</strong> Examiner’s Office in Houston, Texas are presented as<br />

examples of increased fracture incidence rates due to osteopenia among<br />

alcoholic individuals. These four cases consist of three men and one<br />

woman, all 50 years of age or older, with a known history of long-term<br />

excessive alcohol consumption. Each individual suffered multiple<br />

fractures, and the cause and manner of death is classified as blunt force<br />

trauma and homicide for each case. In addition, one of the individuals<br />

suffered fractures several weeks before death occurred, allowing some<br />

degree of healing to take place.<br />

Using radiographs and physical examination, the ribs from these<br />

four individuals are compared with individuals whose bone quality<br />

appears in the normal range (control group). The control group includes<br />

three individuals (2 males and 1 female, all 50 years of age or older) who<br />

have no known history of alcohol abuse. The weight, cortical bone<br />

quality, and trabecular bone density was assessed in each rib. Ribs were<br />

selected due to their availability and propensity to fracture in cases of<br />

interpersonal violence.<br />

The difference in weight, cortical quality, and trabecular density<br />

was remarkable between the chronic ethanol users and the control group.<br />

The ribs taken from the ethanol group are lighter in weight and have an<br />

almost translucent quality to them. The trabecular bone located in the rib<br />

head and neck area is notably decreased in the ethanol group when<br />

compared to the control group. In the case of the individual with<br />

antemortem fractures, the degree of bone repair visible on the ribs was<br />

also less than is expected from the reported interval between injury and<br />

death.<br />

The results of the study show that there is a qualitative difference<br />

between the bone strength of individuals with a history of chronic<br />

ethanolism, and individuals lacking such a history. The standard police<br />

procedures for controlling individuals who are resisting arrest or proving<br />

a danger to themselves and others may therefore, in ethanol abusers,<br />

cause a greater number of fractures and can lead to the death of the<br />

individual. This has prompted a reexamination of the concept of<br />

“excessive force” for individuals with known histories of alcohol abuse.<br />

In cases such as these, a proper evaluation by a physical anthropologist<br />

of the bone quality of the decedent will prove invaluable in determining<br />

whether or not excessive force was used to cause the injuries that may<br />

have led to the death of the individual, or if the injury was related to<br />

* Presenting Author<br />

severely compromised bone quality. Bone quality and history of<br />

drinking should also be considered if the timing of antemortem fractures<br />

is of importance in a case involving a known alcoholic.<br />

Alcoholism, Osteopenia, Fracture Incidence<br />

H35 Patterns of Trauma on the Skeletal Remains<br />

of U.S. Soldiers in the Battle of East Chosin,<br />

North Korea<br />

James T. Pokines, PhD*, Kelly L. Burke, MSc, and Josephine M.<br />

Paolello, MS, JPAC/CIL, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

After attending this presentation, attendees will examine a specific<br />

pattern of peri-mortem/early postmortem trauma detected on the skeletal<br />

remains of U.S. soldiers lost in the Battle of East Chosin, Democratic<br />

Peoples’ Republic of [North] Korea (D.P.R.K.). Multiple hypotheses<br />

regarding the possible sources of the majority of this trauma will be<br />

presented and examined.<br />

This presentation will impact the forensic science community by<br />

broadening the understanding of battlefield trauma derived during the<br />

Korean War, as it documents a pattern of apparent deliberate skeletal<br />

alteration of remains after death by non-U.S. forces.<br />

Attendees will examine a specific pattern of peri-mortem/early<br />

postmortem trauma detected on the skeletal remains of U.S. soldiers lost<br />

in the Battle of East Chosin, Democratic Peoples’ Republic of [North]<br />

Korea (D.P.R.K.). Multiple hypotheses regarding the possible sources of<br />

the majority of this trauma will be presented and examined. This<br />

research broadens our understanding of battlefield trauma derived during<br />

the Korean War, as it documents a pattern of apparent deliberate skeletal<br />

alteration of remains after death by non-U.S. forces.<br />

The mission of the Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory (JPAC-CIL) is to recover and identify the<br />

remains of U.S. servicemembers lost in recent conflicts, including the<br />

Korean War (1950-1953). Over 8,000 U.S. servicemembers are<br />

currently missing/unrecovered from this conflict. One of the largest<br />

battles occurred around the Chosin Reservoir. This large reservoir was<br />

the location of a U.S./Republic of [South] Korea (R.O.K.) advance far<br />

into North Korea at the end of November 1950. The night of November<br />

27 saw the beginning of a massive attack by divisions of the Chinese<br />

People’s Army, which over subsequent days led to over 3,000 U.S. and<br />

R.O.K. casualties as their forces were pushed back in disarray south of<br />

the reservoir and subsequently toward the current border with South<br />

Korea. The rapid withdrawal and loss of unit cohesion caused the<br />

majority of the dead to be left behind, either buried by U.S./R.O.K.<br />

forces or left for enemy forces. The severe winter cold and heavy snow<br />

further reduced opportunities for burial of these remains.<br />

Multiple recovery missions from 2001 until 2005 have excavated<br />

battlefield sites in the East Chosin Reservoir area and recovered skeletal<br />

remains and associated artifacts identified as U.S./R.O.K. in origin from<br />

primary and secondary burials. Bone preservation in most cases is<br />

sufficient to allow detailed analysis of skeletal trauma. Peri-mortem<br />

trauma, largely in the form of gunshot wounds, is common among the<br />

remains recovered from the chosin area and other locations in North<br />

Korea. An additional pattern of trauma has been identified: sawing or<br />

massive blunt force trauma to humeri, usually with the portion of the arm<br />

distal to the trauma still associated with the remains. The indications of<br />

sawing trauma include clear kerf formation, straight cuts, and residual<br />

striations. Blunt force trauma could have been caused by multiple<br />

implement types, with unknown duress applied to soft tissue to allow<br />

limb removal. These remains likely were in a frozen state when altered,<br />

with access to remains at the base of open burial features restricted and<br />

alteration possible only to those remains near the top.<br />

84


Of a sample of n = 26 left humeri, 12 (46.2%) exhibited this trauma<br />

pattern (three sawing/probable sawing, and nine massive blunt force).<br />

Of a sample of n = 24 right humeri, five (20.8%) exhibited this trauma<br />

pattern (three sawing/probable sawing and two massive blunt force). In<br />

addition, definite sawing trauma was detected on one femur and one<br />

nasal region, and similar blunt force trauma also occurred on three left<br />

and two right lower arm portions (radius or ulna). This pattern of<br />

differential peri-mortem arm trauma is mirrored in the larger sample of<br />

all U.S. remains recovered from North Korean battlefields or received by<br />

unilateral turnover, where a marked underrepresentation of lower arm<br />

portions (i.e., distal to the proximal humerus) has been detected<br />

previously.<br />

The origin of this trauma is most consistent with the deliberate<br />

cutting or other dismemberment of these remains by enemy forces, with<br />

the possible aim of trophy acquisition or other systematic defacement of<br />

U.S./R.O.K. remains. Rejected hypotheses include coincidental perimortem<br />

battlefield trauma, the removal of extended frozen limbs to<br />

expedite burial in small burial features, differential skeletal preservation<br />

of these elements, and battlefield amputations by U.S./R.O.K. medical<br />

staff. This trauma could have occurred immediately after the withdrawal<br />

of U.S./R.O.K. forces or months later, given the frozen state of these<br />

remains.<br />

Battlefield Trauma, Korean War, Chosin Reservoir<br />

H36 Peri-Mortem Skeletal Trauma in U.S.<br />

Korean War Soldiers: An Epidemiological<br />

and Historical Study of Prisoner-of-War<br />

and Battlefield Casualties<br />

Joan E. Baker, PhD*, JPAC-CIL, 310 Worchester Avenue, Building 45,<br />

Hickam AFB, HI 96853; and Alexander F. Christensen, PhD, JPAC-CIL,<br />

310 Worchester Avenue, Hickam AFB, HI 96853<br />

The goal of this presentation is to review patterns of peri-mortem<br />

trauma documented on the skeletal remains of U.S. soldiers lost during<br />

the Korean War. Attendees will gain a greater awareness of the<br />

importance of documented historical context in the interpretation of warrelated<br />

skeletal trauma.<br />

This presentation will impact the forensic science community by<br />

increasing the understanding of war-related trauma in a historical context<br />

and documents patterns of skeletal trauma occurring under disparate<br />

circumstances of death.<br />

In a follow-up to our 2008 presentation (Baker and Christensen<br />

2008), data on peri-mortem trauma was collected from more than 200<br />

skeletons of U.S. casualties of the Korean War that were analyzed<br />

between 1996 and 2009. While the CIL does not conduct analyses of<br />

peri-mortem trauma in order to determine cause or manner of death, we<br />

have a unique chance to examine peri-mortem traumata in light of<br />

historically documented circumstances of death. In some cases, we may<br />

be able to gain insight into battlefield behavior.<br />

War casualties can generally be divided between battlefield<br />

fatalities and deaths that occurred elsewhere. For this study, battlefield<br />

casualties and Prisoners of War (POW) form the primary groups of<br />

interest. Remains came from three different sources: remains recovered<br />

from alleged battlefields during Joint Recovery Operations (JROs)<br />

conducted in the Democratic People’s Republic of Korea from 1996 to<br />

2005, remains returned to the U.S. after the war by the Chinese<br />

government which were subsequently buried as Unknowns and later<br />

exhumed by the CIL for identification, and remains turned over to the<br />

U.S. by North Korean authorities between 1990 and 1994 from known<br />

POW cemeteries, as well as 2002 and 2004. The Killed-in-Action (KIA)<br />

sample included more than 130 individuals, while the purported POW<br />

sample comprised more than 50 individuals. Trauma patterns were<br />

compared between groups as well as to historical data, which was taken<br />

from reports of KIAs, those who were Wounded in Action (WIA), and<br />

those who subsequently Died of Wounds (DOW).<br />

Early in this study, it was noted that POWs had less peri-mortem<br />

trauma than KIAs. With a larger sample of POWs now available, that<br />

anecdotal observation has been confirmed. Peri-mortem trauma rarely<br />

occurred in POWs and was limited to three instances of cranial trauma<br />

and a single incidence of peri-mortem trauma to the femur. In one case,<br />

a POW was shot in the back of the head, and in the case of the femoral<br />

injury, the individual in question is known to have been killed in a<br />

strafing incident. This suggests that most of these men may have died of<br />

causes unrelated to trauma sustained in direct combat and provides<br />

support for the historical notion that most POWs died of disease,<br />

malnutrition, or exposure.<br />

Statistical analysis of trauma frequency revealed some interesting<br />

patterns. Disparities in trauma to the face, vault, and tibia between the<br />

two groups were significant at the p < 0.10 level, while trauma to the<br />

femur was significant at the p < 0.05 level. Humeral injuries in the two<br />

groups were significant at the p < 0.001 level. While calculation of the<br />

overall trauma rate assumes that the probability of trauma to all regions<br />

of the body is equal and is therefore not necessarily an accurate<br />

representation of reality, it does provide a sense of the magnitude of<br />

difference in susceptibility to peri-mortem skeletal injury between the<br />

two groups. The overall trauma rate, calculated as the number of<br />

elements with trauma versus the total number of elements present for<br />

examination, was significant at the p < 0.0001 level.<br />

During the 2008 research, it was discovered that a number of<br />

individuals experienced peri-mortem trauma to the humerus, including<br />

sharp trauma. A number of other individuals were missing either an<br />

entire arm or one or both humeri, despite the presence of distal arm<br />

elements. In this study, nearly one-third of the KIAs were classified as<br />

having missing arm elements (either with or without associated perimortem<br />

trauma in that region of the body). As noted above, the perimortem<br />

trauma rate in the KIAs was significantly higher than that seen<br />

in the POWs. In combination, these traits suggest that some remains<br />

were tampered with postmortem.<br />

POW, KIA, Fractures<br />

H37 Preliminary Studies of the Isolation of<br />

Drugs From Bone and Bone Marrow:<br />

A Broadened Role for the<br />

Forensic Anthropologist<br />

Maranda A. Kles, MA*, C.A. Pound Human ID Labortory, 1376 Mowry<br />

Road, Room G17, University of Florida, Gainesville, FL 32610; Bruce<br />

A. Goldberger, PhD, Department of Pathology, University of Florida<br />

College of Medicine, 4800 Southwest 35th Drive, Gainesville, FL 32608;<br />

Michele Merves, PhD, University of Florida, Rocky Point Labs,<br />

Toxicology, 4800 Southwest 35th Drive, Gainesville, FL 32608; and<br />

Michael W. Warren, PhD, C.A. Pound Human ID Laboratory, 1376<br />

Mowry Road, Room G17, PO Box 113615, Gainesville, FL 32610, and<br />

John Krigbaum, PhD, University of Florida, College of Liberal Arts and<br />

Sciences, Department of Anthropology, 1112 Turlington Hall, Gainsville,<br />

FL 32611<br />

The goal of this presentation is to introduce attendees to a new<br />

analytical technique, Accelerated Solvent Extraction (ASE), and its<br />

potential to provide evidence of drugs and drug metabolites in bone<br />

and/or bone marrow.<br />

This presentation will impact the forensic community by detailing a<br />

new analytical technique which provides a presumptive line-of-evidence<br />

towards determining the identity of a decedent based on drug or<br />

medication history by detecting certain classes of lipophilic drugs in<br />

decomposed or skeletonized remains.<br />

85 * Presenting Author


Toxicologists continue to develop methods for the detection of<br />

drugs and drug metabolites in various biological matrices other than<br />

blood and urine, including oral fluid, hair, and more recently, bone. The<br />

use of bone specimens for toxicological examination provides forensic<br />

anthropologists with an opportunity to collaborate with toxicologists in<br />

further developing techniques for detection of drugs and drug<br />

metabolites. A limited number of studies have been conducted; the<br />

majority utilize solvent extraction of analytes from bone specimens.<br />

However, these studies typically examine the whole bone and do not<br />

isolate the lipid portion of the bone only. This issue may be significant<br />

since many drugs are lipophilic and are more likely to be distributed to<br />

the lipid portion of bone and bone marrow. The typical method of<br />

soaking cut bone in methanol has not been thoroughly evaluated with<br />

regards to reproducibility or recovery. The current pilot study employs<br />

Accelerated Solvent Extraction (ASE) to separate the lipid portion from<br />

the non-lipid portion of the specimen, which reduces the potential for<br />

contamination and the volume of solvent required to perform the test.<br />

ASE is a reproducible, easily calibrated, and robust method, allowing for<br />

increased accuracy and reliability. ASE also requires only a few minutes,<br />

rather than twenty four hours, to complete the isolation process.<br />

This is a preliminary study of the isolation of drugs and drug<br />

metabolites from the lipid fraction of bone specimens obtained from rats<br />

administered drugs for various durations. The non-lipid portion of the<br />

bone remaining after ASE was also tested to determine the completeness<br />

of the extraction. The extractions performed by ASE were compared to<br />

extractions performed following a twenty four hour methanol soak.<br />

Amitriptyline, a tricyclic antidepressant, was detected in the lipid<br />

fraction of whole bone specimens following single-dose administration;<br />

however, single-dose methylenedioxymethamphetamine (MDMA,<br />

Ecstasy) and repeated-dose cocaine were not detected. The lipophilicity<br />

of the drugs and/or experimental design may account for the lack of<br />

detection of these analytes. No drugs were detected in the non-lipid<br />

portion of the ASE extract, suggesting that ASE performed a thorough<br />

extraction of the lipids, and therefore, the drugs.<br />

Both methods resulted in the detection of amitriptyline, and the<br />

ASE technique yielded evidence that the extraction was complete.<br />

Additionally, ASE can allow for calibration and potential correlation of<br />

drug administered and concentrations found. Overall, the results of the<br />

study are promising, lending support to ASE as an analytical technique<br />

for the isolation of drugs and drug metabolites in bone. Future work<br />

must be conducted to elucidate the effectiveness of this method.<br />

The assessment of drug use through the analysis of bone for drugs<br />

and drug metabolites is an important tool in the investigation of<br />

skeletonized and decomposed cases, providing presumptive evidence of<br />

the decedent’s identity by correlation of the analytical findings with<br />

purported drug history. The results may also provide evidence<br />

supporting the cause and manner of death, particularly in cases involving<br />

drug use and misuse.<br />

Forensic Anthroplogy, Accelerated Solvent Extraction, Bone<br />

Toxicology<br />

H38 The Effects of Varying pH on Bone in<br />

Aquatic Environments<br />

Angi M. Christensen, PhD*, FBI Laboratory, Trace Evidence Unit -<br />

Anthropology, 2501 Investigation Parkway, Quantico, VA 22135; Kevin<br />

J. Horn, JD*, FBI Laboratory, Evidence Response Team Unit, 2501<br />

Investigation Parkway, Quantico, VA 22135; and Sarah W. Myers, BA,<br />

Emory University, 201 Dowman Drive, Atlanta, GA 30322<br />

After attending this presentation, attendees will learn the results of<br />

an experiment investigating the effects of varying pH solutions on bone<br />

segments submerged for a one-year period. Attendees will also learn<br />

some of the capabilities of the FBI’s Underwater Search and Evidence<br />

Response Team.<br />

* Presenting Author<br />

This presentation will impact the forensic science community by<br />

providing empirical data on postmortem aquatic changes which may be<br />

extremely useful in forensic contexts for both improving time since<br />

death estimates, and also for providing better information to underwater<br />

recovery experts thereby potentially increasing the quantity and quality<br />

of remains recovery.<br />

In the summer of 2007, the FBI Laboratory’s Forensic<br />

Anthropology Program received an inquiry from a member of the FBI’s<br />

Underwater Search and Evidence Response Team (USERT) regarding<br />

the possible condition of missing human remains. The USERT assists in<br />

water-based searches for evidence, and divers are specially trained to<br />

locate and recover items of evidence that are believed to be underwater.<br />

The USERT also utilizes the most advanced underwater technology to<br />

assist in its searches, including side-scan sonar, sector scan sonar, and<br />

remotely operated vehicles (ROVs). While the USERT has been<br />

involved in several high-profile dive operations, the majority of USERT<br />

operations involve searches for handguns, knives, bodies, vehicles and<br />

similar items. The USERT also is capable of conducting hull and pier<br />

searches in support of counter-terrorism and counter-intelligence<br />

operations. FBI USERT also may be contacted for assistance in state and<br />

local police matters when there is a need for underwater evidence<br />

recovery.<br />

The question posed by the USERT diver in this case was: How well<br />

preserved would you expect a body to be after twenty years in a slightly<br />

acidic lake? Divers were curious whether, because of the acidity of the<br />

water, there would be enough of a skeleton remaining to warrant an<br />

underwater search. A review of the literature revealed that little is known<br />

about the decomposition of remains in aquatic environments of varying<br />

pH, and even less is known about the specific effects of these<br />

environments on bone. Documentation of postmortem changes in<br />

aquatic environments has been scant and consists primarily of general<br />

overviews, a few empirical studies, and case reports. Other reports<br />

emphasize the formation and preservation of adipocere, algae formation,<br />

invertebrate colonization, or fluvial transport, but little research has been<br />

done specifically on bone preservation in various aquatic environments.<br />

This discovery prompted the following pilot study.<br />

Bovine remains were obtained from a meat processing facility, and<br />

cut into approximately 3-5cm thick cylindrical discs using a table saw.<br />

Solutions were prepared to represent aquatic environments of pH1, pH4,<br />

pH7, pH10 and pH14 using nitric acid and sodium hydroxide. The<br />

specimens were placed into glass beakers and the solutions were added<br />

until the bones were completely submerged. The specimens were<br />

periodically removed from their solutions and photographed. After one<br />

year, the specimens were removed from the solutions, rinsed,<br />

photographed, and examined visually and microscopically.<br />

The pH7 and pH10 solutions had little effect on the bone, but all<br />

other solutions affected the bone to some degree. Extreme pH levels<br />

significantly affected the integrity and physical appearance of the bone,<br />

completely dissolving it in six days in the case of pH1, and degrading it<br />

considerably over one year in the case of pH14. Good to excellent<br />

preservation was observed in the solutions of pH4, pH7 and pH10, with<br />

the pH10 solution showing somewhat better preservation than the pH4<br />

solution. Given that the range for pH of water in the U.S. is around<br />

pH4.3-pH10, one would therefore expect the pH of the water to have<br />

little effect on bone preservation (at least over a period of one year or<br />

less). More information on the effects of pH levels on fully-fleshed<br />

remains would be needed to improve estimates of time since death, but<br />

the results observed here may be useful in making statements regarding<br />

time since skeletonization.<br />

Empirical data on postmortem aquatic changes may be extremely<br />

useful in forensic contexts for both improving time since death estimates,<br />

and also for providing better information to underwater recovery experts<br />

thereby potentially increasing the quantity and quality of remains<br />

recovery. While this study was rather small-scale and included pH<br />

extremes unlikely to be encountered in forensic contexts, it serves as one<br />

of the first controlled studies of its kind. It is hoped that results will<br />

86


prompt larger empirical studies to be conducted including the use of, for<br />

example, larger biological specimens, less extreme pH levels, and<br />

varying temperature and salinity.<br />

Water pH, Bone Preservation, USERT<br />

H39 Taphonomic Processes Involved With the<br />

Decomposition of Human Remains Within<br />

the Puget Sound<br />

Sarah M. Huntington, MSc*, PO Box 961, Kingston, WA 98346; and Tal<br />

Simmons, PhD, School of Forensic & Investigative Sciences, University<br />

of Central Lancashire, Preston, Lancashire PR1 2HE,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will understand the<br />

affect of factors (e.g., age, height, sex, position when recovered, amount<br />

of clothing at recovery, animal activities involving the remains,<br />

Postmortem Submergence Interval, and Accumulated Degree Days) on<br />

the decomposition of remains within the Puget Sound, Washington State,<br />

USA. Attendees will also have an understanding of Total Aquatic<br />

Decomposition Scores and Accumulated Degree Days and their utility in<br />

death investigation.<br />

This research provides equations for the calculation of the<br />

Postmortem Submergence Interval and Accumulated Degree Days from<br />

the Total Aquatic Decomposition Scores of remains recovered from the<br />

Puget Sound. This information is important for death investigators/law<br />

enforcement personnel as an aid to the identification of individuals<br />

missing in the interval predicted by the equation. The presentation will<br />

impact the forensic anthropology community by adding to knowledge of<br />

taphonomic processes within aquatic environments (specifically the<br />

Puget Sound) and contributing to any further studies on aquatic or<br />

marine decomposition.<br />

This research provides equations for the calculation of the<br />

Postmortem Submergence Interval and Accumulated Degree Days from<br />

the Total Aquatic Decomposition Scores of remains recovered from the<br />

Puget Sound. This information is important for death investigators/law<br />

enforcement personnel as an aid to the identification of individuals<br />

missing in the interval predicted by the equation. The findings presented<br />

also impact the forensic anthropology community by adding to<br />

knowledge of taphonomic processes within aquatic environments<br />

(specifically the Puget Sound) and contributing to any further studies on<br />

aquatic or marine decomposition.<br />

Factors affecting the decomposition of human remains have been a<br />

topic of interest to Forensic Anthropology since its inception. However,<br />

only recently have the taphonomic processes involved with aquatic<br />

decomposition become foci in forensic research. Several studies have<br />

been done on fluvial systems but research on marine systems is relatively<br />

scant as recovery of remains from the open ocean can be problematic due<br />

to factors such as depth, weather, currents, etc. The Puget Sound is a<br />

large (~135x76 km), mostly enclosed body of saltwater that facilitates<br />

the recovery of a considerable number of remains. The aim of this<br />

project was to collect and analyze data on the taphonomic processes<br />

involved with decomposition within the Puget Sound.<br />

Data from four of the eleven county coroner/medical examiners<br />

offices surrounding the Puget Sound, including Kitsap (N=5), Mason<br />

(N=3), San Juan (N=8), and Pierce (N=6) counties, were analyzed<br />

statistically for taphonomic processes which could affect the<br />

decomposition of human remains within the Puget Sound. Forty-four<br />

cases were originally examined; however, after the removal of cases<br />

from the sample due to extensive adipocere formation (N=3) and<br />

Accumulated Degree Days scores of less than ten (N=19), twenty two<br />

cases remained. Adipocere cases were removed as adipocere formation<br />

tends to retard decomposition. All cases were given Total Aquatic<br />

Decomposition Scores (TADS) and Accumulated Degree Days for the<br />

time of their submergence, from entry to recovery. The TADS are the<br />

sum of three Aquatic Decomposition Scores given based on the<br />

decompositional stage of an area of the body, these include Facial<br />

Aquatic Decomposition Score, Body Aquatic Decomposition Score, and<br />

Limb Aquatic Decomposition Score. The Accumulated Degree Days is<br />

the sum of the temperature (˚C) of the water each day (or as near the day<br />

as possible given obtainable data) that the remains were submerged.<br />

Both Accumulated Degree Days (p= 1.177x10 -10 ) and Postmortem<br />

Submergence Interval (p=2.026x10 -7 ) were found to have an affect on<br />

Total Aquatic Decomposition Score using linear regression models.<br />

Equations for determining Postmortem Submergence Interval and<br />

Accumulated Degree Days from the Total Aquatic Decomposition<br />

Scores of human remains recovered in the Puget Sound were created.<br />

The equation for establishing Postmortem Submergence Interval is:<br />

log 10 PMSI=((TADS+1.751)/5.649) +/- 3.047 and the equation for<br />

establishing Accumulated Degree Days is log 10 ADD=<br />

((TADS+5.6607)/ 7.4294) +/- 2.107. The results of this study were<br />

compared to similar studies done on fluvial systems in the United<br />

Kingdom (Heaton, et al., in press). No significant difference (p>0.01)<br />

was found between the decomposition rates within rivers in the United<br />

Kingdom and those seen within the Puget Sound when the data were<br />

subjected to an analysis of covariance (ANCOVA) test with<br />

Accumulated Degree Days as a control.<br />

Marine Decomposition, Postmortem Interval, Puget Sound<br />

H40 Microbial Marine Decomposition: Marine<br />

Bacteria as an Indicator of Postmortem<br />

Submersion Interval<br />

Gemma C. Dickson, BSc*, and Russell T.M. Poulter, PhD, University of<br />

Otago, Department of <strong>Bio</strong>chemistry, PO Box 56, Dunedin, Otago 9054,<br />

NEW ZEALAND; Jules A. Kieser, PhD, University of Otago, Sir John<br />

Walsh Research Institute, Faculty of Dentistry, PO Box 647, Dunedin,<br />

Otago 9054, NEW ZEALAND; Elizabeth W. Maas, PhD, National<br />

Institute of Water & Atmospheric Research, Ltd. (NIWA), Private Bag<br />

14901, Wellington, Otago 9054, NEW ZEALAND; and P. Keith Probert,<br />

PhD, University of Otago, Department of Marine Science, PO Box 56,<br />

Dunedin, Otago 9054, NEW ZEALAND<br />

After attending this presentation, attendees will gain a greater<br />

understanding of the involvement of marine bacteria important to the<br />

process of decomposition of bodies and/or body parts in marine<br />

environments, specifically a temperate New Zealand coastal<br />

environment. This presentation will provide marine bacterial succession<br />

data from pig (Sus Scrofa L.) heads submerged in this coastal region<br />

during autumn, winter, and summer and will demonstrate how such data<br />

may be used by forensic investigators to aid in submersion interval<br />

estimation.<br />

This presentation will impact the forensic community by increasing<br />

forensic knowledge on the role of extrinsic microbes in the postmortem<br />

decomposition process, while introducing the concept of marine<br />

bacterial colonization and succession on bodies recovered from marine<br />

coastal contexts as a novel, and potentially valuable, tool with which to<br />

estimate the length of time of submergence and the postmortem<br />

submersion interval (PMSI) of a corpse or individual body part.<br />

Much is now understood regarding the involvement of<br />

microorganisms in taphonomic processes on remains in terrestrial<br />

settings, however very little is known about the role of bacteria and<br />

pattern of degradation of animal remains in aquatic environments.<br />

Because heterotrophic bacteria are ubiquitous in aquatic ecosystems and<br />

are ecologically important for the recycling of specific nutrients in the<br />

oceans, it is hypothesised that extrinsic bacterial action will mediate the<br />

progressive decomposition of remains immersed in the sea and that the<br />

actions of successive bacterial species may act as indicators as to the<br />

87 * Presenting Author


period of submersion. This is important for forensic professionals in<br />

coastal locations as bodies recovered from the sea form a significant<br />

portion of cases for PMSI determination.<br />

This study used adult domestic pig (S. scrofa L.) carcasses as<br />

models for human remains. Pig heads were placed in cages surrounded<br />

by mesh so as to exclude larger scavengers and gain the longest<br />

submersion period possible for bacterial colonisation. Cages were<br />

submerged in the Otago Harbour in water 3-5 m deep in March (autumn),<br />

July and August (winter) 2007 and January (summer) 2009. Bacterial<br />

samples were taken by swabbing the carcasses at two to four day<br />

intervals until skeletonisation. Total bacterial community DNA was<br />

extracted from the swabs and colonising marine bacteria identified by<br />

sequencing their 16S rDNA genes. On sampling days, observations of<br />

gross decomposition changes and the presence of any small marine<br />

scavengers in or on the cage were also noted. During the course of the<br />

experiments, environmental data such as seawater temperature were<br />

monitored daily.<br />

Marine bacteria rapidly colonised the submerged remains and did so<br />

in a successional manner. Marked differences were observed in the<br />

structure of microbial communities identified on the pig remains during<br />

the different seasons, thus showing a seasonal succession pattern, for<br />

which a significant difference in water temperature is likely to have been<br />

a contributing factor. Several bacterial species were present for much of<br />

the duration of the experiments while others only colonised after specific<br />

submersion intervals.<br />

Determining the length of time a body has been immersed in an<br />

aquatic environment is a crucial factor that must be determined in any<br />

death investigation. The dynamic shifts in marine microbial community<br />

composition over a submersion period, as seen in this study in the form<br />

of relatively early or late colonisers, may be useful as submersion<br />

indicators. The data generated now forms the basis for development of<br />

a novel indicator of PMSI in the sea and, with further study, may prove<br />

useful for PMSI estimation of bodies and/or body parts recovered from<br />

coastal marine waters in the Otago region and beyond in cases where a<br />

specific PMSI is in doubt.<br />

Marine Decomposition, Postmortem Submersion Interval, Bacteria<br />

H41 A Study of the Differences Between Fresh<br />

Water and Salt Water Decomposition:<br />

Establishing Time Since Death or Time<br />

Since Submergence<br />

Mallory S. Littman, BS*, and Peter J. Colleran, BS, Boston University<br />

School of Medicine, 715 Albany Street, Boston, MA 02118; and Tara L.<br />

Moore, PhD, Boston University School of Medicine, 700 Albany Street,<br />

Boston, MA 02118; and Billie L. Seet, MA, Office of the Chief <strong>Medical</strong><br />

Examiner, 720 Albany Street, Boston, MA 02118<br />

After attending this presentation, attendees will understand the need<br />

for more research to in order to understand decomposition in aqueous<br />

environments.<br />

This presentation will impact the forensic science community by<br />

providing a better way to establish time since death or time since<br />

submergence in underwater death investigations.<br />

Forensic investigators frequently become involved with cases in<br />

which decomposing human remains are recovered from aqueous<br />

environments. One important task for these investigators is to establish<br />

time since death or time since submergence. This estimation is useful to<br />

law enforcement so they can narrow their search of possible victims in<br />

order to confirm the decedent’s identity. Time since death has been<br />

shown through previous research to be a tricky timeline to establish.<br />

Many environmental factors must be taken into consideration when<br />

establishing time since death and cases in which decedents have been<br />

submerged in water only serve to make this estimation more<br />

* Presenting Author<br />

complicated. In addition to the usual suspects of ambient temperature,<br />

humidity, local insect activity and overall environment, the other factors<br />

that an aqueous environment introduce must be taken into account.<br />

These include, but are not limited to water temperature, water salinity,<br />

and micro and macro-organisms that already live in the environment that<br />

the decedent has been submerged in. To date, there have only been a<br />

small number of research projects conducted that detail the process of<br />

decomposition in aqueous environments. As a result of this, time since<br />

death determination in aqueous environments remains a tricky timeline<br />

to establish.<br />

This project is an experimental study conducted to: (1) document<br />

the differences in the overall process of decomposition between bodies<br />

that have been submerged in freshwater and saltwater environments;<br />

and, (2) test whether time since death or submergence can be accurately<br />

estimated using previous research conducted by Seet. 1 Fetal pigs were<br />

used as a replacement for human remains because of the similarities in<br />

muscle and tissue structure. Ambient air temperature, water temperature,<br />

the pig’s internal temperature, and pH were documented daily. Gross<br />

postmortem changes that occur throughout the process of decomposition<br />

as well as insect activity were also noted and documented with<br />

photographs. Bloating, purges, skin slippage, discoloration, maggot<br />

activity, fly, and beetle activity was documented in a present/absent<br />

context. The pigs were placed in buckets and kept in adequately vented<br />

cages. The cages were meant to keep out larger vertebrate scavengers<br />

while still allowing access to the invertebrate scavengers that play an<br />

active role in the process of decomposition. The freshwater was<br />

collected on site from a stagnant cranberry bog and the saltwater was<br />

collected from an urban beach in the city of Boston, MA. This research<br />

was conducted twice in two distinct seasons of spring and summer in<br />

New England.<br />

Preliminary results from this research indicate that the environment<br />

of saltwater versus freshwater does effect the process of decomposition.<br />

Decomposition was documented as occurring faster in the freshwater<br />

than in the saltwater. Results have indicated that the saltwater hindered<br />

the decomposition process by deterring insect activity. These results also<br />

indicate the importance of the role of forensic entomologists in time<br />

since death research. Other data collected from this project will be<br />

correlated with Seet 1 to test the results of the estimation of time since<br />

submergence based on gross morphological changes. Results from that<br />

research indicate that time since submergence can be established by<br />

using variables such as the presence or absence of purge and marbling.<br />

Reference:<br />

1 Seet, BL. Estimating the Postmortem Interval in Freshwater<br />

Environments. Unpublished Masters Thesis, University of<br />

Tennessee, Knoxville, TN. 2005.<br />

Forensic Anthropology, Aqueous Environments, Decomposition<br />

H42 Decomposition Patterns in Indoor<br />

Environments: A Comparative Analysis of<br />

Rodriguez and Bass’s Stages<br />

Melissa A. Pope, BA*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler Avenue, Tampa, FL 33612; and Erin H.<br />

Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820<br />

The objectives of this study are to explore the patterns and timing<br />

of the effects of decomposition and to identify factors that may or may<br />

not play a prominent role in the decay of bodies within enclosed<br />

environments, by comparing these data to the stages created by Bass<br />

(1997) and Rodriguez and Bass (1983).<br />

This presentation will impact the forensic community by presenting<br />

data related to decay within an environment that has been largely<br />

unexplored. The patterns identified accentuate the need for generating<br />

88


comparative samples and engaging in collaborative research to create<br />

refined standards for estimating the postmortem interval within sheltered<br />

environments. This investigation retrospectively reviewed 69 cases to<br />

identify the presence and sequence of taphonomic effects of individuals<br />

who died within enclosed environments. The frequency of indoor<br />

decomposition and the patterns identified, such as the minimal role of<br />

necrophagy and sunlight on enclosed remains, underlines the need to<br />

generate comparative samples and generate context-specific standards<br />

for estimating the postmortem interval.<br />

Where do people die alone when they remain undiscovered for<br />

extended periods of time? The forensic literature implies that most cases<br />

involving decomposed remains occur in outdoor contexts, yet a review<br />

of 2003-2008 Nebraskan autopsy records demonstrates that most people<br />

dying alone are within their homes. Of 87 forensic cases reviewed, 69<br />

died within enclosed environments. For enclosed locations, men (n=49)<br />

and women (n=20) were represented (ranging in age from 2 months to<br />

90 years). Unsurprisingly, police are most often the ones to discover the<br />

remains (20.3%). Estimation of the postmortem interval (PMI) is critical<br />

to reconstructing the events surrounding a person’s demise and this is an<br />

area in which forensic anthropologists are increasingly playing a leading<br />

role.<br />

Rates of decay are context-specific and little attention has been paid<br />

to decomposition patterns within enclosed environments. This research<br />

aims to achieve a better understanding of decay rates by exploring<br />

contributing factors and the applicability of Bass’ stages to indoor<br />

decomposition cases.<br />

There is a plethora of experimental research devoted to quantifying<br />

the rate of human decay for PMI estimation. Specifically, Bass (1997)<br />

and Rodriguez and Bass (1983) have created decomposition stages that<br />

are widely used within medicolegal investigations, but are based on<br />

decomposition in the outdoor environments. The value of retrospective<br />

studies in combination to experimental research is that the large number<br />

of variables that affect decompositional rates may be explored.<br />

Rodriguez and Bass’s work encapsulates the process of<br />

decomposition into four phases: fresh (first day), bloated (first week),<br />

decay (first month) and dry (first year), each of which is associated with<br />

specific taphonomic effects. In this study, investigators rated the stage<br />

of decay that best fits the description of the remains, resulting in 50.7%<br />

(n=35) fresh, 36.2% (n=25) bloated, and 13.0% (n=9) advanced. The dry<br />

phase was not represented in this sample. Preliminary results show that<br />

with the passage of time, the likelihood of remaining undiscovered<br />

within an enclosed environment decreases.<br />

For fresh cases, the mean PMI was 1.4 days (range=1.0-7.5 days)<br />

and fell within the “first day” period 88.2% of the time. For bloated, the<br />

mean PMI was 5.0 days (range=1-17 days) and occurred within the first<br />

day to first week interval 73.9% of the time. For “advanced”, the mean<br />

PMI was 16.6 days (range=2-66 days) and correctly transpired within the<br />

first week to first month range 55.6% of the time. This demonstrates the<br />

problematic increase in variability of decay rates with extended PMIs.<br />

Investigators also documented the individual effects located on the<br />

remains and examined the frequency of necrophagy and climate on the<br />

rate of decay. Within the bloated stage, bloating of the abdomen was<br />

documented at a frequency of 91.7%; however, bloating was still present<br />

within 62.5% of the “advanced” cases, when putrefactive gases have<br />

supposedly been released. Skin slippage, a feature that is not expected<br />

to occur until the bloated phase, was also documented in 20% of the<br />

fresh cases. Partial mummification was identified in 17.4% of the<br />

bloated cases. Skeletonization was only found within one advanced<br />

case.<br />

Bass’ stages heavily emphasize the actions of insects in soft tissue<br />

removal, and there is debate within the field as to whether insects<br />

directly contribute to indoor decay. Only seven cases of fly colonization<br />

were documented in this sample: 11.1% within the bloated stage and<br />

71.4% within the advanced stage. No cases of beetle colonization were<br />

identified in the indoor records, which is consistent with the literature for<br />

enclosed spaces. The only documented case of carnivorous activity was<br />

found within the first week and “bloated” range. lt from the lack of<br />

necrophagous activity within enclosed settings.<br />

As an approximation of climate, seasons of deposition were<br />

analyzed with an odds ratio, showing that a decedent is 1.5 times more<br />

likely to undergo decomposition before discovery in the spring and<br />

summer than in the fall and winter. This indicates that while the bodies<br />

were in artificial environments, temperature does factor into their rate of<br />

decay. The frequency of indoor decomposition and the minimal role of<br />

necrophagy on enclosed remains underline the need to generate<br />

comparative retrospective samples and context-specific standards for<br />

PMI estimation in indoor environments.<br />

Postmortem Interval, Forensic Taphonomy/Decomposition, Indoor<br />

Environments<br />

H43 Differential Decomposition of Non-<br />

Traumatized, Blunt Force, and Sharp<br />

Force-Traumatized Buried Pig Carcasses<br />

Donna C. Boyd, PhD*, Lindsay Sliwa, BS, and Cliff Boyd, PhD*,<br />

Radford University, Anthropological Sciences Program, School of<br />

Environmental and Physical Sciences, Radford, VA 24142<br />

After attending this presentation, attendees will have a greater<br />

understanding of the effect of peri-mortem trauma on decay of buried<br />

remains. The study will specifically address the research question: Does<br />

the presence of peri-mortem blunt force or sharp force trauma accelerate<br />

postmortem decay of buried remains?<br />

This presentation will impact the forensic community by comparing<br />

the differential effects of laboratory-induced blunt force and sharp force<br />

trauma on postmortem decay rates of stillborn pigs. These data will aid<br />

investigators’ understanding of differential decay of traumatized versus<br />

non-traumatized remains and may aid in the determination of<br />

postmortem interval for such remains.<br />

Forensic anthropologists have suggested that human remains<br />

manifesting peri-mortem trauma decay at a faster rate than nontraumatized<br />

remains (Mann et al. 1990). 1 Irregular or premature<br />

decomposition may occur due to injury which exposes underlying tissue<br />

to decomposition agents and insects (Rodriguez 1997). 2 In this pilot<br />

study, stages of decomposition are examined for non-traumatized buried<br />

newborn pig carcasses compared to carcasses subjected to blunt and<br />

sharp force trauma. We hypothesize that pigs with peri-mortem trauma,<br />

particularly that which involves exposure of underlying tissue (sharp<br />

force trauma), will decay more rapidly than non-traumatized or only<br />

minimally traumatized (blunt force) remains.<br />

Nine stillborn pigs (Sus scrofa) were obtained for this experiment.<br />

Each pig was numbered and its initial weight, maximum length, and<br />

width recorded. Pigs 1, 4, and 7 were not subjected to trauma. Pigs 2,<br />

5, and 8 were subjected to blunt force trauma, administered by placing a<br />

pig on a metal force plate and impacting the right head and shoulder with<br />

a concrete cylinder projectile, dropped through a 50 cm long PVC pipe.<br />

The left side of the head and shoulder were impacted by the same<br />

projectile dropped through a 108 cm long PVC pipe. A similar procedure<br />

was used on Pigs 3, 6, and 9 to simulate sharp force trauma but the<br />

projectile used was a sharpened iron wood-splitting wedge. Vertical<br />

vector force was recorded by the force plate and, along with impact time,<br />

was analyzed by [Logger Pro 3.2 software] to calculate the impulse, or<br />

change in momentum of the projectile after striking the carcass. As<br />

expected, impulse measurements were higher for projectiles dropped<br />

from the 108 cm pipe, since gravitational potential energy is directly<br />

proportional to height. Impulse was measured in Newtons/second.<br />

Pigs were then buried at a decay facility in the Spring season in<br />

uniform depths of 40 cm in two rows of pits placed at 2 meter intervals.<br />

An iButton in each pig’s mouth recorded temperature at four-hour<br />

intervals. Soil color and texture were described and soil samples<br />

89 * Presenting Author


collected for determination of pH and soil chemistry (using X-ray<br />

fluorescence). Non-traumatized pigs and pigs with blunt and sharp force<br />

trauma were alternately buried in individual pits by their number.<br />

The research plan involved exhuming Pigs 1 – 3 after one month,<br />

recording their stages of decay and reburying them. After three months,<br />

Pigs 1 – 6 were disinterred and described, then reinterred. After three<br />

additional months, all nine pigs were disinterred and their pit<br />

characteristics and decay rates described and compared. This staged<br />

exhumation and reburial was enacted to assess and control for the effects<br />

of burial disturbance on decomposition as a potential bias in this<br />

investigation.<br />

At one month exhumation, Pigs 1 – 3 had lost over 35% of their<br />

body weight. Stage of decomposition was assigned following Galloway<br />

(1997). 3 Pig 1 (non-traumatized) manifested the least decomposition<br />

(early Phase II) compared to Pigs 2 and 3. Pig 3 (sharp force trauma)<br />

showed a slightly higher rate of decomposition compared to Pig 2 (midlate<br />

Phase II).<br />

At the three month exhumation of Pigs 1 – 6, all six pigs manifested<br />

skeletonization with only a few portions of hair and tissue associated<br />

with bone. Acidic soil, higher summer temperatures, increased insect<br />

activity, and higher overall rainfall with retention of moisture in clay<br />

soils likely accelerated decay in all pigs.<br />

Results of this pilot experiment demonstrated differences in decay<br />

rates between non-traumatized and traumatized buried remains.<br />

Although sample sizes were small, pigs subjected to sharp force trauma<br />

manifested greater decay compared to other (blunt force-traumatized and<br />

non-traumatized) pigs. Factors which may be responsible for this<br />

differential decay are discussed and include internal (e.g., accelerated<br />

microbial activity) as well as external (increased accessibility to the<br />

physical and biological environment) influences. In future, experiments<br />

with larger sample sizes and more frequent monitoring through<br />

disinterment may enhance detection of variability in decay rates of<br />

traumatized and non-traumatized remains.<br />

References:<br />

1 Mann, RW, Bass WM, Meadows L. Time since death and<br />

decomposition of the human body: variables and observations in<br />

case and experimental field studies. J Forensic Sci 1990;35:<br />

103-111.<br />

2 Rodriguez WC. Decomposition of buried and submerged bodies.<br />

In Haglund WA and Sorg MH, editors. Forensic taphonomy: the<br />

postmortem fate of human remains. Boca Raton: CRC Press,<br />

1997;459-468.<br />

3 Galloway A. The process of decomposition: a model from the<br />

Arizona-Sonoran desert. In Haglund WA and Sorg MH, editors.<br />

Forensic taphonomy: the postmortem fate of human remains. Boca<br />

Raton: CRC Press, 1997;139-150.<br />

Postmortem Decay, Peri-mortem Trauma, Postmortem Interval<br />

H44 Application of Geopedology to Forensic<br />

Anthropology: Can Vivianite Be a Marker<br />

of Burial in Soil? – Three Case Reports<br />

Stephania Ern, BSc, and Luca Trombino, Dipartimento di Scienze della<br />

Terra, Università degli Studi di Milano, Milan, ITALY; Daniele Gibelli,<br />

MD*, Laboratorio di Antropologia e Odontologia Forense, Sezione di<br />

Medicina Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY; and Cristina Cattaneo,<br />

PhD, Laboratorio di Antropologia e Odontologia Forense, Sezione di<br />

Medicina Legale, Dipartimento di Morfologia Umana e Scienze<br />

<strong>Bio</strong>mediche, V. Mangiagalli, 37, Milan, ITALY<br />

The goal of this presentation is to illustrate the potential use of<br />

geopedologic analyses in determining the prior burial of human remains<br />

in cases of remains coming from an unknown context and which may<br />

* Presenting Author<br />

have been previously buried and then exhumed.<br />

This presentation will impact the forensic science community by<br />

showing how the presence of vivianite inside the bone structure of buried<br />

bodies may be considered a marker of a previous burial, even if soil<br />

residues are no longer recognizable on the remains.<br />

Three cases were studied: the first case concerns the finding of a<br />

skeletonized corpse of an old woman wrapped in a blanket, who was<br />

buried by her daughter in the house garden seven years before; the<br />

second case concerns a corpse buried in a 80 cm deep grave in a wooded<br />

area 20 years before, following the indications provided by organized<br />

crime; the third case is that of a skeletonized human cranium found<br />

within a building site.<br />

Sections of samples of bone from the three cases underwent<br />

petrographic microscopy and composition microanalyses by scanning<br />

electron microscopy (SEM-EDS), in order to verify the presence of<br />

vivianite crystallization in bones. Vivianite is an iron hydrated<br />

phosphate (Fe 3 (PO 4 )2·8(H 2 O)) and a reducing agent, rich in organic<br />

material, usually observed in anoxic environments. In these conditions<br />

the ferrous ions (Fe 2+ ) in the soil combine with phosphorous from the<br />

surrounding environment, as seen in archaeological contexts (for<br />

example, in ancient latrines). In cases of buried corpses, the soil is a<br />

source of ferrous ions and bone provides phosphorous; the<br />

decomposition processes create the necessary reducing conditions.<br />

Therefore, the presence of vivianite within the bone structure may<br />

indicate that the corpse was previously under soil even if the<br />

skeletonized remains are found in a different environmental context.<br />

In all three cases analysis by petrographic microscopy showed bluegreen-violet<br />

shades in different bone districts, which indicate the<br />

presence of vivianite. Microanalyses by SEM-EDS confirmed that the<br />

chemical composition of this material is concordant with vivianite,<br />

although further analyses need to be performed.<br />

In addition, in the third case the SEM-EDS highlighted an inclusion<br />

of geopedologic material inside the diploe. This detail stresses the<br />

potential of microtrace analysis in verifying whether the skeleton has<br />

been in soil. In addition, geopedologic microtraces may allow one to<br />

compare the mineralogical residues with soil samples from the possible<br />

area of burial.<br />

This study showed the presence of vivianite inside the bone<br />

structure of buried bodies, which may be considered a marker of a<br />

previous burial, even if soil residues are no longer recognizable on the<br />

remains.<br />

Further analyses are needed, however, in order to improve the<br />

knowledge of this field of geopedology.<br />

Forensic Anthropology, Geopedology, Burial<br />

H45 <strong>Bio</strong>metric Assessment of the Accuracy of a<br />

Large Sample of Three-Dimensional<br />

Computerized Facial Approximations<br />

Terrie L. Simmons, MA*, Counterterrorism and Forensic Science<br />

Research Unit, FBI Laboratory, 2501 Investigation Parkway, Quantico,<br />

VA 22135; Peter H. Tu, PhD, and Jeffrey D. Erno, MS, GE Global<br />

Research, One Research Circle, Niskayuna, NY 12309; and Philip N.<br />

Williams, BS, and Keith L. Monson, PhD, Counterterrorism and<br />

Forensic Science Research Unit, FBI Laboratory, 2501 Investigation<br />

Parkway, Quantico, VA 22135<br />

The goal of this presentation is to assess whether three-dimensional<br />

computerized facial approximations generated by ReFace are<br />

biometrically similar to three-dimensional models of their corresponding<br />

known faces. This study is the first of its kind to evaluate such a large<br />

number of facial approximations (n = 288).<br />

This presentation will impact the forensic science community by<br />

providing the first large-scale evaluation of the accuracy of three-<br />

90


dimensional computerized facial approximations using objective<br />

biometric techniques. The establishment of biometric similarities<br />

between computerized facial approximations and known faces has<br />

implications for the application of computerized methods to solving<br />

unidentified decedent cases.<br />

ReFace is a computerized facial approximation program which<br />

generates faces for unidentified decedents using a large reference<br />

database currently populated by head CT scans of American males and<br />

females of African-, Asian-, and European-descent. An unknown skull is<br />

imported into the system as a 3D model, either as a CT scan or surface<br />

scan, and registered to the reference skulls within the user-specified<br />

sex/ancestry demographic in order to calculate a statistically likely face.<br />

Any known biological information, such as age, height, or weight can<br />

also be used to influence the final approximation. To date, evaluations<br />

of the accuracy of ReFace approximations have been carried out by<br />

human recognition studies using face pool selections and resemblance<br />

ratings and by computer recognition studies.<br />

In this study, the [ReFace] reference database, consisting of threedimensional<br />

bone and skin models, was used as the test sample in a<br />

leave-one-out validation in which one head at a time was excluded from<br />

the system and treated as an unknown. For each individual, average<br />

approximations were generated with only sex and ancestry specified and<br />

with no modifications for age, height, or weight. Because the reference<br />

faces within each demographic are topologically equivalent, landmarks<br />

of interest could be placed on one canonical face from which x-, y-, and<br />

z-coordinates could be generated for the corresponding landmarks on<br />

each known face and each approximation within a particular<br />

demographic. For this study, 34 anthropometric and constructed<br />

landmarks were chosen to evaluate the accuracy of the three-dimensional<br />

configurations of the most influential and centrally located facial<br />

features: the eyes, nose, and mouth. Landmarks along the perimeter of<br />

the face were avoided because they vary considerably with weight, and<br />

landmarks along the brow ridges were also avoided because they are<br />

essentially determined by the shape of the underlying supraorbital ridges.<br />

Three-dimensional coordinates were used to calculate all interlandmark<br />

distances (n = 561) for each known and approximated face. Euclidean<br />

distances were calculated for each pairwise combination of faces, and for<br />

each approximation, the rank of its corresponding known face according<br />

to the Euclidean distance was evaluated.<br />

When each demographic was evaluated separately, the rank 1<br />

recognition rate, or the percentage of known faces with the smallest<br />

Euclidean distance to its approximation, ranged from 6.25% for Africandescent<br />

males (n = 48) and females to 23.40% (n = 48) for Asian-descent<br />

males (n = 47). The average rank of the known face ranged from 8.33<br />

for European-descent females (n = 49) to 14.19 for African-descent<br />

females (n = 48). Average ranks of the known faces for all demographics<br />

were significantly higher than that expected by chance. In order to<br />

further assess the strength of association, each approximation was<br />

compared to all known faces (n = 288). The average rank of the known<br />

face when considering all individuals was 20.94 and the median rank<br />

was 7, meaning that for 50% of the approximations, the known face<br />

ranked somewhere in the top 7. The rank 1 recognition rate for the<br />

overall evaluation was 16.67%.<br />

The results of this study indicate that facial approximations<br />

generated by ReFace are biometrically similar to their corresponding<br />

known faces even when compared against a large face pool. Higher<br />

ranks than those obtained in this study may be obtained by including<br />

more landmarks, especially around the eyes. This study also suggests<br />

that the soft tissue structure of the face is highly influenced by the<br />

morphology of the underlying craniofacial skeleton and can be estimated<br />

fairly accurately by a statistically-oriented computerized facial<br />

approximation program, such as ReFace.<br />

Facial Approximation, Facial Recognition, Human Identification<br />

H46 Results From a Survey on Computerized<br />

Facial Approximation<br />

Terrie L. Simmons, MA*, FBI Laboratory Division, Counterterrorism<br />

and Forensic Science Research Unit, 2501 Investigation Parkway,<br />

Quantico, VA 22135; Lisa G. Bailey, BA, FBI Laboratory, 2501<br />

Investigation Parkway, SPU/Room 1115, Quantico, VA 22135; and<br />

Melissa A. Torpey, MS, Philip N. Williams, BS, and Keith L. Monson,<br />

PhD, Counterterrorism and Forensic Science Research Unit, FBI<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA 22135<br />

The goal of this presentation is to provide the forensic identification<br />

community with feedback about opinions toward computerized facial<br />

approximation (CFA) programs and to promote an interdisciplinary<br />

discussion on the potential of CFA as a tool for solving unidentified<br />

decedent cases.<br />

This presentation will impact the forensic science community by<br />

presenting the varied opinions of identification specialists toward<br />

computerized facial approximation and the unidentified backlog.<br />

Recent advances in computer animation and three-dimensional<br />

imaging have stimulated developments in computerized facial<br />

approximation. Some programs are already being used for casework,<br />

while many others are still under development. Several advantages<br />

offered by CFA are: (1) shorter generation times as compared to<br />

traditional methods; (2) the possibility for non-artists to generate<br />

approximations, allowing agencies to do so with their own personnel on<br />

their own schedule; (3) the reduced handling of fragile remains, and with<br />

some programs the elimination of the need to de-flesh remains; and, (4)<br />

the digital archiving of unidentified cases for future analyses. The<br />

primary disadvantage is the need to digitize an unidentified skull using<br />

equipment that most forensic identification agencies do not possess.<br />

Despite this disadvantage, many agencies are seeking tools such as CFA<br />

in order to utilize as many resources as possible to re-evaluate and<br />

publicize cold cases. Given these recent efforts and the inevitable<br />

increase in the use of CFA programs, this survey was designed to<br />

investigate previously unaddressed issues regarding the facial<br />

approximation needs of the identification community.<br />

Email invitations were sent in the summer of 2008 to 764 forensic<br />

identification specialists in the U.S. asking them to participate in a webbased<br />

survey on CFA. The survey consisted of 29 multiple-choice<br />

questions concerning the use of facial approximation, interest in CFA,<br />

program features, and the unidentified backlog. An open comment box<br />

was provided at the end of the survey for additional comments about<br />

survey content. Eighty-six anonymous responses from medical<br />

examiners/coroners, forensic anthropologists, forensic artists, law<br />

enforcement officers, and other identification specialists were collected<br />

and evaluated.<br />

According to this survey, sixty six percent of respondents are<br />

interested in using a CFA program at their agency, while only 50% are<br />

currently producing approximations in the traditional methods. Only<br />

39.5% of respondents would be able to obtain a three-dimensional scan<br />

of an unidentified skull in order to use a CFA program. Fifty-one percent<br />

think CFA programs will play a significant role in reducing the backlog<br />

of unidentified decedent cases in the United States. Seventy-two percent<br />

answered that if a thoroughly tested CFA package were made available<br />

to their agency for no charge, their agency would use this system as its<br />

primary method of generating facial approximations for unidentified<br />

decedent cases. When asked to choose from among three types of CFA<br />

programs which one they thought would produce the most accurate<br />

images, fifty-five percent selected a program which calculates a facial<br />

approximation based on a large reference database of faces, thirty-five<br />

percent selected a virtual clay program based on traditional facial tissue<br />

depth markers and tables, and ten percent selected a program which<br />

allows you to paste three-dimensional eyes, noses, and mouths onto a<br />

skull (n = 83). When asked to select the primary reasons for the high<br />

number of unidentified decedent cases in the United States, seventy-<br />

91 * Presenting Author


eight percent selected no way to cross-reference unidentified cases with<br />

missing persons, seventy-one percent selected no centralized system to<br />

publicize approximations/images, and sixty-nine percent selected no<br />

centralized resources/guidelines for processing and analysis of<br />

unidentified cases (n = 72).<br />

The results of this survey indicate that a large proportion of the<br />

forensic identification community is interested in using CFA programs.<br />

While opinions about types of programs and features varied<br />

considerably, most individuals preferred a mathematically-oriented<br />

program that can address the ancestral diversity of unidentified<br />

decedents in the United States, including Hispanics. Regarding the<br />

unidentified backlog, survey respondents consistently emphasized the<br />

need for inter-agency cooperation The results of this survey will<br />

hopefully provide valuable information to individuals involved in the<br />

development of CFA programs and help promote a cross-disciplinary<br />

dialogue about facial approximation and how it can be used to help<br />

address the backlog of unidentified decendents in the United States.<br />

Facial Approximation, Human Identification, Survey<br />

H47 Integrative Measurement Protocol<br />

Incorporating Morphometric and<br />

Behavioral Research Tools From Forensic<br />

Anthropology, Human <strong>Bio</strong>logy,<br />

and Primatology<br />

Phoebe R. Stubblefield, PhD*, Department of Anthropology, University<br />

of North Dakota, 236 Centennial Drive Stop 8374, Grand Forks, ND<br />

58202; Susan C. Anton, PhD*, New York University, Department of<br />

Anthropology, 25 Waverly Place, New York, NY 10003; James J.<br />

Snodgrass, PhD*, Department of Anthropology, University of Oregon,<br />

1218 University of Oregon, Eugene, OR 97405-1218; Christian<br />

Crowder, PhD, <strong>Medical</strong> Examiner’s Office, 520 1st Avenue, New York,<br />

NY 10016; Anthony Di Fiore, PhD, Department of Anthropology, New<br />

York University, 25 Waverly Place, New York, NY 10003; Dana L. Duren,<br />

PhD, Departments of Community Health, Neuroscience, Wright State<br />

Boonshoft School of Medicine, 3640 Colonel Glenn Highway, Dayton,<br />

OH 45435; Eduardo Fernandez-Duque, PhD, Department of<br />

Anthropology, University of Pennsylvania, 3260 South Street,<br />

Philadelphia, PA 19104-6398; William R. Leonard, PhD, Department of<br />

Anthropology, Northwestern University, 1810 Hinman Avenue,<br />

Evanston, IL 60208-1330; Steve Leigh, PhD, Department of<br />

Anthropology, University of Illinois, Urbana-Champaign, 109<br />

Davenport Hall, 607 South Matthews Avenue, Urbana, IL 61801; Felicia<br />

Madimenos, MS, Department of Anthropology, University of Oregon,<br />

1218 University of Oregon, Eugene, OR 97405-1218; Scott McGraw,<br />

PhD, Department of Anthropology, The Ohio State University, 174 West<br />

18th Avenue Columbus, OH 43210; Emily R. Middleton, MS, and Chris<br />

A. Schmitt, MS, Department of Anthropology, New York University, 25<br />

Waverly Place, New York, NY 10003; Richard J. Sherwood, PhD, Wright<br />

State Boonshoft School of Medicine, 3640 Colonel Glenn Highway,<br />

Dayton, OH 45435; Trudy R. Turner, PhD, Department of Anthropology,<br />

University of Wisconsin-Milwaukee, PO Box 413, Milwaukee, WI 53201;<br />

Claudia R. Valeggia, PhD, Department of Anthropology, University of<br />

Pennsylvania, 3260 South Street, Philadelphia, PA 19104-6398; and<br />

Francis J. White, PhD, Department of Anthropology, University of<br />

Oregon, 1218 University of Oregon, Eugene, OR 97405-1218<br />

After attending this presentation, attendees will become familiar<br />

with a new integrative measurement protocol designed to promote an<br />

understanding of the relationship between soft and hard tissue anatomy<br />

and scale, will have access to video and written measurement definitions,<br />

and will be familiar with how these protocols can enhance forensic<br />

anthropological work.<br />

* Presenting Author<br />

This presentation will impact the forensic and biological<br />

anthropology communities by introducing a new integrative protocol<br />

that will enhance research designs for questions addressing human<br />

morphology and identification.<br />

In recognition of the interdisciplinary nature of the forensic<br />

sciences, and particularly of the subfield forensic anthropology, the<br />

Bones and Behavior Working Group presents a set of protocols for<br />

linking behavioral, biological, and skeletal databases. The goal of this<br />

protocol is to promote greater synthesis across biological anthropology<br />

and to facilitate estimates of living parameters from skeletal remains of<br />

forensic interest. The practice of forensic anthropology involves<br />

research into human skeletal, but also behavioral, variation across and<br />

within populations, requiring an understanding of human and nonhuman<br />

primate evolution. Similarly, other human biologists, primatologists,<br />

and evolutionary morphologists seek to understand the evolution of<br />

human adaptation. Yet despite the interdependence within an individual<br />

organism of physiology, behavior, and skeletal biology, each subfield of<br />

biological anthropology works in relative isolation. Although each<br />

subfield might address similar “umbrella questions” regarding<br />

adaptation and growth, which would be enhanced by, for example, the<br />

ability to estimate body weight or size from skeletal remains, these<br />

scientists generally do so without integration of protocols across<br />

subareas.<br />

A small group of scientists with expertise in each of the target<br />

subareas, particularly drawing from the fields of primatology, human<br />

biology, skeletal biology, and forensic anthropology, met to generate a<br />

set of interdisciplinary protocols. This set of protocols promotes the<br />

integration of data collection from living and skeletal specimens in order<br />

to enhance knowledge of biological variation and ultimately our ability<br />

to estimate aspects of living anatomy from an individual’s skeletal<br />

remains. Questions involving proximal life history variables or stressors<br />

will be more accessible, which is of particular interest to forensic<br />

anthropologists investigating human identification. The group culled a<br />

set of core measures from across the subdisciplines, measures that<br />

address issues of universal concern and that could be made maximally<br />

comparable. The resulting protocol is designed to provide a small core<br />

of standard measures that can be easily added to lengthier and more<br />

specific protocols generated to address targeted research questions. The<br />

protocol includes “nonskeletal” measures such as body weight and<br />

overall size (e.g., stature, sitting height) and “proxies for key skeletal<br />

measures” (e.g., body segment measurements, cranial circumferences),<br />

with definitions that can be approximated on both living and skeletal<br />

samples.<br />

To facilitate dissemination of the protocol and to obtain feedback<br />

for its refinement, this presentation demonstrates the protocol and<br />

examples of how it has been used in cross-disciplinary research and how<br />

it will benefit work in forensic anthropology. The presentation includes<br />

instructional videos of collection methods and tools, a sample database<br />

for entering protocol measurements, sample resources for acquiring<br />

research tools, and sample results of pilot research projects. Measures<br />

and proxies are demonstrated with written instructions, photographs,<br />

videos, and diagrams; users are assumed to have familiarity with skeletal<br />

landmarks and skeletal measurement technique. Pilot research projects<br />

include evaluation of how well skeletal proxies correlate with measures<br />

taken on living subjects, and consider the relationship between frame<br />

size (as measured from knee dimensions) and body weight. The group’s<br />

website, which can be viewed at www.bonesandbehavior.org, provides<br />

protocols and videos for free download, along with ancillary data<br />

protocols targeting more specific questions (e.g., dental anatomy, blood<br />

spot collection), archives of methods papers, and references to sources<br />

that provide equipment and additional background information.<br />

Morphometry, Protocol, Interdisciplinary<br />

92


H48 Evaluation of Bilateral Differences in<br />

Histomorphometry From the Anterior<br />

Cortex of the Femur of Korean Adults<br />

Seung Mook Jo, MD, PhD, Gachon University of Medicine and<br />

Science, Department of Anatomy, 1198, Kuwol-dong, Namdong-gu,<br />

Incheon, 405760, KOREA; and Yi-Suk Kim, MD, PhD*, Ewha<br />

Womans University, Departement of Anatomy, School of Medicine,<br />

911-1, Mok6-dong, Yangcheon-gu, Seoul, 158710, KOREA<br />

After attending this presentation, attendees will learn about the<br />

importance of bilateral differences in femur histomorphometry when<br />

it comes to applying to the practical forensic fields. The usefulness<br />

of age-predicting equations previously documented for Korean adults<br />

will be discussed.<br />

This presentation will impact the forensic science community<br />

by verifying the usefulness of the microscopic age estimation method<br />

based on a sample of Korean adults and will provide the rationale for<br />

taking femoral specimens without distinction of sides. This study<br />

will be of greatest interest to forensic anthropologists in many<br />

countries, as well as Korea.<br />

The femur has an advantage in that it is often found in forensic<br />

context and can be used to provide basic skeletal materials for<br />

histomorphometric analysis. From this aspect, the microscopic age<br />

estimation equations from the right femur in Korean adults were reported<br />

in 2009. 1 However, a particular bone, such as right femur, to use for the<br />

histomorphometric analysis is not always found in the practical forensic<br />

fields. The purpose of this study is to evaluate the bilateral differences<br />

in histomorphometry from the anterior cortex of the femur of Korean<br />

adults. The right and left bone specimens of anterior femoral midshaft<br />

were removed from 21 Korean cadavers (14 males and seven females) in<br />

wedge form that one of the saw cuts was kept perpendicular to the long<br />

axis of the shaft. The age range for the sample is 46 to 94 years with a<br />

mean and standard deviation of 67.5 and 13.2 years, respectively. After<br />

cutting off the thick sections of 1-mm from each wedged femoral<br />

fragments using a diamond wheel, the thin sections (less than 100 um<br />

thick) were prepared for histological analysis by manual grinding<br />

method. Five subperiosteal areas of each thin section were analyzed<br />

microscopically by indicating points (the most anterior point and points<br />

10° and 20° to the left and right) on the glass cover slip of the bone slide.<br />

The number of intact osteon (Pi), number of fragmentary osteon (Pf),<br />

osteon population density (OPD), and average size of intact osteon (OA)<br />

were measured using an [Olympus BX-51] light microscope with simple<br />

polarizing attachment and image analysis solutions at a magnification of<br />

´100. The Paired samples T-test was performed to verify the differences<br />

between right and left histomorphometry and regression analysis was<br />

performed to test the accuracy of age-predicting equations previously<br />

documented by Han et al. 1 for Korean adults. As the results, Pi, Pf, and<br />

OPD, except for OA, showed no significant differences in paired<br />

samples T-test between right and left sides (P = 0.245, 0.901, 0.214, and<br />

0.002, respectively). Even though further testing on the femur<br />

histomorphometry is required and planned to evaluate more samples, the<br />

results of this study suggest minimal effect on bilateral differences of<br />

femur histomorphometry measured in Korean adults, thereby providing<br />

the reliability of taking femoral specimens without distinction of sides<br />

for histological age estimation techniques at the practical forensic fields.<br />

The results of the accuracy of age-predicting equations previously<br />

documented by Han et al. 1 for Korean adults using forensic specimens<br />

requested at National Institute of Scientific Investigation, Korea will be<br />

presented.<br />

Reference:<br />

1 Han SH, Kim SH, Ahn YW, Huh GY, Kwak DS, Park DK, Lee UY,<br />

Kim YS. Microscopic age estimation from the anterior cortex of the<br />

femur in Korean adults. J Forensic Sci 2009; 54(3): 519-522.<br />

Age, Histomorphometry, Femur<br />

H49 Forensic Anthropological Consideration of<br />

Quantification Techniques of Individuals<br />

From Excavated Human Remains in Case<br />

of Burial Place at Daehak-Ro, Korea<br />

U-Young Lee, MD*, Department of Anatomy, College of Medicine, The<br />

Catholic University of Korea, 505, Banpo-dong, Socho-gu, Seoul,<br />

137701, KOREA; Dae-Kyoon Park, MD, PhD, Soonchunhyang<br />

University, College of Medicine, Department of Anatomy, 366-1<br />

Ssangyong-dong, Cheonan-si, Seoul 330946 KOREA; Yi-Suk Kim, MD,<br />

PhD, Ewha Womans University, Department of Anatomy, School of<br />

Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul, 158710, KOREA;<br />

Sang-Seob Lee, DDS, National Institute of Scientific Investigation,<br />

Shinwol-7-dong, Yancheon-gu, Seoul, 158707, KOREA; Yong-Woo Ahn,<br />

DDS, PhD, Institute of Forensic Medicine, School of Medicine, Pusan<br />

National University, 1-10, Ami-dong, Seo-gu, Busan, 602739, KOREA;<br />

Nak-Eun Jung, PhD, National Institute of Scientific Investigation,<br />

Shinwol-7-dong, Yancheon-gu, Seoul, 158707, KOREA; and Seung-Ho<br />

Han, MD, PhD, Department of Anatomy, Catholic Institute for Applied<br />

Anatomy, College of Medicine, The Catholic University of Korea, 505,<br />

Banpo-dong, Seocho-gu, Seoul, 137701, KOREA<br />

After attending this presentation, attendees will learn about the<br />

procedures and forensic anthropologic considerations used to estimate<br />

the number of buried individuals in a commingled burial site.<br />

This presentation will impact the forensic science community by<br />

showing how anthropologic findings and methods helpful for estimation<br />

of the number of buried individuals can be enhanced by using with<br />

molecular (DNA) analysis.<br />

The minimum number of individuals (MNI) and the grand<br />

minimum total (GMT) have been the traditional parameters of<br />

quantifying individuals. However, these methods have limitations in<br />

quantifying the commingled osteological assemblages for two reasons:<br />

(1) Both traditional methods just estimate the number of individuals<br />

represented by the assemblage recovered; and, (2) the accuracy of<br />

estimation is determined by the number of skeletal elements to be<br />

completely recovered. The Lincoln Index (LI) and the most likely<br />

number of individuals (MLNI) were recently introduced as the methods<br />

of estimating the number of individuals throughout the excavated human<br />

remains. These recent methods can estimate the number of individuals<br />

by considering the bones unobserved, because the equation of estimation<br />

accounts for the number of skeletal elements on each side and the<br />

number of bones in each pair. Therefore, the LI and the MLNI have<br />

benefits to estimate the number of individuals in any types of<br />

commingled field.<br />

On November 27, 2008, 170 scattered human remains were<br />

recovered in a cave after the removal of buildings located at Daehak-Ro<br />

in Seoul. The femur was most commonly found and the number of left<br />

and right femora was 13 and 17, retrospectively. Nine pairs of femurora<br />

were matched through forensic anthropological analyses and the<br />

molecular works targeting DNA. The MNI was calculated as 17 (the<br />

maximum number in both sides) and the GMT was calculated as 21<br />

(accounts for the number of paired bones). Finally, the MNI and the<br />

GMT were calculated as 18 and 22, respectively, after adding some<br />

skeletal remains that might be from one infant.<br />

The scattered remains at the site indicated a secondary interment by<br />

the presence of commingled skeletons and absence of bones. For this<br />

reason, the LI or the MLNI was regarded as suitable methods to quantify<br />

the individuals in the current study. The LI was 25 and the MLNI was<br />

24. The DNA analysis detected 26 types of mtDNA from the skeletal<br />

sample that was available for the molecular experiment. In two cases,<br />

93 * Presenting Author


several bones with same mtDNA types were identified to be from the<br />

different individuals. As a result, 28 individuals were finally confirmed<br />

to be present at the site.<br />

The LI or the MLNI are conclusively the more valuable methods for<br />

quantification of commingled field than the MNI or the GMT, as<br />

indicated by verification using molecular analysis. However, significant<br />

error in determining the number of individuals present may result when<br />

only DNA analysis is used.<br />

Number of Individuals, Commingled Field, Daehak-Ro<br />

H50 Stature Estimation: Are There Any<br />

Advantages to Using Principal<br />

Component Analysis?<br />

Kalan S. Lynn, BSc*, Mercyhurst College, 501 East 38th Street, Erie, PA<br />

16546; and Stephen D. Ousley, PhD, Mercyhurst College, Department of<br />

Applied Forensic, Anthropology, 501 East 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will develop a basic<br />

comprehension of principal component analysis (PCA) and methods<br />

used in stature estimation. Some disadvantages that exist in current<br />

stature estimation methods and how the current method remedies this<br />

situation will be discussed. Attendees will also learn whether PCA is<br />

advantageous to increase the precision of stature estimates. They will<br />

also learn whether using a greater number of osteometric measurements<br />

in a summation method used in Fordisc will result in more precise stature<br />

estimates.<br />

This presentatrion will impact the forensic science community by<br />

presenting a new method with which stature estimation equations may be<br />

created. It will discuss methods with which the most precise stature<br />

estimates may be obtained and how this would improve a biological<br />

profile and narrow down the list of missing persons in identification<br />

efforts.<br />

Stature estimation is an important component of the biological<br />

profile in forensic cases. Many methods for estimating stature have been<br />

published with various levels of accuracy and precision. Although many<br />

stature estimation methods are reasonably accurate, more precise<br />

methods would improve identification efforts by narrowing the list of<br />

missing persons who may be the deceased. When trying to use multiple<br />

correlated long bone measurements to construct stature estimate<br />

regression equations, at least one measurement is often found to be not<br />

statistically significant due to the effect of multicollinearity. Fordisc 3<br />

(Jantz and Ousley, 2005), as in previous methods, circumvents this<br />

problem by summing the measurements of several bones, and then<br />

regresses these against forensic stature (FSTAT). Fordisc provided the<br />

first method to add combinations of three measurements to estimate<br />

stature, which enabled narrower prediction intervals. Another solution to<br />

the problem of multicollinearity would be to analyze the principal<br />

components of several bone measurements.<br />

The present study investigated the use of principal component<br />

analysis (PCA) to estimate stature using a sample of 130 White males<br />

from the Forensic Data Bank. Ten data subsets were created and each<br />

included FSTAT as well as two to five of the following osteometric<br />

measurements: maximum length of the femur, condylo-malleolar length<br />

of the tibia, maximum length of the humerus, maximum length of the<br />

radius, and basion-bregma height. R (R Development Core Team, 2008)<br />

was used for all statistical analyses. Principal components were<br />

extracted from each data subset and regressed against FSTAT. In each<br />

situation, either the first principal component only, or the first and last<br />

principal components were found to be statistically significant (p <<br />

0.05). The raw measurements were also summed (creating a cumulative<br />

variable) and regressed against FSTAT. The precision of the estimates<br />

were determined by first using the 95% prediction interval at the mean.<br />

* Presenting Author<br />

Because prediction intervals are narrowest at the mean, the prediction<br />

interval two standard deviations above the mean was also evaluated. The<br />

precision of the stature estimates obtained using PCA were compared<br />

with those obtained by using the summed measurements. Results were<br />

interpreted as practically significant if the decreases in the prediction<br />

intervals were great enough to affect the stature estimates, which are<br />

most often rounded to the nearest inch. Another factor taken into<br />

consideration was the great variability that exists in reported statures<br />

(Willey and Falsetti, 1991). Thus, the prediction intervals needed to<br />

decrease by at least one-half inch to be considered practically significant.<br />

In comparing summed measurements and PCA for stature<br />

estimation, PCA provided some small statistically significant prediction<br />

interval improvements that were not practically significant. This study<br />

also investigated whether there was greater stature estimate precision<br />

when using more osteometric measurements to create the cumulative<br />

variables. When considering mean values, using four measurements<br />

resulted in a prediction interval that was only 0.21 cm (0.1”) smaller than<br />

using three measurements (the Fordisc maximum) and this difference is<br />

not practically significant. When using values that were two standard<br />

deviations above the mean, an increase in precision of only 0.40 cm<br />

(0.2”) was seen using summed variables created from three and four<br />

measurements. These decreases in prediction intervals are not<br />

practically significant.<br />

While no practical differences in FSTATs were found when using<br />

PCA and summed variables, additional studies using cadaver lengths and<br />

measured statures are necessary to further investigate the relationship<br />

between physical stature and osteological measurements. Areas of<br />

further research may include investigating different populations (e.g.,<br />

White females and Black males and females), both separately and<br />

combined, in which the methods above may be more useful.<br />

Stature Estimation, <strong>Bio</strong>logical Profile, Principal Component<br />

Analysis<br />

H51 An Investigation Into the Rate of<br />

Decomposition of Decapitated Heads and<br />

Heads With an Attached Body<br />

Tal Simmons, PhD*, School of Forensic & Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1 2HE,<br />

UNITED KINGDOM; and Elizabeth A. Walker, BSc, 3 Ruskin Road,<br />

Birtley, Co Durham, DH3 1AD, UNITED KINGDOM<br />

After attending this presentation, attendees will understand the key<br />

factors involved in the rate of decomposition of the head and whether the<br />

rate of decomposition in the head alone varies significantly to the rate of<br />

decomposition in the head when attached to the rest of the body.<br />

This presentation will impact the forensic community by presenting<br />

data from a controlled experiment in an area where very little research is<br />

available. This presentation will further add to the important research<br />

being carried out in the area of forensic taphonomy by aiding the<br />

understanding of how carcasses decompose and thus enabling a better<br />

appreciation of the processes involved in human decomposition.<br />

It has been implied within taphonomic research that the head<br />

decomposes at a quicker rate than the rest of the body; however, the<br />

causes of this increase in rate are unknown and require investigation.<br />

This research explores whether the head decomposes more rapidly than<br />

the rest of the body and, if so, why this is the case. Previous work has<br />

suggested the advanced rate of decomposition of the head may be due to<br />

the preferential attraction of Diptera to the natural orifices of the head as<br />

a result of volatile gases emanating from these orifices (Cross and<br />

Simmons, in press).<br />

Volatile gases produced during putrefaction result in the release of<br />

liquids and gases which are in turn exuded through the body’s natural<br />

orifices. It has been established through previous research that the nose<br />

94


and mouth are the two main sites from which such odours emanate<br />

(Bass, 1997). Previous research also showed that that the attraction of<br />

carrion flies to these volatile gases results in preferential oviposition in<br />

the orifices of the head, especially the mouth. The preference of Diptera<br />

for head orifices was examined to determine whether this is due to<br />

protection from scavengers and the opportunity of a warm, moist shelter<br />

provided by such orifices or the presence of volatile gases.<br />

A control group of 24 whole domestic pigs (Sus scrofa) and an<br />

experimental group of 24 pig heads was used to carry out this research.<br />

Both groups were left to decompose in the same environment at the<br />

TRACES facility in North West England. Data were collected<br />

approximately every 50 accumulated degree days (ADD) until data<br />

collection ceased at approximately 750 ADD. The scoring system<br />

proposed by Megyesi, et al. (2005) was adopted to visually assess the<br />

decomposition rate of the heads; a score according to the rate of<br />

decomposition was assigned to the heads of both the control and<br />

experimental groups. Three pigs from each group were discarded every<br />

100 ADD to allow for additional data collection (e.g. weight and soil pH)<br />

whilst leaving the remainder of the carcasses undisturbed.<br />

It was observed that heads with an attached body decomposed at a<br />

quicker rate than heads alone (p ≤ 0.6140). This supports the paradigm<br />

that the expulsion of volatile gases released during the decomposition of<br />

the body is a key factor in influencing the rate at which the head<br />

decomposes. It was further noted that preferential oviposition occurred<br />

in the mouth of the heads with attached bodies, whereas the preferential<br />

oviposition on the heads alone occurred at the foramen magnum. A<br />

delay in oviposition of 26.85ADD was observed in the decapitated heads<br />

in comparison to the heads with an attached body. Moreover the<br />

decomposition rate of decapitated heads lagged behind heads with an<br />

attached body by a minimum ADD of 21.02 to reach a decomposition<br />

score of 2 and a maximum ADD of 103.06 to reach a decomposition<br />

score of 10 on the Megyesi, et al. (2005) scale. A score of 11 was the<br />

highest score attributed to the heads alone, whereas the heads with an<br />

attached body reached a score of 12.<br />

Such findings further support the importance of the presence of<br />

volatile gases in influencing attraction of insects and hence<br />

decomposition rate.<br />

In conclusion, this study provides evidence to support the primary<br />

role that volatile gases play in the rate of decomposition of the head.<br />

Furthermore, information gained from this research can be used to<br />

improve PMI estimation in cases of decapitation and thus aid in death<br />

investigation.<br />

Decomposition, Heads, Taphonomy<br />

H52 An Assessment of a Simple Model and<br />

Method for Osteometric Sorting<br />

Ana Del Alamo, BA*, 4521 Northeast 22 Road, Fort Lauderdale, FL<br />

The goal of this presentation is to introduce participants to an<br />

alternative method for osteometric sorting of paired elements.<br />

After attending this presentation, attendees will learn that<br />

alternatives to the paired elements model and method introduced by<br />

Byrd (2008) will yield a higher percentage of correct classification. The<br />

aforementioned method is examined for the distribution of the parameter<br />

“D” as well as the percent correct classification in an independent<br />

sample.<br />

The assessment of whether two or more skeletal elements could<br />

correspond to the same individual is a relevant problem in a variety of<br />

forensic scenarios. Determining the number of victims contained in a<br />

feature, sorting commingled remains in mass graves or mass disasters, or<br />

simply assessing whether different sets of dismembered remains belong<br />

to the same victim, all require the matching of articulating or paired<br />

skeletal elements. Such assessments have traditionally relied on visual<br />

examination, based on the experience and expertise of the forensic or<br />

physical anthropologist. However, in the last decades, the availability of<br />

new comparative samples, and the quantitative requirements imposed by<br />

the Daubert standards, have resulted in the proposal of novel quantitative<br />

methods to approach this problem. Among them, Byrd (2008)<br />

contributes the most comprehensive approach both to discuss and<br />

systematize the conceptual problems attached to the different scenarios<br />

usually confronted in forensic settings, and to propose novel quantitative<br />

methods specific to each scenario.<br />

This study examines the simplest of these scenarios: “the<br />

comparison of left and right bones using models that key on shape”<br />

(Byrd, 2008, p. 200.) To confront this problem, Byrd (2008, pp. 201-<br />

204) proposes a model based on a parameter “D” (Byrd’s D, herein),<br />

calculated from the pooled linear differences in a set of variables of the<br />

two skeletal elements under study. Among other postulates, the model<br />

assumes a Student t distribution for this parameter, and recommends a<br />

diagnosis based on the 90% confidence interval for this distribution.<br />

The present study tests the distribution of Byrd’s D, as well as its<br />

percentage of correct classification using the same variables and<br />

parameters described by this author (Byrd, 2008), and based on a sample<br />

of 81 male individuals from the Todd Collection. A sample of 236 male<br />

individuals from the Forensic Data Bank (1) are also employed to assess<br />

the performance of Byrd’s D when standard measurements (sensu<br />

Buikstra and Ubelaker, 1994) are employed. An alternative method<br />

based on Euclidean distances from Principal Component Analysis is<br />

proposed; and the effect of the number of variables and victims on both<br />

estimates is tested.<br />

Results suggest that, as assumed in the original model, the<br />

distribution of Byrd’s D neither departs from normality nor shows a<br />

mean significantly different from zero. The equivalence of the 90%<br />

confidence interval proposed by Byrd (2008) with a 0.05 alpha-level in<br />

a one-tailed conventional hypothesis test is also shown. However, the<br />

distributional parameters obtained by Byrd (2008) do not represent the<br />

best fit, which would render a negative mean and a larger standard<br />

deviation. As a consequence, the method results in a percentage of<br />

misclassification much higher than predicted by the model. It is<br />

therefore suggested that the larger standard deviation values should be<br />

used when applying Byrd’s method.<br />

Finally, the accuracy of the assessment is shown to depend heavily<br />

on the number of victims considered, so that simply selecting the skeletal<br />

element showing the smaller Euclidean distance in the phenotypic space<br />

renders percentages of correct classification above 90%, and superior to<br />

those attained by Byrd’s method, when two to four individuals are<br />

considered, and the true pair is present in the sample.<br />

Osteometric Sorting, Commingled Remains, Paired Elements<br />

H53 Improving Histomorphometric Age<br />

Estimation: An Application of Osteon<br />

Population Density on Kerley’s Original<br />

Sample Data<br />

Merissa Olmer, BA*, Department of Anthropology, University of<br />

Maryland, 1111 Woods Hall, College Park, MD 20742; Sophia<br />

Mavroudas, BA*, Department of Anthropology, New York University, 25<br />

Waverly Place, New York, NY; Franklin E. Damann, MA, National<br />

Museum of Heath and Medicine, AFIP, PO Box 59685, Washington, DC<br />

20012-0685; and Christian Crowder, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 1st Avenue, New York, NY 10016<br />

After attending this presentation, attendees will understand the<br />

benefit of the OPD variable in histological age estimation.<br />

This presentation will impact the forensic community by<br />

demonstrating that Osteon Population Density (OPD) can simplify<br />

previously reported age estimation techniques by reducing observer error<br />

and eliminating the need to subjectively determine an age interval when<br />

95 * Presenting Author


multiple regression models produce overlapping prediction intervals<br />

from a single specimen.<br />

In 1965 Kerley developed age regression formulas from 126<br />

undecalcified cross-sections taken from the midshaft of the femur, tibia,<br />

and fibula. 1 These samples were of known age, sex, and clinical history.<br />

Kerley’s statistical models were based on four predicting variables<br />

including intact osteons, osteon fragments, non-Haversian canals, and<br />

percentage of circumferential lamellar bone. The variables were<br />

observed using four circular fields within the outer third of the cortex<br />

adjacent to the periosteal surface of the bone at 100x magnification. The<br />

individual variables (osteons, fragments, and non-Haversian canals)<br />

were counted within each field, including those partly obscured by<br />

periphery of the field, and then totaled across all four fields to create a<br />

composite value. The percentage of circumferential lamellar bone was<br />

averaged for all four fields. These raw counts were then used to develop<br />

four different regression models for estimating age from a single cross<br />

section of bone. Kerley and Ubelaker 2 revised the original Kerley paper<br />

warning investigators that the variance in field diameters of different<br />

microscopes would contribute to “apparent errors” and “unreasonable<br />

[age] estimates.” Kerley and Ubelaker 2 realized that using a smaller field<br />

size than Kerley’s original field size would underestimate age since the<br />

sum of recorded structures would be less than that recorded when the<br />

regression models were created. During this revision, it became<br />

apparent that the original microscopes were not available for inspection.<br />

A survey of available microscopes suggested that the field diameter used<br />

by Kerley 1 was most likely 1.62 mm at 100x magnification, rather than<br />

the previously reported 1.25 mm diameter. A 1.62 mm field diameter<br />

results in an area 2.06 mm2.<br />

Recognizing the contributions of earlier bone histology studies in<br />

age estimation, Stout and Paine 3 developed a histomorphometric variable<br />

that summed the intact and fragmentary structures over the observable<br />

cortical area. This single variable was used as a predicting variable for<br />

determining age-at-death, rather than developing multiple prediction<br />

models from each of the observed structures. Stout and Paine 3 suggested<br />

that combining the number of intact and fragmentary osteons reduced the<br />

potential for inter-observer error associated with individual differences<br />

in osteon interpretation. Later, Crowder evaluated the effectiveness of<br />

OPD and determined that it significantly reduces inter-observer error as<br />

had been suggested in the literature. 4<br />

Kerley’s original data from 126 specimens were used to calculate<br />

OPD by adding the raw composite values for intact and fragmentary<br />

osteons and dividing by the sum of the four 2.06 mm2 field areas (8.24<br />

mm2) as determined by Kerley and Ubelaker. 2 A statistical regression<br />

analysis was performed by plotting age-at-death against OPD using<br />

SPSS 15. Four separate regression models were created, one for each<br />

skeletal element tested and one that combined the data of all three<br />

skeletal elements. All models correlate well with age, with the femur<br />

analysis providing the strongest positive linear relationship between<br />

OPD and age-at-death (R2=0.912), followed by the combined analysis<br />

for femur, tibia, and fibula (R2=0.894), tibia (R2=0.889) and fibula<br />

(R2=0.888). The results of this study indicate that the OPD variable<br />

correlates better with age than the raw counts, and the new models<br />

alleviate the need to generate a subjective age interval due to overlapping<br />

prediction intervals of the constituent variables. Suggestions for future<br />

research in histomorphometric age determination are also discussed.<br />

References:<br />

1 Kerley ER. The microscopic determination of age in human bone.<br />

Am J Phys Anthropol 1965; 23: 149-63.<br />

2 Kerley ER, Ubelaker DH. Revisions in the microscopic method of<br />

estimating age at death in human cortical bone. Am J Phys<br />

Anthropol 1978; 49: 545.<br />

3 Stout SD, Paine RR. Brief communication: histological age<br />

estimation using rib and clavicle. Am J Phys Anthropol 1992;<br />

87:111-5.<br />

* Presenting Author<br />

4 Crowder C. Evaluating the use of quantitative bone histology to<br />

estimate adult age at death. Doctoral Dissertation, University of<br />

Toronto, Ontario 2005.<br />

Histomorphology, Osteon Population Density, Age Estimation<br />

H54 Histological Age Estimation: Towards<br />

Standardizing Definitions of Bone<br />

Histological Variables<br />

Meghan-Tomasita J. Cosgriff-Hernandez, MS*, The Ohio State<br />

University, Department of Anthropology, 4034 Smith Laboratory, 174<br />

West 18th Avenue, Columbus, OH 43210; and Sam D. Stout, PhD, Ohio<br />

State University, Department of Anthropology, 4034 Smith Laboratory,<br />

Columbus, OH 43210-1106<br />

After attending this presentation, attendees will be familiarized with<br />

certain definitions of bone histological variables that pose interpretation<br />

problems when microscopic age estimation methods are employed; and<br />

which definitions may help reduce the amount of subjectivity and<br />

observer error leading to increased accuracy and reliability of such<br />

methods.<br />

This presentation will impact the forensic science community by<br />

enhancing the understanding of how to reduce differences in<br />

interpretations of various histological definitions, or descriptions, used in<br />

histomorphometric age-at-death estimation methods.<br />

The admissibility of expert testimony in federal courts is governed<br />

by the U.S. Supreme Court decisions made in Daubert v. Merrell Dow<br />

Pharmaceuticals and Kumho Tire Co. v. Carmichael. While the trial<br />

judge must function as a gatekeeper, it is the responsibility of experts in<br />

the forensic community to reach an agreement about the reliability and<br />

accuracy of scientific methods. Quantitative histological methods can be<br />

reliable for estimating age at death. Their reliability is contingent upon<br />

the accuracy and precision produced by the method of evaluation. The<br />

use of age at death estimations that employ histomorphometry rely on the<br />

definitions that the method in use presents. The descriptions, or<br />

definitions, of histological variables often differ between methods.<br />

These differences in definitions between researchers and methods leave<br />

the door open for one forensic expert’s testimony to be negated by<br />

another forensic expert who may use a method that uses different<br />

definitions of the same variables. Forensic scientists should be concerned<br />

with standardizing the specificity of these definitions. In doing so, the<br />

variation in interpretation of the variables will be reduced, and in turn,<br />

inter- and intra- observer error that results from such differences in<br />

interpretations can be addressed, and ultimately, disputes about<br />

definitions that are employed by forensic scientists in court may be<br />

reduced.<br />

This report presents the results of an inter-observer study testing<br />

how individuals interpret the definitions set out by the originators of two<br />

microscopic age estimation methods commonly used by forensic<br />

anthropologists. To explore how differences in definitions affect the<br />

identification of histological variables, three groups of readers carried<br />

out two age estimation methods: Kerley’s (1965) age estimation method<br />

was tested on femora cross-sections, and Cho et al.’s (2002) method on<br />

cross-sections of ribs. In testing these two commonly used methods that<br />

employ different bones, it is clear that the actual description, or<br />

definition, of the histological variables affect the accuracy and reliability<br />

of the method used. To ensure that the readers read the same defined<br />

area, duplicates of the same calibrated digital image of several different<br />

areas were taken from cross-sections of bone, as specified by the<br />

histological age estimation method being tested, and corresponding grid<br />

overlays for each method under review, were distributed to each reader.<br />

The readers were divided into three groups, composed of three<br />

96


individuals each, according to their respective levels of training in<br />

skeletal biology. The three groups were divided as follows: novice;<br />

intermediate; and advanced. The readers were given written instructions<br />

on how to carry out each method and provided with several different<br />

definitions of histological structures from different sources. In addition<br />

to receiving different definitions of these structures, the readers were<br />

provided with images of intact Haversian systems, osteon fragments,<br />

primary vascular canals, and primary osteons.<br />

Previous studies have examined the inherent deficiencies in<br />

microscopic age estimation methods. This study is unique in that it is<br />

concerned with definitions of variables relied upon when employing<br />

histomorphometric methods for age estimation. This study takes a step<br />

towards recognizing why the process of standardizing histological<br />

definitions is important. The standardization of these definitions will<br />

make future use of histomorphometric age estimation methods more<br />

reliable and easier to use.<br />

Forensic Anthropology, Bone Histology, Age Estimation<br />

H55 And Dens There Were Two: The Utility of<br />

the Second Cervical Vertebra as an<br />

Indicator of Sex and Age-at-Death<br />

Billie L. Seet, MA*, Office of the Chief <strong>Medical</strong> Examiner, 720 Albany<br />

Street, Boston, MA 02118; and Jonathan D. Bethard, MA*, Pellissippi<br />

State Community College, 10915 Hardin Valley Road, PO Box 22990,<br />

Knoxville, TN 37933<br />

After attending this presentation, attendees will learn that the<br />

second cervical vertebra is a reliable estimator of sex and age-at-death.<br />

This presentation will impact the forensic science community by<br />

illustrating the importance of continuing research and data collection<br />

from previously under-utilized elements in forensic anthropology<br />

because they may also yield reliable results.<br />

Medicolegal death investigation involving cases in which human<br />

remains have become skeletonized rely heavily on the preparation of a<br />

biological profile. This profile, consisting of age-at-death, sex, ancestry,<br />

and stature, serves to assist the investigator in the confirmation of a<br />

decedent’s identity. Several reliable methods for establishing a<br />

biological profile exist, however many of these methods rely on either<br />

the recovery of several specific bones or on fragile skeletal elements that<br />

are frequently lost or destroyed in archaeological context. It is for this<br />

reason new methods utilizing other previously under-documented bones<br />

should be established.<br />

In instances of skeletal remains recovery where the most reliable<br />

indicators of sex and age-at-death have been destroyed or lost, an<br />

investigator must rely on other, less commonly used elements. 1,2<br />

Previous research conducted by Wescott 3 suggests that the second<br />

cervical vertebra is a reliable predictor of sex (ranging from 81.7 to<br />

83.4%) while the work of Algee-Hewitt and coworkers 4 suggests that the<br />

element may also inform age-at-death estimates. Moreover, the second<br />

cervical vertebra has been shown to be more frequently recovered in is<br />

entirety than pelvic bones 5 ; therefore, warranting further investigation by<br />

the forensic anthropological community.<br />

In order to test the utility of the second cervical vertebra in forensic<br />

contexts, skeletons were drawn from the donated skeletal collection<br />

curated at the Hamilton County Forensic Center (HCFC) in Chattanooga,<br />

Tennessee (n=57). Data were collected from 19 adult females and 38<br />

adult males with an age-at-death for the pooled sample ranging from 21<br />

to 89 years with a mean age of 54.19 years. Following Wescott 3 , five<br />

dimensions of the second cervical vertebra were taken with digital<br />

sliding calipers and recorded to the nearest 0.1mm: (1) Maximum<br />

Sagittal Length (XSL); (2) Superior Facet Sagittal Diameter (SFS); (3)<br />

Superior Facet Transverse Diameter (SFT); (4) Length of Vertebral<br />

Foramen (LVF); and, (5) Maximum Height of the Dens (XDH).<br />

Measurements of bilateral landmarks were always taken from the left for<br />

consistency. In addition, lipping projecting from the superioanterior<br />

aspect of the dens was recorded as present or absent. Lipping projecting<br />

≥ 1mm was scored as present.<br />

Metric data collected from second cervical vertebrae were used to<br />

calculate five discriminant functions reported by Wescott. 3 These<br />

equations use as few as one and as many as five measurements to predict<br />

sex. Results mirror those of Wescott 3 and suggest that the second<br />

cervical vertebra is a dimorphic bone that can be used to predict sex in<br />

forensic anthropological contexts. The correct number of classified<br />

cases ranged from 80.7% (two variable model) to 87.5% (four variable<br />

model). Moreover, results demonstrated that a single measurement<br />

(XSL) correctly predicts sex in 84.2% of cases.<br />

The lipping data collected were used to calculate the age-attransition<br />

for which an individual passed from the absent to the present<br />

category. Nphases, a Fortran-based computer program written by<br />

Konigsberg 6 , was used to calculate the age-at-transition for this<br />

particular trait. Results indicate an age-at-transition of 35.3 years<br />

(sd=11.2).<br />

While additional analyses are required on a larger sample of<br />

documented individuals, these results indicate that in the absence of the<br />

os coxa, the second cervical vertebra is a good indicator of sex. Also,<br />

lipping, present on the dens, may have some utility as an age indicator in<br />

forensic contexts. This reality underscores the importance for<br />

researchers to continue developing novel approaches for documenting<br />

sexual dimorphism in skeletal remains as well as age-related skeletal<br />

change.<br />

References:<br />

1 Komar DA, Buikstra JE. Beginning the identification process<br />

developing a biological profile. In: Komar DA, Buikstra JE,<br />

editors. Forensic Anthropol. New York: Oxford University Press,<br />

2008; 115-153.<br />

2 DiGangi EA, Bethard JD, Kimmerle EH, Konigsberg LW. A new<br />

method of estimating age-at-death from the first rib. Am J Phys<br />

Anthropology 2009;138(2):164-176.<br />

3 Wescott DJ. Sex variation in the second cervical vertebra. J<br />

Forensic Sci 2000;45(2):462-466.<br />

4 Algee-Hewitt BFB, Weisensee KE, Milner GR. Age is Subjective:<br />

A Non-traditional Method of Age Estimation for the Adult<br />

Skeleton; 2008 Apr 7-13; Columbus, OH. Proceedings of the<br />

Annual Meeting of the American Association of Physical<br />

Anthropologists.<br />

5 Pickering TR, Carlson KJ. Baboon taphonomy and its relevance to<br />

the investigation of large felid involvement in human forensic<br />

cases. Forensic Sci Int 2004;144:37–44<br />

6 Nphases [computer program]. Fortran version. 2003.<br />

Forensic Anthropology, Skeletal <strong>Bio</strong>logy, Second Cervical Vertebra<br />

H56 A Radiographic Assessment of Age Using<br />

Distal Radius Epiphysis Presence in a<br />

Modern Subadult Sample<br />

Christina L. Fojas, BA*, Mercyhurst College, Department of<br />

Anthropology & Applied Forensic Sciences, 501 East 38th Street, Erie,<br />

PA 16546<br />

After attending this presentation, attendees will be presented new<br />

standards for the appearance of the distal radius epiphysis as an age<br />

indicator for subadult remains.<br />

This presentation will impact the forensic community by suggesting<br />

an age-at-death estimation approach by means of radiographic<br />

assessment that provides better predictions than the currently accepted<br />

97 * Presenting Author


standards. In conjunction with other methods, further research in this<br />

area may ultimately lead to more identifications of subadult remains by<br />

providing more precise age ranges.<br />

Due to the increasing number of missing children in the United<br />

States and the Daubert standards, better age estimation techniques are<br />

necessary for a forensic anthropologist presented with a set of<br />

unidentified subadult remains. The age indicators traditionally used<br />

include dental development, long bone length, and appearance of<br />

ossification centers and epiphyseal fusion. For instance, according to<br />

Greulich and Pyle (1959), the epiphysis of the distal radius first appears<br />

at 13.2 months ± 5.4 months (S.D.) in White males, and in White females<br />

at 9.8 months ± 4.1 months. Scheuer and Black (2000) report that the<br />

same epiphysis appears, on average, during the first year and is present<br />

in all individuals by three-and-a-half years old. However, currently used<br />

age standards for subadults derive from data that are at least sixty years<br />

old. With today’s children maturing faster, age estimations based on data<br />

from the early 20 th century will overage individuals. Additionally, most<br />

of the growth standards were based on middle- to upper-class White<br />

children, while forensic anthropologists are faced with a range of<br />

populations. Skeletal collections with large enough samples of modern<br />

subadults are difficult to obtain, but radiographic analysis of bone is<br />

more than manageable and can be used for research. This preliminary<br />

study examines the presence of the distal radius epiphysis as a means to<br />

estimate age.<br />

The sample consists of 160 radiographs with Black, White, Asian,<br />

Hispanic, and Native American populations represented. All individuals<br />

were positively identified. For the purposes of this preliminary study,<br />

children of different sex and ancestry were pooled. To ensure a modern<br />

subadult sample, all were born between 1998 and 2008 and were<br />

between 0 and 156 weeks (approximately 3 years old) at the time of<br />

death. In order to provide statistically appropriate age estimates, logistic<br />

regression using R (R Development Core Team, 2008) version 2.8.1 was<br />

employed. Naturally, the probability of having the distal radius<br />

epiphysis present increases as the individual ages. It was reasoned that<br />

age estimates should be qualified with a certain confidence level and<br />

provide, for example, the minimum or maximum age at death given the<br />

presence or absence of the epiphysis, respectively.<br />

In this preliminary study, it was determined with 95% probability<br />

that, if the epiphysis is present, the individual is older than 34 weeks (7.8<br />

months), and if the epiphysis is absent, the individual is less than 72<br />

weeks (16.5 months) old. These findings are significant because not<br />

only are they younger and narrower than the standards currently in place,<br />

but in using a statistical model, estimates with an explicit confidence<br />

level can be used.<br />

This research will be expanded to incorporate the appearance of<br />

other secondary ossification centers and epiphyseal union times to infer<br />

how much earlier modern populations are maturing and allow for better<br />

age estimates. In addition, sex and ancestry will be tested to evaluate<br />

their effects.<br />

Age-at-Death Assessment, Subadults, Secular Change<br />

H57 New York City Unidentified Decedents<br />

From 1980 – 2008<br />

Benjamin J. Figura, MA*, New York City Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

The goal of this presentationr is to provide attendees with a unique<br />

perspective on unidentified decedents in New York City including<br />

historical and demographic trends.<br />

By presenting statistics relating to unidentified individuals in New<br />

York City for a period spanning nearly three decades, this presentation<br />

will impact the forensic science community by providing a better<br />

understanding of historical and demographic trends within this<br />

* Presenting Author<br />

population. The presentation of these trends can provide direction for<br />

future research in identification techniques and allow for comparison<br />

with other large metropolitan areas.<br />

A recent report published by the Bureau of Justice Statistics puts the<br />

number of unidentified human remains in the United States at over<br />

10,000 cases during the twenty five year period from 1980 – 2004<br />

(Hughes 2007). 1 According to this study, the State of New York ranks<br />

second only to California in number of cases during this period with a<br />

total of 2,284. Because the majority of the cases in New York State are<br />

likely to originate in New York City, one can safely estimate that New<br />

York City accounts for nearly twenty five percent of all cases of<br />

unidentified individuals in the United States. The Forensic<br />

Anthropology Unit at the Office of Chief <strong>Medical</strong> Examiner in New<br />

York City (OCME-NYC) has recently begun an historical review of<br />

cases of unidentified individuals with the goal of collecting all relevant<br />

case data into a single location and disseminating that data to national<br />

databases such as NCIC and NamUs.<br />

This presentation provides a current assessment of unidentified<br />

individuals in New York City from the period spanning 1980 – 2008.<br />

The data are analyzed for trends based on a variety of variables including<br />

estimated age and sex, and year, month, and location of death. The data<br />

are also presented in relation to relevant milestones such as the full-scale<br />

use of DNA identification techniques.<br />

Materials and Methods: The data were collected from two<br />

sources: the current OCME-NYC case database system, which includes<br />

cases from 1998 thru the present, and the New York City Department of<br />

Health’s (DOH) logbooks of death certificates for the years prior to<br />

1998. The DOH logbooks were searched for cases listed as Unknown<br />

Male and Unknown Female. Other name combinations typically<br />

associated with unknown individuals were also searched including Jane<br />

and John Doe, Unknown Bones, Unknown Skeleton, Unknown Skull,<br />

and Unknown Torso. All case files were reviewed to ensure the<br />

individual was correctly listed as unidentified. Demographic<br />

information was recorded from the anthropology or autopsy reports<br />

when available. Reports were generally not available for cases obtained<br />

using the DOH logbooks. For these cases the demographic information<br />

was taken directly from the death certificates themselves. Sex was listed<br />

as Male, Female, or Unknown. Race was listed as White (including<br />

Hispanics), Black, Asian, or Unknown. Cases were grouped into three<br />

age categories based on the available age estimates: Infant (less than 1<br />

year), Subadult (1 to 18 years), Adult (19-49 years), Elderly Adult (50<br />

years or older), or Unknown.<br />

Results: There are a total of 3065 long-term unidentified cases for<br />

New York City during the period of 1980 - 2008, occurring at an average<br />

rate of 1.6 per 1,000 deaths. Overall there has been a gradual decline in<br />

the number of unidentified cases annually to the current rate of<br />

approximately 0.5 per 1,000 deaths. Annual totals do show a high degree<br />

of variability in the late 1980’s and early 1990’s, with fluctuations of<br />

around 50% between 1991 and 1995. It is possible that this variability is<br />

a byproduct related to the timing of death certificate filings or other<br />

factors, but it does appear to correspond with similar fluctuations in the<br />

overall death rate for the city. Within the five boroughs of New York<br />

City, Manhattan has the most unidentified cases in total, and averages the<br />

most cases each year except 1998, 2002, and 2004 when they are<br />

surpassed by Brooklyn. Staten Island has the fewest with only 50 cases<br />

during the 30 year period.<br />

The majority of cases are males (80%), with White males<br />

accounting for about 38% of all cases and 28% for Black males. This<br />

differs from the BJS report, which estimated Whites males to account of<br />

over 50% of unidentified cases nationwide. Females account for 20% of<br />

the sample with nearly equal distribution between White and Black (6%<br />

of cases). 35% of the sample is estimated to be in the Elderly Adult<br />

category and 60% are estimated as Adult. 3% are estimated as Subadult.<br />

Historical reviews such as this study are important because they<br />

allow for continued focus on cases of unidentified decedents that may<br />

have otherwise been forgotten about. The accurate accounting of these<br />

98


cases in the long-term is of vital importance to ensure that correct case<br />

data can be distributed to national databases (e.g NCIC and NamUs) and<br />

that potential matches with missing persons are not missed. In New York<br />

City, this historical review process has led to recent identifications in a<br />

number of long-term missing persons cases. The collection of this data<br />

also allows for comparison with other large jurisdictions.<br />

Reference:<br />

1 Hughes, K. – 2007Unidentified Human Remains in the United<br />

States, 1980-2004, edited by U. S. D. o. Justice.<br />

Unidentified Decedents, New York City, Missing Persons<br />

H58 Detecting Individuals With Reduced<br />

Mobility Using Femoral Morphology<br />

Stephanie L. Child, MA*, University of Missouri, 107 Swallow Hall,<br />

Columbia, MO 65211; and Daniel J. Wescott, PhD, Florida<br />

International University, Department <strong>Bio</strong>logical Sciences, 11200<br />

Southwest 8th Street, Miami, FL 333199<br />

The goal of this presentation is to demonstrate the unique<br />

morphological characteristics associated with reduced ambulatory ability<br />

and immobility. Attendees will learn how to recognize characteristics of<br />

the femur that provide information about the mobility of individuals<br />

whose skeletons they are examining and how this information may<br />

provide unique clues to help in the identification process.<br />

This presentation will impact the forensic community by<br />

demonstrating that femur morphology can be used to determine activity<br />

levels, including reduced ambulatory ability caused by disease or injury.<br />

Bone is an extremely plastic material that constantly modifies itself<br />

throughout life, and unique or distinguishing skeletal traits and activity<br />

markers, especially those that are likely to be recorded in medical<br />

records or observable in photographs, can provide valuable information<br />

leading to identification in medicolegal investigations. Osseous<br />

morphological features can often allude to distinguishing physical<br />

activities regularly conducted by an individual during life, especially if<br />

the activities require repetitive movement or commonly result in<br />

recognizable bony injuries. For decades physical anthropologists have<br />

been examining femur morphology to reconstruct activity patterns and<br />

intensity in past populations, and osteological changes expected with<br />

increases in particular activity are well known. Bony changes expected<br />

with decreased activity have received far less attention, but recent<br />

secular change studies demonstrate that Americans have undergone<br />

significant changes in femoral shaft morphology and strength over the<br />

past 150 years in large part due to reduced daily mobility. Likewise,<br />

numerous clinical studies have shown differences in the angle of<br />

inclination, angle of torsion, and bicondylar angle between ambulatory<br />

and nonambulatory individuals. Information gained from biomechanical,<br />

secular trend, and clinical studies can also be used by forensic<br />

anthropologists to not only recognize particular activities but also<br />

decreased ambulatory ability caused by disease or trauma. In this<br />

presentation we compare femur mid and subtrochanteric diaphyseal<br />

cross-sectional properties and three functional angles (inclination,<br />

torsion, and bicondylar) between normally ambulatory adult individuals<br />

and individuals known to have reduced mobility due to cerebral palsy.<br />

Reduced mobility or long-term immobility results in diminished<br />

musclar stress and normal weight bearing on the lower limb bones.<br />

Depending on the age of the individual when ambulatory problems arise,<br />

normal ontogenetic changes in femoral angles often do not transpire<br />

and/or wasting of the femoral shaft cortical bone occurs. The angle of<br />

inclination (angle between the long axis of the neck and long axis of the<br />

shaft), which ranges from 120 to 135 degrees in normal ambulatory<br />

individuals, is frequently coxa valga or greater that 135 degrees in<br />

individuals with reduced mobility due to decreased muscular and weight<br />

stress on the developing hip. The angle of torsion, a measure of the<br />

rotation of the femoral head and neck relative to the diaphysis that<br />

averages about 12 degrees in normally ambulatory adults, is commonly<br />

greater (shows antetorsion) in individuals with cerebral palsy due to<br />

differential proximal and distal muscle pull. The bicondylar or<br />

tibiofemoral angle results from differential forces on the medial and<br />

lateral condyles during normal walking causing greater growth of the<br />

medial than the lateral condyle forming the bicondylar angle during<br />

childhood. Consequently, the bicondylar angle does not form in nonambulatory<br />

individuals. The presence of the bicondylar angle is<br />

indication of at least early childhood ambulatory ability. Finally, wasting<br />

of the cortical bone associated with reduced mobility/immobility is<br />

reflected in bone strength and mediolateral diaphyseal dimensions.<br />

Individuals with reduced ambulatory ability associated with cerebral<br />

palsy, for example, are often more than two standard deviations below<br />

the average (size standardized) in the mediolateral midshaft dimension,<br />

but do not differ significantly from normal in anteroposterior<br />

dimensions.<br />

Bone is an extremely plastic material that constantly modifies itself<br />

throughout life. Many of the morphological features of the long bones<br />

have been used by physical anthropologists to reconstruct activity<br />

patterns and intensity in individuals and populations. Likewise,<br />

morphological features of the femur can also be used as evidence for<br />

reduced ambulatory ability or complete immobility. The unique<br />

combination of features may even provide information regarding when<br />

the ambulatory problems arose during life.<br />

Forensic Anthropology, Mobility, Femoral Antetorsion and Coxa<br />

Valga<br />

H59 Sociocultural Factors in the Identification<br />

of Undocumented Migrants<br />

Robin Reineke, MA*, The University of Arizona, School of<br />

Anthropology, 1009 East South Campus Drive, Tucson, AZ 85721; and<br />

Bruce E. Anderson, PhD, Pima County Office of the <strong>Medical</strong> Examiner,<br />

2825 East District Street, Tucson, AZ 85714<br />

The goal of this presentation is to discuss the accuracy and utility of<br />

the “cultural profile” concept proposed by Birkby et al. (2008) from the<br />

cross-disciplinary perspective of a forensic anthropologist and a cultural<br />

anthropologist.<br />

This presentation will impact the forensic science community by<br />

proposing a precise language with which to discuss non-biological<br />

evidence utilized in forensic examinations of believed-to-be migrants<br />

from Mexico and Central America, a demographic that is steadily<br />

increasing within medico-legal jurisdictions throughout the United<br />

States. This presentation also aims to open a discussion within the<br />

forensic science community about the ways that regionally specific<br />

cultural information can be useful in death investigations, especially<br />

when antemortem data is incomplete or limited.<br />

Since 2001, the Arizona-Sonora portion of the U.S.-Mexico<br />

borderlands has seen a massive increase in the number of migrants dying<br />

in the desert while attempting to cross the border clandestinely. Since<br />

then, the Pima County Office of the <strong>Medical</strong> Examiner (PCOME) has<br />

relied on non-biological evidence alongside biological evidence to aid in<br />

the identification of human remains.<br />

The unique situation on the U.S.-Mexico border poses particular<br />

challenges to forensic science. Because migrants are seeking to avoid<br />

detection, many are found in remote desert areas without identification<br />

media. Due to economics, fear, and the international nature of the<br />

migration issue, the acquisition of missing person’s reports is often<br />

delayed, and when missing person’s reports are filed, they rarely include<br />

dental or medical records. Undocumented Border Crossers (UBCs) are<br />

a regionally diverse yet socially distinct category–they are defined not by<br />

shared ancestry, nationality, or ethnicity, but by the act of crossing the<br />

border. Although most UBCs identified at the PCOME have come from<br />

Mexico or Central America, this is a region too large to be unified into a<br />

99 * Presenting Author


category with homogeneous biological (or cultural) traits (Spradley,<br />

2008 and Hefner, 2008).<br />

To respond to these challenges, the PCOME created a profile for<br />

UBCs in order to categorize unidentified human remains as either<br />

probable migrants or probable U.S. citizens. This was done so that: (a)<br />

the proper pool of antemortem records could be compared; and, (b)<br />

deceased migrants could be better counted (Anderson 2008). A<br />

significant part of the determination of a UBC relies on what Birkby et<br />

al. termed the “cultural profile,” referring to “the geographic context of<br />

recovery, personal effects, dental health, and cultural accoutrements”<br />

(2008). In the current paper, the authors expand on the notion of a<br />

cultural profile, arguing for use of the term “sociocultural” instead of<br />

“cultural” to better indicate the economic nature of much of this<br />

evidence. Additionally, a description is provided of the methods used at<br />

PCOME to assess the sociocultural profile, and consider the potential for<br />

more specific predictive categorizing based on regionally specific<br />

insights from a cultural anthropological approach to modern material<br />

culture.<br />

Migration, Material Evidence, Anthropology<br />

H60 What’s in a Number: Statistical Paradigm<br />

Shifts in Forensic Anthropology<br />

Natalie R. Shirley, PhD*, Alicja K. Kutyla, MS, and Richard Jantz, PhD,<br />

University of Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will become familiar<br />

with statistical paradigm shifts in forensic anthropology and understand<br />

how these shifts relate to greater philosophical trends prevalent during<br />

the major historical periods of the discipline. Additionally, attendees will<br />

learn about limitations of various statistical methodologies and current<br />

statistical requisites in forensic anthropology will be discussed.<br />

This presentation will impact the forensic science community by<br />

establishing a coherent statistical history of forensic anthropology and by<br />

offering suggestions at a time when the profession is working to<br />

recommend appropriate standards and best practices for age, sex,<br />

ancestry, and stature estimation.<br />

The history of forensic anthropology (FA) is divided into three<br />

periods based on the degree to which the field was organized as a<br />

professional discipline (i.e.; Formative, Consolidation, and Modern<br />

Periods). Notable statistical trends run throughout FA, and these trends<br />

follow a similar progression. The role of statistics in FA has elevated<br />

from insignificant (no pun intended) to prime player. This escalating<br />

emphasis on statistical rigor in FA is linked to intellectual, technological,<br />

and political stimuli.<br />

During the Formative Period, FA was primarily a descriptive<br />

discipline within osteology, wherein three of the four primary<br />

components of the biological profile (age, sex, and ancestry) were<br />

determined on the basis of descriptive parameters. Early descriptive<br />

methods of estimating age, sex, stature, and race are described by<br />

Thomas Dwight in 1878 (The Identification of the Human Skeleton: A<br />

Medicolegal Study) and in a series of papers from 1881-1905. H.H.<br />

Wilder and Bert Wentworth reiterate Dwight’s descriptions in Personal<br />

Identification (1918) and add criteria for sex estimation from the pelvis<br />

and skull. Shortly thereafter, Todd (1920) published his descriptive<br />

aging criteria on the pubic symphysis. Early methods of ancestry<br />

estimation focused on metric and non-metric traits. Although most of<br />

these methods were not developed for forensic utility (i.e., Hooton’s<br />

Peabody forms, Hrdlička’s Anthropometry, and Pearson’s Coefficient of<br />

Racial Likeness), they played a major role in later developments.<br />

Likewise, correlation coefficients and regression formulae for stature<br />

estimation were available as early as the late 1800s; these were not<br />

developed for forensic use, but influenced later developments in stature<br />

estimation.<br />

* Presenting Author<br />

The Consolidation Period marked a turning point in FA history<br />

primarily due to the publication of Krogman’s Guide to the Identification<br />

of Human Skeletal Material in 1939. During this period, an increasing<br />

number of physical anthropologists became interested in its forensic<br />

application and began researching modern skeletal variation, especially<br />

during WWII. The influx of research literature provided the intellectual<br />

impetus for developing more accurate and objective methods. Trotter<br />

and Gleser (1952, 1958) developed regression equations for stature<br />

estimation using a young, modern sample. Giles and Elliot (1962, 1963)<br />

broke statistical ground in sex and ancestry estimation with their<br />

pioneering use of discriminant functions, thereby paving the way for<br />

decades of discriminant analyses on all imaginable bone measurements.<br />

Descriptive techniques gradually gave way to statistical methods, with<br />

the use of multivariate statistics advancing primarily due to readily<br />

available computing packages. Nonetheless, age estimation resisted the<br />

statistical pull, with seriation and accompanying sample descriptive<br />

statistics remaining an industry standard.<br />

The Modern Period began when the Physical Anthropology section<br />

of the AAFS was formed in 1972. By this time, modern computing<br />

power was opening up new statistical possibilities, and the growing<br />

understanding of the intricacies of modern skeletal variation explicated a<br />

need for quantification. Discriminant functions continued to be popular<br />

in sex and ancestry estimation and software development began in the<br />

1980s using Giles and Elliot’s functions. The 1993 release of FORDISC<br />

1.0 radically changed sex and ancestry estimation for forensic<br />

anthropologists and made easy computation available to anyone with a<br />

set of calipers and an osteometric board. However, greater statistical<br />

awareness also fostered an understanding of the limitations of some of<br />

these methods, and researchers sought alternatives to compensate for<br />

these weaknesses. Further stimulus was provided by the 1993 Daubert<br />

decision. The millennium marked a statistical turning point, and<br />

geometric morphometrics, maximum likelihood and Bayesian<br />

approaches began receiving considerable attention in the forensic<br />

anthropology literature. In addition, established error rates became a<br />

necessary focus in the field, along with developing objective and<br />

repeatable standards.<br />

For 2010, the Scientific Working Group for Forensic Anthropology<br />

is actively establishing “best practice” within the discipline.<br />

Consequently, it is imperative that forensic anthropologists are conscious<br />

of the statistical background in the field and are aware of current<br />

statistical trends as appropriate standards are recommended for age, sex,<br />

ancestry, and stature estimation. This presentation aims to acquaint<br />

attendees with statistical foundations in FA and to offer suggestions for<br />

future direction.<br />

Forensic Anthropology, Statistical Methods, Daubert Standards<br />

H61 The Use (and Abuse) of the Sacrum in<br />

Sex Determination<br />

Elizabeth A. Miller, PhD*, California State University at Los Angeles,<br />

Department of Anthropology, 5151 State University Drive, Los Angeles,<br />

CA 90032; and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic, Anthropology, 501 East 38th Street,<br />

Erie, PA 16546<br />

After attending this presentation, attendees will have a better<br />

understanding of the use of the sacrum in sex determination, the most<br />

accurate measurements of the sacrum to use when determining sex, and<br />

the accuracy of the new measurements and techniques proposed.<br />

This presentation will impact the forensic community by serving as<br />

a metric technique, cross-validated, for identifying sex in fragmentary<br />

human remains.<br />

The sacrum has long been thought to be sexually dimorphic.<br />

Anecdotal evidence that the male sacrum is “narrower, longer and more<br />

curved” than the “wider, shorter and less curved” female sacrum is<br />

100


taught in osteology courses, presented in forensic anthropology<br />

references, and generally used in the field. A search of the literature<br />

yielded six publications and three published abstracts in which the<br />

authors attempted to quantify these morphological differences. The<br />

results of these statistical studies were highly varied, and none were<br />

conducted on modern American skeletal populations, making them<br />

questionable for their used in modern forensic cases.<br />

The current study tests the validity of the use of the sacrum for sex<br />

estimation on two modern samples: the William Bass Donated Skeletal<br />

Collection at the University of Tennessee in Knoxville and the Maxwell<br />

Museum Documented Skeletal Collection at the University of New<br />

Mexico in Albuquerque. Both of these collections are of modern<br />

individuals who donated their bodies to the collections between the early<br />

1980s and today. Date of birth, date of death, ancestry, and sex are<br />

known for these individuals, and medical history is known for many of<br />

them. A total of 114 males and 61 females were used in the analysis.<br />

Measurements were checked for errors and outliers, and aberrant values<br />

were removed. Discriminant function analysis (DFA) was performed on<br />

the data using Fordisc 3.0 (Jantz and Ousley 2005) and all reported<br />

classification percentages were cross-validated.<br />

Of twelve measurements taken, three variables were found using<br />

stepwise variable selection that classified the sample 83% correctly. The<br />

single best measurement was the antero-posterior diameter of the first<br />

sacral vertebra (AD), followed by the (left) maximum auricular surface<br />

length (LA), and the anterior width of the sacrum at the level of the<br />

inferior auricular surface (MWI).<br />

These measurements do not reflect the curvature of the sacrum,<br />

rather they reflect size and shape differences: males showed higher<br />

mean AD and LA but virtually the same MWI as females. Substituting<br />

the width of the sacral wings for MWI yielded the same correct<br />

classification rate of 83%. Further, the superior sacrum is dimorphic<br />

enough that using the transverse diameter of S1 (TD) and AD classified<br />

the sample 81% correctly. Using three variables that reflected sacral<br />

curvature (curved length, maximum depth of curvature and sacral length)<br />

did not classify the sample much better than by chance (61%). There<br />

appears to be too much overlap between the sexes in sacral curvature,<br />

which is overlooked when exemplary sacra are selected for teaching<br />

purposes.<br />

This study indicates that dimorphism in the sacrum is useful for<br />

estimating sex from skeletal remains, but sacral curvature does not<br />

appear to be useful, at least with the measurements used in this study.<br />

Sex Determination, Sacrum, Anthropology<br />

H62 Sex and Ancestry Estimation From<br />

Landmarks of the Cranial Base<br />

Ashley H. McKeown, PhD*, University of Montana, Department of<br />

Anthropology, Missoula, MT 59812; and Daniel J. Wescott, PhD,<br />

Florida International University, Department of <strong>Bio</strong>logical Sciences,<br />

11200 Southwest 8th Street, Miami, FL 333199<br />

The goal of this presentation is to study the nature of morphological<br />

variation in the base of the human cranium and the utility of that<br />

variation for estimating sex and ancestry from skeletonized remains.<br />

Discriminant functions that accurately estimate sex and ancestry for<br />

American Whites and Blacks from the cranial base are presented.<br />

This presentation will impact the forensic science community by<br />

providing new tools for estimating sex and ancestry from skeletonized<br />

human remains, particularly in the case of fragmentary crania where<br />

portions of the cranial base remain intact. Sex and ancestry are<br />

important components of the biological profile that physical<br />

anthropologists seek to establish for unidentified individuals. Methods<br />

that are appropriate for use with fragmentary remains expand the range<br />

of tools available to practicing forensic anthropologists.<br />

It is well established that craniofacial morphology can be used to<br />

estimate sex and ancestry of human remains, but in some instances<br />

crania are not recovered intact. Building on earlier research by Holland<br />

(1985, 1986) that indicated dimensions of the cranial base can be used<br />

for sex and ancestry attribution, it is hypothesized that sex and ancestry<br />

can be more accurately estimated using the three dimensional<br />

morphology of the cranial base.<br />

A sample of 277 crania from individuals of known sex and ancestry<br />

from the Robert J. Terry (National Museum of Natural History,<br />

Smithsonian Institution) and William M. Bass (University of Tennessee,<br />

Knoxville) collections is used to test this hypothesis. A series of 12<br />

landmarks from the cranial base were observed as three dimensional<br />

coordinates and analyzed using geometric morphometric and traditional<br />

statistical methods. The Cartesian coordinates were fitted with general<br />

procrustes analysis, which brings the configurations into a common<br />

coordinate system, rotates and scales them. The fitted coordinates were<br />

then subjected to principal component analysis. Principal components<br />

representing ninety percent of the shape variation and the centroid size<br />

from the procrustes analysis were used to derive discriminant functions<br />

for classifying crania as to sex and ancestry (American Whites and<br />

Blacks).<br />

Using landmarks from this morphological region, both sex and<br />

ancestry can be classified with greater than eighty five percent accuracy.<br />

As seen in other studies, shape is the critical component for ancestry<br />

estimation, while sex estimation requires both shape and size for<br />

accurate classification. For estimating ancestry, only the principal<br />

components representing the shape variation between the American<br />

White and Black samples was necessary. Nevertheless, for estimating<br />

sex the addition of centroid size significantly improved the accuracy of<br />

the method. Based on this study, discriminant functions employing<br />

interlandmark distances that do not require a digitizer to observe are<br />

presented.<br />

Morphpometrics, Sex, Ancestry<br />

H63 Virtual Sex: Phenice and Metrics of the<br />

Pelvis From 3D Computed Tomography<br />

(CT) Models<br />

Summer J. Decker, MA, MS*, University of South Florida College of<br />

Medicine, Department of Pathology & Cell <strong>Bio</strong>logy, 12901 Bruce B.<br />

Downs Boulevard, MDC 11, Tampa, FL 33612; Stephanie L. Davy-Jow,<br />

PhD, School of <strong>Bio</strong>logical and Earth Sciences, Liverpool John Moores<br />

University, Liverpool John Moores University, James Parsons Building,<br />

236, Byrum Street, Liverpool, L3 3AF, UNITED KINGDOM; and<br />

Jonathan M. Ford, MS, and Don R. Hilbelink, PhD, Deptartment of<br />

Pathology & Cell <strong>Bio</strong>logy, University of South Florida College of<br />

Medicine, 12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL 33612<br />

The goals of this presentation are to introduce a new sample of over<br />

70 modern virtual skeletons with known biological profiles, as well as<br />

the results of a pilot study using three-dimensional (3D) medical imaging<br />

and computer modeling technologies to validate standard sex and novel<br />

sex estimation methods of the human pelvis.<br />

This presentation will impact the forensic community by serving to<br />

increase scientific knowledge of new technologies and methods<br />

available to the forensic community for human identification. It will also<br />

attempt to add to the body of knowledge on sex estimation from the<br />

pelvis, as well as provide an example for a new source of data.<br />

The University of South Florida College of Medicine has<br />

accumulated three-dimensional (3D) data from medical scans<br />

(Computed Tomography (CT) and Magnetic Resonance Imaging (MRI))<br />

of donated cadavers and clinical scans into a collection of virtual bodies.<br />

Previous studies 1,2 have demonstrated that three-dimensional (3D)<br />

imaging technologies are allowing researchers to create virtual computed<br />

101 * Presenting Author


models of anatomical structures that go beyond traditional<br />

anthropological resources. Virtual models of skeletons from the scanned<br />

individuals have been made in order to test anthropological<br />

methodologies used in the creation of the biological profile. This study<br />

focused on the estimation of sex from the pelvic bones. The most widely<br />

accepted technique for sex estimation of the pelvis is based on<br />

multivariate evaluation of morphological traits. Sexually diagnostic nonmetric<br />

traits include the width of the greater sciatic notch, ventral arc,<br />

subpubic concavity, and medial aspect of the ischio-pubic ramus.<br />

Documented success rates of Phenice 3 and Phenice-derived methods 4,5<br />

consistently report accuracy rates in excess of ninety percent when<br />

performed by trained individuals. The goal of this project was to<br />

undergo a validation study to determine if sex can be estimated<br />

metrically and non-metrically from computed 3D models of the os coxa<br />

from a collection of known individuals.<br />

The accuracy of both visual and metric sex traits of the pelvis were<br />

statistically evaluated in comparison with antemortem biological<br />

profiles. Using a random selection from the 70+ known individuals, os<br />

coxa models were extracted from the CT scans and modeled in Mimics ©<br />

version 13. The pelves were then registered against each other and<br />

pelvic sex traits were analyzed in 3D space in the software package.<br />

Phenice traits 3 were compared with metric curvature modeling of the<br />

sub-pubic concavity. All measurements were independently verified by<br />

two trained anthropologists with the inter- and intra-observer error<br />

calculations. Additionally, student data was also used to evaluate the<br />

effects of experience on correct classification and measurement<br />

techniques.<br />

This project demonstrates the potential for virtual data such as the<br />

USF College of Medicine’s Virtual Skeleton Collection to increase the<br />

resources available to researchers. With the addition of more modern<br />

human data, traditional methodologies such as those used to estimate the<br />

biological profile can be re-examined and the current knowledge base<br />

expanded. The virtual pelves can provide limitless opportunities for<br />

discovery of robust methods applicable to real-world problems in<br />

forensic anthropology.<br />

References:<br />

1 Decker SJ, Hoegstrom EJ, Hilbelink DR. Virtual skull anatomy:<br />

three-dimensional computer modeling and measurement of human<br />

cranial anatomy. In: Proceedings of the American Academy of<br />

Forensic Sciences 60 th Annual Meeting, Washington, DC 18-23 Feb.<br />

2008; (14)312.<br />

2 Decker SJ, Davy-Jow SL, Ford JM, Hilbelink DR. Maintaining<br />

Custody: A virtual method of creating accurate reproductions of<br />

skeletal remains for facial approximation. In: Proceedings of the<br />

American Academy of Forensic Sciences 61 st Annual Meeting; 2009<br />

Feb 16-21; Denver, CO: (15)334.<br />

3 Phenice TW. A Newly Developed Visual Method of Sexing the Os<br />

Pubis. American Journal of Physical Anthropology, 1969; vol.<br />

30(2):297-301.<br />

4 Ubelaker DH, Volk CG. A test of the Phenice method for the<br />

estimation of sex. Journal of Forensic Sciences 2002; Vol. 47(11)<br />

19-24.<br />

5 Bruzek J. A method for visual determination of sex using the human<br />

hip bone. American Journal of Physical Anthropology 2002;<br />

Vol.117, 157–168.<br />

Sex Estimation, Computer Modeling, Virtual Anthropology<br />

* Presenting Author<br />

H64 Molar Crenulation as an Attribute of<br />

Ancestry in Forensic Cases: Identification<br />

and Accuracy<br />

Christen E. Herrick, BS*, and Heather A. Walsh-Haney, PhD, Florida<br />

Gulf Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard AB3, Fort Myers, FL 33965-6565; Katy L. Shepherd, BS,<br />

Florida Gulf Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Marta U. Coburn, MD,<br />

District 20 <strong>Medical</strong> Examiner’s Office, 3838 Domestic Avenue, Naples,<br />

FL 34104; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100<br />

Jefferson Street, Jacksonville, FL 32206<br />

After this presentation, the attendee will gain understanding of the<br />

diagnostic accuracy of molar crenulation as a marker of African ancestry,<br />

as well as how to correctly classify and identify the condition.<br />

This presentation will impacts the forensic science community by<br />

providing guidelines for the identification of molar crenulation and its<br />

utility as a predictor of ancestry in forensic cases.<br />

Forensic anthropologists frequently rely heavily on metric<br />

assessment and morphological observation of the mid-face and cranial<br />

vault to determine ancestry. Often, dental morphological traits are used<br />

to bolster these skeletal ancestry assessments. On a macroscopic level,<br />

the differences in the size, contour, and shape of tooth enamel are<br />

integral variables used in the determination of ancestry. Well-studied<br />

dental characteristics such as the “shoveling” of the lingual surfaces of<br />

upper incisors or the presence of an additional lingual cusp adjacent to<br />

the protocone on any or all of the upper adult molars (e.g., Cusp of<br />

Carabelli) are often used as diagnostic markers of Asian or European<br />

ancestry, respectively. However, the complex wrinkling of molar<br />

occlusal surfaces (e.g., crenulation) coincident with African ancestry<br />

lacks the depth of lucubration evidenced by the shoveling and Cusp of<br />

Carabelli ancestry traits used in forensic anthropology.<br />

The dearth of scholarly research concerning molar crenulation<br />

provided us the opportunity to investigate the extent to which African<br />

ancestry groups expressed the condition relative to European and Asian<br />

ancestry groups. To this end, we reviewed forensic skeletal cases (n=85)<br />

that were placed within an ancestry group (i.e.; African, European, or<br />

Asian) based upon metric assessment using FORDISC 3.0 and/or<br />

positive identification through other scientific means (e.g., dental,<br />

fingerprints, DNA, or medical records/radiographs) from Florida<br />

medical examiner districts 4, 17, and 20.<br />

The forensic anthropologist inventoried each case and charted all<br />

teeth to ensure elements necessary to create a biological profile were<br />

present (i.e., cranium, mandible, ossa coxae, tibia, or femur). She then<br />

metrically and non-metrically analyzed each case to determine age, sex,<br />

ancestry, and stature using standard forensic anthropological methods.<br />

In order to determine the extent of crenulation necessary for this study,<br />

the upper and lower first, second, and third molars were scored for the<br />

presence and absence of occlusal crenulations when observable using a<br />

5x hand lens and the naked eye. Three investigators independently<br />

scored each case to minimize the propensity for interobserver error. The<br />

data was statistically analyzed using SPSS 15.0. Specifically, compared<br />

was the frequency of the condition between the three ancestry groups<br />

using chi square analysis of variance.<br />

Upon analysis of the data, it was found that molar crenulation was<br />

associated with individuals of African ancestry one hundred percent<br />

(100%) of the time, while fifteen percent (15%) of those with Asian or<br />

Native American descent presented with the condition. None of the<br />

individuals of European ancestry showed evidence of molar crenulation.<br />

These results were statistically significant (x 2 =19.429, df=2, p= 0.00),<br />

evidencing that while molar crenulation is an accurate indicator of<br />

African ancestry, this is not the only ancestral group that will exhibit this<br />

dental morphological characteristic.<br />

Forensic Anthropology, Dental Morphology, Molar Crenulation<br />

102


H65 Subadult Ancestry Determinations Using<br />

Geometric Morphometrics<br />

Shanna E. Williams, PhD*, University of Florida, Department of<br />

Anatomy, PO Box 100235, Gainesville, FL 32610-0235; and Ann H.<br />

Ross, PhD, North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107<br />

The goal of this presentation is to explore the applicability of<br />

geometric morphometric techniques in subadult biological profiling.<br />

This presentation will impact the forensic science community by<br />

highlighting the importance of understanding biological variation in the<br />

determination of ancestry in unidentified subadult remains.<br />

Along with sex, age, and stature, ancestry determination is an<br />

essential component of the forensic toolkit. Several established metric<br />

and non-metric techniques exist which utilize the cranial and post-cranial<br />

skeleton to identify ancestry. However, all of these methods are limited<br />

to adult skeletal material, as ancestral differences, like sex differences,<br />

are believed to be indistinct in youth until stimulated by the differential<br />

growth of adolescence. As such, anthropological protocol tends to<br />

reserve judgment in regards to the ancestry of subadult material.<br />

However, the work of Strand Viðarsdóttir and colleagues (2002) found<br />

that, regardless of sex, population-specific facial morphology manifests<br />

at birth and is further modified during ontogeny. Buck and Strand<br />

Viðarsdóttir (2004) go on to suggest that geometric morphometrics (GM)<br />

is capable of identifying ancestry in subadult mandibles. The traditional<br />

metric analyses employed in ancestry determination apply discriminant<br />

functions to defined linear distances. Unfortunately, comparative<br />

datasets derived from these analyses cannot be applied to subadult<br />

material, as these datasets do not reflect the widespread allometric<br />

changes occurring during the growth period. Geometric morphometrics,<br />

on the other hand, is capable of partitioning biological size from shape,<br />

thereby circumventing this obstacle. Ross and Williams (2009) used GM<br />

to explore cranial size and shape differences in a single population of<br />

subadults and adults and found no significant differences between older<br />

subadults (mid-teens) and adults (≥18 years), suggesting that subadults<br />

reach their final form earlier than expected.<br />

In order to further elucidate the potential of GM in identifying<br />

subadult ancestry, the present study explores how successful GM<br />

methods are at correctly classifying ancestry in modern Portuguese<br />

subadults both as a group and individually. The sample used for group<br />

analysis of craniometric affinity includes Portuguese adults (n=53) and<br />

subadults (11 to 16 years-old; n=10) from the Luís Lopes Collection in<br />

Lisbon, Portugal; native adult African slaves who died in Cuba (n=15)<br />

from the Morton Collection at the University of Pennsylvania; modern<br />

adult Cubans (n=21) from a cemetery collection housed at the Museo de<br />

Montane, Havana; and, modern adult African-Americans from the Terry<br />

Collection at the Smithsonian Institution (n=48). Nineteen threedimensional<br />

type 1 and type 2 anatomical landmarks were collected.<br />

The landmark data were transformed by generalized Procrustes analysis<br />

(GPA) which optimally translates, scales, and rotates the points into a<br />

common coordinate system. In order to reduce dimensionality, a<br />

principal component analysis (PCA) was performed on the covariance<br />

matrix of the aligned coordinates. Group similarity was evaluated via<br />

pairwise tests with Bonferroni correction (α/n). The pairwise results<br />

found Portuguese subadults to be significantly different (Pr >F= 0.001)<br />

from all of the other populations except Portuguese adults (Pr >F=<br />

0.189). Additionally, ancestry assessment was performed on each<br />

subadult via 3D-ID (Slice and Ross 2009: www.3d-id.org), a software<br />

program which utilizes 3D cranial landmark data to classify an unknown<br />

specimen into a probable sex and ethnic affiliation. Although the<br />

software program does not yet include Portuguese among its 11 diverse<br />

reference populations, all 10 subadults were classified as European or<br />

European-American (average posterior probability: 0.741; average<br />

typicality=0.4621) and only one individual’s sex was misclassified.<br />

Although exploratory in nature, these results indicate that GM is<br />

capable of correctly capturing ancestry in subadult crania. This suggests<br />

ancestral differences are morphologically entrenched earlier in<br />

craniofacial development than conventionally believed. Moreover, GM<br />

allows comparative datasets of adult measurements to be directly applied<br />

to individuals who have not yet completed skeletal growth.<br />

Incorporating such information into standard forensic practice may allow<br />

for a more informative assessment of ancestry in unidentified human<br />

remains of all ages than is currently possible.<br />

Subadult, Ancestry, Geometric Morphometrics<br />

H66 Craniometric Variation in South African<br />

and American Blacks<br />

Stephen D. Ousley, PhD*, Mercyhurst College, Department of Applied<br />

Forensic Anthropology, 501 East 38th Street, Erie, PA 16546; and Ericka<br />

N. L’Abbe, PhD*, PO Box 5023, Pretoria, 0001, SOUTH AFRICA<br />

After attending this presentation, attendees will understand patterns<br />

of craniometric variation in two disparate populations with African<br />

ancestry and implications for individual identification.<br />

The presentation will impact the forensic community by<br />

emphasizing the morphological diversity in continental and regional<br />

samples.<br />

The estimation of ancestry is an important part of the biological<br />

profile, and in most cases up to the present, race or continental ancestry<br />

has been used to narrow down possible identifications. With increasing<br />

human rights work and the spread of forensic techniques to more parts of<br />

the world, finer-grained analyses will no doubt become important. The<br />

Rwandan genocide involving Hutu and Tutsi ethnic groups is a recent<br />

example of the need for data specific to a particular forensic challenge.<br />

All human populations are relative, are often locally specific, and can be<br />

qualified in numerous ways. Spradley et al (2008) illustrated the value<br />

of regionally specific population samples in their analysis of ninetenth<br />

century enslaved Africans from Cuba.<br />

South Africa is a linguistically and ethnically diverse country, with<br />

eleven official languages and a history of immigrants from Europe,<br />

India, Indonesia, and Malaysia. Dark-skinned South Africans (blacks)<br />

are from many different indigenous groups and comprise approximately<br />

eighty percent of the total population, whites are about nine percent of<br />

the population, and people of Indian/Asian ancestry are about 2.5%. The<br />

other major ethnic group is the Coloreds, persons of mixed ancestry and<br />

lighter skin, who are descendants of slaves brought in from East and<br />

Central Africa, the indigenous Khoisan, and South African blacks and<br />

whites. Black Americans originated predominantly from West Africa<br />

and came to America through the slave trade, and show significant<br />

admixture with white Americans. Given their different origins and<br />

disparate histories, how does morphological variation in South African<br />

and American Blacks compare?<br />

The South African sample consists of 64 males and 27 females from<br />

the Department of Anatomy at the University of Pretoria, and the<br />

American samples of 61 males and 54 females come from the Forensic<br />

Data Bank. Virtually all individuals were positively identified and were<br />

born after 1930. Most crania were digitized using a Microscribe and<br />

Howells standard cranial measurements were calculated from the<br />

interlandmark distances, otherwise measurements were collected using<br />

103 * Presenting Author


craniometric instruments. Discriminant function analysis (DFA) was<br />

performed on the data using Fordisc 3.0 (Jantz and Ousley 2005) and all<br />

reported classification percentages were cross-validated.<br />

In a four-way DFA for country and ancestry using 22 variables,<br />

seventy one percent were correctly classified, and using nine stepwiseselected<br />

variables, seventy-seven percent were correctly classified,<br />

indicating significant differences among all groups. South African<br />

blacks have relatively shorter and wider noses, longer, lower, and<br />

narrower crania, and wider interorbital breadths. Additionally, sexual<br />

dimorphism is lower in South Africans because South African black<br />

males are on the whole relatively smaller, and South African black<br />

females are relatively larger, compared to American blacks. However,<br />

despite their larger overall size, South Africans have remarkably smaller<br />

mastoid processes, with the South African male mean mastoid height<br />

lower than the American female mean. When American white males and<br />

females were added in a six-way DFA using eight variables, they were<br />

classified with seventy-two percent accuracy and the South African<br />

means were intermediate between the means for South African blacks<br />

and American whites. These results are not unexpected, given the<br />

documented gene flow between white and black Americans, though<br />

South African and American blacks originate from different regions in<br />

Africa.<br />

Sex-specific analyses also illustrated differences between the<br />

American and South Africans blacks. In males, ninety one percent were<br />

correctly classified by country using just three measurements (NLH,<br />

NOL, and OBB) and likewise in females, eighty five percent were<br />

correctly classified using BBH, NLB, and ZMB.<br />

These results illustrate the inherent diversity in samples grouped<br />

into traditional races, and complement studies of other Africans,<br />

Chinese, Native Americans, and Southeast Asians. The identification of<br />

ancestry is relative to the forensic questions asked, and fine-grained<br />

estimation of ancestry will likely be successful in many cases. Further,<br />

the South African sample itself is ethnically diverse, and with a large<br />

enough sample, the recorded ethnic groups can be studied separately.<br />

These results also highlight the usefulness of diverse reference samples,<br />

which will unfortunately be needed in the future.<br />

Craniometrics, Ancestry, Discriminant Function Analysis<br />

H67 Death on America’s Southern Border:<br />

A Summary of Five Years of Genetic Data<br />

Acquisition and Analysis of the Reuniting<br />

Families Project<br />

Lori E. Baker, PhD*, Baylor University, Forensic Research Lab, One<br />

Bear Place #97388, Waco, TX 76798-7388; and Yasmine M. Baktash,<br />

BA, Baylor University, One Bear Place #97388, Waco, TX 76798<br />

After attending this presentation, attendees will have a greater<br />

understanding of the issues involved with the identification process of<br />

deceased undocumented immigrants in the United States. In addition,<br />

attendees will hear a summary of the cases submitted to Reuniting<br />

Families for the past five years. The data obtained from HV1 and HV2<br />

mtDNA analysis performed for these cases will be discussed. Of<br />

particular focus will be the mtDNA variation across Latin America and<br />

the utility of this data in future identification of remains.<br />

This presentation will impact the forensic community and humanity<br />

by providing valuable insight into the genetic variation of the<br />

undocumented immigrant community, its reflection of the larger source<br />

populations of Latin America, and its ability to aid forensic scientist in<br />

the identification and repatriation of these persons.<br />

* Presenting Author<br />

Significant numbers of undocumented immigrants enter the United<br />

States each year. According to the Pew Hispanic Center, the average<br />

number of people entering the United States illegally was 800,000 per<br />

year from 2000-2004 and 500,000 per year from 2005-2008. Roughly<br />

77% of illegal entrants are Hispanic with 59% from Mexico, 11% from<br />

Central America and 7% from South America. While accurate statistics<br />

are difficult to ascertain, it is appropriate to assert that hundreds of these<br />

migrants die each year entering the United States from the southern<br />

border. Conservative estimates of deaths due to illegal immigration<br />

typically exceed 300 per year, with the U.S. Border Patrol reporting 472<br />

for 2005, for example. Due to a tightening of border security that began<br />

in the 1990s, undocumented entry into the United States is confined to<br />

areas of desolate, inhospitable terrain. As a result, the remains of many<br />

illegal entrants that die along the 2,000 mile U.S./Mexico border are not<br />

found for weeks or months if at all. The efforts of migrants to conceal<br />

their identities, the large number of migrants per year and the delayed<br />

recovery of remains make the identification process for deceased<br />

undocumented border crossers extremely challenging.<br />

In 2003 efforts began at Baylor University to assist in the<br />

identification process of undocumented immigrants by establishing the<br />

Reuniting Families project. In 2004, an online database was launched<br />

and cases for DNA analysis were accepted. In 2005, the project teamed<br />

with Mexico’s Secretaría de Relaciones Exteriores to launch a new<br />

database, Sistema de Identificación de Restos y Localización de<br />

Individuos, or SIRLI, in an attempt to facilitate efforts of locating<br />

missing Mexican citizens abroad, both living and deceased. Since 2004,<br />

Reuniting Families has analyzed the mtDNA from the remains of 301<br />

individuals believed to be undocumented immigrants. The samples<br />

submitted consist of 294 bone samples, 5 tooth samples, 1 hair, and 1<br />

dried blood sample. The project has identified 69 individuals to date<br />

with several tentative identifications pending further analysis.<br />

The data has reached the critical mass required to appropriately<br />

analyze the genetic diversity of the source populations from which these<br />

cases are derived. Briefly, the majority of cases that have been<br />

genetically characterized have mtDNA types that fall into modern<br />

American Indian variation. In rank order, the majority of samples are<br />

from mtDNA haplogroup A and the next largest haplogroup is B. Very<br />

few samples fall outside of one of the 4 major American Indian<br />

haplogroups. In addition, the attempted use of this data will be discussed<br />

in order to speculate on the origin of unknown samples. By<br />

understanding the genetic diversity of the source populations that<br />

contribute to the undocumented migrant population, an attempt has been<br />

made to pinpoint potential origins for our individuals without identity.<br />

mtDNA, Identification, Immigration<br />

104


H68 The Scientific Working Group for<br />

Forensic Anthropology<br />

Thomas D. Holland, PhD*, DoD JPAC, Central ID Lab, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853; Angi M. Christensen, PhD*, FBI<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA 22135; Bradley<br />

J. Adams, PhD, New York Office of the Chief <strong>Medical</strong> Examiner, 520 1st<br />

Avenue, New York, NY 10016; Bruce E. Anderson, PhD, Forensic<br />

Science Center, 2825 East District Street, Tucson, AZ 85714; Hugh E.<br />

Berryman, PhD, Department Sociology & Anthropology, Middle<br />

Tennessee State University, Box 89, Murfreesboro, TN 37132; John E.<br />

Byrd, PhD, JPAC/CIL, 310 Worchester Avenue, Hickam AFB, HI 96853-<br />

5530; Leslie E. Eisenberg, PhD, 6228 Trail Ridge Court, Oregon, WI<br />

53575; Todd W. Fenton, PhD, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824; Michael<br />

Finnegan, PhD, Kansas State University, Osteology Lab, 204 Waters<br />

Hall, Manhattan, KS 66506; Diane L. France, PhD, Colorado State<br />

University, Human Identification Lab, Department of Anthropology, Fort<br />

Collins, CO 80523; Lisa M. Leppo, PhD, U.S. Army QM Center &<br />

School, Joint Mortuary Affairs Center, 1201 22nd Street, Fort Lee, VA<br />

23801-1601; Lee Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall, Knoxville, TN 37996-<br />

0720; Robert W. Mann, PhD, Joint POW/MIA Accounting Command,<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5000; Stephen D. Ousley, PhD, Mercyhurst College, Department<br />

of Anthropology/Archaeology, 501 East 38th Street, Erie, PA 16546;<br />

William C. Rodriguez III, PhD, Armed Forces <strong>Medical</strong> Examiner’s<br />

Office, 1413 Research Boulevard, Building 102, Rockville, MD 20850;<br />

Paul S. Sledzik, MS, NTSB, Office ofTransportation Disaster Assistance,<br />

490 L’Enfant Plaza, Southwest Washington, DC 20594; Richard M.<br />

Thomas, PhD, FBI Laboratory, DNA Unit II, Room 3220, 2501<br />

Investigation Parkway, Quantico, VA 22135; Andrew Tyrrell, PhD,<br />

JPAC-CIL, 310 Worchester Avenue, Hickam AFB, HI 96853; Douglas H.<br />

Ubelaker, PhD, Department of Anthropology, NMNH - MRC 112,<br />

Smithsonian Institution, Washington, DC 20560; Michael W. Warren,<br />

PhD, C.A. Pound Human ID Laboratory, 1376 Mowry Road, Room G17,<br />

PO Box 113615, Gainesville, FL 32610; and P. Willey, PhD, Chico State<br />

University, Department of Anthropology, Chico, CA 95929-0400<br />

After attending this presentation, attendees will learn about the<br />

creation, goals, and current efforts of the Scientific Working Group for<br />

Forensic Anthropology (SWGANTH).<br />

This presentation will impact the forensic anthropology community<br />

by presenting draft procedural guidelines developed by the Scientific<br />

Working Group for Forensic Anthropology in an open forum for the<br />

purpose of eliciting comment and discussion prior to finalization.<br />

The Federal Bureau of Investigation (FBI) and the Department of<br />

Defense Central Identification Laboratory (DOD CIL) co-sponsored the<br />

creation of the Scientific Working Group for Forensic Anthropology, or<br />

SWGANTH. The 20-member Board consists of professionals from the<br />

forensic anthropological community invited by the sponsors to represent<br />

a broad spectrum of expertise and jurisdictional involvement.<br />

The charter of the SWGANTH is to identify and recommend “best<br />

practice” within the forensic anthropology discipline. The SWGANTH<br />

is not a regulatory board with any formal coercive authority. Rather, the<br />

SWGANTH aims to develop consensus guidelines for the discipline of<br />

forensic anthropology, and to disseminate those guidelines to the broader<br />

forensic community. To this end, the SWGANTH is attempting to<br />

identify and codify existing standards, or, where clear standards don’t<br />

exist, to formulate and establish them. The SWGANTH has created<br />

committees, which are populated by United States and international<br />

forensic anthropologists, to examine targeted issues for the purpose of<br />

identifying what is best practice today and what paths should be followed<br />

in the future.<br />

For the purpose of the Scientific Working Group for Forensic<br />

Anthropology, forensic anthropology is succinctly defined as: The<br />

application of anthropological methods, techniques, and theory to<br />

matters pertinent to civil or criminal law. This definition is inclusive,<br />

not exclusive. Historically, at least in the United States, these “methods,<br />

techniques, and theory” of forensic anthropology have been drawn<br />

almost exclusively from the anthropological sub-disciplines of human<br />

osteology and archaeology, and the “matters pertinent to civil or criminal<br />

law” have been largely confined to: (1) the detection of buried human<br />

remains; (2) the recovery of buried or scattered human remains; (3) the<br />

generation of a biological profile from skeletal remains for the purpose<br />

of individual identification; and, (4) the interpretation of hard-tissue<br />

trauma. Certainly, while these aspects remain the core of Forensic<br />

Anthropology, this historical view has too often served to restrict the<br />

scope of the discipline.<br />

But times are changing, and the field of forensic anthropology is at<br />

last emerging as a full-fledged discipline in its own right. Concomitant<br />

with this emergence is the rapid, and in many respects, uncontrolled,<br />

expansion of the role and scope of forensic anthropology. This<br />

expanding scope occurs at the same time as there is a growing<br />

acknowledgment by forensic anthropologists of the need for<br />

standardization of the procedures and protocols currently in practice—<br />

both in the “traditional” framework of forensic anthropology as well as<br />

in the expanding roles that the discipline is radiating into. Gone, or at<br />

least waning, are the halcyon days of individuals employing<br />

idiosyncratic techniques and methods that lead to findings by fiat.<br />

Already, many anthropologists are employed in laboratories where they<br />

are held to regulatory, statutory, and institutional guidelines that leave<br />

little room for deviation, and especially in light of the recent report by<br />

the National Academy of Sciences, forensic anthropologists in all venues<br />

will need to demonstrate adherence to established and standardized<br />

protocols.<br />

This paradigm shift of forensic anthropology should not be viewed<br />

negatively. It is a healthy evolution, and one, arguably, long overdue.<br />

The challenge facing its practitioners is not (or at least should not be)<br />

how to arrest the change, or failing to do that, to forestall it as long as<br />

possible, but rather the challenge should be to direct the field’s<br />

development into the most professional, efficient, and profitable<br />

pathway.<br />

This symposium will review the SWGANTH’s current efforts to<br />

meet this challenge and will present summaries of draft guidelines to the<br />

forensic anthropology community for review and discussion prior to<br />

finalization. The summaries will be presented in four groups, and will<br />

conclude with an overview of the SWGANTH.<br />

Forensic Anthropology, Scientific Working Group, Professional<br />

Standards<br />

105 * Presenting Author


H69 Developing a Regional Forensic<br />

Taphonomy: Environmental and<br />

Climatic Inputs<br />

Marcella H. Sorg, PhD*, Margaret Chase Smith Policy Center,<br />

University of Maine, Orono, ME 04469; William D. Haglund, PhD,<br />

20410 25th Avenue, Northwest, Shoreline, WA 98177; Edward David,<br />

MD, JD, 498 Essex Street, Bangor, ME 04401; Sarah A. Kiley, MS, 235<br />

Forest Hill Street, Jamaica Plain, MA 02130; William Parker, BS,<br />

Margaret Chase Smith, Policy Center, University of Maine, Orono, ME<br />

04469; Harold W. Borns, PhD, Climate Change Institute, University of<br />

Maine, Orono, ME 04469; John Burger, PhD, Department of Zoology,<br />

University of New Hampshire, Durham, NH 03834; John Dearborn,<br />

PhD, School of Marine Sciences, University of Maine, Orono, ME<br />

04469; Ann Dieffenbacher-Krall, PhD, Climate Change Institute,<br />

University of Maine, Orono, ME 04469; Deborah Palman, MS, Maine<br />

K-9 Services, PO Box 57, Aurora, ME 04408; and Touradj Solouki, PhD,<br />

Department of Chemistry, University of Maine, Orono, ME 04469<br />

The goal of this presentation is for the attendee to better understand<br />

the potential for interdisciplinary environmental data and geographic<br />

information systems to improve death investigation using a regional<br />

taphonomic approach.<br />

This presentation will impact the forensic science vommunity by<br />

assisting the attendee to consider how a regional taphonomic approach<br />

might be developed for his or her jurisdiction.<br />

Regionally specific taphonomic models are necessary in forensic<br />

death investigation to correctly interpret the condition of the body,<br />

estimate time since death, and interpret cadaver dog searches. This is<br />

particularly true in outdoor settings where weather, climate, and<br />

topography affect temperature, moisture, and scavenging, and hence<br />

decomposition patterns. In order to refine the forensic taphonomy model<br />

for northern New England, this research uses an interdisciplinary<br />

approach (anthropology, geology, botany, entomology, chemistry,<br />

cadaver K-9 use, and wildlife management) with a combined<br />

methodology of forensic case series analysis and Geographic<br />

Information Systems (GIS) mapping of environmental variables. The<br />

project will also test key components of the revised model using<br />

actualistic experimentation with pig cadavers. In addition to public-use<br />

GIS environmental data layers and local GPS point data from the case<br />

series, the model incorporates a measure of accumulated degree days to<br />

characterize cases in the reference series that have a known time since<br />

death. Additional refinements include consideration of the impacts of<br />

recent climate change on necrophagous insect metamorphosis and on<br />

decomposition patterns.<br />

Although it is readily acknowledged that taphonomic interpretation<br />

is ideally an interdisciplinary effort, forensic death investigation<br />

generally relies upon anthropology or entomology alone to contribute a<br />

taphonomic perspective. The very real limits of jurisdictional financial<br />

resources often prevent more elaborate approaches. However,<br />

taphonomic input can be critical for forensic investigations, especially in<br />

estimating time of death, place of death, and in differentiating trauma<br />

from postmortem artifact. Through a university-government partnership<br />

we are developing an interdisciplinary taphonomy reference database<br />

and model to improve the quality and uniformity of multidisciplinary<br />

data collection at outdoor scenes, and provide an evidence base for<br />

interpreting these taphonomic data. The initial focus is on the related<br />

goals of improving detection of remains and interpreting time since<br />

death.<br />

In Phase I of the project a Northern New England GIS-Taphonomy<br />

Reference Archive (“NNE GIS-Taph”) was created using publicly<br />

available datasets, including: topography; soil type and pH; geology;<br />

hydrology; vegetation; leaf cover; precipitation; and temperature. These<br />

GIS layers were added to statewide orthographic aerial photography data<br />

for both leaf-on and leaf-off views. The environmental layers provide an<br />

* Presenting Author<br />

archive of generic data that can be used to inform an investigation of a<br />

new forensic site. Those preliminary data can be made more specific as<br />

a cadaver search or a body recovery is done. Point data (with specific<br />

GPS locations) have been added for cases already in our reference series,<br />

which have a known time since death; point data for cadaver dog finds<br />

are also included. When remains have been found, data describing body<br />

condition and spatial distribution are added to the GIS-Taph, which<br />

functions as a relational database. GIS software applications can also<br />

accommodate digital photographs linked to spatial locations. In this way<br />

the system accumulates case data, which provide an ongoing evidence<br />

base for forensic interpretation and modeling.<br />

Another component of Phase I is the development of<br />

interdisciplinary assessment and data collection protocols. Members of<br />

the team have provided draft standards for a “rapid assessment” of a<br />

forensic scene’s environmental characteristics: geology (topsoil,<br />

topography, drainage, pH), botany (plants, pollen), zoology (insects,<br />

scavengers), and aquatic site characteristics, as well as characteristics<br />

that potentially impact detection by cadaver dogs. The environmental<br />

assessment tools will include data collection protocols for insects, plants,<br />

soils, vertebrate and invertebrate scavengers, and volatile chemicals.<br />

Data collection protocols will be tested on the pig cadaver experimental<br />

sites as they become available. The pig cadaver test sites are each paired<br />

with an environmentally similar control site for which the same data<br />

collection protocols will be used. Pig cadavers at most sites will be<br />

protected from mammalian scavenging by custom-built cages; at other<br />

sites scavenging will be documented with video cameras.<br />

Taphonomy, Environmental Assessment, Geographic Information<br />

Systems<br />

H70 Human Decomposition Ecology at the<br />

University of Tennessee Anthropology<br />

Research Facility<br />

Franklin E. Damann, MA*, National Museum of Health and Medicine,<br />

AFIP, PO Box 59685, Washington, DC 20012-0685; and Aphantree<br />

Tanittaisong, MS, AFIP Armed Forces DNA Identification Laboratory,<br />

1413 Research Boulevard, Rockville, MD 20850<br />

After attending this presentation attendees will understand the<br />

importance of ecosystem ecology to studies of human decomposition.<br />

This presentation impacts the forensic community by providing a<br />

framework for study in forensic taphonomy as those studies relate to<br />

understanding decomposition, microbial activity, and time since death.<br />

Microbially-mediated decomposition of a corpse impacts the body<br />

and the soil environment. Carter and colleagues 1 referred to microbiallymediated<br />

alteration of the landscape as a Cadaver Decomposition Island<br />

(CDI) since the normal processes of the terrestrial ecosystem change in<br />

response to a pulse of high-quality resource over a small area. The<br />

addition of a rich nutrient source is defined by an increase in total carbon<br />

and water that supports an increase in the carrying capacity of the niche.<br />

An increase in microbial biomass and energy transformation follows,<br />

until the substrate cache of energy-bound biomolecules and nutrients are<br />

depleted and the site of cadaver decomposition returns to a level<br />

consistent with the larger biogeographical footprint. 1,2<br />

In order to study changes in the ecological setting of human<br />

decomposition, research was conducted at the University of Tennessee<br />

Anthropology Research Facility (UTARF). The UTARF has been<br />

engaged in human decomposition research for 28 years. Between 1981<br />

and 2006, 782 bodies have decomposed over a small wooded 1.3 acre<br />

plot of land. 3 As such, the goal of this research is to identify variation of<br />

soil parameters as they relate to microbial biomass, microbial<br />

community structure, and human decomposition. To that end, the spatial<br />

distribution of soil conditions at was addressed. Specific attention was<br />

given to soil type, organic content, moisture content, and pH as these<br />

106


modulators contribute to the underlying chemical environment where the<br />

thermodynamic activities of energy transformations control microbial<br />

activity. 4 Total carbon, nitrogen, microbial biomass, and microbial<br />

community structure were evaluated in conjunction with these basic soil<br />

parameters. Soil samples were collected following a stratified random<br />

sampling strategy. Strata were determined based on cadaver<br />

decomposition density per unit. A negative control stratum was defined<br />

as the area adjacent to the facility, located no less than five meters<br />

beyond the outer perimeter. In total, 57 soil samples were collected from<br />

the A-horizon (zero to 10 cm) of five different strata; with 12 originating<br />

below actively decomposing corpses. The samples were sifted to<br />

remove large debris, homogenized, and stored at -20˚C until analysis.<br />

Results of soil analysis classify the soils as very deep, well-drained,<br />

clayey soils that are derived from calcareous sandstone and shale. 5 The<br />

area encompassing the decomposition facility consists of partially<br />

decomposed hardwood leaf litter and dark reddish brown loam (5 YR<br />

3/3) making up the major component, with minor components being<br />

composed of yellowish-brown loam (10 YR 5/4). The western half of<br />

the facility has less slope than the eastern half, which approaches 25%<br />

and also includes a greater concentration of rocks. Chemical analysis of<br />

the recovered sediments indicated an average soil pH of 6.6 that varied<br />

from 4.8 to 8.0. These recordings are consistent with that reported<br />

previously. 2,5 Soil organic matter (SOM) was determined by loss-onignition<br />

and is reported as a percentage. For the sampled areas, SOM<br />

varied from 0.68 to 4.37 percent, and showed only slight differences<br />

among the sampled strata. Soil moisture content determined by oven<br />

drying 3.0 g to 5.0 g varied from 3 to 27 percent and showed significant<br />

differences between low and high concentrations of decomposition<br />

density. Interestingly, differences in mean water content were best<br />

explained when the data were split by terrain (i.e., slope), rather than the<br />

distribution of cadaver decomposition density.<br />

This project evaluated physical and chemical constituents of<br />

UTARF sediments since these parameters affect microbial biomass and<br />

microbial community structure. As evidenced by the basic soil data<br />

collected for this study, soil factors such as water content, organic<br />

content, and pH are largely determined by state factors (i.e., climate,<br />

topography, parent material, time) of a temperate urban forest biome,<br />

rather than the ephemeral and localized pulses of a CDI that have a<br />

greater effect on the influx of carbon and nitrogen and the composition<br />

of the microbial community.<br />

References:<br />

1 Carter DO, Yellowlees D, Tibbett M. Cadaver decomposition in<br />

terrestrial ecosystems. Naturwissenschaften 2007;94:12-24.<br />

2 Vass AA, Bass WM, Wolt JD, Foss JE, Ammons JT. Time since<br />

death determinations of human cadavers using soil solution. J<br />

Forensic Sci 1992;37(5):1236–53.<br />

3 Jantz LM, Jantz R. The Anthropology Research Facility: the<br />

outdoor laboratory of the Forensic Anthropology Center, University<br />

of Tennessee. In: Warren MW, Walsh-Haney HA, Freas LE editors.<br />

The Forensic Anthropology Laboratory. Boca Raton: CRC Press,<br />

2008;7-21.<br />

4 Voroney RP. The soil habitat. In Paul EA editor. Soil Microbiology,<br />

Ecology, and <strong>Bio</strong>chemistry 3rd edition. Amsterdam: Academic<br />

Press, 2007;25-49.<br />

5 Hartgrove NT. Soil Survey of Knox County, Tennessee. USDA:<br />

Natural Resources Conservation Services, National Cooperative<br />

Soil Survey, 2006.<br />

Decomposition Ecology, Microbe Community Structure,<br />

Taphonomy<br />

H71 Deep Coastal Marine Taphonomy: Interim<br />

Results From an Ongoing Experimental<br />

Investigation of Decomposition in the<br />

Saanich Inlet, British Columbia<br />

Gail S. Anderson, PhD*, and Lynne S. Bell, PhD, Simon Fraser<br />

University, School of Criminology, 8888 University Drive, Burnaby, BC<br />

V5A 1S6, CANADA<br />

After attending this presentation, attendees will understand the<br />

effect of deep coastal marine submergence on carcass decomposition and<br />

the abiotic and biotic factors which impact it.<br />

This presentation will impact the forensic science community by<br />

showing some of the myriad factors which can affect the breakdown of<br />

a carcass in the marine environment as well as recognize some of the<br />

artifacts created by animal feeding.<br />

Marine decomposition is a little investigated area within<br />

taphonomy. The nature and speed of decomposition, the mechanisms by<br />

which decomposition occur, and skeletal survival and dispersal patterns<br />

have been the subject of an ongoing marine based high-resolution study<br />

of located at a coastal deep sea site within the Saanich Inlet, BC. The<br />

study is supported by the VENUS (Victoria Experimental Network<br />

Under the Sea) underwater observatory and allows for real time<br />

observation using a number of remotely controlled cameras and sensors.<br />

Methods: The initial study deposited three pigs at three differing<br />

time intervals onto the sea floor in the Saanich Inlet. The inlet is a deep<br />

water fjord with a maximum depth of 230 m and is separated from the<br />

Strait of Georgia by a sill, which restricts the flow of water into and out<br />

of the inlet. This results in the inlet being anoxic for the majority of the<br />

year. The site of the first two carcass placements was at a depth of 94 m<br />

and the third was approximately 65 m away at a depth of 99 m. The<br />

placement sites were fine silt with cobble, over rock. Each carcass was<br />

freshly killed, and weighed approximately 26 kg. A remotely operated<br />

video and still digital camera, with an array of lights, mounted on a<br />

tripod, was placed at the site a day earlier by ROPOS (Remote Operated<br />

Platform for Oceanic Science), and then the weighted carcass was<br />

positioned optimally under the camera remotely, by ROPOS. The<br />

camera site was close to an array of sensors measuring the physical<br />

conditions of the water, including a Seabird and a Falmouth CTD<br />

measuring conductivity, temperature, and depth at 1 and 60 second<br />

intervals, a gas tension device, an oxygen optode and a Sea-Tech<br />

Transmissometer. Data from these instruments can be downloaded at<br />

www.venus.uvic.ca. Three carcasses were placed over time, in August<br />

and September. The method of observation and data collection was<br />

undertaken by real time digital video feed, with desk top control of<br />

cameras, and sensor data of salinity, pressure, temperature and oxygen<br />

levels.<br />

Results: The results from our ongoing study to date, indicate that<br />

there is a key interplay between four key organisms, Dungeness crabs<br />

(Cancer magister Dana), three spot shrimp (Pandalus platyceros<br />

Brandt), squat lobsters (Munida quadrispina Benedict, Family<br />

Galatheidae), the amphipod Orchomenella obtusa Sars (Family<br />

Lysianassidae) and dissolved oxygen levels. Low dissolved oxygen<br />

levels did not prevent faunal colonization, even at levels considered<br />

below tolerance level, indicating that the carcass provided a very<br />

valuable resource. Fauna remained at the carcass, rapidly skeletonizing<br />

it, even when oxygen levels dropped to 0.2 mL/L. However, when a<br />

carcass was placed at the site during a time of extremely low oxygen<br />

levels, larger scavengers such as Cancer magister, were not attracted and<br />

smaller scavengers, such as squat lobsters, could not break the skin,<br />

leaving the carcass intact for months.<br />

Decomposition was seen to slow due to reduced faunal activity in<br />

borderline hypoxic levels and to be fully inhibited during hypoxic<br />

conditions. However, as soon as oxygen levels increased, a<br />

recommencement of faunal activity would reassert itself. This interplay<br />

107 * Presenting Author


with environmental conditions resulted in the pig carcasses skeletonizing<br />

at differing rates. Hence, we conclude, that oxygen is an important cofactor<br />

in skeletonization rates in concert with the dominant fauna at this<br />

experimental site.<br />

Faunal diversity was much less than at shallower depths in nearby waters<br />

although actual numbers were much higher and carcasses were<br />

skeletonized much faster, despite lower water temperatures and lower<br />

dissolved oxygen levels 1 .<br />

Conclusions This study has shown that decomposition and<br />

taphonomic changes in the marine environment are very variable and<br />

depend greatly on the abiotic and biotic factors of the surrounding area,<br />

in particular, oxygen levels. As long as scavengers are originally<br />

attracted to a carcass during times of adequate oxygen levels, they will<br />

remain despite drops to near anoxic levels. However, if the carcass is<br />

deployed during a period of very low dissolved oxygen, larger<br />

scavengers are unable to colonize. This is an ongoing study.<br />

Reference:<br />

1 Anderson GS, Hobischak NR. Decomposition of Carrion in the<br />

Marine Environment in British Columbia, Canada. Int J Legal Med.<br />

2004;118(4):206-9.<br />

Marine, Taphonomy, Oxygen<br />

H72 An Experimental Study of Putrefaction and<br />

Decomposition in Aqueous Environments<br />

Kristen E. Greenwald, MA*, 32 10th Street, Hermosa Beach, CA 90254<br />

After attending this presentation attendees will have a better<br />

understanding of the stages of decomposition in both salt and fresh water<br />

environments, helping them to determine a more accurate postmortem<br />

interval for submerged corpses.<br />

This presentation will impact the forensic community by serving as<br />

a controlled experiment recording the postmortem changes that occur<br />

during decomposition in aquatic environments during two seasons in<br />

Southern California. The majority of previous research conducted on<br />

decomposition in aquatic environments is primarily based on case<br />

studies, thus making this research invaluable for aquatic death<br />

investigations.<br />

Understanding the process of putrefaction and decomposition in all<br />

types of environments is crucial for both forensic anthropologists and<br />

law enforcement officials. Although the relationship between<br />

decomposition and postmortem interval has been well studied, actual<br />

controlled studies of the physical disturbances occurring as a result of<br />

decomposition of corpses in aqueous environments is rare. This<br />

represents an unfortunate lapse in research, because many forensic cases<br />

are recovered from marine, riverine, or lacustrine environments. Such<br />

cases tend to create considerable taphonomic difficulties, because the<br />

majority of forensic remains found in water are inextricably bound to<br />

their hydraulic behavior as carcasses, their loss of soft tissue and<br />

subsequent disarticulation, and the taphonomic environment in which<br />

these processes occur.<br />

To document differences in the stages of the decomposition process<br />

in salt versus fresh water, a controlled experiment was designed to mimic<br />

a submerged corpse in a forensic setting. Four adult swine (Sus scrofa),<br />

purchased and euthanized at the Meat Science Facility at California State<br />

Polytechnic University in Pomona, California, were used for the<br />

experiment. The swine were placed in four separate seventy-five gallon<br />

tanks. Tanks A and C were filled with saltwater obtained from a depth<br />

of ten feet off the coast in San Pedro, California. Tanks B and D were<br />

filled with freshwater from Lake Cahuilla in La Quinta, California. To<br />

account for the seasonal difference in California, the water in tanks A and<br />

B were chilled to pre-calculated temperatures that mimic California’s<br />

winter water temperatures while Tanks C and D were chilled to mimic<br />

California’s summer water temperatures. Data collected included visual<br />

observations and photographs made twice a day for the first four weeks<br />

* Presenting Author<br />

and then once a day for the remaining six weeks of the study. The<br />

presence or absence of insect activity was also noted.<br />

At the end of the seventy-five day experiment significant<br />

differences in the stages of decomposition were observed between the<br />

saltwater and freshwater carcasses. In both the winter and summer<br />

carcasses in saltwater, the decomposition process was significantly<br />

slower than in the freshwater carcasses.<br />

• Pig A (Saltwater/Winter): The specimen in this tank was the<br />

most expressive of the impact of saltwater on the rate of<br />

decomposition. By day four of the study, the specimen<br />

showed very minor bloating in the abdominal region. On day<br />

twenty of the study, a bulge in the abdomen split exposing a<br />

minor section of the intestines. Deflation began on day fortyfive.<br />

Complete skeletonization did not occur during the<br />

duration of the study.<br />

• Pig B (Freshwater/Winter): Minor bloating began on day four<br />

of the study and the abdomen split revealing a large section of<br />

the intestines on day twenty. Deflation of the carcass began<br />

on day thirty-two. Complete skeletonization did not occur<br />

during the duration of the study.<br />

• Pig C (Saltwater/Summer): On day four of the experiment,<br />

the specimen began bloating slightly. By day eight, the<br />

abdominal region had opened exposing the intestines. Dead<br />

flies were found floating on the surface of the water on day<br />

twenty-four and deflation of the carcass began on day fortytwo.<br />

Complete skeletonization did not occur during the<br />

duration of the study.<br />

• Pig D (Freshwater/Summer): The bloat stage began on day<br />

three and continued for the majority of the experiment. The<br />

bloat was so severe that the carcass nearly fell out of the tank.<br />

On day seven of the study, the abdomen split completely,<br />

exposing the intestines and stomach. By day twenty-seven of<br />

the study, deflation of the abdomen and upper torso began. On<br />

day twenty-eight, skin slippage appeared on the exposed<br />

surface of the carcass. On day sixty of the experiment,<br />

disarticulation began and continued until the end of the study.<br />

Complete skeletonization of the carcass did not occur during<br />

the duration of the study.<br />

In addition to providing preliminary insight into the impact of<br />

saltwater and freshwater on decomposition, this study may be used as a<br />

catalyst for further study into aquatic decomposition and more<br />

specifically the stages of saltwater decomposition in comparison to<br />

freshwater decomposition.<br />

Decomposition, Aquatic, Putrefaction<br />

H73 Decomposition in Water: The Effects of<br />

Climate on the Rate of Decay in<br />

New England<br />

Peter J. Colleran, BS*, and Mallory S. Littman, BA, Boston University<br />

School of Medicine, 715 Albany Street, Boston, MA 02118; Billie L. Seet,<br />

MA, Office of the Chief <strong>Medical</strong> Examiner, Boston, MA 02118; Tara L.<br />

Moore, PhD, Boston University School of Medicine, 700 Albany St.,<br />

Boston, MA 02118; Debra A. Prince, PhD, Office of the Chief <strong>Medical</strong><br />

Examiner, Boston, MA 02118<br />

The goals of this presentation are to educate attendees on the<br />

differences in the rate of decay in New England versus regions with<br />

temperate climates and to bring to attention the gap in the literature in<br />

regards to both cold climate and water decomposition.<br />

108


This presentation will impact the forensic community by helping<br />

medical examiners and forensic pathologists become more accurate in<br />

their postmortem interval estimations. This will, in turn, aid lawyers and<br />

investigators because they can establish a more accurate timeline of<br />

events and corroborate alibis more efficiently. Families of victims will<br />

also be aided by this work because accurate time since death estimations<br />

can help medical examiners and medicolegal death investigators identify<br />

decedents that might have otherwise remained unidentified.<br />

New England experiences variable weather throughout the year.<br />

New England winters are often very cold and dry, while summers are<br />

mostly warm and humid. After attending this presentation, the audience<br />

will realize the significance of the gap in the literature about cold climate<br />

decomposition and decomposition in water. The audience will also<br />

understand the differences in the rate of decay in New England versus<br />

the hot, humid environments, in which much of the research on<br />

decomposition in the United States has taken place.<br />

<strong>Medical</strong> examiners, forensic pathologists, medicolegal death<br />

investigators, and forensic anthropologists benefit immensely from<br />

decomposition studies. 1 Previous research that has focused on<br />

decomposition has been conducted in different environments, which aids<br />

forensic investigators who recover human remains in trying to identify<br />

the decedents and estimate time since death. 2 Compounding variables,<br />

such as ambient temperature, geographic location, and predator activity,<br />

make the task of gleaning information from a body very difficult. 7<br />

Decomposition studies considering these real-life variables are essential<br />

for investigators to perform their duties most efficiently.<br />

Cold climate and water both serve to decrease the rate of decay<br />

significantly. 3 Ambient temperature influences the rate of decay<br />

dramatically; yet, decomposition studies have been performed mostly in<br />

temperate climates. 5 Similar experiments must be carried out in different<br />

regions of the world with differing environmental conditions. 4 In regard<br />

to water decomposition, much of what is known on the subject comes<br />

from case studies. Many bodies are found in water every year at<br />

different stages of decomposition. There is still much to be determined<br />

about how aquatic environments influence the process of decomposition<br />

on a stage-to-stage level. 6 Studies must be performed to determine what<br />

factors are affected and how when a body is found in the presence of<br />

water. Systematic studies on decomposition in water are also necessary<br />

to test and confirm hypotheses about how water affects the rate of decay.<br />

This presentation will exhibit the results of a systematic research<br />

project on fetal pig decomposition in water performed in two phases.<br />

Phase I was performed between the months of February and May of 2009<br />

in a wooded environment in New England. Phase II was performed in<br />

July of 2009 in the same environment. Four pigs were used in each<br />

phase of the project. Each pig was initially submerged in water in a<br />

plastic five-gallon bucket. In each phase, two pigs were placed in salt<br />

water and two pigs were placed in fresh water. The saltwater came from<br />

an urban beach in Boston, MA and the freshwater was taken from<br />

stagnant water in an old cranberry bog. The buckets were kept in aerated<br />

cages to prevent vertebrate scavenging; however, the cages permitted<br />

insect activity. The carrion in Phase II displayed a rapid rate of decay<br />

compared to the carrion in Phase I. Each pig decayed differently, but<br />

trends were recognized. Preliminary results indicate that water<br />

temperature is the most significant determining factor when considering<br />

the rate of decay. Results also showed that the water in each bucket (both<br />

fresh water and salt water) became more alkaline over time.<br />

This presentation will impact the forensic community by helping<br />

medical examiners and forensic pathologists become more accurate in<br />

their postmortem interval estimations. This will, in turn, aid lawyers and<br />

investigators because they can establish a more accurate timeline of<br />

events and corroborate alibis more efficiently. Families of victims will<br />

also be aided by this work because accurate time since death estimations<br />

can help medical examiners and medicolegal death investigators identify<br />

decedents that might have otherwise remained unidentified.<br />

References:<br />

1 Bunch AW. The impact of cold climate on the decomposition<br />

process. J Forensic Identification 2009; 59(1):26-44.<br />

2 Vass, AA. Beyond the grave—understanding human<br />

decomposition. Microbiology Today 2001;28:190-192.<br />

3 Matoba K, Terawaza K. Estimation of the time of death of<br />

decomposed or skeletonized bodies found outdoors in cold season<br />

in Sapporo city, located in the northern district of Japan. Legal<br />

Medicine 2008;10:78-82.<br />

4 Mann RW, Bass WM, Meadows L. Time since death and<br />

decomposition of the human body: Variables and observation in<br />

case and experimental field studies. J Forensic Sci 1990;35:<br />

103-111.<br />

5 Komar DA. Decay rates in a cold climate region: A review of cases<br />

involving advanced decomposition from the <strong>Medical</strong> Examiner’s<br />

Office in Edmonton, Alberta. J Forensic Sci 1998;43(1):57-61.<br />

6 Anderson GS, Hobischak NR. Decomposition of carrion in the<br />

marine environment in British Columbia, Canada. Int J Legal Med<br />

2004;118:206-209.<br />

7 Prieto JL, Magana C, and Ubelaker DH. Interpretation of<br />

postmortem changes in cadavers in Spain. J of Forensic Sci<br />

2004;49(5):1-6.<br />

Forensic Anthropology, Aqueous Environments, Time Since Death<br />

H74 Dead on Time? The Repellent Effect of<br />

Liquid Petroleum Gas on Time Since<br />

Death Estimation<br />

Branka Franicevic, MSc*, University of Bradford, Bradford, BD7 1DP,<br />

UNITED KINGDOM<br />

After attending this presentation, participants will have an<br />

understanding of the impact of liquid petroleum gas may have on fly<br />

colonization, and its potential to lead to an under-estimate of PMI in<br />

tested environments.<br />

The presentation will impact the forensic science by indicating<br />

possible variables affecting the level of accuracy of postmortem interval<br />

methods in domestic gas related deaths from a taphonomic perspective.<br />

The findings are relevant in eliminating foul play to include preventing<br />

insect colonization, or concealing a body in clandestine disposals.<br />

The succession pattern of Diptera calliphoridae in the presence of<br />

chemical attractants ethanethiol and sulphur, contained in Liquefied<br />

Petroleum Gas (LPG) was observed, with an aim to investigate whether<br />

traces of a gas leak can distort postmortem interval (PMI) estimations.<br />

After attending this presentation, participants will have an understanding<br />

of the impact this type of domestic gas may have on fly colonisation, and<br />

its potential to lead to an under-estimate of PMI in tested environments.<br />

The research will impact the forensic science by indicating possible<br />

variables affecting the level of accuracy of postmortem interval methods<br />

in domestic gas related deaths from a taphonomic perspective. The<br />

findings are relevant in eliminating foul play to include preventing insect<br />

colonisation, or concealing a body in clandestine disposals.<br />

The transformative process of taphonomic modifications during the<br />

decomposition process is universally accepted to depend largely on<br />

ambient temperature, with an optimal condition for the development of<br />

bacteria and insect succession between 20 C° and 30 C°. Chemical<br />

attractants tested are also significantly dependant on climatic conditions<br />

with high temperatures and dry climate causing LPG to evaporate at<br />

higher speed, effectively reducing its impact on Diptera colonisation.<br />

The effect of LPG gas leaks on decomposition rates was assessed with<br />

hypothesis testing by statistical analysis, assuming that LPG and ambient<br />

temperature will act in unison as main factors affecting Diptera<br />

colonization.<br />

109 * Presenting Author


LPG is commonly used in households as well as caravanning and<br />

vehicles. It is a low carbon emitting fuel, a mixture of gases primarily<br />

propane, butane with traces of ethanethiol, sulphur and mercaptan<br />

artificially added so that leaks can be detected easily. These components<br />

in domestic gas act as chemical attractants to flies, like decomposing<br />

corpses. Here, during the putrefactive process, similar gasses such as<br />

sulfur and methane compounds are released and appeal to various<br />

insects. Due to its scenting, LPG may have a repellant effect on fly<br />

attraction to cadavers during various stages of decomposition. Hydrogen<br />

sulphide alone is generally heavy with strong odour concentration and<br />

may distract the flies from the cadaver.<br />

Field experiments were carried out on the south Croatian coast<br />

(43.02° N, 17.57° E) over a period of 30 days in June 2007, and repeated<br />

in June 2008 to confirm previous observations. Fieldwork involved<br />

comparison of decomposition pattern between samples exposed to LPG<br />

leaks, and those not affected by it, in indoor and outer environments.<br />

This was achieved by means of recording and analysing fly succession<br />

and decomposition rates at the average ambient temperature of 25 C°.<br />

The sample size comprised eight adult carcasses of Sus scrofa ranging<br />

from 23 to 25 kg, and eight pig livers each weighting approximately 1kg,<br />

utilised as control samples. Carcasses tested for the effect of LPG gas<br />

leaks were placed in the direct vicinity of gas bottles with the minimum<br />

leak set up, whilst control samples were positioned three meters away<br />

from the gas bottles. Sticky tapes were placed on the gas bottles, to<br />

analyse flies attracted to the chemical attractants themselves. Carcasses<br />

were kept in metal cages to minimise interference by local scavengers.<br />

Sampling, recording and observation was conducted randomly twice a<br />

day during the first week, and once a day for the rest of the experiment.<br />

Environmental data was obtained from the local Hydro-meteorological<br />

Station.<br />

Statistical analyses confirmed that increased ambient temperature<br />

reduced the impact of a gas leak on decomposition rates in both<br />

environments (Mann-Whitney p=0.6772; p=0.6722). Statistically<br />

significant time of an average of 10 days in indoor ambient, and 7 days<br />

in outdoor setting in decomposition rates was demonstrated at an average<br />

of 20 C° (Mann-Whitney p=0.0331; p=0.41125), stated with 95%<br />

confidence. This way, the null hypothesis is accepted. The Putrefaction<br />

stage was the least affected as opposed to the Fresh stage and the late<br />

Decay in outdoor environment at an average of 27 C°. Fly succession<br />

was further statistically significant (ANOVA, Fisher test, α = 0.005),<br />

with the maximum delay of 6 hours (S.D. = 4.1) during the Putrefaction<br />

stage at 21 C° in outer environment, and maximum of 5 hours (S.D.<br />

=3.2h) at average of 20 C° during the Decay stage in indoor settings. No<br />

general relation was found between control samples and tested carcasses<br />

with regards to the distance of gas bottles.<br />

Variations in the rate of decomposition were associated with the gas<br />

leak and the effect of ambient temperature in both tested environments.<br />

These preliminary results demonstrate the need for further research in<br />

this area and caution when estimating postmortem interval for domestic<br />

gas related deaths, especially for subjects in advanced stages of<br />

decomposition.<br />

Liquefied Petroleum Gas, Time Since Death, Taphonomy<br />

H75 Predicting the Postmortem Submersion<br />

Interval From the Adipocere Formation<br />

on Rabbits<br />

Marcella M.C. Widya, BSc*, 14 Stanleyfield Road, Preston, Lancashire<br />

PR1 1QL, UNITED KINGDOM<br />

After attending this presentation, attendees will gain a new<br />

understanding of the early stages of adipocere formation in relation to<br />

accumulated degree days (ADD) in submersed remains.<br />

* Presenting Author<br />

This presentation will impact the forensic community by assessing<br />

the link between adipocere formation and ADD, thus providing<br />

information that can assist in a more accurate estimation of postmortem<br />

interval (PMI).<br />

Adipocere is often present on decomposing bodies found in damp<br />

environments. The formation of adipocere is influenced by a number of<br />

factors such as the requirement of a moist and anaerobic environment. In<br />

some circumstances the presence of adipocere may retard<br />

decomposition. This has the potential to make PMI estimation in such<br />

cases difficult. Limited research has been conducted to assess the<br />

applicability of adipocere formation to the estimation of postmortem<br />

interval, or the impact of adipocere formation on decomposition in<br />

relation to ADD. This paper explores the correlation between ADD and<br />

the early stage formation of adipocere.<br />

This study, using 60 wild rabbit (Oryctolagus cuniculus) carcasses,<br />

was carried out in northwest England. A control group (N=30) was<br />

deposited on the surface in direct contact with the ground. Chicken-wire<br />

cages were used to prevent scavenging. The rabbits of the experimental<br />

group (N=30) were submersed in water in individual buckets. Chickenwire<br />

fencing on top of the buckets was used to prevent carcass floatation<br />

and to ensure complete submersion throughout the duration of the<br />

experiment. Thermocouples and dataloggers were used to measure the<br />

water temperatures, individual inner body temperatures and ambient<br />

temperature at the site. Data collection protocol for both groups was<br />

carried out every 100 ADD. This included assigning a Total Body Score<br />

(TBS), taking soil and water samples for pH measurement and for the<br />

submersed group, examining the subcutaneous adipose tissue and the<br />

internal organs.<br />

The preliminary results of this experiment indicate that adipocere is<br />

more likely to form after 630 ADD on submersed remains. No adipocere<br />

was formed on any of the control group rabbits. The late occurrence of<br />

adipocere establishes the fact that its formation is a feature related to the<br />

advanced stages of decomposition. The adipocere found was in its early<br />

stage of formation, despite the advanced decomposition of the rabbit<br />

carcasses. Previously published case studies indicate that adipocere can<br />

also be found on submerged bodies in less advanced stages of<br />

decomposition (O’Brien & Kuehner 2007; Nishimura et al, 2009). This<br />

implies that there are multiple factors influencing its formation.<br />

An important factor in the formation of adipocere is the exposure of<br />

the adipose and other internal tissues to water. Intact skin prohibits this<br />

contact and therefore may inhibit adipocere formation. Skin slippage is<br />

a recognised feature in decomposition which can be used to establish<br />

PMI (Heaton, et al., in press). In cases where PMI estimation may have<br />

been complicated by adipocere formation, knowing that skin sloughing<br />

had to have taken place before the adipocere could have been formed<br />

could assist in establishing a more accurate PMI.<br />

More extensive research is needed to fully establish the linkages<br />

between adipocere formation and ADD.<br />

Adipocere, Postmortem Interval, Accumulated Degree Days<br />

H76 Differential Decomposition in Terrestrial,<br />

Saltwater, and Freshwater Environments:<br />

A Pilot Study<br />

Laura E. Ayers, BA*, 206 B Redbud, New Braunfels, TX 78130<br />

After attending this presentation, attendees will learn how<br />

decomposition rates can differ between terrestrial, freshwater, and<br />

saltwater environments in central Texas.<br />

This presentation will impact the forensic community by helping to<br />

expand the knowledge base of information regarding rates of<br />

decomposition, which will in turn aid investigators in estimating<br />

postmortem interval in forensic settings.<br />

110


The study of decomposition is essential for any forensic<br />

anthropologist for estimating postmortem interval. While surface rates<br />

of decomposition are well studied, especially in certain areas (Mann et<br />

al. 1990), the decomposition rate of bodies submerged in water have not<br />

been well studied using controlled experiments (Haglund & Sorg 2002;<br />

Sorg et al. 1997). Most forensic anthropologists simply rely on the<br />

generalization that a body decomposing one week on land is equivalent<br />

to two weeks in the water (after Mann et al. 1990). In addition, there has<br />

not been much investigation into whether a saltwater environment affects<br />

decomposition differently than a freshwater environment.<br />

This study aimed to address three questions: (1) Does submersion<br />

in water affect the rate of decomposition compared to terrestrial surface<br />

decomposition?; (2) Does this effect support the longstanding<br />

generalization?; (3) Does type of water (salt or fresh) differentially<br />

affects the rate of decomposition? Following anecdotal evidence, it was<br />

hypothesized that the surface specimens would decompose the fastest,<br />

the specimens in freshwater would decompose slower, and specimens in<br />

saltwater would decompose the slowest of all.<br />

This study took place outdoors at the Forensic Anthropological<br />

Research Facility at Texas State University-San Marcos, Texas. Though<br />

human remains and pig carcasses do float differently in water (Haglund<br />

& Sorg 2002), pig carcasses were used in this experiment in lieu of<br />

human remains due to their similarity to human tissue, as well as for<br />

practical constraints. Six pigs (Sus scrota) with weights from 20-30 lbs<br />

(9-13.6 kg) were humanely euthanized following Institutional Animal<br />

Care and Use Committee guidelines. Carcasses were placed on the<br />

surface of the ground (N=2), in saltwater tanks (N=2) with water created<br />

by mixing freshwater with a purchased saltwater mix, and in freshwater<br />

tanks (N=2) with water from the local Edwards Aquifer. Salinity in the<br />

saltwater tanks was the same as the Gulf of Mexico (34-36 ppts;<br />

Boatman 2006). Air and water temperatures were recorded daily. The<br />

surface carcasses and tanks were penned to prevent animal scavenging.<br />

The study was completed when all specimens were fully skeletonized.<br />

While placement in water affected the rate of decomposition,<br />

placement in freshwater made the specimens decompose much faster<br />

than those on land or placed in saltwater, at least in the summer<br />

environment of central Texas. This was due to the high temperatures<br />

killing the maggot masses present on the surface carcasses only one day<br />

after hatching, while the maggot masses on the freshwater carcasses<br />

lived and thrived, possibly because the water was on average 8-12<br />

degrees Fahrenheit cooler than ambient temperature. Thus, the effect of<br />

water on decomposition did not support the longstanding generalization<br />

in the field, as the carcasses in freshwater decomposed much more<br />

quickly than the surface carcasses. In addition, the type of water<br />

differentially affected the rate of decomposition, as the carcasses in<br />

saltwater decomposed much more slowly than the carcasses placed in<br />

freshwater or on the surface. The reason for this slower rate is likely<br />

related to the fact that the carcasses in saltwater did not have burst<br />

abdomens with intestinal protrusion present in the carcasses in<br />

freshwater, which were most likely the result of osmosis. The intestinal<br />

protrusion on the freshwater specimens attracted blowflies, while the<br />

carcasses in saltwater did not, and thus with no insect activity the<br />

decomposition rate stagnated. This differential decomposition in diverse<br />

environments, whether open-air terrestrial or in fresh or saltwater, is<br />

important to consider in Texas because there because of an abundance of<br />

freshwater lakes and rivers and the proximity of the Gulf of Mexico.<br />

Forensic Anthropology, Decomposition, Postmortem Interval<br />

H77 Inter- and Intra-Element Variation in<br />

Carnivore and Rodent Scavenging Patterns<br />

in Northern California<br />

Eric J. Bartelink, PhD, 400 West First Street, Department of<br />

Anthropology, Butte #311, California State University-Chico, Chico, CA<br />

95929-0400; and Lisa N. Bright, BS*, 1259 Hobart, Chico, CA 95926<br />

After attending this presentation, attendees will gain a more<br />

complete understanding of postmortem artifacts from human remains<br />

created by animal scavengers, and their distribution in forensic cases<br />

from northern California. The goals of this research include: 1) an<br />

assessment of inter and intra-element patterning of postmortem<br />

modifications on human remains caused by animal scavengers; 2) a<br />

metric analysis of canine impact damage in relation to carnivore tooth<br />

dimensions; and 3) an evaluation of taphonomic models for predicting<br />

disarticulation sequences and time-since-death estimates in the western<br />

United States.<br />

This presentation will impact the forensic community by providing<br />

a critical evaluation of the various taphonomic signatures caused by<br />

animal scavengers and their relationship to understanding sequences of<br />

disarticulation.<br />

Taphonomy has become an integral area of research within forensic<br />

anthropology since the late 1980s. Previous studies have generally<br />

focused on field or laboratory-based experiments, retrospective case<br />

reviews, or individual case reports. However, little recent attention has<br />

been devoted to more detailed study of postmortem damage created by<br />

animal scavengers in larger forensic collections. Throughout rural<br />

northern California, decomposed and skeletonized human remains<br />

recovered from outdoor contexts commonly show evidence of carnivore<br />

and rodent tooth impact damage. Although their distribution varies by<br />

region, key mammalian scavengers include black bears, coyotes,<br />

raccoons, opossums, squirrels, and various rodents. A previous survey of<br />

scavenged forensic cases from northern California indicated that<br />

medium-to-large bodied carnivores (canids and black bears) are<br />

responsible for the majority of the postmortem damage to skeletal<br />

remains (Bartelink and Bright 2009).<br />

This study examines twenty two forensic cases involving animal<br />

scavenging submitted for analysis to the California State University,<br />

Chico Human Identification Laboratory (CSUC-HIL). Sixteen of the<br />

cases are curated at the CSUC-HIL, with the remainder (n=6)<br />

documented from previous case reports. The cases derive from 13<br />

counties in northern California, and were originally submitted between<br />

1986 and 2009. With one exception, all cases derive from outdoor<br />

contexts. For each case, a complete inventory was conducted and the<br />

pattern of scavenging documented. Diagrams were used to record the<br />

completeness of all scavenged elements, and the distribution of tooth<br />

impact damage (e.g., furrows, pits, punctures, striations) and spiral<br />

fractures within each element. The percentage of bone missing due to<br />

scavenging was recorded for all appendicular elements using an ordinal<br />

scale as a measure of scavenging intensity. A second component of this<br />

research attempted to identify involvement of specific scavenger species<br />

associated with the tooth impact damage. Digital calipers were used to<br />

measure the maximum diameter of shallow pits as well as deeper<br />

puncture marks associated with carnivore scavenging. In addition,<br />

dental measurements were recorded for the canine teeth of several<br />

scavenger species from the CSUC zooarchaeology comparative<br />

collection (e.g., black bear, coyote, grey fox, mountain lion, and<br />

raccoon). The maximum diameter of the distal canine tip, maximum<br />

labio-lingual crown diameter, and maximum mesio-distal crown<br />

diameter was recorded with digital dental calipers for each specimen.<br />

Bivariate plots were used to compare distal canine diameters with<br />

shallow pits and maximum crown measurements with puncture marks.<br />

The results indicate that the most intensively scavenged<br />

appendicular segments are the pubis and ischium, followed by the<br />

111 * Presenting Author


proximal ulna, tibia, humerus, and radius. In general, distal and<br />

especially midshaft segments were less intensively scavenged. The<br />

pattern of more intensive carnivore involvement in proximal segments<br />

likely reflects differences in the amount of soft tissue available and the<br />

extent of decomposition and disarticulation at the time of discovery.<br />

Approximately 50% of all elements examined showed evidence of<br />

animal scavenging, with 98% of elements affected by carnivores and<br />

7.5% by rodents. Carnivore tooth impact marks were most common on<br />

the hand, ribs, and lower limb elements, and rarely observed in vertebrae,<br />

sterna, and in the skull. Rodent gnawing damage most commonly<br />

occurred on the skull, and along muscle attachment sites of the femora<br />

and innominates. Spiral fractures likely caused by scavengers were<br />

observed only in six cases, and most commonly affected humeri and<br />

ulnae. Preliminary analysis of pit and puncture diameters also appears<br />

promising for differentiating tooth impact marks caused by black bears<br />

versus medium-sized carnivores (coyote, grey fox, and raccoon). The<br />

implications of these findings for understanding disarticulation<br />

sequences and limitations of time-since-death estimates are discussed.<br />

Scavenging, Taphonomy, Postmortem Interval<br />

H78 Southeast Texas Applied Forensic Science<br />

Facility (STAFS) at Sam Houston State<br />

University: A New Forensic Anthropology<br />

Human Decomposition Facility<br />

Joan A. Bytheway, PhD*, Sam Houston State University, Chemistry &<br />

Forensic Science Building, 1003 Bowers Boulevard, Box 2525,<br />

Huntsville, TX 77340<br />

The goal of this presentation is to introduce the new willed-body<br />

donor program and human decomposition facility at Sam Houston State<br />

University and discuss current research and training opportunities being<br />

conducted there.<br />

This presentation will impact the forensic science community by<br />

bringing awareness to this new research and training facility. This<br />

facility can be used by researchers to perform various types of research<br />

on human cadavers.<br />

In 2007, a proposal for the development of a willed-body donor<br />

program and forensic anthropology human decomposition facility was<br />

submitted to the administration of Sam Houston State University. The<br />

proposal was approved March 12, 2008 and internal funding was<br />

allocated for the construction of an outdoor facility and building.<br />

Construction of the outdoor facility began in early September 2008. The<br />

outdoor facility was completed in October 2008. The construction of the<br />

building began in January 2009 and was completed in July 2009. Nine<br />

acres of a 247 acre parcel, managed by the Center for <strong>Bio</strong>logical Field<br />

Studies, was dedicated to the STAFS facility. Both internal and external<br />

administrative and governmental requirements were satisfied during the<br />

latter part of 2008 and the beginning of 2009.<br />

This new facility is dedicated to research, education, and training<br />

for anthropologists, entomologists, other forensic experts, law<br />

enforcement agents and students. The College of Criminal Justice at<br />

Sam Houston State University is one of the oldest and largest criminal<br />

justice education and training facilities. It educates and trains both<br />

national and international graduate and undergraduate students and law<br />

enforcement agents. The College was established by the Texas<br />

legislature in 1965 under House Resolution 469, which directed the<br />

university to establish a program of excellence in research, training,<br />

technical assistance and consultant services, and continuing education.<br />

In 2001, the College of Criminal Justice began a Forensic Science<br />

Masters program which was accredited in 2009. In 2006, the College of<br />

Criminal Justice and the forensic science program began pursuing the<br />

development of the STAFS facility.<br />

* Presenting Author<br />

Outdoor Facility: As stated above, the nine acre parcel is located<br />

within a 247 acre parcel owned by the university. It is restricted to<br />

authorized personnel only by a numerical code gate entry and fencing<br />

surrounds the whole 247 acre perimeter. A portion of the north, east, and<br />

south property borders abut to the Sam Houston State Park. The west<br />

property line abuts to privately-owned, undeveloped forest land.<br />

One acre of the nine acre parcel is enclosed with maximum security<br />

fence and is used for research on human cadavers that are donated to the<br />

facility. The maximum security fence consists of an 8’ chain link fence<br />

with privacy slats and razor wire attached to the top. Entry to the facility<br />

is restricted to a man and field gate, visible from the building. A variety<br />

of environmental settings are enclosed in the acre, such as open,<br />

unobstructed areas, wooded, shaded, and sun exposed areas. A creek<br />

runs through a corner of the acre and an area has been designated for<br />

automobile or small building structures for indoor body depositions.<br />

Indoor Facility: The building is located approximately fifty yards<br />

from the outdoor facility and is approximately 2,400 square feet. The<br />

building contains a necropsy suite, a lab prep room, a collection room,<br />

walk-in freezer and cooler units, a digital radiograph area, and an office.<br />

The building is equipped with sophisticated equipment, such as a digital<br />

radiograph unit and a SpecFinder microscope. It is also equipped with<br />

compound and stereomicroscopes, and multiple computer workstations.<br />

The facility has received six body donations as of July 2009 and<br />

multiple research projects are underway.<br />

Forensic Anthropology, Human Decomposition, Willed-Body Donor<br />

Program<br />

H79 Establishing a Taphonomic Research<br />

Facility in the United Kingdom<br />

Tal Simmons, PhD, Peter A. Cross, MSc*, and Rachel E. Cunliffe, MSC,<br />

University of Central Lancashire, School of Forensic and Investigative<br />

Sciences, Preston, AS PR1 2HE, UNITED KINGDOM<br />

After attending this presentation, attendees will have an<br />

understanding of the ethical and legislative issues that impact the<br />

establishment of a taphonomic research facility using animal models in<br />

the United Kingdom. This will also enable comparison with the<br />

establishment of facilities using human cadavers within the United<br />

States.<br />

This presentation will impact the forensic community by explaining<br />

the importance of and need for rigorous experimental taphonomy and the<br />

benefits which the uses of animal models bring to taphonomic research.<br />

This presentation will demonstrate that with the necessary resources,<br />

enthusiasm, commitment and determination, such centres of excellence<br />

can be established.<br />

A number of taphonomic research facilities, using human cadavers,<br />

have been established in the United States. The Anthropological<br />

research Facility at the University of Tennessee was the first contributor<br />

to research in this field. More recent facilities include Texas State<br />

University, Western Carolina University, and Wichita State University.<br />

In May 2009, The University of Central Lancashire, United Kingdom,<br />

established TRACES (Taphonomic Research in Anthropology – Centre<br />

for Experimental Study), the first United Kingdom facility dedicated to<br />

taphonomic research using animal models.<br />

While human cadaver use enables important direct comparisons to<br />

forensic cases, and facilitates small scale experimental study, the use of<br />

animal models enables much larger studies to be carried out and allows<br />

more robust experimental testing of factors that have been considered<br />

important influences of the processes of decomposition.<br />

Whether a facility uses human cadavers or animal models the issues<br />

that arise can be common to both. Considerable investment of financial<br />

resources is required, and this can only be realised with support and<br />

commitment from the university’s directorate level. A major factor<br />

112


encountered in the establishment of such a facility anywhere is local<br />

community concerns, and these necessitate the need for lengthy<br />

consultation with both immediate neighbours and the wider local<br />

community. In the United Kingdom planning legislation is complex, and<br />

the potential restrictions that result can take considerable time to<br />

negotiate. Local authority planning approval is required for any change<br />

of land or building use, as well as new developments.<br />

The use of animal models also poses specific ethical and legislative<br />

concerns, many specific to the United Kingdom, that require<br />

consideration. This begins at the university ethics board which will<br />

consider all research proposals relating to animal use. The production of<br />

animals specifically for taphonomic research is rarely allowed and such<br />

animals must have been bred and reared for commercial meat production<br />

and, therefore, destined for slaughter. Environmental protection, with<br />

particular emphasis on groundwater pollution is heavily regulated and<br />

will require both groundwater vulnerability assessments as well as<br />

liaison with external regulatory bodies. Veterinary input is essential to<br />

develop procedures and protocols to deal with animal welfare and<br />

slaughter. Recent events in the United Kingdom concerning outbreaks<br />

of Foot and Mouth, Avian Flu, and Blue Tongue Disease mean that a<br />

comprehensive bio-security protocol is required. Related to bio-security<br />

are the regulations relating the use of animal by-products and their<br />

disposal.<br />

Taphonomic research using animal models is an important<br />

contributor to the forensic community, but the establishment of such<br />

facilities is complex. However, with the necessary commitment,<br />

expertise, enthusiasm and determination, such centres of excellence can<br />

be established.<br />

Taphonomic Research Facility, Decomposition, Forensic<br />

Anthropology<br />

H80 Forensic Archaeological Recovery of the<br />

Victims of the Continental Connection<br />

Flight 3407 Crash in Clarence Center,<br />

New York<br />

Dennis C. Dirkmaat, PhD*, Applied Forensic Sciences Department,<br />

Mercyhurst College, Glenwood Hills, Erie, PA 16546; Steven A. Symes,<br />

PhD, Mercyhurst Archaeological Institute, Mercyhurst College, 501 East<br />

38th, Erie, PA 16546-0001; and Luis L. Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501 East 38th Street,<br />

Erie, PA 16546<br />

After attending this presentation, attendees will learn how forensic<br />

archaeological methods were used to rapidly document the location and<br />

context of human remains within the crash wreckage. The benefits to<br />

minimizing further damage to human tissue during recovery and<br />

eventual victim identification will be discussed.<br />

This presentation will impact the forensic science community by<br />

describing in detail how a complex outdoor scene involving large<br />

numbers of fragmented and burned human remains can be processed<br />

efficiently and effectively by utilizing standard forensic archaeological<br />

scene recovery methods.<br />

On February 12, 2009 at 10:10 p.m., Continental Connection Flight<br />

3407 crashed on approach to Buffalo (NY) International Airport into a<br />

two-story house in the Buffalo suburb of Clarence Center, resulting in 50<br />

total fatalities (49 plane passengers and crew, and one house inhabitant).<br />

As one of the primary agencies responding to the incident, the Erie<br />

County <strong>Medical</strong> Examiner’s Office (ECME), Buffalo, NY, was presented<br />

with two primary responsibilities: (1) recovering the remains of the<br />

victims from the scene in a timely manner; and, (2) channeling them into<br />

the morgue for documentation and identification of the deceased. With<br />

respect to victim identification, existing morgue facilities were utilized<br />

and supplemented with professional forensic personnel and equipment<br />

supplied by the federal government’s Disaster Mortuary Operational<br />

Response Team (described in detail elsewhere).<br />

Most medical examiner’s offices are not prepared to handle disaster<br />

scene recoveries of this magnitude involving large numbers of victims.<br />

The ECME office solicited the assistance of forensic anthropologists<br />

from Mercyhurst College, Erie, PA. This presentation will focus on the<br />

evidence and victim recovery protocols employed at the Clarence Center<br />

crash site and benefits related to victim identification issues derived from<br />

the forensic archaeological methods used at this scene.<br />

In mass fatality situations, there is great pressure to quickly provide<br />

positive identification of the victims and return their remains to their<br />

families. Two options are available for a recovery in these situations.<br />

The first option is the immediate removal of the human remains and<br />

surrounding debris primarily by the first responders (i.e., firefighters and<br />

law enforcement officials), without further documentation of victim<br />

location and position, even if that involves mechanical means, such as<br />

backhoes. The benefit to this approach is that the remains can be<br />

removed from the scene very quickly, generally in 1-2 days, even when<br />

a large number of victims are involved. However, for the agency<br />

responsible for victim identification, this type of recovery comes at a<br />

high cost in terms of: (1) further destruction of human remains during<br />

recovery: (2) increased likelihood of missing tissue: and, (3) loss of<br />

contextual information that may aid in victim identification. Lost or<br />

missing information such as the proximity of potentially conjoining<br />

elements, and association of personal effects, or even key plane parts can<br />

potentially adversely affect or delay victim identification. In other<br />

words: days saved at the scene can easily result in days or even weeks,<br />

lost at the morgue.<br />

The second option is to employ forensic archaeological protocols.<br />

Detailed contextual data is recorded during victim recovery and the<br />

process includes professionals trained in the recognition and<br />

identification of fragmented and burned human remains. The result is an<br />

efficient and effective recovery that is conducted at a rapid and<br />

systematic pace. Further damage to human tissue is minimized. Key<br />

contextual and spatial information is recorded and preserved that may<br />

eventually aid in the identification effort. This latter approach was used<br />

during the recovery of the victims of the crash of Flight 3407.<br />

The forensic archaeological methodologies employed at the<br />

Clarence Center crash site are similar to those utilized on all outdoor<br />

crime scene recoveries conducted by the authors (described elsewhere).<br />

A “collapsing circle” excavation strategy was employed at this crash<br />

scene. Material was removed from the outer edges of the fuselage by<br />

hand, working inward in a more or less vertical (cake-cutting) orientation<br />

until human remains were encountered. Individual victims were<br />

carefully and fully exposed, their position noted via an electronic total<br />

station, photographed, placed in an individual body bag, and then<br />

removed from the scene. The recovery progressed at a rapid pace<br />

without compromising either the National Transportation Safety Board<br />

investigation or the condition of the remains. Several excavation teams<br />

worked concurrently and the entire recovery process was completed in<br />

four days. In addition to the in situ exposure and removal of all human<br />

remains, all of the fuselage debris was collected and screened through ¼<br />

in mesh screens. The combination of excavation methodologies<br />

employed, screening efforts and the relatively small and confined debris<br />

field of this particular incident, suggests that nearly 100 percent of the<br />

recoverable human remains from this scene was recovered in an efficient<br />

and effective forensic archaeological recovery.<br />

Forensic Archaeology, Plane Crash, Excavation Protocols<br />

113 * Presenting Author


H81 Spatial Patterning of Clandestine Graves in<br />

the Investigation of Large Scale Human<br />

Rights Violations: The Example of the<br />

Spanish Civil War Rearguard Repression<br />

Derek Congram, MSc*, 706-1850 Comox Street, Vancouver, BC V6G<br />

1R3, CANADA<br />

After attending this session attendees will understand the<br />

importance of studying spatial patterns in the location of clandestine<br />

graves in contexts of armed conflict. Attendees will learn about the<br />

primary factors that influence offender choice of burial site for victims<br />

of wide scale killings in repressive contexts. This method will help<br />

investigators conduct more effective searches for victims of forced<br />

disappearance.<br />

This presentation will impact the forensic science community by<br />

discussing effective methods in the search for clandestine graves in the<br />

investigation of Human Rights violations and forced disappearances.<br />

The creation of clandestine graves may be influenced by many<br />

factors but few are very influential and these few commonly reoccur<br />

across different cultural contexts. This means that grave locations can be<br />

reasonably well predicted in certain contexts as part of the search for<br />

missing persons, victims of human rights violations.<br />

In the context of the Spanish Civil War (1936-1942), over 100,000<br />

civilians were detained, executed and buried in anonymous, clandestine<br />

graves by rebel soldiers and militia members in the rearguard of the war<br />

and postwar repression. The lack of formal criminal investigations in<br />

this context, and the recent movement (2000-present) to find and exhume<br />

victims allows researchers to study various aspects of the crimes,<br />

including spatial patterns related to clandestine graves. Similar patterns<br />

have been observed by the author in quite different cultural and temporal<br />

contexts (e.g., Bosnia, Iraq) suggesting that there are broad factors<br />

influencing offender decisions (e.g., logistics, least effort principle,<br />

restriction of resources during periods of armed conflict). As<br />

anthropologists and archaeologists are commonly called upon to assist<br />

with the location and excavation of clandestine graves (both<br />

domestically and internationally), it is important to evaluate the context<br />

in which the crimes are taking place and the factors that may influence<br />

the decisions of those committing the killings.<br />

This study of spatial patterns will assist forensic anthropologists<br />

and archaeologists in their efforts to locate clandestine graves in similar<br />

contexts of internal armed conflict resulting in the forced disappearance<br />

of civilians. Preliminary analysis of results demonstrates that graves are<br />

typically located between 1 and 10 km of the location from which the<br />

victim was detained. Graves are almost never more than 50 metres from<br />

a road, with main roads being the principal route used (rather than<br />

secondary and minor roads). The physical locations of gravesites are<br />

typically in areas not visible from the point of origin, urban areas or even<br />

close surroundings (e.g., olive groves, low-lying basins). Commonly,<br />

pre-existing features are used, such as wells, mines and ravines. All of<br />

these features speak principally of the importance of cost in resources<br />

when having to dispose of victims. It appears that although the offenders<br />

are acting as the local authority and with consent from the governing<br />

military – and so acting with impunity – there is still a clandestine<br />

element in their behavior resulting in them committing killings and<br />

creating burials in places not easily seen but also those which are not<br />

costly in terms of time and energy. Despite the social disorder in armed<br />

conflict and the justification of killings in rhetoric employed by the<br />

military and civil authorities, there continues to be a degree of deliberate<br />

secretiveness when authorites choose where to dispose of the bodies of<br />

their civilian victims. There is also a fair degree of consistency in<br />

behavior across broad geographic areas governed by different<br />

individuals. A greater understanding of the factors that influence killer<br />

behavior will result in more effective searches for graves by forensic<br />

anthropologists and archaeologists involved in the investigation of<br />

* Presenting Author<br />

crimes against humanity, genocide, forced disappearance and similar<br />

human rights violations.<br />

Clandestine Grave Prospection, Spatial Analysis, Forced<br />

Disappearance Investigation<br />

H82 Validity of Portable X-Ray Fluorescence in<br />

Assistance With Identification of<br />

Individuals in a Burial Setting by<br />

Comparison With mtDNA<br />

Jennifer F. Byrnes, MA*, SUNY at Buffalo, Department of Anthropology,<br />

380 MFAC, Ellicott Complex, Buffalo, NY 14261-0026; Peter J. Bush,<br />

BS, SUNY at Buffalo, South Campus Instrument Center, B1 Squire Hall,<br />

South Campus, Buffalo, NY 14214; Esther J. Lee, MSc, and D. Andrew<br />

Merriwether, PhD, Binghamton University, Department of Anthropology,<br />

PO Box 6000, Binghamton, NY 13902-6000; and Joyce E. Sirianni, PhD,<br />

SUNY at Buffalo, Department of Anthropology, 380 MFAC, Ellicott<br />

Complex, Buffalo, NY 14261-0026<br />

After attending this presentation, attendees will be able to discuss<br />

practical usage of portable X-Ray fluorescence in a burial setting with<br />

unknown individuals.<br />

This presentation will impact the forensic science community by<br />

increasing knowledge of the application of new technologies to old<br />

questions to help thoroughly understand the limits of the technology<br />

itself, and what it can do in cases of unknown identity.<br />

The Jackson Street Burials were excavated in 1997 after being<br />

discovered during work on a road construction site in Youngstown, NY.<br />

The eleven burials (five adults and six children) under investigation have<br />

no known history either from physical evidence or from past burial<br />

records. Based on the likely association of artifact assemblage and the<br />

history of Fort Niagara, the cemetery was used sometime between the<br />

late 1700s and 1840. The individuals were buried in an extended<br />

(supine) posture, in an east/west orientation with the head towards the<br />

west end of the grave. Based on the orientation of the burials,<br />

preliminary analysis suggested these individuals may be of European<br />

ancestry or buried by Christians. The purpose of this study was to gain<br />

insight into the identity and relatedness of these unknown individuals by<br />

DNA analysis, and to explore the possible application of portable X-ray<br />

Fluorescence (XRF) in a burial setting.<br />

Certain trace elements in bone provide specific and pertinent<br />

information about the individual’s environmental exposure, diet and<br />

geographical location of residence. XRF is a nondestructive method for<br />

analysis of trace elements and portable instruments are available which<br />

allow trace element analysis of samples in the field or in collections. The<br />

remains of the eleven individuals were analyzed by portable XRF. The<br />

results show individuals can be divided into groupings based on<br />

statistical analysis using Ward’s agglomerative method, focusing on<br />

strontium readings from bones and teeth. Due to strontium’s<br />

incorporation in bone and teeth from the local environment, it is<br />

theoretically possible to assess if an individual moved between areas of<br />

different strontium levels. Teeth incorporate strontium during fetal<br />

(deciduous) and childhood (permanent) development, and represent the<br />

intake at that specific point in time. Bone is constantly remodeling<br />

throughout one’s life, and only represents the strontium intake for years<br />

before death. The hypothesis of this analysis was that the individuals<br />

may be related to one another due to dietary intake of strontium based on<br />

geographical location. Individuals 2, 10, and 13 had high bone strontium<br />

concentrations. Individual 2 had high teeth strontium concentrations.<br />

Individuals 7 and 13 had intermediate strontium concentrations in their<br />

teeth. Individual 7 had intermediate bone strontium concentrations. All<br />

others (1, 3-6, 8-10) had lower strontium in teeth, and intermediate in<br />

bones. This suggests groupings as follows for bone: Group 1<br />

(Individual 13), Group 2 (Individuals 2 and 10), Group 3 (Individuals 3,<br />

114


4, 7, and 8), and Group 4 (Individuals 1, 5, 6, and 9). For teeth, the<br />

groupings are as follows: Group 1 (Individual 7 and 13), Group 2<br />

(Individual 2), and Group 3 (Individual 1, 3, 4, 5, 6, 8, 9, and 10).<br />

Advancements in DNA extraction and amplification techniques<br />

have produced successful studies utilizing ancient DNA (aDNA) in<br />

various anthropological studies. Mitochondrial DNA (mtDNA) has been<br />

more successful in genetic analysis of skeletal remains, due to its high<br />

copy number than nuclear DNA. Many studies have utilized the mtDNA<br />

in understanding population history based on its unique characteristics<br />

including no recombination, maternal inheritance, and higher mutation<br />

rate particularly in the non-coding, control region. We extracted DNA<br />

from teeth specimens from each individual and sequenced the mtDNA<br />

control region following standard procedures. Results show that six<br />

individuals (burials 3-6, 8, and 9) have Native American ancestry. Two<br />

individuals (burial 8 & 9) have the exact same haplotype, suggesting<br />

shared maternal ancestry. Other individuals are not maternally related.<br />

Burial 2 seems to be of European origin and we were unable to resolve<br />

burial 7, while three samples (burials 1, 10, and 13) failed to produce<br />

successful DNA results.<br />

Our study utilizing XRF and mtDNA analysis show conflicting<br />

results when compared with the osteological assessment with regards to<br />

geographical origins. The XRF groups formed based on strontium<br />

concentration compared to the related groups of mtDNA individuals<br />

presents some interesting scenarios. XRF may not be the best method to<br />

use for geographical region or relatedness within a group like this, but<br />

does offer insight into who these people may have been when used in<br />

combination with the mtDNA evidence. This study draws attention to<br />

problems that can arise from archaeological deductions and to the<br />

utilization of genetic analysis, which can validate or reject old<br />

conclusions to further our understanding.<br />

Forensic Anthropology, Portable X-Ray Fluorescence,<br />

Mitochondrial DNA<br />

H83 The Assessment and Determination<br />

of Forensic Significance in<br />

Forensic Anthropology<br />

Lelia Watamaniuk, BSc*, University of Toronto, Department of<br />

Anthropology, 3359 Mississauga Road, North, NB 226, Mississauga, ON<br />

M4V 1R6, CANADA<br />

After attending this presentation, attendees will better understand<br />

the theoretical groundwork from which to assess forensic significance<br />

via three models of decision making.<br />

This presentation will impact the forensic science community by<br />

examining and formulating more systematic, supportable investigative,<br />

and analytical processes; and, by developing a higher theoretical<br />

framework for the field of forensic sciences as a whole.<br />

The purpose of this presentation is to examine the decision making<br />

processes and underlying theory governing the determination of the<br />

forensic significance of human remains. Currently, decisions of forensic<br />

significance are made based largely on investigator experience, with<br />

little in the way of a systematic examination or discussion of the theory<br />

underlying conclusions. Attendees of this presentation will gain a<br />

theoretical groundwork from which to assess forensic significance via<br />

three models of decision making. The impact of this discussion on<br />

forensic anthropology will be felt not only in courtroom, by further<br />

codifying and systematizing our methods, but throughout the field of<br />

Forensic Science, by introducing a higher theoretical platform from<br />

which to unify its sub-disciplines.<br />

Forensic significance, the relevance of human remains or physical<br />

evidence to a medico-legal case, is the cornerstone of forensic<br />

investigation. Establishing the forensic significance of found human<br />

remains is often the first step in the investigative process and the basis<br />

upon which human and material resources are allocated in a death<br />

investigation. The determination of the forensic significance of human<br />

remains may seem to be an obvious decision, based on context or the<br />

investigator’s experience, but a closer examination of the decision<br />

making process is warranted in the age of Daubert and Mohan.<br />

Transparent, repeatable and statistically supportable methods of positive<br />

identification, assessment of the biological profile and trauma analysis<br />

have been required of the discipline as a result of these rulings, but the<br />

crucial step of establishing the need for a death investigation to begin<br />

have not. Rather, forensic significance is taken as the basis from which<br />

all other methods proceed. Authors such as Byers (2008), Rogers (2005)<br />

and Berryman (1991) have addressed specific issues of establishing<br />

forensic context, but the decision making process and the theory<br />

underlying it have not been examined systematically in the literature.<br />

Dawes et. al (1998) demonstrate the superiority of actuarial<br />

(information/calculation) over clinical (experience/discretionary) based<br />

methods of decision making in medicine and psychology. Klepinger<br />

argues; however, that age of automatic, formula based decision making<br />

in forensic anthropology has not yet arrived and may never (2006). In<br />

an attempt to bridge the gap between these approaches and to address the<br />

underlying theory behind the determination of forensic significance,<br />

three models are proposed for the decision making process: the Forensic<br />

Significance Paradigm, The Bayesian Model, and the Hierarchy Model.<br />

The Forensic Significance Paradigm borrows its structure from<br />

Inman and Rudin’s (2002) discussion of the origins of evidence. The<br />

focus in this model is the identification or inclusion of human remains<br />

within a class (modern, historic, archeological) along with the<br />

individualization of those remains by excluding specific characteristics<br />

(cemetery, autopsy, coffin artifacts). The Bayesian Model uses the<br />

concept of hypothesis formation followed by iterative decision making at<br />

each step of evidence collection and analysis (Taroni, 1998). The<br />

hypothesis of forensic significance is re-evaluated with each piece of<br />

evidence collected and at each step of the analysis of the remains. The<br />

Hierarchy Model, based on the Hierarchy of Propositions Model<br />

described by Cook et al (1998) requires a pair of opposing propositions<br />

at each of three levels of decision making. This model combines the<br />

identification/individualization process of the Forensic Significance<br />

Paradigm with the step by step deliberation of the Bayesian Model.<br />

By assuming that the determination of forensic significance is an<br />

obvious, experience based activity, without investigating the underlying<br />

theory and thought processes behind decisions of significance, forensic<br />

anthropologists run the risk of a lack of transparency in the courtroom<br />

and potentially incorrect judgment. Examining the processes by which<br />

we determine forensic significance serves two purposes: the formulation<br />

of more systematic, supportable investigative and analytical processes;<br />

and, the development of a higher theoretical framework for the field of<br />

forensic sciences as a whole.<br />

Forensic Anthropology, Forensic Significance, Theoretical Models<br />

H84 A Radiographic Database for<br />

Forensic Anthropology<br />

Stephen D. Ousley, PhD*, Mercyhurst College, Department of Applied<br />

Forensic Anthropology, 501 East 38th Street, Erie, PA 16546; Kyra E.<br />

Stull, MS*, Mercyhurst College, 501 East 38th Street, Erie, PA 16546;<br />

and Kathryn L. Frazee, MS*, 351 West 22nd Street, Floor 2, Erie,<br />

PA 16502<br />

After attending this presentation, attendees will understand the need<br />

for updated aging standards in subadults and learn of a resource for age<br />

estimation methods in subadults.<br />

115 * Presenting Author


This presentation will impact the forensic community by informing<br />

practitioners of a future resource for researching skeletal development<br />

and methods of aging subadults.<br />

There are large numbers of children who are murdered or go<br />

missing every year in the United States. In analyzing modern subadult<br />

remains, it is surprising that few Daubert-compliant standards exist for<br />

skeletal or dental age estimation. Instead, forensic anthropologists<br />

estimating age in children rely uncritically on data that may have been<br />

collected over 80 years ago or from historic archaeology contexts. For<br />

instance, Scheuer and Black (2000), the standard anthropological<br />

reference text used in evaluating immature skeletal remains, provides<br />

average bone lengths by age, citing Maresh (1970). Although Maresh’s<br />

work was published in 1970, it was based on data collected in the 1930’s,<br />

as are most aging methods based on dental eruption and development. It<br />

has been well documented that American populations, and many others,<br />

have shown significantly greater early childhood growth, earlier<br />

development and maturation, and larger stature than in previous<br />

generations, so estimates for modern individuals using older data will be<br />

biased upwards. Further, growth and development varies by ancestry.<br />

The reference data come overwhelmingly from middle-class white<br />

children, while substantially more and more forensic casework involves<br />

non-whites. Therefore, the validity of current methods is in doubt.<br />

Additionally, statistical approaches using dental or skeletal<br />

indicators have rarely been employed, and anthropologists have instead<br />

used published mean bone lengths by age, as in Scheuer and Black<br />

(2000). Such age estimates are merely reasonable guesses based on<br />

subjecting weighing of indicators and an arbitrary age estimation range.<br />

Because the error rate of such a method can’t be reliably estimated, it<br />

also falls short under Daubert. Statistical approaches, including<br />

transition analysis and logistic regression, provide explicit confidence<br />

intervals, allowing errors to be controlled for, and address Daubert<br />

requirements for errors in estimation.<br />

Recognizing that methods for constructing the biological profile in<br />

modern adults were based on nineteenth century samples, the Forensic<br />

Data Bank (FDB) at the University of Tennessee, Knoxville, was started<br />

in 1986 with a grant from the National Institute of Justice. Similarly,<br />

because the current methods used to estimate age in subadults are also<br />

outdated, funding was awarded for the creation of a digital radiographic<br />

database in October 2008. In the absence of modern subadult skeletal<br />

collections, forensic anthropologists must turn to radiographs.<br />

Data were collected from files in medical examiners’ and coroners’<br />

offices and were limited to positively identified individuals born after<br />

1990 and less than 20 years old. Most medical examiner’s offices<br />

practice radiography in their daily protocol, and full body surveys are<br />

often performed on all infants. As of July 1, 2009, over 7,000<br />

radiographs had been scanned from over 1,500 children, and some<br />

offices will continue to contribute digital radiographs. The sampling<br />

method has produced samples that are geographically and ethnically<br />

diverse. Demographic information, including age, sex, ancestry,<br />

ethnicity, date of birth, date of death, and cause of death were collected,<br />

along with other routinely collected data (height, weight, other<br />

measurements, and other information) and entered into an electronic<br />

database. The scans and demographic information will be made<br />

available for online access in a manner similar to the National<br />

<strong>Bio</strong>medical Imaging Archive (http://ncia.nci.nih.gov/) thanks to<br />

additional funding. Making the database available online will allow<br />

researchers to develop new methods for identifying subadult remains and<br />

allow contributors to submit digital resources remotely.<br />

Some preliminary results have already revealed important benefits<br />

to collecting modern data and analyzing them in a statistical framework.<br />

For instance, as suspected, the initial appearance of certain epiphyses on<br />

radiographs occur earlier in the modern data, and using a ninety-five<br />

percent confidence interval produces narrower age predictions than<br />

previous estimates, which were apparently most often based on ages of<br />

earliest and latest appearance. Further research involves establishing<br />

new bone length standards, investigating changes in bone proportions<br />

* Presenting Author<br />

during maturation, and adjusting for magnification and distortion effects<br />

when measuring radiographs.<br />

Subadult Age Estimation, Daubert, Secular Changes<br />

H85 New Scapular Measurements<br />

for Determining Sex<br />

Natalie Uhl, MS*, 308 North Orchard Street, Apartment 7, Urbana,<br />

IL 61801<br />

The goal of this presentation is to inform attendees about the<br />

performance in sex estimation of eight new linear measurements on the<br />

human scapula. This research illustrates new scapular measurements<br />

that effectively discriminate between male and female scapulae.<br />

This presentation will impact the forensic community by presenting<br />

new linear measurements which correctly estimate sex from the human<br />

scapula using discriminant analysis.<br />

It has long been noted by physical anthropologists that the human<br />

scapula shows a large amount of variation (Dwight, 1887) yet typical<br />

osteological examination includes only two measurements of this bone<br />

(maximum height and scapular breadth). Not surprisingly, these<br />

measurements do not effectively capture scapular variation and generally<br />

fail to accurately estimate sex or ancestry. Uhl et al. (2007) noted that a<br />

discriminant function analysis using these two measurements yielded<br />

only 58% correct classification for ancestry between two groups for 499<br />

individuals in the Forensic Databank. Further, maximum height has<br />

shown only about a 30% classification rate when discriminating between<br />

males and females (Dabbs, 2009). Previously, Bainbridge and Tarazaga<br />

(1956) noted shape differences in several areas of the scapula, including<br />

the acromion process, scapular spine, suprascapular notch, superior<br />

angle, and vertebral and axillary borders. However, they treated these<br />

features as non-metric rather than metric variables, thus making<br />

quantification and application difficult.<br />

Recently, geometric morphometrics has allowed for the<br />

quantification and visualization of scapular variation for ancestry<br />

determination (Uhl et al., 2007). Unfortunately, to be of practical use to<br />

most forensic anthropologists, variation must be captured by linear<br />

measurements. Therefore the goal of this research is to develop new<br />

linear measurements to estimate sex based on areas that were previously<br />

shown to have the most shape variation (Uhl et al., 2007)<br />

Eight linear measurements were taken (medial muscle attachmentlateral<br />

muscle attachment, maximum height of glenoid, A-P size of the<br />

glenoid, superior glenoid border-superior scapular angle, lateral acromial<br />

angle-inferior acromial angle, medial acromial angle-inferior acromial<br />

angle, lateral acromial angle-medial acromial angle, coracoid rootcoracoid<br />

tip) on a sample of 51 individuals from the Hamann-Todd<br />

Collection, housed at the Cleveland Museum of Natural History.<br />

These eight measurements were subjected to stepwise discriminant<br />

function analysis (DFA) with p(F) = 0.05 to enter and p(F) = 0.10 to<br />

remove. The DFA was significant (Wilk’s λ = 0.298, p


H86 Sex Estimation From the Calcaneus Using<br />

Discriminant Function Analysis<br />

Daniel L. DiMichele, BS*, Texas State University, 601 University Drive,<br />

ELA 232, San Marcos, TX 78666<br />

After attending this presentation, attendees will be better informed<br />

of the importance of the uses that the calcaneus can serve in estimating<br />

sex during the creation of the biological profile.<br />

The presentation will impact the forensic science community by<br />

showing the importance the calcaneus can serve in providing an<br />

additional reliable method for sex estimation via discriminant functions<br />

based on an American forensic population.<br />

Reliable methods for sex estimation during the creation of a<br />

biological profile are important to the forensic community in instances<br />

when the common skeletal elements used to assess sex are absent or<br />

damaged. Sex estimation from the calcaneus has potentially significant<br />

importance for the forensic community. Specifically, measurements of<br />

the calcaneus provide an additional reliable method for sex estimation<br />

via discriminant function analysis based on a North American forensic<br />

population.<br />

The calcaneus was chosen for study because of its size and the<br />

durability, which permit it to withstand postmortem alteration (Drechsler<br />

et al 1996; Bidmos and Asala 2003, 2004; Introna et al 1997). Previous<br />

studies have estimated sex using the calcaneus and other tarsal bones<br />

(Bidmos and Asala 2003, 2004; Gualdi-Russo 2007, Introna et al 1997,<br />

Murphy 2002, Steele 1976; Wilbur 1998), However, these studies use<br />

populations from an older American sample (birth years from late 19 th -<br />

early 20 th century), Italy, South Africa, prehistoric Polynesian, and<br />

prehistoric Native American and thus are not applicable a modern North<br />

American population. It is important to take into account demographics,<br />

secular change and regional origin of the collection being used (Komar<br />

and Grivas 2008). Due to secular change and regional origin, previous<br />

studies must be revised and existing methods evaluated for populations<br />

of differing geographic origin.<br />

Research on a modern American sample was chosen in order to<br />

develop up-to-date population specific discriminant functions for sex<br />

estimation. The current study addresses this matter, building upon<br />

previous research (Bidmos and Asala 2003, 2004; Gualdi-Russo 2007,<br />

Introna et al 1997, Murphy 2002, Steele 1976; Wilbur 1998) and<br />

introduces a new measurement, posterior circumference that promises to<br />

advance the accuracy of use of this single, highly resistant bone in future<br />

instances of sex determination from partial skeletal remains.<br />

Data was collected from The William Bass Skeletal Collection,<br />

housed at the University of Tennessee. Sample size includes 260 adult<br />

American White individuals born between the years 1900 and 1985. The<br />

sample was comprised of 131 females and 129 males. Skeletons used for<br />

measurements were confined to those with fused diaphyses showing no<br />

signs of pathology or damage that may have altered measurements, and<br />

that also had accompanying records that included information on<br />

ancestry, age, and sex. Measurements collected and analyzed include<br />

maximum length, load-arm length, load-arm width, and posterior<br />

circumference. Posterior circumference was obtained by measuring the<br />

minimum circumference of the area between the dorsal articular facet<br />

and the most posterior point on the calcaneus avoiding the calcaneal<br />

tuberosity.<br />

The sample was used to compute a discriminant function, based on<br />

all four variables, and was performed in SAS 9.1.2. The discriminant<br />

function obtained an overall cross-validated classification rate of<br />

86.90%. Females were classified correctly in 90.08% of the cases and<br />

males were correctly classified in 83.72% of the cases.<br />

Due to the increasing heterogeneity of current populations, further<br />

discussion on this topic will include the importance that the re-evaluation<br />

of past studies has on modern forensic populations. Additionally due to<br />

secular and micro evolutionary changes among populations, future<br />

research must include additional methods being updated, and new<br />

methods being examined, both which should cover a wide population<br />

spectrum.<br />

Calcaneus, Sex Estimation, Discriminant Function<br />

H87 Sex Determination Using the Calcaneus<br />

in Koreans<br />

Deog-Im Kim, PhD*, Department of Anatomy, Kwandong University<br />

College of Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

Yi-Suk Kim, MD, PhD, Ewha Womans University, Department of<br />

Anatomy, School of Medicine, 911-1, Mok6-dong, Yangcheon-gu, Seoul,<br />

158710, KOREA; Dae-Kyoon Park, MD, PhD, Department of Anatomy,<br />

College of Medicine, Soonchunhyang University, 366-1 Sangyong-dong,<br />

Cheonan-si, Seoul 330946, KOREA; and U-Young Lee, MD, and Seung-<br />

Ho Han, MD, PhD, Department of Anatomy, College of Medicine, The<br />

Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA<br />

After attending this presentation, attendees will understand the<br />

utility of sex determination using the calcaneus and an example of a<br />

practical application of unknown skeletal remains for sex determination.<br />

This presentation will impact the forensic science community by<br />

suggesting the possibility for sex determination using the calcaneus<br />

when analyzing a Korean skeletal sample. This study is the first to test<br />

use of the calcaneus for sex determination by discriminant function<br />

analysis in Koreans. The results will be helpful for sex determination<br />

and distinguishing population differences in the calcaneus.<br />

Sex determination from skeletal remains is of major interest to<br />

forensic anthropologist and important variable for personal<br />

identification. The calcaneus is the largest of the foot bones and is often<br />

recovered intact in forensic cases. The skull and many bones, such as the<br />

femur, tibia, and humerus, have been used for sex determination but the<br />

calcaneus has not been sufficiently assessed for use in individual<br />

identification. The aim of this study is to define an equation for sex<br />

determination using discriminant function analysis and compare with<br />

other populations.<br />

The sample consisted of 90 sets of the dry calcaneus of known age<br />

and sex at Department of Anatomy, Yonsei University College of<br />

Medicine in Korea. The calcaneal sample consisted of 63 males and 27<br />

females. The method was investigated based on 10 metric variables:<br />

three length measurements, three breadth measurements, and four height<br />

measurements. Data was statistically analyzed with the computer<br />

program SPSS 17.0.<br />

Bilateral asymmetry was assessed using paired t-tests. Four of the<br />

10 measurements differed significantly between the right and left sides<br />

(P < 0.05). Most measurements (nine of 10), showed statistically<br />

significant difference between sexes (P < 0.05). A discriminant<br />

function analysis was applied to assess accuracy for both the right and<br />

left sides. The accuracy of discriminant function analysis was 87.2% for<br />

the right side, and 81.6% for the left side. For the right side, the<br />

discriminant function is: D = 0.227 x (maximum height) + 0.227 x<br />

(cuboidal facet height) – 16.062. The sectioning point is -0.7296. The<br />

canonical correlation of discriminant function is 0.610, and Wilk’s<br />

Lambda is 0.627. For the left side, the discriminant function is: D =<br />

0.368 x (dorsal articular facet length) + 0.248 x (dorsal articular facet<br />

breadth) – 16.808. The sectioning point is -0.8047 and the canonical<br />

correlation is 0.66, and Wilk’s Lambda is 0.564. The statistical results<br />

indicate that it is possible to discriminate between males from females<br />

using measurement of the calcaneus<br />

Bidmos and Asala among other studies used measurements similar<br />

to this study. Bidmos and Asala (2003, 2004) 1,2 concluded that the<br />

calcaneus of a South African sample showed statistically significant<br />

differences between sexes. The accuracy of discriminant function<br />

analysis was 90.6% in South African White, and 85.3% in South African<br />

Black using stepwise discriminate function analysis. The discriminant<br />

117 * Presenting Author


equation was composed three variables in Bidmos and Asala and two<br />

variables in this study. The variables used are different between the<br />

South African and Korean samples. The results of the two studies<br />

indicate that the calcaneus is useful for sex determination of unknown<br />

skeletal remains. Furthermore, this study will be compared with other<br />

studies in detail, we can distinguish among populations.<br />

References:<br />

1 Bidmos MA and Asala SA. Discriminant function sexing of the<br />

calcaneus of the South African Whites. J Forensic Sci 2003;<br />

48:1213-8.<br />

2 Bidmos MA and Asala SA. Sexual dimorphism of the calcaneus of<br />

South African Blacks. J Forensic Sci 2004; 49:446-50.<br />

Calcaneus, Sex Determination, Korean<br />

H88 Postcranial Sex Estimation of Individuals<br />

Considered Hispanic<br />

Meredith L. Tise, BA*, Texas State University, Department of<br />

Anthropology, 601 University Drive, ELA 232, San Marcos, TX 78666;<br />

and Kate Spradley, PhD, Texas State University, Department of<br />

Anthropology, 601 University Drive, San Marcos, TX 78666<br />

After attending this presentation, attendees will learn which<br />

elements of the postcranial skeleton and specific measurements are the<br />

most accurate in estimating the sex of individuals considered Hispanic in<br />

the United States.<br />

This presentation will impact the forensic science community by<br />

discussing the rapidly growing Hispanic population within the United<br />

States and why it is important to provide population specific methods for<br />

sex estimation.<br />

According to the U.S. Census Bureau in 2005, the Hispanic<br />

population in the United States represented the largest minority, totaling<br />

42.7 million individuals. This number continues to grow every year. It<br />

is critically important that forensic anthropologists are able to identify<br />

deceased individuals considered Hispanic, although currently, the field<br />

of forensic anthropology lacks the data needed to effectively do so.<br />

Today, the majority of identification methods currently used in the<br />

United States by forensic anthropologists were developed using<br />

American Black and White individuals.<br />

When unidentified skeletal remains are found, estimating sex is one<br />

of the primary aspects of the biological profile. To estimate sex, when<br />

bones of the pelvis are not present, the initial observations are typically<br />

aimed at the skull and the overall size of the skeleton. According to<br />

Spradley et al (2008), these observations cause Hispanic males to<br />

frequently be misclassified as female. Hispanic individuals have been<br />

described as smaller and more gracile than the groups to which they are<br />

compared, including American Whites, Blacks, and (sometimes) Native<br />

Americans (Spradley et al 2008).<br />

To help the forensic anthropological community more accurately<br />

estimate the sex of individuals considered Hispanic, this study used<br />

Hispanic individuals from the Forensic Anthropology Data Bank. Only<br />

positively identified individuals or individuals with known sex and<br />

ancestry were used, which consisted of a sample of 17 females and 70<br />

males. Further, only standard postcranial metrics were used in the<br />

analysis (Buikstra and Ubelaker 1994). First, a stepwise discriminant<br />

function was run in Statistical Analysis Software (SAS) 9.1.2 on each<br />

postcranial element to determine the best subset of variables for sex<br />

estimation, followed by a discriminant function analysis (DFA) on the<br />

stepwise selected variables. A comparison of the cross-validated<br />

classification rates, from the DFA, for each post-cranial element revealed<br />

that the radius and ulna are the best elements for sex estimation for<br />

individuals considered Hispanic. Cross-validated classification rates<br />

using the radius are 87.5% for females and 85.7% for males. Crossvalidated<br />

classification rates using the ulna are 88.9% for females and<br />

85.3% for males.<br />

* Presenting Author<br />

Sex estimation rates from the radius and ulna are higher than when<br />

using metric methods derived from American Black and White<br />

individuals (Spradley 2008). The results from this study are considered<br />

preliminary due to the fact that the individuals used in the present<br />

analysis are not all from known geographic origins and the small female<br />

sample size. However, the results highlight that individuals considered<br />

Hispanic exhibit sexual dimorphism differently than American Blacks<br />

and Whites and require different methods of sex estimation. Forensic<br />

anthropologists are impacted by the growing Hispanic population in the<br />

United States, and studies, such as this one, are important to the growing<br />

field of forensic anthropology, as well as the changing dynamics of the<br />

United States.<br />

Forensic Anthropology, Sex Estimation, Hispanics<br />

H89 The Use of Geometric Morphometric<br />

Analysis for Subadult Sex Estimation<br />

Utilizing Innominates<br />

Jennifer M. Vollner, MS*, 328 Baker Hall, East Lansing, MI 48824;<br />

Nicholas V. Passalacqua, MS, 3518 Hagadorn Road, Okemos, MI<br />

48864-4200; and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic Anthropology, 501 East 38th Street,<br />

Erie, PA 16546<br />

The goal of this presentation is to inform attendees about a new<br />

geometric morphometric analysis (GMA) approach to the estimation of<br />

sex of subadult skeletal remains via innominates.<br />

The presentation will impact the forensic science community by<br />

exploring the potential of sex estimation of subadult innominates using<br />

GMAs and discriminant function analysis.<br />

The estimation of the biological profile, particularly the estimation<br />

of sex, is notoriously difficult in subadults because of the immaturity of<br />

the skeleton. This issue affects both bioarchaeologists and forensic<br />

anthropologists working with juvenile skeletal remains. The difficulty in<br />

the estimation of sex is because the skeleton is not fully sexually<br />

developed before puberty and is therefore less sexually dimorphic. In<br />

skeletally mature adults; however, the innominate is recognized as one of<br />

the best indicators of biological sex. Due to the high reliability in sex<br />

estimation of mature adult skeletal remains, the innominate was selected<br />

as the focus of this study.<br />

Non-metric studies of juvenile innominates have been previously<br />

conducted with a wide range of accuracy rates from slightly better than<br />

chance, to almost perfect classification. However, most relate to the<br />

morphology of the sciatic notch and do not take other morphologies into<br />

account. Further, these subadult sex estimation accuracy rates often<br />

increase as the individuals’ ages increase, which may bias the results of<br />

the younger specimen estimates. Metric studies of subadults are difficult<br />

to conduct because of the age related variation in size and relatively<br />

small sample sizes available. The geometric morphometric study<br />

presented here provides a method to accommodate age related size<br />

variation thus focusing on shape. In addition, this research captures the<br />

morphologies of the innominate using 3D landmarks that have been<br />

shown to have a high accuracy of sex estimation in adults (Klales et al.<br />

2009; Vollner 2009).<br />

A sample of 36 left subadult innominates from the Hamann-Todd<br />

Osteological Collection, which is housed at the Cleveland Museum of<br />

Natural History, was utilized. The individuals were of known age, sex,<br />

and ancestry without any apparent pathological conditions. Age-at death<br />

of the individuals ranged from 4 to 19 years. A total of 18 landmarks<br />

were collected using a digitizer on each individual and analyzed in<br />

118


MorphoJ (Klingenberg 2008) to conduct a Procrustes’ fit. A discriminant<br />

function analysis with a Wilks’ stepwise option was then conducted to<br />

prevent overfitting and to generate classificaiton rates.<br />

The initial discriminant function analysis after the Procrustes’ fit in<br />

MorphoJ demonstrated that correct classification increased with the age<br />

of the individual. The shape differences as displayed by MorphoJ<br />

indicate that sub-adult pelvic sexual dimorphism is similar, yet more<br />

subtle, than adult pelvic sexual dimorphism. The discriminant function<br />

yielded a 75% correct cross-validated classification for the estimation of<br />

sub-adult sex using a Wilks’ stepwise function. Females were classified<br />

at a higher rate of accuracy at 81.8% correct, while males classified at<br />

64.3% correct. This high classification rate for females versus males<br />

may suggest that subadult innominates tend to illustrate more female<br />

morphologies before skeletal maturity. Further studies will be conducted<br />

using larger sample sizes to more conclusively analyze the geometric<br />

morphometric morphologies of subadult innominates.<br />

Geometric Morphometrics, Sex Estimation, Discriminant Function<br />

Analysis<br />

H90 Secular Trends in Cranial Morphological<br />

Sexing: The Mastoid Process<br />

Angela M. Dautartas, MA, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; and Kanya Godde, PhD*, University of<br />

Tennessee, 3904 Lonas Drive, Knoxville, TN 37909<br />

After attending this presentation, researchers will be aware of the<br />

metric changes in size of mastoid processes in American Whites from<br />

1829-1983.<br />

This presentation will impact the forensic science community by<br />

demonstrating how increasing the understanding in the changes a<br />

population has undergone since the inception of a particular sexing<br />

technique will strengthen the accuracy of the forensic practitioner by<br />

allowing them to adjust for skeletal changes over time.<br />

Cranial morphology has markedly changed over the last two<br />

centuries (Godde and Dautartas 2009; Meadows Jantz and Jantz 2000) 3,4<br />

causing contemporary American head shape and size to vary from earlier<br />

Americans. Both cranial nonmetric (Godde and Dautartas 2009) 3 and<br />

metric (Meadows Jantz and Jantz 2000) 5 morphology changes suggest<br />

that enough differentiation has occurred to render modifying current<br />

methods of sex estimation. This paper further explores the secular trends<br />

in cranial morphological traits for cranial sex estimation, specifically by<br />

metrically modeling the mastoid process.<br />

In 1920, Hrdlicka officially adopted cranial morphological traits as<br />

indicators of sex. He incorporated characteristics and research that he<br />

read about in French and German literature. Later, Buikstra and<br />

Ubelaker (1994) 1 included this methodology in their volume for<br />

standardization of skeletal data collection. However, both Hrdlicka<br />

(1920) 4 and Buikstra and Ubelaker (1994) 1 did not take a forensic<br />

approach; these methods were not tested on a modern American<br />

population. Walker (2008) 6 applied the cranial morphological sexing<br />

method on two relatively modern collections, the Terry Collection and<br />

Hamann-Todd Collection. He found that the method published in<br />

Buikstra and Ubelaker (1994) 1 could be applied by observers of various<br />

backgrounds and levels of experience with accurate results. However, as<br />

Godde and Dautartas (2009) 3 pointed out, there was a significant change<br />

in morphology from individuals born in the 1850s (Hamann-Todd<br />

Collection) to those born in 1930s and on (William M. Bass Donated<br />

Collection), indicating the cranial morphology for sex estimation has<br />

changed and forensic techniques that have been developed on<br />

archaeological populations (Buikstra and Ubelaker 1994; Hrdlicka<br />

1920) 1,4 and tested on an almost contemporary American population<br />

(Walker 2008) 6 are not reflective of the current trends in cranial<br />

morphology.<br />

Godde and Dautartas (2009) 3 applied categorical time series<br />

techniques and teased out the patterns of secular change in their report of<br />

secular trends in cranial morphology from the 1820s through the 1980s.<br />

In order to support their prior study with continuous data, this project<br />

mathematically modeled the mastoid process for use in well-established<br />

continuous time series methods. Howells’ mastoid measurements,<br />

mastoid length and mastoid breadth, were collected along with a new<br />

measurement, mastoid width (defined in Dautartas and Godde 2008). 2<br />

These three measurements were selected as they can metrically model<br />

the mastoid as a cone, and thus volume of a mastoid can be calculated.<br />

Data was collected from two skeletal collections: Hamann-Todd and<br />

William M. Bass Donated Collection (Donated Collection). At the<br />

Hamann-Todd collection, 99 white females and 81 white males were<br />

measured that had documented birth years associated with the remains.<br />

Conversely, 55 white females and 55 white males with known birth years<br />

were observed at the Donated Collection. Collectively, the birth years of<br />

the individuals from both collections span 1829-1983, allowing for<br />

investigations into skeletal changes spanning 154 years.<br />

The best time series model applied to the data indicates that secular<br />

change has occurred over the time period represented in the sample. The<br />

results show that in the last century and a half, females have become<br />

larger, while males have become smaller. In other words, mastoid<br />

processes in both sexes of American Whites are beginning to resemble<br />

and overlap each other in size. It is important for forensic scientists to<br />

understand that mastoid size has changed, lending to more ambiguity<br />

among the sexes. Moreover, these changes also imply that techniques<br />

developed on archaeological populations need to be adjusted for<br />

application in a contemporary forensic context.<br />

References:<br />

1 Buikstra JE, Ubelaker D. 1994. Standards for data collection from<br />

human skeletal remains : Proceedings of a seminar at the Field<br />

Museum of Natural History. Fayetteville: Arkansas Archaeological<br />

Survey, 1994.<br />

2 Dautartas A, Godde K. 2008. Are cranial morphological traits<br />

population specific? A reevaluation of traditional sex estimation<br />

methodology. Proceedings of the American Academy of Forensic<br />

Sciences XIV: 349-50.<br />

3 Godde K, Dautartas A. 2009. Secular trends in cranial<br />

morphological sexing. Proceedings of the American Academy of<br />

Forensic Sciences XV: 311-2.<br />

4 Hrdlicka A. 1920. Anthropometry. Philadelphia: The Wistar<br />

Institute of Anatomy and <strong>Bio</strong>logy.<br />

5 Jantz R, and Meadows Jantz L. 2000. Secular change in craniofacial<br />

morphology. Am J of Hum <strong>Bio</strong> 12: 327-338.<br />

6 Walker PL. 2008. Sexing skulls using discriminant function<br />

analysis of visually assessed traits. Am J Phys Anthropol 136:<br />

39-50.<br />

Time Series, Mastoid Volume, Nonmetrics<br />

H91 Twentieth Century Change in Facial<br />

Morphology and Its Relationship to<br />

Metric Sexing<br />

Richard Jantz, PhD*, and Lee Meadows Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

The goal of this presentation is to bring attention to secular change<br />

over the past 80 years in the most dimorphic dimension in the skull,<br />

bizygomatic breadth. Attendees will learn the magnitude of secular<br />

change in this dimension and how it can influence sex assessments.<br />

119 * Presenting Author


This presentation will impact the forensic science community by<br />

demonstrating the changing nature of facial morphology and the need for<br />

appropriate data.<br />

Secular change in craniofacial morphology has been documented<br />

(Jantz and Meadows Jantz (2000). 2 The most pronounced changes are<br />

seen in vault morphology, and these have been seen to impact ancestry<br />

assessment, at least as far as Blacks and Whites are concerned (Ayres et<br />

al. 1990). 1 Facial morphology, especially bizygomatic breadth, is<br />

normally the most important dimension in metric sexing from crania.<br />

Trials with Fordisc 3 show that bizygomatic contributes from 30 to 50 %<br />

of sex discrimination, depending on number of variables, and is always<br />

chosen in stepwise procedures. Bizygomatic breadth alone can correctly<br />

sex over 80 % of crania. It is therefore important to understand the<br />

nature of secular change in facial dimensions.<br />

Measurements were taken from crania in the forensic anthropology<br />

data bank. Samples were available as follows: White males (N=436),<br />

Whites females (N=319), Black males (N=205), Black females (N=146).<br />

Individuals were limited to those with twentieth century birth years.<br />

Birth years range from 1900-1988. Analysis was focussed on<br />

bizygomatic breadth, because of its high sex dimorphism. Whites and<br />

Blacks were analyzed separately, be sex. The crania were grouped by<br />

decade of birth for purposes of analysis. Analysis of variance was run on<br />

nine decade of birth cohorts.<br />

Anova results on the decade of birth cohorts are as follows:<br />

White males F=2.96 P=0.0031<br />

White females F=1.61 P=0.121<br />

Black males F=0.83 P=0.580<br />

Black females F=3.43 P=0.0013<br />

The pattern among groups is inconsistent. White males exhibit a<br />

consistent decline in bizygomatic breadth, beginning about 1940.<br />

Maximum values prior to 1940 are about 131 mm., while by 1960 they<br />

have reduced to about 128. Black females exhibit a less regular pattern,<br />

but generally one sees a decrease in bizygomatic after 1920, followed by<br />

an increase after 1960. Black males and White females do not exhibit<br />

significant variation among decade of birth cohorts, and there is no<br />

pattern to be seen in the variation.<br />

The reduction in face breadth in white males influences sex<br />

classification using bizygomatic alone. There are 83 White males born<br />

1960 and after. One quarter of them are mislcassified using a sectioning<br />

point from Fordisc’s current data base. Misclassification is less<br />

pronounced in multivariate sexing, since other variables also contribute<br />

to the function.<br />

In both Blacks and Whites, significant change in one sex and not the<br />

other may suggest that sex dimorphism varies significantly among<br />

decade of birth cohorts. The interaction term of sex and decade of birth<br />

in two level analysis of variance is not significant, so that hypothesis is<br />

not supported.<br />

Insight into the relationship of bizygomatic breadth to other<br />

craniofacial features may be gained by observing its correlation with<br />

other dimensions. Bi-auricular breadth is the most highly correlated<br />

variable, followed by biorbital breadth. Both of these dimensions also<br />

show significant variation among decade of birth cohorts, which to a<br />

considerable extent parallels that seen in bizygomatic breadth. Maxillary<br />

breadth and face height have low correlation with bizygomatic and do<br />

not exhibit variation among decade of birth cohorts.<br />

These results demonstrate that secular change in face dimensions<br />

that influence metric sex estimation is continuing among modern<br />

Americans. This finding emphasizes the importance of continuing to<br />

collect information from skeletal remains of modern Americans.<br />

References:<br />

1 Ayers, HG; Jantz, RL; Moore-Jansen, PH (1990): Giles and Elliot<br />

race discriminant functions revisisted: A test using recent forensic<br />

cases. In: Skeletal Attribution of Race. (Eds: Gill, GW; Rhine, S)<br />

Maxwell Museum of Anthropology, Anthropological Papers No. 4,<br />

Albuquerque, NM, 65-71.<br />

* Presenting Author<br />

2 Jantz, RL; Meadows Jantz, L (2000): Secular change in craniofacial<br />

morphology. Am. J. Hum. <strong>Bio</strong>l. 12, 327-338.<br />

Sex Estimation, Secular Change, Cranial Morphology<br />

H92 Foramen Magnum Shape as a Potential<br />

Indicator of Ancestry<br />

Stephanie M. Crider, BA*, Louisiana State University, Department of<br />

Geography and Anthropology, 227 Howe-Russell, Baton Rouge, LA<br />

70803; and Mary H. Manhein, MA, Louisiana State University,<br />

Department of Geography & Anthropology, Baton Rouge, LA 70803<br />

After attending this presentation, attendees will be familiar with the<br />

variation present in the shape of the foramen magnum and its potential<br />

as an indicator of ancestry.<br />

This presentation will impact the forensic science community by<br />

highlighting the advantages and disadvantages of using foramen<br />

magnum shape as an ancestry indicator when crania are fragmentary.<br />

Accurate assessment of ancestry is essential in forensic<br />

anthropology to lead to a positive identification of unknown remains.<br />

The cranium has been used for numerous studies and many researchers<br />

believe it to be an excellent indicator of ancestry based on metric and<br />

non-metric characteristics (Rhine 1990). 3 The cranial base also has been<br />

studied on several different occasions (Holland 1986a, Holland 1989) 1,2<br />

to determine ancestral similarities and dissimilarities and is the focus of<br />

this presentation.<br />

A total of 462 intact cranial bases for persons of known ancestry<br />

were measured and visually assessed during a blind study. The database<br />

included crania from four different collections: Louisiana State<br />

University’s Forensic Anthropology and Computer Enhancement<br />

Services (FACES) Laboratory, Pima County Office of the <strong>Medical</strong><br />

Examiner, University of New Mexico’s Maxwell Museum of Osteology<br />

Laboratory, and University of Tennessee at Knoxville’s William M. Bass<br />

Donated Skeletal Collection. The crania in the sample set represent the<br />

major ancestral groups typically seen in forensic cases (white, black,<br />

Hispanic/Southwest Hispanic, Native American and Asian). First,<br />

twelve measurements were taken on each cranial base; then, the foramen<br />

magnums were assessed visually and were placed into different<br />

categories based on their respective shapes. The twelve measurements<br />

that were taken from each cranial base are: maximum length of the right<br />

occipital condyle, maximum width of the right occipital condyle,<br />

minimum width of the right occipital condyle, maximum distance<br />

between occipital condyles, minimum distance between occipital<br />

condyles, maximum interior distance between occipital condyles,<br />

maximum length of the left occipital condyle, maximum width of the left<br />

occipital condyle, minimum width of the left occipital condyle,<br />

maximum length of the foramen magnum, maximum width of the<br />

foramen magnum, and maximum length of the basilar process (based in<br />

part on Holland 1986). 1 The different shape categories that every<br />

foramen magnum was placed into are Arrowhead, Egg, Circle, Oval, and<br />

Diamond.<br />

Statistical results suggest some association between foramen<br />

magnum shape and ancestry. Of 334 skulls of known white ancestry,<br />

almost half (46.4%, N=155) possessed an arrowhead-shaped foramen<br />

magnum. Of 70 skulls of known black ancestry, 40% (N=28) also had<br />

an arrowhead-shaped foramen magnum. The other four shapes were<br />

somewhat evenly distributed throughout both groups. Of the 55<br />

Hispanic/Southwest Hispanic crania studied, none possessed the eggshaped<br />

foramen magnum. This suggests that the presence of an eggshaped<br />

foramen magnum has the potential as an eliminator for<br />

Hispanic/Southwest Hispanic ancestry. Both American Indian and Asian<br />

ancestries could not be categorized sufficiently due to the low number of<br />

each ancestry (three crania total) available for study. Results are also<br />

presented regarding measurements of the cranial base.<br />

120


Finally, in an effort to test the practicality of such a technique, one<br />

of the purposes of this research is to determine the amount of subjectivity<br />

and accuracy for this new method of non-metric ancestry determination.<br />

Conference participants are asked to fill out a short survey based on the<br />

example images on the poster and the different foramen magnum shapes<br />

on the survey to determine whether or not this method is user friendly or<br />

if it is too subjective for regular use. Results of the survey will be<br />

presented.<br />

References:<br />

1 Holland, T.D. “Race Determination of Fragmentary Crania by<br />

Analysis of the Cranial Base.” Journal of Forensic Sciences. Vol<br />

31, No 2. (1986): 719-725.<br />

2 Holland, T. D. “Use of the Cranial Base in the Identification of Fire<br />

Victims.” Journal of Forensic Sciences. Vol 34, No 2. (1989):<br />

458-460.<br />

3 Rhine, Stanley. “Non-Metric Skull Racing.” Skeletal Attribution of<br />

Race: Methods for Forensic Anthropology. Albuquerque: Maxwell<br />

Museum of Anthropology Press, 1990.<br />

Ancestry, Foramen Magnum, <strong>Bio</strong>logical Profile<br />

H93 Prognathism and Prosthion in the<br />

Evaluation of Ancestry<br />

Rebekah K. Baranoff, BA*, 10 East 34th Street, Apartment #1, Erie,<br />

PA 16504<br />

After attending this presentation, attendees will understand the<br />

advantages of another landmark, subspinale, as a valid substitute for<br />

prosthion in the estimation of ancestry.<br />

This presentation will impact the forensic science community by<br />

offering an alternative methodology for estimating ancestry via<br />

discriminant function analysis (DFA) of crania when prosthion, a major<br />

landmark currently used for this purpose, is unavailable.<br />

The estimation of ancestry is an essential part of the biological<br />

profile. Prognathism, expressed in cranial measurements involving<br />

prosthion—the most anterior point on the alveolus between the central<br />

incisors—is useful in estimating ancestry. American blacks are more<br />

prognathic than American whites, and this is especially clear in the<br />

relationship between basion-prosthion length and basion-nasion length.<br />

Crania that are edentulous or display antemortem loss of the central<br />

upper incisors with resorption, or postmortem damage, preclude the use<br />

of measurements involving prosthion. When unidentified human<br />

remains are concerned, using subspinale as a substitute for prosthion in<br />

such cases of edentulous crania has not yet been explored for ancestry<br />

estimation. Subspinale is defined by Howells (1973) as the most<br />

posterior point on the crest inferior to the anterior nasal spine. In<br />

analyzing differences due to ancestry, this study helps to define and<br />

identify prognathism and what it entails.<br />

FORDISC 3 (Jantz and Ousley 2005) was used for a Discriminant<br />

Function Analysis (DFA) of 102 adult Black males and 83 adult White<br />

males from the Terry Collection, a nineteenth century skeletal collection.<br />

All individuals were digitized and standard Howells measurements were<br />

calculated from the landmark coordinates. In the first set of tests,<br />

standard Howells craniometrics were evaluated, including cranial base<br />

length (BNL), maximum cranial breadth (XCB), maximum cranial<br />

length (GOL), nasal breadth (NLB), minimum frontal breadth (WFB),<br />

nasal height (NLH), basion-prosthion length (BPL), and nasionprosthion<br />

height (NPH) from black and white males. Using these<br />

measurements, which include ones involving prosthion, FORDISC 3<br />

correctly classified 88% of Black males and 86% of White males. In all,<br />

87% (161 out of 185 individuals) were correctly classified. Very similar<br />

results are obtained when using 20 th -century samples. When<br />

measurements involving prosthion were removed, simulating<br />

antemortem loss and resorption, the overall accuracy fell to 77%,<br />

confirming that measurements utilizing prosthion are especially valuable<br />

in estimating ancestry.<br />

Next, basion-subspinale (BAS_SSP) and nasion-subspinale<br />

(NAS_SSP) were substituted for BPL and NPH, respectively, and<br />

analyzed with the six other standard measurements previously used<br />

(BNL, GOL, NLB, NLH, WFB, and XCB). In this analysis, the sample<br />

size was 103 Black males and 95 White males. With the substitutes, 83%<br />

of Black males were correctly classified, while 88% of White males were<br />

correctly classified, and overall, 86% (170 out of 198) of individuals<br />

were correctly classified. Therefore, measurements using subspinale can<br />

be used in place of those involving prosthion with little or no loss in<br />

classification accuracy.<br />

In running more analyses with subspinale, morphological<br />

differences between Black male and White male subnasal regions<br />

became apparent. Black males showed a larger distance between<br />

nasospinale and subspinale when NLH and NAS_SSP measurements<br />

were compared. Additionally, morphological differences between Black<br />

males and White males were seen when basion was used as an anchor to<br />

compare relative projections of subspinale and prosthion. In Black<br />

males, the average BAS_SSP and BPL lengths are 97.1mm and<br />

104.6mm, respectively, a difference of 7.5mm. In White males, average<br />

BAS_SSP and BPL lengths are 92.4mm and 95.8mm, respectively, with<br />

a difference of about 3.4mm—less than half the distance seen in Black<br />

males. In other words, the average Black male displays about twice as<br />

much anterior dental projection, or prognathism, relative to the subnasal<br />

region than does the average White male. Another advantage to using<br />

subspinale is suggested by the fact that the total sample size increased<br />

from 185 to 198 individuals, because some of the sample included<br />

edentulous individuals. Additionally, results revealed more specific<br />

morphological differences in the expression of prognathism between<br />

white and black males. This is a proof of concept study, in that a<br />

technique based on a nineteenth century sample is of uncertain validity<br />

for twentieth century populations, though we anticipate that similar<br />

relationships will be found in twentieth century individuals, the subject<br />

of further research.<br />

Forensic Anthropology, Ancestry, Prognathism<br />

H94 Craniometric Variation Within<br />

Southeast Asia<br />

Michael W. Kenyhercz, BA*, 6327 Catawba Drive, Canfield, OH 44406;<br />

Michael Pietrusewsky, PhD, University of Hawaii, Department of<br />

Anthropology, 2424 Maile Way, Saunders 346, Honolulu, HI 96822;<br />

Franklin E. Damann, MA, NMHM, AFIP, PO Box 59685, Washington,<br />

DC 20012-0685; and Stephen D. Ousley, PhD, Mercyhurst College,<br />

Department of Applied Forensic Anthropology, 501 East 38th Street,<br />

Erie, PA 16546<br />

After attending this presentation, attendees will understand the<br />

utility of discriminant function analysis, Mahalanobis’ Generalized<br />

Distance, and cluster analysis as a means of observing regional<br />

differences in supposedly homogenous “Asian” populations.<br />

This presentation will impact the forensic science community by<br />

proving that intra-regional differences can be seen in Southeast Asian<br />

populations, thus allowing anthropologists to create a more accurate<br />

biological profile which can aid in narrowing a missing persons list.<br />

Craniometrics are frequently used to investigate human variation<br />

within and among populations. Work by W. W. Howells (1973, 1993,<br />

1995) investigated craniometric variation among geographic areas<br />

worldwide. More recently, Pietrusewsky (1992) investigated<br />

craniometric differences in modern Southeast Asian populations. While<br />

his focus was population history, this study focuses specifically on<br />

regional differences in Southeast Asia.<br />

121 * Presenting Author


The ability to accurately discriminate between populations is<br />

beneficial in aiding in a more accurate biological profile which could<br />

potentially narrow down a missing persons list. In forensic<br />

anthropology, Ancestry is largely based on geographic origins, and<br />

Southeast Asian populations are generally considered “East Asian,“<br />

though population differences are found among them (Ousley et al.<br />

2009). Forensic anthropologists should bear in mind the arbitrary nature<br />

of sample labels. For instance, a single sample from Laos, Cambodia, or<br />

Vietnam may be labeled “Southeast Asian,“ though it may not represent<br />

the variation present throughout the region. Further, samples may be<br />

labeled using nationality, language, tribe, or religion, with similar<br />

assumptions. FORDISC, for example, uses reference samples that are<br />

categorized by nationality or language. Southeast Asia’s recent, as well<br />

as past, population history has been dominated by wars and political<br />

unrest that may have modified earlier patterns of variation. This study<br />

explores craniometric variation in Southeast Asian populations to<br />

examine intra-regional differences.<br />

Craniometrics from 110 male skulls were collected by Pietrusewsky<br />

and samples are as follows: 15 from Hanoi, 34 from Ho Chi Minh City,<br />

and 51 from Ba Chuc, Vietnam, 10 from Cambodia, 29 from Laos, 50<br />

from Bangkok, Thailand, and 16 from Mandalay, Burma. All samples are<br />

from the nineteenth and twentieth centuries and from dissecting rooms or<br />

cemeteries. The Ba Chuc sample is from a village located near the<br />

border with Cambodia that was part of the “Killing Fields” massacre. Its<br />

location was part of a frequently disputed border area between Vietnam<br />

and Cambodia. At the time of the massacre, its residents were citizens<br />

of Vietnam, though many were probably ethnic Khmer they were<br />

culturally and linguistically Cambodian. The Vietnamese sample in<br />

FORDISC 3 comes from Ba Chuc. It was hypothesized that North and<br />

South Vietnamese crania would be more morphologically similar to one<br />

another, while the crania from Ba Chuc would be more similar to<br />

Cambodia, which it was historically a part of until recent history. As<br />

these relationships were observed, data from surrounding countries was<br />

introduced and examined.<br />

Data were analyzed using FORDISC 3.0 (Jantz and Ousley 2005)<br />

and statistical program R (R Development Core Team 2008). The data<br />

were checked for normality and any outliers were removed.<br />

Discriminant Function Analysis (DFA) was employed using FORDISC,<br />

and R was used for cluster analysis. Analyses were conducted using<br />

variable numbers that were limited to one-third of the smallest sample<br />

size. This ensured that the data were not being over-fitted. Groups that<br />

did not prove to be significantly different using DFA were pooled and the<br />

analyses continued. As groups were pooled and sample sizes increased,<br />

the number of variables used in the discriminant function were increased<br />

in conjunction with the one-third rule.<br />

Results show the emergence of three distinct clusters, though with<br />

overlap, using 15 variables. The North and South Vietnam crania<br />

clustered together, as did Laos and Burma, while Ba Chuc, Cambodia,<br />

and Thailand formed a third cluster. Generally, the Vietnamese cluster<br />

showed longer crania with narrower palates, while the Ba Chuc,<br />

Cambodia, Thailand cluster and Burma and Laos cluster had crania with<br />

wider palates and shorter crania. The Ba Chuc sample was<br />

craniometrically more similar to the Cambodian and Laos samples. With<br />

three clusters, a random determination of geographic affinity would be<br />

33.3%, and these three clusters were classified with 69% accuracy when<br />

cross-validated. This function, then, proves to be more accurate in group<br />

assignment. This initial study has shown that it is possible to regionally<br />

differentiate Southeast Asian populations into more specific geographic<br />

entities. These results act as a reminder to not take DFA classifications<br />

too literally, because biological samples are always assigned labels that<br />

are considered meaningful, though they are often arbitrary. Additionally,<br />

the labels are most often based on cultural criteria, independent of the<br />

groups’ biological affinities.<br />

Discriminant Function Analysis, Craniometric Variation, Southeast<br />

Asia<br />

* Presenting Author<br />

H95 Ancestry Trends in Trophy Skulls in<br />

Northern California<br />

Lisa N. Bright, BS*, California State University, Chico, 400 West First<br />

Street, Chico, CA 95928; Ashley E. Kendell, BS*, 808 West 2nd Avenue,<br />

Apartment 12, Chico, CA 95926; and Turhon A. Murad, PhD, California<br />

State University, Chico, Department of Anthropology, Chico, CA<br />

95929-0400<br />

The goals of this presentation are to: (1) document the ancestry of<br />

trophy skulls curated at the California State University, Chico Human<br />

Identification Lab (CSUC-HIL); and, (2) assess trends in the ancestry of<br />

trophy skull specimens between the 1970s and the present. After<br />

viewing this presentation, attendees will gain a greater understanding of<br />

the ancestral affiliations of trophy skulls.<br />

This presentation will impact the forensic community by<br />

highlighting the broad range of ancestral affiliations that are associated<br />

with trophy skulls observed in forensic contexts.<br />

Although research involving human trophy taking has a long<br />

history within bioarchaeology and archaeology, few studies have been<br />

directed towards human trophies from forensic contexts. Prior studies<br />

have focused on trophy skulls brought back to the United States by<br />

service men after armed conflicts. However, trophy skulls are routinely<br />

submitted for analysis from a broad array of contexts. In many instances,<br />

it may be difficult to differentiate trophy skulls from those that derive<br />

from archaeological, forensic and souvenir contexts (Sledzik and Ousley<br />

1991). 1 This presentation will discuss osteological and contextual<br />

information that will aid in identification of trophy skulls.<br />

Willey and Leach (2003) 3 define human trophies as remains that are<br />

originally acquired under suspect circumstances and kept as a memento<br />

of the event. For this study, trophy remains are defined as skulls that<br />

show evidence of postmortem modification, including decoration.<br />

According to Sledzik (1991), 1 trophies also include the opportunistic or<br />

passive collection of human remains as well as the deliberate perimortem<br />

collection of skeletal material. Therefore, trophies should not<br />

include remains that were obtained unintentionally, or those that did not<br />

serve as a form of memento. For this study, one non-modified skull was<br />

included because contextual information indicated that the remains were<br />

displayed as a trophy.<br />

Eight forensic cases are examined involving trophy skulls<br />

submitted to the CSUC-HIL for analysis. Ancestry estimation was<br />

conducted using both metric and non-metric traits, and the data are<br />

addressed in light of contextual information for each case. Craniometric<br />

analysis was conducted using Fordisc 3.0.<br />

Of the eight forensic cases included in the analysis, four of the eight<br />

skulls were estimated to be female. This finding is inconsistent with the<br />

trends observed in trophies brought back to the United States during<br />

times of war, which typically are male (Taylor et al. 1984). 2 Only two of<br />

the eight skulls were brought back as mementos during times of war. It<br />

is worth noting however, that Fordisc is not always an accurate indicator<br />

of sex in gracile specimens and therefore non-metric analyses of sex<br />

were also taken into account. Also, postcranial remains were unavailable<br />

for analysis and were therefore not used to provide a secondary<br />

verification of sex assessment.<br />

The ancestral affiliation of these cases is highly variable. This may<br />

be explained by the fact that each trophy skull used in the analysis was<br />

122


drawn from a unique forensic context. This also may be attributed to the<br />

small sample size used for the study. This study highlights the broad<br />

range of ancestries that trophy skulls can be attributed to. Trophy taking<br />

of human skulls and body parts has a long history, and will continue to<br />

impact future forensic anthropological casework<br />

References:<br />

1 Sledzik, Paul S. and Stephen OusleyAnalysis of Six Vietnamese<br />

Trophy Skulls. Journal of Forensic Science 36(2):520-530.<br />

2 Taylor, James V., Louis Roh, and Arthur D. Goldman<br />

3 Metropolitan Forensic Anthropology Team (MFAT) Case Studies in<br />

Identification: 2. Identification of a Vietnamese Trophy Skull.<br />

Journal of Forensic Science 29(4):1253-1259.<br />

4 Willey, P, and Paulette Leach<br />

5 The Skull on the Lawn: Trophies, Taphonomy, and Forensic<br />

Anthropology. In Hard Evidence: Case Studies in Forensic<br />

Anthropology. Dawnie Wolfe Steadman, eds. Pp.176-188. New<br />

Jersey: Prentice Hall.<br />

Trophy Skulls, Postmortem Modification, Ancestry Estimation<br />

H96 Ancestry Estimation From the Tibia: Size<br />

and Shape Differences Between American<br />

Whites and Blacks<br />

Natalie R. Shirley, PhD*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Emam<br />

ElHak Abdel Fatah, BS, Center for Musculoskeletal Research,<br />

University of Tennessee, Department Mechanical, Aerospace, &<br />

<strong>Bio</strong>medical Engineer, 307 Perkins Hall, Knoxville, TN 37996; and<br />

Mohamed Mahfouz, PhD, Center for Musculoskeletal Research,<br />

Department Mechanical, Aerospace, & <strong>Bio</strong>medical Engineer, University<br />

of Tennessee, 307 Perkins Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will become familiar<br />

with size and shape differences between American Black and White<br />

tibiae. Attendees will also be provided with measurements that offer the<br />

highest discrimination between these two groups.<br />

This presentation will impact the forensic science community by<br />

providing criteria for determining ancestry from the tibia.<br />

Background: As the United States becomes more of a melting pot,<br />

ancestry estimation is an increasingly challenging task for forensic<br />

anthropologists. Consequently, gathering ancestry information from<br />

multiple skeletal elements can augment assessments based on cranial<br />

morphology. While significant ancestral differences exist in cranial<br />

dimensions, shape differences are substantial, as well. In addition,<br />

researchers have documented ancestry differences in the lower limb,<br />

focusing primarily on the pelvis and femur. Stewart (1962) suggested<br />

that American Black femora are straighter and less torqued than White<br />

femora. In addition, Trudell (1999) reported significant differences in<br />

length, curvature, epicondylar breadth, and torsion between American<br />

Blacks and Whites. Intercondylar notch height has been shown to be a<br />

useful discriminator, as well (Craig, 1995; Gill, 2001). The primary<br />

morphological difference in the innominate is that American Whites<br />

have wider hips than Blacks (Iscan, 1983; DiBennardo and Taylor, 1982,<br />

1983).<br />

These and other studies have captured size and shape differences in<br />

the hip and thigh, but few studies have addressed the leg. Since the<br />

lower limb is a functional anatomical unit, it follows that the morphology<br />

of the upper leg should influence the form of the lower leg. In fact, only<br />

one article has addressed ancestry differences in the tibia in the American<br />

population, noting differences in length, width, and proximal breadth<br />

between Blacks and Whites (Farrally and Moore, 1975). The present<br />

study aims to address the need for documentation of metric and<br />

geometric morphometric ancestry differences in the tibia in the modern<br />

American population by using three-dimensional bone modeling and<br />

automated measurements from computed tomography (CT) scans.<br />

Methods: A sample of 112 American Black and White males from<br />

the William M. Bass Donated Collection was used for this analysis. The<br />

DICOM image slices from the CT-scanned tibiae were manually<br />

segmented, and three-dimensional models were constructed of the right<br />

tibiae. A subset of the models was used to create ancestry-specific<br />

statistical bone atlases. A statistical atlas is an average mold that<br />

captures the primary shape variation in the bone and facilitates rapid and<br />

accurate generation of automated measurements. The final result is a<br />

sample of tibiae that all contain the same number of points and share the<br />

same spatial relationship.<br />

Shape analysis was conducted by performing Principal Components<br />

Analysis on the atlases to reduce the data space and then using Fisher’s<br />

Discriminant Ratio to pinpoint the areas of greatest difference. The<br />

resulting deviation vector magnitudes were subsequently applied to a<br />

color map in order to visualize the areas of greatest difference. Metric<br />

differences were evaluated by taking 28 computer-automated<br />

measurements on all of the bones in the atlases. These measurements<br />

include traditional measures of length and robusticity, as well as<br />

measurements of the intercondylar eminences, tibial plateau dimensions,<br />

cross-sectional areas of the midshaft, proximal shaft, and distal shaft, and<br />

indices and angles designed to capture information about shape, torsion,<br />

and position of bony landmarks. T-tests, power tests, and linear<br />

discriminant analysis (LDA) with cross-validation and stepwise variable<br />

selection was performed on the measurements.<br />

Results: The shape analysis of principal components 2-10 (95% of<br />

variation) shows relatively low magnitudes of difference in tibial shape<br />

between American Blacks and Whites. The area of highest difference is<br />

at the tip of the medial malleolus. -tests reveal that the there are<br />

significant differences in length and shaft robusticity (reflected by<br />

diameters and cross-sectional areas of the middle, proximal, and distal<br />

shaft). American Blacks have longer tibiae, larger antero-posterior and<br />

medial-lateral shaft dimensions, and larger cross-sectional areas. These<br />

results confirm Farrally and Moore’s (1975) earlier study. The crossvalidated<br />

LDA attained 78.6% accuracy with a 6-variable model; Blacks<br />

were misclassified more often than Whites. This could be an artifact of<br />

the smaller Black sample, but the authors hypothesize that it reflects the<br />

phenomenon that American Black skeletal morphology is becoming<br />

more similar to the American White morphology. These results indicate<br />

that the tibia is useful in ancestry estimation, but that the major<br />

differences are due to size, not shape. Combining tibia and femur<br />

measurements may offer discriminatory power approaching that of the<br />

cranium.<br />

Ancestry Estimation, Tibia, Discriminant Analysis<br />

H97 Recollected Versus Actual Stature: How<br />

Does the Height Reported by Next of Kin<br />

Measure Up?<br />

Lauren J. Duhaime, BSc*, 1693 Virginia Drive, Sudbury, Ontario P3E<br />

4T7, CANADA<br />

After attending this presentation, attendees will learn of the<br />

inaccuracy and bias of the estimated heights of individuals obtained from<br />

their next of kin, how they compare to self-reported statures, what factors<br />

may influence accuracy and how useful these estimated heights can be in<br />

aiding in the identification of missing persons in post-conflict settings.<br />

This study proposes that recollected statures (RSTATs) obtained from<br />

next of kin can be useful in identification, as they are representative of<br />

actual height within defined limits.<br />

This research will impact the forensic science community by<br />

providing information on the reliability and validity of antemortem<br />

height information obtained from family. The usefulness of stature<br />

estimations in human identification at an international level has been<br />

questioned. A reason for this is that RSTATs are believed to be<br />

inaccurate and unreliable. Inaccuracy and bias are known to occur in<br />

123 * Presenting Author


heights that are self-reported, but those of recollected stature had not<br />

been extensively studied<br />

In human rights investigations, an integral role of forensic<br />

anthropologists is identifying the victims of mass graves. In order to do<br />

this, the creation of a biological profile (in which stature is a key<br />

component) is important so that it may be compared to antemortem<br />

(AM) information. In post-conflict areas, AM records are not always<br />

available and if they are, their reliability is often doubtful. In such<br />

circumstances, AM information of a missing person’s physical features,<br />

including their height, is obtained from interviewing their closest<br />

relatives and/or friends. Metric values may not be understood, or<br />

families may not be able to state the height of the missing person in<br />

metres. Because of this, the interviewer will ask the family member to<br />

indicate how tall the individual is compared to him/her.<br />

Volunteers were obtained from the City of Greater Sudbury,<br />

Ontario, Canada. A total of 367 RSTATs were collected (210 females,<br />

157 males, ages 18-85). Families were interviewed and each member<br />

was asked to fill out questionnaires about themselves (e.g. their age, sex,<br />

how tall they think they are, etc…) and the kin whose height they were<br />

estimating (e.g., their relation, how long they have known them, etc…).<br />

RSTATs were obtained following the guidelines of the Physician’s for<br />

Human Rights AM Data Collection protocol for Kosovo (1999).<br />

Participants were asked to indicate, using their hand, how tall they<br />

thought their kin were compared to the interviewer. A tape measure was<br />

used to take the measurement of the RSTAT from the floor up to the<br />

inferiorly facing palmar surface of the participant’s fingers, with their<br />

arm extended in front of them. The height of each participant was then<br />

measured using an anthropometer.<br />

The inaccuracy and bias of the self-reported heights and RSTATs<br />

were assessed in relation to the measured height of the individuals and<br />

then compared to each other. Accuracy is the average deviation of height<br />

estimation from actual height; bias is the direction of that deviation (i.e.,<br />

over- or underestimation). Similar to other studies of reported stature,<br />

self-reported heights and RSTATs showed a correlation with measured<br />

height (r=0.97 and 0.87, respectively) but were significantly different<br />

and inaccurate (p


human rights issues and highlights the significant role forensics can play<br />

in monitoring health disparities and human rights.<br />

Morbidity Patterns, Age Estimation, Nigeria<br />

H99 Forensic Anthropology and Age-at-Death<br />

Estimation: Current Trends in Adult<br />

Age Estimation<br />

Heather M. Garvin, MS*, Johns Hopkins University, 1830 East<br />

Monument Street, Room 302, Baltimore, MD 21205; and Nicholas V.<br />

Passalacqua, MS, 3518 Hagadorn Road, Okemos, MI 48864-4200<br />

The goal of this presentation is to summarize the preferred skeletal<br />

age-at-death estimation methods across the field of forensic<br />

anthropology by analyzing forensic practitioner responses to a<br />

questionnaire.<br />

This presentation will impact the forensic science community by<br />

familiarizing attendees with the high degree of variation present in<br />

methods used to generate adult skeletal age-estimates, providing an<br />

opportunity to unite the field and discuss future improvements in<br />

standardization.<br />

Determining an accurate estimation of age-at-death from unknown<br />

adult skeletal remains continues to be a challenging responsibility of<br />

skeletal biologists. As the discipline of forensic anthropology continues<br />

to advance as a science it is crucial to be aware not only of one’s own<br />

methodological decisions, but how these decisions are being made<br />

throughout the field. This is a difficult task when different skeletal<br />

regions may be used to estimate age, and numerous aging methods for<br />

the same skeletal region/s are available. Each method may provide<br />

different forms of phases, mean ages, age ranges, standard deviations<br />

and/or standard errors which may be used to produce an age estimate.<br />

Many of these methods have been developed or tested on distinct<br />

temporal and/or geographic skeletal samples, resulting in inconsistent<br />

reports of accuracy and reliability. Furthermore, there is no standardized<br />

way of combining information from multiple age-estimation methods.<br />

These are all questions that could be raised in a court of law, especially<br />

in light of the Daubert Challenge.<br />

Given the variation of preferred skeletal aging methods and the lack<br />

of standardization to the age-estimation process, the authors were<br />

interested in understanding how forensic practitioners actually determine<br />

which age estimation method to use. A questionnaire was devised to<br />

determine if there is a universal set of methods used by all forensic<br />

anthropologists, or if methodological preferences are unique to each<br />

practitioner. The study investigated whether the accuracy and reliability<br />

of the techniques when applied to various age, sex, or ancestries of the<br />

individuals are considered? How much does personal experience weigh<br />

into these decisions? How are the results from multiple methods<br />

incorporated into a final age-estimate for the unknown set of remains and<br />

how discrepancies between two methods are resolved? Are the standard<br />

deviations, standard errors, age ranges, or means used when considering<br />

the possible age-estimate of the decedent? Is there pressure from<br />

officials to present unrealistically narrow age ranges and if so, how is this<br />

issue approached?<br />

An anonymous questionnaire was sent to members of the Physical<br />

Anthropology section of the American Association of Forensic Sciences<br />

as well as other skeletal biologists. Information regarding experience,<br />

preferred aging techniques, and methods used in producing a final ageestimate<br />

were blindly collected through the use of an online survey<br />

application. The results of more than 125 questionnaires were then<br />

analyzed, producing descriptive statistics to be used to inform the<br />

forensic society of the variation in currently practiced aging methods.<br />

From this knowledge, areas necessitating future advancements in ageestimation<br />

techniques can be identified, and improvements suggested.<br />

Preliminary results suggest that personal experience weighs very<br />

highly both in determining an age range within a single method and<br />

when combining results from multiple methods to obtain a final age-atdeath<br />

estimate. The Suchey-Brooks pubic symphysis method remains<br />

the most highly favored age-estimation technique, with cranial sutures<br />

and dental wear being reported as the least preferred, regardless of<br />

experience. The majority of respondents stated that they vary their<br />

skeletal age-estimation process case-by-case and ultimately present to<br />

officials both a narrow and broad possible age-range. Overall, however,<br />

respondents displayed a very high degree of variation in skeletal regions<br />

preferred, the methods chosen to age those regions, age information<br />

extracted from the methods, and ways in which information from<br />

multiple sources is pooled and contribute to a final reported age-at-death<br />

estimate.<br />

To maintain the reputation of forensic anthropology as a science,<br />

there should be standardized methods in determining accurate age<br />

estimates, which have been validated, and proven reliable and replicable.<br />

The first step of this process must be awareness of the current state of the<br />

discipline.<br />

Age-at-Death, <strong>Bio</strong>logical Profile, Standards<br />

H100 Understanding Uncertainty in Age<br />

Estimation: Error Associated With the<br />

Mann et al. Maxillary Suture Method<br />

Carrie A. Brown, MA*, Joint POW/MIA Accounting Command Central<br />

Identification Laboratory, 310 Worchester Avenue, Building 45, Hickam<br />

AFB, HI 96853<br />

After attending this presentation, attendees will gain further<br />

understanding of the Mann et al. maxillary suture method, the types of<br />

error that are associated with adult age estimation methods, and ways to<br />

approach the estimation of uncertainty in measurement as required by<br />

the ISO and ASCLD/LAB.<br />

This presentation will impact the forensic science community by<br />

providing error rates for the Mann et al. maxillary suture method in<br />

response to critiques raised by the National Academy of Sciences<br />

concerning the need to evaluate the reliability and accuracy of methods<br />

used in forensic science.<br />

Age estimation using cranial sutures is not generally accepted as an<br />

accurate or reliable adult age estimation technique. Cranial suture<br />

obliteration is most commonly used to place an unknown individual into<br />

a general age group (e.g., young versus old adult) or when no other age<br />

indicators are present. While techniques utilizing cranial suture closure<br />

have come under significant attack, the perceived failure of these<br />

methods may also be due to the use of inappropriate statistics and<br />

problems with associated error intervals.<br />

The Mann et al. maxillary suture method is based on palatine suture<br />

obliteration. There are two versions of the method: the 1987 version<br />

relies on measuring the amount of obliteration and the 1991 version is<br />

the revised visual method of assessment. Gruspier and Mullen (1991)<br />

claim that the 1987 method is inaccurate and Ginter (2005) found that the<br />

revised method is more accurate than commonly used age estimation<br />

methods such as the pubic symphysis and sternal rib ends. Given these<br />

findings, an examination of the performance of the maxillary suture<br />

method and the error associated with its use is warranted. Error can<br />

result from the method itself (e.g., improper statistical basis for age<br />

intervals or the method does not express the total range of human<br />

variation possible) and human observer error (e.g., improper assignment<br />

of individuals to phases of a method or misunderstanding of<br />

methodology).<br />

This study was designed to examine the error associated with the<br />

1991 visual maxillary suture age estimation method. Error was analyzed<br />

125 * Presenting Author


y comparing the known and estimated ages-at-death of individuals<br />

identified at the JPAC/CIL between 1972 and 31 July 2008 whose case<br />

documentation referenced the revised maxillary suture method (n=55); a<br />

sample size of n=7for the 1987 method precluded error analysis. The<br />

following calculations were employed: correct classification (percent of<br />

individuals whose known age fell within the assigned age interval),<br />

inaccuracy (average error in years), bias (directionality of the error), and<br />

Pearson’s r (strength and direction of the relationship between known<br />

and estimated age-at-death). To further test error associated with<br />

application of the visual maxillary suture method, volunteers in<br />

attendance at the 2009 AAFS Annual Meeting and JPAC/CIL<br />

anthropologists (n=38) were asked to age two individuals.<br />

The sample for the visual maxillary suture method (n=55) has a<br />

mean age-at-death of 23.9 years, an age range of 18 years (youngest<br />

individual=18, oldest individual=36), and is entirely male. There is a<br />

statistically significant difference (p=0.003, ANOVA) in mean age-atdeath<br />

between this sample and the total known age-at-death sample<br />

(n=979, =27.2). The visual age estimation method has a correct<br />

classification rate of 87.3%. Only those age estimates reporting closed<br />

intervals (e.g., 25-30 and not 30+) were further analyzed (n=27). The<br />

method has an average inaccuracy of 2.3 years, a negligible tendency to<br />

over-age (bias=0.1), and a statistically significant positive relationship<br />

between estimated and known age-at-death (r=0.8, p


H102 Using the Acetabulum to Estimate Age:<br />

A Revised Method<br />

Stephanie E. Calce, BSc*, University of Toronto, Department of<br />

Anthropology, 3359 Mississauga Road North, Mississauga, ON L5L1C6,<br />

CANADA<br />

The goal of this presentation is to evaluate the Rissech et al. (2006)<br />

method of estimating skeletal age using the acetabulum and to<br />

demonstrate the benefits of simplifying the technique for use in a<br />

forensic context. This is the first step in a two-stage process involving<br />

the recognition of potential problems with the Rissech et al. (2006)<br />

method and the development of effective solutions. The second and<br />

future stage of the research will include devising and testing specific age<br />

ranges to accompany the modifications. At this juncture, emphasis is on<br />

the need to alter the criteria utilized by Rissech et al. (2006) and to<br />

demonstrate the resulting improvements to precision in scoring traits,<br />

while maintaining the potential for accuracy in age estimation.<br />

Attendees will gain a better understanding of how morphological<br />

features of the acetabulum change with age, as well as some of the<br />

difficulties in distinguishing states within each criterion in the original<br />

method. Participants will be introduced to a new, more effective<br />

approach to acetabulum age estimation.<br />

This presentation will impact the forensic field and larger<br />

community by providing a new, reliable age estimation technique to<br />

increase the likelihood of identifying human remains in forensic practice.<br />

In this study, Rissech and colleagues’ (2006) existing scoring<br />

method was analyzed using multiple stepwise regression to identify the<br />

traits that contribute most to age estimation. Through this process, the<br />

technique was simplified to reduce the number of morphological features<br />

and scoring states. Three variables were found to account for most of the<br />

variation associated with age. These traits were tested on males and<br />

females to determine if the simplified method does in fact increase<br />

precision, while maintaining the potential to accurately reflect age<br />

changes. Because Rissech and colleague’s (2006) method relies on the<br />

use of a known comparative collection to generate age ranges for the<br />

scores obtained by examining an unknown skeleton, there are no fixed<br />

age categories in the original method. The current research was designed<br />

to simplify the scoring and to assess the potential of the modified traits<br />

to reflect age consistently, regardless of the ancestry of the individual,<br />

thereby eliminating the need for a reference population. For this<br />

purpose, it was necessary to first determine the ability of the modified<br />

method to simply reflect broad age changes.<br />

The revised non-destructive method to estimate broad categories of<br />

age was developed on two twentieth century anatomy series, the<br />

University of Toronto Grant Skeletal Collection (males) and the William<br />

M. Bass Donated Skeletal Collection (females). Based on trait<br />

occurrence, broad definitions of age were established: Young Adult (17-<br />

39 years); Middle Adult (40-64 years); and, Old Adult (65+ years).<br />

Descriptions distinguishing key features for phase identification are<br />

defined in this manner to reflect the greatest variation observed among<br />

individuals. The method was tested blind on two contemporary North<br />

American skeletal populations – the William M. Bass Donated Skeletal<br />

Collection and the University of New Mexico Documented Collection<br />

(n=249). Both collections contain complete skeletons from donated<br />

persons and positively identified forensic cases with documented<br />

demographic information, representing diverse socioeconomic classes<br />

and ethnic affinities. This study utilized 85 individuals from the William<br />

M. Bass Donated Skeletal Collection and 164 from the University of<br />

New Mexico Documented Collection, ranging in age from 19 to 101<br />

years, who died between 1984 and 2006. The left os-coxa of each<br />

specimen was examined one at a time, to mimic forensic situations.<br />

Individuals with non-inflammatory osteoarthritis or diffuse idiopathic<br />

skeletal hyperostosis were not excluded since such manifestations are<br />

related to age. Known ages for each individual were not documented<br />

until each specimen had been examined in order to eliminate observer<br />

bias.<br />

Although males (n=189) and females (n=60) were examined<br />

separately, non-significant sex-specific differences were found. The<br />

inaccuracy of the modified method is 8 years. The direction of bias<br />

indicates this acetabulum technique tends to underestimate age. Three<br />

statistically significant characteristics are highly correlated with age<br />

(p


assigned means was analyzed in terms of bias (directionality of error)<br />

and inaccuracy (absolute mean error in years). Percent of correct age<br />

classifications (i.e., the method’s predicted age range included the<br />

individual’s actual age) was also calculated.<br />

The Suchey-Brooks (1990) and Lovejoy el al. (1985b) methods<br />

show low mean positive biases for the group of individuals between the<br />

ages of 20 and 39. The Osborne et al. (2004) method shows a low mean<br />

negative bias for this age group. The Buckberry and Chamberlain (2002)<br />

method shows a substantial positive bias for individuals between 20 and<br />

39. All four methods have substantial negative biases for individuals 40<br />

years of age and older. In all four methods, the differences between<br />

mean bias in individuals under 40 and individuals 40 years and older are<br />

significant at the p ≤ 0.001 significance level (Student’s t-test).<br />

For the Suchey-Brooks, Lovejoy et al., and Osborne et al. methods,<br />

mean inaccuracy approximates four years in individuals between the<br />

ages of 20 and 39. For the Buckberry and Chamberlain method, mean<br />

inaccuracy is greater than 13 years. In all four methods, mean<br />

inaccuracy is never less than 11 years for individuals 40 years and older.<br />

In all four methods, all differences between inaccuracy in the younger<br />

and older age groups are statistically significant at the p ≤ 0.001<br />

significance level (Student’s t-test).<br />

For the Suchey-Brooks and Osborne et al. methods, percent of<br />

correctly classified individuals is approximately 95% for individuals ≤<br />

39 and 85% for individuals ≥ 40. For the Buckberry and Chamberlain<br />

method, percent of correctly classified individuals is approximately 94%<br />

for individuals ≤ 39 and 95% for individuals ≥ 40. For the Lovejoy et al.<br />

method, percent of correctly classified individuals is approximately 63%<br />

for individuals ≤ 39 and 31% for individuals ≥ 40.<br />

Full ranges of error (in years) for each method for individuals ≤ 39<br />

are as follows: Suchey-Brooks (-8.3 to 28.2); Lovejoy et al. (-6.5 to 16);<br />

Buckberry and Chamberlain (-1.7 to 35.7); Osborne et al. (-10.9 to 18.8).<br />

For individuals ≥ 40, full ranges of error (in years) are as follows:<br />

Suchey-Brooks (42.4 to 20.2); Lovejoy et al. (-44 to 22); Buckberry and<br />

Chamberlain (-22.6 to 29.3); Osborne et al. (-40.2 to 15.9).<br />

This study indicates that pelvic aging techniques estimate age in<br />

young adults (≤ 39) with lower error than older adults (≥ 40). The error<br />

of the Suchey-Brooks method increases with age, suggesting<br />

modifications of upper phases are warranted. However, auricular surface<br />

methods are problematic regardless of age group. Narrow age intervals<br />

in the Lovejoy et al. method result in low percentages of correctly<br />

classified individuals. The Buckberry and Chamberlain method<br />

frequently results in extreme overaging of the young and has the highest<br />

error for every age class under fifty. Of the three auricular surface<br />

methods, the Osborne et al. method has the broadest applicability.<br />

There will always be error associated with age estimation; the focus<br />

now should be on understanding and quantifying error so as not to<br />

overstate method performance.<br />

Adult Male Age Estimation, Pelvis, Error<br />

H104 The Impact of Obesity on Morphology of<br />

the Femur<br />

Gina M. Agostini, MA*, 205 Middle Street, Hadley, MA 01035<br />

After attending the presentation, attendees will better understand<br />

how differences in bone shape between weight classes might be<br />

explained by biomechanical adaptations used by overweight individuals<br />

to cope with increased adiposity. Additionally, attendees will see key<br />

theories behind adaptive cellular bone remodeling, and how direct,<br />

noninvasive bone measurements can be used to make inferences into<br />

activity and mechanical load.<br />

This presentation will impact the forensic science community by<br />

illustrating how weight can indirectly alter bone shape. As obesity<br />

clearly affects how an individual appeared to others in life, this has great<br />

* Presenting Author<br />

potential to aid in efficient identification of the deceased using skeletal<br />

remains.<br />

The goal of this project was to evaluate whether adult weight<br />

(specifically obesity), impacts the human skeleton. The project design<br />

operated under the null hypothesis that biomechanical adaptations made<br />

by overweight individuals would not trigger adaptive cellular bone<br />

remodeling and therefore would not result in significant alteration of<br />

long bone shape or size. External measurements of diaphyseal crosssection<br />

were used as an indication of morphology, as these properties are<br />

said to be influenced by load and mechanical action. Using standards<br />

largely devised by Ruff (1983), anteroposterior (AP) and mediolateral<br />

(ML) dimensions were measured at 20%, 35%, 50%, 65% and 80% of<br />

diaphyseal length, measuring superiorly from the distal end.<br />

The left femur was used as it possesses two unique properties: (1) it<br />

is a weight bearing bone; and, (2) its unique articulation with the pelvis<br />

results in forces that do not travel longitudinally through the diaphysis<br />

(as in the tibia). The latter property offers greater potential for<br />

morphology to reflect differences in force movement between weight<br />

classes due to biomechanical modification of overweight individuals.<br />

Three categories were formed based on body mass index (BMI):<br />

underweight (BMI < 17.5), normal weight (BMI between 19.5 and 24.5)<br />

and overweight (BMI < 26.5). To ensure each category was distinct,<br />

individuals with intermediate BMI scores were not included for analysis.<br />

To control for morphological differences due to ancestry and sex, only<br />

males of European ancestry were evaluated. To control for the effect of<br />

age on cross-sectional geometry, individuals in all three groups were<br />

age-matched to within one year, and age was included in all statistical<br />

analyses. The sample consisted of 184 individuals, 67 of whom were<br />

overweight, 59 normal weight, and 58 underweight.<br />

After controlling for age, multivariate statistics show significant (pvalue<br />

< 0.05) elongation of the ML dimension of the proximal and<br />

midshaft femur in overweight individuals, with t-tests confirming that<br />

ML dimensions are significantly large in this weight class (p-value <<br />

0.05). These results suggest that femora of overweight individuals<br />

undergo abnormally high rates of sagittal stress. These findings correlate<br />

well with biomechanical gait analyses, which show that overweight<br />

individuals display significant increases in step width and hip abduction,<br />

disproportionately large ML ground reaction forces, and longer periods<br />

of stance when compared to normal weight controls. These activities,<br />

especially when coupled with movement of excess mass, could explain<br />

abnormal sagittal stress of the proximal femur.<br />

In addition, size and shape variables were computed according to<br />

Mosimann and colleagues (Mosimann 1979; Darroch and Mosimann<br />

1985); however, they were not log transformed. The ANOVA results<br />

show that BMI has a significant effect on overall ML size (p-value <<br />

0.05). However, these same tests show no significant effect of BMI on<br />

bone shape. This suggests that increases in BMI are associated with<br />

increases in ML size, but do not appear to be associated with a change in<br />

shape.<br />

As the prevalence of obesity in the American public continues to<br />

increase, so too does the need to estimate weight in forensic contexts.<br />

The implication that weight can indirectly alter bone shape has great<br />

potential to aid in efficient identification of the deceased, as obesity<br />

clearly affected how an individual appeared to others in life.<br />

Additionally, these findings can contribute to public health and outreach<br />

endeavors related to health implications of obesity.<br />

Obesity, Bone Morphology, <strong>Bio</strong>mechanics<br />

128


H105 Mortality Structure and Age Estimation in<br />

Nigerian Populations<br />

Erin H. Kimmerle, PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820; and John<br />

O. Obafunwa, MD, JD, Department of Pathology and Forensic<br />

Medicine, Lagos State University College of Medicine, Ikeja, Lagos,<br />

NIGERIA<br />

The goal of this presentation is to analyze the morbidity and<br />

mortality structure of a modern Nigerian population to aid in the<br />

development of age estimation formula for the population. Further,<br />

population variation among Nigerian and American populations is<br />

discussed and the affects of nutritional disease and pathology on aging is<br />

explored.<br />

This analysis reviewed the morphological changes of the pubic<br />

symphysis and sternal rib ends for more than 300 identified cases in<br />

Nigeria. This presentation will impact the forensic science community<br />

by presenting the outcome of a detailed analysis of the age at death<br />

distributions for males and females which will aid in the development of<br />

age estimation methods for West Africa and enable further study of<br />

human variation throughout the region.<br />

The ability for authorities to identify unknown decedents in cases of<br />

homicide, human rights abuse, enforced disappearances, or extrajudicial<br />

executions is contingent in large part on a system for human<br />

identification that includes a protocol based on population specific<br />

standards. Nigeria’s population is more than 150 million people,<br />

representing just over twenty-five percent of Africa’s inhabitants.<br />

Nigeria also has a global population with a large number of international<br />

workers, refugees from neighboring countries, and migrant workers.<br />

The life expectancy for males and females are only 46 and 47 years,<br />

respectively. A high number of infectious diseases, deaths related to<br />

child birth, and a low prevalence of medical care contribute to the low<br />

life expectancy. Additionally, in the past several years, there have been<br />

over 10,000 extrajudicial killings of suspects, innocent civilians, multinational<br />

oil workers, and politicians by the police, the military forces,<br />

vigilante groups, and armed militants in various parts of Nigeria. More<br />

recent sectarian violence has claimed more than 1000 lives in the past<br />

year.<br />

Transitional justice initiatives in Nigeria are transforming the<br />

coroner laws which now require medico-legal death investigations.<br />

Currently, the College of Medicine at Lagos State University in Nigeria<br />

is one of the only forensic pathology programs in the country and<br />

performs about 3,000 autopsies each year. The facility also houses the<br />

Office of the Chief <strong>Medical</strong> Examiner for Lagos State. Basic biological<br />

information such as age and sex are the first parameters for establishing<br />

the identification process among unknown decedents. The assumption<br />

that one protocol is efficient across global populations is at times<br />

challenged because of both biological and social factors.<br />

To study population variation and the applicability of applying<br />

American based aging methods to Nigerian populations, the mortality<br />

structure of the Nigerian population autopsied and contributing factors<br />

influencing this structure are investigated. Demographic data for<br />

n=2650 cases and biometric scores (n=300) for the pubic symphysis and<br />

fourth ribs, scored in the manners of Suchey-Brooks and Iscan and coworkers,<br />

were collected for identified individuals autopsied at the<br />

College of Medicine, Lagos State University in Nigeria. Additional<br />

comparative data for identified American males and females were<br />

collected for 2,078 pubic symphyses and 250 fourth ribs. American data<br />

comes from numerous American forensic and anatomical reference<br />

collections including The University of Tennessee Forensic Data Bank<br />

(FDB) and William M. Bass Donated Collection, Gilbert-McKern<br />

skeletal data, McKern-Stewart Korean War Dead data, Los Angeles<br />

County <strong>Medical</strong> Examiner’s Office, and the Robert J. Terry Anatomical<br />

Skeletal Collection.<br />

Hazard analysis is used to model mortality and survivorship among<br />

Nigerian and American samples. Age related changes of the pubic<br />

symphyses and sternal ribs are also compared for each population<br />

through an analysis of deviance calculated using an improvement chisquare<br />

to test for population variation. The outcome is a detailed<br />

analysis of the age at death distributions for males and females which<br />

will aid in the development of age estimation methods for Nigerian<br />

populations and enable further study of human variation throughout the<br />

region.<br />

Age Estimation, Population Variation, Human Rights<br />

H106 Dead Man’s Curve: How Scoliosis Affects<br />

Rib Aging<br />

Nicole M. Webb, BS*, 19760 Osprey Cove Boulevard, Apartment 136,<br />

Fort Myers, FL 33967; Heather A. Walsh-Haney, PhD, Katy L.<br />

Shepherd, BS, and Christen E. Herrick, BS, Florida Gulf Coast<br />

University, Division of Justice Studies, 10501 Florida Gulf Coast<br />

University Boulevard South, AB3, Fort Myers, FL 33965-6565; Alyssa L.<br />

Butler, BA, 9795 Glen Heron Drive, Bonita Springs, FL 34135; Marta U.<br />

Coburn, MD, District 20 <strong>Medical</strong> Examiner’s Office, 3838 Domestic<br />

Avenue, Naples, FL 34104; and Margarita Arruza, MD, <strong>Medical</strong><br />

Examiner’s Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

The goal of this presentation is to present gross and radiographic<br />

methods used in the identification of abnormal spinal curvature, e.g.,<br />

scoliosis, and the possible effects this condition has on the accuracy of<br />

rib aging estimation from skeletal remains.<br />

The presentation will impact the forensic community by elucidating<br />

the possible effects scoliosis has on rib aging criteria developed for the<br />

analysis of skeletal remains.<br />

Abnormal lateral curvature of the vertebral column, or scoliosis,<br />

currently affects 2-3% of the United States population. Due to its fairly<br />

uncommon occurrence, the presence of the condition may help to<br />

establish a positive identification from unidentified skeletal remains<br />

when medical records or radiographs are available. In the absence of<br />

antemortem medical information, scoliosis becomes one aspect of the<br />

broader biological profile (i.e., age, sex, stature, and ancestry) used to<br />

compare the unknown individual with NCIC and NamUS missing and<br />

endangered persons profiles.<br />

Two types of scoliosis are identified in clinical settings—adolescent<br />

scoliosis and adult degenerative scoliosis. Clinicians visually identify<br />

both types through the presence of asymmetric shoulders, scapulae, and<br />

hips. The diagnosis is then confirmed through antero-posterior<br />

radiographs. Once the displaced vertebrae are radiographically<br />

identified, the degree of the abnormal curvature is calculated using the<br />

Cobb angle. On the radiograph, one line is drawn from the superior<br />

vertebral body of the uppermost-displaced vertebrae. A second<br />

intersecting line is drawn along the inferior vertebral body of the most<br />

inferiorly displaced vertebra. The angle between these two lines as<br />

measured by a protractor is the Cobb angle. A 10° curvature is the<br />

minimum angulation required for a clinical diagnosis of scoliosis with<br />

most scoliotic spinal deformities falling between 10° and 30°.<br />

The postmortem skeletal identification of scoliosis is typically<br />

determined through gross analysis of the ribs (e.g., asymmetrical length<br />

and shape of rib antemeres), isolated vertebrae (e.g., deflected transverse<br />

processes, lateral wedging, rotation, and/or torsion of vertebral bodies,<br />

asymmetrical presence of sclerotic bone, and/or ossified intervertebral<br />

disc spaces), as well as the abnormal appearance of the articulated<br />

vertebral column. These changes to the ribs and vertebrae may cause the<br />

analyst to over estimate the age of the individual if the scoliotic<br />

pathology is present but slight in its expression or if the analyst does not<br />

recognize the condition. It is hypothesized that the loss of rib symmetry<br />

caused by the curvatures, which is attributed to the adaptation the ribs<br />

129 * Presenting Author


must make to accommodate spinal deformities, as well as the potential<br />

ossification of spinal ligaments and intervertebral disc space, results in<br />

changes to the sternal rib ends that inevitably complicate age assessment.<br />

For this study, a series of skeletons (n=44) under the jurisdiction of<br />

various medical examiners, including the offices of District 4, 17, and<br />

20, were evaluated for scoliosis indicators. Twenty-five percent (n= 11)<br />

of the forensic skeletal sample revealed scoliotic curvatures upon<br />

reconstruction. Left and right fourth ribs were aged of each individual<br />

and assigned a phase score using the Iscan and colleagues technique. In<br />

addition, the Cobb angle was calculated for each reconstructed skeleton<br />

within our forensic sample. Lastly, five analysts were used in this study<br />

in order to account for interobserver error.<br />

It was found that the more severe instances of spinal curvatures<br />

were caused by underlying congenital defects, the most common being<br />

hemivertebrae. Most instances of scoliosis observed presented with a<br />

double curvature and exhibited osteoarthritis; thereby, suggesting the<br />

curvature was attributed to age-related changes. In general, rib ends did<br />

not necessarily age older, but in some cases sustained such a high degree<br />

of distortion they appeared more flattened or youthful as defined by the<br />

Iscan and colleagues’ technique. Therefore, we suggest that when<br />

skeletal analysts age scoliotic individuals shape criteria should be deemphasized.<br />

Rather, features such as porosity and pitting criteria should<br />

supplant shape changes when using Iscan and colleagues aging<br />

technique on scoliotic skeletal remains.<br />

Forensic anthropology, Scoliosis, Fourth rib end aging<br />

H107 The Effect of Axial Developmental Defects<br />

on Forensic Stature Estimates<br />

Katy L. Shepherd, BS*, Heather A. Walsh-Haney, PhD, and Christen E.<br />

Herrick, BS, Florida Gulf Coast University, Division of Justice Studies,<br />

10501 Florida Gulf Coast University Boulevard South, AB3, Fort Myers,<br />

FL 33965-6565; Marta U. Coburn, MD, District 20 <strong>Medical</strong> Examiner’s<br />

Office, 3838 Domestic Avenue, Naples, FL 34104; and Margarita<br />

Arruza, MD, <strong>Medical</strong> Examiner’s Office, 2100 Jefferson Street,<br />

Jacksonville, FL 32206<br />

The goal of this presentation is to explore how the presence of axial<br />

developmental defects affects living stature estimates.<br />

This presentation will impact the forensic science community by<br />

helping to establish methodological standards when calculating living<br />

stature estimates from human skeletal remains that evidence vertebral<br />

developmental defects.<br />

The accurate estimation of stature is vital to the establishment of an<br />

individual’s identity in medicolegal investigations involving human<br />

skeletal remains. In forensic anthropological analyses, stature is<br />

commonly estimated by: (1) combining the measurements of those bones<br />

responsible for living stature (i.e., anatomical method); or, (2) using<br />

regression equations based on intact long bone measurements (i.e.,<br />

mathematical method). The use of Fully’s anatomical method to<br />

estimate living stature, for example, involves the measurement of cranial<br />

height, maximum anterior height of the vertebrae C2 through S1,<br />

bicondylar length of the femur, physiological length of the tibia, and the<br />

maximum height of the articulated calcaneus and talus. Conversely,<br />

stature estimates derived solely from long bone measurements, with the<br />

occasional addition of sacral height, do not consider the entire vertebral<br />

column.<br />

Congenital anomalies or malformations are produced by<br />

pathological changes in the normal development during intrauterine life.<br />

Specifically, axial developmental defects affect the skull, vertebral<br />

column, ribs and sternum. Because a major component of skeletal height<br />

is the combined length of C2 through S1, vertebral agenesis,<br />

supernumerary vertebrae and irregular vertebral segmentation such as<br />

those seen in axial developmental defects may influence stature. It is<br />

hypothesized that using stature estimations based solely upon long bone<br />

* Presenting Author<br />

measurements may under or overestimate stature, depending on the type<br />

of axial developmental defect present. Very little research has been<br />

conducted on how these anomalies, especially those involving the<br />

vertebral column, affect the estimation of living stature. To this end,<br />

stature was estimated using both anatomical and mathematical methods<br />

for skeletal remains with and without the presence of axial<br />

developmental defects in order to determine the variance, if any, between<br />

the two methods.<br />

Study materials for this research came from skeletal cases under the<br />

jurisdiction of Florida medical examiner districts 4, 17, and 20. The<br />

sample consisted of 32 adult individuals, of which 23 were male and nine<br />

were female. At least 50% of each individual was present, including the<br />

elements necessary to ensure accurate sex, age, ancestry, and both<br />

anatomical and mathematical stature estimates. Each case was<br />

inventoried, a biological profile was determined, and the remains were<br />

analyzed for vertebral developmental defects. The presence or absence<br />

of vertebral anomalies such as irregular vertebral segmentation (e.g.,<br />

block vertebrae), vertebral border shifting (e.g., lumbarization,<br />

sacralization, etc.), supernumerary vertebrae and vertebral agenesis was<br />

recorded. Interobserver error was minimized by having three<br />

investigators estimate the stature on all individuals. Stature was<br />

determined using both anatomical (i.e., revised Fully method) and<br />

mathematical (i.e. regression equations from long bone measurements<br />

using FORDISC 3.0) methods. Data using chi square analysis of<br />

variance.<br />

Upon analysis, eight of the 32 individuals presented with at least<br />

one axial developmental defect. Most individuals exhibited only one<br />

type of developmental defect; however, two individuals had defects in<br />

multiple vertebral regions. Overall, there were three instances of<br />

irregular vertebral segmentation, four instances of general vertebral<br />

border shifting, one instance of supernumerary vertebrae and two<br />

instances of vertebral agenesis. The chi square analysis of variance<br />

revealed a significant difference in mean stature, as well as standard<br />

deviation within each stature estimate for those sets of remains with axial<br />

developmental defects (df = 7, p = 0.005). The difference in mean<br />

stature for the remains without axial defects was not significant (df = 23,<br />

p = 0.619). In individuals with vertebral agenesis and block vertebrae,<br />

the mathematical method tended to overestimate stature, thereby<br />

emphasizing the vertebral column’s impact on living stature.<br />

Forensic Anthropology, Stature Estimation, Axial Developmental<br />

Defects<br />

H108 Automatic Skull Landmark Determination<br />

for Facial Reconstruction<br />

Jeffrey D. Erno, MS*, and Peter H. Tu, PhD, GE Global Research,<br />

Imaging Technologies, 1 Research Circle, Niskayuna, NY 12309; and<br />

Terrie Simmons, MA, and Philip N. Williams, BS, FBI Laboratory,<br />

CFSRU, Building 12, Quantico, VA 22135<br />

The goal of this presentation is to present new methods for<br />

determining landmark positions on skeletal remains.<br />

This presentation will impact the forensic community by making<br />

the facial reconstruction process more objective by lessening the<br />

requirement for user judgment in determining the initial landmark<br />

locations.<br />

When building a computer based facial reconstruction in ReFace,<br />

key locations need to be indentified on the questioned/found skull.<br />

These key locations, or landmarks, are used in the reconstruction and are<br />

historically selected manually by the ReFace user. After attending this<br />

presentation, attendees will understand a number of principles regarding<br />

the automatic determination of landmarks on skulls or any similar threedimensional<br />

shapes.<br />

The automatic landmark determination will also reduce the time<br />

and effort required to set up a facial reconstruction. The goal is not to<br />

130


take the user out of the loop. To this end, the user will be able to review<br />

and override any or all automatically determined locations. This may be<br />

necessary for unusual skulls or where skull material is missing.<br />

Automating the detection of key locations involves the use of a<br />

prediction algorithm that is trained using existing data. For the purposes<br />

of skull landmark determination the ReFace database of known skulls<br />

(over 400 CT scans containing both skull and soft tissue information) are<br />

used as the training data. The known skull landmark locations have been<br />

previously entered into ReFace by the system developers using their best<br />

judgment regarding these locations.<br />

A three-dimensional shape descriptor was developed to characterize<br />

any point on the skull and provides a training basis for the prediction<br />

algorithms. The shape descriptor is generally spherical and has sub<br />

regions separated by angles and radial layers. At any location on the<br />

skull the shape descriptor counts the number of three-dimensional model<br />

points in each sub region, with the result being an array of numeric<br />

values. The quantity, shape, and size of the shape descriptor sub regions<br />

are controlled by control variables with inputs for the initial radius, the<br />

number of angular sectors and the number of layers. Different<br />

configurations of the control variables were evaluated based on location<br />

determining capability. Performance and other results will be presented.<br />

When a new questioned skull is to be analyzed by ReFace, the<br />

system can compare the results of the shape descriptor evaluation at<br />

various points on the questioned skull with the algorithms trained by<br />

similar evaluations on the known skulls. Several different algorithms<br />

were evaluated and will be reviewed during the presentation, including<br />

boosting and cost based methods.<br />

Depending on the concentration of points on the three-dimensional<br />

model, skull data can be large in size. Larger models will take longer to<br />

process so the algorithm needs to perform efficiently and the amount of<br />

the skull that is evaluated should be reduced as much as possible. Using<br />

information about the known skulls in the ReFace database, the<br />

landmarks were normalized within the skull’s bounding region in order<br />

to provide an initial guess with respects to the location of the landmark<br />

and the volume of possible locations. The normalized estimate allows a<br />

region much smaller than the overall skull to begin a more detailed<br />

exploration of the location. Other methods to address and improve<br />

performance will also be presented.<br />

An example case in which the methods described are used to build<br />

a successful face reconstruction will be presented. The presentation will<br />

show the capability of automatically determining the location of the skull<br />

landmarks within a few millimeters of the correct location.<br />

Skull, Reconstruction, Algorithmnstruction, Algorithm<br />

H109 In Vivo Facial Tissue Depth Measurements<br />

of African Nova Scotian Children for 3-D<br />

Forensic Facial Reconstruction<br />

Meaghan A. Huculak, BSc*, Saint Mary’s University, 923 Robie Street,<br />

Halifax, Nova Scotia B3H 3C3, CANADA<br />

After attending this presentation, attendees will be aware of<br />

groundbreaking research that has expanded the facial tissue depth data to<br />

include African Canadians. They will also learn the significance of<br />

collecting data that is specific for similar ancestral populations living in<br />

different geographical regions.<br />

This presentation will impact the forensic science community by<br />

increasing the facial tissue depth data available in Canada to include<br />

African Canadians, and thus helping forensic artists generate more<br />

accurate 3-D forensic facial reconstructions. Consequently, a more<br />

accurate facial reconstruction will increase the likelihood of recognition<br />

and positive identification. As a result, this research will impact<br />

humanity by providing data that may help alleviate the psychological,<br />

emotional, and physical suffering endured by relatives and friends of<br />

missing persons.<br />

The purpose of this research is to expand the facial tissue depth data<br />

available in Canada to include African Canadians. Population specific<br />

facial tissue depth data helps increase the accuracy of three dimensional<br />

forensic facial reconstructions as well as the chance for establishing a<br />

positive identification for unknown individuals. Specifically, this study<br />

involves collaborating with the African Nova Scotian community to<br />

create the first African Canadian tissue depth database to help identify<br />

missing children of African Nova Scotian descent.<br />

The specific goals of this research are to: (1) report standard<br />

summary statistics, including means, standard deviations, and ranges of<br />

tissue thicknesses for both sexes and varying sub-adult age groups; (2)<br />

determine if there is a relationship between age and tissue thickness for<br />

males and females; (3) determine if there are significant differences of<br />

facial tissue depths between and within sexes of differing sub-adult age<br />

groups; (4) compare the results of this study to contemporary data for<br />

African American children (Manhein et. al., 2000); and, (5) provide<br />

sonographic training for African Nova Scotian students.<br />

This study utilizes ultrasound technology to collect the facial tissue<br />

depth measurements since it is the most accurate method of measuring<br />

tissue depth; it is non-invasive, safe, and portable. Tissue depth<br />

measurements are collected from fifty living volunteers of African Nova<br />

Scotian descent. Participants included males and females between three<br />

and 18 years of age. Height and weight were recorded and photographs<br />

of the front and right side were taken of each participant. To maintain<br />

consistency in locating the nineteen anatomical landmarks on living<br />

individuals, the protocol developed by Manhein and colleagues (2000)<br />

was followed.<br />

The participant was seated in the upright position, facing forward,<br />

with facial muscles and jaw relaxed. The transducer was coated with a<br />

non-allergenic gel and lightly applied to the skin at a 90° angle to the<br />

underlying bony landmark. To prevent depression of the soft tissues, the<br />

gel was the only substance in contact with the skin.<br />

The participant remained still while the measurement was being<br />

taken to ensure an accurate reading. Once the coated transducer was in<br />

the correct position, the image was frozen on the monitor and the<br />

participant was able to relax for a few moments prior to the next<br />

measurement. An ultrasound output was generated and the depth of the<br />

soft tissue was measured using calipers built into the computer system.<br />

This process was then repeated for all nineteen anatomical points.<br />

Averages of each point were taken for males and females of specific age<br />

groups and a reference table was generated. Statistical analyses were<br />

used to analyze the data. Results and preliminary findings will be<br />

presented.<br />

This presentation will impact the forensic science community by<br />

increasing the facial tissue depth data available in Canada to include<br />

African Canadians, and thus helping forensic artists generate more<br />

accurate 3-D forensic facial reconstructions. Consequently, a more<br />

accurate facial reconstruction will increase the likelihood of recognition<br />

and positive identification. As a result, this research will impact<br />

humanity by providing data that may help alleviate the psychological,<br />

emotional, and physical suffering endured by relatives and friends of<br />

missing persons.<br />

African Canadian, Tissue Depth, Facial Reconstruction<br />

H110 Skeletal Identification by Radiographic<br />

Comparison: Blind Tests of a<br />

Morphoscopic Method Using Antemortem<br />

Chest Radiographs<br />

Carl N. Stephan, PhD*, and Andrew J. Tyrrell, PhD, JPAC-CIL, 310<br />

Worchester Avenue, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will have an<br />

appreciation for how identifications can be established using the bone<br />

131 * Presenting Author


morphology depicted on chest radiographs, what error rates can be<br />

expected, and why the methods form the last viable modality for the<br />

identification of many United States personnel unaccounted for from the<br />

Korean War.<br />

This presentation will impact the forensic science community by<br />

providing data for the most rigorous validation test of a non-dental<br />

radiographic comparison method that has so far been undertaken (see<br />

methods reported below). Additionally, it demonstrates the potency that<br />

normal radiographic anatomies of the claviculae and C3-T4 vertebrae<br />

hold for the correct identification of unknown human skeletons (when of<br />

course, antemortem [AM] chest radiographs are available).<br />

Radiographs of the chest form the second-most frequently captured<br />

x-ray image after dental radiographs; however, chest radiographs are<br />

typically easier to locate (i.e., they form part of the medical record) and,<br />

therefore, they hold greater potential forensic value. Despite this,<br />

research on chest radiographs (at least from an identification<br />

perspective) has been limited and past validation studies have been<br />

hampered by the use of simulated AM radiographs and relatively easy<br />

test protocols (multiple pair matching tasks from the same, typically<br />

small, simultaneous array [n1390 non-matching individuals),<br />

postmortem radiographs taken and utilized by independent examiners,<br />

and a radiographic comparison method that employs the claviculae and<br />

C3-T4 vertebrae. Rigorous method assessments were undertaken by<br />

using: examiners who operated in the blind; a single target individual in<br />

each identification test; new non-target individuals across all tests; up to<br />

1000 radiographs in any single simultaneous array; sequential arrays in<br />

some trials (= examiners blinded to identification universe size, no<br />

opportunity for examiners to compare array radiographs side-by-side,<br />

and no opportunity for examiners to review decisions and/or<br />

radiographs); < quarter-size 50-year-old radiographs of suboptimal<br />

image quality; skeletons in various states of preservation (including<br />

varied states of erosion/completeness, two very poorly preserved<br />

skeletons and four other skeletons that had fifty percent of one clavicular<br />

shaft missing due to prior mtDNA sampling), back-to-back tests<br />

wherever possible (to encourage examiner fatigue), and time pressures<br />

for some trials. Thus, the performance levels observed in this study<br />

should represent baseline values. Eight examiners took part in the study:<br />

two trained on the radiographic images/methods and six other untrained<br />

examiners (= persons not receiving in-depth training on methods and<br />

additionally with limited radiographic experience [especially for the<br />

chest]; and/or limited knowledge of the in vivo position of the thoracic<br />

human skeleton; and/or limited understanding of x-ray<br />

principles/equipment operation).<br />

Only true positive identifications were made for the simultaneous<br />

arrays (accuracy = 100%, sensitivity = 100%; n = 6 trials). While<br />

erroneous identification responses were made during the sequential trials<br />

they were almost exclusively made by untrained examiners. That is, the<br />

accuracy, sensitivity and specificity for trained examiners was 90%, 80%<br />

and 100% respectively (n = 10 trials), whereas the accuracy, sensitivity<br />

and specificity for the untrained examiners was 35%, 50% and 29%<br />

respectively (n = 20 trials). Furthermore, untrained examiners took<br />

twice as long as trained examiners to reach identification decisions<br />

during the sequential trails, even though they performed with less<br />

accuracy (mean = 68 sec compared to 34 sec for trained examiners).<br />

Method limits were established by the very poorly preserved remains in<br />

conjunction with the sequential trials administered under an<br />

identification context; but when these very incomplete remains were<br />

tested using simultaneous arrays and/or sequential trials under<br />

exclusion/inclusion contexts, the methods retained their value in the<br />

hands of trained examiners (accuracy = 100%, specificity = 100%, n = 2<br />

trials). In view of the purposefully imposed stringency of this study,<br />

these results indicate that AM chest radiographs hold value for skeletal<br />

identification when implemented by trained examiners, especially for<br />

moderate-to-well preserved skeletal remains. Moreover, since<br />

* Presenting Author<br />

benchmark accuracies for other radiographic identification methods have<br />

been set using more lenient tests, we suspect that the identification power<br />

of the method reported here at least rivals (and possibly even surpasses)<br />

that for higher esteemed body regions. These results justify the<br />

employment of the method in future forensic casework and should<br />

encourage attempts to make future improvements to these methods.<br />

Additionally, the results underscore the danger for untrained<br />

practitioners to employ the technique in its current unquantified state, but<br />

they also indicate that competency can be quickly induced by training<br />

with practice sets of images (c. 100-200 individuals) administered under<br />

simultaneous formats.<br />

Skeletal, Identification, Radiographs<br />

H111 Positive Identification Using Radiographs of<br />

the Lumbar Spine: A Validation Study<br />

Jane C. Wankmiller, MA*, Michigan State University, Department of<br />

Anthropology, 354 Baker Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will learn the results of<br />

a validation study/survey that was carried out to establish accuracy and<br />

error rates among practicing forensic anthropologists with regard to<br />

positive identifications made by comparing “antemortem” and<br />

“postmortem” radiographs of the lumbar spine.<br />

This presentation will impact the forensic community by adding to<br />

the existing literature on validation, accuracy rates and the potential risk<br />

of arriving at false positives when using radiograph comparison as a<br />

means for arriving at positive identifications of unknown decedents.<br />

Following court rulings, such as Frye v. United States (1923),<br />

Daubert v. Merrell Dow Pharmaceuticals (1993) and Kumho Tire Co.<br />

Ltd. v. Carmichael (1999), in addition to the recent recommendations<br />

included in the 2009 report from the National Academy of Sciences, the<br />

forensic community is increasingly mindful of the importance of<br />

evaluating, improving, and standardizing the methods employed by<br />

scientists practicing in all disciplines of forensic science. Specifically<br />

with regard to the Daubert ruling, guidelines were established for<br />

admissibility of expert witness testimony: a method must have been or<br />

have the potential to be empirically tested, there must be established<br />

error rates, it must have been subjected to peer review, and it must be<br />

generally accepted in the relevant scientific community. As a result,<br />

several studies have been published to validate identification methods<br />

used by anthropologists. Existing publications on methodology and<br />

validations studies involving comparative radiography include, among<br />

others: Christensen 2004; Hogge et al. 1994; Hulewicz and Wilcher<br />

2003; Kahana et al. 2002; Koot et al. 2005; Kuehn et al. 1997; Mundorff<br />

et al. 2006; Quatrehomme 1993; Telmon et al. 2001; Weiler et al. 2000.<br />

Though several published case reports and studies involve the use of<br />

lumbar spine radiographs, none have sought to validate the comparisons<br />

of antemortem and postmortem x-rays of the lumbar region with the<br />

specific goal of establishing the method as admissible evidence in a court<br />

of law.<br />

This project was designed to evaluate the validity of rendering<br />

positive identifications by comparing antemortem and postmortem<br />

radiographs of the lumbar spine, and to evaluate the specific features<br />

anthropologists most often employ when carrying out such<br />

identifications. With permission from the Willed Body Program and the<br />

Department of Radiology at Michigan State University, the research<br />

being presented made use of cadavers from the MSU Gross Anatomy<br />

Laboratory. To mimic the antemortem condition, A-P abdominal x-rays<br />

were taken of 29 cadavers, using standard clinical procedures. Five of<br />

those individuals were then randomly selected to have their lumbar<br />

spines extracted, defleshed, rearticulated and x-rayed a second time to<br />

mimic the postmortem condition. Careful attention was paid to orient<br />

these “postmortem” images as closely as possible to the “antemortem”<br />

images.<br />

132


After duplicating the radiographs and selecting suitable images,<br />

packets of materials containing sets of 20 “antemortem” and 5<br />

“postmortem” radiographs, along with a letter to participants, the<br />

project’s abstract, consent forms, and data sheets were sent to the study<br />

subjects (practicing anthropologists and forensic anthropology graduate<br />

students) who participated voluntarily. The first portion of the data<br />

sheets contained questions asking personal information such as highest<br />

degree, whether the participant was a graduate student or a professional,<br />

years of experience each participant has practicing forensic<br />

anthropology, whether they had experience using radiographs to make<br />

positive identifications, whether any of those identifications were made<br />

based on radiographs of the spine, and approximately how many of their<br />

cases have involved such identifications. The second portion of the data<br />

sheet asked the study participants to identify which “antemortem”<br />

radiographs corresponded to the “postmortem” radiographs, how many<br />

similarities they found between the radiographs, and which specific<br />

features they took into consideration.<br />

Analysis was carried out using contingency tables to evaluate the<br />

relationships between the independent variables (i.e. level of education,<br />

years of experience practicing forensic anthropology, number of cases<br />

involving radiographs, and number of cases involving radiographs of the<br />

spine) and the dependent variable (% correct of the five simulated<br />

identifications). Results suggest that level of education and years of<br />

professional experience may be unrelated to the accuracy rates<br />

associated with this type of identification. However, there appears to be<br />

a significant relationship between the amount of experience observers<br />

have with making identifications using radiographs and the number of<br />

identifications they made correctly.<br />

Identification, Validation, Radiographs<br />

H112 Hand Comparison: The Potential for<br />

Accurate Identification/Recognition in<br />

Cases of Serious Sexual Assault<br />

Xanth Mallett, PhD*, University of Dundee, Centre for Anatomy &<br />

Human Identification, Dow Street, Dundee, UK DD1 5EH, SCOTLAND<br />

After attending the presentation, attendees will have an<br />

understanding of the differences between human identification,<br />

recognition, and comparison in forensic body mapping scenarios,<br />

forensic photographic comparisons methods, as discussed in relation to<br />

body mapping – using the human as example, and different geometry<br />

and biometric identifiers, in terms of developing multi-modal systems.<br />

This presentation will impact the forensic science community by<br />

providing an overview of a new and innovative human<br />

identification/recognition system which does not require the offender’s<br />

face to be visible, offering another mechanism for the detection and<br />

confirmation of the identity of serious sex offenders, including members<br />

of international paedophile rings, providing inter-agency and crossboundary<br />

support to investigative agencies outside of the United<br />

Kingdom investigating serious sex crimes in which faces are not visible,<br />

and making the system details available to other law enforcement<br />

agencies, with a view to increasing the number of successful<br />

prosecutions of serious criminal, including those guilty of sexual<br />

offences.<br />

This presentation will summarize a number of high profile cases<br />

that have been heard recently in the United Kingdom courts – one of<br />

which was described by the residing judge as Scotland’s worst child sex<br />

abuse trial – which have utilized a novel and innovative hand comparison<br />

method to identify and corroborate the identify several pedophiles.<br />

Researchers at the Centre for Anatomy & Human Identification,<br />

University of Dundee, Scotland, have developed the world’s first large<br />

database for hand recognition and identification, with thousands of<br />

images which can now be used as a reference sample to show the<br />

occurrence of features within a discrete population. This database was<br />

developed as a direct result of a case that was presented the<br />

anthropological team at the Centre by the Metropolitan Police Service<br />

(MPS), London, which consisted of an offender taking illegal<br />

photographs of under-aged children while on a business trip to Thailand<br />

– who was careful not to catch his face on camera; however, his hands<br />

were in clear evidence. Previous to the Dundee team’s work, only<br />

circumstantial evidence linked the suspect to the offender in the images.<br />

The resulting report showed that it was unlikely that the hand in the<br />

photographs could have belonged to anyone else; that there was more<br />

variation between the suspects’ two hands than there was between the<br />

suspect’s left hand and the hand in the offender image. This result was<br />

achieved by comparing multi-modal features, such as overall finger size<br />

and shape, in addition to more individualistic characteristics such as scar,<br />

moles, freckles, etc. When confronted with the evidence the suspect<br />

confessed, and was subsequently found guilty of indecent assault of<br />

children under the age of 14 years, together with other serious sexual<br />

assault charges. This ground-breaking forensic identification case was<br />

revealed to the media by the MPS (2009) and the British Crown<br />

Prosecution Service (2009).<br />

Subsequently, a second hand comparison was undertaken for<br />

Lothian and Borders Police, Scotland, which resulted in the successful<br />

conviction of a pedophile ring, with eight men being found guilty of<br />

child pornography and sex abuse charges. Since this time, and a<br />

considerable media attention, an increasing number of similar scenarios<br />

have been presented to the team for analysis, demonstrating that there are<br />

significant applications for the work being undertaken in Dundee. This<br />

presentation will summarize the methods under development, and detail<br />

the most significant cases reviewed by the team to date.<br />

References:<br />

CPS (2009) Paedophile Sentenced after Hand Evidence Secures<br />

Conviction. Crown Prosecution service. Available from:<br />

http://www.cps.gov.uk/london/press_releases/paedophile_sentenced_<br />

after_hand_evidence_secures_conviction/.<br />

MPS (2009) Freckles Prove Child Abuse. Metropolitan Police Service.<br />

Available from:<br />

http://cms.met.police.uk/news/convictions/freckles_prove_child_abuse.<br />

Forensic Anthropology, Forensic Hand Comparison, Body Mapping<br />

H113 Forensic Characteristics of Hand Shape:<br />

Analysis of Individuation Potential<br />

and Sexual Dimorphism Using<br />

Geometric Morphometrics<br />

Patrick Randolph-Quinney, PhD*, Centre for Anatomy and Human<br />

Identification, College of Life Sciences, University of Dundee, Dundee,<br />

DD1 5EH, UNITED KINGDOM<br />

After attending this presentation attendees will learn of the issues<br />

surrounding the biometric use of hand geometry and its forensic<br />

anthropological basis, and methods which may be applied using<br />

advanced shape analysis statistical techniques in order to standardize the<br />

individuation of hand shape.<br />

This presentation will impact the forensic science community by<br />

presenting a novel standardization method for the quantitative analysis<br />

of hand morphology as an aid in individuation and sex assessment.<br />

The human hand is often used for verification of identity only<br />

(using one-to-one comparison), as the dimensions of hands have been<br />

considered to be too alike to individuate based on a one-to-many<br />

comparison. Past research has often focused solely on lengths and<br />

widths of the fingers and palm to compare variation in the hand, and this<br />

has led to the belief that hand dimensions are insufficiently individuating<br />

133 * Presenting Author


for human identification. The research here presented utilizes geometric<br />

morphometric techniques to investigate and quantify shape and size<br />

variation in the human hand, and consequently the potential for forensic<br />

human identification and recognition. The results are presented of a<br />

novel hand biometry study, the goal of which was to develop a<br />

methodologically and statistically robust means of investigating the<br />

individuating potential of the human hand by studying the extent of<br />

morphological variation within a sample population. It was imperative<br />

the developed technique was simple and highly repeatable, as currently<br />

there is no universally accepted method for hand comparison capable of<br />

facilitating a systematic assessment of individuation.<br />

Simultaneous digital images were acquired of the dorsal and palmar<br />

surfaces of the left & right hands of male and female participants. Ten<br />

repeat runs were acquired with varying time-lapses between image<br />

capture in order to assess variation due to hand placement. Nine 2D<br />

landmarks were selected on both surfaces of both hands, and were<br />

subsequently digitized using [TPS Digit.] The resulting landmark<br />

configurations (n=720) were subjected to Generalized Procrustes<br />

Analysis (GPA) with Full Tangent Space Projection in [Morphologika<br />

2.5.] Principal Components Analysis (PCA) was applied in order to<br />

assess individual and populational variation. Factor loadings were<br />

subject to Canonical Variates Analysis with stepwise and leave-one-out<br />

classification in order to assess individuation potential and the effects of<br />

sexual dimorphism on hand shape. The results showed individuals to be<br />

correctly classified in 95.3% of cases, with 87.5% being correctly<br />

classified by sex (males were correctly classified in 91.9% of cases, and<br />

females in 83.1%). These results are strongly significant and suggest the<br />

human hand offers significant individuating power for forensic<br />

identification purposes. They also indicate male and female hands to<br />

have sufficient shape variation for sex-based discrimination with the<br />

effects of allometry being strongly implicated. These and other<br />

implications of the shape analysis will be discussed.<br />

Hand <strong>Bio</strong>metrics, Geometric Morphometrics, Sex Assessment<br />

H114 <strong>Bio</strong>nic Remains: Positive Identifications<br />

From Surgical Implants<br />

Alison E. Jordan, BS*, Forensic Institute for Research and Education,<br />

PO Box 89, Middle Tennessee State University, Murfreesboro, TN<br />

37132; and Hugh E. Berryman, PhD, Department Sociology &<br />

Anthropology, Middle Tennessee State University, Box 89, Murfreesboro,<br />

TN 37132<br />

After attending this presentation, attendees should appreciate the<br />

forensic potential of surgical implants in making positive identifications.<br />

The attendees will become aware of the forensic and future<br />

bioarchaeological implications of the information presented, the types of<br />

procedures that require surgical implants, and a novel method for rapid<br />

identification of the implants and their uses.<br />

This research will benefit the forensic community by facilitating<br />

positive identifications of victims who possess surgical implants.<br />

Additionally, this research may provide future bioarchaeologists a<br />

valuable single-source reference on twentieth and twenty-first century<br />

medical procedures.<br />

Surgeries as treatments and preventative medicine have been<br />

around almost as long as man has had ailments. From trepanation in<br />

prehistoric times to complex neurosurgery in modern times, surgeries of<br />

all sorts (preventative, treatment, or cosmetic) have left their mark on<br />

human skeletal remains for millennia. Increasingly, surgeons are relying<br />

upon devices—from simple to electronically or mechanically driven—to<br />

replace or enhance organs and organ systems. <strong>Medical</strong> implants are now<br />

used in surgeries involving all major organ systems and are a frequent<br />

find in decomposed, burned and skeletal remains. Their significance in<br />

life as a medical aide is transformed in death to a tool for identification.<br />

This paper proposes to provide a single-source compilation (i.e., printed<br />

* Presenting Author<br />

and/or online reference manual) of common surgical implants along with<br />

their forensic significance for identification.<br />

The presence of an implant of any type tells the investigator that<br />

medical records exist on the questioned remains. The presence of certain<br />

types of remains (e.g., testicular implants, breast implants, fallopian tube<br />

rings or clips, etc.) may provide an indication of the sex of the questioned<br />

remains, or, in some cases, the preferred sex of the questioned remains.<br />

A general indication of age may be revealed by the presence of implants<br />

such as porcine verses mechanical heart valves, since porcine heart<br />

valves are at risk of calcification and breakdown and are not commonly<br />

placed in the young. The postmortem interval (PMI) may be garnered<br />

from the style of the implant as the manufacturer frequently modifies or<br />

redesigns them, varies manufacturing materials through time as research<br />

dictates, or the implant may contain power sources with known limits. A<br />

baseline for time since death (TSD) can be determined through<br />

identification of the implant and when it was manufactured. Finally, the<br />

morphological uniqueness of the implant may provide a means of<br />

specific identification from comparisons of antemortem and postmortem<br />

radiographs.<br />

When analyzing forensic remains to determine identity, specific<br />

information on an implant is a valuable source of information, but is<br />

often problematic and time consuming to find. Although many implants<br />

possess manufacturer names and logos, contact information for the<br />

manufacturer may not be readily obtainable and may require library or<br />

computer searches. The purpose of this paper is to provide a convenient<br />

source of information on implants commonly used in a variety of<br />

medical specialties, including orthopedics and sports medicine,<br />

cardiothoracic surgery, bariatric surgery, and cosmetic surgery.<br />

Specifically, under each specialty the name and representative<br />

photographs or illustrations will be provided of the more common<br />

implant, a description of their function, the manufacturers’ logos when<br />

present, contact information for the manufacturer, whether lot numbers<br />

are present on the device, and any known forensic value.<br />

Forensic Anthropology, Surgical Implants, Positive Identification<br />

H115 Epidemiology of Homicide in the Spanish<br />

Civil War<br />

Dawnie W. Steadman, PhD*, Binghamton University, Department of<br />

Anthropology, PO Box 6000, Binghamton, NY 13902-6000; Camila<br />

Oliart, MA, Universidad Autònoma de Barcelona, Department of<br />

Prehistory, Edifici B, Barcelona, 08193, SPAIN; Elena Garcia-Guixé,<br />

MA, Museu d’Arqueologia de Catalunya, Laboratori de<br />

Paleoantropologia i Paleopatologia, Barcelona, SPAIN; María Inés<br />

Fregeiro, MA, and Elena Sintes, MA, Universitat Autonoma de<br />

Barcelona, Department of Prehistory, Edifici B, Barcelona, 08193,<br />

SPAIN; Jennifer Bauder, MA, and Aimee E. Huard, MA, Binghamton<br />

University, Department of Anthropology, Binghamton, NY 13902; Jorge<br />

Jiménez, MA, Universidad Autònoma de Barcelona, Department of<br />

Prehistory, Barcelona, 08193, SPAIN; and Carme Boix, PhD, Badley<br />

Ashton & Associates Ltd., Winceby House, Winceby, Horncastle,<br />

Lincolnshire, LN9 6PB, UNITED KINGDOM<br />

After attending this presentation, attendees will understand how<br />

archaeological and forensic anthropological data can be used to<br />

reconstruct the manner in which extrajudicial executions occurred during<br />

the Spanish Civil War and how the execution modes varied by<br />

perpetrator group.<br />

This presentation will impact the forensic science community by<br />

showing how multidisciplinary cooperation among historians,<br />

archaeologists, forensic anthropologists, pathologists, and ballistic<br />

experts excavate seventy-year-old mass graves in Spain to reconstruct<br />

historic memory of the Spanish Civil War.<br />

Forensic scientists involved in the exhumation, recovery, and<br />

analysis of victims of human rights atrocities are often tasked with<br />

134


evaluating opposing testimonies concerning the number and identity of<br />

the victims as well as the nature of the event(s) surrounding the deaths.<br />

While investigators working on many sites within a single conflict may<br />

informally comment on a recognized pattern of execution and disposal,<br />

the modus operandi of perpetrators has received little formal attention.<br />

This is in large part because of the perceived heterogeneity of conflict<br />

behavior across space and time. However, patterns can arise within<br />

conflicts. The focus of this paper is to apply archaeological and physical<br />

anthropological data from a number of well-documented human rights<br />

investigations around the world, as well as Spanish historic information,<br />

to help define who was targeted for execution and define the manner of<br />

executions in recently excavated mass graves from the Spanish Civil War<br />

(1936-1939) and subsequent period of Franco rule (1939 – 1975). The<br />

epidemiology of homicide focuses on who was targeted for execution<br />

and how the process by which executions were carried out varied over<br />

space and time and whether the perpetrators were military or civilian.<br />

Despite the death of Franco in 1975, Civil Society in Spain is still<br />

struggling with when and how to reclaim historic memory of the Civil<br />

War and investigations of the atrocities committed by both sides are only<br />

recently underway. Most graves investigated to date are of the political<br />

left who were killed by the military as well as civilian Fascist groups. It<br />

is predicted that there will be distinct differences in the modus operandi<br />

between army and civilian perpetrators. Published and unpublished<br />

reports on documented clandestine execution methods from Iraq,<br />

Argentina, Guatemala, the former Yugoslavia, and several other conflict<br />

zones are compared to reports of controlled excavations of mass graves<br />

in Spain to establish the procedures to target, capture, and execute<br />

noncombatants during the Spanish Civil War and to document any<br />

regional or temporal variation.<br />

The data collected for this study focus on the grave, any activities<br />

associated with the execution event at the site, and detailed information<br />

about the victims. The first dataset provides information concerning the<br />

actions of the perpetrators and includes: (1) geographic location of the<br />

graves; (2) the number of graves at the site (e.g., a single mass grave or<br />

multiple contiguous or nearly contiguous pits that may indicate use over<br />

a period of time); (3) dimensions of the grave(s); (4) evidence of primary<br />

or secondary interment; (5) evidence of postmortem disturbance of<br />

graves; (6) presence or absence of ballistic evidence in and around the<br />

grave (e.g., shell casings, bullets); (7) presence or absence of ballistic<br />

evidence near likely execution sites (e.g., cemetery walls); (8) type and<br />

number of firearms used; and, (9) position of individuals within the<br />

grave.<br />

The second dataset focuses on the remains of the victims to examine<br />

who was targeted, whether it is likely they were combatants or unarmed<br />

civilians, the nature and frequency of peri-mortem trauma, and the<br />

positional relationship between the victim and perpetrator at the time of<br />

execution. Such data include: (1) number of individuals per grave; (2)<br />

demographic profile of victims; (3) date of execution; (4) number of<br />

individuals with peri-mortem gunshot, sharp or blunt force trauma; (5)<br />

number of individuals with multiple forms of peri-mortem trauma; (6)<br />

spatial relationship between perpetrator and victim (as determined by<br />

direction of gunshot fire and/or blunt force blows); (7) anatomical<br />

location(s) of peri-mortem trauma; and, (8) presence or absence of<br />

bindings (blindfolds, ligatures).<br />

The results demonstrate that the mass graves investigated by our<br />

team, as well as most graves throughout Spain, involved little<br />

construction effort and that the majority of the victims were males who<br />

did not support the military revolt. Two or more types of bullets are<br />

recorded for most of the mass graves. The distribution of gunshot<br />

wounds on the skeletons are largely confined to the torso and entered the<br />

bodies from multiple directions. While some bullets entered the skull,<br />

the evidence is most consistent with death by firing squads as<br />

documented in Iraq. Importantly, the physical evidence of the graves and<br />

bodies is inconsistent with claims of battlefield deaths and support the<br />

local oral histories indicating unarmed men were rounded up and<br />

illegally executed by both military and civilian firing squads.<br />

Forensic Anthropology, Human Rights, Spanish Civil War<br />

H116 Forensic Anthropology in Colombia:<br />

Working Amidst Armed Conflict<br />

Isla Yolima Campos Varela*, Institute of Legal Medicine, Calle 7A #12-<br />

61, Bogota, COLOMBIA; and Elizabeth A. DiGangi, PhD*, ICITAP,<br />

Calle 125 #19-89, Of. 401, Bogota, COLOMBIA<br />

The goal of this presentation is to describe the current status of<br />

forensic anthropology in Colombia and its challenges. Forensic<br />

anthropology efforts are conducted amidst on-going armed conflict, as<br />

opposed to other Latin American countries.<br />

This presentation will impact the forensic science community by<br />

providing an overview of the obstacles posed by armed conflict in terms<br />

of forensic anthropology activities.<br />

Since the twenieth century, Colombia has been going through an<br />

armed conflict among various players: leftist insurgents, rightist<br />

paramilitary groups, drug traffickers, and the government itself. The<br />

conflict has resulted in countless deaths, displacements, and missing<br />

persons. These cases need to be resolved in court and victim reparation<br />

is essential.<br />

In 2005 the law offered benefits to illegal group members who were<br />

willing to surrender and provide useful information. It was required that<br />

illegally obtained assets had to be returned to contribute to the victim<br />

reparation process and perpetrators had to give up their criminal<br />

activities. This strategy resulted in the discovery of countless<br />

clandestine graves. Investigating and processing these graves required<br />

additional forensic teams and the strengthening of anthropology teams<br />

existing at government agencies. These teams are responsible for<br />

exhuming remains and collecting evidence to support identification<br />

processes and help establish the truth.<br />

Forensic anthropology in Colombia is unique. Despite multiple<br />

legal, military, and diplomatic efforts, armed conflict is an on-going<br />

problem that forces anthropologists to continue working amidst conflict.<br />

As a result of the continuing state of conflict, forensic anthropology<br />

emerged as a government initiative.<br />

Working amidst conflict creates some unique problems for the<br />

investigating forensic teams which may bring about legal and historical<br />

challenges in the future. Some of these problems include:<br />

1 Collection of Victim Information: No precise information<br />

is available on the actual number of deaths or missing and<br />

displaced persons. These figures are constantly growing and<br />

there is no consensus between victim organizations and state<br />

agencies. Victims are reluctant to provide information<br />

because of their fear of retaliation from armed groups that are<br />

still operating in conflict areas. It if very difficult to locate<br />

civilians who may provide information about the death of<br />

their loved ones because most of them have been displaced<br />

by violence, live away from their place of origin, or their<br />

whole families have been exterminated.<br />

2 Exhumation of Clandestine Graves: In many cases the<br />

parties to the conflict state that bodies of the victims were<br />

disposed of to avoid prosecution. Exhumations are<br />

frequently conducted in a very short time and there is the risk<br />

of missing essential evidence to help clarify the<br />

circumstances of the victims’ death.<br />

3 Laboratory Analysis and Victim Identification: Due to<br />

difficulty gathering antemortem information about missing<br />

persons frequently results in a lack of information to<br />

135 * Presenting Author


compare against the evidence obtained from the skeletal<br />

remains. This situation delays identification and creates a<br />

backlog of unresolved cases.<br />

The above represents multiple challenges for Colombian forensic<br />

anthropologists. Fieldwork and laboratory protocols based on the<br />

country’s reality must be developed and adapted. Further research is<br />

required to develop standards specific to the Colombian population.<br />

Additionally, the modus operandi of armed groups must be understood to<br />

interpret field and laboratory findings.<br />

Colombia has a long way to go. Even though the country has<br />

received invaluable support from nations such as the United States,<br />

which have made significant financial and logistic contributions to<br />

victim search and identification processes, work teams still need training<br />

and laboratory and field standards need to be developed. Such<br />

advancements would not only help solve cases, but contribute to the<br />

construction of the country’s historical memory. It would be the first<br />

step towards justice and reconciliation, which will ultimately lead to<br />

lasting peace.<br />

Forensic Anthropology, Armed Conflict, Colombia<br />

H117 Ten Years On: Problems Relating to Victim<br />

Identification in Timor Leste<br />

Debra Komar, PhD*, United Nations Mission in Timor Leste, UN House,<br />

Dili, EAST TIMOR<br />

After attending this presentation, attendees will learn of the specific<br />

factors limiting the efforts of the United Nations Forensic Team in<br />

identifying victims of the 1999 conflict in Timor Leste.<br />

This presentation will impact the forensic science community by<br />

providing vital information on standards and practices associated with<br />

human rights investigations.<br />

In the fall of 1999, a referendum was held to determine whether the<br />

area known as East Timor (now Timor Leste) should seek independence<br />

from Indonesia. The Timorese voted overwhelmingly for independence.<br />

The Indonesian militia responded with a scorched earth policy, during<br />

which over 1,000 Timorese were reportedly killed. In the decade since,<br />

the United Nations has been responsible for investigating and<br />

documenting the offenses committed in 1999. The current unit, known<br />

as the Serious Crimes Investigation Team or SCIT, is given jurisdictional<br />

authority to investigate by, and reports directly to, the Office of the<br />

Prosecutor General of the Timorese government. The SCIT contains a<br />

Forensic Unit that is responsible for the exhumation and autopsy of<br />

victims of the 1999 conflict.<br />

To date, personal identification of the victims is not DNA based,<br />

despite the considerable efforts of all anthropologists associated with the<br />

mission and offers to conduct DNA testing from numerous<br />

organizations. The decision to utilize DNA testing rests with the<br />

Prosecutor General. As a result, the identification of victims remains<br />

presumptive and the process is suspect because of the following<br />

confounding factors: the requirement of family consent to exhume; the<br />

practice of monetary incentives; reliance on family identification; and,<br />

the use of North American methodological standards. Each of these<br />

factors will be examined in detail:<br />

1 Family Consent to Exhume: The Office of the Prosecutor<br />

General requires written family consent prior to any<br />

exhumation or examination of purported victims. While the<br />

practice shows respect for local custom and family wishes in<br />

cases involving individual and consecrated burials, the<br />

requirement becomes burdensome and limiting in the case of<br />

mass internments, clandestine burials and unidentified<br />

remains. Investigations were curtailed in cases of multiple<br />

burials because some families agreed to the exhumation<br />

while other families withheld consent. Exhumations<br />

authorized by one family member would be canceled when<br />

* Presenting Author<br />

another family member withdrew consent. Unidentified<br />

remains unearthed during construction projects or in similar<br />

circumstances could not be examined by the SCIT Forensic<br />

Unit until the victim was tentatively identified or the death<br />

could be shown to be from 1999. All forensic and<br />

medicolegal investigations, particularly those involving<br />

large-scale human rights violations, must be able to operat<br />

independently and without constraint in order to produce<br />

unbiased results. The family consent requirement in Timor<br />

Leste violates this principle.<br />

2 Monetary Incentives: Timor Leste is the poorest nation in<br />

Asia. Local mortuary customs require elaborate rituals,<br />

including village feasts associated with burial, exhumation,<br />

and reburial. To assist with the costs associated with the<br />

rituals, the United Nations introduced a stipend to families<br />

consenting to exhumations. The stipend, originally $40.00<br />

U.S. dollars, has now grown to $150.00. Personal<br />

observations include continual family demands for more<br />

money and, on one occasion, the family withdrew their prior<br />

consent, demanding thousands of dollars to examine the<br />

remains. The investigative process relies on families to<br />

identify potential victims to the investigative team. In such a<br />

harsh economic environment, paying families to exhume<br />

their loved ones creates an ethically questionable situation.<br />

What began as a well-intentioned practice is now suspect and<br />

subject to abuse.<br />

3 Reliance on Family Identifications: The identification<br />

process in Timor begins and ends with the family of the<br />

deceased. While cases exist in which a family member was<br />

present when the victim was killed, providing a reasonable<br />

visual identification of the remains, a significant proportion<br />

of the “identifications” are based on local folk traditions.<br />

Personal observations include witnessing family members cut<br />

themselves and bleed on the bones of their purported loved<br />

ones, in the belief that only family blood will be absorbed<br />

into the dry remains and the identification of skeletonized<br />

remains based on the dreams of the supposed victim’s<br />

grandmother. As anthropologists, local traditions must be<br />

respected; however, as forensic scientists, more must be<br />

required. Most troubling are cases in which the biological<br />

profile generated at autopsy does not match the family’s<br />

description of the victim. Given the requirement of family<br />

consent and the family’s belief that the remains are those of<br />

their loved one, there is little that can be done in such cases<br />

beyond informing the family of the findings.<br />

4 The Validity of Applying North American Standards to<br />

the Timorese Population: Even casual observation<br />

indicates that the Timorese are significantly smaller than their<br />

North American counterparts. A pilot study using<br />

presumptively identified individuals was conducted and will<br />

be presented in an upcoming article. The sample included 26<br />

individuals, all male, with an age range of 2 to 52 years. All<br />

metric forms of analysis were shown to be inaccurate. For<br />

example, metric sex determination methods using femoral<br />

and humeral head dimensions misclassified 100% of the adult<br />

male sample as “unambiguously female.“ Pubic symphysis<br />

aging methods also appeared to be incorrect. The need for<br />

regionally specific standards is great, yet would require a test<br />

population of positively identified individuals with<br />

documented age and stature (a problem in a country where<br />

many individuals do not know how old or tall they are).<br />

Currently, the ambiguity of family reported data, combined<br />

with the knowledge that our anthropological standards are<br />

inaccurate for the population under study, results in an<br />

identification process fraught with error. When the biological<br />

profile and the family description of the victim do not match,<br />

136


is it because the identification is incorrect, the family is<br />

mistaken about the age or stature of the victim, or because our<br />

methods are inaccurate?<br />

The cumulative effect of these factors is an identification process<br />

that is scientifically unacceptable. DNA testing must be utilized in<br />

Timor Leste. There is no other means of addressing issues of victim<br />

identification. The current procedure does little more than apply a false<br />

veneer of scientific credibility to an otherwise invalid exercise. The<br />

complete reliance on families as both the sole source of identification<br />

and access to the remains compromises investigative efforts and provides<br />

no means of addressing cases where the presumptive identification is<br />

incorrect.<br />

Professional standards and practices benefit from review, critique,<br />

and reevaluation. This presentation is not intended as an indictment of<br />

the current investigation in Timor Leste, but rather as an opportunity to<br />

learn from past experiences, to reconsider practices that introduce<br />

monetary or resource incentives into forensic investigations, and to<br />

identify the need for research into regional standards for all<br />

anthropological methodologies.<br />

Personal Identification, <strong>Bio</strong>logical Profile, International Human<br />

Rights<br />

H118 Personal Identification from Skeletal<br />

Remains in Human Rights Investigations:<br />

Challenges from the Field<br />

Luis Fondebrider*, Argentine Forensic Anthropology Team (EAAF),<br />

Rivadavia 2443, 2do piso, dpto.3 y 4, (1034) Capital Federal, Buenos<br />

Aires, ARGENTINA; and Soren Blau, PhD*, Victorian Institute of<br />

Forensic Medicine, 57-83 Kavanagh Street, Southbank, Melbourne,<br />

Victoria 3146, AUSTRALIA<br />

After attending this presentation, attendees will understand the<br />

complexities of personal identification from human skeletal remains in<br />

cases of political violence (human rights cases) where traditional<br />

antemortem records are rarely available.<br />

This presentation will impact the forensic community by examining<br />

some of the problems with presumptive identification techniques and<br />

posing questions about reliance on DNA identification methods.<br />

The personal identification of an individual(s) from skeletal<br />

remains poses a number of difficulties for forensic specialists. The<br />

absence of soft tissue, including skin (with possible tattoos, scars, or<br />

birthmarks) and fingerprints, limits the possibility of making a<br />

presumptive (e.g., based on visual assessment) or a positive (based on<br />

fingerprints) identification, and consequently, augments the role of the<br />

forensic anthropologist.<br />

The forensic anthropologist may assist by providing a biological<br />

profile (that is, the ancestry, sex, age, and stature of an individual) as well<br />

as identifying any skeletal anomalies, defects and/or pathologies. Such<br />

information is lead-generating and may narrow down the search.<br />

However, even with the formation of a biological profile, an attempt at<br />

identification rests on antemortem records being obtainable for<br />

comparison with the postmortem data. Adequate antemortem records<br />

may not always be available. This is particularly true in cases of political<br />

violence (human rights cases), where the affected population rarely visit<br />

a dentist or doctor.<br />

While fingerprints, DNA, and dental/medical information are the<br />

only evidence accepted in most countries by the legal authority to make<br />

a positive identification, other “unofficial” antemortem information may<br />

exist. For example, the mother of a victim may remember very well that<br />

her son had a missing upper lateral incisor even though no dental records<br />

exist. Is this information acceptable for identification? How is such<br />

information to be evaluated in the context of a lack of official dental<br />

records? Is a fracture in a bone or a pathological change to a limb that<br />

produces an unusual gait enough to identify an individual despite the<br />

lack of medical reports or x-rays?<br />

And how useful are personal belongings in the identification<br />

process? Presumptive identification based on associated clothing and/or<br />

personal property has been criticized as being unsystematic and<br />

providing high failure rates (Simmons and Skinner 2005; Simmons<br />

2007). 1,2 However, in many contexts the relatives of the missing and/or<br />

their friends may recognize clothing and/or property and there will not<br />

be funding and/or DNA facilities available to undertake positive<br />

identification.<br />

While discussions about acceptable levels of identification are<br />

common in contexts where legal and medical standards have not been<br />

established and geopolitics dictates international will and funding to<br />

investigate the missing, “acceptable” means of identifying deceased<br />

individuals need to be rethought and redefined. Does the forensic<br />

community have to adapt their practice to fit available resources? The<br />

obvious question following this is does such adaptation result in the<br />

lowering of standards? Such questions need to be addressed as the<br />

families of victims will continue to claim the remains of their loved ones.<br />

References:<br />

1 Simmons T, Skinner MF. The accuracy of antemortem data and<br />

presumptive identification: Appropriate procedures, application and<br />

ethics. Proceedings of the American Academy of Forensic Sciences;<br />

2005 Feb 20-25; Seattle, USA. 2006. 12;H51:303.<br />

2 Simmons, T. 2007. Presumptive (mis)identification rates for the<br />

Balkans. Paper presented at the 9 th Indo-Pacifica Congress on Legal<br />

Medicine and Forensic Sciences of The Indo-Pacific Association of<br />

Law, Medicine and Science 22 nd -27 th July Colombo, Sri Lanka.<br />

Positive Identification, Standards, Skeletal Remains<br />

H119 The International Commission on Missing<br />

Persons and an Integrated,<br />

Multidisciplinary Forensic Approach to<br />

Identification of the Missing From the 1995<br />

Srebrenica, Bosnia Mass Execution Event<br />

Thomas Parsons, PhD*, Adnan Rizvić, BSc, Andreas Kleise, LLM; Adam<br />

Boys, MA, and Asta Zinbo, MA; Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA; Mark Skinner, PhD, Simon Fraser<br />

University, Department of Archeology, Burnaby, BC, V5A 1S6,<br />

CANADA; and Kathryne Bomberger, MA, Forensic Sciences<br />

International Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will gain an overview of<br />

the mission and role of the International Commission on Missing<br />

Persons (ICMP), and an introduction to the integrated forensic sciences<br />

that the ICMP has employed in a massive and complex effort to identify<br />

and repatriate the victims of the 1995 mass killing associated with the<br />

fall of Srebrenica, Bosnia.<br />

This presentation will impact the forensic community by increasing<br />

the understanding of the success that can be achieved in large scale<br />

missing persons identification, and the range of technical processes and<br />

complex considerations that must be taken into account when attempting<br />

such an undertaking.<br />

After the breakup of the former Yugoslavia, and the resulting armed<br />

conflicts from the period 1992-1995, there were some 40,000 persons<br />

missing and unaccounted for, many as a result of severe human rights<br />

violations involving civilians. The International Commission on<br />

Missing Persons was established in 1996 to ensure the cooperation of<br />

governments in locating and identifying those who have disappeared<br />

during armed conflict or as a result of human rights violations. Since<br />

2003, ICMP has been active in regions outside of the former Yugoslavia<br />

137 * Presenting Author


and has played a substantial role in addressing the issue of persons<br />

missing from armed conflict and human rights violations in such<br />

countries as Chile, Colombia and Iraq, and in Disaster Victim<br />

Identification efforts such as the 2004 SE Asian tsunami, Hurricane<br />

Katrina, and the 2008 Typhoon Frank ferry disaster in the Philippines.<br />

In the former Yugoslavia, the ICMP integrates the disciplines of<br />

forensic archaeology, forensic anthropology, pathology, high throughput<br />

DNA testing and informatics to achieve identifications on a massive,<br />

regional scale. Between 2001 and August 2009, the ICMP has made<br />

over 14,700 DNA matches between victim samples (recovered mainly<br />

from mass graves) and family members of the missing, through<br />

comparison with a regionally comprehensive database of over 86,400<br />

DNA profiles from family members of missing persons from this region<br />

(representing over 28,700 missing persons). In addition to forensic<br />

assistance, a central role of the ICMP is to promote governmental and<br />

legal structures to responsibly deal with missing persons issues and to<br />

foster justice and civil society initiatives in support of victims’ families.<br />

One of the ICMP’s biggest forensic challenges in terms of<br />

complexity and scale has related to the mass killings associated with the<br />

July, 1995 fall of the United Nations’ “Safe Haven” in Srebrenica to the<br />

Army of Republika Srpska (VRS) forces. This event is the largest mass<br />

murder in Europe since World War II and has been designated as<br />

genocide by the International Criminal Tribunal of former Yugsolavia<br />

(ICTY). Approximately 8,100 men and boys were killed, either during<br />

flight from Srebrenica on foot across mountainous terrain, or when<br />

separated from a larger civilian contingent and systematically executed.<br />

The detainees were taken to various execution sites where the majority<br />

of victims died from gunshot wounds and were buried in large primary<br />

mass graves within or near the executions sites. In order to hide<br />

evidence of the killings and prevent discovery of the remains of the<br />

victims, over the ensuing several months the primary graves were<br />

crudely exhumed by heavy machinery and the victims reburied in<br />

multiple secondary mass graves scattered throughout remote<br />

countryside. This caused the remains of the victims to become<br />

commingled and fragmented, with the partial remains of many victims<br />

being desposited in two or more separate secondary graves. Repatriation<br />

of identified mortal remains to families thus also requires re-association<br />

of remains, as well as primary identification through a “DNA-led”<br />

process. As of August, 2009, the ICMP has provided technical assistance<br />

to Bosnian and international authorities in the assessment and excavation<br />

of some 250 Srebrenica-related grave sites and established DNA matches<br />

for almost 6200 individuals missing from the fall of Srebrenica.<br />

This presentation will serve as an introduction to a following series<br />

of presentations that will detail the intregrated forensic sciences which<br />

the ICMP brings to bear on the massive and complex undertaking of<br />

identification of the missing from Srebrenica, and associated evidentiary<br />

analysis and documentation that contributes to an objective forensic and<br />

historic record of this event. In addition, this presentation will outline<br />

policy issues that arise in large scale forensic missing persons<br />

identification from armed conflicts. Also highlighted will be how such<br />

a forensic undertaking is dependent on interactions and issues<br />

concerning victim families, family organizations, larger society, and<br />

legal and governmental structures.<br />

Missing Persons Identification, International Commission on<br />

Missing Persons, Srebrenica<br />

* Presenting Author<br />

H120 The Work of the ICMP in the Detection,<br />

Excavation, Documentation, and Analysis of<br />

Clandestine Graves Relating to the 1995<br />

Fall of Srebrenica: A Review of Activities<br />

and Challenges Encountered<br />

Renée C. Kosalka, MA*, Sharna Daley, MSc, and Jon Sterenberg, MSc,<br />

Forensic Sciences International Commission on Missing Persons, 45A<br />

Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA; Rick<br />

Harrington, PhD, PO Box 40191, Tucson, AZ 85717; Hugh Tuller, MA,<br />

JPAC CIL, 310 Worchester Avenue, Hickam AFB, HI; Cecily Cropper,<br />

PhD, Forensic Sciences International Commission on Mission Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA; Mark<br />

Skinner, PhD, Simon Fraser University, Department of Archeology,<br />

Burnaby, BC, V5A 1S6, CANADA; and Thomas Parsons, PhD, Forensic<br />

Sciences International Commission on Missing Persons, 45A Alipasina,<br />

Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will understand how<br />

forensic activities conducted by the International Commission on<br />

Missing Persons (ICMP) have contributed to the detection, excavation,<br />

documentation, and analysis of clandestine graves relating to the Fall of<br />

Srebrenica 1995.<br />

This presentation will impact the forensic community by increasing<br />

understanding of how best practices in forensic archaeology and<br />

evidentiary recording can be applied to a complex series of mass graves<br />

to result in historical documentation and enable the large scale reassociation<br />

and identification of victims.<br />

Investigations into alleged mass killings related to the Fall of<br />

Srebrenica in Eastern Bosnia began in earnest following the release of<br />

aerial imagery by the U.S. Government. Evidence collected through<br />

humanitarian and judicial inquiries confirmed that several mass<br />

executions had occurred in areas surrounding the town of Srebrenica<br />

which were at the time under the control of Bosnian Serb forces. Each<br />

execution was reported to have involved many hundreds of individuals<br />

with an overall estimate of ~8,000. The victims were subsequently<br />

buried in various primary mass graves located at or in the near vicinity<br />

of the execution sites. The following months saw Bosnian Serb forces<br />

return to the primary sites and, in an attempt to destroy any potential<br />

forensic evidence, the graves were crudely exhumed using heavy<br />

machinery and the victims reburied in multiple clandestine secondary<br />

graves in many different locations throughout Eastern and North Eastern<br />

Bosnia. This resulted in significant postmortem trauma demonstrated by<br />

high fragmentation, disarticulation, and commingling rates amongst the<br />

remains and between different graves and deposits.<br />

For over a decade, graves have been located mainly by testimonies<br />

provided by survivors, eyewitnesses, and also perpetrators. Technical<br />

strategies employed by the International Criminal Tribunal for foramer<br />

Yugoslavia (ICTY), the ICMP, and other investigative teams to detect<br />

and confirm sites have included the use of invasive techniques such as<br />

probing and test trenching, as well as non-invasive techniques such as<br />

aerial and satellite imagery analysis. Ground teams have primarily relied<br />

on the visual identification of disturbance patterns during systematic<br />

ground searches, GIS analyses, and to a lesser degree, the use of<br />

selective geophysical techniques such as resistivity and ground<br />

penetrating radar.<br />

The excavation of Srebrenica-related graves has enabled the<br />

implementation of a significantly standardized yet methodologically<br />

flexible set of procedures based on integrated principles of forensic<br />

archaeology, forensic anthropology, and crime scene processing. The<br />

overall goal of this approach is to maximize the collection and<br />

documentation of all human remains, forensic artifacts and site features<br />

for the purposes of establishing an objective historical record, supporting<br />

the criminal justice process, and contributing to the victim identification<br />

process.<br />

138


Accurate and detailed documentation is critical to the excavation<br />

process and is implemented by the ICMP via the application of global<br />

positioning systems, 3D surveying, and a suite of tailored recovery and<br />

chain of custody forms, supplemented by digital imagery and extensive<br />

note taking. Substantial post-excavation data management and analysis,<br />

together with computer-generated mapping results not only aids in<br />

accountability of the excavation strategy itself but also in the<br />

determination of intra- and inter- grave characteristics and variability,<br />

and ultimately in event reconstruction. The ICMP has developed a<br />

comprehensive forensic database software application (fDMS) which<br />

includes a module to manage all data related to field activities.<br />

Despite the significant progress made towards the excavation of all<br />

known Srebrenica-related graves over the years, there have arisen a<br />

number of political, operational, and technical obstacles and limitations<br />

– many of which persist to the present day. Some relate to difficulties<br />

inherent in working in an immediate post-conflict environment, with the<br />

necessary and desirable involvement of nascent<br />

governmental/institutional structures that provide the context of rule of<br />

law and applicable jurisdictional standards. Others are based purely on<br />

practical aspects of the infrastructure required to excavate and process<br />

several thousand sets of remains. It is important to note that in its<br />

forensic archaeological work, the role of the ICMP is to provide<br />

technical assistance to authorities under whose auspices the excavations<br />

are officially conducted.<br />

For the past nine years, the ICMP has provided technical assistance<br />

to local and international authorities in the assessment and excavation of<br />

over 250 Srebrenica-related sites. This has resulted in the recovery of<br />

thousands of partial and complete sets of human remains and artifacts of<br />

forensic significance. This presentation will review the sources of<br />

background information, utility of detection methods, benefits to<br />

standardized yet flexible excavation and documentation strategies, and<br />

results of field activities as they pertain to the most complex grave<br />

assemblages relating to the Fall of Srebrenica.<br />

Forensic Archaeology, Srebrenica, Mass Grave<br />

H121 The Podrinje Identification Project:<br />

A Dedicated Mortuary Facility for the<br />

Missing From Srebrenica<br />

Rifat Kešetović, MD*, Laura Yazedjian, MSc, Dragana Vučetić, MSc,<br />

Emina Kurtalić, Zlatan Šabanović, Cheryl Katzmarzyk, MA, Adnan<br />

Rizvić, BSc, and Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

The goal of this presentation is to inform attendees of the limitations<br />

of traditional identification methods and the importance of a DNA-led<br />

system in a large-scale identification project.<br />

This presentation will impact the forensic science community by<br />

providing information that will add to the understanding and capabilities<br />

of the forensic science field to deal with large scale identification<br />

projects.<br />

Exhumations of victims from the Srebrenica massacre began in<br />

1996 by multiple international teams with varying mandates and little<br />

coordination. In response, the International Commission on Missing<br />

Persons established the Podrinje Identification Project (PIP) in 1999 and<br />

built a facility for the systematic examination and identification of<br />

recovered mortal remains.<br />

Until the first “blind” DNA match on November 16, 2001, the PIP<br />

had achieved only 222 identifications. Fifty-one were classical<br />

identifications based on excellent circumstantial evidence and the<br />

remaining 171 cases were presumptive identifications with subsequent<br />

confirmation through DNA testing by out-of-country laboratories. All of<br />

these identifications were virtually complete bodies recovered from<br />

primary graves.<br />

Classical identifications were further attempted with the aid of<br />

photos of clothing and personal effects presented to the families of the<br />

missing. The “Book of Photos II” project collected 2,702 photos relating<br />

to 483 exhumed complete bodies from primary mass graves. Two<br />

hundred fifty copies of the book were distributed by specially trained<br />

teams across the country, and families were requested to view the book<br />

for possible recognition of items. In total, 2,767 family members<br />

responded, representing about 4,000 missing persons. Of 69 recognized<br />

cases, 44 (30%) were excluded based on negative antemortempostmortem<br />

comparison and only 17 (less than 15%) were positively<br />

confirmed by DNA testing.<br />

It became clear early in the identification process that classical<br />

methods of identification, including the use of dental records, medical<br />

records, and biological profiles resulting from the anthropological<br />

analysis of remains, were inadequate to determine the identity of the<br />

recovered mortal remains. There are several reasons that classical<br />

identification of the victims from the fall of Srebrenica is particularly<br />

problematic. These include the lack of antemortem information, the lack<br />

of associated clothing and personal effects, the similar demographic<br />

composition of missing persons, and the very large number of<br />

individuals. Moreover, the majority of mortal remains from Srebrenica<br />

are disarticulated and/or commingled due to various taphonomic factors,<br />

especially as the result of the creation of secondary mass graves in a<br />

deliberate attempt to hide evidence. Natural dispersion occurred in many<br />

cases when individuals were not buried, which included scattering by<br />

weather conditions, rivers, and animal scavenging. These circumstances<br />

have proven challenging not only for the identification process, but also<br />

in determination of a cause of death. In almost 30% of cases, a definitive<br />

cause of death cannot be determined due to missing body parts and/or<br />

post-mortem damage.<br />

With the adoption of a large-scale DNA-led identification system,<br />

the PIP has identified more than 5,000 missing persons to date. Final<br />

identifications are DNA-based but include consideration of all available<br />

evidence such as place of last sighting/site of recovery, associated<br />

clothing and personal effects and antemortem/postmortem comparison<br />

of biological attributes.<br />

The PIP comprises a range of professionals: a project manager, a<br />

team leader, case managers, a criminologist, a pathologist, and<br />

anthropologists. All of these individuals have specific roles in the<br />

identification process, and each case file (representing a missing person)<br />

follows a series of stages as different components of the case are<br />

completed. This presentation will illustrate the process of identification<br />

from receipt of a DNA match report to final identification.<br />

Physical Anthropology Examination, Pathology, Srebrenica<br />

H122 The Lukavac Re-Association Center:<br />

A Model for a Multidisciplinary<br />

Approach in the Examination of<br />

Commingled Remains<br />

Cheryl Katzmarzyk, MA*, Rifat Kešetović, MD, Kerry-Ann Martin, MSc,<br />

Edin Jasaragić, René Huel, BA, Jon Sterenberg, MSc, and Adnan Rizvić,<br />

BSc, International Commission on Missing Persons, 45A Alipasina,<br />

Sarajevo, 71000, BOSNIA-HERZEGOVINA; Mark Skinner, PhD; Simon<br />

Fraser University, Department of Archeology, Burnaby, BC, V5A 1S6,<br />

CANADA; and Thomas Parsons, PhD, Forensic Sciences International<br />

Commission on Missing Persons, 45A Alipasina, Sarajevo, 71000,<br />

BOSNIA-HERZEGOVINA<br />

The goal of this presentation is to increase the understanding of the<br />

challenges associated with the identification of fragmentary and<br />

commingled human remains.<br />

139 * Presenting Author


This presentation will impact the forensic science community by<br />

increasing the understanding and capability of the forensic science<br />

community to deal with the complex challenge of identification in cases<br />

of large scale fragmentation and commingling of human remains.<br />

The Srebrenica massacre involved the execution of ~8,100 people,<br />

mainly men and boys, who were deposited into primary mass graves,<br />

then relocated to numerous secondary graves. The exhumation and<br />

relocation resulted in disarticulation, fragmentation, and commingling of<br />

body parts within and between multiple graves. In 2005, the<br />

International Commission on Missing Persons (ICMP) established the<br />

Lukavac Reassociation Center (LKRC), under the auspices of the<br />

Podrinje Identification Project, to process the most complex grave<br />

assemblages related to the fall of Srebrenica.<br />

To ensure adherence to an evidence-based approach, standard<br />

anthropological procedures were defined at the beginning of the effort.<br />

In almost every instance, anatomical continuity of the remains was a<br />

condition of acceptance of association of skeletal remains. These body<br />

parts were confirmed by age consistencies, evaluation of antimeres, and<br />

assessment of non-biological evidence supporting the association such as<br />

reference to in-situ documentation and consideration of remains found<br />

within clothing. Anthropological practices, such as fracture matching<br />

and articulation of synchondroses, were used to physically reassociate<br />

previously unassociated remains; however, its application was limited<br />

due to the high number of remains and the extensive commingling within<br />

and between graves. Pair matching of sided elements was used<br />

infrequently and articulations of flexion and extension joints were only<br />

considered with corroborating evidence. These conservative criteria<br />

resulted in a massive amount of isolated skeletal elements, but were<br />

necessary to avoid incorrect associations in such a large set of cases.<br />

The ICMP DNA laboratory developed a custom STR multiplex with<br />

7 loci (including sex determination) for cost-effective use in DNA-based<br />

re-associations. The LKRC has extensively sampled dissociated remains<br />

for this “mini-STR” testing, specifically for the purpose of reassociation.<br />

This approach is complemented by the use of Powerplex16 © DNA<br />

testing for kinship matching to family reference samples to establish<br />

identity. DNA sampling guidelines were developed and implemented,<br />

and in general, all isolated long bones, relatively complete crania, and<br />

dental arcades were routinely tested. The composition of a body part,<br />

defined as one or more associated skeletal elements, dictated which<br />

optimum bone or tooth sample would be taken, as determined by<br />

extensive experience in DNA typing success rates.<br />

This large-scale reassociation effort, based on DNA typing results,<br />

requires anthropological expertise to ensure the anatomical consistency<br />

of the remains. The development of individual biological profiles, using<br />

population-specific standards, allows for comprehensive<br />

antemortem/postmortem comparisons as an additional corroboration of<br />

identity. The detection and documentation of individualizing<br />

characteristics has also played a key role in the acceptance of the<br />

identification by families of the missing person.<br />

A massive reassociation effort of highly commingled remains<br />

cannot be conducted without the integration of several sources of data.<br />

This is particularly important since the Srebrenica massacre is<br />

characterized by a high number of first-degree relatives reported missing<br />

and, in some cases, family groups representing several generations. At<br />

the ICMP, pathologists, anthropologists, and DNA scientists work in<br />

tandem to ensure the physical reassociations have a sound scientific<br />

basis. This multidisciplinary approach has also allowed the ICMP to<br />

address the challenges associated with the use of mini-STRs in<br />

bone:bone and bone:blood matching that includes evaluation of allelic<br />

dropouts and the possibility of adventitious matches among related<br />

victims.<br />

Srebrenica, Reassociation, Integrated Forensic Methods<br />

* Presenting Author<br />

H123 The Use of Population-Specific Standards in<br />

Anthropological Examination and Their<br />

Incorporation Into a Multidisciplinary<br />

Mortuary Database<br />

Cheryl Katzmarzyk, MA, and Kerry-Ann Martin, MSc, Forensic Sciences<br />

International Commission on Missing Persons, 45A Alipasina, Sarajevo,<br />

71000, BOSNIA-HERZEGOVINA; Senem Skulj, MSc*, 17 VKB 19/11,<br />

Sanski Most, 79260, BOSNIA-HERZEGOVINA; and Laura Yazedjian,<br />

MSc, Dragana Vučetić, MSc, Adnan Rizvić, MA, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

The goal of this presentation is to present an overview of how<br />

population-specific standards are incorporated in anthropological<br />

examinations and the use of a custom mortuary database module for<br />

reassociation and case tracking.<br />

This presentation will impact the forensic science community by<br />

illustrating the benefits of population-specific standards and a multidisciplinary<br />

database.<br />

As a result of the high instance of fragmentation and commingling,<br />

cases recovered from Srebrenica graves and received by the International<br />

Commission on Missing Persons (ICMP) mortuary facilities may include<br />

the mortal remains of more than one individual. Standard<br />

anthropological practices are applied to sort the skeletal assemblage and<br />

a preliminary biological profile is created for each bone, body part, or<br />

body. Upon the receipt of DNA match results, a final biological profile<br />

is developed for the DNA-identified complete or reassociated skeleton.<br />

In general, the blind-matched Powerplex 16© DNA typing results<br />

establish a probable identity for a set of remains. The identity is<br />

subsequently corroborated by anthropological data based on the sex, ageat-death,<br />

estimated stature, and individualizing characteristics then<br />

compared with information provided by the family. The ability to<br />

support the DNA identification with anthropological data is directly<br />

dependent on the amount and type of skeletal remains presented for<br />

examination and the appropriateness of published anthropological<br />

standards. In response to the paucity of literature related to Balkanspecific<br />

anthropological standards, the ICMP has supported development<br />

of such standards to ensure greater accuracy of developed biological<br />

profiles.<br />

It is important to note that the Srebrenica graves are characterized<br />

by numerous instances of first-degree relatives among the victims, and<br />

as such, there is a high incidence of childless brothers reported missing.<br />

Thus, independent, evidence-based parameters of age-at-death<br />

estimation are necessary to ensure the greatest level of confidence in<br />

determining a certain identity. Circumstantial evidence, such as clothing<br />

and personal effects is always considered as part of the overall case, but<br />

does not stand as a scientifically-based identifier. In many cases<br />

involving childless siblings, a final determination cannot be ascertained<br />

due to the lack of remains present for examination.<br />

Tracking anthropological reassociations within commingled cases<br />

has proven to be challenging and, in response, the ICMP has developed<br />

a skeletal inventory and mortuary management database module, within<br />

the larger Forensic Data Management System (fDMS). This module<br />

allows any bone or associated body part to be accurately inventoried in<br />

its original case, and then informatically reassociated to one or more<br />

DNA-matched bones or body parts, following the physical reassociation<br />

of the skeletal remains. This informatic tool greatly simplifies what<br />

otherwise is a challenging and complex case tracking task. This is vital<br />

in the mortuary examination of Srebrenica remains as the “building” of<br />

individuals involves multiple reassociations, in some situations from<br />

twelve different commingled cases, each of which requires a clearly<br />

retrievable case history and chain of custody. Furthermore, this database<br />

140


allows for the addition of appropriate analytic methods, with populationspecific<br />

standards, as they become available.<br />

Srebrenica, Anthropology, Mortuary Database<br />

H124 High Throughput DNA Typing for<br />

Degraded Skeletal Remains and Victim<br />

Reference Samples in a Large Scale “DNA-<br />

Led” Missing Persons Identification and<br />

Re-Association Project: The ICMP Work<br />

on the Missing Recovered From Srebrenica<br />

Mass Graves<br />

Rene Huel, BA*, Ana Miloš-Bilic MSc, Sylvain Amory PhD, Stojko<br />

Vidović, Tony Donlon, BSc, Adnan Rizvić, BSc, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will gain an<br />

understanding of the protocols, workflow, and challenges involved in<br />

operating a quality-controlled, high throughput laboratory specialized<br />

for challenging skeletal remains samples.<br />

This presentation will impact the forensic community by furthering<br />

knowledge on the technical details and laboratory management practices<br />

that allow DNA typing to be used cost- and time-efficiently on a large<br />

scale in missing persons identification casework.<br />

The International Commission on Missing Persons (ICMP) DNA<br />

laboratories were brought online in late 2001 to assist authorities in a<br />

blind DNA lead identification process in the former Yugoslavia. Since<br />

its inception the laboratories have successfully profiled close to 30,000<br />

bone samples and over 85,000 family reference samples resulting in<br />

DNA matches to over 15,000 unique individuals.<br />

The laboratories utilize a modular approach in which analysts play<br />

a specific role in each part of the process as opposed to processing the<br />

sample from start to finish. This approach allows maximal throughput<br />

which can process up to 105 bone sample extractions per day. Typically<br />

bone samples tested are between 10-17 years old but can range up to 65years-old<br />

in other projects. For most cases performed over the years, an<br />

extraction protocol involving overnight digestion in protease K, followed<br />

by a silica-based purification has been used. The results of multiple<br />

thousands of DNA tests have permitted a detailed evaluation of the<br />

relative preservation of DNA in various skeletal elements. The overall<br />

success rate on the >15,000 skeletal and tooth samples submitted from<br />

Srebrenica-related graves has been 83%.<br />

Recently, the DNA laboratories have validated a new extraction<br />

protocol based on a complete demineralization of the bone sample,<br />

coupled with silica based clean up. This new protocol requires<br />

significantly less starting material, and requires fewer manipulations<br />

throughout the procedure, and provides higher DNA yields. The<br />

purification portion of this new protocol has the potential to be<br />

automated.<br />

Typing of bone/tooth sample extracts is primarily done with the<br />

Promega PowerPlex © 16 STR multiplex. Amplification conditions for<br />

optimal success with degraded samples, as well as profile interpretation<br />

criteria will be discussed. Additionally, the ICMP has developed a series<br />

of short-amplicon multiplexes, one of which (6 loci plus amelogenin) has<br />

been widely applied for cost-effective DNA-based re-assocation of<br />

dissociated body parts from Srebrenica-related graves. Other multiplex<br />

kits and Y-chromosomal testing are also applied as needed to resolve<br />

family relationships.<br />

The ICMP DNA Laboratory system is accredited to ISO-17025 and<br />

ILAC standards, and the role of key elements of the ICMP Quality<br />

Management System in assuring accuracy and chain of custody in such<br />

a large scale system will be discussed.<br />

DNA Typing of Skeletal Remains, International Commission on<br />

Missing Persons, Mass Grave<br />

H125 The ICMP Identification Coordination<br />

Center: A Sample Accessioning and Blind<br />

DNA Matching System for Missing Persons<br />

Identification on a Regional Scale<br />

Edin Jasaragic, BA*, Zlatan Bajunovic, Adnan Rizvić, BSc, and Thomas<br />

Parsons, PhD, Forensic Sciences International Commission on Missing<br />

Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will have learned how a<br />

centralized DNA matching, sample, and information coordination<br />

facility can assist in making missing persons identifications on a large<br />

scale.<br />

This presentation will impact the forensic community by increasing<br />

the knowledge base of how large scale missing persons identification<br />

programs may be structured efficiently.<br />

The International Commission on Missing Persons (ICMP)<br />

conducts large scale missing persons identification using an integrated,<br />

multidisciplinary approach that is anchored by a “DNA-led” blind DNA<br />

matching system that compares DNA profiles from victims (usually<br />

skeletal remains from mass graves) to a database of DNA profiles from<br />

family members of the missing. At the heart of this system is the ICMP<br />

Identification Coordination Center (ICC), where victim and reference<br />

samples are received and accessioned, distributed to the DNA laboratory<br />

system, DNA profiles are received back from the laboratory, and DNA<br />

matching and reporting are performed. In the former Yugoslavia, as of<br />

August 2009, the ICC has collected over 87,000 family reference blood<br />

samples representing 28,783 missing persons, and maintains a database<br />

of 29,748 DNA profiles obtained from victim bone or tooth samples.<br />

DNA database comparisons have resulted in issuing 24,741 DNA match<br />

reports representing 14,741 different individuals. Many match reports<br />

involve reassociation of dissociated body parts which are common<br />

among remains recovered from the secondary mass graves associated<br />

with the 1995 Srebrenica mass killing event.<br />

The ICC is responsible for the collection of blood samples from<br />

family members of the missing, and recording relevant information on<br />

both the missing person and the family members to permit establishing a<br />

DNA match. Antemortem information on the missing person is<br />

recorded, and informed consent is established to assure participants of<br />

genetic data protection and the use to which their sample will be made.<br />

Participants may indicate their willingness to have their sample used for<br />

the purposes of war crimes trials or other such criminalistic proceedings.<br />

Large scale family reference collection efforts by the ICC involve public<br />

information campaigns, and have been conducted throughout the former<br />

Yugoslavia and globally.<br />

Victim samples, usually bone or teeth, are obtained by the ICC<br />

either from ICMP field or mortuary teams, or by other contributors.<br />

Both victim and reference samples are accessioned at the ICC in strict<br />

accordance with chain of custody, and are immediately assigned bar<br />

codes which remain their sole identifier throughout the DNA testing<br />

procedure. A complete lack of information regarding sample origin or<br />

presumption of identity during DNA testing contributes to the objectivity<br />

of the process.<br />

Once DNA profiles are obtained from the DNA laboratory, they are<br />

entered into a central database and candidate matches to any existing<br />

profiles are determined using internally developed DNA Matching<br />

software. The DNA Matching module conducts pairwise comparisons,<br />

141 * Presenting Author


outputting results based on direct match, half allele share (maternity or<br />

paternity indices), or sibling indices. Once candidate matches are<br />

discovered, final kinship statistics involving all family reference samples<br />

are generated using the commercial software DNAView. DNA match<br />

reports are issued by ICC when the final surety of identification exceeds<br />

99.95%, with prior probabilities ascribed based on the number of<br />

individuals missing in a particular region or event. Statistical<br />

comparison reports are also generated to report possible DNA<br />

associations of lower surety, which can be used in combination with over<br />

evidence under well defined policy.<br />

All data storage and analysis functions of the ICC are managed by<br />

an internally developed forensic data management system (fDMS). In<br />

this system, missing persons information, family reference information,<br />

the DNA Matching Module, and DNA report generation and tracking<br />

functions are efficiently integrated to result in a fast, flexible, and userfriendly<br />

system.<br />

ICMP, Missing Persons Identification, DNA Matching<br />

H126 An Innovative Software Solution for Large<br />

Scale Forensic Identification Efforts<br />

Adnan Rizvic, MA*; Azra Aljić, MSc; Djordje Badza, BsC; Damir Bolić,<br />

BsC; Goran Jotanović, BsC; Muris Pucić, BsC; Amir Mandzuka, PhD;<br />

Zoran Cvijanović, PhD; Edin Jasaragić, BA, Zlatan Bajunović, Cheryl<br />

Katzmarzyk, MA, Kerry-Ann Martin, MSc, Sharna Daley, MSc, Reneé<br />

Kosalka, MA, René Huel, BA, Tony Donlon, BSc, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will learn how<br />

integrated informatics systems can be developed and used to greatly<br />

facilitate complex forensic identification efforts.<br />

This presentation will impact the forensic science community by<br />

increasing the understanding and capacity of the forensic science<br />

community to deal with large scale identification projects.<br />

More than 40,000 persons went missing as a result of the conflicts<br />

in former Yugoslavia from 1992-1995. The International Commission<br />

on Missing Persons (ICMP) was established in 1996 with a primary goal<br />

to assist local governments to resolve the matter of missing persons. As<br />

part of its technical assistance, the ICMP applies an integrated approach<br />

involving advanced forensic disciplines, such as forensic archeology,<br />

forensic anthropology, forensic pathology, and DNA matching. This<br />

generates and utilizes vast amounts of data, which much be archived,<br />

tracked, accessed, and reported. Due to the limited availability of<br />

suitable software solutions, ICMP has committed itself to development<br />

of a software solution to support all its forensic activities.<br />

A group of software engineers started with development of an<br />

integrated software solution now known as Forensic Data Management<br />

System (fDMS) in the beginning of 2006. As a result of interaction and<br />

cooperation with ICMP and other forensic experts in their respective<br />

fields of expertise, the team analyzed, designed, developed, tested, and<br />

deployed a set of applications for support of all forensic activities. The<br />

fDMS enables DNA-led identification process in the large scale.<br />

Each application can be used as stand-alone individually or as a part<br />

of integrated system. The fDMS supports entering, storing, and<br />

processing data about missing persons, relatives, field activities, and<br />

forensic archaeology, anthropological examination and skeletal<br />

inventory process, chain of custody, DNA analysis, DNA matching, and<br />

identification. This presentation will present an overview of both the<br />

development and capabilities of the fDMS system and illustrate how the<br />

integrated database and software package facilitates the effective<br />

conduct of forensic sciences in a large scale identification system.<br />

Data Management, <strong>Forensics</strong>, DNA Identification<br />

* Presenting Author<br />

H127 Mapping Forensic Evidence Onto the Stor<br />

of Srebrenica: Augmenting the Historical<br />

Record Through Analysis of Archaeology,<br />

Anthropology, and DNA<br />

Renee Kosalka, MA*, Cheryl Katzmarzyk, MA*, Sharna Daley, MSc, Jon<br />

Sterenberg, MSc, Rifat Kešetović, MD, Laura Yazedjian, MSc, René<br />

Huel, BSc, Edin Jasaragić, Adnan Rizić, BSc, and Thomas Parsons,<br />

PhD, Forensic Sciences International Commission on Missing Persons,<br />

45A Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

After attending this presentation, attendees will understand how<br />

forensic activities, conducted by the International Commission on<br />

Missing Persons (ICMP) since 2001, are integrated to augment the<br />

historical record relating to war crimes and human rights violations<br />

resulting from the fall of Srebrenica<br />

This presentation will impact the forensic community by serving as<br />

an example of multi-disciplinary amalgamation of data to objectively<br />

reconstruct a large-scale genocidal event within a post-conflict setting.<br />

By July of 1995, over 25,000 Bosnian Muslim refugees had<br />

overwhelmed the United Nations designated “Safe Haven” in<br />

Srebrenica, Bosnia and Herzegovina (BiH). On July 11, the United<br />

Nations controlled zone fell to the Army of Republika Srpska (VRS)<br />

forces, resulting in the largest mass murder in Europe since World War<br />

II. According to many witnesses, investigative reports and accumulated<br />

lines of evidence – and as detailed in multiple war crimes/crimes against<br />

humanity indictments – approximately 8,100 men and boys were killed,<br />

either during flight from Srebrenica on foot across mountainous terrain<br />

or when separated from a larger civilian contingent and systematically<br />

executed. The detainees were taken to various execution sites and killed,<br />

mainly by gunshot. The victims were buried in large primary mass<br />

graves within or near the executions sites. In order to hide evidence of<br />

the atrocities and prevent discovery of the remains of the victims, the<br />

primary graves were crudely exhumed, over several months, by heavy<br />

machinery and the victims deposited in multiple secondary mass graves<br />

scattered throughout remote countryside. This caused the remains of the<br />

victims to become fragmented and commingled, with the partial remains<br />

of many victims being deposited in two or more separate secondary<br />

graves. These actions significantly confounded the detection and<br />

recovery effort and have necessitated an integrative approach in the<br />

detection of mass grave locations and the determination of linkages<br />

between graves.<br />

The ICMP has provided technical assistance to the BiH and<br />

international authorities in the assessment and excavation of some 250<br />

Srebrenica-related grave sites since 2001. This has resulted in the<br />

recovery of thousands of partial and complete sets of human remains and<br />

artifacts of forensic significance. Furthermore, the ICMP has provided<br />

technical assistance in the application of a DNA-led process towards<br />

identification that integrates pathology, anthropology, DNA, and<br />

circumstantial evidence (such as personal effects). As of August 2009,<br />

the ICMP has revealed the identity of 6,186 persons missing from the fall<br />

of Srebrenica, by analyzing nuclear DNA profiles extracted from bone<br />

samples of exhumed mortal remains and matching them to the DNA<br />

profiles obtained from blood samples provided by relatives of the<br />

missing.<br />

The complex nature of the Srebrenica graves has defined all aspects<br />

of the search, recovery, and identification efforts. Since the remains of<br />

single individuals may be scattered amongst numerous locations, there<br />

are profound consequences for reassociation of body parts, with<br />

concurrent repercussions regarding legal case closure, family<br />

notification and acceptance of the identification, repatriation, and<br />

dignified burial. Thus, analysis of evidentiary linkage between graves is<br />

important not only in establishing a historical record, but in prioritization<br />

of grave excavation, so that series of interconnected graves are<br />

completed together to enable closure of individual cases.<br />

142


This presentation will outline the patterns of evidentiary<br />

connections within and between Srebrenica-associated graves that have<br />

been documented as a result of the ICMP’s work, and summarize how<br />

this evidence contributes to and fits with the larger reconstruction of the<br />

events associated with the fall of Srebrenica that comes from a variety of<br />

sources. More detailed analysis of selected grave assemblages will be<br />

highlighted as examples with focus on DNA-matched body parts<br />

recovered from specific deposits within graves to assist in reconstructing<br />

the sequence of events. These links have served in criminal justice<br />

proceedings as supplementary evidence supporting the scale and<br />

organization of the executions and the subsequent attempts to conceal the<br />

evidence.<br />

Srebrenica, Event Reconstruction, Integration of Forensic Sciences<br />

H128 Identifying the Missing From Srebrenica:<br />

Family Contact and the Final<br />

Identification Process<br />

Nedim Durakovic, BSc*, Rifat Kešetović, MD, Emina Kurtalić, Amir<br />

Hasandžiković, BSc, Adnan Rizvić, BSc, and Thomas Parsons, PhD,<br />

Forensic Sciences International Commission on Missing Persons, 45A<br />

Alipasina, Sarajevo, 71000, BOSNIA-HERZEGOVINA<br />

The goal of this presentation is to inform attendees of the<br />

importance of communicating with family members in complex<br />

identification projects relating to armed conflict/human rights abuses.<br />

This presentation will impact the forensic science community by<br />

emphasizing the role of family members in the identification process.<br />

The Podrinje Identification Project (PIP) was established by the<br />

International Commission on Missing Persons (ICMP) as a centralized<br />

effort for the identification of victims of the mass killings associated with<br />

the fall of the United Nations “Safe Haven” in Srebrenica. From the<br />

beginning of the project, the families of the missing were involved in the<br />

identification process. The participation of families is vital at the outset,<br />

in order to obtain information about the missing person and obtain<br />

genetic samples from relatives to permit DNA matching. In these<br />

activities, the PIP staff members work closely with teams from the ICMP<br />

Identification Coordination Division to ensure that family members are<br />

properly informed of the identification process. To this end, the ICMP<br />

conducts public information campaigns, sponsors and meets with<br />

numerous family organizations to explain the identification process and<br />

informs them of the particular challenges associated with identifying the<br />

victims from the fall of Srebrenica. On an individual level, the PIP case<br />

managers communicate daily with family members providing<br />

information on the progress of specific cases.<br />

Most importantly, the case managers interact with families during<br />

the process by which identifications are finalized and the identified<br />

person is repatriated for burial. This is a stressful process for families.<br />

Confirmation of their loved one’s death represents terrible news, though<br />

the recovery of their loved one’s remains has been anxiously awaited. To<br />

these surviving family members, the case manager is a combination of a<br />

social worker and grief counselor.<br />

The first contact with family members informing them of<br />

identification does not occur immediately when a DNA report is<br />

received, as a case file must be prepared. Initial contact, and any<br />

subsequent contacts, can take place either at the PIP office or at the home<br />

of the family member. There are several circumstances, related to the<br />

nature of the Srebrencia event, which are particularly difficult to present<br />

to family member, including when fragmentary and commingled<br />

remains are recovered and may result in a final case that consists of<br />

incomplete remains or a small body part. In situations where further<br />

graves remain to be exhumed or examined, it is necessary to explain that<br />

there is the possibility of locating additional body parts. Alternatively,<br />

families must be informed when no further remains are expected to be<br />

recovered, such as in situations of surface recoveries or a completed<br />

series of graves despite that the final case consists of an incomplete<br />

skeleton.<br />

The final disposition of the identified person is exclusively the<br />

family’s decision. The vast majority choose to bury their loved ones at<br />

the annual commemoration at the Potočari Memorial, which takes place<br />

in July each year. However, a few families choose to bury their relatives<br />

in family cemeteries.<br />

A case study of a family with multiple missing first-degree relatives<br />

will be presented.<br />

Srebrenica, family contact, case managers<br />

H129 The Social Effects of Recognizing<br />

Srebrenica’s Missing<br />

Sarah Wagner, PhD*, University of North Carolina Greensboro,<br />

Department of Anthropology, 437 Graham Building, Greensboro, North<br />

Carolina 27410<br />

After attending this presentation, attendees will gain insight into<br />

how the successful identification and reburial of victims of the<br />

Srebrenica genocide have affected the lives of surviving families and<br />

influenced the political discourse in postwar Bosnia and Herzegovina.<br />

This presentation will impact the forensic science community by<br />

demonstrating the interface between science and society through the<br />

example of the DNA-based identification efforts developed to counter<br />

the devastating effects of the July 1995 genocide at the United Nations<br />

“Safe Haven” of Srebrenica.<br />

For the Srebrenica victims whose remains have been unearthed,<br />

examined, sampled, and stored by forensic experts over the past fourteen<br />

years, identification has been the primary goal—that is, re-attaching<br />

individual identity to a set of previously unrecognizable remains. Yet the<br />

biotechnological innovation that has successfully returned names to<br />

remains and coffins to grieving families involves layers of recognition,<br />

from the instant of the “blind” DNA match to the moment a relative spies<br />

a still familiar piece of clothing. Identifying the missing thus<br />

encompasses both scientific and social recognition.<br />

Nowhere is this more apparent than at the culmination of the<br />

identification process: the annual commemoration ceremony and mass<br />

burial held at the Srebrenica-Potocari Memorial Center on July 11 of<br />

each year. Once complete, the results of identification, namely<br />

individual coffins placed in individual plots, enable families and friends<br />

to care for the souls of their loved ones, knowing at long last where their<br />

bones rest. At the same time, the effects of identification, of recovery<br />

and reburial, radiate beyond the most intimately connected, entering into<br />

the political discourse of postwar Bosnia as recognition of social identity<br />

is demanded in the prayers and political speeches that preface the mass<br />

burials. Indeed, individual identity at times becomes subsumed in the<br />

ceremony’s rhetoric of collective victimhood and, by extension,<br />

collective responsibility. In response, Bosnian Serbs in the region<br />

counter the scientifically-backed evidence of the scale and intensity of<br />

the Srebrenica genocide by tabulating their own losses and erecting their<br />

own memorials, chief among them the commemorative site in the village<br />

of Kravica at which Bosnian Serbs gather on the very next day, July 12.<br />

Drawing on ethnographic research conducted in eastern Bosnia<br />

since 2003, this paper examines the sociopolitical significance of the<br />

DNA-based identification process developed to recognize the Srebrenica<br />

missing, juxtaposing the expectations and responses of surviving<br />

families with those of Bosnian political and religious leaders, both<br />

Bosniak (Bosnian Muslim) and Bosnian Serb. Three arguments emerge:<br />

(1) for the surviving relatives of the missing, the identification process<br />

succeeds in bridging painful gaps of knowledge and in reconstituting<br />

families (if only metaphorically) torn asunder by mass violence through<br />

sanctified, witness burial; (2) tempering conventional assumptions that<br />

identification brings about social repair, an analysis of the multivalent<br />

meanings of the Srebrenica-Potocari Memorial Center and its rapidly<br />

143 * Presenting Author


expanding cemetery illustrates that political manipulation of the<br />

identification efforts has often exacerbated rather than assuaged tensions<br />

in postwar Bosnia; and, (3) the intervention of forensic science into the<br />

missing person issue, manifest in the capacity of the DNA-based<br />

identification system to identify Srebrenica’s missing, has raised the<br />

stakes of facticity, forcing both Bosniaks and Bosnian Serbs to document<br />

their losses in increasingly quantifiable terms. Thus when indicted war<br />

criminal Radovan Karadzic attempts to discredit the numbers and types<br />

of victims of Srebrenica July 1995 he must do so—however<br />

problematically—through the language of DNA. These three outcomes<br />

of the identification process remind us that the scientific and the social<br />

cannot be separated out from one another, just as individual identity<br />

cannot exist apart from social identity. In these ways, postwar Bosnia<br />

and specifically the case of Srebrenica’s missing reveal the powerful role<br />

genetic science has come to play in grappling with the devastating effects<br />

of mass violence.<br />

DNA Identification, Social Repair, Commemoration<br />

H130 Lessons and Challenges From Srebrenica:<br />

A Summary and Future Perspectives<br />

Thomas Parsons, PhD*, Andreas Kleiser LLM, Adnan Rizvić BSc, and<br />

Kathryne Bomberger MA, Forensic Sciences International Commission<br />

on Missing Persons, 45A Alipasina, Sarajevo, 71000, BOSNIA-<br />

HERZEGOVINA<br />

After attending this presentation, attendees will gain information<br />

and perspectives relating to the large and complex undertaking of the<br />

ICMP in the application of integrated forensic sciences to the<br />

identification of the missing from the 1995 fall of Srebrenica.<br />

This presentation will impact the forensic community by increasing<br />

an understanding of the success that can be achieved in large scale<br />

missing persons identification, and the range of technical processes and<br />

considerations that should be taken into account when attempting such<br />

an undertaking.<br />

This presentation is intended as a conclusion to a series of<br />

presentations in a multidisciplinary symposium highlighting the<br />

integrated forensic sciences that the International Commission on<br />

Missing Persons (ICMP) has employed in a massive and complex effort<br />

to identify and repatriate the victims of the 1995 mass killing associated<br />

with the fall of Srebrenica, Bosnia and Herzegovina. Discussion will<br />

focus on some of the central and ongoing challenges of the undertaking,<br />

and attempt to draw lessons that may be more widely applicable in other<br />

contexts.<br />

The nature of the Srebrencia “event”—the mass killing of ~8,100<br />

men and boys that occurred in July 1995 as result of the fall of the United<br />

Nations “Safe Haven” in Srebrenica to the Army of Republika Srpska,<br />

and the subsequent distribution of the mortal remains throughout a large<br />

series of secondary mass graves—poses a formidible challenge in an<br />

attempt to scientifically identify the victims. Elements adding to the<br />

challenge include: the very large number of victims, of a relatively<br />

uniform demographic; a systematic lack of antemortem medical or<br />

dental records; the relative lack of distinctive clothing and personal<br />

effects among the refugee victims; the distribution of fragmented and<br />

commingled remains in either secondary graves and surface<br />

environments; and the clandestine nature of the graves that complicates<br />

full recovery.<br />

It is through the novel use of DNA typing on a very large scale, and<br />

blind DNA matching in a “DNA-led” identification process, that the<br />

ICMP has been able to, as of August 2009, establish a named DNA match<br />

on over 6,100 individuals missing from the Srebrenica event. More than<br />

4200 of these cases have been closed, with repatriation to family<br />

members. The discrepancy between these numbers is again due to the<br />

nature of the event, with many cases awaiting recovery of additional<br />

portions of the mortal remains prior to case closure. This underscores<br />

* Presenting Author<br />

some of the policy challenges that will be discussed in this presentation,<br />

and that become more acute as the number of remaining known unexcavated<br />

Srebrenica graves dwindles.<br />

While Srebrenica is in many ways unique, each of the component<br />

challenges involved are present to one extent or another in almost any<br />

large scale forensic identification undertaking. This presentation will<br />

discuss how the approach used to achieve large scale success in the case<br />

of Srebrenica is applicable elsewhere, and the variables that condition<br />

such considerations. Other policy issues that are of general relevance<br />

relate to personal data protection in various contexts, and the<br />

presentation of forensic identification casework in the support of<br />

criminal justice proceedings.<br />

Srebrenica, ICMP, Missing Persons Identification<br />

144


Denver ‘09 Denver ‘09<br />

H1 Assessment of Differences in Decomposition<br />

Rates of Rabbit Carcasses With and<br />

Without Insect Access Prior to Burial<br />

Jutta Bachmann, MSc*, Postweg 2, Fellbach, Baden-Wuerttemberg<br />

70736, GERMANY<br />

After attending this presentation, attendees will have an<br />

understanding of differences in decomposition of buried remains with<br />

and without insect access prior to burial. This will assist in forensic<br />

cases where victims are frequently buried to remove traces of evidence,<br />

to conceal the crime itself, and to delay discovery and identification.<br />

This presentation will impact the forensic community by providing<br />

regression formula for buried remains with insect and without insect<br />

access to allow a more precise estimation of the PMI. It will underline<br />

the fundamental importance of insect impact on decomposition rate and<br />

pattern.<br />

Although progress in estimating PMI for surface remains has been<br />

made (Megyesi, et al. 2005), no previous studies allow this to be<br />

accomplished for buried remains.<br />

Limited research has been conducted to assess decomposition<br />

pattern of buried remains, or the impact of insect access on burial<br />

decomposition in relation to Accumulated Degree Days (ADD).<br />

Considering the well-known importance of insects on the progress of<br />

surface decomposition, it was expected that pre-burial insect access to a<br />

carcass would equally result in enhanced decomposition rates.<br />

A burial study on 60 rabbit carcasses was carried out in northwest<br />

England to assess differences in decomposition rates in carcasses with<br />

insect access prior to burial, and those without. Individually buried<br />

cadavers in 35 cm soil depth were exhumed at 50 ADD intervals, and<br />

Total Body Score (TBS), weight loss, carcass/soil interface temperature,<br />

and underneath carcass soil pH were assessed.<br />

A comparison between decomposition rates between the two groups<br />

in relation to log ADD indicated a highly significant faster<br />

decomposition rate (p < 0.001) in the Insect group than the Non-Insect<br />

group. The following regression formulae were developed by statistical<br />

Analysis of Co-variance (ANCOVA):<br />

Insect group: TBS = -39.4+23.38 x log ADD<br />

Non-insect group: TBS = -29.49+17.63 x log ADD<br />

<strong>PHYSICAL</strong> <strong>ANTHROPOLOGY</strong><br />

Figure 1: Regression lines of TBS against log ADD of Insect<br />

(indicated by circles) and Non-Insect group (indicated by triangles),<br />

showing enhanced decomposition in the Insect access group.<br />

Preferred initial oviposition sites of blowflies in the genital area<br />

coincided with further localized decomposition progress,<br />

skeletonization, and disarticulation. Basic decomposition patterns in<br />

both groups were similar, but first appearance of hallmarks of the various<br />

decomposition stages in the Insect group preceded their appearance in<br />

the Non-Insect group by 200 ADD. At a total study interval of 641.87<br />

ADD this represented an approximately 30% enhanced decomposition in<br />

the carcasses with insect access prior to burial. Thus, the effectiveness<br />

of TBS in precisely reflecting decomposition stages in relation to ADD<br />

is confirmed.<br />

Intra-abdominal liquefaction occurred during advanced<br />

decomposition stages, exhibiting an ADD-related pattern. Parallel to<br />

external decomposition characteristics, the Insect group preceded the<br />

Non-Insect group by approximately 200 ADD. There is potential to<br />

refine the TBS scoring system by incorporating features of internal<br />

decomposition.<br />

True larval masses were never observed during the course of this<br />

study, thus interface temperatures did not exhibit significant differences<br />

from reference soil temperatures. Correspondingly, there were no<br />

significant differences between interface temperatures in the Insect and<br />

Non-Insect groups.<br />

Weight loss between the two groups presented significant<br />

differences of low magnitude, but was subject to measurement bias due<br />

to soil adherence. Soil pH was shown to peak at 311.12 ADD, parallel<br />

to increased weight loss, but did not closely reflect earlier or later<br />

decomposition rates or patterns.<br />

Insect stages were collected and reared to adulthood and included<br />

mainly the order Diptera, family Calliphoridae (C. vomitoria spp., C.<br />

vicina spp.); there was sporadic presence of few insects of the order<br />

Coleoptera, family Carabidae.<br />

The results of this study must be further tested, as thus far there is<br />

paucity of data on ADD in decomposition, which does not allow useful<br />

comparisons between studies.<br />

Burial, Decomposition, Insects<br />

H2 Bugs Bunny? No Bugs Bunny<br />

Tal Simmons, PhD*, Peter A. Cross, MSc, Rachel Adlam, MSc, and Colin<br />

Moffatt, PhD, University of Central Lancashire, School of Forensic and<br />

Investigative Sciences, Preston, Lancashire PR1 2HE,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will gain an<br />

understanding of the impact of insects on the decomposition process in<br />

relation to accumulated degree days (ADD) regardless of the<br />

environment in which the carcass is deposited.<br />

This presentation will impact the forensic community by<br />

influencing the way in which postmortem interval (PMI) estimates are<br />

constructed. The data presented show that, when time/temperature is<br />

standardized as ADD, it is the presence of insects alone that accelerates<br />

decomposition. This holds true for both surface-deposited remains and<br />

for buried remains. Burial is a factor in decomposition solely because it<br />

normally excludes (or reduces, depending on the duration of the<br />

exposure interval between death and burial) oviposition by Diptera<br />

species. ADD can be used to estimate the PMI in burials (using an insect<br />

exclusion model) in the same manner as it is in surface depositions.<br />

When temperature/time is standardized as Accumulated Degree<br />

Days (ADD), insect access is the most influential factor affecting<br />

145 * Presenting Author


decomposition rate. Carcass size is of secondary importance, with<br />

smaller carcasses decomposing faster than larger ones, mainly due to<br />

insect clutch size, which affects larval numbers and the amount of heat<br />

generated by the larval mass, which in turn accelerates insect<br />

developmental trajectory. Carcass disturbance is also a factor affecting<br />

decomposition, particularly when measured via percent weight lost, as<br />

movement of a carcass disrupts the insect feeding activity and delays<br />

skeletalization.<br />

This paper explores the effect of insect exclusion on decomposition<br />

rate in a direct comparison of insect accessed and insect excluded<br />

carcasses of the same size class, using a wild rabbit (Oryctolagus<br />

cuniculus) model. All rabbits were killed as part of the annual cull and<br />

their use was approved by university animal research ethics committees<br />

and official veterinarians of the United Kingdom Meat Hygiene Service.<br />

The studies were conducted primarily in the Northwest of England<br />

during the months May to July of 2008. Comparative data from Adlam<br />

and Simmons (2007) was used for insect exposed surface decomposition.<br />

Insect accessed surface (N=24) and buried (N=30) carcasses as well<br />

as insect excluded surface (N=30) and buried (N=30) carcasses form the<br />

study set (total N=114). Insect excluded rabbits were placed in plastic<br />

bags immediately following culling, thus precluding oviposition. Buried<br />

rabbits were placed into graves immediately following weight recording<br />

and thermocouples were placed under the trunk of each rabbit to record<br />

changes in carcass temperature during underground decomposition. Two<br />

thermocouples were used to record ground temperature external to the<br />

graves. The burial depth for all rabbits was 30-35 cm, thus mimicking a<br />

shallow, clandestine grave. Similar protocols were followed with regard<br />

to the surface insect excluded rabbits, which were placed into raised<br />

cages screened with 1mm aluminum mesh and thermocouples were<br />

inserted subcutaneously in the abdomens of 7 randomly distributed<br />

carcasses. A thermocouple and data logger were also used to<br />

continuously record ambient temperature at the site. Carcasses<br />

becoming visibly infested with larvae were discarded from the<br />

experiment with no further data collected and appropriate control<br />

measures were taken to prevent further spread. For the buried, insect<br />

exposed carcasses, carcasses were left on the ground surface near the<br />

graves and exposed to normal insect activity for approximately five<br />

hours prior to burial. Insect exposed surface rabbits were laid on the<br />

surface under chicken wire fencing to prevent scavenging for the<br />

duration of the experiment.<br />

The data collection protocol for both the buried and surface rabbits<br />

was carried out approximately every 50 ADD. This included weighing<br />

the rabbits, assigning a Total Body Score (TBS); and, for all groups<br />

except insect excluded surface depositions, taking soil samples for pH<br />

measurement.<br />

The results indicate that oviposition occurred successfully on both<br />

insect exposed groups and was prevented (or delayed substantially) in<br />

the insect excluded groups. The rate of decomposition as measured by<br />

TBS in insect exposed carcasses exceeded that of insect excluded<br />

carcasses throughout the decomposition process with no overlap<br />

between the two groups. Furthermore, any difference in rate of<br />

decomposition between insect excluded groups (buried and surface) was<br />

not significant; the slopes of the regression lines (Figure 1) are not<br />

significantly different (p


emoved. Initial tests show no difference in Sharpey’s Fibers<br />

decomposition rates between the two initial preparations. The test<br />

subjects were placed in a rural outdoor environment with mixed<br />

exposure to sun and shade. Large wire dog kennels which are open to<br />

the elements protect the test specimens. Two locations have been used<br />

to date, one being on the margin of a wooded area, the other in a more<br />

open pasture area. Each site was established with a DS1921G<br />

Thermochron from iButtonLink, which recorded outdoor temperature at<br />

hourly intervals from the initial positioning. Test specimens were<br />

checked on a daily basis for the first two weeks, and every three days<br />

subsequently. During the course of the check, each test subject was<br />

examined to identify whether the anterior teeth were still in place. The<br />

checks did not involve any contact with the test subject. Research to date<br />

suggests that at Sharpey’s Fibers may decompose after only 3000 o F<br />

accumulated degrees. Initial data shows decomposition of the alveolar<br />

Sharpey’s Fibers sufficient for the loss of anterior dentition can occur in<br />

as few as 40 days of exposure during June and July (daily temperature<br />

average of 75.55 o F). Further tests are currently being planned to support<br />

this data and identify which environmental conditions, besides<br />

temperature, have effects on the decomposition rates of alveolar<br />

Sharpey’s Fibers. It is expected that this research will be useful in<br />

making more precise estimations of postmortem interval when that<br />

period is longer than can be measured using currently available methods.<br />

Forensic Anthropology, Postmortem Interval, Decomposition<br />

H4 Year-of-Death Determination Based Upon<br />

the Measurement of Atomic Bomb-Derived<br />

Radiocarbon in Human Soft Tissues<br />

Gregory W. Hodgins, PhD*, University of Arizona, Department of<br />

Physics, 1118 East Fourth Street, Tucson, AZ 85721<br />

After attending this presentation, attendees will understand how<br />

above-ground nuclear testing in the 1950s and early 1960s dramatically<br />

increased environmental levels of radiocarbon. These elevated levels<br />

have been incorporated into all organisms living since that time and thus<br />

can serve as temporal markers. Potentially, radiocarbon measurements<br />

of postmortem human tissues can be used forensically to establish Yearof-Birth<br />

and/or Year-of-Death. One advantage of this approach is that it<br />

functions independently of chemical or biological methods for the<br />

determination of Postmortem Interval, or Age-at-Death, and thus might<br />

augment current methods for establishing these parameters.<br />

This presentation will impact the forensic community by providing<br />

data to assess the method’s ability to predict Year-of-Death based upon<br />

soft tissue radiocarbon levels. The study quantifies precision and<br />

accuracy when applied to soft tissues from 36 known-age/known yearof-death<br />

human remains.<br />

Environmental levels of radiocarbon spiked upwards from 1955 to<br />

1963 due to above-ground nuclear testing and have been descending<br />

back towards natural levels ever since. It enters human tissues through<br />

diet; and growth and normal metabolic tissue replacement leads to the<br />

continuous incorporation of radiocarbon throughout life. Replacement<br />

rates vary between different tissues and so radiocarbon is unevenly<br />

distributed within the various tissue compartments of late 20 th /early 21 st<br />

century humans. Moreover, the distribution of radiocarbon in a specific<br />

individual is related to when he or she lived and died relative to the<br />

atmospheric radiocarbon spike and so the phenomenon has potential<br />

forensic applications. This particular study hypothesized that tissues<br />

with high replacement rates should have radiocarbon levels closest to the<br />

contemporary environment. Therefore, postmortem measurement of<br />

radiocarbon levels within such tissues should mark the Year-of-Death.<br />

Radiocarbon levels were determined in blood, hair, nails, skin<br />

collagen, skin lipid, and bone lipid obtained from 36 individuals<br />

deceased in 2006. Levels were found to be lowest in blood, hair and nail<br />

samples and progressively increased in skin lipid, bone lipid, and skin<br />

collagen. Variation in radiocarbon levels within a tissue type was found<br />

to be surprisingly low, perhaps reflecting similarities in the diet of the<br />

sample population. Significantly, the magnitude of variation within the<br />

tissue populations was similar to the magnitude of the variation found in<br />

direct atmospheric radiocarbon measurements. Together, these<br />

observations allowed estimation of the method’s precision. The best<br />

case measurement precision based upon fingernail radiocarbon<br />

measurements was a two sigma uncertainty of ± 2.5 years. However,<br />

precision varied considerably between tissues and is sensitive to death<br />

year. The accuracy of the method could not be quantified due to<br />

limitations of the published atmospheric radiocarbon data sets, however<br />

this is relatively straightforward to overcome.<br />

This study is the most comprehensive empirical investigation of<br />

Year-of-Death estimation based upon tissue radiocarbon measurements<br />

to date. The method shows promise, however a broader study is<br />

necessary. Measurements of carbon and nitrogen stable isotopes in bone<br />

collagen purified from the study population indicated a surprising<br />

homogeneity in diet. This fact might have generated a spurious<br />

overestimation of the method’s precision. Certain diets can alter tissue<br />

radiocarbon levels so it must be determined whether the observed dietary<br />

homogeneity was a quirk of the sample population or if it reflects widely<br />

shared behaviors. A second caveat is that published data on atmospheric<br />

radiocarbon levels extends only to 2003. Thus the present study<br />

estimated contemporary levels by extrapolation. Clearly the way<br />

forward is to expand the cultural and geographic diversity of test<br />

population and extend the reference data sets of atmospheric radiocarbon<br />

measurements up to the present.<br />

Radiocarbon, Year-of-Death, Human Tissues<br />

H5 The Effects of Coverings on the Rate of<br />

Human Decomposition<br />

Angela M. Dautartas, BS*, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand some of<br />

the principles of human decomposition; specifically how decomposition<br />

can be affected by the presence of different materials surrounding a body.<br />

This presentation will impact the forensic community by helping to<br />

expand the knowledge base of factors that influence the rate of human<br />

decomposition. This additional information will in turn aid investigators<br />

in more accurately predicting time since death in forensic settings.<br />

A multitude of factors can affect each stage of the decomposition<br />

process, either accelerating the process or slowing it down, depending on<br />

the specific agent at work. Some of the most frequently observed<br />

variables are temperature, moisture, insect activity, and sun or shade<br />

exposure.<br />

Coverings can impact several of these factors in the decomposition<br />

process, and are found frequently in forensic cases. In a survey of New<br />

Mexico cases, Komar [2] reported that sixteen individuals were found<br />

wrapped in plastic; and twenty were noted as wrapped in a cloth or<br />

blanket.<br />

Variation in body coverings spans a wide spectrum. A case from<br />

Singapore involved the remains of a child found wrapped in nine layers<br />

of plastic and then placed in a plastic bag. [1] In this instance, the body<br />

was reportedly in a state of much higher preservation than expected for<br />

the climate; [1] illustrating how coverings can affect estimation of<br />

postmortem interval. In another survey conducted of eighty-seven cases,<br />

fifty-four of the bodies were wrapped in some covering prior to burial.<br />

Plastic was the most common, but a variety was noted, including rugs,<br />

sleeping bags, blankets, and clothing. [3]<br />

In order to document how coverings could affect the decomposition<br />

process throughout the sequence, an experiment was designed to mimic<br />

a covered body in a forensic setting. Three human cadavers were used<br />

147 * Presenting Author


in each repetition of this experiment. Two of the cadavers were covered,<br />

one in a plastic tarp, the other in a cotton blanket, while the third was left<br />

uncovered as a control. The selection of materials was based on case<br />

reports of cadavers wrapped in plastic and blankets (Komar, 2003,<br />

Derrick, 2007 personal communication). The cadavers were placed at<br />

the same time and in close proximity to ensure that all were exposed to<br />

similar environmental conditions. The cadavers used were also of the<br />

same sex and ancestry, and the age range and body weight variation was<br />

kept to a minimum to avoid extraneous influences on the decomposition<br />

process. All demographic information was recorded.<br />

Data collected included daily minimum and maximum temperatures<br />

and two daily temperature point comparisons. The maximum and<br />

minimum temperatures allowed for calculation of accumulated degree<br />

days. The bodies remained covered and undisturbed for thirty days. At<br />

the end of that period, the bodies were uncovered, the amount of<br />

decomposition was recorded and the presence or absence of insect<br />

activity was noted.<br />

Using the recorded temperature data, the accumulated degree days<br />

(ADD) was calculated and compared to the actual number of days<br />

postmortem. This technique provided a standard basis of comparison<br />

between the temperature data recorded from each individual and how<br />

temperature differences affected decomposition, particularly in the<br />

earliest stages.<br />

Significant differences in temperature were found between the<br />

covered bodies and the uncovered cadavers through the use of paired ttest<br />

analyses. This indicates that the presence of a covering on a body<br />

will have a noticeable effect on the rate of decomposition. Differences<br />

were also identified in moisture content between the various shroud and<br />

surface environments. Variation between the calculated accumulated<br />

degree days and the actual number of days postmortem was less<br />

significant, but still showed marked differences. This again suggests that<br />

special consideration should be taken when estimating time since death<br />

in cases involving covered bodies.<br />

References:<br />

1. Chui PPS. 2006. An unusual postmortem change in a child<br />

homicide-leaching. Proc. American Association of Forensic<br />

Sciences. 12:247 (Abstract).<br />

2. Komar DA. 2003. Twenty-seven years of forensic anthropology<br />

casework in New Mexico. J Forensic Sci 48: 1-3.<br />

3. Manhein MH. 1997. Decomposition rates of deliberate burials: a<br />

case study of preservation. In Haglund WD, Sorg, M. (eds).<br />

Forensic Taphonomy: The Postmortem Fate of Human Remains.<br />

New York: CRC Press, 469-482.<br />

Decomposition, Time Since Death, Coverings<br />

H6 Modes of Mutilation in Taphonomic<br />

Context: Can Sharp Force Trauma<br />

Decelerate the Decomposition Process?<br />

Branka Franicevic, MSc*, Department of Archaeology, Sheffield<br />

University, Sheffield, S1 4ET, UNITED KINGDOM<br />

The goal of this presentation is provide attendees information on the<br />

impact of mutilation practices on decomposition rates during the summer<br />

period in a terrestrial environment in a Mediterranean coastal region.<br />

The study will address aspects of dismemberment types that may delay<br />

decay rates, a process that is generally uncharacteristic for sharp force<br />

trauma.<br />

Given favorable taphonomic conditions, body tissue incisions by<br />

sharp objects can significantly accelerate decomposition by attracting<br />

higher insect and scavenger succession, and by aiding more rapid<br />

internal and external bacterial action. It is however uncertain whether<br />

severing the limbs can affect decay rates in the reverse manner. Because<br />

the absence of the taphonomic model may pose a challenge to the<br />

* Presenting Author<br />

estimation of postmortem interval (PMI) of mutilated remains<br />

discovered in advanced stages of decomposition, the consequent answers<br />

will impact on the forensic community and humanity by addressing the<br />

utility of taphonomic profiling in reconstructing postmortem histories.<br />

By providing a more coherent understanding of the decomposition<br />

processes involved, this study will consequently impact the forensic<br />

community by providing more precise estimations of PMI for the most<br />

frequent types of dismemberment.<br />

The scientific justification of the research is based on the hypothesis<br />

that a different taphonomic model for mutilated body parts is possible,<br />

due to putrefaction being altered in the absence of the necessary gastrointestinal<br />

organs responsible for bacterial activity. The alteration of<br />

intrinsic factors through dismemberment may cause more dependency<br />

on external factors in decomposition, consequently affecting rates of<br />

decay. This is because microscopic decomposers that are introduced<br />

from both the intestine and the outer environment are reduced mostly to<br />

the latter in the case of single-limb decay.<br />

This experimental study involved a decomposition analysis of<br />

mutilated body parts in the terrestrial habitat in summertime on the south<br />

Croatian coast (43.02° N 17.57° E). It was conducted in June 2008 over<br />

a period of 30 days. Samples were completely exposed to the sun,<br />

deposited on salt marsh soil. Domestic pigs (Sus scrofa) were utilized as<br />

animal analogs to mimic human decomposition. The sample size was<br />

twelve animals: three whole carcasses (S1) were compared to three<br />

decapitated samples (S2), three animals with all limbs and the head<br />

severed (S3), and three samples mutilated in transverse plane (S4). The<br />

carcasses ranged in sizes from 21 to 23 kg., and they were kept in metal<br />

cages for the duration of the experiment to protect them from large<br />

scavengers. Temperature data were obtained from the local Hydrometeorological<br />

Station. Once a day, micro-organisms were extracted and<br />

insects collected from the “drip zone.”<br />

The results demonstrated differences in the decomposition pattern<br />

between whole carcasses and within the three types of dismemberment.<br />

While all samples reached the decay stage, the bloating stage was<br />

omitted by S3 and S4. Significant differences in decay rates were<br />

noticed, with S3 reaching the decay stage within the first week followed<br />

by S4, S2, and S1 decomposing at the slowest rate. Entomological<br />

analysis indicated the highest succession on S3 with the intestines and<br />

the head being the preferred body parts in all three mutilated samples,<br />

followed by the body-tissue incision area. Most taxa were of the Diptera<br />

Order, belonging to seven Families and twelve species. Based on the<br />

microbial analysis, the species associated with decomposition on the<br />

mutilated remains was higher in number and more diverse than with<br />

whole corpses, with the highest fungal succession (Ascomyceteous<br />

fungion; Aspergillus fumigatus; Aspergillus flavus) on the surfaces of S3<br />

heads and torsos and mostly torsos on S4. The analysis of small<br />

scavenger succession further exhibited preference to intestines and was<br />

highest with S3 and S4. Regression and correlation analyses<br />

demonstrated a significant positive correlation between temperature and<br />

weight loss for all carcasses and body parts ranging from r+0.90, r 2 = 0.81<br />

to r+0.91, r 2 = 0.82, with intestines of S3 yielding a perfect correlation<br />

(r+1.00, r 2 =1.00). Statistical analysis suggested that relative humidity<br />

would also be appropriate to be used as a variable to detect the<br />

relationship with rates of decay ranging from r=0.87 to r=0.94 for most<br />

body parts.<br />

The results in this study demonstrate significant differences<br />

between the tested types of mutilation. The variations concerning the<br />

rate of decomposition were due to the internal and external microbial<br />

processes between different types of dismemberment caused by sharp<br />

force trauma, and aided by temperature and humidity variables, and<br />

entomological and small scavenger succession. These preliminary data<br />

will be useful for further research for assessing the PMI of the most<br />

frequent types of criminal mutilation in a terrestrial environment.<br />

Mutilated Body Parts, Postmortem Interval, Taphonomy<br />

148


H7 Living With Corpses: Case Report of<br />

Psychological Impairment and Neglect,<br />

Leading to the Death of Two Women<br />

William C. Rodriguez III, PhD*, Armed Forces <strong>Medical</strong> Examiner, 1413<br />

Research Boulevard, Building 102, Rockville, MD 20850<br />

After attending this presentation, attendees will possess a better<br />

understanding on the importance of scene and behavioral evidence in the<br />

examination of mummified remains in which there is no clear anatomical<br />

evidence relating to cause and manner of death.<br />

This presentation will impact the forensic community by educating<br />

attendees on the examination of mummified remains and various testing<br />

methods which may be utilized to possibly determine cause and manner<br />

of death. Furthermore, the presentation will focus on the psychological<br />

aspects of individuals who co-habitat with remains of the deceased, and<br />

the use of entomological and other evidence to determine the length of<br />

co-habitation with the dead.<br />

In June of 2004 the mummified and partially skeletonized remains<br />

of a 56-year-old Japanese mother and her 33-year-old daughter were<br />

discovered in a mobile home in south eastern Idaho. The partially<br />

preserved remains were located lying next to each other in a bed with<br />

blankets and sheets positioned neatly up to the level of their chest.<br />

Appearance of the women which included their position next to each<br />

other, clothing, and intact styled hair with hair bands gave the impression<br />

that both died naturally in their sleep.<br />

The decompositional stench of the bodies was so strong within the<br />

mobile home that investigators had to wear masks including oxygen<br />

packs. Upon continued examination of the scene, investigators noted<br />

that another individual had continued to live at the residence, that being<br />

the husband/father of the deceased. Several dozen solid, air deodorant<br />

devices were found throughout the mobile home. The deodorizing<br />

devices were noted on multiple tables and shelves in every room, in<br />

hallways, and within all of the air vents located in the floor of the mobile<br />

home. In addition to the solid air deodorizers, multiple cans of various<br />

aerosol based deodorizers were found scattered around the residence.<br />

The husband/father of the deceased was later picked up by police as<br />

a possible suspect in the deaths. Interviews of the suspect revealed that<br />

he was a senior engineer at local nuclear plant, who also possessed a high<br />

level security clearance in relation to his employment. Interviews with<br />

his employer also revealed the subject to have received graduate degrees<br />

in engineering and science from Cornell University.<br />

Forensic examination of the mother found her to be in a completely<br />

mummified state. No evidence of abrasions, bruising, skin discoloration<br />

or other injury was discovered upon external examination of the remains.<br />

Internal examination of the body revealed the presence of decomposed<br />

remnants of the lungs, kidney and liver. Examination of the inner skull<br />

revealed no evidence of tears or hemorrhage to the dried remains of the<br />

dura. A small amount of highly decomposed brain and no fractures were<br />

present on the inner as well as the outer table of the skull. Dissection and<br />

inspection of the mummified tissues of the neck revealed no evidence of<br />

hemorrhage or significant discoloration. Similar findings were noted<br />

upon examination of the trachea, and the hyoid and ossified cartilages of<br />

the neck were undamaged. No injuries were found on any of the<br />

postcranial elements. Toxicology findings on the recovered organs were<br />

negative.<br />

Forensic examination of the daughter found her to be in an<br />

advanced state of skeletonization with partial mummification.<br />

Significant mummified epidermal tissue covered the anterior plane of the<br />

body with skeletonization primarily observed on the posterior plane.<br />

The only evidence of damage to the mummified epidermal tissues was in<br />

the area of the right shoulder and left abdominal area, which was<br />

identified as the result of carrion insect activity. The internal chest wall,<br />

including the ribs and costal cartilages, could be viewed from the back<br />

of the deceased due to the lack of soft tissues. No tears or separation of<br />

the ribs and costal cartilages were noted and there was no evidence of<br />

discoloration of the internal chest wall suggestive of hemorrhage. No<br />

discernable tears, abrasions, or discolorations were present on the<br />

mummified epidermal tissues of head. The skull was absent of fractures<br />

or other injuries and the same was true for the postcranial skeleton.<br />

Based on the mummified state of the deceased and the absence of blow<br />

fly activity, death was estimated to have occurred either in the winter of<br />

2004 or 2003.<br />

Continued investigation by police revealed the daughter would lock<br />

herself in her room when her father was in the house and that the father<br />

last reported seeing the daughter alive in April of 2001. Diary entries in<br />

April of 2001 by the wife make reference to the daughter needing to eat.<br />

A later entry by the wife notes the screaming sound of killdeer (a<br />

common bird species) and the awful smell of something dead in the<br />

house. Later the father admitted that in June of 2001, as the result of a<br />

bad smell, he broke into his daughter’s room and found her dead and<br />

decomposing on the bed. Later in February of 2003, the husband found<br />

his wife dead, placed her next to his daughter, and pulled the blanket and<br />

covers up neatly. The suspect never informed anyone of the deaths, and<br />

continued to live at the house and to go to work daily.<br />

Although homicide could not totally be ruled out in this case, the<br />

absence of external and skeletal trauma to the remains of the deceased<br />

and negative toxicological findings lead to the conclusion that death<br />

possibly resulted from either illness or starvation, or a combination of<br />

both. In either possible case, medical attention was not sought by the<br />

mother, daughter, or the husband/father. The psychological state of the<br />

mother and daughter may have well contributed to their demise;<br />

however, the burden of care fell to the responsibility of the<br />

husband/father. In conclusion, the husband later pleaded guilty to two<br />

counts of involuntary manslaughter.<br />

Mummification, Psychological, Scene Investigation<br />

H8 Creating an Open-Air Forensic<br />

Anthropology Human Decomposition<br />

Research Facility<br />

Jerry Melbye, PhD*, and Michelle D. Hamilton, PhD, Texas State<br />

University-San Marcos, Department of Anthropology, 601 University<br />

Drive, San Marcos, TX 78666-4616<br />

After attending this presentation, attendees will have a better<br />

understanding of the problems and limitations associated with<br />

establishing an open-air human decomposition facility.<br />

This presentation will impact the forensic community by explaining<br />

the need to establish more open-air human decomposition stations in<br />

North America. This presentation will demonstrate to the scientific<br />

community that through dogged determination and lessons learned, it<br />

can be done.<br />

Over twenty-five years ago, Dr. William M. Bass created the first<br />

formal open-air decomposition facility at the University of Tennessee.<br />

He realized that more information about time since death estimations<br />

was needed. The Tennessee facility continues to serve as a major<br />

contributor to knowledge of human decomposition rates to this day.<br />

Many researchers, including Dr. Bass, have noted that more of these<br />

facilities are needed to help more accurately understand the postmortem<br />

interval in different environmental conditions. Many researchers have<br />

tried to start a facility of this kind, but nearly all have failed, most as a<br />

result of lack of administrative and/or community support. Two recent<br />

success stories include Western Carolina University and Texas State<br />

University-San Marcos. The San Marcos facility serves as the focus for<br />

this paper. It has taken four years of hard work and doggedness to<br />

establish the facility at Texas State University, where a number of lessons<br />

have been learned along the way, all of which will be outlined in this<br />

paper as encouragement and a path for others to follow.<br />

149 * Presenting Author


Depending on the university viewpoint, this may be the first hurdle<br />

to overcome: enthusiasm must be shown for the end result to gain full<br />

support of the Chair, the Dean, the Provost, and others high-up in the<br />

administrative echelon. Without administration support, the project will<br />

be abandoned before it can even begin. Once one understands what<br />

administrators want to hear, the “soft sell” can begin.<br />

Gaining support from the law enforcement community can be<br />

another difficulty. By offering workshops, it will establish to law<br />

enforcement that the university is a valuable place for training and to<br />

university administrators that the project is a source of revenue. Now the<br />

argument can be made that a facility would generate even more income<br />

for research!<br />

Public reaction can be a major issue that must be overcome at the<br />

onset. By and large, the public will support the project as long as it is<br />

located far away from their home. Therefore, the facility location may<br />

have to be a compromise between where you want it and where you can<br />

build it. It is imperative that the facility be located in an isolated area<br />

with an unoccupied buffer zone between the facility and the public.<br />

Individuals who are not familiar with research involving human<br />

decomposition will have to be educated on how to differentiate between<br />

fact and fiction. Most people are concerned about wafting odors,<br />

disease-carrying flies, birds dropping body parts on doorsteps, and<br />

decreased property values. Simple, straightforward, honest answers at<br />

public forums can be offered to satisfy all of these questions. A very<br />

large concern from the public in the case of Texas State was the idea that<br />

decomposing bodies would pollute the environment. The response to<br />

this issue has led Texas State University to offer a new perspective on<br />

this environmental issue by turning this specific area of concern into a<br />

center-piece of the program; environmentally sound research and<br />

laboratory practices, and an eco-friendly solution to traditional funeral<br />

burials.<br />

There is a need to establish more open-air human decomposition<br />

stations in North America. This presentation will demonstrate to the<br />

scientific community that through dogged determination and lessons<br />

learned, it can be done.<br />

Decomposition Facility, Time-Since-Death, Forensic Anthropology<br />

H9 Metacarpal and Metatarsal Histology of<br />

Humans and Black Bears<br />

Brannon I. Hulsey, MA*, Walter E. Klippel, PhD, and Lee Meadows<br />

Jantz, PhD, University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37966-0720<br />

After attending this presentation, attendees will understand the<br />

histological differences in the metacarpals and metatarsals of human<br />

hands and feet and black bear (Ursus americanus) paws.<br />

This presentation will impact the forensic community by aiding in<br />

the separation and identification of morphologically similar osseous<br />

human and nonhuman remains.<br />

The similarities between the bones of human hands and bear paws<br />

have been noted by numerous authors, and the morphological similarities<br />

and differences have been described extensively. While useful when<br />

whole bones are discovered, gross morphological characteristics may fail<br />

in the context of damaged or fragmented bones. In these situations, an<br />

alternative method of identification is necessary. Histology has been<br />

used to describe both human and nonhuman bones, and can be employed<br />

in separating bones as similar as those in this study. The histology of<br />

bear bones has been limited to femur and tibia midshaft cross sections,<br />

so descriptions of bear metapodials are needed in order to differentiate<br />

them from metacarpals and metatarsals in humans.<br />

The human sample consists of two unprovenienced feet and an<br />

unprovenienced hand from the University of Tennessee’s<br />

Anthropological Research Collections. The bear sample consists of<br />

sixteen paws from four bears (eight front and eight back) obtained in<br />

Minnesota, Wisconsin, Maine, and Tennessee, one back paw obtained in<br />

* Presenting Author<br />

Georgia, one front paw obtained in Wisconsin, and a back paw that came<br />

in as a forensic case to the University of Tennessee, giving a total of 9<br />

front paws from 5 bears and 10 back paws from 6 bears.<br />

Cross sections were made at midshaft of all bear metapodials and in<br />

5 mm increments proximally and distally from midshaft on the second<br />

metapodials of one front paw and one back paw from a single bear. This<br />

allows for examination of variation both within and across metapodials<br />

in a single bear and across metapodials in multiple bears. Cross sections<br />

were also made at midshaft of all human metapodials and in 5 mm<br />

increments proximally and distally from midshaft on the second<br />

metapodials of one hand and one foot. All thin sections were cut 15 µm<br />

thick and ground. Slides were viewed using a light microscope and<br />

photographed using the computer program ImagePro Express.<br />

Several quantitative variables were examined in order to determine<br />

the difference between human and bear metapodials at the histological<br />

level. Quantitative measurements included maximum osteon diameter<br />

(µm), osteon area (µm 2 ), maximum Haversian canal diameter (µm), and<br />

Haversian canal area (µm 2 ). One to four osteons were measured per thin<br />

section and the values averaged for each species. The means were then<br />

tested using ANOVA to see if they differed between human and bear. In<br />

addition, the percentage of overlap in osteon and Haversian canal sizes<br />

was calculated between the two species. The incidence of several<br />

qualitative features was also noted when encountered, including osteon<br />

banding, resorption spaces, and plexiform bone.<br />

Results show that human osteons and Haversian canals are larger in<br />

both diameter and area than those found in bears. The mean human<br />

osteon area and diameter are 39,081µm 2 and 249 µm, respectively, while<br />

the mean bear osteon area and diameter are 21,421 µm 2 and 183 µm,<br />

respectively. The mean human Haversian canal area and diameter are<br />

2,160 µm 2 and 58 µm, respectively, while the mean bear Haversian canal<br />

area and diameter are 580 µm 2 and 29 µm, respectively. In addition, the<br />

qualitative features of osteon banding, resorption spaces, and plexiform<br />

bone are more prevalent in bear metapodials than human metacarpals<br />

and metatarsals. These results indicate that it is possible to differentiate<br />

between fragmented bear and human metacarpals and metatarsals using<br />

a combination of qualitative and quantitative microscopic features.<br />

Black Bear, Human, Metacarpals/Metatarsals<br />

H10 The Effects of Papain and EDTA on Bone in<br />

the Processing of Forensic Remains<br />

Bobbie J. Kemp, MS, Michael I. Siegel, PhD, Margaret A. Judd, PhD,<br />

and Mark P. Mooney, PhD, University of Pittsburgh, Department of<br />

Anthropology, 3302 Wesley W. Posvar Hall, Pittsburgh, PA 15260, and<br />

Luis L. Cabo-Pérez, MS, Mercyhurst College, Department of Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546<br />

The goal of this presentation is to assess the effects of papain and<br />

EDTA on bone as well as determine an effective, cost-efficient<br />

concentration of papain for the removal of soft tissue from bone.<br />

This presentation will impact the forensic community by providing<br />

a method for soft tissue removal that is quick, efficient, and<br />

nondestructive to bone.<br />

It is essential in forensic anthropology to employ a defleshing<br />

method that is both efficient and nondestructive to bone tissue or fine<br />

trauma marks, while working within time constraints imposed by law<br />

enforcement. Results from a previous study (Kemp et al. 2008)<br />

suggested that papain solutions fulfill these conditions, representing a<br />

viable method which can be utilized in forensic contexts. However,<br />

other studies have found that papain can be destructive to bone.<br />

Papain is a proteolytic enzyme (protease) derived from the<br />

unripened papaya fruit (Carica papaya). Proteases are specific enzymes<br />

that induce protein decomposition (proteolysis) by promoting hydrolysis<br />

of the peptide bonds that link amino acids. Therefore, these enzymes<br />

would primarily target the protein content of muscle and connective<br />

150


tissue (ligaments, tendons, and cartilage), rather than the mineral or<br />

tightly packaged organic matrix of the bone. Other benefits of the<br />

enzyme are that optimal activity occurs at low temperatures (45°-65°C),<br />

thus remains need not be subjected to boiling, and it works so effectively<br />

that no harsh instrument is required to remove soft tissues.<br />

Papain can be inactivated by metal ions, so commercial papain<br />

solutions normally contain ethylenediamine tetra-acetic acid (EDTA), as<br />

a chelating agent. EDTA binds to metal ions, including calcium, forming<br />

metal complexes with very high stability constants (pK-values). Thus,<br />

EDTA can bind to and remove calcium from bone tissue. Due to this<br />

property, EDTA is commonly used to decalcify bone for the preparation<br />

of histological slides or the retrieval of DNA. Therefore, it is proposed<br />

that the destruction of bone tissues reported in other studies may in fact<br />

be attributed to EDTA rather than papain.<br />

The present study addresses three primary questions: (1) What is the<br />

most effective, cost-efficient concentration of papain for soft tissue<br />

removal? (2) Is papain destructive to bone at this concentration? and (3)<br />

Is EDTA destructive to bone?<br />

A sample (n=16) of New Zealand white rabbits (Oryctolagus<br />

cuniculus) was obtained from a colony housed at the University of<br />

Pittsburgh (all individuals in the study came from previously approved<br />

protocols). The skulls, forelimbs, and hindlimbs of each rabbit were<br />

removed following standardized procedures. All remains were weighed<br />

prior to and following processing, recording any differences in wet or<br />

dry weights. The subsequent steps of the study were conducted in two<br />

phases. The first phase of the study focused on the effectiveness of<br />

papain and its effect on bone, while the second focused on the effect of<br />

EDTA on bone.<br />

Phase 1 samples (12 forelimbs, 15 hindlimbs, and 11 skulls) were<br />

placed in stainless steel pots in solutions consisting of 10g, 8g, 6g, 4g, 2g<br />

or 0g (control group) of papain in 3.8 10 3 ml (1gal) of distilled water.<br />

Solutions were heated on electric burners, then heated to and maintained<br />

at 55°-65° C. The condition of the remains was documented every 30<br />

minutes. Results suggested that the 4g solution was the most efficient<br />

and cost-effective, based on variables such as the time-to-completion,<br />

final dry weight of the bones, and efficacy of the enzyme on varying<br />

tissue types. Hence, this concentration was employed in the EDTA<br />

solutions analyzed in Phase 2 of the study.<br />

Phase 2 samples (7 forelimbs and 6 hindlimbs) were placed in<br />

solutions consisting of 3.8 10 3 ml (1 gal) of distilled water, 4g papain,<br />

and 10g, 6g, or 2g of EDTA. The same procedures were followed as<br />

described above in Phase 1.<br />

Gross bone destruction was not noted in any of the Phase 1 samples,<br />

whereas severe destruction was observed on several bones in the Phase<br />

2 EDTA samples. The thin bone of most of the scapulae was eroded<br />

through, and some subchondral bone was also destroyed. These results<br />

strongly suggest that EDTA, rather than papain, is highly destructive to<br />

bone and should be avoided in defleshing protocols. The developed<br />

protocol reduces the amount of free metal ions in the solution by using<br />

distilled water rather than tap water and stainless steel pots rather than<br />

aluminum, therefore, EDTA is not required for proper activity of papain.<br />

The enzyme was found to work quickly and effectively with the<br />

proposed protocol, without EDTA significantly affecting the time-tocompletion.<br />

Reference:<br />

1 Kemp BJ, Cabo-Perez LM, Matia J, Dirkmaat DC. 2008. The<br />

effectiveness of papain in the processing of remains. Poster<br />

presented at the 60 th annual meeting of the American Academy of<br />

Forensic Sciences.<br />

Maceration, Papain, EDTA<br />

H11 Practical Considerations in Trace<br />

Element Analysis of Bone by Portable<br />

X-Ray Fluorescence<br />

Jennifer F. Byrnes, BS*, SUNY University at Buffalo, Department of<br />

Anthropology, 380 MFAC, Ellicott Complex, Buffalo, NY 14261-0026;<br />

and Peter J. Bush, BS, SUNY at Buffalo, South Campus Instrument<br />

Center, B1 Squire Hall, South Campus, Buffalo, NY 14214<br />

The goal of this presentation is to discuss analysis parameters in the<br />

use of portable x-ray fluorescence (XRF) in the analysis of trace element<br />

levels in human bone.<br />

This presentation will impact the forensic community by providing<br />

information on possible error factors in XRF analysis of bone.<br />

Bone chemistry can reveal much about an individual’s life history.<br />

Certain trace elements can give specific and pertinent information about<br />

environmental exposure, diet, and geographical location of residence.<br />

X-Ray Fluorescence is a nondestructive method for analysis of trace<br />

elements. Portable XRF instruments now available allow trace element<br />

analysis of samples in the field or in collections. The use of such<br />

instruments requires knowledge of analysis parameters such as x-ray<br />

penetration and exit depth. This is especially important if nonhomogenized<br />

whole bone samples are to be analyzed. In a forensic or<br />

burial setting where the bone sample has been exposed to the<br />

environment, the elements being studied may be altered due to<br />

diagenetic changes. Depending on a variety of factors such as soil and<br />

ground water composition, the observed reading may not fully represent<br />

the actual bone chemistry composition of the individual. The structure<br />

of cortical bone is another important factor because the newly deposited<br />

bone layers on the outer surface may have different values of a given<br />

element than an older deposited layer deep to the surface, as bone<br />

undergoes constant remodeling throughout one’s life. Cortical bone is<br />

more conducive to use with this portable XRF, as trabecular bone has a<br />

number of inconsistencies such as an unsmooth surface, which can<br />

inhibit the analytical performance of the procedure.<br />

Two experiments were carried out to understand how analysis depth<br />

and removal of surface layers of bone affect analytical results. Analysis<br />

depth was determined by examining selected pure elements through<br />

varying known thicknesses of cow tibia cortical bone slices. This<br />

showed a correlation between the element’s x-ray emission energy and<br />

the depth of reading by the device. In the second experiment, a small<br />

human population from an unknown graveyard found in Youngstown,<br />

NY was studied. The burials were discovered and excavated in 1997;<br />

very little is known about who these individuals were other than what the<br />

osteological analysis has revealed, as few artifacts were recovered from<br />

the graves. The surfaces of the bones from this collection were analyzed<br />

before and after sanding, to observe if sanding the immediate surface of<br />

the analyzed area alters the results. In a burial setting, the way the bones<br />

were positioned in the grave can affect the readings taken from one side<br />

of the bone to the other. This may result from contact with soil or ground<br />

water intrusion in the gravesite. This research has concluded that it is<br />

important to take these factors into consideration when performing bone<br />

analysis. When determining what areas of the bone to analyze for a<br />

particular element under study (a skull fragment versus a long bone<br />

fragment) cortical bone thickness and the emission energies of the<br />

element of interest should also come into consideration. These results<br />

validate the portable XRF device as a powerful and convenient<br />

instrument for nondestructive analysis, while highlighting a number of<br />

limitations and considerations for its use in obtaining data from bone<br />

samples.<br />

Portable XRF, Trace Elements, Bone<br />

151 * Presenting Author


H12 Field Contamination of Archaeological<br />

Bone Samples Submitted for Mitochondrial<br />

DNA (mtDNA) Analysis<br />

Alexander F. Christensen, PhD, Joint POW/MIA Accounting Command,<br />

Central Identification Lab, 310 Worchester Avenue, Hickam AFB, HI<br />

96853; Suni M. Edson, MS*, Armed Forces DNA ID Lab, 1413 Research<br />

Boulevard, Building 101, Rockville, MD 20850; Erica L. Chatfield,<br />

MFS, AFDIL, 1413 Research Boulevard, Building 101, Rockville, MD<br />

20850; Audrey L. Meehan, BGS, JPAC-CIL, 91-1074 Anaunau Street,<br />

Ewa Beach, HI 96706; and Suzanne M. Barritt, MS, AFDIL, Armed<br />

Forces DNA ID Lab, 1413 Research Boulevard, Building 101, Rockville,<br />

MD 20850<br />

After attending the presentation, attendees will understand the<br />

importance of field and laboratory procedures that minimize the<br />

potential for DNA contamination, and will be briefed on analysis<br />

procedures to enable detection of contamination that does occur.<br />

This presentation will impact the forensic community by illustrating<br />

how DNA samples may be contaminated in the field even when stringent<br />

laboratory procedures are followed to avoid such contamination. It will<br />

also demonstrate how such contamination may be detected.<br />

The Armed Forces DNA Identification Laboratory (AFDIL) has<br />

been generating mitochondrial DNA (mtDNA) profiles from the osseous<br />

remains of missing U.S. service members and civilians in support of the<br />

mission of the Joint POW/MIA Accounting Command–Central<br />

Identification Laboratory (JPAC-CIL) since 1992. Extensive<br />

precautions are taken in order to assure that the sequences generated are<br />

authentic and not that of an outside or modern contaminant.<br />

Once remains are accessioned at the JPAC-CIL, they are housed in<br />

secure storage and checked out to a specific analyst for each stage of<br />

analysis. All analysts wear personal protective equipment (PPE) during<br />

analysis to reduce the risk of contamination. Remains are sampled for<br />

mtDNA analysis as soon as possible after accessioning. Samples are<br />

obtained using single use rotary blades that have been sterilized in 20%<br />

bleach solution and with an ultraviolet crosslinker, and bleach and<br />

ultraviolet light are applied to the interior of the sampling hood prior to<br />

each sample being cut. Samples are individually bagged and sent to<br />

AFDIL for analysis.<br />

At AFDIL, samples are similarly accessioned and checked out for<br />

analysis. Details of internal protocols at AFDIL can be found in Edson,<br />

et al., 2004. Methods taken to avoid contamination include, but are not<br />

limited to, the following: the removal of the outside surface of the bone<br />

by sanding and subsequent washing in diH 2 O and EtOH, preparation and<br />

extraction of the samples in “clean” rooms using individual hoods, and<br />

the wearing of multiple layers of PPE. Profiles are generated from the<br />

extracts using a redundant amplification strategy of overlapping primers<br />

and a subsequent comparison to an internal database of staff profiles,<br />

including both AFDIL and JPAC-CIL staff, in addition to any laboratory<br />

visitors. Profiles generated from remains are not reported until they meet<br />

the internal criteria of multiple, consistent amplifications and are proven<br />

not to be consistent with any staff members at either laboratory who had<br />

a potential exposure to the samples (as tracked by the laboratories’<br />

computerized accession records).<br />

While extensive care is taken once the remains are received at JPAC<br />

and AFDIL, there is limited control of possible contamination events in<br />

the field while remains are being recovered. On average, over 750<br />

osseous samples are processed at AFDIL each year, and such field<br />

contamination events have proven to be rare. However, in recent years,<br />

two field contamination events have occurred. Both of these cases<br />

involved historical aircraft crash sites, in which the anthropologist<br />

directing the recovery contaminated a bone fragment in the field. In the<br />

first case, five samples were submitted to AFDIL for processing. Three<br />

of the samples were reported and were consistent with the two<br />

individuals presumed to be on the aircraft. No data was generated from<br />

* Presenting Author<br />

one sample; but the fifth sample showed a mixture of the endogenous<br />

sequence (consistent with one crewmember) and that of the field<br />

anthropologist. The sample was exceptionally small, only 1.1 g, and cut<br />

into two pieces upon submission. In the second case, many of the bone<br />

samples were burned. One of the samples produced a high-quality<br />

sequence that appeared to be endogenous and met the reporting criteria.<br />

However, upon comparison to the sequence database, it was found that<br />

this profile was consistent with the field anthropologist and inconsistent<br />

with references for any of the crewmembers, and the sample was not<br />

reported.<br />

These two cases demonstrate the importance of selecting samples of<br />

good quality and of sufficient size for cleaning. While the cleaning<br />

protocols are certainly more than adequate under normal conditions, both<br />

of these samples had limitations which prevented the cleaning protocol<br />

from being sufficiently applied; the first sample being very small and<br />

difficult to hold during sanding and the second having been subjected to<br />

burning and therefore having an extremely friable surface. Smart sample<br />

selection, coupled with reduced handling of samples in the field will help<br />

to eliminate possible contamination events and/or false reporting of<br />

results.<br />

The above described events occurred in 2006 and 2007 respectively.<br />

While other contamination events have occurred at a low-level, these are<br />

the only two instances of the field anthropologist introducing modern<br />

DNA to the entire sample, a failure rate of 0.14% and 0.12%,<br />

respectively. This presentation will focus on the details of the protocols<br />

used at AFDIL and JPAC-CIL for the processing of degraded osseous<br />

remains. Attendees will learn how to perhaps implement these protocols<br />

into their own laboratory use for prevention and detection of field and inhouse<br />

contamination of mtDNA samples.<br />

The views expressed herein are those of the authors and not<br />

necessarily those of the Joint POW/MIA Accounting Command, the<br />

Armed Forces Institute of Pathology, the US Army Surgeon General, nor<br />

the US Department of Defense.<br />

Reference:<br />

Edson, S.M., J.P. Ross, M.D. Coble, T.J. Parsons, and S.M. Barritt<br />

(2004). Naming the Dead: Confronting the Realities of the Rapid<br />

Identification of Degraded Skeletal Remains. Forensic Science Review<br />

16(1): 63-90.<br />

Mitochondrial DNA, Contamination, Human Skeletal Remains<br />

H13 Training in Forensic Archaeology and<br />

Anthropology on a Shoestring: Is It<br />

Possible? Is It Sensible?<br />

Roland Wessling, BSc*, and Ambika Flavel, MSc, Inforce Foundation,<br />

Cranfield University, Cranfield Forensic Institute, Shrivenham, SN6<br />

8LA, UNITED KINGDOM<br />

After attending this presentation, attendees will have an increased<br />

understanding of the challenges and possibilities involved in providing<br />

training in forensic archaeology and anthropology around the world, as<br />

well as the various cost implications of such training.<br />

This presentation will impact the forensic community by presenting<br />

a series of real examples that show the overall structure of operational<br />

budgets, as well as the individual aspects of planning training programs.<br />

The presentation will close with a series of conclusions and propositions<br />

which are aimed to trigger more discussion regarding funding and the<br />

cost of training and exercising in forensic archaeology and anthropology.<br />

This will, in turn, hopefully lead to more training programs.<br />

Many countries have been, and still are, affected by atrocity crimes.<br />

Often such crimes have not been investigated enough or at all due to<br />

political, security, or other reasons. In some countries, for example<br />

Guatemala and Argentina, teams of forensic anthropologists have a<br />

tradition of investigating these atrocity crimes. These teams consist<br />

152


mainly of scientists from that particular nation, although most teams<br />

have had some international individuals working with them for certain<br />

periods of time. In contrast, countries such as Bosnia and Herzegovina,<br />

Croatia, and Kosovo have had international forensic teams investigating<br />

their atrocity crimes with national teams continuing the work later.<br />

Whichever model an investigation takes, the thorough training of all<br />

team members is of vital importance.<br />

Every aspect of atrocity crimes investigations has a significant<br />

impact on many peoples’ lives: relatives of the missing who may learn<br />

what truly happened to their loved ones; nations that have to come to<br />

terms with what atrocities have been committed in their name; criminal<br />

court proceedings; insurance claims; etc. The people who have been<br />

affected by atrocity crimes through the loss of relatives have experienced<br />

extensive emotional trauma. Facing this reality, forensic teams must<br />

ensure that every process within their work is carried out to the highest,<br />

internationally recognized standards. If a victim is misidentified and<br />

repatriated to the wrong family, the trauma the relatives have to go<br />

through is simply unacceptable. It is therefore essential that all<br />

personnel working on atrocity crime investigations are properly trained<br />

in their specific tasks, have up-to-date and comprehensive knowledge of<br />

everyone else’s roles, and completely understand the overall process and<br />

their place within it. This involves significant theoretical knowledge as<br />

well as relevant and well-structured training and exercising.<br />

There are a number of organizations in the world that have the<br />

expertise and experience to provide high quality training in atrocity<br />

crime investigations; and there are many countries that have a substantial<br />

need for such training. Why then does so little take place? The answer<br />

lies in part in the cost of such training. Other factors, such as security<br />

problems or political interference, can rarely be addressed and never<br />

solved by forensic archaeologists or anthropologists. The issue of costs,<br />

however, may be mitigated.<br />

During this presentation, a series of real examples will be presented<br />

that show the overall structure of operational budgets, as well as other<br />

individual aspects associated with the planning of forensic training<br />

programs. In conclusion, the presentation hopes to trigger more<br />

discussion regarding funding and the cost of training in forensic<br />

archaeology and anthropology such as: Why is forensic training<br />

expensive? Does it have to be? Where can costs be reduced? Where can<br />

they not be? This will, in turn, hopefully lead to the creation of more<br />

training programs.<br />

Forensic Archaeology, Forensic Anthropology, Training<br />

and Exercising<br />

H14 Ground Penetrating Radar: A New Tool in<br />

Crime Scene Examination?<br />

Donna M. MacGregor, MSc*, Queensland Police Service, Scientific<br />

Section, 200 Roma Street, Brisbane, 4001, AUSTRALIA<br />

After attending this presentation, attendees will understand the<br />

search techniques employed to locate buried bodies or items within<br />

Queensland, Australia, and how new techiques are being evaluated.<br />

This presentation will impact the forensic science community by<br />

illustrating the role that the Queensland Scientific Police serve and the<br />

equipment and techniques utilized to locate various buried items. These<br />

techniques are now being evaluated in Queensland in order to offer better<br />

service delivery to plain clothes investigators.<br />

Recently the Queensland Police Service (QPS) considered the<br />

purchase of a ground penetrating radar (GPR) system. The current<br />

practice within the QPS with regards to GPR is to employ the services of<br />

a private operator and GPR system on a case-by-case basis. As the call<br />

for GPR services increases, it may be more cost effective for the QPS to<br />

acquire the GPR equipment and skill base as a service resource.<br />

GPR operates by radiating short pulses of energy into a medium,<br />

usually soil, via a transmitter antenna and then receiving the energy<br />

reflected back from geological, or forensic, features with varying<br />

electromagnetic properties. By recording the propagation time delay<br />

between the transmitted and received signal, the distance to subsurface<br />

features such as rocks, tree roots, and objects of forensic interest can be<br />

determined.<br />

GPR has many benefits compared with traditional search<br />

techniques. GPR is nondestructive, relatively portable, self-contained,<br />

and can readily provide high resolution data in real time on the radar<br />

display unit. The availability of real time data provides investigators<br />

with vital information about subsurface features while in the scene and<br />

greatly assists the forensic personnel by identifying specific areas of<br />

interest for excavation.<br />

The use of GPR by law enforcement agencies is extensively<br />

documented in the forensic literature; however, most of this literature is<br />

derived from international experiences. It is not a tool routinely utilized<br />

within Australia for crime scene examinations. Prior to the purchase of<br />

any GPR unit, validation trials were required to be conducted.<br />

Several burials sites were established based on simulated crime<br />

scene scenarios. These burial sites were positioned beside each other in<br />

a row. The scenarios represented included:<br />

1. Non-disturbed soil (Control),<br />

2. Disturbed soil to 300mm with no object,<br />

3. Disturbed soil to 500mm with no object,<br />

4. Disturbed soil to 300mm with mixture of plastic skeleton and<br />

bovine skeletal elements, and<br />

5. Disturbed soil to 300mm with metal weapon.<br />

The GPR unit utilized in the trials was the GSSI SIR-3000, loaned<br />

from the Commonwealth Scientific and Industrial Research<br />

Organization (CSIRO) Mining Automation. Two antennas were trailed<br />

in association with this system. These were the GSSI 900MHz and GSSI<br />

400MHz antennas, both of which are interchangeable with the SIR-3000<br />

system.<br />

The various burial sites were contained within an area<br />

approximately 4m x 8m. During the first trial an X-Y grid was<br />

established for a survey pattern. A series of runs or scans were<br />

conducted at regular intervals along the X-axis and then along the Y-axis.<br />

A total of 27 scans were obtained for the study area. Each scan provided<br />

information on subsurface items on the display unit. Sites 2-5 were<br />

readily identified by the disturbances in the soil, represented on the<br />

display screen as hyperbola. The raw data displayed a significant<br />

difference between the reflection of the metal weapon (Site 5) and all the<br />

other sites, with the metal weapon displaying a stronger hyperbola. The<br />

raw data also displayed a difference between Site 2 and Site 3, with Site<br />

3 exhibiting a disturbance further into the soil than Site 2. Interestingly<br />

the scans obtained during this trial could be refined at a later time during<br />

subsequent processing to provide 3-D images of the study area. These<br />

3-D scans will be presented during the presentation.<br />

A second trial was conducted using the same burials pits however<br />

30mm cement pavers were placed on the soil surface above each burial<br />

site. The GPR was subsequently run over each burial site again using the<br />

same X-Y grid pattern. The results displayed during this trial were<br />

similar to the results of trial 1 in terms of the differences between Sites<br />

1-5 discussed above. The concrete pavers over the soil surface simply<br />

added an additional feature within each scan. These pavers were<br />

reinforced with steel which is represented in each scan as regular spaced<br />

dots along the top of the images. The disturbed soil below the concrete<br />

pavers was still able to be observed as hyperbolas. The metal weapon in<br />

Site 5 again produced the strongest hyperbola.<br />

The 400 MHz antenna provided the best resolution for the<br />

visualization of the subsurface features compared to the 900 MHz<br />

antenna. The 400 MHz antenna is commonly referred to in the literature<br />

as the antenna of choice for burial work. The results of the trial<br />

concurred with this observation.<br />

Crime Scene, Recovery, Search Techniques<br />

153 * Presenting Author


H15 Forensic Field Radiography: In the<br />

Trenches With MacGyver<br />

Gerald J. Conlogue, MHS*, c/o Diagnostic Imaging Program,<br />

Quinnipiac University, 275 Mt. Carmel Avenue, Hamden, CT 06518; and<br />

Mark D. Viner, MSc, Inforce Foundation, Forensic Science Institute,<br />

Cranfield University, Royal Military College of Science, Shrivenham,<br />

Wiltshire, UNITED KINGDOM<br />

After attending this presentation, attendees will learn how<br />

radiological imaging is a very useful tool in forensic and archaeological<br />

investigation. However it is often not deployed in circumstances where<br />

it would be very useful due to perceived practical, financial, and<br />

logistical concerns. This presentation will demonstrate that with prior<br />

planning, many of these concerns can be easily overcome and that a field<br />

radiography facility can be swiftly and economically established even in<br />

remote areas.<br />

This presentation will impact the forensic community by<br />

demonstrating how radiography is a very useful tool in forensic<br />

investigation. With prior planning it can easily be deployed in field<br />

conditions, offering the opportunity to gather and preserve evidence in<br />

difficult or complex situations.<br />

Hypothesis: The potential value of obtaining radiological images<br />

using state-of-the-art facilities in hospitals and established research<br />

centers cannot be denied. However, access to such facilities is not<br />

always possible or desirable. In such circumstances, employing<br />

conventional radiography in a field situation offers a viable alternative,<br />

particularly in anthropological and forensic applications.<br />

Methods & Results: Establishing a radiographic facility at or<br />

close to the site at which remains are recovered and/or stored has a<br />

number of advantages. These include: (1) minimal disruption of the<br />

taphonomic context, (2) minimal disruption of foreign bodies and/or<br />

artifacts that could potentially compromise the evidential value of the<br />

data, (3) radiography can be used to triage remains in order to select<br />

those for transportation to an imaging facility with advanced modalities<br />

such as computed tomography, (4) imaging can be performed in<br />

circumstances where transportation is impossible for physical or<br />

logistical reasons, and (5) in the case of sensitive human rights situations,<br />

there may be security considerations preventing transportation, and/or<br />

making it difficult to secure a separate mortuary facility.<br />

Conventional radiographic equipment is highly mobile and a field<br />

radiographic facility can be easily established even in remote areas<br />

provided that a number of factors are taken into consideration. The<br />

objectives of the study or investigation must first be clearly defined,<br />

detailing the number and type of specimens to be examined and the aim<br />

of such examinations. An experienced radiographer should then develop<br />

the radiographic design of the project in conjunction with the<br />

investigating team. Project design will include: (1) development of the<br />

imaging protocol and selection of appropriate radiographic unit and<br />

image recording method, (2) site survey and risk assessments, (3) facility<br />

design including x-ray, image processing, image storage and viewing<br />

facilities, (4) facility construction, (5) development of schemes of work<br />

and health and safety rules, (6) development of a quality control plan and<br />

procedures, and (7) facility commissioning including staff<br />

familiarization and training.<br />

Conclusion: Radiological imaging is a very useful tool in forensic<br />

and archaeological investigation. In certain situations the establishment<br />

of a field radiography facility may offer significant benefits to the<br />

investigation and should not be discounted on logistical, organizational<br />

or financial grounds without a feasibility study being concluded by an<br />

experienced radiographer.<br />

Field Radiography, Forensic Radiography, Mass Fatality Incidents<br />

* Presenting Author<br />

H16 Hispanic: History and Use of a<br />

Generic Term<br />

Ashley E. Shidner, BA*, and Heidi S. Davis, BA, BS, University of West<br />

Florida, Department of Anthropology, 11000 University Parkway,<br />

Pensacola, FL 32514<br />

The learning objective of this presentation is to discuss the basic<br />

definitions of social race and ethnicity as they relate to the term<br />

Hispanic.<br />

This presentation will impact the forensic community by discussing<br />

the history of the term Hispanic and its common use as a social race and<br />

ethnic category.<br />

Using the basic definitions of social race and ethnicity as they relate<br />

to the term Hispanic, this presentation will demonstrate that the term<br />

Hispanic does not fit into either category, further perpetuating confusion<br />

regarding use of the term.<br />

Hispanic is a term that was adopted and poorly defined by the<br />

United States government in order to address a minority population<br />

comprised of various national origin groups. The term Hispanic is<br />

thought to be a derivation of the Latin word Hispania, used to refer to<br />

region of modern day Spain or the Iberian Peninsula by the Romans<br />

(Marín and Marín 1991). When Spanish settlers arrived in New Mexico<br />

they were referred to as Hispanos. This term was later rejected in the<br />

southwest after Mexico won independence from Spain in lieu of the term<br />

Latino, because it rejected the Spain of the conquistadors (Melville<br />

1988). In 1968 congress authorized President Johnson to declare the<br />

week including September 15 and 16 as National Hispanic Heritage<br />

Week. It was after this declaration the term Hispanic became more<br />

widespread.<br />

Based on a 1977-1978 government order, Hispanic was defined as<br />

“a person of Mexican, Puerto Rican, Cuban, Central, South American, or<br />

other Spanish culture or origin, regardless of race” (Forbes 1999:62).<br />

This definition distinguished Hispanic as an ethnicity, attempting to<br />

suggest a common cultural or language origin, rather than a racial<br />

category. According to Melville (1988), the most common practice for<br />

an individual is to refer to themselves as based on their national origin.<br />

However, in official government reporting, the U.S. Census Bureau<br />

considers Hispanic as an ethnicity to be selected in conjunction with a<br />

racial category of Black or White. Thus, while many individuals from<br />

Spanish-speaking countries would not refer to themselves as Hispanic in<br />

their native country, they are forced to do so in the United States.<br />

Despite governmental mandates and personal choice, Hispanics are<br />

continually referred to as both a racial and an ethnic group. Further,<br />

these terms are often used interchangeably despite significant differences<br />

between their meanings. Social race in the United States is based on skin<br />

pigmentation and other phenotypic characteristics that are believed to<br />

reflect ones ancestral genealogy. However, these phenotypical<br />

characteristics continually fail to “identify” Hispanic individuals. For<br />

example, in Puerto Rico, many individuals would be racially classified<br />

as White or Black in the United States, or even a third racial category<br />

within their own country (Rodríguez 2000).<br />

Race and ethnicity can be differentiated on the idea that ethnicity is<br />

strictly based on the idea that the group of individuals share some<br />

cultural ancestry or heritage. Brazilians, who speak Portuguese, and<br />

Guatemala Mayans, who speak unique Mayan dialects, are often referred<br />

to as Hispanic in the United States. The discordance of language and the<br />

unique population histories of these groups reject the U.S. government’s<br />

designation of Hispanic of belonging to a shared Spanish culture or<br />

origin. Due to confusing and misguided terminology, it is not surprising<br />

that anthropologists are not able to define this term accurately due to the<br />

conflicting differences between self-identification and governmental<br />

identification. This presentation concludes that when conducting<br />

forensic anthropological research using Hispanic individuals,<br />

anthropologists must clearly define their population groups, using<br />

154


national origins, language, and self-described identity. Defining<br />

population groups will enable a better understanding of the unique<br />

population groups that are often referred to as Hispanic.<br />

Hispanic, Race, Ethnicity<br />

H17 Cephalic Index of Gurung Community of<br />

Nepal: An Anthropometric Study<br />

Stany W. Lobo, MSc*, Department of Anatomy, Melaka Manipal <strong>Medical</strong><br />

College, Manipal, Karnataka 576104, INDIA<br />

After attending this presentation, attendees will understand why the<br />

Gurung community of Nepal is classified as brachycephalic.<br />

This presentation will impact the forensic community by<br />

introducing the first study on Cephalic Index of the Nepalese Gurung<br />

community.<br />

Morphological differences between people can be recorded by<br />

measurements and based on these measurements different indices are<br />

calculated. Cephalic Index (CI) is one such index that can be used in<br />

differentiation of racial characteristics. Comparison of CI between<br />

parents, offspring, and their siblings can give a clue towards the genetic<br />

transmission of inherited characteristics. Cephalometry is also important<br />

in forensic science for facial reconstruction of disputed identity.<br />

Nepal is a land-locked country with China and Tibet on its north and<br />

India on its south. The people of the Gurung community are the original<br />

inhabitants of the Himalayan Republic of Nepal and maintain tradition,<br />

customs, and social order of ancient Nepalese. This is the first<br />

cephalometric study of Gurung community of Nepal. A comparison of<br />

the CI of the Nepalese Gurung community with the studies done<br />

elsewhere is made. The present cross-sectional study was conducted in<br />

Gandhruk village of Western Development Region of Nepal which is<br />

predominantly inhabited by Gurung community. Individuals with any<br />

craniofacial abnormality were excluded from the study.<br />

All the measurements were taken with the subjects sitting on a chair<br />

with their head in the anatomical position. The measurements were<br />

taken to the nearest mm using a spreading caliper. The anatomical<br />

landmarks considered for measurement of the head length and head<br />

breadth were glabella, inion, and euryon. The head length was measured<br />

from glabella to inion. The head breadth was measured as the maximum<br />

transverse diameter between the two euryons. Data thus obtained were<br />

computed and analyzed using SPSS (Statistical Package for Social<br />

Sciences) version 10. The CI was calculated using the formula: (head<br />

breadth/head length) x 100. The differences in means of head length,<br />

head breadth, and CI between male and female were tested for statistical<br />

significance by independent sample “t” test. A total of 267 adults<br />

comprising of 157 (58.8%) males and 110 (41.2%) females in the age<br />

range 25 to 45 years were studied. The mean head length of the whole<br />

sample was 17.7 cm (SD, 0.88). The mean head breadth of the sample<br />

was 14.9 cm (SD, 0.76). The mean CI of the sample was 83.7 (SD, 5.69).<br />

For males, the mean head length was 18 cm (SD, 0.85) and the mean<br />

breadth was 14.9 cm (SD, 0.83). For females, the mean length and mean<br />

breadth were 17.4 cm (SD, 0.78) and 14.7 cm (SD, 0.6), respectively.<br />

The mean CI for males and females was 83.1 (SD, 6.08) and 84.6 (SD,<br />

5.14) respectively.<br />

Attendees will learn from the results that the Nepalese Gurung<br />

community can be classified as brachycephalic. In tropical zones the<br />

head form is longer (dolichocephalic), but in temperate zones the head<br />

form is round (mesocephalic or brachycephalic). Since Nepal is in the<br />

temperate zone, the present classification of the Nepalese Gurung<br />

community as brachycephalic is in accordance with the geographical<br />

variations of CI.<br />

Cephalic Index, Gurung Community, Brachycephalic<br />

H18 Ancestry Estimation Using the Femur:<br />

A Pilot Study<br />

Sarah E. McManus, BA*, 2019 Stonybrook Road, Louisville, TN 37777<br />

After attending this presentation, attendees will understand the<br />

utility of metric analysis of the femur in the estimation of ancestry.<br />

This presentation will impact the forensic community by assisting<br />

with the ancestry estimation of unidentified human remains.<br />

Estimation of ancestry is an important part of the creation of a<br />

biological profile for unknown skeletal remains. As techniques for<br />

ancestry estimation have primarily focused on the cranium, reliable<br />

methods using postcranial elements are both few in number and<br />

underutilized. Craig (1995) presented a method of ancestry estimation<br />

utilizing measurement of the intercondylar shelf angle from radiographs.<br />

While this study presents highly accurate classification rates, Berg et al.<br />

(2007) found statistically significant differences for intra- and interobserver<br />

error using this method, placing its reliability in question.<br />

Craig (1995) states that intercondylar shelf angle correlates with<br />

intercondylar notch height, with an acute angle corresponding to a higher<br />

notch height and an obtuse angle corresponding to a lower notch height.<br />

Baker et al. (1990) investigated the determining power of intercondylar<br />

notch height, producing accuracy rates between 76.92% and 82.5% using<br />

sectioning points. In addition to adapting measurement of intercondylar<br />

notch height from Baker et al. (1990), Gill (2001) also describes<br />

differences in femoral platymeria and torsion (evaluated from<br />

measurements of subtrochanteric diameter and maximum head height)<br />

that are potentially useful in the estimation of ancestry.<br />

In order to examine the validity of the femur as an estimator of<br />

ancestry using a suite of measurements designed to incorporate all<br />

potential variation, a sample from the William M. Bass Donated Skeletal<br />

Collection at the The University of Tennessee consisting of 36<br />

individuals (10 white males, 10 black males, 10 white females, and 6<br />

black females) was selected. Ten measurements designed to assess the<br />

intercondylar notch, variation within the distal femur, platymeria, and<br />

torsion were taken from the left femur of each individual.<br />

Analysis was then conducted to determine the measurements<br />

producing the most statistically significant differences between the<br />

groups used in this pilot study. Based on regression analysis in NCSS<br />

(NCSS LLC) five measurements were selected in order to conduct linear<br />

discriminant analysis on the data. For females the measurements<br />

selected were intercondylar notch height, medial condyle width, lateral<br />

condyle width, transverse subtrochanteric diameter, and epicondylar<br />

breadth, while for males the measurements selected were intercondylar<br />

notch height, medial condyle width, maximum head height, anteroposterior<br />

subtrochanteric diameter, and epicondylar breadth.<br />

Preliminary results of linear discriminant analysis in SAS 9.1 (SAS<br />

INSTITUTE) using these measurements indicate cross-validated<br />

accuracy rates of 90% for males and 100% for females.<br />

Based on the preliminary findings of this pilot study the femur<br />

appears to be of valid use in the estimation of ancestry and warrants<br />

further study.<br />

References:<br />

1 Baker SJ, Gill GW, Kieffer DA. Race and sex determination from<br />

the intercondylar notch of the distal femur. In: Gill GW, Rhine S,<br />

editors. Skeletal attribution of race. Albuquerque, NM: Maxwell<br />

Museum of Anthropology, 1990;91-5.<br />

2 Berg GE, Ta’ala SC, Kontanis EJ, Leney SS. Measuring the<br />

intercondylar shelf angle using radiographs: intra- and interobserver<br />

error tests of reliability. J Forensic Sci 2007;52(5):1020-<br />

24.<br />

3 Craig EA. Intercondylar shelf angle: a new method to determine<br />

race from the distal femur. J Forensic Sci 1995;40(5):777-82.<br />

4 Gill GW. Racial variation in the proximal and distal femur:<br />

heritability and forensic utility. J Forensic Sci 2001;46(4):791-799.<br />

Femur, Ancestry, Forensic Anthropology<br />

155 * Presenting Author


H19 Evaluation of Enamel Short Chemical<br />

History as a Forensic Tool: A Comparative<br />

Study of Six Countries<br />

Khudooma S. Al Na’imi, BSc*, University of Central Lancashire, United<br />

Kingdom, Um Ghafa, Abu Dhabi, Al Ain, Box 16584, UNITED ARAB<br />

EMIRATES<br />

The goal of this presentation is to present the method of enamel<br />

surface microsampling for acid etching for trace element analysis in the<br />

identification of an individual’s geographical affiliation.<br />

This presentation will impact the forensic community by<br />

introducing a non-destructive and quick sampling tool. It will also<br />

contribute to the body of literature concerning enamel surface trace<br />

element studies.<br />

The enamel surface of teeth is complex: internally, it is highly<br />

chemically active (e.g., remineralization), whereas externally it reacts<br />

with the oral, or the burial, medium. Its inorganic chemical elements<br />

vary due to factors such as age, sex, oral cavity activities (e.g., food and<br />

drink) and environment. In forensic identification, it is important to<br />

examine the enamel surface both chemically and morphologically (e.g.,<br />

microwear) for indicators of an individual’s health and place of residence<br />

as well as taphonomic conditions which may be identified and<br />

reconstructed. There is, however, little research concerning the study of<br />

the enamel chemical history of individuals over a short duration.<br />

Extracted tooth samples were collected from the United Kingdom<br />

(n=14), the United Arab Emirates (n=11), the Sultanate of Oman (n=11),<br />

Iraq (n=10), Yemen (n=15), and Iran (n=15). The sources of teeth were<br />

from dental clinics and from Iraq they were derived from the<br />

Medicolegal Institute in Baghdad. The Iraq sample included postmortem<br />

teeth from forensic cases which had been subjected to explosive and<br />

burial conditions. Teeth were washed with tap water and subsequently<br />

in distilled water. The enamel surface was sampled, using the acid<br />

etching method, by applying a perforated adhesive tape (with 2mm<br />

diameter circular hole) and etching that area of the surface with 5 µl of<br />

1.6 N HCL in 70 % glycerol for 35 seconds. The biopsy solution was<br />

analyzed for trace elements by the ICP-MS system. Neither the tooth<br />

type nor site of sampling were controlled, rather this was dependent upon<br />

individual tooth features (e.g., caries, enamel surface cleanliness,<br />

smoothness). The elements analyzed included Li, Mg, Al, P, K, Ca, Ti,<br />

V, Cr, Mn, Co, Ni, Cu, Zn, As, Se, Sr, Mo, Cd, Sb, Ba, and Pb and<br />

overlapped ratios between them. The relative prevalence of these<br />

elements was used to assess the variability between the groups. Enamel<br />

etching depth was calculated mathematically using the phosphorus<br />

concentration. The enamel was examined by stereo microscope and<br />

SEM-EDXA system.<br />

Enamel etched depths resulting in high element concentrations were<br />

approximately between 5 µm and 35µm. Regression analysis indicated<br />

that 11 element concentrations were significantly (p < 0.05) related to the<br />

etched depth. The relationship was strong with Ca (R2= 0.9) but was<br />

weak with other elements (R2= 0.5 to -0.04), so this was ignored. Some<br />

elements distinguished between countries, such as As which has the<br />

highest range in the United Kingdom and the lowest in Iran; whereas the<br />

Sr range is highest in Yemen and lowest in the United Kingdom clearly<br />

reflecting the pollution (e.g., food, air and water) and dietary condition,<br />

respectively.<br />

The concentration of the elements Al, Ni, and Se were found to be<br />

related significantly (p


soldiers. Results from the stature comparisons reveal that U.S. born<br />

Hispanics, at least those of Mexican heritage, are taller on average than<br />

migrants born in Mexico. U.S. foreign-born stature differences were the<br />

largest for civilian males (89.2 mm), with a mean difference of 24.7 mm<br />

for civilian females and 28.3 mm for Army males. The Army female<br />

sample included only three foreign born soldiers, and so its mean<br />

difference is not reported although it follows the same directional trend<br />

as the other samples. Results from the dental health comparisons reveal<br />

that U.S. Hispanics of Mexican heritage have better dental health than<br />

the Mexican Nationals who have died while attempting to migrate. It is<br />

postulated that because many of the deceased migrants examined at the<br />

PCOME come from impoverished areas of Mexico and Central America,<br />

their lower socioeconomic standing prevents them from have an<br />

optimum diet and from seeking adequate medical and dental care.<br />

Because U.S. Hispanics apparently have a better standard of living than<br />

this, their stature is greater and their dental health is better. One<br />

implication of these findings is that a “socioeconomic profile” can be<br />

generated from the unidentified individuals to gauge whether they are<br />

more likely U.S. citizens or foreign national migrants. This profile is one<br />

line of several that is utilized in classifying some unidentified individuals<br />

as probable migrants.<br />

Dental Health, Stature, Socioeconomic Status<br />

H21 Past or Present? An Empirical Basis<br />

for Quantitatively Distinguishing Between<br />

Prehistoric and Modern Forensic<br />

Cases Using a California Native<br />

American Population<br />

Cris E. Hughes, MA*, and Chelsey Juarez, MA, Department of<br />

Anthropology, University of California – Santa Cruz, Social Science 1,<br />

1156 High Street Room 435, Santa Cruz, CA 95064; and Lauren Zephro,<br />

MA, Santa Cruz Sheriff’s Office, 701 Ocean Street, Room 340,<br />

Santa Cruz, CA 95060<br />

The goals of this presentation are to discuss the need for a Daubert<br />

standard method for assessing the forensic significance of skeletal<br />

remains, and to determine the discriminatory statistical power of metric<br />

variations among prehistoric California Native American remains,<br />

indigenous Central American skeletal populations, and skeletal<br />

populations common in the forensic and archaeological context.<br />

This presentation will impact the forensic community by explaining<br />

the general lack of qualitative and quantitative data available to identify<br />

the range of Native American populations aside from indirect expertise<br />

gained from case work. This clearly limits the confidence/ability of the<br />

forensic anthropologist in correctly allocating possible Native American<br />

remains to the forensic or prehistoric context. Metric and non-metric<br />

analyses are needed to distinguish between Native American populations<br />

and any potentially confusing cases of modern indigenous populations<br />

that may exhibit similar characteristics such as tooth wear, Inca bones,<br />

etc. The continuing influx of indigenous immigrants into California and<br />

other U.S. areas warrants the attention and refinement of forensic<br />

anthropological methods.<br />

The goal of this presentation is to provide new data and statistical<br />

analyses for differentiating between prehistoric Native American<br />

remains and modern forensic remains. Presently, forensic<br />

anthropological standards for identifying Native American remains are<br />

based on metric and non-metric data collected on prehistoric and<br />

contemporary Native American populations from the American<br />

Southwest (see Rhine 1990, Ousley and Jantz 2005). While quantitative<br />

data are accessible for these populations, forensic criteria used to identify<br />

prehistoric Native American remains are largely dependent on field<br />

assessments of contextual information such as body position, grave<br />

goods, tooth wear, bone color, and bone texture/quality. However, as the<br />

postmortem interval widens, it becomes more difficult to apply these<br />

contextual criteria to determine antiquity, and the forensic anthropologist<br />

must rely on skeletal characteristics to determine if the remains are firstly<br />

Native American, and secondly if they are of prehistoric or forensic<br />

context.<br />

The University of California at Santa Cruz forensic anthropological<br />

team has collected metric data on prehistoric California Native American<br />

remains. The data were analyzed to be integrated into current forensic<br />

anthropology statistical methodology for estimating the forensic<br />

significance of skeletal remains that apply to this geographical region of<br />

casework. From this presentation, attendees will better understand of the<br />

discriminatory statistical power between Prehistoric California Native<br />

American remains, indigenous Central American skeletal populations<br />

and skeletal populations common in the forensic and archaeological<br />

context.<br />

Forensic Anthropology, Native American, Metric Analysis<br />

H22 Frequencies of Non-Metric Characteristics<br />

in Northern California Native Populations:<br />

Establishing a Foundation for Comparison<br />

Cris E. Hughes, MA*, and Chelsey Juarez, MA, Department of<br />

Anthropology, University of California – Santa Cruz, Social Science 1,<br />

1156 High Street Room 435, Santa Cruz, CA 95064<br />

After attending this presentation, attendees will gain a clear<br />

understanding of the frequencies of commonly utilized non-metric traits<br />

present in northern California Native Americans, and how these<br />

frequencies compare to published literature on other Native American<br />

populations and modern Latino populations.<br />

This presentation will impact the forensic community by initiating<br />

the creation of new non-metric standards on large samples of modern and<br />

non-modern populations.<br />

The goal of this presentation is to present a comparison of<br />

frequencies for commonly utilized non-metric traits in Northern<br />

California Native Americans, United States Latinos, and indigenous<br />

Guatemalans.<br />

As forensic scientists we produce legal documents, the foundations<br />

of which must be based on empirical studies. Non-metric ancestry data<br />

are often included in these reports; however, these data are based on<br />

inadequate samples either due to sample size or population<br />

representation. Despite the fact that non-metric assessments are still<br />

common place in forensic case reports on Latino groups there is little<br />

basis for these assessments in the published literature. In effect, nonmetric<br />

analyses conducted on these remains are based on frequencies<br />

founded on potentially non-similar populations.<br />

Recently, the frequencies and utility of non-metric features<br />

associated with specific races/populations have been challenged (Hefner,<br />

AAFS abstract 2007). These studies suggest that forensic<br />

anthropologists cannot rely on older studies to provide accurate<br />

information on frequencies for certain populations such as Latinos and<br />

that the overall utility of non-metric data must be further investigated.<br />

This work demonstrates the need to make new standards on large<br />

samples of modern populations and to simultaneously investigate the<br />

utility of non-metric analysis. The research discussed in this<br />

presentation will contribute to this goal.<br />

Members of each mentioned group were analyzed for 33 common<br />

non-metric traits as established by Rhine (1990). Two observers made<br />

all observations and were tested periodically throughout the analysis for<br />

inter-observer error in trait assignment. The Native Northern<br />

Californians represent both a spatial and temporal analysis of non-metric<br />

characteristics for the region. The United States Latino and Indigenous<br />

Guatemalan populations represent a modern forensic context. The<br />

157 * Presenting Author


collected data was analyzed to develop an empirical, quantitative<br />

methodology for estimating the forensic significance of non-metric traits<br />

within these Asian stem groups and then compare them to previously<br />

reported frequencies.<br />

From this presentation, the audience will take away a greater<br />

understanding of the empirical utility of non-metric analysis of traits in<br />

Prehistoric California Native American remains, indigenous Central<br />

American skeletal populations, and modern U.S. populations.<br />

Non-Metrics, Ancestry, Standards<br />

H23 A New Metric Procedure for the<br />

Estimation of Sex and Ancestry From<br />

the Human Innominate<br />

Alexandra R. Klales, BA*, Jennifer M. Vollner, BS*, and Stephen D.<br />

Ousley, PhD, Mercyhurst College, Department of Anthropology &<br />

Applied Forensic Science Program, 501 East 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will learn of a new<br />

metric approach to estimate sex and ancestry of the human innominate<br />

that utilizes both easily repeatable measurements and well defined<br />

landmarks. Attendees will also learn of the benefits of using a<br />

Microscribe digitizer to calculate the aforementioned measurements and<br />

for data collection.<br />

Sex and ancestry estimation are essential for the assessment of<br />

biological profile in both forensic cases and in bioarchaeological<br />

analysis. In turn these estimations are necessary to asses other aspects of<br />

biological profile such as stature and age. This presentation will impact<br />

the forensic community by demonstrating an approach that combines<br />

both old and new metric sex and ancestry estimation techniques of the<br />

human innominate which are both more reliable and more accurate than<br />

previously published methods.<br />

The human innominate has previously been examined through<br />

multiple metric and non-metric studies and, based on morphological<br />

characteristics, has been determined by many to be the most accurate<br />

bone for sex estimation. However, in light of Daubert vs. Merrell Dow<br />

Pharmaceuticals, Inc. (1993), most previous methods fail to meet the<br />

Daubert requirements or are of questionable reliability and validity;<br />

therefore, an opportunity to improve upon past research is presented. In<br />

addition, an attempt was made to examine the usefulness of these<br />

measurements for ancestry estimation.<br />

A sample of 77 left innominates from the Hamann-Todd Collection,<br />

housed at the Cleveland Museum of Natural History, was utilized in this<br />

study. All individuals were adults, at least 19 years of age, of known sex<br />

and ancestry. A total of 22 measurements were taken by two observers,<br />

first as a preliminary study using sliding calipers, and then at a later date<br />

using a Microscribe G2 Digitizer to acquire 21 landmarks representing<br />

the previous 22 measurements. All data was then entered into Fordisc<br />

3.0 (Jantz & Ousley, 2005) and analyzed through discriminant function<br />

analysis (DFA) with forward stepwise selection for sex, ancestry, and for<br />

joint sex-ancestry estimation.<br />

This study used a sample of individuals of documented sex,<br />

ancestry, and age to achieve the following goals: (1) to qualify<br />

previously studied non-metric sex estimation traits through metric<br />

analyses, (2) to test previously defined metric methods for reliability and<br />

validity, (3) to refine previously published measurements by developing<br />

new landmark definitions that are easily understood and landmarks that<br />

are easily identifiable and produce reliable measurements, (4) to analyze<br />

the significance and utility of the new measurements through<br />

discriminant function analysis, and (5) to compare the concordance of<br />

measurements taken with calipers to those taken with a Microscribe<br />

digitizer. Furthermore, this study investigates the effectiveness of these<br />

measurements in ancestry estimation and also in joint sex-ancestry<br />

estimation.<br />

* Presenting Author<br />

Initial results indicate that measurements from the current study<br />

show greater reliability and validity with the use of discriminant function<br />

analysis than previously published measurements, while also producing<br />

a known error rate in accordance with the Daubert requirements.<br />

Benefits of using the digitizer include: increased data recording<br />

efficiency, fewer data entry errors, and the localization of landmarks in<br />

3-D space. The current study will positively benefit future sex<br />

estimation using the innominate and will demonstrate the advantages of<br />

digitizing the innominate over the use of sliding calipers, though either<br />

can be used for sex estimation using DFA. In addition to sex estimation,<br />

the current study will also discuss the effectiveness of using the<br />

innominate to estimate ancestry and simultaneous sex and ancestry.<br />

Innominate, Sex and Ancestry Estimation, Discriminant<br />

Function Analysis<br />

H24 Secular Trends in Cranial<br />

Morphological Sexing<br />

Kanya Godde, MA*, and Angela M. Dautartas, BS, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand the<br />

changes in cranial morphological sex characteristics between individuals<br />

with birth years from the 1840s through the 1960s.<br />

This presentation will impact the forensic community by extending<br />

an anthropologist’s ability to properly assess sex in an unidentified<br />

individual. Awareness of the changes over time in skeletal morphology<br />

will strengthen skills for accurate construction of the biological profile.<br />

Hrdlicka (1920) originally created the now popular cranial<br />

morphological sexing criteria based on his reading of various German<br />

and French papers. He did not standardize his method; rather, he mostly<br />

described the morphological features with size terms, such as “medium,”<br />

and no sketches (Hrdlicka 1920: 91). In 1994, Buikstra and Ubelaker<br />

published sketches and descriptions of each morphological characteristic<br />

in order to standardize the method. Other than Buikstra and Ubelaker’s<br />

(1994) contribution, 74 years after Hrdlicka’s descriptions, the method<br />

has not been officially outlined.<br />

Despite its lack of formal definition until 1994, the technique was<br />

used in anthropology since Hrdlicka’s (1920) adoption of the<br />

methodology. Application of the technique has been taught with the<br />

caveat of needing to understand the variations in size and morphology in<br />

the population with which it is utilized. However, there has been little<br />

research on how cranial characteristics in the American population have<br />

changed over the last century and thus there is little insight into<br />

American morphological variation over time. Since the method was<br />

originally adopted in 1920, the American population has changed greatly<br />

due to proper nutrition and better healthcare, among other factors. These<br />

changes include increases in average weight, stature, and overall health.<br />

In order to properly employ the cranial morphological sexing technique<br />

in a forensic setting, anthropologists need to be aware of potential<br />

changes in morphology over time. This knowledge will help with<br />

assessing sex in forensic cases where bones are discovered decades after<br />

the individual’s demise, as well as with contemporary cases. Thus, it is<br />

hypothesized that secular trends have also occurred in cranial<br />

morphology in Americans, which affects the utilization of the sexing<br />

technique.<br />

In order to test the hypothesis, 516 male and female American<br />

Blacks and Whites from two skeletal collections (the Hamann-Todd<br />

Collection and the William M. Bass Donated Skeletal Collection) were<br />

observed for each of the five cranial morphological sexing<br />

characteristics. These traits include: mental eminence, supraorbital<br />

margin, supraorbital ridge, nuchal crest, and mastoid process.<br />

Additionally, Howell’s mastoid measurements (mastoid length and<br />

mastoid breadth), and a new measurement, mastoid width, were<br />

158


collected in order to calculate the volume of mastoids. Mastoids<br />

resemble cones more than any other geometric shape, and thus the three<br />

measurements collected in this analysis were selected and designed to<br />

simulate this form. The birth years from these collections span more<br />

than a century; they range from the 1840s to the 1960s. The data were<br />

split into two samples based on sex (Cridlin et al. 2008), and each of<br />

these two samples was independently analyzed.<br />

A time series statistical analysis was executed on transformed<br />

categorical and untransformed continuous variables for both sexes. The<br />

results indicate that over time the variables exhibited either a positive or<br />

negative trend. Most notably, supraorbital ridge increased over the last<br />

century.<br />

The results here suggest that the secular trends in American Whites<br />

and Blacks warrant modifying the application of the technique to<br />

accommodate change over time in the American population.<br />

Recognition of these changes will strengthen the methodology behind<br />

building a biological profile. While these results reflect secular trends in<br />

the American population, they are not meant to be extrapolated to other<br />

populations. Each population has its own respective history and changes<br />

in skeletal morphology reflect events and trends within it.<br />

References:<br />

1 Buikstra JE, Ubelaker D. 1994. Standards for data collection from<br />

human skeletal remains: Proceedings of a seminar at the Field<br />

Museum of Natural History. Fayetteville: Arkansas Archaeological<br />

Survey, 1994.<br />

2 Cridlin S, Seaver WL, Jantz RL. 2008. Change is good: using<br />

advanced statistical methods for the identification of secular change<br />

in femoral head size. Am J Phys Anthropol Supp 135: 84.<br />

3 Hrdlicka A. 1920. Anthropometry. Philadelphia: The Wistar<br />

Institute of Anatomy and <strong>Bio</strong>logy.<br />

Cranial Sexing, Secular Trends, Cranial Morphology<br />

H25 Determination of Sex Using Metric Data of<br />

Greater Sciatic Notch in Koreans<br />

U-Young Lee, MD*, Department of Anatomy, College of Medicine, The<br />

Catholic University of Korea, 505, Banpo-dong, Socho-gu, Seoul,<br />

137701, KOREA; In-Hyuk Chung, PhD, Department of Anatomy, Yonsei<br />

University College of Medicine, 134 Sinchon-dong, Seodaemoon-gu,<br />

Seoul, 120752, KOREA; Dae-Kyoon Park, PhD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University, 366-1<br />

Sangyong-dong, Cheonan-si, Seoul, 330946, KOREA; Yi-Suk Kim, PhD,<br />

Department of Anatomy, Gachon University of Medicine & Science,<br />

1198 Kuwol-dong, Namdong-gu, Incheon, 405760, KOREA; Sang-Seob<br />

Lee, MSD, National Institute of Scientific Investigation, Shinwol-7-dong,<br />

Yancheon-gu, Seoul, 158707, KOREA; Yong-Woo Ahn, PhD, Institute of<br />

Forensic Medicine, School of Medicine, Pusan National University, 1-<br />

10, Ami-dong, Seo-gu, Busan, 602739, KOREA; Deog-Im Kim, PhD,<br />

Department of Anatomy, Kwandong University College of Medicine,<br />

522, Naegok-dong, Gangneug, 201701, KOREA; and Je-Hoon Lee, MSc,<br />

and Seung-Ho Han, PhD, The Catholic University of Korea, Department<br />

of Anatomy, College of Medicine, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA<br />

The goal of this presentation is to suggest that the greater sciatic<br />

notch could be helpful for sex determination in forensic anthropology.<br />

The metric data of the greater sciatic notch are highly dimorphic between<br />

Korean males and females and a discriminant function analysis was<br />

found to classify sex with high accuracy.<br />

This presentation will impact the forensic community by explaining<br />

how it is straightforward to measure the width and depth of the greater<br />

sciatic notch. Moreover, metric analysis for the determination of sex<br />

from the greater sciatic notch was found to be highly accurate. These<br />

results are helpful in the determination of sex in Korean skeletal remains<br />

by utilizing more objectivity than non-metric traits for the greater sciatic<br />

notch.<br />

The hip bone is very helpful in the determination of sex of unknown<br />

human remains. In many cases the morphology of the greater sciatic<br />

notch (GSN) is used for sex determination through non-metric<br />

observation according to five grades. Non-metric observation is good<br />

for obtaining an immediate result; however, the result strongly depends<br />

on the experience of the observer and it is sometimes inaccurate. Recent<br />

study has shown that the non-metric method has the potential for<br />

conversion into a metric method, which provides objectivity for forensic<br />

anthropological analyses. To this end, the morphology of the GSN was<br />

investigated metrically in order to determine sex by numeric standards.<br />

From the human bone collection of Yonsei University College of<br />

Medicine, 164 GSNs with known sex and age information at death were<br />

measured using digital calipers. GSNs were obtained from 112 male<br />

cadavers and the remainder were from females. Width and depth of the<br />

GSN were measured and the depth-width index of the GSN was<br />

calculated. The angle of the GSN was computed using measurements<br />

and a trigonometric function. The accuracy of sex determination was<br />

analyzed statistically by discriminant function analysis in SPSS (version<br />

13, IL, USA).<br />

Metric data of the GSN are highly dimorphic between Korean<br />

males and females. Width of the GSN in males was narrower than in<br />

females. Depth of the GSN in males was longer than in females. The<br />

accuracy was 84.6% for the depth-width index of the GSN and 89.5% for<br />

the calculated angle of the GSN. The demarking point was 65° for the<br />

calculated angle of the GSN and 68 for the depth-width index.<br />

It is straightforward to measure the width and depth of the GSN.<br />

Moreover, metric analysis for sex determination from the GSN was<br />

found to be highly accurate. These findings are useful in the<br />

determination of sex from the GSN of Koreans, and the results provide<br />

more objectivity than with non-metric trait methods.<br />

Greater Sciatic Notch, Sex Determination, Korean<br />

H26 Sexual Dimorphism of Joint Surface Area<br />

through 3-D Digital Data Modeling<br />

Denise To, MA*, JPAC-CIL, 310 Worchester Avenue, Building 45,<br />

Hickam AFB, HI 96853<br />

After attending this presentation, attendees will gain insight into the<br />

sexual dimorphism of the surface area of four skeletal articular elements,<br />

learn of the feasibility of using this method to determine sex of an<br />

unknown skeleton, and gain a better understanding of the research<br />

potentials of 3-D modeling and digital data acquisition.<br />

This presentation will impact the forensic community by<br />

elucidating the variation of an easily observed variable that is rarely used<br />

in osteological research and by fostering interdisciplinary research<br />

approaches in physical anthropology by incorporating 3-D technologies.<br />

The surface area of skeletal features is easily observed but because<br />

its quantification is difficult to capture by traditional approaches, it is<br />

rarely included in osteological research. As a result, variation in the<br />

surface area of human skeletal features has never been thoroughly<br />

investigated. This study investigated the relationship of joint surface<br />

area with sex by applying three-dimensional modeling and digital data<br />

collection techniques normally used in engineering and computer<br />

science applications. In physical anthropology, research designs that<br />

have employed 3-D techniques (mostly in the analyses of primates and<br />

fossils) are limited. In addition, many studies that have included<br />

observations of surface area have quantified it through indirect<br />

expressions. Here, laser-assisted stereo modeling was utilized to reverse<br />

engineer skeletal features that allowed for accurate and reliable digital<br />

quantification of joint surface area.<br />

A total of 810 virtual models of joints were stereologically created<br />

with an optical laser scanner from 211 adult skeletons drawn from the<br />

Robert J. Terry Anatomical Collection. Four surfaces from three joints<br />

159 * Presenting Author


(femoral head, humeral head, glenoid fossa of the scapula, and auricular<br />

surface of the ilium) from each skeleton were modeled with a Cyberware<br />

Inc., Model 15 scanner. A watershed-based segmentation software was<br />

used to isolate the articular surface of each joint, and a region editor<br />

program was used to measure the isolated joint surface.<br />

All four surfaces were found to be sexually dimorphic. Univariate<br />

discriminant function analyses on each variable produced crossvalidation<br />

accuracies between 69.4% using the auricular surface area and<br />

87.2% using the humeral head area. Only the area of the humeral head<br />

and the glenoid fossa were selected for determining sex with a<br />

multivariate linear discriminant function analysis. Correct classification<br />

using this function was found to be 90.0%. Surface area was found to be<br />

a better indicator of size and sexual dimorphism than linear long bone<br />

dimensions.<br />

This project has significant ramifications. First, its focus on surface<br />

area addressed research questions of an easily observable, yet largely<br />

ignored biological feature. The high accuracy percentage found in<br />

determining sex with a multivariate discriminant function with the area<br />

of the humeral head and glenoid fossa indicates that these are highly<br />

useful criteria. In contrast, the exclusion of the area of the femoral head<br />

from the function suggests that perhaps further research into its human<br />

variation is warranted given its highly-used linear variables in<br />

determining sex. Second, this project made effective use, on a large<br />

scale, of a relatively new method of 3-D digital data acquisition that has<br />

only begun to demonstrate its vast applications. While time consuming,<br />

the virtual methods used here may serve as a springboard for other<br />

studies to incorporate 3-D quantification of surface area into their<br />

research designs. This technology presents physical anthropologists<br />

with much-needed innovation to conduct research. Finally, 3-D digital<br />

modeling can produce such an accurate virtual model of a bone that a<br />

quasi-permanent replica can be made available to students and<br />

researchers instead of the actual specimen. The ramifications are<br />

substantial as 3-D digital modeling can create a virtual library for future<br />

generations that can help preserve priceless skeletal collections, such as<br />

the Terry Collection. While a virtual model may not always be a perfect<br />

replacement for the real thing, this research project demonstrates that, in<br />

some cases, a virtual model is arguably better than the real thing.<br />

Surface Area, Sexual Dimorphism, 3-D Imaging<br />

H27 Sex-Determination of Koreans Using Metric<br />

Analysis of Vertebrae<br />

Dae-Kyoon Park, PhD*, Department of Anatomy, College of Medicine,<br />

Soonchunhyang University, Department of Anatomy; U-Young Lee, MD,<br />

Department of Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Socho-gu, Seoul, 137701, KOREA; Yi-Suk<br />

Kim, PhD, Department of Anatomy, Gachon University of Medicine &<br />

Science, 1198 Kuwol-dong, Namdong-gu, Incheon, 405760, KOREA;<br />

Deog-Im Kim, PhD, Department of Anatomy, Kwandong University<br />

College of Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

Seung-Ho Han, PhD, Department of Anatomy, College of Medicine, The<br />

Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA; and In-Hyuk Chung, PhD, Department of Anatomy,<br />

Yonsei University College of Medicine, 134 Sinchon-dong,<br />

Seodaemoon-gu, Seoul, 120752, KOREA<br />

After attending this presentation, attendees will understand the<br />

results of sex determination of Koreans using metric analysis of<br />

vertebrae from the documented skeletal collection housed at Yonsei<br />

University in Korea.<br />

This presentation will impact the forensic community by presenting<br />

the results of metric analysis about the cervical, thoracic and lumbar<br />

vertebrae, and the usefulness of the documented skeletal collection<br />

* Presenting Author<br />

housed at Yonsei University for determination of the biological profile in<br />

Koreans.<br />

Physical anthropology is a branch of anthropology concerned with<br />

the study of human evolution and human biological variation, including<br />

the investigation of the morphological characteristics of the human body<br />

including bone. There are two main ways to collect anthropological<br />

data: metric and non-metric. Through this process, physical<br />

anthropologists interpret and understand the characteristics of a<br />

population, such as biological evolution and genetic inheritance. In<br />

order to appreciate the characteristics of a population, it is important to<br />

statistically study documented human skeletal specimens. On the basis<br />

of these results, a reconstruction of the biological profile for unidentified<br />

skeletal remains can be possible. The Department of Anatomy, Yonsei<br />

University College of Medicine in Korea has collected skeletons after<br />

anatomy class since the 1990’s, and about 100 specimens have been<br />

collected. This study will present the results derived from the<br />

documented skeletal collection at Yonsei University, which pertains to<br />

sex determination in Koreans based on metric study of vertebrae.<br />

For this study, 34 whole vertebral columns were selected out of the<br />

total Yonsei sample since many cervical vertebrae were missing from the<br />

anatomy class and skeletal preparation. These consisted of 22 males and<br />

12 females, and the average age was 54 years (from 18 to 88 years). For<br />

the thoracic and lumbar vertebrae there were a total of 9 measurements:<br />

upper & lower end-plate width, depth of upper end-plate and lower endplate,<br />

anterior height and posterior height of vertebral body, transverse<br />

diameter of vertebral foramen, sagittal diameter of vertebral foramen,<br />

and width of vertebra. In the cervical region, measurements were taken<br />

of the length of the spinous process instead of the depth of the upper endplate<br />

and lower end-plate because the vertebral body of the cervical<br />

vertebrae have the uncinate process. Measurements for atypical<br />

vertebrae (i.e., the atlas and axis) consist of 23 and 13 measurements,<br />

respectively. All measurements were taken with a digital caliper<br />

(Mitutoyo Co., Japan) and statistical analysis was performed using SPSS<br />

(version 13.0).<br />

The measurement values related with the vertebral body<br />

dimensions, such as upper & lower end-plate width, were highly<br />

dimorphic between males and females. Also, results show that the<br />

measurement values were related to the size of the vertebrae, such as<br />

width of vertebra. The discriminant function equations were obtained by<br />

univariate, bivariate, and step-wise methods. The range of accuracy of<br />

the cervical vertebrae was from 78.8 to 100%, and accuracy for the<br />

thoracic vertebrae was from 86.1 to 100 %, and for the lumbar vertebrae<br />

it was from 76.5 to 97.1%. The accuracy of the 5 th cervical vertebra, 3 rd<br />

and 11 th thoracic vertebrae, and 1 st lumbar vertebra showed the highest<br />

accuracy of sex classification.<br />

This presentation could indicate that metric data of vertebrae are<br />

useful for sex determination in Koreans, especially in the vertebral<br />

region where movement is frequent. However, further investigation is<br />

necessary to increase the sample size and work will continue in order to<br />

study the vertebrae from the digital Korean human model established by<br />

Computer Tomography (CT). Finally, the documented skeletal<br />

collection at Yonsei University is a useful resource for research related to<br />

the Korean biological profile.<br />

Koreans, Sex-Determination, Vertebrae<br />

H28 Tarsal Measurements to Estimate Sex for<br />

Use in a Forensic Setting<br />

Vanessa L. Aziz, BA*, 11735 Bergamo Court, Las Vegas, NV 89183<br />

After attending this presentation, attendees will learn that<br />

osteometric analysis of the tarsals can produce accurate determination of<br />

the sex of the decedent in forensic cases. While previous studies in the<br />

160


past have utilized the calcaneus and talus for osteometric analysis to<br />

determine sex in both modern and prehistoric populations, this study has<br />

utilized all seven and found that higher levels of accuracy are achievable<br />

using all seven tarsals in the sample population studied. Attendees will<br />

also learn how to accurately measure all seven tarsals to reproduce the<br />

results of this study.<br />

This presentation will impact the forensic community by providing<br />

new ways of determining the sex of the decedent. This study contributes<br />

to the forensic community, and specifically the forensic anthropology<br />

community, as the identification of an individual based upon skeletal<br />

traits is of primary concern. This study does just that by helping to<br />

predict with a certain amount of accuracy the sex of an individual based<br />

upon the tarsals alone.<br />

Identification of an individual based on skeletal traits is of primary<br />

concern in forensic anthropology. A basic antemortem profile should<br />

include age, ancestry, and sex; factors that can help law enforcement<br />

identify the decedent (Bass 2005). Although there has been extensive<br />

research and testing of many bones as indicators of age and sex, often<br />

these bones are not available in a forensic setting. More research is<br />

needed on those bones which can withstand greater extremes such as<br />

weathering and fire, since these elements are often those encountered in<br />

forensic settings. The irregular bones of the ankle fit such criteria, as<br />

they are relatively dense in some areas (White 2000). While several<br />

studies have been done using the calcaneus and talus, (Gualdi-Russo<br />

2007, Steele 1976, Murphy 2002, 2005) no significant contribution to the<br />

study of modern populations have been published concerning all seven<br />

tarsals (Bass 2005; Bidmos and Asala 2003, 2004; Gualdi-Russo 2007;<br />

Murphy 2002a, 2002b; 2005; Steele 1976; Wilbur 1998). This current<br />

project advances these previous studies by publishing data and analysis<br />

of tarsal dimension patterns for a museum population of individuals who<br />

died within the last 25 years and are curated at the University of New<br />

Mexico.<br />

Several sources have studied the measurements of the calcaneus<br />

and talus in relation to sex on prehistoric populations. Murphy (2002a,<br />

2002b, 2005) studied the talus and calcaneus of prehistoric New Zealand<br />

Polynesians. Wilbur (1998) published on the subject of hand and food<br />

bones for the determination of sex in a prehistoric population from West-<br />

Central Illinois.<br />

Modern population specific research has been done on the<br />

calcaneus and talus as well. Using five measurements each from the<br />

talus and the calcaneus on a modern American ancestral white and black<br />

population, Steele (1976) accurately predicted sex 79% to 89% using a<br />

discriminant function analysis. Gualdi-Russo (2007) has produced a<br />

high percentage of correct classification of sex (87.9-95.7%) within a<br />

modern northern Italian population. The tali and calcanei from the<br />

Raymond A. Dart Collection of Human Skeletons were utilized in two<br />

studies by Bidmos and Asala (2003, 2004) to determine sex in South<br />

African black and whites and Bidmos and Dayal (2004) applied a<br />

discriminant function analysis to the tali of a South African white<br />

population, yielding 80% to 82% accuracy for the univariate method,<br />

85%-88% for the stepwise method, and 81% to 86% for the direct<br />

method.<br />

The purpose of this study was to see if sexual dimorphism in all<br />

seven tarsals among a modern North American documented skeletal<br />

collection was statistically viable, and if so, how this might aid the<br />

forensic community. In this current study, all seven tarsals from a<br />

modern North American population were measured – the calcaneus,<br />

talus, navicular, 1 st - 3 rd cuneiforms, and the cuboid – to determine if<br />

there is a clear discrimination between the sexes. These measurements<br />

were subjected to univariate and stepwise discriminant function analysis<br />

to determine the percentage of accuracy achievable.<br />

Utilizing a selection of 69 adult male and female individuals<br />

ranging in age from 18 to 101 from the modern documented skeletal<br />

collection housed within the Maxwell Museum at the University of New<br />

Mexico in Albuquerque, NM, this study has found that an accurate sex<br />

assessment of 94.24% can be achieved utilizing measurements from all<br />

seven tarsals, and that single measurements can predict sex up to<br />

88.41% accurately.<br />

Tarsals, Sex Determination, Osteometric Analysis<br />

H29 An Evaluation of Facial Features Used for<br />

Facial Recognition Applied to Cases of<br />

Missing Persons<br />

Samantha M. Seasons, BA*, and Erin H. Kimmerle, PhD, University of<br />

South Florida, Department of Anthropology, 4202 East Fowler Avenue,<br />

Soc 107, Tampa, FL 33820<br />

The goals of this study are to demonstrate a simple method for<br />

creating 2-D composites for facial reconstructions and to evaluate the<br />

accuracy of this method through both qualitative and quantitative<br />

methods. This research identifies what facial features are most<br />

recognizable and key components for successful recognition.<br />

This presentation will impact the forensic community by explaining<br />

several important outcomes that are noted from the study. First, 2-D<br />

composites are shown to be accurate with a high rate of recognition<br />

among people who did not know the victim. It also highlights which<br />

facial features are most important in facial recognition and the<br />

differences among males and females in how they recognize faces. One<br />

critical outcome of this research is that it demonstrates that the quality<br />

and intrinsic properties of the reference photograph given by families to<br />

law enforcement may also play a role in recognition among cases of<br />

missing persons. Therefore, the image obtained by police in missing<br />

persons is as important as accuracy in facial reconstructions created for<br />

unidentified decedents. The importance of accurate and time efficient<br />

methods for facial reconstructions, which are based on an understanding<br />

of how specific facial features impact facial recognition and the variation<br />

among observers, may aid law enforcement agencies and increase the<br />

number of identifications for missing and deceased persons.<br />

The problem of missing persons and unidentified decedents,<br />

specifically how to link individuals within these two arenas, is critically<br />

important for families and for judicial accountability in cases of<br />

homicide. Due to the increased demand to identify missing persons<br />

globally, the role of forensic anthropologists in those types of<br />

investigations is expanding. Forensic anthropologists construct a<br />

biological profile including the sex, ancestry and the approximate age of<br />

the decedent, which provide the foundation for facial reconstructions.<br />

Facial tissue depth data along with the biological profile are used to<br />

create composite images using computer software programs such as<br />

Photoshop CS and FreeFormÒ Modeling Plus. TM Recent advancements<br />

in 3-D imaging have resulted in virtual applications of facial<br />

reconstructions. Such technologies, however, may not always be<br />

available to all investigators particularly in human rights investigations.<br />

The purpose of this study is to: (1) evaluate the accuracy of<br />

craniofacial reconstructions created through 2D composites, (2) identify<br />

what facial features are most recognizable, and (3) identify patterns<br />

among respondents that may influence recognition such as gender, age,<br />

or the quality of the reference (missing person) photograph. For this<br />

study, four composite images were created for three skulls, using photo<br />

superimposition techniques. A total of 120 students from the University<br />

of South Florida were asked to match the composite image with the<br />

picture of who he most looked like (out of six possible choices). Among<br />

the comparison images, one image was the actual decedent. Participants<br />

were randomly surveyed about the likeness of the images and the ranked<br />

order of likeness. Demographic data about the participants was also<br />

collected. Qualitative descriptions about similarities and differences<br />

161 * Presenting Author


were collected from each participant. Further, Pearson’s Chi Square<br />

tests were used to test the significance of the likeness among the<br />

composite and photographs and the responses from the survey.<br />

In two of the four cases, the composite image and the actual<br />

decedent photograph were said to be very similar. In one case, the same<br />

composite image was used but the missing person image was changed.<br />

In this case, it was said to be not at all similar. This highlights an<br />

important point - that recognition is not only important on the level of the<br />

created composite but also in the intrinsic factors of the missing person<br />

photograph (i.e., the presence of a hat, certain clothing, the angle of the<br />

face, background, or shading contrast). It is shown that by changing the<br />

picture of the missing person that is used to elicit recognition, the<br />

outcome varies. Therefore, the picture families give to law enforcement<br />

in missing persons cases may affect the how likely someone is to<br />

recognize that person.<br />

Other patterns are also discussed, such as differences among males<br />

and females in recognizing the same faces. For example, out of 52 male<br />

participants and 68 female participants, 25% (13/52) of males ranked a<br />

composite photograph as the most similar whereas in the same case, only<br />

7.4% (5/68) of the females ranked it as the most similar. Among traits<br />

that are used to evaluate the likeness of two images, the nose was the<br />

most common trait used according to 76.5% of participants, followed by<br />

the eyes. Interestingly, the nose and eyes are largely subjective areas in<br />

creating composite images since the particular morphology and color can<br />

not be estimated from skeletal remains. Yet, participants who said those<br />

were the most important traits still correctly matched the composite<br />

images with the actual photograph of the deceased. It is evident that the<br />

relationship between different facial features and the overall composition<br />

of the face does influence the rate of facial recognition.<br />

Facial Reconstruction, Recognition, Missing Persons<br />

H30 The Reliability of Visually Comparing<br />

Small Frontal Sinuses<br />

Victoria A. Smith, MA*, Oak Ridge Associated Universities, Federal<br />

Bureau of Investigation Laboratory TEU, 2501 Investigation Parkway,<br />

Quantico, VA 22135; Angi M. Christensen, PhD, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway, Quantico, VA<br />

22135; and Sarah W. Myers, Emory University, 201 Dowman Drive,<br />

Atlanta, GA 30322<br />

The goal of this presentation is to provide attendees with<br />

information about the reliability and validity of visually comparing and<br />

correctly matching small, less-featured frontal sinus outlines as seen in<br />

radiographs.<br />

This presentation will impact the forensic community by further<br />

emphasizing the reliability of personal identification through matching<br />

frontal sinus radiographs.<br />

Several studies have investigated frontal sinus comparison for<br />

personal identification. Many of these studies, however, involved small<br />

sample sizes both in terms of the number of radiographs examined and<br />

the number of participants. One study addressed the statistical reliability<br />

of correct identification using Elliptic Fourier Analysis and Euclidean<br />

distance models on digitized images which resulted in a 96% accuracy<br />

rate. The remaining 4% largely represents the inability of the<br />

computerized models to correctly match small, less-featured frontal<br />

sinuses. [1] The present study investigates the hypothesis that human<br />

examiners will be able to more accurately identify correct matches both<br />

because of the discriminating ability of the human eye as well as the<br />

potential to take other features of the radiograph image into<br />

consideration.<br />

Radiographs were obtained from the University of Tennessee and<br />

represent specimens from the William M. Bass Donated Skeletal<br />

Collection taken as part of a previous study. A random sample of 60<br />

* Presenting Author<br />

pairs of radiographs was selected from the collection. From these 60, the<br />

radiographs with the smallest frontal sinuses and lacking visible dental<br />

restorations were used for this study, thus creating a sample specifically<br />

aimed at making the matching process as difficult as possible.<br />

Participants of varying backgrounds and levels of experience were<br />

solicited to participate in the study including Federal Bureau of<br />

Investigation scientists and attendees of the 2008 annual meeting of the<br />

American Academy of Forensic Sciences in Washington, D.C.<br />

Participants were provided two sets of 28 radiographs labeled A through<br />

BB and 1 through 28, an answer sheet, and a light box. They were<br />

advised that matches consisted of one letter or letter combination plus<br />

one number, and that not all radiographs necessarily had a corresponding<br />

match present.<br />

Participants were also asked to provide information regarding their<br />

education and background. Further, they were asked to rate their level<br />

of experience in both examining radiographs and performing<br />

anthropological or skeletal examinations. Finally, participants were<br />

asked to list any characteristics besides the frontal sinuses that they used<br />

to determine matches.<br />

The exercise contained 26 matched pairs and four radiographs that<br />

did not have a match. Overall, error rates were very low. False negative<br />

associations were significantly more common than false positive<br />

associations and errors generally occurred less frequently among<br />

participants with more experience. Of note is the fact that one particular<br />

association appeared to be the most difficult to identify and was missed<br />

most frequently. Most participants reported using features in the<br />

radiographs in addition to the frontal sinuses to make identifications.<br />

Results support previous assertions that frontal sinus radiographs<br />

are a reliable means of personal identification. Moreover, while previous<br />

studies have statistically evaluated the technique’s reliability using<br />

computerized models, the results of this study indicate that traditional<br />

visual comparison fares exceptionally well, even when frontal sinus<br />

projections are small.<br />

Reference:<br />

1 Christensen AM. Testing the reliability of frontal sinus outlines in<br />

personal identification. J Forensic Sci 2005;50(1):18-22.<br />

Forensic Anthropology, Frontal Sinus, Personal Identification<br />

H31 Three-Dimensional Computer Modeling<br />

and Anthropological Assessment of the<br />

National Library of Medicine’s Visible<br />

Human Male<br />

Summer J. Decker, MA*, Jonathan M. Ford, BA*, and Don R. Hilbelink,<br />

PhD, Department of Pathology and Cell <strong>Bio</strong>logy, University of South<br />

Florida College of Medicine, 12901 Bruce B. Downs Boulevard, MDC<br />

11, Tampa, FL 33612; and Eric J. Hoegstrom, MSBE, Department of<br />

Chemical Engineering, University of South Florida College of<br />

Engineering, Tampa, FL 33612<br />

The goal of this presentation is to demonstrate the ability to<br />

establish a biological profile used by forensic anthropologists in human<br />

identification from three-dimensional (3-D) image data. Using<br />

previously validated methodologies, [1] it will also compare the computed<br />

models of the cranial and post-cranial skeleton to those printed by a 3-D<br />

rapid prototyping machine.<br />

This presentation will impact the forensic community by increasing<br />

scientific knowledge of new methods available for use in training and the<br />

identification of human remains.<br />

Using three-dimensional (3D) imaging technology, researchers<br />

have been able to create virtual computed models of anatomical<br />

structures for a wide range of educational and research activities. The<br />

purpose of this study was to demonstrate the potential for establishing an<br />

162


accurate biological profile of a human skeleton solely from reconstructed<br />

3-D data of the National Library of Medicine’s Visible Human<br />

Project®. [2]<br />

This study began by utilizing the Visible Human Male’s (VHM)<br />

anatomic serial sections to isolate the skeletal tissue from each slice.<br />

Every anatomical structure in the digital image set was assigned a unique<br />

color and isolated using Adobe Photoshop CS3©. These image files<br />

(.tiff) were then imported into the software package, Mimics© version<br />

12 (Materialise) for reconstruction and 3-D visualization.<br />

After the complete skeleton of the VHM was reconstructed, 78<br />

anthropometric cranial and post-cranial measurements were selected<br />

from an index of standard anatomical landmarks based on their<br />

effectiveness in establishing a biological profile in skeletal analysis. [3]<br />

Additionally, non-metric traits commonly used in the assessment of age,<br />

sex and ancestry were also examined to complete the biological profile.<br />

Once the anthropological data was collected, the biological profile was<br />

then compared to the known values of the subject documented by<br />

Spitzer, et al. [2]<br />

The 3-D virtual models of the skeleton were exported as<br />

stereolithographic (STL) files and a select series of bones were printed<br />

using a Zcorp 3-D ZPrinter© 310 Plus rapid prototype machine. The<br />

prototype bones were then measured with traditional caliper methods<br />

using the same indices as the virtual skeleton and compared to the<br />

previous results.<br />

In this study, the biological profile generated from the virtual<br />

skeleton was consistent with the known information about the Visible<br />

Human Male. Statistical analysis of the data comprising the samples<br />

(virtual and prototype), confirmed the accuracy of the computer<br />

modeling and measurement technologies. Additionally, this study found<br />

the prototype bones to be valuable reproductions, even taking into<br />

consideration artifacts from the printing process.<br />

This study demonstrates that 3-D datasets of different kinds (digital<br />

images and serial sectioning) can be useful tools in the study of human<br />

anatomy for clinical, educational, and forensic purposes. Data sets that<br />

are public domain such as the National Library of Medicine’s Visible<br />

Human Project® have proven to expand the accessibility of anatomical<br />

specimens beyond actual contact. The data resulting from the Visible<br />

Human Project® has allowed for the possibility of creating reliable<br />

virtual models for teaching purposes as well as models for testing<br />

fundamental anthropological methods, like establishing a biological<br />

profile, through the use of 3-D volumetric data reconstruction.<br />

References:<br />

1 Decker SJ, Hilbelink DR, Hoegstrom EJ. Virtual skull anatomy:<br />

three-dimensional computer modeling and measurement of human<br />

cranial anatomy. Proceedings for the 60 th Annual AAFS Meeting,<br />

Washington, DC 18-23 Feb. 2008; (14)312.<br />

2 Spitzer V, Ackerman MJ, Scherzinger AL, Witlock D. The Visible<br />

Human Male: A Technical Report. Journal of the American<br />

<strong>Medical</strong> Informatics Association, 1996; 3:118-130.<br />

3 Buikstra JE, Ubelaker DH (eds.) (1994) Standards for Data<br />

Collection from Human Skeletal Remains. Arkansas Archaeological<br />

Survey Research Series No. 44.<br />

3-D Imaging, Computer Modeling, Human Anatomy<br />

H32 The Reproducibility of Results From Facial<br />

Approximation Accuracy Tests That Use<br />

Face-Arrays<br />

Carl N. Stephan, PhD*, Joint POW/MIA Accounting Command Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Jody Cicolini, BSc, The University of Queensland,<br />

Brisbane, 4072 AUSTRALIA<br />

After attending this presentation, attendees will gain insights into<br />

the differences that can be expected when accuracy tests of facial<br />

approximations are conducted using different groups of assessors but the<br />

same face-array test.<br />

This presentation will impact the forensic community by<br />

demonstrating the reliability of the most favored method for assessing<br />

facial approximation performance.<br />

The use of facial approximation methods in the forensic arena<br />

makes knowledge of these methods accuracy and reliability pertinent. In<br />

the recent scientific literature it is now common for the face-array test to<br />

be advocated as the most favored form of performance assessment. If,<br />

however, the results from face-arrays are to be confidently interpreted<br />

then their reproducibility must be known. So far, repeatability studies<br />

using the same facial approximations but different assessor groups have<br />

not been performed. Clearly, more reliable results are expected with<br />

larger samples, but what numbers of assessors are needed and how<br />

reliable the results are for any sized assessor sample is currently<br />

unknown.<br />

This study investigates the repeatability of face-array results for<br />

three previously published facial approximations by employing three<br />

new groups of assessors in addition to the original study’s sample. In<br />

each case, face-arrays consisted of ten faces (including the target<br />

individual) with retest assessor sample sizes approximating 40, 75, and<br />

115 individuals. The results show that fluctuations in the recognition<br />

rates up to 20% were not uncommon for single faces between samples,<br />

even when large assessor groups were employed (75-115 assessors).<br />

These data thereby suggest that recognition rates for single faces should<br />

only be considered to be approximate and that heavy weight should not<br />

be assigned to isolated recognition rates for single faces. If marked<br />

peaks are present in the recognition profile of the array, reliable<br />

indications to a facial approximation’s accuracy may be gleaned from<br />

even small sampled studies, however, if such peaks are absent repeated<br />

tests using different assessor groups or a single large assessor samples (at<br />

least >75 individuals) are advisable. Since it appears that fluctuations<br />

in recognition rates between groups are not dramatically reduced with 75<br />

to 114 assessors, it seems that much larger sample sizes might be needed<br />

to generate more reproducible results (but how large these samples must<br />

be is currently unknown). Future research must address this issue. Also,<br />

since recognition rates generated from face-arrays are expected to be<br />

heavily influenced by which foil faces are selected for inclusion into the<br />

array (in addition to the quality of the facial approximation), future<br />

research should examine methods for measuring and optimizing photospread<br />

fairness.<br />

While face-array recognition tests are time intensive to conduct, the<br />

results of this study demonstrate value for obtaining larger assessor<br />

samples to run repeat face-array tests with multiple (independent)<br />

assessor groups. Repeat tests might be superfluous if very large numbers<br />

of assessors are used in any one pass at a face-array, but the exact number<br />

of assessors required to generate such robust results is currently<br />

unknown and could be unexpectedly large.<br />

Facial Approximation, Facial Reconstruction, Facial Reproduction<br />

163 * Presenting Author


H33 Cranial Fracture Patterns in Pediatric<br />

“Crushing” Injuries and Preliminary<br />

<strong>Bio</strong>mechanical Modeling Using a Simple<br />

Finite Element Model<br />

Marcus B. Nashelsky, MD*, Department of Pathology - 5244 RCP,<br />

University of Iowa Hospitals & Clinics, 200 Hawkins Drive, Iowa City,<br />

IA 52242; Todd W. Fenton, PhD, Michigan State University, 354 Baker<br />

Hall, Department of Anthropology, East Lansing, MI 48824; Nicholas V.<br />

Passalacqua, MS, 3518 Hagadorn Road, Okemos, MI 48864; Carolyn V.<br />

Hurst, BA, 3303 Wharton Street, East Lansing, MI 48823; and Timothy<br />

G. Baumer, BS, and Roger C. Haut, PhD, Orthopaedic <strong>Bio</strong>mechanics<br />

Laboratories, Michigan State University, East Lansing, MI 48824<br />

The goal of this presentation is to inform attendees about the<br />

characteristic fracture patterns that result from bilateral “crushing”<br />

(quasi-static loading) injuries of the subadult cranium by presenting<br />

several case studies of such insults and a simple biomechanical model<br />

that replicates and helps explain these patterns.<br />

This presentation will impact the forensic community by<br />

demonstrating the type of fractures that can be expected in cases of<br />

bilateral crushing in subadults and attribute these characteristic patterns<br />

to the stresses developed in the cranium.<br />

Bone fracture analysis is an integral component of some forensic<br />

casework. In terms of determining cause and manner of death, the<br />

forensic professional must possess a working knowledge of not only the<br />

forces involved in fracture production and propagation, but also the<br />

effects of geometry and stress concentrations. Most often blunt cranial<br />

injuries involve dynamic forces characterized by large energy changes<br />

generally due to rapid changes in velocity over the loading duration.<br />

Conversely, crushing injuries involve quasi-static forces that are applied<br />

slowly across broad aspects of the skull. The understanding of typical<br />

fracture patterns based on common scenarios and biomechanical<br />

modeling may be pertinent to the evaluation of cranial injuries sustained<br />

by subadults and attempts to determine circumstances of the injury<br />

(accident vs. abuse). If a fracture pattern is found which does not<br />

correspond to the adult’s account, there may be need to inquire further to<br />

ascertain the true nature of the injury.<br />

For this study, four cases are presented in which young children of<br />

various ages (from 1.5 to 6 years of age) have sustained fatal cranial<br />

crushing injuries from the tire of a slow moving motor vehicle or a<br />

heavy, non-motorized farm trailer. In each case the cranium was<br />

entrapped between the ground and the tire. In all four cases, the major<br />

bone fractures occurred in the basilar region of the cranium that bridges<br />

and links the loading sites (the tire and the ground) and traverses the<br />

middle cranial fossa in the area of the sella turcicum. <strong>Bio</strong>mechanical<br />

engineering was then utilized in efforts to explain the mechanism of this<br />

fracture pattern using a mathematical model.<br />

A model of a simplified cranium was constructed with symmetry<br />

about the sagittal plane, but not about the coronal or transverse planes.<br />

The base of the cranium was modeled as a flat surface with the same<br />

thickness as the dome and the primary landmarks in the basal region. A<br />

hole was added to simulate the foramen magnum, two dense spheres<br />

were placed anterior to the foramen magnum to represent the petrous<br />

portion, and the thickness in a section of the cranium between the petrous<br />

portions was hollowed out to represent the region of the spheno-occipital<br />

synchondrosis.<br />

Finite Element Analysis (FEA) was conducted on the model by<br />

applying quasi-static, bilateral pressures. The pressures were applied to<br />

the model in such a way as to simulate the crushing forces reported in the<br />

four cases. The stress pattern developed in the simplified model<br />

revealed significant stresses on the base of the skull with areas of lower<br />

stresses on the cranial vault. The stress pattern corresponded well with<br />

the fracture pattern documented in the four cases. Further analysis<br />

* Presenting Author<br />

revealed that tensile stresses were generated in the region of high stress<br />

that correlated with and explained the observed fracture pattern. This<br />

suggested that the quasi-static (slow) loading of the cranium leads to<br />

fracture in predictable ways.<br />

The computational model suggests that the reason crania fracture<br />

through the basicranium is largely due to the concentration of tensile<br />

stresses due to the geometry of the cranium. Based on these pilot studies,<br />

it would appear that a simplified cranial model of a slow, “crushing”<br />

force could be used to help explain fracture patterns seen in typical case<br />

situations.<br />

Pediatric Fracture Patterns, Bilateral Crush Injuries, Finite<br />

Element Modeling (FEM)<br />

H34 Shark-Inflicted Trauma on Human<br />

Skeletal Remains<br />

Maria T. Allaire, MA*, Louisiana State University FACES Laboratory,<br />

Louisiana State University, 227 Howe-Russell Building, Baton Rouge,<br />

LA 70803; and Mary H. Manhein, MA, Department of Geography &<br />

Anthropology, Louisiana State University, Baton Rouge, LA 70803<br />

After attending this presentation, attendees will become familiar<br />

with shark-inflicted trauma on human skeletal remains. This type of<br />

trauma may be unfamiliar and/or not commonly seen by the forensic<br />

community.<br />

This presentation will impact the forensic community by providing<br />

awareness and knowledge of a unique type of sharp trauma rarely<br />

encountered or observed by forensic anthropologists and other forensic<br />

scientists.<br />

On August 16, 1997, the Jefferson Parish Coroner’s Office was<br />

notified about the recovery of an unidentified male in a shrimper’s trawl<br />

net in the Gulf of Mexico. At the time of recovery, the shrimp boat was<br />

30 miles offshore at longitude 2829.9N and latitude 09026.3W. The U.S.<br />

Coast Guard retrieved the body from the shrimp boat and an autopsy was<br />

conducted at the Jefferson Parish Forensic Center on August 18, 1997.<br />

According to the autopsy report, the body measured 5’11” in length<br />

and weighed approximately 83 pounds. The condition of the body was<br />

described as having “marked decompositional type changes present”<br />

with the head, right chest and back, left upper extremity, and both lower<br />

extremities being skeletonized. The right upper extremity was absent.<br />

“Irregular” gnaw-like marks were noted on the remaining tissue.<br />

Partially digested food was found in the stomach. The heart, lungs, liver,<br />

kidneys, spleen, esophagus, thyroid, pancreas, and adrenals were<br />

present. The brain was noted as being “generally liquid in nature.” No<br />

definite signs of fractures, hemorrhage or other trauma, other than gnawlike<br />

marks on the soft tissue, were identified. Based on the autopsy<br />

report, a postmortem interval of less than 48 hours from date of recovery<br />

was estimated.<br />

On August 22, 2007, ten years after initial recovery, the unidentified<br />

remains, and associated clothing were picked up at the Jefferson Parish<br />

Forensic Center by the Louisiana State University Forensic<br />

Anthropology and Computer Enhancement Services (FACES)<br />

Laboratory personnel and transported to the FACES Laboratory at LSU<br />

for analysis and inclusion in a cold case database. Upon arrival at the<br />

FACES Laboratory, the partially skeletonized remains were processed<br />

and cleaned.<br />

Results of the forensic anthropology analysis revealed that the male<br />

decedent’s ancestry was more consistent with black; however, due to<br />

some white and Amerindian characteristics, a Hispanic ancestry is<br />

possible. The decedent was 5’8” – 6’2” tall and between 30 – 45 years<br />

of age at the time of his death. Antemortem fractures were present on the<br />

nasal bones, the left frontomalare suture and the left zygomatic arch.<br />

The presence of bone remodeling and smooth edges indicated that all<br />

three fracture sites were in the process of healing prior to death and that<br />

164


these fractures could have been the result of a single traumatic event for<br />

which the decedent may or may not have received medical treatment.<br />

The analysis also revealed that the decedent had an edentulous maxilla<br />

with pronounced bone resorption and remodeling, indicating that he had<br />

worn upper dentures for a long time. His mandible was toothless, except<br />

for the lower canine teeth, and vertical remodeling and thinning of the<br />

alveolar bone for all of the incisors were present. The decedent’s lower<br />

canines, which were lost postmortem, had mechanically supported a<br />

partial lower denture by means of a “Dolder Bar” or similar oral<br />

reconstruction apparatus (Dr. Robert Barsley, Forensic Odontologist,<br />

personal communication).<br />

Analysis of the postcranial elements revealed a remarkable and<br />

unusual series of individual incisions, overlapping striations, and<br />

punctures with or without associated fractures. The trauma was<br />

concentrated on the clavicles, right, and left ribs, on all three of the left<br />

arm bones, the left femoral head, the right hip bone, and along the entire<br />

shaft of the right femur. Based on the recovery location in the Gulf of<br />

Mexico, these types of trauma were probably caused by a combination<br />

of marine scavengers and predators. In fact, the overall pattern of the<br />

individual incisions, overlapping striations, and punctures, with or<br />

without associated fractures, are common bite mark artifacts produced<br />

by sharks (Dr. George Burgess, Director, Florida Program for Shark<br />

Research and International Shark Attack File, personal communication).<br />

When a shark attacks, either as a scavenger or predator, water is<br />

displaced and pushed out in front of the shark like a wave. This sharkinduced<br />

wave will cause the potential prey’s body to move in the same<br />

direction as that wave. Just prior to their bite, sharks will close their eyes<br />

and rely solely on electromagnetic field sensing, which is not as accurate<br />

as sight orientation. The accuracy of the shark’s bite is dependent on<br />

several variables. One variable is the water’s natural wave motion.<br />

Another variable is the shark-induced wave, which is based on the size<br />

of the shark and its speed and direction of attack. A third variable is any<br />

movement(s) of the potential prey by its own volition or by either of the<br />

wave motions. Finally, the number of sharks and other marine life<br />

present will also affect the accuracy of a shark’s bite. In deep water, the<br />

three most common shark species to attack humans are the White shark,<br />

the Tiger shark and the Bull shark. Bite trauma on the victim suggests at<br />

least one large, adult Bull shark and several other smaller species of<br />

sharks were involved (Dr. George Burgess, Director, Florida Program for<br />

Shark Research and International Shark Attack File, personal<br />

communication).<br />

To assist with the identification of this individual, a clay facial<br />

reconstruction was completed. To illustrate both black and Hispanic<br />

ancestry, the clay facial reconstruction was then computer enhanced.<br />

The boots being worn by this male could also assist in his identification<br />

by way of a possible occupation. He was wearing steel-toed Tingley<br />

brand “Over-The-Sock Snugleg” boots. The manufacturer recommends<br />

this type of boot for the following applications: food processing, dairy,<br />

chemical, and petrochemical (exploration and production).<br />

In the past, cases such as this had little opportunity for<br />

identification. With the current interest in creating and updating cold<br />

case databases across the country, the potential for positive identification<br />

of this victim is greatly enhanced. Finally, this presentation will provide<br />

forensic scientists with a better understanding of shark-inflicted trauma<br />

on human skeletal remains where case histories are sometimes unknown.<br />

Shark-Inflicted Trauma, Shark Attack, Human Skeletal Remains<br />

H35 Patterns of Blunt Force Trauma Induced by<br />

Motorboat and Ferry Propellers as<br />

Illustrated by Three Known Cases From<br />

Rhode Island<br />

Dominique S. Semeraro, MS*, Office of State <strong>Medical</strong> Examiners, 48<br />

Orms Street, Providence, RI 02904; Nicholas V. Passalacqua, MS,<br />

Department of Anthropology, Michigan State University, 354 Baker<br />

Hall, East Lansing, MI 48824; Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East 38th, Erie, PA<br />

16546-0001; and Thomas P. Gilson, MD, Office of State <strong>Medical</strong><br />

Examiners, 48 Orms Street, Providence, RI 02904<br />

After attending this presentation, attendees will have a better<br />

understanding of the typical locations and injuries induced by motorboat<br />

and ferryboat propellers.<br />

This presentation will impact the forensic community by illustrating<br />

three cases of propeller-associated fatalities. This information can be<br />

used as exemplar patterns of trauma when dealing with cases of remains<br />

recovered from marine contexts with unknown circumstances<br />

surrounding the death.<br />

Understanding patterns of trauma is important when dealing with<br />

skeletonized remains as it may influence the determination of cause and<br />

manner of death. Further, an understanding of taphonomy and bone<br />

fracture mechanics is necessary in order to reconstruct the timing of<br />

injuries (peri- vs. postmortem) and establish or rule out fatal injuries. In<br />

cases of decomposed bodies recovered from marine environments,<br />

skeletal trauma analysis can be even more significant because of the<br />

multitude of confounding variables affecting the soft tissue. In these<br />

cases, it is the ability to recognize patterns of skeletal injuries and<br />

reconstruction of the taphonomic history of the individual that can be<br />

most helpful in understanding the circumstances of the death event.<br />

Previously, Kroman et al. (2007) discussed experimental patterns of<br />

injury and injury mechanics from propellers in relation to speed at<br />

impact and propeller style. Their research discussed trauma in terms of<br />

blunt and sharp force trauma to human cadavers and euthanized pigs in<br />

an experimental setting. The present paper will attempt to further<br />

examine the skeletal trauma caused by similar mechanisms in terms of<br />

wound characteristics and location. With this information investigators<br />

may be able to identify propeller trauma, even in severely decomposed<br />

bodies.<br />

In 2007, the Rhode Island Office of State <strong>Medical</strong> Examiners<br />

investigated three unrelated cases involving decedents who had been<br />

struck by boat propellers.<br />

Case 1: A young male decedent was struck by the propeller of an<br />

open motorboat as it approached him at a reportedly low<br />

speed in the water.<br />

Case 2: A young male decedent was struck by the propeller of an<br />

open motorboat traveling at a relatively high speed after<br />

falling overboard at the front of the boat.<br />

Case 3: An elderly male decedent fell from a pier and was struck<br />

by the propeller of a ferry as it was leaving the dock.<br />

The first two cases exhibit similar patterns with longitudinal<br />

parallel propeller blade impacts that traverse portions of the body. In<br />

each case the propeller impacted the cranium and the extremities. While<br />

impacts to the extremities and torso created skeletal trauma easily<br />

recognizable as blunt force, impacts to the cranium created somewhat<br />

linear fractures with primarily smooth fracture edges that could be<br />

mistaken for sharp force. However, they are considered the result of<br />

blunt impacts because the shape of the edge on a standard propeller blade<br />

is “squared-off,” rather than beveled, which would result in sharp<br />

trauma. Due to the squared edges of the propeller blade, “scoring” can<br />

and does occur on the bone, however, this is not true sharp force trauma<br />

because of the lack of edge bevel. The decedent in Case 2 sustained<br />

165 * Presenting Author


lunt force lacerations to the lungs and liver which appear as linear<br />

defects, yet are the result of tears in the soft tissue rather than<br />

incised cuts.<br />

In Case 3, the impact from the ferry propeller caused significant<br />

damage to the decedent. In this case the body was completely severed in<br />

the abdominal region and only the upper portion was recovered. The<br />

torso showed fractures to every rib as well as both forearms; the left<br />

radius displayed a classic butterfly fracture. In this case, the blade of the<br />

propeller also impacted the cranium and caused delamination of the<br />

outer table, a characteristic of slow load blunt force trauma to the cranial<br />

vault. Vital organs were no longer present to evaluate at autopsy and<br />

cause of death was undetermined, however it was determined that the<br />

injuries caused by the ferry propeller were sustained postmortem.<br />

These case studies review the traumatic blunt force characteristics<br />

caused by propeller injuries as well as highlight the anatomic regions<br />

most likely to sustain skeletal trauma. The first two cases exhibit blunt<br />

skeletal injuries caused by standard propellers at different speeds<br />

reflecting similar patterns of trauma. The third case sustained blunt<br />

trauma to the majority of the body due to the greater sized blade and<br />

energy associated with the large ferry propeller.<br />

These case descriptions, coupled with an understanding of blunt<br />

force trauma biomechanics to bone, should allow the examiner to<br />

compare injuries, even in severely decomposed bodies, to patterns of<br />

documented propeller blade trauma as an aid to determining cause and<br />

manner of death in marine fatalities.<br />

Blunt Force Trauma, Propeller Injuries, Case Study<br />

H36 Cervical Vertebrae Entrapment in the<br />

Noose as Evidence of Cause of Death by<br />

Hanging in Skeletal Cases: Three<br />

Remarkable Finds<br />

Jennifer A. Ledford, BS*, Barrett Gobelet, BS*, and Hugh E. Berryman,<br />

PhD, Department Sociology & Anthropology, Middle Tennessee State<br />

University, Box 89, Murfreesboro, TN 37132<br />

After attending this presentation, attendees will be shown examples<br />

of cervical vertebra entrapment in ligatures as evidence of cause of death<br />

by hanging.<br />

This presentation will impact the forensic community by stressing<br />

the importance of thorough recoveries at skeletal crime scenes,<br />

especially in areas where bone and culturally pertinent associations are<br />

scattered among extraneous debris.<br />

Cause of death by hanging may be difficult to determine from<br />

decomposed or skeletal remains alone, and may have to be inferred from<br />

evidence at the scene. The purpose of this paper is to present three<br />

remarkable skeletal cases, each exhibiting a cervical vertebra entrapped<br />

in a noose as unambiguous evidence of cause of death by hanging.<br />

The first case involved human skeletal remains found in a wooded<br />

residential area in Middle Tennessee. Dr. Hugh Berryman, two members<br />

of the Forensic Anthropology Search and Recovery Team and a death<br />

investigator from the State <strong>Medical</strong> Examiner’s Office processed the<br />

scene. The remains were clothed and largely held in articulation by dried<br />

soft tissue. No ropes or other indicators usually associated with hanging<br />

were found upon initial examination. Remnants of a dark colored woven<br />

belt tied to a wide strip of white cloth were found among other<br />

unassociated debris on the ground near the remains. When collected, it<br />

was discovered that the D-shaped metal buckle facilitated a loop that<br />

enclosed a skeletonized 5 th cervical vertebra and hair. The metal buckle<br />

was positioned on the posterior side of the neck and the size of the loop<br />

was exceedingly small, indicating that it became reduced in size as the<br />

body decomposed.<br />

* Presenting Author<br />

A second case was discovered in eastern Louisiana in April 2006<br />

and was presented at the 2008 annual meeting of the American Academy<br />

of Forensic Sciences by Dr. John Verano. The remains were recovered<br />

from a wooded area and were largely skeletonized, with some dried soft<br />

tissue, and clothed. The majority of the remains were found hanging in<br />

a partially fallen tree with the skull and other bones scattered in the area.<br />

In this case, a nylon rope with a simple slipknot was found to encircle the<br />

skeletonized 3 rd cervical vertebrae and hair. The position of the knot is<br />

posterior and to the right of the spinous process, but due to<br />

decomposition, the knot may have slipped from its original position.<br />

The third case from Pinellas, Florida dates to October 1990 and was<br />

examined by Drs. Douglas Owsley and Robert Mann. At the scene,<br />

police found human skeletal remains and what appeared to be men’s<br />

clothing lying on the ground at the base of a tree from which a rope and<br />

noose still hung. A 4 th cervical vertebra with a crushed right vertebral<br />

foramen was found encircled by the noose. Since this foramen was<br />

crushed, the position of the noose at the time of death could be<br />

determined and is said to indicate homicide as the manner of death.<br />

In anthropological cases involving hanging where the bones and<br />

associated cultural items have been scattered, cause of death may be<br />

difficult to determine. This study presents three cases where the<br />

presence of a cervical vertebra entrapped in a noose provides clear<br />

evidence of hanging as the cause of death. Such findings argue for the<br />

thorough processing of skeletal crime scenes, especially in areas where<br />

bone and pertinent cultural associations are scattered among extraneous<br />

debris.<br />

Hanging, Cause of Death, Crime Scene Recovery<br />

H37 Diagnosing Peri-Mortem Blunt Force<br />

Trauma in Burnt Remains<br />

Aimee E. Huard, MA*, Binghamton University, Jeremy J. Wilson, MA,<br />

and Dawnie W. Steadman, PhD, Department of Anthropology,<br />

Binghamton University, PO Box 6000, Binghamton, NY 13902-6000<br />

The goal of this presentation is to utilize photographic and<br />

radiographic overlays enabling the participants to form their own<br />

opinion(s) regarding the etiology of observed fracture patterns (i.e., blunt<br />

force trauma vs. heat and fire-induced fractures).<br />

This presentation will impact the forensic community by focusing<br />

on the combined effects of blunt force trauma plastic deformation and<br />

subsequent heat exposure on bone. Attendees will be provided with a<br />

basic model for reconstructing and differentiating fracture patterns.<br />

Intentional clandestine burning is a relatively common manner of<br />

inhibiting discovery and identification of a murder victim. Forensic<br />

anthropologists may be called upon to distinguish between perimortem<br />

injuries and taphonomic modification (burning) of bone that confounds<br />

trauma interpretation. Controlled experiments are an ideal way to<br />

understand the fracture pattern of blunt trauma and burning. Previous<br />

themed experiments have focused on questions regarding bone<br />

shrinkage, alteration of bone histology, the relationship of discoloration<br />

to intensity of fire, and heat-induced fracture patterns. This experiment<br />

specifically explores gross radiographic and microscopic differences in<br />

peri-mortem blunt force trauma fractures as compared to those fractures<br />

that are the product of intense heat and fire.<br />

This study focuses on the combined effects of plastic deformation<br />

of blunt force trauma and subsequent heat exposure on bone.<br />

Identification of plastic deformation in burned bone can be vital to<br />

understanding peri-mortem trauma, as the morphology of fractures<br />

indicates the forces involved and the direction of the mechanical loading.<br />

Damage to bone from fire has been described, but the conditions and<br />

causes that produce cracking, checking, transverse splitting, warping,<br />

longitudinal fractures, curved transverse fractures, straight transverse<br />

166


fractures, patina fractures, and delamination fractures of burnt bones are<br />

not completely understood. Many characteristics, including the<br />

freshness of the bone, the amount of soft tissue, temperature of the fire,<br />

and duration of exposure cause variation in the expression of the<br />

diagnostic characteristics of fire damage.<br />

Twenty deer humeri were used in the experiment: 16 experimental<br />

and 4 controls (Control A: burned but no blunt force trauma; Control B:<br />

blunt force trauma but no burning). Defleshed deer humeri were chosen<br />

as a model given their local availability and similarity in cortical<br />

thickness to human humeri (white-tailed deer proximal/distal mean: 3.1<br />

mm, 3.5 mm, human proximal/distal: 3.6 mm, 3.9 mm). Radiographs<br />

and photographs were taken before and after trauma infliction, at 10<br />

minute intervals during the burning process, immediately after burning,<br />

and following reconstruction. The experimental humeri were suspended<br />

at both ends, fractured with a lead pipe, and burned in a fire pit for a<br />

minimum of 120 minutes at a temperature of at least 200°C. To create a<br />

more realistic scenario, common fuels and accelerants were used<br />

including hickory wood chips, newspaper, and an ethanol-based lighter<br />

fluid. Temperature recordings were taken every 10 minutes with an<br />

EDL® E-Z Probe pyrometer with an air cage probe to ensure the fire was<br />

above 200°C. The temperature of the fire fluctuated throughout the<br />

burning period. The observed temperature fluctuations were reflected in<br />

the variation in discoloration on the bones. All ash was screened after<br />

burning for maximum recovery. Each humeri was independently<br />

described by the second and third author and compared. The<br />

temperature and duration of the fires were modeled against the final<br />

morphological state of the humeri using ordinal and logistic regression.<br />

Comparison of both the radiographs and descriptions of the five<br />

major heat-induced fracture patterns (longitudinal, patina, delamination,<br />

curved transverse, and straight transverse) to the traumatic fracture<br />

patterns observed in the experimental humeri illustrates the fundamental<br />

morphological differences between traumatic and heat-induced fractures<br />

that are distinguishable in a forensic context. When a blunt impact<br />

causes a butterfly fracture, the sharp and symmetrical fractures remain<br />

distinguishable following burning. In contrast, heat-induced fractures<br />

rarely traverse the bone and instead create short segments that flake off<br />

during the burning process. Recovery yield after burning affected the<br />

number of features available to describe; moreover, humeri with lower<br />

recovery yields had much more ambiguous descriptions and diagnoses.<br />

Blunt Force Trauma, Burned Bone, Radiograph<br />

H38 A Forensic Pathology Tool to Predict<br />

Pediatric Skull Fracture Patterns - Part 1:<br />

Investigations on Infant Cranial Bone<br />

Fracture Initiation and Interface Dependent<br />

Fracture Patterns<br />

Todd W. Fenton, PhD*, Michigan State University, 354 Baker Hall,<br />

Department of Anthropology, East Lansing, MI 48824; Nicholas V.<br />

Passalacqua, MS, 3518 Hagadorn Road, Okemos, MI 48864; and<br />

Timothy G. Baumer, BS, Brian J. Powell, BS, and Roger C. Haut, PhD,<br />

Orthopaedic <strong>Bio</strong>mechanics Laboratories, Michigan State University,<br />

East Lansing, MI 48824<br />

The goal of this presentation is to inform attendees about the initial<br />

findings of fracture pattern analysis studies caused by impulsive loading<br />

of the parietal bone in a developing porcine (pig, Sus scrofa) model of<br />

the human.<br />

This presentation will impact the forensic community by describing<br />

the expected fracture patterns and sites of fracture initiation in the<br />

developing porcine model. It will also serve as a prototype for future<br />

skull fracture modeling efforts for the pediatric human victim.<br />

In fatal cases of violence against infants and young children, it is the<br />

job of the forensic specialist to determine the true cause and manner of<br />

death. While this is sometimes possible by establishing a “history of<br />

abuse,” in other instances the ability to determine child abuse from<br />

accidental injury may be difficult. Because there is a lack of skull<br />

fracture standards for infants and young children, pediatric deaths<br />

involving single event head injuries with associated cranial fractures<br />

represent one of the greatest challenges to forensic pathologists and<br />

anthropologists.<br />

The ultimate goal of this multiphase, interdisciplinary research<br />

project is to develop and validate a computational human head model<br />

that will predict skull fracture patterns in the human pediatric skull for a<br />

variety of impact interface conditions. Such data may be gathered from<br />

witnesses, defendants, and investigators in any given crime scene setting.<br />

Unfortunately, the ability to produce experimental skull fracture data is<br />

limited by ethical considerations surrounding experimentation on human<br />

pediatric cadavers, even if available tissue were to exist. Thus, the<br />

porcine head is being used to develop a computer-based technology that<br />

may ultimately help predict various skull fracture patterns in human<br />

infants and young children as a function of age, impact velocity, energy,<br />

and interface condition.<br />

Using an experimental facility in which an impact mass is dropped<br />

from a specified height onto the parietal bone with different interface<br />

conditions, fracture patterns and sites of initiation have been collected on<br />

more than 80 porcine specimens. In order to understand the mechanisms<br />

of skull fracture to be incorporated in the computational model, it is<br />

important to first document sites of fracture initiation. All specimens<br />

were impacted in the central parietal region at an energy level that caused<br />

the initiation of a linear fracture. The locations of initial fracture (in the<br />

order of decreasing frequency) were: on the parietal bone at, and<br />

perpendicular to, the lambdoidal suture; on the parietal bone at, and<br />

perpendicular to, the coronal suture; on the frontal bone at, and<br />

perpendicular to, the coronal suture; and on the frontal bone at the<br />

superior orbit and parallel to the coronal suture. The results of this study<br />

showed that in the porcine model all major fractures on the cranium<br />

initiate away from the point of impact at the parietal suture margins, and<br />

radiate back toward the center of the parietal. This phenomenon has<br />

occurred with regularity regardless of the type of interface (rigid or<br />

compliant).<br />

The fracture patterns caused by the different interfaces (rigid and<br />

compliant) were different and varied with animal age. On the skulls of<br />

animals aged under seven days there is significantly more suture damage<br />

caused by the compliant interface than by the rigid interface, which may<br />

be a function of the suture and bone properties in these young specimens.<br />

Another significant finding at this point in the study seems to be that<br />

there is more overall skull damage being generated in impacts from the<br />

same height with a compliant surface (carpeting, sod, etc.) versus a rigid<br />

interface (concrete, wood floor, etc.).<br />

These results identified multiple fracture initiation sites on the<br />

porcine skull away from the impact site and showed that the compliant<br />

interfaces caused relatively more fracture damage to the developing<br />

porcine skull than did rigid interfaces. The next phase of the project will<br />

be to elaborate on these results, specifically investigating energy<br />

dependent fracture propagation, and developing a scaling scheme to<br />

compare anatomical growth patterns in the human skull and the porcine<br />

model.<br />

The National Institute of Justice, Office of Justice Programs, United<br />

States Department of Justice. The opinions, findings, and conclusions or<br />

recommendations expressed in this publication/program/exhibition are<br />

those of the author(s) and do not necessarily reflect the views of the<br />

Department of Justice.<br />

Child Abuse, Bone Fracture Patterns, Bone <strong>Bio</strong>mechanics<br />

167 * Presenting Author


H39 And a Little Child Shall Lead Them....<br />

Julie M. Saul, BA*, Forensic Anthropology Lab, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue, Toledo, OH 43614-2674; Frank P. Saul,<br />

PhD, U.S. HHS DMORT 5, 2595 Arlington Avenue, Toledo, OH 43614-<br />

2674; and Allan J. Warnick, DDS, Wayne & Oakland Counties <strong>Medical</strong><br />

Examiner’s Office, 31632 Schoolcraft Road, Livonia, MI 48150<br />

After attending this presentation, attendees will recognize the<br />

limitations of presently available skeletal aging standards for infants and<br />

young children. Attendees will also be made aware of some of the<br />

approaches utilized in assessing abuse in immature skeletal remains.<br />

This presentation will impact the forensic community by<br />

emphasizing the need for caution when applying currently available<br />

immature skeletal age standards to contemporary forensic cases, and<br />

hopefully, encourage the acquisition of more appropriate skeletal data<br />

from present day populations of varying ancestry and socioeconomic<br />

backgrounds.<br />

In past cases involving child abuse, the authors’ primary focus has<br />

been on analyzing trauma. The chronological age of the victim at death<br />

has always been known. In 2007, a request was made for a<br />

determination of age at death, as well as a review of the remains for<br />

possible trauma. The parents of the dead infant gave conflicting stories<br />

in regard to when the child had died. Relatives were similarly uncertain.<br />

Examination of the dentition provided a dental developmental age<br />

estimate of 12-20 months. While attempting to establish a skeletal<br />

developmental age, the paucity of data for this portion of the life cycle<br />

was noted (see Scheuer and Black 2005 for a summary of the little that<br />

is available). Based on the available data, the skeletal developmental age<br />

estimate for this child appeared to be 12-24 months. Although the<br />

estimated skeletal developmental age was consistent with the dental<br />

developmental age, it was apparent that the data used for the age estimate<br />

were from children of an earlier time, as well as different ancestry and<br />

socioeconomic status.<br />

These concerns regarding the lack of appropriate data were further<br />

emphasized upon attempting to use long bone diaphysial length age data<br />

to confirm the dental and skeletal developmental age estimates. Most<br />

available dry bone data were based on archaeological individuals whose<br />

so-called “known age” was based on dental developmental age estimate.<br />

A few were from historic cemetery collections with ages from cemetery<br />

records. Radiographic bone length data from immature living<br />

individuals of known age at death were scarce and from inappropriate<br />

populations (“white”, “middle class”). The child in this case was “black”<br />

and “lower class.”<br />

For example, the radial and tibial diaphyseal lengths, when<br />

compared with the tables in Gindhart (1973 AJPA 39: 41-48) are<br />

consistent with those of a much younger child (radius: 8-12 months,<br />

tibia: 6 months). The Gindhart series consists of males and females of a<br />

mainly white middle class background from the Fels Research Institute<br />

Longitudinal Growth Study in Yellow Springs, Ohio that began in 1929.<br />

The time period for Gindhart’s sample is 1930-1967. Comparison with<br />

tables in Ruff (2007 AJPA 133:698-716) yielded ages at the lower end of<br />

the range for 12 months (humerus, radius, tibia) and under the range for<br />

12 months (femur). Ruff utilized Denver Growth Study data collected<br />

from a primarily white middle/upper middle class. It should be noted<br />

that more recent and appropriate samples are not available.<br />

The observed secular increase in stature during recent years<br />

magnifies the significance of the comparative “shortness.” Given the<br />

above limitations, the long bone lengths of this individual, lagging well<br />

behind skeletal and dental developmental age, are suggestive of growth<br />

deficiency due to malnutrition and/or disease.<br />

The possibility of malnutrition and disease was further reinforced<br />

by the radiographic presence of multiple lines of increased density<br />

(“growth arrest,” or “Harris” lines) at the growing ends of several long<br />

bone shafts (distal tibia, femur, fibula, radius). Growth arrest lines<br />

* Presenting Author<br />

represent a cumulative deposition of bone salts laid down during periods<br />

of protein deficiency as growth of metaphyseal cartilage is reduced.<br />

Causative factors may include malnutrition and/or disease and/or abuse.<br />

Traumatic child abuse was specifically suggested by the discovery<br />

of healed “bucket handle” (or “corner”) fractures of the distal tibiae,<br />

visible only in radiographs. These fractures, which differ from “normal”<br />

toddler injuries, are strongly associated with child abuse.<br />

Technical Note: Because full body standard x-ray equipment was<br />

not immediately available (the office uses fluoroscopy), a portable,<br />

digital dental x-ray unit routinely used by forensic odontologists<br />

provided excellent radiographs. This machine has also been used in<br />

child abuse cases involving rib fractures. The resulting digital<br />

radiographs of these small and often difficult to image bones are easily<br />

acquired and of very high quality.<br />

There is a great need to gather more appropriate contemporary<br />

immature skeletal data. Due to continuing concern regarding x-ray<br />

dosage in the living, it would be helpful if forensic practitioners would<br />

obtain and share x-ray studies of immature individuals whose<br />

chronological age at death is known. Warren (1999), for instance, has<br />

done so for fetuses and stillborns. This approach should be extended into<br />

early childhood.<br />

Child Abuse, Infant Skeletal Age, Radiology<br />

H40 Callus Treatment: Collaboration Between<br />

Forensic Anthropology and Forensic<br />

Pathology to Improve the Recognition and<br />

Elucidation of Skeletal Fractures in Infants<br />

and Children<br />

Julie M. Fleischman, BA*, Laura C. Fulginiti, PhD, and Jeffrey S.<br />

Johnston, MD, Maricopa County Office of the <strong>Medical</strong> Examiner, 701<br />

West Jefferson, Phoenix, AZ 85007<br />

After attending this presentation, attendees will gain an appreciation<br />

of the significance of cooperation between disciplines in the medicolegal<br />

arena and how this cooperation can improve the quality and scope of<br />

investigations into child death. When forensic anthropologists and<br />

pathologists combine their skills and expertise, the result is a more<br />

thorough and complete investigation.<br />

This presentation will impact the forensic community by<br />

demonstrating that increased cooperation between disciplines results in a<br />

better understanding of complex forensic cases, in particular those<br />

involving suspected child abuse cases.<br />

The syndrome of child abuse (first defined and its causes identified<br />

by Kempe in 1962) refers to cases in which children are beaten, burned,<br />

shaken, thrown, hit, or dropped. These actions may result in the child’s<br />

death. Without physical abuse, fractures in infants and young children<br />

are rare. When children become active in school and sports, around the<br />

age of five, they develop greater risks for accidental skeletal fractures.<br />

Most skeletal fractures related to child abuse occur in children younger<br />

than 18 months. Repeated fractures in varying stages of healing may be<br />

present in the same infant; when this occurs, the term “battered child<br />

syndrome” is applied. In these cases, a complete understanding of the<br />

fracture pattern, timing, and stage of healing for each fracture is critical.<br />

Collaboration between the pathologist and the anthropologist can<br />

enhance this understanding as demonstrated by the cases discussed<br />

below.<br />

On January 30, 2008, a three-month-old male child was admitted to<br />

the hospital after sustaining injuries due to suspected child abuse. He<br />

was transported from a county in Northern Arizona to a regional trauma<br />

center in Phoenix, Arizona where radiographs and blood tests were<br />

obtained. The infant subsequently died from his injuries. An autopsy<br />

was performed at the Maricopa County Office of the <strong>Medical</strong> Examiner.<br />

168


The antemortem radiographs were obtained and they revealed the<br />

presence of multiple fractures, including comminuted, healing fractures<br />

of the left humerus and multiple ribs. The humerus and exemplars of the<br />

ribs were removed at autopsy for maceration and examination by the<br />

anthropologist. After a subsequent consultation and further examination,<br />

the pathologist and anthropologist removed the right innominate and the<br />

remainder of the rib-cage, all of which were macerated.<br />

After maceration, additional radiographs were obtained to assist<br />

further examination. These radiographs, as well as those obtained prior<br />

to the autopsy, were used to place the ribs into anatomical order so that<br />

the injuries could be enumerated by joint effort of the pathologist and the<br />

anthropologist. The findings of osseous traumata were as follows: the<br />

right ribs had 14 well-established calluses, 3 acute, re-fractured calluses,<br />

1 traumatized callus, 1 acute, non-healing fracture, and elaboration of<br />

bone on the sternal end of the first rib. On the left ribs there were 13<br />

well-established calluses, 5 acute re-fractured calluses, and elaboration<br />

of bone on the sternal end of the first rib. The left humerus had a wellestablished<br />

callus, which encompassed nearly three-quarters of the distal<br />

shaft, with two complete fractures of the shaft; one fracture was grossly<br />

visible and the other was embedded in the callus. The superior ramus of<br />

the right os coxa exhibited one less well-established callus and one acute<br />

injury immediately lateral to the callus with associated hemorrhage.<br />

Additional fractures were noted on the radiographs.<br />

Several other complex cases involving acute, healing, and healed<br />

fractures of the ribs and long bones in infants under the age of one year<br />

also resulted in maceration and examination of the injured bone by both<br />

the anthropologist and pathologist. In all cases, maceration allowed for<br />

better follow-up radiography and examination with a dissecting<br />

microscope to enhance understanding of the injuries. These cases will be<br />

used to demonstrate that collaboration between the forensic pathologist<br />

and forensic anthropologist can lead to a higher degree of understanding<br />

for complex cases involving suspected abuse of children.<br />

Interdisciplinary Collaboration, Skeletal Traumata, Suspected<br />

Child Abuse<br />

H41 Eaten or Attacked By His Own Dogs?<br />

From the Crime Scene to a<br />

Multidisciplinary Approach<br />

João Pinheiro, MD, MSc*, Instituto Nacional de Medicina Legal, Instit<br />

Nacional Medicina Legal, Delegação do Centro, Largo da Sé Nova,<br />

Coimbra, 3000, PORTUGAL; Eugenia Cunha, PhD, Departamento De<br />

Antropologia, Universidade de Coimbra, Coimbra, 3000-056,<br />

PORTUGAL; Hugo Pissarra, DVM, Faculdade de Medicina Veterinária<br />

da Univsersidade Técnica da Lisboa, Av. da Univsersidade Técnica da<br />

Lisboa, Lisbon, AL, PORTUGAL; and Francisco Corte Real, PhD,<br />

Insituto Nacional de Medicina Legal, Largo da Sé Nova, 3000, Coimbra,<br />

AL, PORTUGAL<br />

The goal of this presentation is to encourage attendees to use all the<br />

resources they may have to solve difficult cases of decomposed bodies<br />

or human remains they may encounter. These resources include:<br />

different experts, techniques, and ancillary examinations.<br />

This presentation will impact the forensic community by appealing<br />

for multidisciplinary approaches at the crime scene including various<br />

areas of expertise (e.g., entomological, pathological, or other areas of<br />

expertise such as veterinary in this case), as the key to answer the<br />

medico-legal questions often presented by decomposed bodies.<br />

Additionally, emphasis is given to the importance of the presence of a<br />

forensic anthropologist or forensic pathologist at the crime scene<br />

investigation.<br />

Although the presence of a forensic pathologist (FP) at a crime<br />

scene it is not uncommon, a forensic anthropologist (FA) coming to the<br />

scene in routine cases can be considered a rarity in most jurisdictions.<br />

However, their usefulness is undeniable and sometimes represents a<br />

unique source of information to understand the circumstances of death.<br />

A multidisciplinary approach is another requisite frequently<br />

recommended for the autopsy of bodies in different states of<br />

decomposition. Occasionally, more experts than the usual FA and FP are<br />

necessary, as in the case presented here.<br />

Part of a decomposed human body from an individual, missing for<br />

one and a half months, was found locked in his home along with the<br />

decomposed bodies of the three dogs that lived with him. The rooms<br />

were in disarray with overturned furniture, signs of intense movement<br />

and dog excrement everywhere. No weapons or other evidence of a<br />

struggle were found. All the bodies were recovered for autopsy.<br />

The human cadaver was reduced to the right humerus, scapulae,<br />

pelvis, and distal lumbar vertebrae. The remains were mainly<br />

skeletonized with the lower limbs showing mummification with some<br />

adipocere. The disarticulated skull (actually only the cranial vault) was<br />

lying on the floor two meters away from the remainder of the body.<br />

Multiple larvae continued their work on the human remains and pupae<br />

were also present. The long bones and particularly the scapula showed<br />

typical animal bite marks consistent with dogs. The skull, apart from the<br />

tooth marks, also exhibited a regular round defect on the anterior and<br />

middle cerebral fossas which may have resulted from dog clawing. All<br />

the facial bones and mandible were absent. Dog hair was spread all over<br />

the trousers of the victim.<br />

Positive identification was achieved through anthropological<br />

features (Caucasoid, short stature, male, 55-60 yrs.) and subsequent<br />

confirmation by DNA analysis. Furthermore, entomological analysis<br />

estimates time of death to be around 1 month before discovery.<br />

Because no peri-mortem injuries were found, cause of death could<br />

not be assessed. Furthermore, the disappearance of half of the body was<br />

difficult to explain. It was decided to autopsy the dogs and the<br />

collaboration of a veterinarian was requested. The dog cadavers were<br />

putrefied, and a cause of death could not be ascertained: no traumatic<br />

injuries, cancer, or other noticeable conditions were found. But in one of<br />

the dog’s stomachs were small fragments of bone, most likely from the<br />

hand bones and vertebrae of the man.<br />

These features, and their relationship with the crime scene<br />

investigation and police information, are discussed. Taking all the<br />

elements into account, it is concluded that the man likely died of natural<br />

causes and later he was eaten by his own famished dogs. The pattern of<br />

the bone lesions are discussed and are compared to the dog’s<br />

characteristics.<br />

This case shows the importance of the crime scene investigation. If<br />

this examination had not been undertaken, the understanding of cause<br />

and manner of death would have been extremely difficult, pointing out<br />

the necessity of both FA and FP being present at the scene. Finally, a<br />

multidisciplinary approach, in this case integrating the FA, the FP, police,<br />

veterinarians and entomologists, is the key to answer the questions that<br />

decomposed bodies often generate.<br />

Eaten, Dogs, Death<br />

169 * Presenting Author


H42 Solving <strong>Medical</strong> Examiner Cold Cases:<br />

Modern Resources in the Reanalysis of<br />

Human Skeletal Remains<br />

Christen E. Herrick, BS*, and Heather A. Walsh-Haney, PhD, Florida<br />

Gulf Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard AB3, Fort Myers, FL 33965-6565; Margarita Arruza, MD,<br />

<strong>Medical</strong> Examiner’s Office, 2100 Jefferson Street, Jacksonville, FL<br />

32206; Marta U. Coburn, MD, District 20 <strong>Medical</strong> Examiner, 3838<br />

Domestic Avenue, Naples, FL 34104; E.H. Scheuerman, MD, 1856<br />

Colonial Drive, Green Cove Springs, FL 32043; Jennifer L. Anderson,<br />

BS, BA, 4632 Deleon Street, #129, Fort Myers, FL 33907; Jeffrey J.<br />

Brokaw, BA, 2100 Jefferson Street, Jacksonville, FL 32206; Brian<br />

Womble, BS, 3838 Domestic Avenue, Naples, FL 34104; Katy L.<br />

Shepherd, BS, Florida Gulf Coast University, Division of Justice Studies,<br />

10501 FGCU Boulevard, South, Fort Myers, FL 33965; Laura E.<br />

Gibson, BS, 2040 Larchmont Way, Clearwater, FL 33764; and Minas<br />

Iliopoulos, BS, 10501 FGCU Boulevard, South, Division of Justice<br />

Studies, AB3, Fort Myers, FL 33965<br />

After attending this presentation, attendees will have a better<br />

understanding of the processes involved in the reanalysis of unidentified<br />

remains that may lead to positive identifications, removal of nonforensic<br />

cases from national databases, and the reanalysis of skeletal<br />

trauma often essential in the adjudication of homicide trials.<br />

This presentation will impact the forensic community by providing<br />

standard operating procedures that prioritize the reanalysis of trace<br />

evidence from medical examiner cold cases through the effective use of<br />

state-of-the-art technologies in the following fields: anthropology,<br />

DNA, fingerprinting, odontology, facial reconstruction, tool mark<br />

analysis, digital photography and documentation, and the productive use<br />

of missing persons databases (e.g., NCIC, NamUS, NCMEC, NCMA,<br />

CODIS, FLUID DB, and other databases).<br />

<strong>Medical</strong> examiner cold cases often remain in dry storage or<br />

refrigeration for years to decades without the benefit of reanalysis.<br />

However, President Bush’s DNA Initiative, the Joint Initiative of the<br />

Florida Department of Law Enforcement Missing Children Information<br />

Clearinghouse, and the Florida <strong>Medical</strong> Examiner’s Commission have<br />

helped to re-focus an over-taxed medical examiner system and<br />

underscored the importance of medical examiner cold case reanalysis.<br />

To this end, this study presents cold casework from Florida <strong>Medical</strong><br />

Examiner Districts 4 and 20. The pairing of these two medical examiner<br />

districts was prudent because of the disparity in case loads between these<br />

two entities (e.g., Homicides District 4 = 148; Homicides District 20 =<br />

5) and because they share a forensic anthropology consultant.<br />

Additionally, District 20 provided supplementary evidence storage space<br />

for District 4 and quick access to Florida’s Unidentified Decedent’s<br />

Database (FLUIDDB) which was housed therein.<br />

For this study, the standard operating procedures for the reanalysis<br />

of unidentified remains and those remains retained for trauma analysis<br />

was in accordance with Florida State Statute 406.11. As such, the<br />

following standard order of operations was applied (when applicable):<br />

collection/resubmission of blood and fingerprint cards, odontology<br />

charting and radiography, exhumation, metric and non-metric<br />

anthropological analysis, and 2-D or 3-D facial reconstructions. These<br />

new data were input into the following databases: NCIC, NamUS,<br />

NCMEC, NCMA, CODIS, AFIS, and FLUIDDB databases.<br />

Data were pooled from the eighty-seven medical examiner cold<br />

cases in order to identify trends in the sample (e.g., peaks in numbers of<br />

unidentified, completeness of remains, and biological profiles). Results<br />

show that the lowest numbers of unidentified remains occurred from<br />

1974 to 1979 which represented 7% (n=6) of the sample. The number of<br />

unidentified remains peaked between 1985 and 1989 (31%; n=27).<br />

Lastly, the numbers of unidentified remains was constant from 2000 to<br />

2004 (15%; n=13). These findings were compared to statewide and<br />

* Presenting Author<br />

national trends presented in the Bureau of Justice Studies’ 2007 Fact<br />

Sheet (a public domain document). Florida’s numbers of unidentified<br />

peaked from 1980-1984 (24%; n=230) and had the fewest numbers of<br />

unidentified from 1990 and 1994 (17%; n=157). Florida’s numbers of<br />

unidentified has continued to rise for the last 15 years. The national<br />

trend in numbers of unidentified remains was lowest from 1980 to 1984<br />

(15%; n=1,516), peaked from 1990 and 1994 (26% (n=2,686) and<br />

remained constant from 1995 to 2006 (19%; n=1,956). Interestingly, the<br />

research sample was in keeping with the nationwide trend in numbers of<br />

unidentified remains when analyzed by 5 year periods. However, while<br />

Florida’s statewide numbers of unidentified continue to rise, the sample<br />

compiled for this study continues to drop as a result, in part, of our<br />

reanalysis of medical examiner cold cases.<br />

The numbers of non-forensic and forensic cases within the sample<br />

were also noted. The authors observed 15 (17%) archaeological cases<br />

(e.g., the decedent was dead for greater than 75 years; FL statute 872.05).<br />

There were 2 anatomical specimens (2%) as evidenced by screws and<br />

plasticized veins and arteries, and sixty-seven cases (77%) were of<br />

forensic significance. Of the medical examiner cold cases presumed to<br />

be forensic and unidentified, at least five (6%) were isolated mandibles<br />

and maxillae, 22% (n=19) represented nearly complete skeletons, 37%<br />

(n=32) were comprised largely of long bones and postcrania, and 57%<br />

(n=50) had a cranium or cranial fragments present.<br />

Through the analysis of these cases, this research emphasizes the<br />

various challenges facing the procedures used to solve medical examiner<br />

cold cases. Thus far, significant strides have been made in the resolution<br />

of medical examiner cold cases through the (1) modernization of<br />

standards in several forensic disciplines, (2) the effective use of missing<br />

persons databases, and (3) the collaboration of multiple agencies and<br />

resources.<br />

Cold Cases, Missing Persons, Forensic Anthropology<br />

H43 What Lies Beneath: Re-Examining a<br />

Cold Case Homicide From a Forensic<br />

Anthropological Perspective - A<br />

Case Report<br />

Joan A. Bytheway, PhD*, Sam Houston State University, 1003 Bowers<br />

Boulevard, Huntsville, TX 77340; Kathryn E. Moss, BS*, 4800 Calhoun<br />

Street, Houston, TX 77004; and Stephen M. Pustilnik, MD*, Galveston<br />

County <strong>Medical</strong> Examiner’s Office, 6607 Highway 1764, Texas City, TX<br />

77591<br />

The goal of this presentation is to bring continual awareness to the<br />

need for collaboration in the various fields of forensic science such as<br />

forensic pathologists and forensic anthropologists.<br />

This presentation will impact the forensic community by showing<br />

how a recent collaboration between the medical examiner and forensic<br />

anthropologist revealed significant new evidence that warranted the<br />

revision of the crime reconstruction.<br />

Within the last decade in the United States forensic anthropologists<br />

have become more prominent participants in the analysis of cases that<br />

are brought to the medical examiner’s office. Forensic anthropologist’s<br />

participation often leads to the discovery of significant information that<br />

aids in the identification of an individual and/or aids in the medical<br />

examiner’s opinion of death. Now, with supported efforts by medical<br />

examiners, well-trained forensic anthropologists located in proximity to<br />

or within medical examiner’s offices are re-examining human remains<br />

from numerous cold cases to perhaps discover additional evidence<br />

previously not found.<br />

This case presentation gives a strong argument for the need for<br />

collaboration between various forensic experts, such as the forensic<br />

pathologist and forensic anthropologist. This case report shows how the<br />

170


forensic anthropological analysis disclosed significant additional<br />

evidence in this homicide case. Initially, the external examination<br />

revealed the predominance of sharp force trauma; however, after the<br />

anthropological examination it was clear that blunt force trauma was<br />

equally prevalent. The anthropological report was significant enough to<br />

warrant changes in the reconstruction of the activities of the crime.<br />

In 2007, the present Chief <strong>Medical</strong> Examiner of Galveston County,<br />

Texas requested an anthropological examination of the desiccated<br />

remains of an unidentified individual whose medical examiner’s report<br />

fourteen years ago stated cause and manner of death as homicide by<br />

multiple stab wounds. Multiple stab wounds were found on the<br />

desiccated tissue of the neck, chest, and abdominal regions. The medical<br />

examiner’s opinion of death is not refuted by the present Chief <strong>Medical</strong><br />

Examiner; however, it was believed identification information or<br />

evidence of additional trauma could be obtained by a more detailed<br />

analysis of the skeletal remains.<br />

A detailed examination revealed that, in addition to multiple stab<br />

wounds, the individual had multiple bone fractures as a result of blunt<br />

force injuries. Fractures were identified on the mandible, hyoid bone,<br />

mineralized portion of the thyroid cartilage, left and right ribs, cervical<br />

and thoracic vertebrae, left scapula, the ilio- and ischiopubic rami of both<br />

os coxae, and the sacrum. An excessive amount of force is required to<br />

produce fractures of both the sacrum and the os coxae and, typically,<br />

massive intra- and retroperitoneal hemorrhaging occurs. The<br />

comminuted fracturing of the pubic bone and both rami can be<br />

categorized as crushing fractures and have been noted in vehicular<br />

impacts. Cervical vertebrae fractures are also associated with violent<br />

force. This additional information was of significant importance in the<br />

continual resolution of the case and is another example of the synergistic<br />

relationship needed between forensic pathologists and forensic<br />

anthropologists in the analysis of human remains in the later stages of<br />

decomposition.<br />

Forensic Anthropology, Forensic Pathology, Blunt Force Injury<br />

H44 Age-Related Change in Adult Orbital Shape<br />

Shanna E. Williams, PhD*, University of Florida, Department of<br />

Anatomy, PO Box 100235, Gainesville, FL 32610-0235; Dennis E. Slice,<br />

PhD, Department of Scientific Computing, Florida State University,<br />

Tallahassee, FL 32306; and Anthony B. Falsetti, PhD, CA Pound Human<br />

Id Lab, C/O Cancer/Genetics Research, PO Box 103615, Gainesville, FL<br />

32610<br />

After attending this presentation, attendees will better appreciate the<br />

impact of age on adult orbital shape.<br />

This presentation will impact the forensic community by<br />

highlighting the importance of considering age when utilizing orbital<br />

shape in the identification of unknown remains.<br />

The orbital region conveys a wealth of information about sex,<br />

ancestry, and age. This is thanks in large part to its topological<br />

complexity, which is a consequence of soft and hard tissue interactions.<br />

With age, the smooth appearance of youthful skin is replaced with<br />

deepening lines of demarcation (e.g., crows’ feet) as the soft tissue<br />

around the orbits descends. As interrelated entities, internal hard tissue<br />

(i.e., bone) modification in this region may impact the manifestation of<br />

external soft tissue change over time. However, alterations in<br />

craniofacial bone structure post-adulthood are not as well understood as<br />

those witnessed on the soft tissue level. At present, adult orbital shape is<br />

known to vary both metrically and non-metrically with sexual<br />

dimorphism and ancestry (Krogman 1962; Rhine 1990; Bass 1995), but<br />

the impact of the aging process on this region remains a relative mystery<br />

(Williams 2008).<br />

The present study addresses this complex issue by applying threedimensional<br />

semi-landmarks to the orbital rims of 664 crania embodying<br />

a mix of socially-determined race (Black, White) and biologicallydetermined<br />

sex from the Terry, Hamann-Todd, Maxwell Museum, and<br />

W.M. Bass skeletal collections of known individuals. The crania were<br />

parsed into three overarching age groups (young adult: 18-39 years;<br />

middle-aged adult: 40-59 years; elderly adult: 60+ years). In<br />

craniometric analyses, semi-landmarks are often employed in regions<br />

lacking distinct landmarks, such as boundaries and surface curvature.<br />

Superior and inferior orbital rim curvature was gathered as continuous<br />

stream data using a portable digitizer. Semi-landmarks were then<br />

extracted utilizing a beta program (Slice 2005), which applies an<br />

algorithm that re-samples each curve into a user-defined number of<br />

evenly-distributed points (10 points per curve; four curves).<br />

The resultant semi-landmark data were fit into a common<br />

coordinate system via a generalized Procrustes analysis (GPA), which<br />

filters out the effects of location, scale, and rotation. In order to reduce<br />

dimensionality, a principal component analysis (PCA) was performed on<br />

the covariance matrix of the GPA-aligned coordinates and the resulting<br />

principal component (PC) scores, which accounted for 95% of the total<br />

variance, were utilized in subsequent multivariate statistical analyses. A<br />

multiple analysis of variance (MANOVA) of the PC scores detected a<br />

significant age effect (F=1.98; df= 64; Pr>F=F=0.0156) and race*sex*age interaction<br />

(F=1.65; df=64; Pr>F =0.0012). The specific age groups contributing to<br />

the three-way interaction were evaluated by conducting contrast tests,<br />

which compared the age group means for each subpopulation (e.g.,<br />

White females) within MANOVA. Contrast tests found several<br />

significantly different age pairings in the subpopulations (Black males:<br />

young versus elderly F=2.59; df=30; Pr>F=F=0.0058; young versus<br />

elderly F=1.90; df=29; Pr>F=0.0078, White females: young versus<br />

middle-aged F=1.63 ; df=27, Pr>F=0.0415, middle-aged versus elderly<br />

F=2.10; df=27; Pr>F=0.0038). These age-related orbital differences<br />

were visualized in terms of spatial distinctions using vector plots which<br />

compared the mean shapes between age pairings that were found to be<br />

significantly different. While a specific pattern did not always manifest<br />

in these plots, the eye orbits did exhibit such shape changes as superoinferior<br />

expansion, supero-inferior compression, and medio-lateral<br />

compression depending on the subpopulation and age groups analyzed.<br />

These results indicate that adult skeletal orbital shape does in fact<br />

change with the aging process. Moreover, orbital shape is influenced by<br />

the interaction between age, sex, and ancestry. Thus, it is inappropriate<br />

within a forensic context to treat the orbital shape differences typically<br />

associated with sexual dimorphism and ancestry as static. Instead, age<br />

should be factored into sex and ancestry determinations of unknown<br />

remains which rely on orbital shape.<br />

Eye Orbits, Semi-Landmarks, Geometric Morphometrics<br />

H45 Craniofacial Growth, Maturation, and<br />

Change: Teens to Mid-Adulthood<br />

Ann H. Ross, PhD*, North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107; and Shanna<br />

E. Williams, PhD, University of Florida, Department of Anatomy, PO<br />

Box 100235, Gainesville, FL 32610-0235<br />

After attending this presentation, attendees will learn that the<br />

craniofacial skeleton attains adult size and shape at a much younger age<br />

than previously assumed.<br />

This presentation will impact the forensic community by adjusting<br />

current perceptions in regards to the age at which adult craniofacial<br />

dimensions are reached.<br />

The different structural units which constitute the craniofacial<br />

complex develop and grow under differential mechanical forces.<br />

Replacement of cartilage to bone, sutural deposition, and periosteal<br />

171 * Presenting Author


emodeling are the three principal processes which drive craniofacial<br />

skeletal growth. The bones of the cranial base develop through<br />

endochondral ossification, which is preceded by a hyaline cartilage<br />

precursor largely confined to the spheno-occipital synchondrosis. The<br />

vault, facial, and mandibular bones, per contra, develop through<br />

intramembranous ossification or tissues that are of neural crest origin.<br />

The neurocranium develops earlier and faster than the craniofacial<br />

skeleton in newborns and infants, approaching adult size and<br />

configuration by age 10. The slower growing craniofacial skeleton is<br />

influenced by tooth eruption, which drives alveolar process<br />

development. Thus, an increase or decrease in tooth number or tooth<br />

loss during growth will have a direct effect on the shape of the facial<br />

skeleton. Craniofacial growth is thought to cease around 17 years of age<br />

following eruption of the permanent dentition<br />

Strand Viðarsdóttir and colleagues (2002) found that populationspecific<br />

facial morphologies are present at birth regardless of sex and are<br />

modified during ontogeny, thus suggesting that ancestry can be<br />

determined in subadults. Meanwhile, in their cephalometric study of<br />

craniofacial changes in the third decade of life, Akgül and Toygar (2002)<br />

found significant changes, which were more pronounced in women and<br />

the lower region of the face. In order to further examine developmental<br />

shape and size differences in the craniofacial skeleton and the potential<br />

for the identification of subadults, as well as their possible inclusion in<br />

population studies, the present study used geometric morphometric<br />

methods to compare individuals from a single population partitioned into<br />

four age groups: 14, 16, 20, and 25+ years. Twenty-six type 1 and type<br />

2 standard coordinate landmarks were used in this study. The sample<br />

consists of 4 fourteen-year-olds, 5 sixteen-year-olds, 3 twenty-year-olds,<br />

and 12 twenty–five-year-olds and is derived from an African slave<br />

population housed in the Morton Collection at the University of<br />

Pennsylvania. After GPA superimposition of the raw coordinates, the<br />

resulting shape variables and Centroid Size were utilized in the<br />

subsequent multivariate analyses. A multivariate analysis of variance<br />

(MANOVA) test using the first ten principal component scores<br />

corresponding to 83% of the total variance detected significant shape<br />

differences among the age groups (F= 1.92; df = 30, 32.96; Pr > 0.0355).<br />

In addition, the “contrast” statement d in the proc GLM procedure was<br />

used to detect the specific groups that differed. Surprisingly, the groups<br />

that differed significantly were the 20 and 25+ age groups (F= 3.64; df =<br />

10, 11; Pr > 0.0224). In addition, a Pearson Correlation Coefficient was<br />

used to examine the relationship between shape variation using the<br />

Principal Component scores and Centroid Size. No significant<br />

correlation was detected between the PCs and Centroid Size for the<br />

sample as a whole, meaning no significant scale differences were<br />

detected. These results suggest that there is no significant shape or size<br />

differences between older subadults in their mid teens and adults, thus<br />

signifying that subadults reach their final form earlier than expected.<br />

The significant difference between 20-year-olds and the over 25 group<br />

concurs with the study by Sarnas and Solow (1980) who found<br />

displacements in nasion and sella between 21 and 26 year olds. The<br />

changes between the 20 and 25+ age groups are probably multifactorial<br />

in nature and related to the eruption of the third molars and/or possibly<br />

alveolar remodeling due to the aging process. These studies have<br />

clinical as well as forensic implications for the identification of subadult<br />

and adult crania.<br />

Craniofacial Growth, Teens, Adults<br />

* Presenting Author<br />

H46 Estimating Advanced Adult Age-at-Death in<br />

the Pelvis: A Comparison of Techniques on<br />

Known-Age Samples From Iberia<br />

Allysha P. Winburn, MA*, Joint POW/MIA Accounting Command,<br />

Central Identification Laboratory, 310 Worchester Avenue, Building 45,<br />

Hickam Airforce Base, HI 96853; and Carme Rissech, PhD, Universitat<br />

de Barcelona, Avd. Diagonal, 645; 08028, Barcelona, SPAIN<br />

The goal of this presentation is to demonstrate the difficulty of<br />

estimating age in elderly individuals by comparing the performances of<br />

four age-estimation methods on skeletal samples of advanced age. This<br />

study examines factors undermining successful age estimation, and<br />

investigates whether new techniques may have the potential to advance<br />

the study of aging in elderly individuals.<br />

This presentation will impact the forensic community by exploring<br />

the utility of various aging techniques to the forensic anthropological<br />

community - specifically, by testing and comparing traditional aging<br />

techniques with a new Bayesian method of age estimation that may<br />

prove valuable to the forensic anthropologist. The presentation focuses<br />

on the as-yet-unsolved problem of estimating advanced adult age. Thus,<br />

it will provoke discussion on whether accurate age estimates for the<br />

elderly are a worthwhile goal or a biological impossibility, and stimulate<br />

future research on the forensic applicability of both new and traditional<br />

methods of age-at-death estimation.<br />

An accurate adult age-at-death estimate is the goal of much forensic<br />

anthropological research; it is a crucial component of the biological<br />

profile that facilitates skeletal individuation and victim identification.<br />

However, accurate age estimates into the decade of the 60’s and beyond<br />

are rarely achieved with current methods. Historically, morphological<br />

age-at-death estimation techniques have focused on the articular surfaces<br />

of the bony pelvis. The Suchey-Brooks pubic symphysis method, and<br />

the Lovejoy et al. and Buckberry and Chamberlain auricular surface<br />

methods, have been tested on many populations worldwide. However,<br />

even these widely-used techniques can result in estimation errors and<br />

broad age ranges that prove forensically uninformative. Because of the<br />

irregularity of skeletal degenerative change, such errors are often<br />

exaggerated in individuals of advanced age.<br />

These three methods are tested on modern Iberian skeletal samples<br />

of known age from the Universitat Autònoma de Barcelona (N=34) and<br />

the Universidad de Valladolid (N=80) which include an abundance of<br />

elderly individuals (>60 years) and therefore highlight the hazards of<br />

applying traditional age estimation techniques to individuals of advanced<br />

age. The Rissech et al. method, a Bayesian age estimation technique<br />

based on the acetabulum, is also tested. When tested on these samples,<br />

the three traditional methods perform with similar but high degrees of<br />

inaccuracy and bias, sometimes overestimating the ages of young adults<br />

by up to 20 years and underestimating the ages of older adults by up to<br />

35 years. In estimating the ages of elderly Iberian individuals, the three<br />

methods perform equally poorly. In contrast, the Rissech et al. method<br />

estimates male age with significantly lower inaccuracy and bias than do<br />

the three traditional techniques. In addition, its population-specific point<br />

age estimates and narrow confidence intervals suggest its utility to the<br />

forensic anthropologist.<br />

Differences in ancestry, activity levels, and rates of skeletal<br />

degeneration continue to make skeletal estimation of advanced adult age<br />

problematic. However, accurate age estimates and biological profiles,<br />

even for the elderly, remain a goal for forensic anthropologists. These<br />

results suggest that Bayesian techniques like the Rissech et al. method<br />

may have the potential to improve age estimation among elderly<br />

individuals.<br />

Age-at-Death, Pelvis, Iberia<br />

172


H47 The Sacral Auricular Surface: A New<br />

Approach to Aging the Human Skeleton<br />

Alicja K. Kutyla, MS*, University of Tennessee, Knoxville, Department<br />

of Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; and<br />

Hugh E. Berryman, PhD, Department Sociology & Anthropology,<br />

Middle Tennessee State University, Box 89, Murfreesboro, TN 37132;<br />

After attending this presentation, attendees will appreciate the<br />

potential of the sacral auricular surface as an additional means of age<br />

estimation. A different, customized approach to aging the human<br />

skeleton will be presented along with its potential.<br />

This presentation will impact the forensic community by presenting<br />

a new means of estimating age from the human skeleton and a new<br />

methodology that has the potential, with further research, to lead to a<br />

more individualized approach for estimating age at death.<br />

This study proposes to identify and define morphological<br />

characteristics of the sacral auricular surface that correlate with age.<br />

Character selection began with a survey of those described by Lovejoy<br />

et al. (1985) and culminated with the refinement of modified characters.<br />

These were then tested for correlation with age using the Robert J. Terry<br />

Anatomical Skeletal Collection (n=410), housed at the National Museum<br />

of Natural History. Corresponding sacral and iliac surfaces were<br />

evaluated for reciprocal age changes; however, none were identified.<br />

The characteristics defined for the sacral auricular surface are<br />

modifications of those described by Lovejoy et al., but also include new<br />

characters specific to the sacral auricular surface. Billowing, striations<br />

and transverse organization as described by Lovejoy et al. were omitted<br />

as they did not appear on the sacrum. Surface characters adapted from<br />

Lovejoy et al. include granularity (three grain types are observed on the<br />

sacral auricular surface) and retroauricular activity (surface<br />

characteristics differ significantly from Lovejoy et al.). Microporosity,<br />

macroporosity, and density were adapted without change from Lovejoy<br />

et al.; however, a new scoring system was devised for the expression of<br />

these characters. Newly devised characteristics involving the border of<br />

the auricular surface include thickened, arthritic sharp and arthritic<br />

lipped margins.<br />

The sacral auricular surface was divided into four regions or<br />

quadrants. Each surface characteristic was then defined individually for<br />

each region and assigned a score based on presence, absence and degree<br />

of expression in keeping with Buckberry and Chamberlain (2002). The<br />

division of the sacral auricular surface into quadrants allowed an<br />

evaluation of the progression of degenerative changes over the entire<br />

sacral auricular surface.<br />

The aging method developed in this study involves bracketing<br />

whereby the minimum and maximum ages of occurrence of particular<br />

characters define the upper and lower limits of the estimated age interval.<br />

This approach is more individualized, allowing the examiner to delimit<br />

an age interval based upon surface characters specific to the sacrum<br />

being examined, as opposed to identifying a phase with a set age interval.<br />

For example, traits that do not occur before a certain age can be used to<br />

set the lower limit to the age interval (e.g., a score of 1 for microporosity<br />

in region 1 does not occur before age 22) and traits that do not occur after<br />

a certain age can be used to set the upper limit (e.g., a score of 3 for<br />

primary grain in region 2 does not occur after age 38) resulting in an<br />

individualized age interval, of 22-38 years. This is particularly useful in<br />

instances where a surface may be in between two classically defined<br />

phases.<br />

This aging method was tested using the William M. Bass Donated<br />

Collection (n=100), housed at the University of Tennessee, Knoxville.<br />

Results indicate accurate placement of individuals in 70% of the cases.<br />

Although not particularly high, accuracy may be improved with further<br />

research and incorporating other established aging methods to this<br />

individualized method of age estimation. The age ranges formulated<br />

from this customized method are from five to fifty years and are<br />

particularly useful in aging older individuals, even beyond the fifth<br />

decade. Additionally, the sacral auricular surface method, when used in<br />

conjunction with other established aging methods, may be of value in<br />

narrowing large age ranges.<br />

This research was supported by the Smithsonian Institution’s<br />

Graduate Student Fellowship and the Department of <strong>Bio</strong>logy, Middle<br />

Tennessee State University.<br />

Sacral Auricular Surface Aging Method, Age at Death Estimation,<br />

Forensic Anthropology<br />

H48 Cranial Suture Closure as a Reflection of<br />

Somatic Dysfunction: Lessons From<br />

Osteopathic Medicine Applied to<br />

Physical Anthropology<br />

Anne M. Kroman, PhD*, and Gregory A. Thomspon, DO, Lincoln<br />

Memorial University, De-Busk College of Osteopathic Medicine, 6965<br />

Cumberland Gap Parkway, Harrogate, TN 37752<br />

After attending this presentation, attendees will have a great<br />

appreciation of anatomy and physiology of the cranium and potential<br />

factors that may influence adult cranial suture fusion.<br />

This presentation will impact the forensic community by drawing<br />

attention to potential hazards of utilizing a well-known method of<br />

determining age in adult skeletal remains.<br />

The construction of an accurate biological profile has long been a<br />

cornerstone of physical and forensic anthropology. Among the diverse<br />

components of the analysis, the correct determination of age at death has<br />

long been considered one of the most challenging. Adult, or<br />

degenerative aging, can be fairly ambiguous with large ranges in<br />

variation, as seen by the large ranges of standard deviations in a majority<br />

of the methods. The foundation behind estimation of age at death<br />

determined from mature skeletal remains is anchored on the core<br />

principle that the degenerative changes are both uniform and predictable.<br />

One of the most controversial methods of adult age estimation is<br />

assessment of cranial suture fusion. Since its conception and<br />

application, the technique has been fraught with controversy. Initially,<br />

two “rival” schools of thought existed regarding sutural ossification; that<br />

they were either a normal progression of age or the manifestation of<br />

pathological condition (Hershkovitz et al 1997). The former theory<br />

prevailed in the literature, and the work of Todd and Lyon set the<br />

standard for utilizing cranial suture ossification as a viable method for<br />

aging adult skeleton remains in physical anthropology (1924). However,<br />

several issues regarding the methodology and analysis of some of the<br />

earlier techniques have recently been called into question (Hershkovitz<br />

et al. 1997, Meindl and Lovejoy 1985). Numerous researchers have<br />

attempted to refine the method and identify possible confounding<br />

factors, with varied results (e.g., Hershkovitz et al. 1997, Nawrocki<br />

1998, Zambrano 2005).<br />

The “confounding factor” at work may be no other than the basic<br />

principles of anatomy and physiology of the cranium. The regard for the<br />

skull as a static, immobile entity is a view point that is long overdue an<br />

intellectual overhaul. Joints, by inherent nature, are designed to provide<br />

movement to some degree, and the cranial sutures are no exception.<br />

They, like all joints, will remain patent as long as there is motion, and<br />

fuse only when the motion has ceased. While the degree of motion<br />

present between the cranial bones is small, it has been well documented<br />

in medical and neurological studies (Heisey and Adams 1993). It is also<br />

noted that severe changes to the skeleton, or somatic dysfunction, can<br />

have an effect on the patency of the cranial sutures and may lead to<br />

pathological fusion.<br />

Cranial suture fusion and obliteration is best explained as a<br />

mechanism of somatic dysfunction rather than a linear, predictable<br />

173 * Presenting Author


degenerative consequence of aging. To assess the effect of skeletal<br />

somatic dysfunction on the fusion of cranial sutures, analysis was<br />

conducted utilizing the William M. Bass donated skeletal collection<br />

housed at The University of Tennessee. From the collection 100<br />

individuals of known age, race, and sex were randomly selected for<br />

inclusion. The analysis was conducted in two phases. In the first phase,<br />

each of the crania was scored for cranial suture closure following the<br />

methodology outlined in Meindel and Lovejoy (1985). The second<br />

phase included a more in-depth analysis of the cranial and post cranial<br />

skeletal remains by a physician. The strain pattern, if present, was<br />

identified and scored for each crania, along with other areas of somatic<br />

dysfunction in the skeleton (e.g., sacroiliac fusion, ankylosing<br />

spondylitis, severe scoliosis). A stronger correlation was found between<br />

skeletal dysfunction, either cranial or post cranial, and cranial suture<br />

fusion than between age at death and fusion rates. Furthermore, the<br />

patterns of cranial suture fusion were highly correlated with the<br />

identified strain pattern in the cranium, as previously suggested in the<br />

neurological literature.<br />

The results from this analysis clearly show a correlation between<br />

skeletal dysfunction and cranial suture obliteration, supporting the theory<br />

that sutural obliteration is under the influence of a variety of factors, and<br />

is not a simple, linear predicator of age. Physical and forensic<br />

anthropologists should be cognizant of the possibility that pathological<br />

processes may be present that could potentially alter results from age<br />

estimation by means of cranial suture fusion.<br />

References:<br />

Heisey SR and Adams T. Role of cranial bone mobility in cranial<br />

compliance. Neurosurgery.1993;33(5):869-876.<br />

Hershkovitz I, Latimer B, Dutour O, Jellema LM, Wish-Baratz S,<br />

Rothschild C. 1997 Why do we fail in aging the skull from the sagittal<br />

suture? Amer J Physical Anthrop 1997;103:393-399.<br />

Meindl RS, Lovejoy CO. Ectocranial suture closure: A revised method<br />

for the determination of skeletal age at death based on the lateral anterior<br />

sutures. Amer J Physical Anthrop 1985;68:57-66.<br />

Nawrocki SP. Regression formulae for estimating age at death from<br />

cranial suture closure. In: Forensic Osteology: Advances in the<br />

Identification of Human Remains (2nd ed.) Reichs KJ. (ed.). 1998<br />

Todd TW, Lyon DW. Endocranial suture closure, its progress and age<br />

relationship: Part I Adult males of the while stock. Amer J Physical<br />

Anthrop 1924;7:325-384.<br />

Zambrano CJ. Evaluation of Regression Equations Used to Estimate<br />

Age at Death from Cranial Suture Closure. Masters Thesis. 2005.<br />

Age Estimation, Cranial Sutures, Suture Fusion<br />

H49 A Multidisciplinary Test of the<br />

Lamendin Age Estimation Method<br />

Ann W. Bunch, PhD*, 164 Albert Brown Building, Department of<br />

Criminal Justice, SUNY Brockport, Brockport, NY 14420; Mary I.<br />

Jumbelic, MD, Onondaga County <strong>Medical</strong> Examiners Office, 100<br />

Elizabeth Blackwell Street, Syracuse, NY 13210; Robert D. Willis, DDS,<br />

7282 Oswego Road, Liverpool, NY 13090; Ronald Brunelli, Onondaga<br />

County <strong>Medical</strong> Examiner’s Office, 100 Elizabeth Blackwell Street,<br />

Syracuse, NY 13210; and Jennifer J. VanWie-Dobson, BA, 403 Robinson<br />

Road, Durham, NC 27705<br />

After attending this presentation, attendees will be informed of the<br />

results of the first multidisciplinary test of the Lamendin age estimation<br />

method which has been described as “simple,” “fast,” and “easy to use”<br />

by its developer.<br />

This presentation will impact the forensic community by providing<br />

insight into the utility of this purportedly simple method at scenes that<br />

require forensic identification. Such scenes could be in a classic morgue<br />

* Presenting Author<br />

situation or in a large temporary facility functioning as a mass disaster<br />

response.<br />

This presentation will summarize a study funded by the National<br />

Institute of Justice in 2006-2007 designed to test the Lamendin (1992)<br />

age estimation technique. This method puts to use single-rooted teeth to<br />

determine age at death. Lamendin and his co-authors described their<br />

technique as “simple,” “fast, easy to use, and reasonably accurate”<br />

(1992: 1373). It appears to be an attractive method for predicting age at<br />

death, especially in rapid-response morgue situations, since it requires<br />

very little technology and calls for little to no damage to the unidentified<br />

human remains.<br />

Lamendin et al.’s original research, as well as others’ later followup<br />

studies, explored interobserver error and came to different<br />

conclusions. Lamendin et al. (1992) concluded that interobserver error<br />

was not significant, yet Prince and Ubelaker (2002) discovered that the<br />

experience of the observer can indeed affect the age assessments. Using<br />

40 and 30 teeth respectively, Prince and Ubelaker (2002) discovered that<br />

the intra-observer test showed a mean error of 6.5 years. The<br />

interobserver test included three participants, one with some experience<br />

with the technique (profession not specified) and two without any prior<br />

exposure to the method (graduate students). There was a difference<br />

between the experienced and non-experienced results, with a maximum<br />

mean error of 13 years, and a maximum range of 0 to 37 years reported.<br />

These results indicated that the “features described on some teeth are<br />

subject to varied interpretation and this can lead to variable age<br />

estimates” (2002:116). The Prince and Ubelaker study demonstrated that<br />

there may be some difficulty practicing the method for the first time, thus<br />

experience may have an impact on results and overall accuracy.<br />

More recently, the Lamendin method has been used in combination<br />

with other age estimation methods (Martille 2005), and has shown<br />

effectiveness for the age group between 40 and 60 years (ibid). This is<br />

notable since other methods, such as those involving the pubic<br />

symphysis or the sternal end of the fourth rib, are more applicable to<br />

younger individuals. In addition, practitioners have suggested<br />

refinements to the method to obtain more accurate results, either by<br />

adding a new dimension to measure (Prince and Ubelaker 2002) or by<br />

devising new formulae for specific single-rooted teeth (Prince and<br />

Ubelaker 2002; Sarajlic 2005).<br />

This project differs from any done to date since it included more<br />

observers (five) and a larger tooth sample (over 150 teeth rather than a<br />

small subsample). In addition, the observers in this study differed from<br />

prior studies since they were four practicing professionals from different<br />

fields in the medico-legal community – anthropologist, pathologist,<br />

odontologist, and death investigator – as well as one forensic science<br />

master’s level graduate student. Furthermore, qualitative data were<br />

gathered along with the required quantitative data. This qualitative data<br />

assisted in the understanding of discrepancies between observers and the<br />

reason for them. No prior studies make mention of collection of such<br />

data from participants.<br />

The preliminary results suggest that the Lamendin technique has its<br />

strengths and weaknesses with users from various disciplines.<br />

Qualitative data revealed that periodontosis proved to be the most<br />

ephemeral variable to be measured. It was described as “difficult to see”<br />

or “visualize” in numerous specimens measured in this study.<br />

Quantitative data suggest that differences exist between observers (mean<br />

error of 7.9 years), and that observers had consistent difficult correctly<br />

estimating the age of younger adults, such as those in their late teens and<br />

twenties. However, this method appears to be useful and helpful<br />

between differently-trained practitioners. This would certainly be the<br />

case in a mass disaster situation when general triaging by age categories<br />

was an initial goal in the identification process.<br />

Given these results, the application of the Lamendin method to<br />

mass disasters with high numbers of unidentified victims may be<br />

recommended. The lack of damage done to remains, the rapidity of the<br />

data collection, the minimal equipment requirements, and the simplicity<br />

174


of training multiple individuals to use the method make it ideal for<br />

triaging and processing of remains.<br />

Lamendin Age Estimation Method, Mass Disaster,<br />

Forensic Identification<br />

H50 Full Time Employment of Forensic<br />

Anthropologists in <strong>Medical</strong><br />

Examiner’s/Coroner’s Offices in the<br />

United States—A History<br />

Hugh E. Berryman, PhD*, Department Sociology & Anthropology,<br />

Middle Tennessee State University, Box 89, Murfreesboro, TN 37132<br />

After attending this presentation, attendees will have a better<br />

understanding of the development and expansion of forensic<br />

anthropology in the United States and its relationship with <strong>Medical</strong><br />

Examiner’s/Coroner’s Offices.<br />

This presentation will impact the forensic community by<br />

demonstrating a slow but steady increase in the demand for forensic<br />

anthropologists within the United States.<br />

The second Luetgert murder trial in 1894 and the expert testimony<br />

of George A. Dorsey of the Columbia Field Museum in Chicago<br />

launched physical anthropology as a valuable judicial tool. Throughout<br />

the early and middle 20th Century, physical anthropologists employed in<br />

academic settings were increasingly called upon by law enforcement<br />

agencies to examine skeletal remains to ascertain identity. Wilton<br />

Krogman’s 1939 publication in the FBI Bulletin entitled A Guide to the<br />

Identification of Human Skeletal Material stimulated interest in the<br />

medico-legal potential held by physical anthropology, and served as the<br />

earliest material evidence of a new specialty taking root. Krogman’s<br />

expanded version of this bulletin appeared in 1962 under the title of The<br />

Human Skeleton in Forensic Medicine, and provided a formal literary<br />

toolkit for early practitioners. In 1972, the American Academy of<br />

Forensic Science introduced Physical Anthropology as a new section and<br />

during the 1970’s forensic anthropology courses began to appear on<br />

many campuses and graduates began to look beyond academia for<br />

employment. By 1980, physical anthropologists were being considered<br />

for employment in medical examiner and coroner offices, although their<br />

employers often struggled for justification considering the infrequent<br />

and sporadic nature of anthropology casework.<br />

In September 1980, Hugh Berryman was employed as Director of<br />

the Shelby County <strong>Medical</strong> Examiner’s Morgue in Memphis, Tennessee<br />

marking the first full-time employment of a forensic anthropologist in a<br />

medical examiner’s office in the United States. The position of Morgue<br />

Director, with its administrative duties, provided justification for the<br />

position and insured the presence of a forensic anthropologist for the<br />

intermittent skeletal casework. In 1981, the New Jersey <strong>Medical</strong><br />

Examiners Office hired Donna Fontana as full-time Forensic<br />

Anthropologist and Forensic Microscopist. She assisted with<br />

radiographs, identifications, and facial reconstruction. Currently, she has<br />

two interns and is the only anthropologist in the United States with direct<br />

access to a National Crime Information Center terminal.<br />

In 1977, the Beverly Hills Supper Club disaster in Southgate,<br />

Kentucky claimed 165 lives and was the deadliest nightclub fire in<br />

United States history. This disaster provided the Kentucky <strong>Medical</strong><br />

Examiner’s Office the impetus to seek physical anthropological<br />

assistance from David Wolf between 1979 and 1980. From July 1980 to<br />

1982, he worked under a personal service contract. In 1982, Wolf was<br />

employed full-time as Kentucky’s and the nation’s first State Forensic<br />

Anthropologist. In 1983, Berryman reorganized the Shelby County<br />

Morgue, eliminating two autopsy technician positions, and hired<br />

physical anthropologist Craig Lahren as Assistant Director to interface<br />

with the physicians and technicians, to bring an anthropology influence<br />

to the autopsy, and to facilitate research.<br />

In 1984, William Rodriguez completed his pioneering work at the<br />

Anthropology Research Facility at The University of Tennessee,<br />

Knoxville and was employed as Deputy Chief Coroner at the Caddo and<br />

Bossier Parish Coroner’s Office in Louisiana. In addition to forensic<br />

anthropology casework, he oversaw investigations including death<br />

scenes, and, as Deputy Chief Coroner, was responsible for psychiatric<br />

commitments. In 1986, Rodriguez left Louisiana for Syracuse, New<br />

York to become Forensic Anthropologist for the Onondaga County<br />

<strong>Medical</strong> Examiner’s Office.<br />

Also in 1986, Craig Lahren left Memphis opening the position of<br />

Assistant Morgue Director. The vacancy was immediately filled by<br />

Robert Mann who, after eight months, left for a position at the<br />

Smithsonian Institution in Washington, DC. Earlier that year, Steve<br />

Symes had been hired as Morgue Director for the Metropolitan<br />

Nashville/Davidson County <strong>Medical</strong> Examiner’s Office only to leave<br />

that position late in 1986 to fill the Assistant Director’s vacancy left by<br />

Robert Mann in Memphis. By 1987, Craig Lahren, who started this<br />

domino effect, became Coordinator of Forensic Services and forensic<br />

anthropologist for the Hamilton County <strong>Medical</strong> Examiner’s Office in<br />

Chattanooga, Tennessee.<br />

In 1979, when William Haglund began his career as one of thirteen<br />

<strong>Medical</strong> Investigators at the King County <strong>Medical</strong> Examiner’s Office,<br />

Seattle, Washington, he was not an anthropologist. His duties required<br />

him to respond to all deaths occurring in his jurisdiction, collect<br />

evidence, interview families, perform death notifications and write<br />

reports. In 1983 he advanced to Chief <strong>Medical</strong> Investigator. However,<br />

it was the Green River Killings that began in 1982, and continued with<br />

42 associated murders, that attracted him to forensic anthropology. With<br />

the completion of his Master’s degree in physical anthropology in 1988,<br />

he added forensic anthropology to his duties as Chief <strong>Medical</strong><br />

Investigator. After completing his PhD in physical anthropology in<br />

1991, he worked four more years for the medical examiner’s office<br />

before being employed in 1995 by the United Nations as Senior Forensic<br />

Advisor.<br />

In 1989, William Rodriguez left Syracuse to accept a position as<br />

Chief Forensic Anthropologist and Deputy Chief <strong>Medical</strong> Examiner for<br />

Special Investigations for the Armed Forces Institute of Pathology,<br />

Washington, DC. The position of Kentucky State Forensic<br />

Anthropologist, left open by the untimely death of David Wolf in 1992,<br />

was filled in 1994 by Emily Craig.<br />

For physical anthropologists, the 1980’s marked the beginning of a<br />

shift in employment from academic to applied opportunities. That shift<br />

has continued and the numbers of forensic anthropologists employed full<br />

time in medical examiner’s offices continues to increase, and their duties<br />

are more focused on their training. Austin and Fulginiti (2008) note that<br />

there are currently 19 forensic anthropologists hired in full-time<br />

positions with medical examiner’s offices within the United States and<br />

an additional nine who are hired with shared duties. Encouragingly,<br />

Bradley Adams was hired as Forensic Anthropologist for New York City<br />

in 2004. He now has seven anthropologists that he directs—two with BA<br />

degrees, three with MA degrees, and two PhDs.<br />

Forensic Anthropology, <strong>Medical</strong> Examiner, History<br />

H51 Death Investigation for Anthropologists:<br />

Examining an Alternative Role for Forensic<br />

Anthropologists in <strong>Medical</strong> Examiner’s and<br />

Coroner’s Offices<br />

Gina O. Hart, MA*, Regional <strong>Medical</strong> Examiner’s Office, 325 Norfolk<br />

Street, Newark, NJ 07103-2701<br />

After attending this presentation, attendees will learn how Forensic<br />

Anthropologists can use their training in alternative or dual roles at<br />

Coroner’s or <strong>Medical</strong> Examiner’s Offices and how Coroners and<br />

175 * Presenting Author


<strong>Medical</strong> Examiners can benefit from having an anthropologist at their<br />

offices. Attendees will also learn what the typical role of the<br />

Medicolegal Death Investigator entails.<br />

This presentation will impact the forensic community by<br />

demonstrating various ways that Forensic Anthropologists can use their<br />

training in alternative professions.<br />

The purpose of this presentation is to demonstrate how forensic<br />

anthropologists can use their training in alternative or dual roles at<br />

coroner’s or medical examiner’s offices. Specifically, the author will<br />

focus on the typical role of a medicolegal death investigator, and<br />

illustrate what anthropologists should expect when entering into a career<br />

as a death investigator. Additionally, medical examiners will be<br />

informed how they can benefit from hiring forensic anthropologists in<br />

various roles in their offices.<br />

The relationship between the pathologist and the forensic<br />

anthropologist has become vital in multiple medical examiner’s and<br />

coroner’s offices around the United States. These medical examiners<br />

and coroners have seen the added benefit of having a forensic<br />

anthropologist on staff in their offices, and have hired anthropologists to<br />

supplement their staffs. Unfortunately, medical examiners and coroners<br />

often have problems justifying a full-time anthropology position and<br />

have begun to hire forensic anthropologists in other areas within their<br />

offices.<br />

Furthermore, the current popularity of forensic sciences in the<br />

media has caused students to enter forensic related programs at an<br />

increased rate. Therefore, the number of forensic anthropology students<br />

has reached an all time high while Anthropology positions at academic<br />

institutions have only slightly increased. As a result, current and future<br />

forensic anthropologists must investigate alternative career options if<br />

they wish to find employment in a related field. <strong>Medical</strong> examiner’s<br />

offices offer several potential employment options for the<br />

anthropologist, including autopsy technician, compliance officer,<br />

photographer, and death investigator.<br />

This presentation will focus specifically on the role of the<br />

medicolegal death investigator and how anthropologists can use their<br />

training in this role. The death investigator serves as the front line in<br />

medical examiner’s and coroner’s offices, investigating all cases that are<br />

reported and determining which ones will be accepted for examination.<br />

Tasks of medicolegal death investigators include performing scene<br />

examinations, collecting evidence that is directly related to the body,<br />

obtaining medical and social histories on decedents from family<br />

members and friends, and any other information that may help the<br />

pathologist to determine the cause and manner of death. Medicolegal<br />

death investigators come from a myriad of backgrounds, and they are<br />

expected to have a basic knowledge in medicine, medications, local<br />

legislation, and forensic sciences.<br />

The experiences of working as a medicolegal death investigator and<br />

anthropologist at a medical examiner’s office in a large urban area of<br />

New Jersey, covering four counties, are discussed. In 2007, 4,689 cases<br />

were reported and investigated by a 24-hour staff of 13 investigators. Of<br />

these cases, 1,825 were accepted and 1,249 were autopsied. From all the<br />

reported cases of 2007, manner of death included natural (3721),<br />

accidental (508), suicide (123), homicide (207), undetermined (30) and<br />

other types of cases (100). The other types of cases handled include nonhuman<br />

remains (18), cases transferred out of the jurisdiction (66), fetuses<br />

(14) and body parts (2).<br />

In addition, the continuing education opportunities available to<br />

anthropologists who are interested in pursuing a career in medicolegal<br />

death investigation are discussed. A wide range of short courses are<br />

offered by numerous agencies throughout the United States providing the<br />

basic knowledge in Death Investigation. Training, publications, and<br />

other potential areas of continuing education will also be highlighted.<br />

Anthropologists working as medicolegal death investigators have<br />

the unique experience of handling the typical death investigator cases<br />

and any anthropology cases from the initial stages of scene investigation.<br />

* Presenting Author<br />

This allows anthropologists a multi-dimensional perspective into the<br />

cases that they handle both as an investigator and a forensic<br />

anthropologist. Additionally, the medical examiner or coroner will<br />

greatly benefit by having a forensic anthropologist on staff, even if they<br />

are not able to justify having that person in a full-time forensic<br />

anthropology position.<br />

Medicolegal Death Investigation, Forensic Anthropology,<br />

<strong>Medical</strong> Examiner’s Office<br />

H52 Identification of Multiple Cranial Traumas<br />

in a Recently Closed Homicide Investigation<br />

Thomas A. Furgeson, MA*, University of Wyoming, 1002 South 3rd<br />

Street, Laramie, WY 82070; George W. Gill, PhD, University of<br />

Wyoming, Department of Anthropology, Laramie, WY 82071; and Rick L.<br />

Weathermon, MA, Department of Anthropology, University of Wyoming,<br />

10 East University Avenue, Department 3431, Anthropology, Laramie,<br />

WY 82071<br />

After attending this presentation, attendees will come away with an<br />

understanding of the value of using forensic anthropologists in<br />

investigative contexts involving human skeletal remains. This will be<br />

achieved through an overview of a recently resolved homicide case from<br />

southeastern Wyoming that contrasts and evaluates the assessments<br />

offered to law enforcement by forensic anthropologists and other<br />

forensic investigators involved in the case.<br />

This presentation will impact the forensic community by providing<br />

a direct illustration of the power of employing forensic anthropological<br />

techniques in crime investigations, in service to law enforcement as a<br />

means for remains identification and for analysis of human skeletal<br />

trauma.<br />

Attendees will be presented with a case study of an actual homicide<br />

investigation involving human skeletal remains. This case serves as an<br />

example of the benefits of applying forensic anthropological techniques<br />

to the identification of remains and in analyses of bone trauma. In the<br />

initial stages of this investigation, which began in December 2002, both<br />

anthropologists and forensic pathologists were approached and engaged<br />

by law enforcement to provide analyses of an unidentified, partial human<br />

skeleton. This set of remains, found through extensive, coordinated<br />

searches conducted over a period of several months in 2002 and 2003 by<br />

volunteers and multiple law enforcement agencies and rescue and<br />

recovery groups, consisted of a partial cranium, both femora, a humerus,<br />

and an ulna. These skeletal elements were scattered over an area of<br />

roughly one square mile on the ground surface in a remote recreational<br />

area. The authors will present the osteological evidence available to<br />

investigators at the outset of this homicide investigation, and will detail<br />

the course and outcome of the case. The specific evidence emphasized<br />

will be multiple traumas to the recovered portion of the cranium of the<br />

victim, including a unique penetrating fracture to the occipital region,<br />

and several other perimortem traumas to the mid-facial and orbital<br />

regions of the skull. The hypotheses offered to law enforcement by<br />

anthropologists and pathologists differed markedly in terms of the<br />

suggested mechanisms of injury and in the suggested relationships, both<br />

temporal and physical, of the observed cranial traumas.<br />

Subsequent case evidence and testimony provided investigators<br />

with detailed information regarding the true mechanisms of the various<br />

injuries, as well as the relationships between these observed and<br />

documented traumas. This information provides a unique opportunity to<br />

present both a comparison of the hypotheses offered by the<br />

anthropologists and other forensic investigators to the actual chain of<br />

events for this homicide, and an evaluation of the accuracy of these<br />

hypotheses, which were based solely on the initial osteological evidence.<br />

It will be shown that the hypotheses offered to law enforcement by the<br />

176


case forensic anthropologists correlate most closely with the actual<br />

mechanisms and sequence of traumas for this homicide case, which was<br />

closed in early part of 2008. This will be made explicit through the<br />

presentation of the information contained in the documented statements<br />

provided to law enforcement by the perpetrators of the crime.<br />

Osteology, Homicide, Anthropology<br />

H53 Anthropologist/<strong>Medical</strong> Examiner<br />

Collaboration at Isolated, Inaccessible,<br />

or Disrupted Crime Scenes<br />

Emily A. Craig, PhD*, <strong>Medical</strong> Examiner’s Office, 100 Sower<br />

Boulevard, Suite 202, Frankfort, KY 40601<br />

The goal of this presentation is to demonstrate some cases of<br />

unusual and difficult body recovery scenarios wherein the on-site efforts<br />

of the forensic anthropologist helped the consulting medical examiner<br />

correlate autopsy findings with the death scene. The interplay of<br />

innovative and traditional techniques will be discussed as well as the<br />

inseparable disciplines of forensic anthropology, musculoskeletal<br />

anatomy, and anatomical pathology.<br />

This presentation will impact the forensic community by presenting<br />

one aspect of the symbiotic relationship between forensic anthropology<br />

and forensic pathology.<br />

The Commonwealth of Kentucky combines a coroner system with<br />

a single state-wide medical examiner system which is under the ultimate<br />

control of the Justice and Public Safety Cabinet within the State<br />

Government system. There is an elected coroner in each of Kentucky’s<br />

120 counties and there are four separate medical examiner offices, all<br />

under the direction of a chief medical examiner. By statute (KRS 72) the<br />

state provides medical examiner services to all county coroners, and this<br />

provision includes the services of the state’s forensic anthropologist.<br />

The forensic anthropologist is employed full–time within the medical<br />

examiner’s office and has dedicated laboratory and office space in the<br />

Centralized Laboratory Facility in Frankfort, Kentucky. This<br />

anthropologist is on call for response to any of the county coroners for<br />

on-site investigations and will demonstrate how the timely arrival at the<br />

crime scene and almost simultaneous integration of information to and<br />

from the consulting pathologists proves to be advantageous.<br />

It almost goes without saying that each death scene needs thorough<br />

documentation and analysis in order to explain some of the disarray and<br />

damage seen at autopsy, but it is the anthropologist’s on-site analysis on<br />

cases with varying degrees of disruption and/or decay (not just skeletal<br />

remains) that has helped integrate information from the scene and<br />

autopsy. The number of disrupted human remains in each jurisdiction is<br />

probably not out of proportion to the overall number of autopsies<br />

performed each year (3.5 to 4%) but because of the geography of the<br />

state, the range of weather conditions, and varied carnivore predation<br />

patterns, on-site analysis by a forensic anthropologist proves especially<br />

helpful in cases wherein any combination of taphonomic events may<br />

have modified the death scene. Although the primary focus for<br />

anthropologist’s crime-scene response is skeletal remains, a thorough<br />

knowledge of overall soft tissue gross anatomy in addition to osteology<br />

has proved to be invaluable for the documentation and collection of<br />

evidence with any disrupted remains, regardless of the amount of decay.<br />

A working knowledge of entomology, botany, and wildlife biology has<br />

also been necessary to incorporate associated evidence into the overall<br />

death investigation.<br />

The cases to be discussed in this presentation are those in which the<br />

forensic anthropologist assisted with the scene recovery and site analysis<br />

while in contact with a morgue-based medical examiner, thus<br />

demonstrating the symbiotic relationship between the two. In addition to<br />

standard image transfer through phone systems, some of the other scene-<br />

to-morgue procedures used in Kentucky involve hand held 3-D<br />

microscopes with internet connections and radiographic identification<br />

capabilities through mobile data terminals.<br />

Fire-related deaths also comprise a number of the cases to be<br />

discussed; from an underwater structure recovery to incidents with<br />

multiple homicides disguised by fire. Since the percentage of overall<br />

homicides disguised by fire has reached as high as 21% per year, there<br />

remains a high level of suspicion in nearly all fire-related deaths across<br />

the Commonwealth. Here, as with any skeletonized remains,<br />

anthropological recovery techniques help preserve evidence. Therefore<br />

the anthropologist’s on-site protocol ensures a thorough transfer of<br />

information and remains to the pathologist.<br />

Anthropology, <strong>Medical</strong> Examiner, Crime Scene Investigation<br />

H54 The Role of Forensic Anthropology in<br />

Disaster Operations<br />

Christian Crowder, PhD*, Benjamin J. Figura, MA, Bradley J. Adams,<br />

PhD, and Frank DePaolo, MS, New York City, Office of Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016<br />

After attending this presentation, attendees will understand the<br />

growing role of forensic anthropologists in disaster operations within the<br />

medical examiner system.<br />

This presentation will impact the forensic community by<br />

demonstrating the growing role of anthropology and the additional<br />

training necessary in being a part of disaster operations. The diverse<br />

educational and professional backgrounds of anthropologists make them<br />

strong candidates for taking on roles that may seem less traditional for<br />

anthropologists in this setting.<br />

The skills of forensic anthropology are essential components in the<br />

normal operations within the medical examiner or coroner’s office.<br />

More recently, however, the importance of integrating anthropology in<br />

disaster operations has been noted. Such an instance was exemplified<br />

following the renewed recovery efforts of the World Trade Center site in<br />

2006 in which the Office of Chief <strong>Medical</strong> Examiner-New York City<br />

(OCME-NYC) recognized the critical role of anthropology for these<br />

types of operations. The OCME-NYC is spending considerable time and<br />

resources in developing operational teams that specialize in recovering,<br />

processing, analyzing, identifying and managing remains from mass<br />

disasters. The goal of this presentation is to discuss the multi-level<br />

operations and highlight the role of forensic anthropology in each area of<br />

fatality management.<br />

Field Operations: The recovery of human remains following an<br />

incident is a multi-agency effort that, depending on the nature of the<br />

disaster, involves forensic anthropologists working in different<br />

capacities. The OCME-NYC has established a forensic anthropologist in<br />

the role of the Fatality Management Branch Director within the National<br />

Incident Management System – Incident Command Structure. This role<br />

is a lead player within the operations section and to relay scene<br />

information to the OCME Incident Commander, Investigative and<br />

Recovery Teams, and to other city agencies involved in supporting<br />

fatality management. The more common role of the anthropologist in<br />

field operations involves the application of archaeological methods (i.e.,<br />

survey, mapping, excavation). It is in this role that training in<br />

archaeology is the essential component for ensuring that the most<br />

appropriate, comprehensive and accurate recovery techniques are<br />

utilized during this stage of the operation. Due to the potential hazards<br />

in mass disaster incidences, recovery operations might need to be<br />

conducted under HAZMAT conditions. Forensic anthropologists<br />

involved in these operations must have specialized training to work<br />

under these conditions and be familiar with appropriate personal<br />

protective equipment. Furthermore, the anthropologist must be able to<br />

177 * Presenting Author


ecognize potential hazardous materials in order to alert specialists that<br />

characterize and mitigate such hazards. At the OCME-NYC, forensic<br />

anthropologists have also been integral part of developing specialized<br />

equipment for disaster field operations. For example, the OCME has<br />

developed a mobile sifting platform to expedite the recovery of remains<br />

from large volumes of soil, while maximizing forensic integrity.<br />

Morgue Operations: Following recovery operations, remains are<br />

accessioned into the disaster morgue. Before the remains can be<br />

processed through the various stations of the morgue they are triaged. In<br />

the case of fragmented or commingled remains, anthropologists are wellskilled<br />

to associate or segregate remains and establish appropriate case<br />

numbers. The anthropological analysis station within the disaster<br />

morgue is where the typical role the forensic anthropologist is instituted.<br />

The anthropologist works along side the medical examiner to develop<br />

biological profiles, conjoin fragmented bone, and assist with trauma<br />

analysis. The anthropologist may also assist Forensic <strong>Bio</strong>logy in making<br />

hard tissue selections for DNA analysis.<br />

Disaster Victim Identification (DVI) operations: The DVI<br />

process reconciles postmortem data from the recovered remains with<br />

antemortem data related to the victims. DVI at the OCME-NYC is<br />

operated by the Forensic Anthropology Unit with an anthropologist in<br />

the position of DVI Manager. The role of the DVI Manager is to review<br />

the collective work of the identification teams (e.g., DNA, odontology,<br />

fingerprints) and oversee the identification process. The DVI Manager<br />

also coordinates the Identification Review Board, which provides the<br />

final recommendation on all identifications. Anthropologists on the DVI<br />

staff may also be present in the morgue and the Family Assistance<br />

Center. Additionally, the DVI group has played a major role in the<br />

development of the Unified Victim Identification System (UVIS), a<br />

program developed at the OCME-NYC that allows access to all data<br />

related to an incident.<br />

The diverse educational and professional backgrounds of<br />

anthropologists make them excellent choices for work associated with<br />

disaster operations. The skills, knowledge, and training of personnel<br />

within New York City’s Forensic Anthropology Unit play an integral role<br />

in the City’s mass fatality response plan.<br />

Mass Disaster, Disaster Operations, Anthropology<br />

H55 The Forensic Anthropologist, the National<br />

Crime Information Center (N.C.I.C.),<br />

and National Missing and Unidentified<br />

Persons\System (NamUs) Databases<br />

Donna A. Fontana, MS*, New Jersey State Police, Office of Forensic<br />

Sciences, Forensic Anthropology Laboratory, 1200 Negron Drive,<br />

Hamilton, NJ 08691<br />

After attending this presentation, attendees will understand how the<br />

forensic anthropologist can be an active and effective participant in<br />

utilizing the national informational databases in the investigation of<br />

unidentified persons.<br />

This presentation will impact the forensic community by<br />

highlighting the key points of the National Crime Information Center<br />

(N.C.I.C.) and National Missing and Unidentified Persons System<br />

(NamUs) databases, and the challenges faced by the forensic<br />

anthropologist.<br />

In this age of instant communication, public opinion expects<br />

investigations to be completed in a 60-minute time frame. Some of the<br />

primary tools used by law enforcement for gathering and organizing the<br />

immense amount of information and scientific data collected in the<br />

course of an unidentified person investigation are the N.C.I.C. and<br />

NamUs databases.<br />

* Presenting Author<br />

N.C.I.C., maintained by the F.B.I., is a nationwide online<br />

computer/telecommunication system, which contains millions of records<br />

of persons and property records from across the United States. N.C.I.C.<br />

was established in 1967 and at the current time is used by all 50 states,<br />

Puerto Rico, U.S. Virgin Islands, Guam, Canada, and federal agencies. It<br />

is accessible only by criminal justice and law enforcement agencies.<br />

<strong>Medical</strong> examiner/coroner agencies can have access if they meet certain<br />

criteria set through shared management between FBI and state and local<br />

law enforcement.<br />

In unidentified person investigations, N.C.I.C. captures identifying<br />

information such as personal descriptors and dental data, which is<br />

entered by the investigating law enforcement agency. N.C.I.C. will<br />

automatically cross-match this information against missing and wanted<br />

persons’ records. This comparison is performed on a daily basis on the<br />

records that have been entered or modified the previous day. A list of<br />

potential matches is generated for each agency that enters information.<br />

These entries and matches are restricted to the agencies that have access.<br />

Verification of scientific data entered on unidentified person cases by the<br />

forensic science community is usually not routine.<br />

The medical examiner/coroner, or their designee, controls the case<br />

information entered or edited into the NamUs unidentified database,<br />

after an online registration. Unlike N.C.I.C., NamUs is web-based,<br />

though not all uploaded information on the case is viewable by the<br />

public. Personal descriptors and dental information are entered into the<br />

NamUs database, after review by a member of the forensic science<br />

community, such as the forensic anthropologist. NamUs has strived to<br />

simplify its entries, making it user-friendly to the public. Active<br />

participation by the forensic anthropologist, medical examiner, or<br />

forensic odontologist in the entry, modification, and comparison of<br />

unidentified person data ensures that accurate information is entered into<br />

the database. This process is imperative in the comparison with missing<br />

persons’ information.<br />

This presentation will demonstrate how the active participation by<br />

the forensic anthropologist can ensure accuracy of database information,<br />

which may increase the number of individuals who could be identified.<br />

It is recommended that those in the forensic science community working<br />

with unidentified persons become an active participant with the national<br />

databases used in these investigations.<br />

Forensic Anthropology, N.C.I.C., NamUs<br />

H56 The Role of the Harris County <strong>Medical</strong><br />

Examiner’s Office Forensic Anthropology<br />

Division in Scientific Identification<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong> Examiner,<br />

Anthropology Division, Houston, TX 77054; and Jennifer C. Love, PhD,<br />

Sharon M. Derrick, PhD, and Luis A. Sanchez, MD, Harris County,<br />

<strong>Medical</strong> Examiner’s Office, 1885 Old Spanish Trail, Houston, TX 77054<br />

After attending this presentation, attendees will understand the role<br />

of the Harris County <strong>Medical</strong> Examiner’s Office Forensic Anthropology<br />

Division in scientific identification.<br />

This presentation will impact the forensic community by outlining<br />

the contribution made by Forensic Anthropology to the scientific<br />

identification of unknown and tentatively identified decedents.<br />

The Harris County <strong>Medical</strong> Examiner’s Office (HCMEO) Forensic<br />

Anthropology Division (FAD) is a relatively new division, established in<br />

November of 2006. Scientific identification of unknown and tentatively<br />

identified decedents is one of the core responsibilities of the <strong>Medical</strong><br />

Examiner’s Office and has become a central component of the daily<br />

activities of the FAD.<br />

HCMEO standard operating procedures require scientific<br />

confirmation of identification of all homicide cases and all cases<br />

178


endered unsuitable for visual identification by decomposition,<br />

disfigurement and thermal injury.<br />

All cases in which scientific identification is not confirmed by<br />

fingerprints or dental comparison become the responsibility of the FAD.<br />

When available, the FAD scientifically confirms identification through<br />

radiograph comparison and facilitates identification through DNA by<br />

collecting family reference samples and interpreting DNA kinship<br />

indices. When antemortem records or DNA samples are unavailable, the<br />

FAD facilitates the identification through the collection and presentation<br />

of circumstantial evidence to the responsible pathologist. In the case of<br />

unknown decedents, the FAD compiles an unknown decedent<br />

description; disseminates it to law enforcement, media, and the<br />

Unidentified Decedent Reporting System; submits DNA to CODIS; and<br />

follows up on all generated leads.<br />

Since its inception, the FAD has significantly reduced the number<br />

of cases that remain unidentified. The number of decedents who remain<br />

unknown for greater than six months decreased 40% from the three-year<br />

average prior to the inception of the FAD to 2007 (the first full year of<br />

operation). This number decreased substantially (90%) again in the first<br />

half of 2008. The success is a result of a dedicated team of professionals<br />

that can focus on the follow-through with law enforcement, media, and<br />

the community to identify the unknown and to notify the next-of-kin.<br />

Furthermore, an audit of all of the unknown decedent case files that<br />

predated the FAD has yielded identifications of 30 previously unknown<br />

decedents.<br />

Anthropologists have significantly reduced HCMEO DNA costs.<br />

Prior to the FAD, cases without dental records were scientifically<br />

identified through DNA. A majority of these cases are now identified<br />

through skeletal radiograph comparison. The FAD completed a total of<br />

31 scientific identifications in its first full year of operation, 2007, and<br />

had completed 22 during the first half of 2008. Identifications are<br />

routinely performed using an array of radiograph types.<br />

Fourteen (45%) of the 31 identifications in 2007 were made based<br />

on chest radiographs. Five comparisons were made between lumbar<br />

spine images, and the remainder of the 2007 cases involved skull, hip,<br />

knee and wrist images. Thirteen (62%) of the 21 2008 cases for the first<br />

half of 2008 involved chest radiograph comparison, and the remaining<br />

eight were completed with head, pelvis, foot, wrist and shoulder films.<br />

Each of these identifications was completed at the request of the<br />

responsible pathologist.<br />

Another beneficial by-product of the increased efficiency in<br />

decedent identification has to do with morgue capacity. The increase in<br />

efficiency necessitates the curation of fewer remains and a shorter<br />

curation period for unidentified decedents. This represents a<br />

considerable benefit to the HCMEO’s disaster preparedness by<br />

increasing on-site surge storage capacity.<br />

Forensic Anthropology, Scientific Identification,<br />

<strong>Medical</strong> Examiner’s Office<br />

H57 Forensic Anthropology at the Pima County<br />

(Arizona) Office of the <strong>Medical</strong> Examiner:<br />

The Identification of Foreign Nationals<br />

Bruce E. Anderson, PhD*, and Walter H. Birkby, PhD, Forensic Science<br />

Center, 2825 East District Street, Tucson, AZ 85714<br />

After attending this presentation, attendees will gain an<br />

understanding of some of the issues involved in the identification<br />

process for a large number of foreign nationals.<br />

This presentation will impact the forensic community by sharing<br />

lessons learned through the identifications of hundreds of foreign<br />

nationals over the past eight years.<br />

Over the past eight years, the caseload of the forensic<br />

anthropologists at the Pima County (Arizona) Office of the <strong>Medical</strong><br />

Examiner (PCOME) has changed considerably due to the dramatic<br />

increase in the number of migrants who have perished in the Sonoran<br />

Desert while attempting a clandestine entry into the United States. The<br />

last eight years have witnessed greater than a ten-fold annual increase in<br />

the number of these deaths and required forensic anthropological<br />

examinations for nearly half of the 1100 migrant cases through 2007.<br />

Approximately one-quarter of all of the anthropological examinations<br />

within our office during 2000 involved migrants, but by 2007 more than<br />

three-quarters of our exams were on these foreign national cases. This<br />

increase in the annual casework involving foreign nationals takes on<br />

greater importance when Tucson’s rapidly-growing metropolitan area is<br />

considered. Add to this the fact that the PCOME provides medicolegal<br />

examinations for ten of the fifteen counties in Arizona, including one of<br />

the fastest growing counties (Pinal) in the U.S., and one begins to<br />

appreciate that the two forensic anthropologists employed at the PCOME<br />

have more than enough work to do. The analyses of cremains, personal<br />

identification through radiographic comparisons, trauma analyses, the<br />

generation of biological profiles, and legal testimony are some of the<br />

varied duties that the forensic anthropologist performs on the nonmigrant<br />

cases. However, the migrant cases have required more effort, on<br />

average, and not merely because of their greater number but also because<br />

of the challenges encountered in attempting to effect an identification.<br />

Adequate antemortem records are non-existent in many instances, at<br />

times necessitating that the generated biological profile must be the<br />

primary means of comparison to family recollections and reconstructed<br />

antemortem records. These circumstantial identifications that are<br />

partially based on the anthropological results are not ideal but necessary<br />

given the constraints of time and funding. DNA analyses have been<br />

utilized in more than sixty cases over the past seven years, but the cost<br />

and the wait have at times proved prohibitive. Even utilizing<br />

circumstantial identifications, our overall rate of identification still<br />

hovers around 70%. On the plus side, this rate may be expected to<br />

increase as DNA databases are created that compare sequences or<br />

profiles from postmortem samples of unknowns to those of family<br />

reference samples from missing migrants. Another plus is that much has<br />

been learned from the anthropological research conducted on many of<br />

these foreign nationals, whose ancestry appears to be overwhelmingly<br />

Southwest Hispanic (defined here as ancestry relating to Mexico and<br />

Central America, and excluding the Caribbean). Researchers have<br />

collected data on more than 500 of these individuals, with slightly less<br />

than half being identified. Data collected include craniometrics,<br />

infracranial metrics, cranial discrete traits, stature, dental health, and<br />

mtDNA sequences. By analyzing the skeletons of more than 200<br />

identified foreign national Southwest Hispanics over the past eight years,<br />

our office is now better able to characterize the more than 300<br />

unidentified presumed migrants as likely being Hispanic. Forensic<br />

anthropologists around the U.S. may benefit from this increase in<br />

knowledge because Hispanics, from both Meso-America and the circum-<br />

Caribbean, can be expected to continue migrating throughout the lower<br />

48 states. Undoubtedly, some of these individuals will be encountered in<br />

future forensic anthropological examinations.<br />

Forensic Anthropology, Foreign Nationals, Identification<br />

H58 Forensic Pathology and Anthropology:<br />

A Collaborative Effort<br />

Kathryn H. Haden-Pinneri, MD*, Jennifer C. Love, PhD*, Jason M.<br />

Wiersema, PhD, and Sharon M. Derrick, PhD, Harris County <strong>Medical</strong><br />

Examiner’s Office, 1885 Old Spanish Trail, Houston, TX 77054<br />

After attending this presentation, attendees will understand the<br />

diverse roles served by the Harris County <strong>Medical</strong> Examiner’s Office<br />

Forensic Anthropology Division and the spectrum of trauma casework<br />

the division receives.<br />

179 * Presenting Author


This presentation will impact the forensic community by<br />

introducing students and academically based forensic anthropologists to<br />

the roles served by forensic anthropologists working within the medical<br />

examiner’s office and the versatility of forensic anthropology to assist<br />

medical examiners in the determination of cause and manner of death.<br />

The Harris County <strong>Medical</strong> Examiner’s Office Forensic<br />

Anthropology Division (FAD) is a relatively new division, established in<br />

November of 2006. Since the division’s inception, the FAD has<br />

developed into a three-pronged service: Skeletal Recovery Team (SRT),<br />

Identification Unit (ID Unit), and Forensic Anthropology Services<br />

(FAS). As the SRT, anthropologists attend crime scenes requiring<br />

specialized skills for processing such as scenes of skeletal, burned,<br />

dismembered, commingled and buried remains. As the ID Unit,<br />

anthropologists create and disseminate unidentified decedent<br />

descriptions; facilitate identification on difficult cases through skeletal<br />

radiograph comparison, interpretation of DNA kinship indices, and<br />

collection and review of circumstantial evidence; and track and refer<br />

decedents for county burial. Through the FAS, the anthropologists serve<br />

as consultants on medicolegal cases by developing skeletal profiles,<br />

interpreting bone trauma, and assessing bone pathology. Although the<br />

skills required to serve in all three roles are based in the fundamentals of<br />

physical anthropology, each role requires flexibility and adaptability.<br />

The purpose of this presentation is to demonstrate the diverse role taken<br />

by forensic anthropologists at the Harris County <strong>Medical</strong> Examiner’s<br />

Office (HCMEO) through an overview of trauma cases received by the<br />

FAS.<br />

Prior to the development of the FAD, the HCMEO outsourced<br />

skeletal remains for analysis to academically based forensic<br />

anthropologists. Previous to outsourcing, skeletal remains were<br />

analyzed by forensic pathologists and either released for burial or<br />

archived in the morgue. Consultation was not typically sought for bone<br />

trauma analysis. When the FAS was established, the first task was to<br />

reexamine skeletal remains archived at the HCMEO. These remains<br />

represented unidentified decedents and required skeletal profile<br />

development and trauma analysis. In addition to the archived remains,<br />

the FAD received 154 cases in 2007, the first complete year the division<br />

was in operation. Of these incoming cases, only nine required the<br />

development of a skeletal profile. One hundred and forty-eight cases<br />

required trauma analysis and/or skeletal radiograph comparison. The<br />

breakdown of these cases is as follows: 6 non-human or non-forensic, 30<br />

skeletal radiograph comparisons, 11 bone pathology, 42 blunt force<br />

trauma, 16 child abuse, 33 sharp force trauma (impression evidence<br />

analysis), 9 ballistic trauma, and 1 combined sharp and blunt force<br />

trauma. Nine of the 154 cases involved thermal trauma.<br />

Analysis of trauma and bone pathology occurs either in situ or by<br />

removing and processing elements for more detailed analysis.<br />

Determination of the necessity of an anthropologic consultation takes<br />

place in the autopsy suite. Joint discussion regarding the case and the<br />

finding(s) in question between the anthropologist and the pathologist<br />

determine whether a complete anthropologic consultation with removal<br />

of skeletal elements is warranted. This joint determination has proved<br />

invaluable on numerous occasions. Techniques utilized for the analysis<br />

include gross documentation and inspection, examination under a<br />

dissecting microscope, and when necessary, casting for tool mark<br />

interpretation.<br />

The interpretation of trauma often contributes to the reconstruction<br />

of events surrounding death, classification of manner of death, and<br />

ultimately, the adjudication of the case. For example, differentiating<br />

between a simple fracture pattern associated with a fall and a complex<br />

fracture pattern associated with multiple impacts may add pivotal<br />

support for case classification: homicide vs. accident. With child abuse<br />

cases, recognizing remote and acute injury, interpreting fracture<br />

distribution and aging fractures can reveal a pattern of abuse as well as a<br />

timeline of traumatic episodes, all critical elements in the prosecution of<br />

the case. Evaluation of rib fractures has been invaluable in the<br />

documentation of a new artifact of resuscitation related to the use of an<br />

* Presenting Author<br />

automated chest compression device. Interpreting impression evidence<br />

can provide a description of a weapon’s cutting edge, enabling exclusion<br />

or inclusion of a possible suspect weapon.<br />

Cases that require anthropologic consultation range from the<br />

obvious, such as skeletal remains or abused children to the innocuous,<br />

such as an alcoholic homeless man found dead near his makeshift<br />

residence. The make-up of the casework received by the FAS<br />

exemplifies the knowledge base a forensic anthropologist must have to<br />

operate in a medical examiner’s office. A strong working knowledge of<br />

bone biomechanics, impression evidence interpretation, and bone<br />

pathology and healing is as important as aptitude in standard methods to<br />

estimate age, ancestry, sex, and stature of skeletal remains. Fiscal<br />

restraints may inhibit medical examiner’s offices from securing a fulltime<br />

anthropology position; however, the variety of skills an<br />

anthropologist possesses to assist with the entire death investigation<br />

process should justify the expenditure.<br />

Forensic Anthropology, <strong>Medical</strong> Examiner’s Office,<br />

Trauma Analysis<br />

H59 Maintaining Custody: A Virtual Method of<br />

Creating Accurate Reproductions of<br />

Skeletal Remains for Facial Approximation<br />

Summer J. Decker, MA*, Jonathan M. Ford, BA, BA, and Don R.<br />

Hilbelink, PhD, Department of Pathology and Cell <strong>Bio</strong>logy, University<br />

of South Florida College of Medicine, 12901 Bruce B. Downs<br />

Boulevard, MDC11, Tampa, FL 33612; and Eric J. Hoegstrom, MSBE,<br />

Department. of Chemical & <strong>Bio</strong>medical Engineering, University of<br />

South Florida College of Engineering, Tampa, FL 33612<br />

After attending this presentation, attendees will gain insight into<br />

new computerized methodologies that will assist local law enforcement<br />

and forensic facial approximation specialists by providing the results of<br />

a unique three-dimensional pilot study conducted by a team of<br />

researchers.<br />

This presentation will impact the forensic community by serving to<br />

increase scientific knowledge of new technologies and methods<br />

available to the forensic community for human cranial identification. It<br />

will also attempt to advance the state of facial approximation methods<br />

which are commonly utilized by law enforcement to identify unknown<br />

individuals.<br />

Facial approximation is a common analysis requested by local and<br />

national law enforcement agencies for human identification. Evidentiary<br />

chain of custody concerns by law enforcement have led agencies to<br />

search for technological alternative methods that can allow the agency to<br />

maintain custody of critical evidence while getting cutting edge forensic<br />

analyses. Three-dimensional imaging technologies allow researchers to<br />

go beyond traditional anthropological methods to now create virtual<br />

computed models of anatomical structures. [1] The goal of this project<br />

was to provide accurate skull models to forensic identification specialists<br />

and <strong>Medical</strong> Examiner’s Offices for forensic facial approximation<br />

without taking custody of the skeletal material itself.<br />

In this pilot study, unidentified skulls were taken by several <strong>Medical</strong><br />

Examiner’s Offices in the state of Florida to local radiology centers<br />

where the skulls were scanned on a 64-slice high resolution computed<br />

tomography (CT) scanner at a slice thickness of 0.5mm. The CT data<br />

was then given to the researchers to compute anatomically accurate<br />

virtual models of the skulls. It should be noted that the researchers never<br />

took custody of the remains and in many cases never had physical<br />

contact with the remains at any time. The volumetric data from the scans<br />

were taken into the visualization software package Mimics© version 12<br />

(Materialise). A FloodFill method of seeding the image was done to<br />

model the bone pixels in the data set. This 3-D volumetric pixel<br />

grouping was then filtered of artifact holes and closed to create one<br />

180


unsegmented structure. The data set was then rendered into a 3-D Model<br />

and exported as a Stereolithographic file (STL). After a biological<br />

profile was created from the virtual skull data by a forensic<br />

anthropologist, [1] the STL models were exported for rapid prototyping.<br />

Accurate full size prototypes of the skulls were then produced from the<br />

computed virtual skull model using a 3-D ZPrinter 310 (© ZCorp)<br />

printer which was then submitted to the forensic facial clay modeling<br />

specialist. [2]<br />

The clay modeling specialist and anthropologist worked with the<br />

researchers on highlighting key facial regions used in facial<br />

reconstruction that are critical in approximating the soft tissue features.<br />

From their input, focus was turned to regions such as the vomer for the<br />

estimation of the nose shape and length and suture lines for the<br />

estimation of age. Due to the lack of objective criteria for analyzing the<br />

facial approximations themselves other than superimposition, the<br />

researchers are currently focusing on developing methodologies to<br />

interpolate the soft tissue relationships from the surface voxels on the<br />

computed representation of the skulls.<br />

This project demonstrates the potential for high-end forensic<br />

analysis to be conducted remotely without assuming custody of the<br />

evidence. This also allows local law enforcement agencies to have<br />

access to experts beyond their geographic location. While there is a wide<br />

range of variation between commonly used facial identification<br />

methods, 2 the benefit of this study is that there is an open discussion of<br />

the strengths and weaknesses at each stage of the analysis which will in<br />

turn increase the understanding and scope of forensic facial<br />

approximation from 3-D data.<br />

References:<br />

1 Decker SJ, Hilbelink DR, Hoegstrom EJ. Virtual skull anatomy:<br />

three-dimensional computer modeling and measurement of human<br />

cranial anatomy. Proceedings for the 60 th Annual AAFS Meeting,<br />

Washington, DC 18-23 Feb. 2008; (14)312.<br />

2 Decker, SJ, Hilbelink DR, et al. Who is this person? A Comparison<br />

Study of Current 3-Dimensional Facial Approximation Methods.<br />

Proceedings for the 60 th Annual AAFS Meeting, Washington, DC<br />

18-23 Feb. 2008; (14)338.<br />

3-D Modeling, Evidence, Human Identification<br />

H60 The Role of Adult Age-Related Craniofacial<br />

Changes and the MORPH Database in<br />

Computer Automated Face Recognition<br />

Research and Development<br />

A. Midori Albert, PhD*, University of North Carolina Wilmington,<br />

Department of Anthropology, 601 South College Road, Wilmington, NC<br />

28403-5907<br />

The goal of this presentation is to present how osteological and<br />

anatomical knowledge, in terms of adult age-related craniofacial<br />

morphologic changes, are used in computer science research for forensic<br />

purposes.<br />

This presentation will impact the forensic community by explaining<br />

the key ways in which craniofacial morphologic changes occur across<br />

the adult age span and will provide information of the relevance of this<br />

information to computer automated face recognition technology through<br />

a discussion of how these data are currently being used.<br />

First, attendees will gain an understanding of the key ways in which<br />

craniofacial morphologic changes occur across the adult age span, in<br />

terms of the general sequence and pattern of change due to normal aging<br />

effects. Secondly, attendees will be informed of the relevance of the<br />

above information to computer automated face recognition technology<br />

through a communication of how these data are currently being used,<br />

namely through research conducted using the MORPH database.<br />

Further, attendees will be updated on the status of the dynamic<br />

MORPH database, founded in 2003, and currently expanding. Recently,<br />

the MORPH database has had a significant impact internationally as well<br />

as domestically, mainly within the computer science arena, but its<br />

existence still remains largely unknown to many practitioners and<br />

researchers within the forensic anthropology community, and the<br />

forensic science community at large. This presentation will help<br />

disseminate features of this ongoing work.<br />

An awareness and understanding of the application of knowledge<br />

stemming from studies related to craniofacial age changes, bone<br />

remodeling of the skull, and so forth, has been raised within the<br />

computer science community. In turn, an awareness of the ways in<br />

which the computer science community is using osteological and<br />

anatomical information of this nature is critical for those forensic<br />

anthropologists who might presently, or in the future, desire to conduct<br />

individual or collaborative research involving adult age-related<br />

craniofacial remodeling and or forensic face recognition/facial<br />

reconstruction methods and technologies.<br />

For example, within the security and law enforcement venues, face<br />

recognition research typically involves testing the efficacy of computer<br />

algorithms to match later-obtained digitized images of individuals’ faces<br />

(usually perpetrators of crime, terrorists, missing persons, or fugitives)<br />

with existing or earlier-obtained images of the same individuals<br />

(digitized mug shots, photographs, and the like). A further step in<br />

research of this nature has been to explore the capabilities of computer<br />

algorithms to match faces after a significant period of time has passed<br />

between facial images, or rather, after a number of years have passed,<br />

after the individual in question has aged, five, ten, twenty, or more years.<br />

This is where understanding the sequence, pattern, and variation of agerelated<br />

craniofacial morphologic changes comes into play.<br />

A synopsis of the ways in which the computer science community<br />

is using information and about how the craniofacial complex remodels<br />

during the adult decades of life will be presented, followed by an<br />

overview of the current status of the MORPH database. The MORPH<br />

database comprises thousands of images of thousands of individuals and<br />

has played a vital role in our understanding of face recognition and how<br />

faces age from late adolescence through senescence, given that large<br />

sample sizes of known faces aged across the adult lifespan have now<br />

become available for study.<br />

Age-Related Craniofacial Remodeling, Computer Automated Face<br />

Recognition, MORPH Database<br />

H61 Skull/ Photo Superimposition<br />

Validation Study<br />

Audrey L. Meehan, BGS*, 91-1074 Anaunau Street, Ewa Beach, HI<br />

96706; and Robert W. Mann, PhD, Joint POW/MIA Acct Command,<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5000<br />

The goal of this presentation is to demonstrate a unique method of<br />

validation using skull models from living subjects.<br />

This presentation will impact the forensic community by illustrating<br />

how advances in technology can provide new validation methods from<br />

living subjects.<br />

The mission of the Joint POW/MIA Accounting Command Central<br />

Identification Laboratory (CIL) in Hawaii is to search for, recover, and<br />

identify missing U.S. service personnel from past wars.<br />

Difficulties in identification present themselves when the skeletal<br />

remains are of similar biological profiles, commingled, and when<br />

mtDNA testing is not possible due to poor preservation of the osseous<br />

remains or the lack of comparative family reference samples (buccal<br />

swabs or blood drop cards). A quantitative Cranial/Photograph<br />

Superimposition technique has been developed at the CIL to support<br />

181 * Presenting Author


vetted identification methods (anthropological analysis, dental record<br />

and historical record comparisons) and as a means of probable exclusion<br />

when inconsistencies in congruity can not be explained. The quantitative<br />

Cranial/Photograph Superimposition incorporates a line-up of<br />

photographs for blind analysis comparison to the crania. Using videocamera<br />

overlays, each photo is aligned to the ‘best possible fit’ by<br />

resizing each photo and adjusting/aligning the skull to fit with the<br />

subject’s facial orientation as depicted in the photo. Alignment criteria<br />

scoring is used to rate the congruity of ten features of the<br />

superimpositions. Each feature is scored as a +1 (good fit), -1 (lack of<br />

alignment), or 0 (for areas not seen in the photograph or if there is trauma<br />

to the skeletal remains). This scoring procedure results in a final<br />

comparison sum, with a maximum of ten points for each photographic<br />

and skull comparison.<br />

As with all new methods, validation is crucial in determining the<br />

accuracy and scope of use, and requires a known-error rate of the method<br />

or procedure based on known comparatives (crania). This research will<br />

demonstrate the use of CAT scan data to generate precise 3-D copies<br />

(“models”) of skulls of known individuals (living CIL staff members)<br />

that are then used in a comparative study of cranial alignment using<br />

skulls and photographs as developed at the CIL. Ten current and former<br />

CIL employees with like gender and ethnic affiliation were chosen for<br />

the known sample group. All subjects were CAT scanned using the<br />

lowest slice rate possible in order to optimize the detail of their cranial<br />

features. The raw x-y-z data from each CAT scan were converted to a 3-<br />

D print file. Three dimensional replicas of the ten skulls were produced,<br />

cleaned, infused with a hardening agent, and assigned bar codes (for<br />

concealing the skull identities). Scoring sheets with matching bar codes<br />

were provided to the test participants for each skull’s comparison.<br />

CIL summer interns and new employees were chosen to perform the<br />

validation study. All participants were individually taught the CIL’s<br />

quantitative scoring, blind photo line-up procedure, and were given an<br />

opportunity to practice the method on various non-study related material<br />

prior to beginning the validation study. The participants aligned,<br />

compared, and scored ten photographs with each skull.<br />

Preliminary results indicated that intern examinees at the CIL<br />

selected the correct photograph in 40% of cases examined (i.e., found no<br />

inconsistencies between the corresponding/actual photograph and skull)<br />

and eliminated all other photographs in the blind “line up.” The false<br />

positive rate in this study was 60%. Additional work by researchers<br />

beyond the novice level and with varying experience is necessary before<br />

drawing final conclusions on the accuracy or utility of photo<br />

superimposition.<br />

Superimposition, 3-D Models, Validation Technique<br />

H62 The Importance of Morphological Traits in<br />

Facial Identification<br />

Cristina Cattaneo, PhD, LABANOF, and Danilo De Angelis, DDS*,<br />

Laboratorio di Antropologia e Odontologia Forense, via Mangiagalli<br />

37, Milan, 20133, ITALY; Peter Gabriel, MD, Institut für Rechtsmedizin,<br />

im Uniklinikum Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 12,<br />

D-24105, Kiel, ITALY; Stefanie Ritz-Timme, MD, Institut für<br />

Rechtsmedizin, im Uniklinikum Schleswig-Holstein, Campus Kiel,<br />

Arnold-Heller-Str. 12, D-24105, Kiel, , GERMANY; Janine Tutkuviene,<br />

MD, Department of Anatomy, Histology and Anthropology, Faculty of<br />

Medicine, Vilnius University, Vilnius, , LITHUANIA; and Daniele<br />

Gibelli, MD, LABANOF, Laboratorio di Antropologia e Odontologia<br />

Forense, V. Mangiagalli, 37, Milan, ITALY<br />

The goal of this presentation is to show the first results of a research<br />

project concerning visual identification for forensic purposes funded by<br />

the European Union (AGIS 2005) and involving the University of<br />

Dusseldorf, Milano and Vilnius.<br />

* Presenting Author<br />

This presentation will impact the forensic community by exposing<br />

the importance of facial morphological traits for personal identification.<br />

Identification of the living is a complex procedure which is<br />

becoming more and more requested by judicial authorities (e.g., for<br />

individuals observed on video while they are perpetrating a crime).<br />

Forensic scientists are therefore frequently requested to identify faces,<br />

for example, to tell if a suspect can be identified from a picture based on<br />

facial morphology and characteristics. Literature shows that the use of<br />

facial indices may be extremely dangerous and lead to erroneous<br />

identifications, whereas the potential of simple facial morphology, for<br />

which several classifications exist (Interpol, Vanezis, Assmann et al.),<br />

has never been studied in depth. This is mainly because no large scale<br />

study on the distribution of specific facial morphological traits has been<br />

previously performed.<br />

The initial task was to verify the distribution and frequency among<br />

a European male population of about 1,000 individuals (20-30 years of<br />

age) of 43 specific facial traits (e.g., facial form, nose tip shape, philtrum<br />

shape, head shape, frontal height, eyebrow edge, lid axis, nasal root,<br />

labial breadth, etc. as in the Assmann et al. classification which<br />

contemplates a larger number of characteristics), and observe their<br />

discriminant value and inter and intra observer error. A group of over<br />

900 faces was photographed and then the traits were classified with the<br />

Assmann atlas by recording the different shape of every one of the 43<br />

relevant facial characteristics. This process was completed twice by the<br />

same observer and every face was also classified by two different<br />

observers, a layman and an expert. Results have shown the homogeneity<br />

of facial traits among the German, Italian and Lithuanian population,<br />

especially the head and chin shape, whereas the frontal and nasal<br />

characteristics seem to present larger variation. Classification of the<br />

results showed low interobserver and intraobserver errors for some traits<br />

but fairly large for others, for example the evaluation of chin and facial<br />

shape. A mean of 39% interobserver and 30% intraobserver error was<br />

recorded. Moreover, the high inter-individual variability was<br />

highlighted, with significant differences between analyses from the same<br />

individual and between laymen and experts. Although slight differences<br />

can be observed between the judgments from the same observer, the<br />

most relevant discordances were recorded between laymen and experts.<br />

These results highlight the importance of experience in analysis and<br />

interpretation of morphological traits. This study also shows some of the<br />

pitfalls concerning the mechanisms of facial identification through<br />

morphological facial traits. Although there is no common<br />

standardization, the use of references helps in the description of<br />

morphological traits. The description and judgment concerning the<br />

specific shape and appearance of each facial trait; however, remains a<br />

subjective process which may present significant differences between<br />

different observers.<br />

The results have shown an interesting scenario of the respective<br />

frequencies of different facial traits which may be useful for<br />

identification. Nonetheless, the high subjectivity in face evaluation<br />

requires caution in considering morphological classification as a crucial<br />

tool in facial identification. These results, therefore, suggest a prudent<br />

approach to visual identification where classification of facial<br />

morphology may be useful in narrowing down a list of possible matches,<br />

but cannot be a model to prove identity. Identity should be proven, when<br />

possible, by implementing general morphological data with a more<br />

detailed analysis of facial forms, for example by procedures such as<br />

superimposition.<br />

Forensic Anthropology, Personal Identification, Facial Identification<br />

182


H63 Fingering a Murderer:<br />

A Successful Anthropological and<br />

Radiological Collaboration<br />

B.G. Brogdon, MD*, University of South Alabama <strong>Medical</strong> Center,<br />

Department of Radiology, 2451 Fillingim Street, Mobile, AL 36617;<br />

Marcella H. Sorg, PhD*, Margaret Chase Smith Policy Center,<br />

University of Maine, Orono, ME 04469; and Kerriann Marden, MA,<br />

c/o 23 Flicker Drive, Topsham, ME 04086<br />

After attending this presentation, attendees will appreciate the<br />

validity of small, but unique, trabecular patterns in bones or bone<br />

fragments for purposes of positive identification of unknown burned<br />

remains.<br />

This presentation will impact the forensic community by<br />

emphasizing the value of radiological evaluation of incinerated skeletal<br />

fragments where DNA extraction is impossible, and the meticulous<br />

anthropological work essential to provide identifiable specimens for<br />

radiological study.<br />

A 24-year-old man reported missing by his mother was last seen on<br />

a rural “horse farm” in New Hampshire in the company of the somewhat<br />

reclusive female owner. She had a history of multiple tumultuous<br />

relationships and a previous assault charge. A warrant was obtained to<br />

search the property. Burned bones, a burned mattress, a burn-barrel and<br />

other burn sites were eventually discovered, yielding 30 five-gallon<br />

buckets-full of burned material. After initial screening by the New<br />

Hampshire <strong>Medical</strong> Examiner’s Office, several hundred burned bone<br />

fragments and other artifacts were sent for analysis to a physical<br />

anthropology team in an adjoining state.<br />

Several hundred hours were consumed in separating and<br />

photographing human bones and teeth fragments from those of at least<br />

eight non-human species. There was evidence that there had been<br />

intentional mixing and scattering of remains between the several burn<br />

sites. This substantially increased the difficulty of the anthropological<br />

task. When feasible, the fragments were identified as to anatomic site<br />

and laterality, individually numbered and labeled, packaged in small<br />

plastic specimen bags for DNA-protocol handling, individually boxed<br />

and labeled, then sorted for analysis by odontology, radiology, and<br />

mitochondrial DNA.<br />

Anthropological examination produced the biological profile of a<br />

male, in his early 20s, of indeterminate stature and ancestry, with no<br />

evidence of pathology or perimortem trauma. The odontologist found<br />

the dental remains to be consistent with the presumed victim’s age and<br />

previous dental radiographs, but insufficient for positive matching.<br />

Least burned fragments of bone and teeth were sent for mitochondrial<br />

DNA testing, but too much organic material had been lost to produce a<br />

signal.<br />

Antemortem radiographs of the missing person were obtained<br />

including images of the dental arches, facial bones and lower half of the<br />

skull, the right shoulder, the lumbosacral spine and the left hand and<br />

wrist. All were normal. These were sent along with the boxed and<br />

labeled fragments for radiological evaluation. Each specimen was<br />

visually compared with the antemortem images. Promising fragments<br />

were painstakingly positioned to replicate the projection of that part on<br />

the antemortem study. Since the victim had been young and healthy,<br />

there were no skeletal features of disease, degeneration, tumor or trauma.<br />

Therefore, comparison was limited to the external configuration and<br />

internal trabecular pattern of each specimen. Most of the fragments were<br />

devoid of even these features when radiographed with fine detail using a<br />

mammography x-ray unit and film. After multiple re-positioning and reexamination<br />

of fragments, positive matches were found in unique<br />

trabecular patterns in the terminal phalanges of the index and ring fingers<br />

and a partial fragment of the middle phalanx of the index finger. Thus,<br />

the victim was positively identified with absolute medical certainty.<br />

Shortly before trial, the defendant stipulated to the murder and to<br />

the identity of the victim; a plea of insanity was entered. A jury found<br />

her sane and, therefore, guilty of first-degree murder.<br />

Murder, Identification, Burned Remains<br />

H64 Material Culture Analysis in Forensic<br />

Cases: A Call for Formal Recognition by<br />

Forensic Anthropologists<br />

Mark Skinner, PhD, Simon Fraser University, Department of<br />

Archeology, Burnaby, BC V5A 1S6, CANADA; and Ariana Fernandez,<br />

MPhil, and Derek Congram, MSc*, 706-1850 Comox Street, Vancouver,<br />

BC V6G 1R3, CANADA<br />

After attending this presentation, attendees will learn about<br />

precedents of anthropologists conducting material culture analysis for<br />

forensic identification and humanitarian investigations, they will<br />

appreciate the particular challenges faced, skills, and knowledge<br />

required and importance of both formal training and formalization of<br />

expertise in this endeavor.<br />

This presentation will impact the forensic community by publicly<br />

addressing an aspect of forensic anthropological practice that has yet to<br />

be acknowledged and discussed in a detailed manner amongst<br />

practitioners. Continued neglect of the methods and objectives of<br />

material culture analysis by forensic anthropologists may lead to false or<br />

unwarranted conclusions in court or accusations of malpractice. It will<br />

be argued that standardized training and methodology are lacking and<br />

should be instituted to meet court requirements not only as they pertain<br />

to expertise but also to address concerns highlighted in rulings such as R<br />

v. Mohan and Daubert v. Merrell Dow.<br />

This presentation advocates enhanced material culture analysis by<br />

forensic anthropologists for medico-legal investigations of identity,<br />

criminal, and civil investigation. Material culture, particularly that<br />

associated with other cultures and countries but also marginalized<br />

members of our own society, is currently practiced though poorly<br />

documented and rare discussion by anthropologists or other forensic<br />

scientists. Exceptions include early experimentation on decomposition<br />

by Morse and Daily (1985) and publications of this past year by<br />

Baraybar (2008), Birkby et al. (2008) and Daéid et al. (2008). The study<br />

of clothing and personal objects compliments other analyses performed<br />

by forensic anthropologists towards the determination of time since<br />

death, personal identification, and wound type. The examination of<br />

these materials can also contribute to a determination or estimation of<br />

sex, gender, stature, physique, age, ancestry/ethnicity, and minimum<br />

number of individuals. Analysis can validate or call into question<br />

physical anthropological methods and results.<br />

Anthropologists have, can, and should conduct material culture<br />

analyses to various degrees. The level of action and participation is often<br />

dependent upon the context in which anthropologists are employed. At<br />

the Centre for Forensic Research at Simon Fraser University in British<br />

Columbia, clothing is often passed to the anthropologists along with the<br />

remains, following inspection by police, a pathologist, and the coroner.<br />

Results of analyses of these associated objects are included in forensic<br />

anthropology reports. Similar efforts are discussed—albeit in little<br />

detail—by Birkby et al. (2008) to establish a “cultural profile.” They use<br />

information gleaned to help distinguish unidentified remains of illegal<br />

border crossers from Hispanics that are legally within the U.S.<br />

In the investigation of wide-scale human rights violations, Baraybar<br />

et al. (2007) and Baraybar (2008) demonstrate the success and<br />

limitations of such analysis by anthropologists but also the necessity in<br />

environments where resources, including DNA technology, antemortem<br />

medical and dental records, may not be available for personal<br />

identification efforts. In the experience of these authors, even in wealthy<br />

183 * Presenting Author


countries medical or dental records may be non-existent or unavailable<br />

due to jurisdictional concerns and protocols or legal obligations of the<br />

protection of privacy of personal information. Thus the role of material<br />

culture plays a greater role. The same challenges that had been<br />

experienced in Kosovo, Peru, and Guatemala were also true in Iraq,<br />

despite the exceptionally generous funding from the United States<br />

government. In Iraq, however, the employment of a cultural<br />

anthropologist to examine material culture appears to have been an<br />

appropriate precedent.<br />

In the context of repatriation of soldiers who have died in combat,<br />

where criminal prosecutions do not apply, police and pathologists are<br />

typically not involved. Drawing conclusions about identity (e.g., nation,<br />

military unit or division, rank, etc.) is therefore left to those conducting<br />

recovery and analysis of remains based on material culture and<br />

osteological analysis (e.g., archaeologists and anthropologists).<br />

In such instances where a significant amount of time has passed or<br />

in conditions that promote quick decay of a body, material objects may<br />

preserve longer and/or better than osteological remains. The extended<br />

preservation of material remains may occur in regions with acidic soils,<br />

local conditions that promote dynamic site transformation, and places<br />

where perpetrators or civilians seeking the remains of loved ones have<br />

disturbed graves. Thus, where the condition of human remains is such<br />

that osteological analysis is severely limited, material culture analysis<br />

again becomes of primary importance and yet experience has shown that<br />

it is sometimes neglected by other professionals of various<br />

specializations and appears to be the formal domain of none.<br />

For those with experience in these contexts it stands to reason that<br />

they have the requisite experience to conduct similar analyses in the<br />

context of domestic forensic investigations. It is argued that the person<br />

with the expertise, and thus responsibility for examining clothing and<br />

personal objects, is not well established; at times being performed by the<br />

police, pathologist, anthropologist or, in some cases, not at all.<br />

Anthropologists and archaeologists are generally trained and have<br />

experience in the analysis and interpretation of material culture created<br />

by various sectors of different societies. Forensic anthropologists are<br />

urged to assume a larger, more comprehensive role in the documentation<br />

and analysis of material culture.<br />

Forensic Anthropology, Material Culture, Identification<br />

H65 Training the National Disaster Victim<br />

Identification Team<br />

Lucina Hackman, MSc*, Dundee University, WTB/MSI Complex,<br />

Dow Street, Dundee, DD1 4AH, UNITED KINGDOM<br />

After attending this presentation, attendees will have an<br />

understanding of the reasons why the training for the National Disaster<br />

Victim Identification Team was established within a United Kingdom<br />

university and how this training has helped to move the United Kingdom<br />

to the forefront of mass disaster preparation.<br />

This presentation will impact the forensic community by giving<br />

those at the forefront of the response to mass disasters another<br />

perspective on how training can help to prepare teams for these<br />

unexpected and often devastating events.<br />

The Centre for Anatomy and Human Identification at the University<br />

of Dundee hosts the advanced course in Disaster Victim Identification<br />

for the United Kingdom police. The 500 officers who have completed<br />

this course continue on to become members of the National DVI Team.<br />

The course offers a postgraduate award in DVI for those who complete<br />

the program successfully.<br />

Each mass disaster occurs through a unique set of circumstances<br />

and, therefore, requires an individual, tailored response. Every disaster<br />

response shares the need to identify those who have lost their lives<br />

during, and as a direct result of, the disaster. The identification of the<br />

* Presenting Author<br />

victims of any disaster is vital for both legal and ethical reasons and<br />

helps to provide closure for those families that have been affected.<br />

Under the Civil Contingencies Act 2004 the police in the United<br />

Kingdom are considered to be one of the primary responders to any<br />

disaster involving British nationals and, as such, form the core of any<br />

multidisciplinary team whose efforts are aimed at furnishing the<br />

identities of those who have died, both nationally and internationally.<br />

Other members of the team can include, as required, pathologists,<br />

odontologists, and anthropologists. In the past, training for the police<br />

has fallen to officers who have gained experience during a response to a<br />

previous disaster. This has resulted in a tendency to train as if<br />

responding to that most recent disaster, and has also led to a gradual loss<br />

of skills through the retirement of those officers. The Centre for<br />

Anatomy and Human Identification has moved away from this approach<br />

by providing a course which not only aims to produce a cadre of omniskilled<br />

officers, but which also allows police officers to train alongside<br />

the specialists, such as the pathologists and anthropologists with whom<br />

they will be deployed.<br />

The immediacy of response to these disasters, which is driven by<br />

the unexpected nature of the incident, means that police officers must be<br />

prepared and trained to the highest standards. This training must be<br />

consistent, robust, and fit for purpose. The events of 2005, which<br />

included the aftermath of the Asian Tsunami, the London bombings,<br />

hurricane Katrina, and the Pakistan earthquake, underlined the need for<br />

a recognized group of police officers who would be able to respond to<br />

disasters both abroad and on the United Kingdom mainland. In the<br />

United Kingdom a cadre of 500 officers has been identified who will<br />

form the National DVI team in the event of a deployment. These officers<br />

are chosen from all of the police forces in the United Kingdom and<br />

proportional representation allows for all of the forces to take an equal<br />

share in the provision of officers. The Centre for Anatomy and Human<br />

Identification at the University of Dundee provides core training for<br />

those officers who have been identified as members of the National<br />

United Kingdom DVI Team and who would be required to respond in the<br />

event of both national and international disasters. This training also<br />

brings together the specialists who would make up the DVI team in the<br />

event of a disaster, allowing these two disparate but essential groups of<br />

professionals to meet and develop skills together.<br />

Disaster Victim Identification (DVI), Training, Police<br />

H66 The Need for Holistic Investigations of<br />

Human Rights Violations: An Example<br />

From Peru<br />

Jose P. Baraybar, MSc*, EPAF, Av. Mello Franco 341, Jesus Maria,<br />

PERU; and Ellen Salter-Pedersen, MA, Department of Anthropology,<br />

Indiana University, 701 East Kirkwood, SB130, Bloomington, IN 47405<br />

The goal of this presentation is to discuss a context based approach<br />

to a forensic investigation of human rights violations. The case example<br />

from Peru illustrates a comprehensive investigation by a team of forensic<br />

anthropologists which was carried out with limited access to resources,<br />

facilities, and technology.<br />

This presentation will impact the forensic community by showing<br />

an alternate approach to the highly specialized and compartmentalized<br />

investigations done in North America and Europe.<br />

This approach has been used in Peru where resources and political<br />

will are limited. Exhumations are frequently carried out in remote<br />

settings; technology and facilities both in the field and the lab are limited<br />

to the most basic equipment. Experts are often trained in the field rather<br />

than in academic settings and are required to fulfill multiple investigative<br />

roles rather than specialize in one area. These challenges require a<br />

different approach than the highly specialized, compartmentalized<br />

investigations done in North America and Europe; thus, forensic<br />

184


anthropologists in Peru have developed a creative approach relevant to<br />

the situations in which they work.<br />

A case study is presented based on an investigation carried out in<br />

early 2008 by the Equipo Peruano de Antropologia Forense (EPAF). The<br />

site is located in a remote part of the Andean highlands of Peru; in 1984<br />

during the internal conflict (1980-2000), over 100 peasants who had<br />

been displaced by the terrorists were relocated by the military. They<br />

were later killed and buried in a mass grave.<br />

Anthropologists began the investigation with the collection of<br />

antemortem data from the friends and relatives of the victims.<br />

Antemortem data includes physical descriptions of the victims, the<br />

clothes that they were last seen in, any personal effects they possessed,<br />

details of their life such as accidents and injuries that may be reflected in<br />

the skeletal remains, and details of their disappearance or execution. The<br />

information was collected using standardized forms including drawings,<br />

images, and color charts. DNA samples were also collected from family<br />

members. Interviews with family members were carried out in their<br />

native language, Quechua. The data is stored in EPAF’s Forensic<br />

Anthropology Database which allows for complex searches and protects<br />

the identities of the informants.<br />

The goals of the fieldwork were not simply to recover the human<br />

remains and evidence; but to reconstruct the most probable scenario.<br />

The remains were exhumed using traditional archaeological techniques,<br />

commingled bodies were separated in the field before recovery, and<br />

skeletal remains were recovered within the clothing when possible. The<br />

area surrounding the grave was searched for evidence and to identify<br />

possible access routes. Bullets and casings were flagged in the field and<br />

were identified as belonging to two types of military issue weapons. The<br />

angle of ejection of casings from a similar weapon was tested in both<br />

single shot and burst and the results were extrapolated to the evidence<br />

found at the site to identify the locations of the shooters and reconstruct<br />

the scenario.<br />

Laboratory work included analysis of skeletal remains to develop a<br />

biological profile. Trauma analysis was complemented by macroscopic<br />

examination of the clothing in order to ascertain the most probable cause<br />

of death. Gunshot wounds and sharp force trauma frequently penetrate<br />

the clothing; thus, proposed trajectories may be substantiated. Bullets<br />

and casing were also found within the clothing. In some cases,<br />

pseudotrauma in the bones was confirmed by the lack of evidence in the<br />

clothing; conversely, possible injuries were identified in clothing when<br />

skeletal remains were incomplete. Detailed descriptions and photos of<br />

the clothing were also made for identification purposes.<br />

After laboratory analysis was completed, the antemortem and<br />

postmortem profiles were compared to establish putative identifications.<br />

These identifications will be confirmed through DNA whenever<br />

possible, but frequently immediate family members are not available to<br />

provide reference samples. In this case, entire families were killed and<br />

DNA may identify relatives among the victims. Exhibitions of victims’<br />

clothing and personal effects for recognition by family members may<br />

also confirm putative identity.<br />

The holistic approach employed by EPAF has resulted in<br />

identifications in multiple cases from the internal conflict in Peru. Once<br />

identified, the remains can be repatriated to family members, an<br />

important step in the reconciliation process. The recent sentence against<br />

the Colina group operatives in the La Cantuta case was a hallmark in<br />

Peruvian history as it was the first conviction for human rights violations<br />

based on forensic evidence. These achievements indicate that forensic<br />

anthropology can succeed in spite of limited resources to funds,<br />

specialized expertise, facilities and technology. Further, forensic<br />

investigations do not always need to be conducted by highly specialized<br />

academics; context based expertise often provides a more<br />

comprehensive perspective.<br />

Human Rights Violations, Forensic Anthropology, Peru<br />

H67 Reconciling the Discrepancy in Victim<br />

Number Between the S-21 Prison and the<br />

Choeung Ek Killing Fields of Cambodia<br />

Debra Komar, PhD*, International Criminal Tribunal for the Former<br />

Yugoslavia, Van der Heimstraat 64, The Hague, NETHERLANDS<br />

After attending this presentation, attendees will learn of on-going<br />

investigations relating to the Cambodian conflict of the 1970s and how<br />

the minimum number of individuals can be determined in specific mass<br />

death scenarios.<br />

This presentation will benefit the forensic community by<br />

contributing to the understanding of genocidal conflicts and international<br />

human rights investigations.<br />

In 1975, the Communist Party of Kampuchea (CPK) overthrew Lon<br />

Nol’s Republican regime, ending Cambodia’s civil war. The CPK,<br />

known as the Khmer Rouge, assumed power led by the notorious Pol<br />

Pot. Over the next four years, the CPK inflicted a cultural revolution of<br />

forced “Khmerization” on the Cambodian population, which targeted all<br />

other ethnicities, nationalities, religions, and languages for eradication.<br />

Pol Pot’s revolution resulted in the deaths of an estimated 1,100,000<br />

Cambodians. On January 7, 1979, Vietnamese forces reached Phnom<br />

Penh, Cambodia’s capital, effectively ending Pol Pot’s reign.<br />

Negotiations between Cambodia and the United Nations to strike a<br />

formal investigative tribunal have finally reached fruition. The first<br />

court of its kind in the world, the Extraordinary Chambers in the Courts<br />

of Cambodia (ECCC) is a hybrid tribunal that uses local law but<br />

incorporates international judges and staff. The ECCC indictment of<br />

Kaing Guek Eay (a.k.a “Duch”), the commander of the S-21 prison, has<br />

prompted a reexamination of the documentation and forensic evidence<br />

associated with his command. One question raised is the apparent<br />

discrepancy between the number of victims reportedly processed and<br />

killed in S-21 and the number of individuals recovered from the<br />

purported burial site, a Chinese graveyard near Choeung Ek. At least<br />

12,499 individuals were reportedly killed following their incarceration at<br />

S-21, while the remains of only 8,895 victims have been recovered to<br />

date at Choeung Ek. This discrepancy raises multiple possibilities,<br />

including the potential of alternative burial sites or a greater number of<br />

survivors than previously believed.<br />

References to S-21 first appear in September 1975 in Khmer Rouge<br />

documents but the facility did not become operational until May or June<br />

of 1976. Kaing Guek Eav arrived at S-21 in June 1976 and retained<br />

control of the facility until the arrival of the Vietnamese in January 1979.<br />

Duch also served as the Security Chief of the CPK’s state security<br />

organization known as the Santebal. No specific documents directly<br />

linking Pol Pot to orders to torture or execute individuals at S-21 have<br />

been found, although links between S-21 and the Party Center (Angkar)<br />

have been established conclusively.<br />

All prisoners at S-21 were killed not only because of their perceived<br />

crimes but also to maintain secrecy regarding the prison’s existence. The<br />

number of prisoners executed at Choeung Ek fluctuated daily from a few<br />

dozen to over three hundred. A review of the confessions and other<br />

documents recovered from S-21 placed the total number of prisoners at<br />

12,499. Of the thousands of prisoners processed at S-21, only seven are<br />

known to have survived. Given the uncontested link between S-21 and<br />

Choeung Ek, why are more than 3,500 victims still unaccounted for? A<br />

review of the available evidence reveals the following:<br />

1. When S-21 first opened in 1976, prisoners were clubbed to<br />

death in the field to the west of the compound and buried<br />

where they fell in shallow graves. This impromptu cemetery<br />

quickly filled and by 1977, Choeung Ek became the killing<br />

field and burial facility for S-21. Remains from the S-21<br />

compound have been recovered and in 2008, additional<br />

remains were found during construction at the property<br />

adjacent to the prison. A formal estimate of the minimum<br />

185 * Presenting Author


number of individuals (MNI) represented by these remains has<br />

not yet been calculated.<br />

2. Mass graves at Choeung Ek were exhumed beginning in<br />

January 1979 under the auspices of the government’s<br />

Genocide Research Committee into Khmer Rouge crimes.<br />

Local communities also exhumed mass graves, and a small<br />

number of graves were robbed in search of valuables. Of the<br />

130 purported mass graves at Choeung Ek, only 89 have been<br />

formally excavated. An up-to-date survey of Choeung Ek<br />

using more advanced imaging techniques is warranted.<br />

3. Exhumations at Choeung Ek have uncovered a total of 8,895<br />

individuals. However, this MNI was calculated by counting<br />

complete skulls. A more exacting method of determining MNI<br />

is needed to accurately estimate the victims represented.<br />

Despite the initial perception of a significant number of missing<br />

victims, it is highly probable that the overwhelming majority of reported<br />

victims from the S-21 prison can be accounted for, provided additional<br />

forensic investigations are carried out at both the S-21 prison and the<br />

Choeung Ek killing fields. In spite of the more than 30 years that have<br />

past since these events took place, scientific examination of physical<br />

evidence can play a vital role in answering crucial questions in the<br />

upcoming legal proceedings.<br />

Forensic Anthropology, Human Rights Investigations, Genocide<br />

H68 Forensic Findings on Illegal Burials<br />

in Colombia<br />

Claudia M. Briceno*, Departamento Administrativo de Seguridad,<br />

Carrera 28 # 17a-00, BOGOTA, COLOMBIA<br />

The goals of this presentation are to: (1) present significant forensic<br />

findings on illegal burials secondary to the armed conflict in Colombia,<br />

(2) describe the types of illegal burials specific to different illegal groups<br />

involved in the armed conflict in Colombia, and (3) to analyze illegal<br />

burials in a sociocultural context.<br />

This presentation will impact the forensic community by explaining<br />

the analysis performed on illegal burials by forensic experts under the<br />

context of the armed conflict in Colombia, and the sociocultural<br />

characteristics of the population that allowed the detection of forensic<br />

evidence on the victims of illegal groups.<br />

The armed conflict in Colombia started over 50 years ago involving<br />

several illegal groups, including left-wing guerrillas (Revolutionary<br />

Armed Forces of Colombia, FARC; National Liberation Army, ELN) and<br />

right-wing paramilitaries (United Self-Defense Forces of Colombia,<br />

AUC). Over 30,000 people have disappeared over the last two decades<br />

secondary to the action of these illegal groups. For that reason, forensic<br />

experts in Colombia are challenged with unusual findings in illegal<br />

burials, including countless types of death, funerary rituals, and<br />

entombments. This presentation has the objective to show and describe<br />

some of the more important findings revealing several sociocultural<br />

traditions on illegal burials, including religious beliefs and magical<br />

thoughts. In addition, illegal burials have revealed that specific groups<br />

adopt different criminal methods and techniques (apparently during their<br />

basic induction to the armed group) including anatomic disarticulation of<br />

the bodies recovered in different geographical places from Colombia.<br />

Several findings on illegal burials are important for the forensic<br />

experts in Colombia: When a member of the guerrilla group dies, the<br />

funerary ritual depends on their rank inside the organization, taking into<br />

account their religious and magical beliefs, and commonly emphasizing<br />

eternal life and revenge.<br />

There are reports of illegal groups collecting anatomic parts<br />

(usually bones) of kidnapped people who died in captivity. Their<br />

objective is to collect money from the victim’s family in exchange for<br />

information of the exact place of inhumation. These anatomic elements<br />

* Presenting Author<br />

and the information given by the family are very key elements in the<br />

preliminary identification of exhumed remains.<br />

Human bodies belonging to important members of the illegal group<br />

are often covered using five layers of different materials to ensure a<br />

longer preservation period. This practice has also been documented in<br />

cases of illegal burials of important persons in the society. Additionally,<br />

materials like bullets, ropes, handcuffs, knifes, clothes, liquor bottles,<br />

syringes, gauzes, and bandages are frequently found in the site of burial.<br />

These elements are very important to determine the circumstances of<br />

death.<br />

Analyses of illegal burials by forensic experts are critical in<br />

determining the illegal groups involved in the crime and the<br />

identification of the disappeared persons. Proper knowledge of the<br />

groups participating in the armed conflict, as well as the diverse<br />

sociocultural patterns of the population living in Colombia, are important<br />

elements in the forensic field.<br />

Colombian forensic experts are working hard to return the remains<br />

of missing persons to their families and are collecting evidence for<br />

criminal justice. Forensic sciences are essential to investigating the truth<br />

about the violent crimes in Colombia.<br />

Colombia, Illegal Burials, Armed Conflict<br />

H69 Evolution of Forensic Archaeology<br />

and Anthropology in Italy: Three<br />

Criminal Cases<br />

Cristina Cattaneo, PhD, Dominic Salsarola, BSc, Davide J. Porta, PhD,<br />

Pasquale Poppa, BSc, and Daniele Gibelli, MD*, Laboratorio di<br />

Antropologia e Odontologia Forense, V. Mangiagalli, 37, Milan, ITALY;<br />

Giovanna Sansoni, BE, Laboratorio di Optoelettronica, Via Branze 38,<br />

25123 Brescia – Italy, Brescia, ITALY; and Enrico Silingardi,<br />

Laboratorio di Antropologia e Odontologia Forense, V. Mangiagalli, 37,<br />

Milan, ITALY<br />

After attending this presentation, attendees will be briefed on the<br />

first three cases where forensic archeology was applied in Italy for the<br />

search and recovery of victims of organized crime, and how the scenario<br />

is evolving.<br />

This presentation will impact the forensic community by showing<br />

the application and advantages of archeological methods to the search<br />

and recovery of buried corpses.<br />

Forensic archeology applies the techniques of search and recovery<br />

commonly performed in the archeological context to forensic cases, and<br />

aims at the best possible conservation of the deposition site and the<br />

human remains. Thus it should be considered of primary importance by<br />

police and judicial authorities in cases where a body needs to be found<br />

and adequately recovered. Nevertheless, in Italy and in southern Europe<br />

this discipline is still rarely applied in real cases, with obvious disastrous<br />

outcomes.<br />

The first case occurred in October 2001 in a wooded area at the<br />

outskirts of Milan. Children from a nearby nursery school found a boot<br />

emerging from the ground that appeared to contain several bones. The<br />

skeletal remains were recovered as indicated by archeological<br />

recommendations; a conservative recovery of all the skeletal elements,<br />

clothes, and personal belongings was then performed. The area was<br />

recorded by topographical methods, and tree roots crossing the<br />

deposition site were sampled, which made a postmortem interval<br />

estimation (PMI) possible. The botanical and product analysis of clothes<br />

limited the PMI estimation to between 1995 and 1998. The<br />

reconstruction of biological data revealed that the skeletal remains<br />

belonged to a 20-25 year old female subject. A facial reconstruction was<br />

performed and the resulting broadcast helped a prostitute from Kosovo<br />

recognize the subject as a friend called Viola, but at the present time a<br />

186


positive identification has not yet been achieved. The anthropological<br />

analysis pointed out a cut mark with peri-mortem characteristics at the<br />

lower margin of the 10 th left rib.<br />

The second case concerns the corpses of two missing adolescents<br />

found in May 2004 in a wooded area near Varese. The discovery came<br />

after a confession from their murderers, called “Satan’s Beasts” because<br />

of their devotion to drugs and Satanism, who indicated the woods in<br />

which the victims had been buried. The first recovery procedures were<br />

conducted by cadaver dogs, followed by field walking, and the use of a<br />

metal detector/georadar. After no signs of burial were found, the<br />

murderers were led to the site and indicated a new field, where the<br />

application of archeological methodology led to the appearance of a<br />

ditch. The fill was then removed and on the bottom two skeletonized<br />

corpses were found. The first subject was male, 15-18 years old, and the<br />

second one was female, 17-22 years old. The two corpses were<br />

identified as the missing adolescents according to odontological and<br />

anthropological methods. The female subject was hit at least 11 times by<br />

a sharp force tool (a large knife). The male subject was hit at least 12<br />

times and was also hit by a mallet in the facial region. The lesions<br />

observed were consistent with the events referred to by the murderers.<br />

The third case concerns the search of a buried body (a victim of a<br />

mafia execution) which, according to the murderer, took place in<br />

December 2006 in a wooded area in the outskirts of Milano. His<br />

accomplices reported he had shot and beheaded the victim, although he<br />

had always denied it (he in fact had said that he was only responsible for<br />

burying the body, not for the murder). Thus, the magistrate wanted to<br />

verify whose version was true. At the beginning of the search, a 10 x 10<br />

m area was defined the analysis of soil anomalies went on until<br />

excavation activities revealed the cranial vault. The human remains in<br />

the fill were cleaned, photographed, sketched, and then a 3-D digitizing<br />

analysis of the site was performed. Close to the cranium, a dental<br />

prosthesis was found. The subject was male, 20-28 years old, according<br />

to anthropological analyses. Positive identification was reached by<br />

odontological data based on the prosthesis found during the excavation<br />

procedure. The cranium, severely fractured, was finally cleaned and<br />

reassembled in order to verify the presence of lesions. The analysis of<br />

the cranium pointed out that the victim was hit by two gunshots. No<br />

lesion consistent with a possible beheading was observed.<br />

These cases show how, at least in northern Italy, judges and police<br />

authorities are beginning to employ anthropologists and archeologists for<br />

the retrieval and recovery of buried bodies. Among pathologists and<br />

magistrates, these cases have also strengthened the theory that only by<br />

proper archaeological methodology can proper reconstruction of identity,<br />

mode of deposition and trauma analysis be performed.<br />

Forensic Anthropology, Forensic Archeology, Buried Corpses<br />

H70 Sexual Dimorphism of Index to Ring<br />

Finger Ratio in South Indian Children<br />

Tanuj Kanchan, MD*, Kasturba <strong>Medical</strong> College, Department of<br />

Forensic Medicine, Light House Hill Road, Mangalore, 575 001, INDIA<br />

After attending this presentation, attendees will be able to recognize<br />

index and ring finger ratio as a possible sex indicator in South Indian<br />

children.<br />

This presentation will impact the forensic community in the<br />

identification of victims from dismembered human remains encountered<br />

in cases of mass disasters and explosions, and assault cases where the<br />

body is dismembered to conceal the identity of the victim. When an<br />

individual hand is recovered and brought for examination, index and ring<br />

finger ratio may prove to be a useful tool for sex determination of the<br />

dismembered remains.<br />

Definitive sexual traits are not manifested until after the full<br />

development of secondary sexual characters that appear during puberty.<br />

Thus sex determination from prepubertal human remains is a challenge<br />

for forensic experts and physical anthropologists worldwide. The<br />

research was undertaken to investigate sexual dimorphism of the index<br />

and ring finger ratio in South Indian children.<br />

The study was conducted on 350 children (175 males and 175<br />

females) of South Indian origin aged 12 years and below at Manipal in<br />

coastal Karnataka, South India. The index finger length (IFL) and the<br />

ring finger length (RFL) were measured in millimeters in each hand. The<br />

distance between the mid point of the proximal most flexion crease at the<br />

base, and the most forward placed point (tip) of each finger in the<br />

midline on the ventral (palmar) surface were recorded for each hand.<br />

The index and ring finger ratio was computed by dividing index finger<br />

length by ring finger length. The data obtained were analyzed<br />

statistically using SPSS (Statistical Package for Social Sciences, version<br />

10.0) computer software. Student’s t-test was performed to compare the<br />

index and the ring finger lengths and the ratio in the two hands, and<br />

between both sexes; a p-value ≤ 0.05 was considered as significant.<br />

Mean IFL and RFL values were significantly higher in males for<br />

both hands. Difference in mean RFL between males and females was,<br />

however, more than the difference in mean IFL in both hands. In all the<br />

hands that were examined, mean RFL was greater than mean IFL in both<br />

males and females. Index and ring finger ratio derived from the finger<br />

lengths ranged from 0.89 to 1.02 in males with a mean of 0.9500, and<br />

from 0.90 to 1.06 with a mean of 0.9887 in females for the right hand.<br />

For the left hand, the index and ring finger ratio ranged from 0.89 to 1.02<br />

in males with a mean of 0.9488, and from 0.90 to 1.06 with a mean of<br />

0.9864 in females. The derived ratio showed a statistically significant<br />

difference between males and females (p < 0.001). The index and ring<br />

finger ratio did not show any significant differences between the two<br />

hands in males and females.<br />

The study reveals that the index and ring finger ratio shows sexual<br />

dimorphism in the South Indian children and thus may prove useful to<br />

determine the sex of an isolated hand when it is submitted for<br />

medicolegal examination. The index and ring finger ratio is found to be<br />

higher in females when compared to their male counterparts in both<br />

hands. The study suggests that ratio of 0.9700 and less is suggestive of<br />

male sex for both hands, while a ratio of more than 0.9700 is suggestive<br />

that the hand is of female origin. Similar studies are proposed to confirm<br />

the findings of our study and find if sexual dimorphism in the index to<br />

ring finger ratio is a constant feature in other population and age groups.<br />

Forensic Anthropology, Sex Determination, Index to Ring<br />

Finger Ratio<br />

H71 Subadult Sexual Dimorphism in Long Bone<br />

Dimensions (The Luis Lopes Collection)<br />

Miriam E. Soto, MA*, The University of Tennessee, 250 South Stadium<br />

Hall, 1425 South Stadium Drive, Knoxville, Tennessee 37996<br />

After attending this presentation, attendees will learn how<br />

significant sexual dimorphism is present in subadult long bone<br />

dimensions. Attendees will also learn that the development of a new sex<br />

determination method for subadults, utilizing long bone dimensions,<br />

may be a possibility in the future.<br />

This presentation will impact the forensic community by<br />

contributing to the available research on subadult sex estimation. This<br />

research is important because sex estimation is an important aspect of the<br />

biological profile. However, when dealing with subadult remains sex<br />

assessment is still very difficult. Development of a reliable sex<br />

determination method for subadults would aid in the identification of<br />

unidentified juvenile remains.<br />

The purpose of this study is to evaluate sexual dimorphism of long<br />

bone dimensions in a sample of 72 individuals ranging in age from birth<br />

to 17 years. The sample was obtained from the Luís Lopes collection<br />

187 * Presenting Author


curated at the Bocage museum in Lisbon, Portugal. The subadult sample<br />

consisted of two groups, one group ranging in age from birth to 11 years<br />

and the second group ranging in age from 12 to 17 years. In order to test<br />

whether significant sexual dimorphism was present in the long bones,<br />

MANCOVA tests were performed on the following measurements:<br />

maximum clavicle length, maximum diameter of the clavicle, minimum<br />

diameter of the clavicle, circumference of the clavicle, maximum<br />

glenoid cavity breadth, maximum diameter of the humerus, minimum<br />

diameter of the humerus, circumference of the humerus, maximum<br />

breadth of the distal humerus, maximum diameter of the radius,<br />

minimum diameter of the radius, circumference of the radius, maximum<br />

diameter of the ulna, minimum diameter of the ulna, circumference of<br />

the ulna, maximum diameter of the femur, minimum diameter of the<br />

femur, circumference of the femur, maximum breadth of the distal femur,<br />

maximum diameter of tibia, minimum diameter of the tibia,<br />

circumference of the tibia, maximum breadth of the proximal tibia,<br />

maximum diameter of the fibula, minimum diameter of the fibula, and<br />

circumference of the fibula. Results of the analysis indicate that<br />

significant sexual dimorphism was detected in the clavicle, radius, and<br />

tibia of the young subadult group. In the older subadult group,<br />

significant sexual dimorphism was detected in the clavicle, humerus,<br />

ulna, femur, and tibia. Logistic regression tests were also performed on<br />

the data to determine the probability of classifying an individual into the<br />

correct sex group. Cross-validation was not available due to small<br />

sample sizes. Therefore, all probabilities are inflated and results should<br />

be considered preliminary. Although the probabilities are inflated, the<br />

results suggest that the sexual dimorphism in subadults may be<br />

significant enough to differentiate between the sexes. Clavicle<br />

measurements proved to be fairly accurate sex predictors for young and<br />

older subadults. Models constructed from clavicle measurements<br />

correctly sexed ~83% of the young subadult sample (≤11 years) and<br />

~95% of the older subadult sample (≥12 years). Humerus, tibia, and ulna<br />

measurements were more accurate at predicting the sex of older<br />

subadults than younger subadults. Humerus measurements correctly<br />

classified ~77% of the younger subadult sample and ~94% the older<br />

subadult sample. Ulna measurements correctly classified 74% of the<br />

younger subadults and 86% of the older subadult sample. Although only<br />

~72% of the young subadult sample was correctly sexed using tibia<br />

measurements, they appear to be very effective (~92% accurate) for<br />

predicting the sex of older subadults. Overall, the most accurate models<br />

for sexing subadults in this sample were constructed from the<br />

measurements of several long bones, but this greatly reduced the sample<br />

size. Approximately 91% of the young subadult sample was accurately<br />

classified using a combination of measurements from different long<br />

bones.<br />

This research suggests that sexing subadults from long bone<br />

dimensions could be a possibility in the future. Further research should<br />

be conducted on sexual dimorphism in subadult long bone dimensions.<br />

Such research could lead to the development of a sex determination<br />

method for subadults.<br />

Subadult, Sexual Dimorphism, Long Bone Dimensions<br />

* Presenting Author<br />

H72 Sex Estimation From the Clavicle in<br />

Modern Americans: Traditional Versus<br />

Alternative Approaches<br />

Natalie R. Shirley, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Brandon<br />

C. Merkl, MS, University of Tennessee, Department of Mechanical,<br />

Aerospace, and <strong>Bio</strong>medica, 414 Dougherty Engineering Building,<br />

Knoxville, TN 37996; and Richard Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, Knoxville, TN 37996-0720<br />

The goal of this presentation is to illustrate several approaches to<br />

quantifying sexual dimorphism in the human clavicle: linear<br />

discriminant functions, neural networks, and curvature analysis with<br />

medial axis representation.<br />

This presentation will impact the forensic community by providing<br />

discriminant functions for sex estimation from the clavicle in modern<br />

Americans. Additionally, this research aims to combine information<br />

about size and shape to achieve maximum accuracy in sex estimation and<br />

to provide a model for similar analyses of other skeletal elements.<br />

Traditionally, linear discriminant functions are used to discriminate<br />

among the sexes. However, neural networks offer the power of multiple<br />

non-linear discriminant functions and often provide superior<br />

discriminatory capabilities. Furthermore, capturing shape offers an<br />

additional method of discriminating sex that, when combined with either<br />

of the methods above, can assist in making accurate assessments. This<br />

presentation will examine each of these methods and propose the most<br />

accurate and precise method for sex estimation.<br />

The William F. McCormick Clavicle Collection at the University of<br />

Tennessee contains clavicles from approximately 2,000 individuals from<br />

East Tennessee. In order to facilitate rapid data collection from a sample<br />

of this size, the entire collection was scanned with computed tomography<br />

scanning, and three-dimensional computer models were created.<br />

Scanning the bones also enabled the exploration of a number of<br />

alternative measurements and way to standardize the curvature analysis.<br />

A subset of 1,407 adults was used in this study. The sample was<br />

comprised of 53 African Americans and 1,354 Caucasians.<br />

Measurements analyzed include maximum length, sagittal midshaft<br />

diameter, vertical midshaft diameter, maximum midshaft diameter,<br />

minimum midshaft diameter, two diameters from the lateral end, and two<br />

diameters from the medial end. Curvature was analyzed by making<br />

angular measurements on a medial axis representation of the clavicle<br />

shaft.<br />

The sample was analyzed with pooled and separate ancestries, and<br />

all discriminant analyses were performed in SAS 9.1 using crossvalidation.<br />

Overall, the hit ratios were the same with both approaches,<br />

but separate discriminant functions are provided for whites and blacks.<br />

The best classification rate was 92.22% using maximum length,<br />

maximum and minimum midshaft diameters, and maximum and<br />

minimum diameters of the lateral end. A simple three-variable model<br />

with maximum length and maximum and minimum midshaft diameters<br />

discriminated with 91.44% accuracy. The new measurements from the<br />

lateral clavicle discriminate 77.72% accurately alone. The medial<br />

measurements did not perform well (62.38%) and were omitted from all<br />

final models. Maximum and minimum midshaft diameters performed<br />

equally as well as sagittal and vertical midshaft diameters; since<br />

maximum and minimum midshaft diameters are easier to measure<br />

precisely, these measurements offer a way to reduce inter-observer error.<br />

The same sample was subsequently classified using a Feed-Forward<br />

Backpropagating Neural Network (NN). A network was constructed<br />

using all nine measured variables plus one binary variable indicating side<br />

(L = 0, R = 1) as input nodes, followed by a layer of eight hidden nodes,<br />

and finally an output layer of two nodes (one per sex). The network was<br />

trained using random subsets of the clavicle sample, where 30% were<br />

used for training, 30% were used for validation, and 40% were used for<br />

188


testing. Neural networks are ideal for a sample of this size because they<br />

are robust to assumptions of normality and equality of variancecovariance<br />

matrices. The final testing classification rate was 94.58%,<br />

while the overall classification (including the whole sample) was<br />

94.22%. The three-variable model with maximum length and maximum<br />

and minimum midshaft diameters resulted in a testing classification rate<br />

of 93.48%.<br />

Analysis of curvature was performed using a medial axis<br />

representation of the clavicle. The bone models were divided into 8-16<br />

sections perpendicular to the shaft. The midpoint of the section was<br />

selected as one vertex of the medial axis. Subsequently, line segments<br />

connecting the medial axis points were connected to form an<br />

approximation to the shaft curvature. By analyzing the angular<br />

deviations between adjacent sections, quantitative shape information is<br />

acquired in a compact format. Distinct shape trends between the sexes<br />

were noted, but require further analysis before they can be suitably<br />

integrated into the classification procedures.<br />

Sex Estimation, Clavicle, Neural Networks<br />

H73 The Impact of Racial Metric Variation in<br />

the Pelvis on the Morphological Assessment<br />

of Sex<br />

Ginesse A. Listi, PhD*, Louisiana State University, 1723 Lombard<br />

Drive, Baton Rouge, LA 70810<br />

The goal of this presentation is to explore whether or not racial<br />

metric variation in the pelvis affects the morphological assessment of<br />

sex.<br />

This presentation will impact the forensic community by<br />

demonstrating that quantitative variation in the pelves of white and black<br />

Americans does not affect the accuracy of sex determination.<br />

Previous research on determining race from the pelvis generally has<br />

focused on quantitative variation. Based on certain measurements of the<br />

pelvis, or of the os coxa, researchers have been able to discriminate race<br />

between white and black Americans in test samples with overall<br />

accuracies ranging from 58% to 83%. Also, several of these studies have<br />

found that the pelves of black Americans tended to be “smaller” or<br />

“narrower” than those of white Americans, though such differences were<br />

not always statistically significant.<br />

Determination of sex from the morphology of the pelvis is based on<br />

the premise that, in many of the traits, females are larger (longer, wider,<br />

broader) than males. Yet, few studies have assessed whether the<br />

quantitative differences between the races affect, or are apparent in, the<br />

morphological traits used by anthropologists to determine the sex of the<br />

individual. In one notable exception, Patriquin et al. (2003) found<br />

significant differences between white and black South Africans in the<br />

accuracy of morphological traits for sex determination.<br />

The purpose of the present study is to examine whether or not sex<br />

determination based on morphological traits is impacted by racial<br />

quantitative variation. Nineteen morphological traits were evaluated by<br />

two different observers in 876 os coxae. For this study, a random sample<br />

of 400 individuals was selected, composed of 100 of each race and sex<br />

category. Chi-square was used to assess the impact of race on: (1) the<br />

accuracy of sex determination based on all 19 traits collectively, (2) the<br />

evaluation of sex for the individual traits, and (3) inter-observer variation<br />

in sex assessment. The level of significance for all tests was p < .05.<br />

Results indicate that race did not impact the accuracy of sex<br />

determination for either observer when all traits were considered<br />

together. However, race did affect the evaluation of sex for some<br />

individual traits. For Observer “A,” significant variation existed in sex<br />

assessment between black and white individuals in 6/19 traits for males<br />

and 1/19 traits for females. For Observer “B,” no significant difference<br />

in sex assessment between black and white males was noted for any trait;<br />

however, significant differences in sex determination existed in 3/19<br />

traits in females. In the analysis of inter-observer variation, significant<br />

inter-observer differences were noted between the races for females<br />

when all traits were considered together, but not for males. When traits<br />

were assessed individually, 2/19 traits in males and 4/19 traits in females<br />

had significant inter-observer differences in sex determination between<br />

the races.<br />

Though race affected the evaluation of sex in certain individual<br />

traits, the accuracy of sex determination was not impacted when all traits<br />

were considered collectively. Additionally, the traits that showed<br />

significant variation in sex assessment between the races generally were<br />

not related to the size of the pelvis, or to the pelvic inlet or outlet, as<br />

might be expected considering the reported size differences between<br />

white and black pelves. Instead, the traits affected by race were<br />

“discrete” (i.e., they are commonly evaluated as “present/absent”).<br />

Furthermore, of the nine traits that showed significant differences in sex<br />

assessment between the races, none overlapped between the observers;<br />

however, five of these traits were significant in the analysis of interobserver<br />

variation. These results may indicate that the disparity in sex<br />

determination found in certain traits may be due as much to interobserver<br />

differences in trait interpretation as to morphological<br />

dissimilarities between the races.<br />

In conclusion, the objective of this research was not to be able to<br />

determine race from the pelvis, but to explore whether or not the<br />

quantitative differences in the pelves of white and black Americans<br />

affect the morphological assessment of sex. Results from this study<br />

indicate that they do not.<br />

Reference:<br />

Patriquin ML, Loth SR, Steyn M. Sexually dimorphic pelvic<br />

morphology in South African whites and blacks. Homo<br />

2003;53(3):255-262.<br />

Race, Sex Assessment, Pelvis<br />

H74 Bilateral Asymmetry in Historic Versus<br />

Modern Skeletal Remains: Activity<br />

and Identification<br />

Shannon E. May, MA*, 250 South Stadium Hall, Department of<br />

Anthropology, University of Tennessee, Knoxville, TN 37966<br />

The goal of this presentation is to determine the presence of<br />

bilateral asymmetry in two temporally and geographically diverse<br />

skeletal collections, and to compare and contrast these values. Levels of<br />

lateralization are then considered in terms of activity, sex, and age.<br />

This presentation will impact the forensic community by<br />

demonstrating the utility of bilateral asymmetry in modern forensic<br />

casework and in skeletal biological contexts. Furthermore, the<br />

population-specific nature and sexual dimorphism of side-dominance is<br />

addressed.<br />

Bilateral asymmetry is defined as metric and morphological<br />

differences in paired biological structures, and may be used to infer<br />

various forms of environmental and mechanical stress imposed upon the<br />

skeletal system. [1] Directional asymmetry, also termed lateralization or<br />

side-dominance, is observed most often in human skeletal remains, and<br />

occurs when unimanual loading induces bone modification on a<br />

particular side. This typically results in larger size, cortical thickness,<br />

and greater robusticity of bones from the side receiving the greater stress.<br />

Anthropological studies have used bilateral asymmetry to establish<br />

activity patterns, [2] differentiate between the sexes, [3] and assign<br />

handedness to an unknown set of skeletal remains. [4]<br />

The current study investigates the level of asymmetry in two<br />

diverse skeletal collections: (1) The New Lisbon Collection sourced<br />

from Lisbon, Portugal, representing a historic European sample, and (2)<br />

The William M. Bass Skeletal Collection, sourced primarily from the<br />

189 * Presenting Author


southeastern United States, representing a modern skeletal set born<br />

during the twentieth-century. Equal sample sizes of 250 individuals<br />

from each collection were used. Postcranial long bone measurements<br />

were taken on each sample according to standards created by Moore-<br />

Jansen et al. [5] A total of seventeen measurements were taken, evaluating<br />

maximum and minimum length, diameter, and areas of muscle<br />

attachment. Both right and left elements were measured, using an<br />

osteometric board and digital calipers. An asymmetry index was also<br />

calculated as the difference between right and left elements of a pair,<br />

standardized by the mean of both components: [(R – L) x 100] / [(R +<br />

L)/2]. This formula preserves both direction and magnitude of<br />

asymmetry, while standardizing for size, thus allowing comparison<br />

between skeletal areas and individuals. Extensive biographic<br />

information has been documented for each skeletal sample, allowing<br />

additional demographic analysis.<br />

Paired T-tests revealed significant side-difference (p ≤ 0.05) in<br />

twelve measurements in the New Lisbon Collection but only five<br />

variables in the Bass Collection. While the Lisbon samples<br />

demonstrated significant side discrepancy in variable dimensions, Bass<br />

samples were primarily bilateral in terms of maximum length. The New<br />

Lisbon Collection also showed a greater sex-specific concentration in<br />

asymmetry: female asymmetry located in the mid-arm (measurements of<br />

the elbow-joint) and male asymmetry concentrated in the shoulder<br />

girdle. Sexes were separated for between-collection comparisons, and<br />

only shared asymmetrical variables were utilized. Multivariate<br />

Hotellings 2-sample T-tests showed Lisbon males having significantly<br />

higher levels of asymmetry in all variables except ulna length (p = 0.002<br />

– 0.01), as did Lisbon females (p = 0.001 – 0.04). In two measurements,<br />

the average Bass male asymmetry fell within the range of the Lisbon<br />

females, underscoring the importance of source/context when<br />

investigating sex and asymmetry in unknown remains. Additional<br />

analysis on the New Lisbon Collection reveals that Portuguese juvenile<br />

remains demonstrate lateralization by ten years age-at-death, with<br />

subadult males having higher asymmetrical values.<br />

It may be concluded that bilateral asymmetry is population-specific<br />

and most likely related to the amount and degree of mechanical loading<br />

experienced by the group. Modern groups like the Bass Collection<br />

represent a more sedentary lifestyle, resulting in less activity-induced<br />

modification. Conversely the historic Portuguese represent a group<br />

habitually engaged in heavy labor. While sexual dimorphism in<br />

asymmetry exists for each group, it is crucial to discern the potential<br />

sample populations and the inherent levels of asymmetry before<br />

assigning sex or handedness to an unknown set of remains. Finally,<br />

analysis of juvenile remains indicates that lateralization in long bones<br />

may be apparent at a young age, particularly in highly active groups.<br />

This may provide another approach to the difficult task of determining<br />

sex in subadult remains.<br />

References:<br />

1 Dangerfield PH. 1994. Asymmetry and Growth. In: Ulijaszek SJ,<br />

Mascie-Taylor CGN, editors. Anthropometry: The Individual and<br />

the Population. United Kingdom: Cambridge University Press,<br />

1994;7-29.<br />

2 Fresia AE, Ruff CB, Larsen CS. Temporal decline in bilateral<br />

asymmetry of the upper limb on the Georgia coast. Anthropological<br />

Papers of the American Museum of Natural History 1990;68:121-<br />

135<br />

3 Stirland AJ. Asymmetry and activity-related change in the male<br />

humerus. Int J Osteoarcheol 1993;3:105-113.<br />

4 Steele J. Handedness in past populations: Skeletal markers.<br />

Laterality 2000;5:193-220.<br />

5 Moore-Jansen PM, Ousley SD, Jantz RL. 1994. Data Collection<br />

Procedure for Forensic Skeletal Material. Knoxville, TN: Forensic<br />

Anthropology Center, University of Tennessee.<br />

Asymmetry, Handedness, Mechanical Loading<br />

* Presenting Author<br />

H75 Observer Error Analysis Trends in<br />

Forensic Anthropology<br />

Megan Ingvoldstad, MA, Ohio State University, Department of<br />

Anthropology, 244 Lord Hall, 124 West 17th Avenue Columbus, OH<br />

43210; and Christian Crowder, PhD*, <strong>Medical</strong> Examiner’s Office, 520<br />

First Avenue, New York, NY 10016<br />

After attending this presentation, attendees will recognize research<br />

trends in the evaluation and reporting of observer error in the forensic<br />

anthropological literature.<br />

This presentation will impact the forensic community by<br />

demonstrating the lack of observer error analysis in the anthropological<br />

literature over a 28-year period. Furthermore, this research indicates the<br />

trends in types of statistical analyses used for observer error analysis,<br />

when they are performed. As issues of professional standards continue<br />

to be addressed in the courts, it is imperative that anthropologists be<br />

proactive by increasing the scientific rigor in developing, comparing,<br />

and testing anthropological methods.<br />

Forensic anthropology has recently emerged from a transitional<br />

period in which it has been described as the application of physical<br />

anthropological analyses in the medico-legal setting. Methods<br />

developed within physical anthropology typically explore research<br />

questions at the population level, while forensic anthropology focuses<br />

more on the individual of a given population. Furthermore, methods of<br />

analysis used in the forensic context must meet specific demands due to<br />

the evidentiary nature of the results. While methods developed within<br />

physical anthropology have little need to recognize the potential legal<br />

and social ramifications of unreliable or inaccurate results, the scientific<br />

method (regardless of field) demands a certain level of scientific rigor in<br />

method development. Since the Daubert court ruling, many forensic<br />

disciplines have begun to critically evaluate the methods used in their<br />

examinations. The ruling has likely contributed to the increased<br />

awareness and interest in quantifying, critically assessing, and reevaluating<br />

some of the techniques most often used by forensic<br />

anthropologists. The issue of error rates; however, have been less often<br />

addressed. This presentation has two goals: (1) evaluate the trends in<br />

the types of statistical analyses used for observer error analysis, and (2)<br />

demonstrate the overall deficiency in observer error analysis within the<br />

literature to encourage discourse among anthropologists in establishing<br />

guidelines in this type of analysis.<br />

Anthropological articles from 1980 through 2008 in the Journal of<br />

Forensic Sciences were evaluated. Keyword searches (e.g., method,<br />

technique, statistics, error, bias) were utilized initially, followed by<br />

manual reviews of all anthropological articles to determine if an analysis<br />

of observer error was warranted for the studies. Any paper that<br />

introduced, compared, validated, or modified anthropological methods<br />

and techniques was considered as potentially needing observer error<br />

analyses. Overall, 269 articles fit the criteria for inclusion in this survey.<br />

Each article was evaluated and the inclusion or exclusion of intra- and<br />

inter-observer error was recorded. In the event that an observer error was<br />

evaluated, the statistical technique was recorded.<br />

Out of 269 articles, 189 (70%) provided no analysis of observer<br />

error leaving only 80 (30%) that have performed or presented observer<br />

error analyses. Furthermore, only 25 studies (9%) performed both intraand<br />

inter-observer analyses. Twenty-nine studies (11%) only<br />

documented results from inter-observer analyses, while 26 studies (10%)<br />

only provided intra-observer analysis results. Papers reviewed prior to<br />

1986 did not include any analyses of observer error and papers prior to<br />

1990 did not include any analysis of inter-observer error. While it was<br />

hypothesized that the amount of studies performing analyses of observer<br />

error would increase over time relative to the amount of total research<br />

papers published per year, it was discovered that the frequencies simply<br />

rise and fall over the years. The types of statistics used over the years to<br />

evaluate observer error prove to be just as variable and do not<br />

demonstrate any selection trend over time.<br />

190


As the courts continue to raise the bar regarding professional<br />

standards, forensic anthropology must be committed to providing<br />

analyses that are of the highest quality. Researchers should carefully<br />

select statistical techniques for evaluating observer error and strive to not<br />

only identify the error, but explore the cause. Researchers need to be<br />

versed in the concepts of bias, repeatability, precision and accuracy so as<br />

not to conflate the terms and use them interchangeably. Analyses of<br />

observer error are a basic component of the scientific method and assist<br />

in evaluating the reliability of our methods. Human variation is a<br />

frequent complication in the development of methods within biological<br />

anthropology. Differentiating method error from biological variability<br />

will assist in providing a baseline interpretation of methods and their<br />

variables as useful predictors in skeletal analyses.<br />

Daubert, Observer Error, Statistics<br />

H76 Prediction of Shoe Size From Tarsals<br />

and Metatarsals<br />

Paul D. Emanovsky, MS*, JPAC-CIL, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

The goals of the presentation are to explore the relationship<br />

between various elements of the foot and overall foot length, to create<br />

regression equations for prediction of foot length in unknown cases, and<br />

to assess the correlation of predicted foot length with reported shoe size.<br />

This presentation will impact the forensic community by showing<br />

how estimation of shoe size can potentially be a valuable addition to the<br />

standard biological profile. Notably, it can help limit the number of<br />

antemortem searches required to narrow a pool of potential individuals.<br />

It will also assist with issues such as commingling as well as re-associate<br />

material evidence from recovery scenes to specific individuals.<br />

Regression formulae have been derived using a sample of white and<br />

black males from the Hamann-Todd Collection (HTH) housed at the<br />

Cleveland Museum of Natural History. These formulae were tested for<br />

efficacy on a subsample of individuals identified at the JPAC-CIL for<br />

whom the proper antemortem records and postmortem measurements<br />

were available. Currently, footwear vendors provide tables that correlate<br />

maximum foot length to shoe size. Although there is some variability in<br />

the size of ones’ shoe due to manufacturing and stylistic differences,<br />

investigators can confer with specific manufacturers to account for such<br />

differences in size.<br />

Bony foot elements were measured on a sample of 123 white and<br />

black males from the Hamann-Todd Collection for whom antemortem<br />

foot length data was available. Twenty-four measurements of various<br />

foot elements were collected on the HTH sample for ongoing research<br />

projects involving sexual dimorphism and ecogeographical patterning.<br />

Logistic regression (LR) was used to create population specific (white or<br />

black) and generic (combined white and black) regression models for the<br />

prediction of overall foot length. These formulae were then evaluated to<br />

determine which single element or combination of elements provided the<br />

best predictions of foot length.<br />

For the current study, variable selection from the 24 available<br />

measurements followed a heuristic protocol. Elements of the foot are<br />

commonly well preserved in archeological and forensic contexts.<br />

Among the best preserved elements of the foot typically encountered in<br />

JPAC-CIL cases are the calcaneus, first metatarsal, and the cuboid. For<br />

example, each of these elements are present in at least 15 individuals out<br />

of a 20 individual subsample of identified CIL accessions. This<br />

subsample includes foot size data (via shoe size recorded in the<br />

individual’s medical records) and postmortem bony measurement data.<br />

This sample involves individuals from a variety of distinct time periods<br />

and, as such, it was used to evaluate the regression equations and assess<br />

its broad utility. The potential variable list was further shortened by the<br />

requirement of having a high correlation coefficient with foot length.<br />

While all of the metatarsals were found to have higher correlations than<br />

tarsals, it is desirable to include a model that incorporates hind, midfoot,<br />

and forefoot components. These three components then can be summed,<br />

entered using stepwise LR, or used independently in the absence of<br />

better correlated elements. The maximum lengths of the calcaneus,<br />

cuboid, and first metatarsal were all found to be well correlated with<br />

overall foot length. For instance, in the white and black male combined<br />

sample the two-tailed Pearson correlations are 0.639, 0.563, and 0.773<br />

respectively. All are statistically significant correlations at the 0.01 level.<br />

Using the sum of the cuboid and first metatarsal lengths (sumcubfstmax)<br />

the following equation is derived:<br />

Predicted foot length = -6.046 + (sumcubfstmax) 1.333 (r 2 =<br />

.63, Inaccuracy = 7.16 mm, Bias = -8.85 mm, standard error of<br />

model = 9.964). Standard errors of the models as well as<br />

correlations are typically improved with population specific<br />

equations.<br />

Regression methods for estimating foot length and subsequently<br />

shoe size data have been found to be statistically viable. Standard errors<br />

of the equations are on par with estimates of stature from tarsals which<br />

has proven to be highly useful in variety of forensic and archeological<br />

contexts. It is anticipated that prediction of shoe size can become a<br />

useful forensic tool within the investigators toolkit if proper antemortem<br />

records are available.<br />

This research was funded in part by the Oak Ridge Institute of<br />

Science and Education (ORISE) research participant program and the<br />

Joint POW/MIA Accounting Command.<br />

Logistic Regression, <strong>Bio</strong>logical Profile, Pedal Analysis<br />

H77 Radiography as a Tool for Contemporary<br />

Anthropological Research<br />

Melissa A. Pope, BA*, University of South Florida, Anthropology<br />

Department, 4202 East Fowler Avenue, Tampa, Florida 33613; and<br />

Liotta N. Dowdy, BA*, University of South Florida, 3115 Palmira Street,<br />

Tampa, Florida 33629<br />

After attending this presentation, attendees will gain knowledge of:<br />

the role of radiography in forensic anthropology, the potential<br />

contribution of radiography as a tool for deriving quantitative<br />

measurements in the research setting, problems associated with this<br />

application, and potential areas of death investigation that may be<br />

improved through research using radiography for quantitative analysis.<br />

This presentation will impact the forensic community by enabling<br />

better standards for human identification and by showing that<br />

anthropological methods are founded in science, there is a need to<br />

validate all methods.<br />

This study assessed whether radiographs can be used to generate<br />

accurate and reliable morphometric data, or whether they introduce too<br />

much error. This presentation is an effort to uncover research that relates<br />

to this topic, and to determine whether radiographs are a valid tool<br />

(accurate and reliable) for anthropometric analyses of contemporary<br />

populations.<br />

This research will help substantiate the use of radiography to<br />

facilitate the generation of population-specific standards for the<br />

biological profile that may be used to facilitate forensic death<br />

investigations and investigations into war crimes. Radiographs have<br />

been used extensively as a means for generating osteological data<br />

because of their many advantages, including cost effectiveness and<br />

simplicity. In anthropology, radiography has recently and less<br />

conventionally been used as a tool to generate samples of contemporary<br />

people for developing new quantitative standards. Advantages of this<br />

application include: non-invasiveness, the potential for longitudinal<br />

research, and the accessibility of skeletal data in fleshed remains. During<br />

death investigations, the methods of the investigators invariably fall<br />

191 * Presenting Author


under scrutiny, and must be shown to be accurate, reliable and<br />

appropriate for what is being analyzed. Therefore, it is necessary that the<br />

standards used to build the biological profile are based on samples that<br />

are representative of the populations being analyzed. This research will<br />

ultimately aid in the development of new and more reliable methods that<br />

will contribute to making positive identifications and will withstand<br />

scrutiny during trial.<br />

This study derived linear measurements (maximum length,<br />

midshaft width, and diameter of the head) from ten femurs, ten humeri,<br />

nine ulnae and nine radii (total n=38). The sample was generated from<br />

dry bones belonging to USF’s anthropology department. The bone<br />

measurements were then compared to their corresponding radiographs.<br />

The bones were filmed in antero-posterior view, except for the ulnae,<br />

which were filmed in medio-lateral view. Specific measurements were<br />

selected based on landmark visibility on the radiograph, their ability to<br />

be combined into one sample, and their utility in anthropological<br />

investigation. Measurements were taken blindly by both authors so that<br />

inter-observer error could be identified. Magnification error was<br />

accounted for, and problems associated with accounting for the threedimensional<br />

shape of the bone were identified. The samples were<br />

combined and Mann-Whitney tests were performed to determine if there<br />

were significant differences between the dry bone and the radiograph<br />

measurements. These measurements were plotted against each other to<br />

see whether or not there was a clear relationship. The distances were<br />

then correlated using a Spearman’s correlation test. Finally, the<br />

differences between the radiograph and the dry bone measurements were<br />

computed for all distances and descriptive statistics were calculated for<br />

overall assessment of accuracy and precision.<br />

The Mann-Whitney found all three distances to be highly<br />

insignificant (p=0.499, 0.884, 1), indicating that the dry bone and<br />

radiograph measurements were similar. The plots indicated a fairly clear<br />

relationship between measurements, although less so for the width of the<br />

head. Spearman’s correlations showed all measurements to be<br />

significantly correlated (p=0.01; r=0.999, 0.974, 0.98), indicating that<br />

the radiograph measurements were accurate. Descriptive statistics of the<br />

differences showed that on average the measurements were fairly<br />

accurate, but not within the ±2mm range that is preferable for<br />

anthropometric analyses.<br />

Despite the lack of accuracy, the results are promising. It is<br />

anticipated that the results may improve as this study progresses. This<br />

study will be furthered by: quantifying inter- and intra-observer error,<br />

analyzing each bone separately, and analyzing whether certain portions<br />

of the bone or types of measurements yield more accurate results (as<br />

these are affected by difficulties in accounting for magnification error).<br />

More accurate ways to account for magnification error and distortion are<br />

needed for this methodology. An elaboration of this problem will be<br />

provided in the presentation.<br />

Radiography, Metric Analysis, Osteometry<br />

H78 Can Bilateral Joint Asymmetry Be Used as<br />

an Estimation of Handedness?<br />

Kathryn R.D. Driscoll, MA*, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand whether<br />

bilateral asymmetry of the humeral, femoral and tibial joints should be<br />

used to estimate handedness.<br />

This presentation will impact the forensic community by examining<br />

the statistical validity of using joint asymmetry as an estimation of<br />

handedness.<br />

In order to develop a comprehensive biological profile, forensic<br />

anthropologists depend on the ability to identify skeletal characteristics.<br />

Determining handedness from skeletal material is one tool that would<br />

* Presenting Author<br />

enhance the effectiveness of the biological profile. While bilateral<br />

asymmetry has traditionally been used as an indicator of handedness, the<br />

statistical significance of this practice needs to be examined. This<br />

research examined the statistical significance of bilateral joint<br />

asymmetry as an indication of handedness or hand dominance.<br />

Bilateral asymmetry of the long bones has historically been used as<br />

a possible indicator of handedness. Longer right humeri were thought to<br />

indicate right handed dominance as were longer left lower limbs<br />

(specifically the tibiae). Differential use was assumed to manifest in<br />

bilateral asymmetry. Kerley (1972) also indicated that the clavicles<br />

could be used in handedness determinations. In 2007, the statistical<br />

significance of length and weight asymmetry was examined using a<br />

skeletal sample of known handedness. Results indicated that asymmetry<br />

existed in the sample; however, only the clavicles were clearly correlated<br />

with handedness. In 2004, Plochocki examined differential loading of<br />

the joints as a result of differential hand dominance; he concluded that<br />

environmental activity does result in asymmetry; however, the<br />

handedness was unknown for the individuals in Plochocki’s sample. In<br />

an effort to further examine the relationship between bilateral<br />

asymmetry, joint asymmetry, and handedness, the current study<br />

examined the proximal and distal epiphyses of the humeri, femora and<br />

tibiae of a sample with known handedness.<br />

The William M. Bass Donated Skeletal Collection housed at the<br />

University of Tennessee in Knoxville was utilized for the 2007 study as<br />

well as for this study. Whenever possible, a biological questionnaire is<br />

completed when an individual is donated. These include a question<br />

related to handedness. This information in conjunction with the skeletal<br />

remains presented a good opportunity to examine the actual statistical<br />

correlation between handedness and bilateral asymmetry.<br />

For this study, the humeral head diameter, humeral epicondylar<br />

breadth, femoral head diameter, femoral epicondylar breadth, tibial<br />

proximal epiphyseal breadth, and tibial distal epiphyseal breadth were<br />

measured. The measurements of 107 individual donations with known<br />

(self-reported) handedness were examined. When the sample was<br />

pooled, paired t-tests of each individual’s measurements indicated<br />

significant (α =0.05) asymmetry sans the femoral head diameter and<br />

distal tibial epiphyseal breadth. When the samples were grouped by<br />

handedness, the lefties were only asymmetrical in the humeral<br />

epicondylar breadth and proximal tibial epiphyseal breadth while the<br />

righties were asymmetrical in the same measurements as the pooled<br />

sample. Statistically significant differences favored the right skeletal<br />

element in each case. Therefore, when both groups were asymmetrical,<br />

they were asymmetrical in the same direction. This was not particularly<br />

supportive of the handedness-use hypothesis.<br />

While asymmetrical significance was difficult to tease apart, the<br />

results of discriminant analyses testing the six measurements’<br />

classification ability were promising. Preliminary results indicated that<br />

discriminant analyses correctly classified 74% of individuals into<br />

handedness groups when utilizing all of the measurements. When the<br />

groups were separated by sex, the classification rates improved to 88%<br />

for females and 80% for males. The percentage of directional<br />

asymmetry {DA = (right-left)/(average of left and right) *100 } was also<br />

calculated for each individual. The results of these calculations<br />

supported those calculated using the paired t-tests.<br />

Significant bilateral asymmetry is present, but simply using one<br />

measurement fails to adequately classify an individual. However,<br />

preliminary classification results using all of the measurements are<br />

cautiously optimistic. Of note, there is a sampling bias that is present in<br />

the sample which may be the cause of apparently conflicting results. Of<br />

the 107 individuals, only 15 individuals were classified as left handed;<br />

however, this ratio does mimic that found in the general population.<br />

Bilateral Asymmetry, Handedness, Joints<br />

192


H79 Forensic Anthropology Academic and<br />

Employment Trends<br />

Gina M. Agostini, BS*, and Emily J. Gomez, BA, 4500 Manor Village,<br />

Apartment 316, Raleigh, NC 27612<br />

The goal of this presentation is to offer valuable insight into the<br />

current trends of the profession, to students seeking higher education in<br />

forensic anthropology, and to professionals in the field.<br />

This presentation will impact the forensic community by examining<br />

employment and academic trends directly affecting the future of the<br />

field.<br />

The goal of this project was twofold: (1) to evaluate current<br />

physical anthropology graduate programs affiliated with AAFS<br />

members, and (2) to evaluate the type and frequency of employment<br />

opportunities available in forensic anthropology.<br />

For the first objective, 41 anthropology programs were evaluated.<br />

Forensic science programs including those with an anthropologist on<br />

staff were not evaluated as they are under the purview of the Forensic<br />

Science Education Program Accreditation Commission (FEPAC). This<br />

project was accomplished with assistance from members of the AAFS<br />

Physical Anthropology Section Ad-Hoc Education Committee. Of these<br />

46 programs, 32 were highlighted as having a learning environment bestsuited<br />

to forensic anthropology students. Criteria for recommendation<br />

included the availability of a graduate program in anthropology, presence<br />

of an AAFS member on staff who is available to serve as mentor, and<br />

availability of a specified Master’s or PhD concentration or degree track<br />

in forensic anthropology. This review process is ongoing based on<br />

changes including individual retirement, membership status in the<br />

AAFS, and the development of new programs. The number of<br />

recommended programs is expected to change in the future.<br />

For the second objective, members of the AAFS Physical<br />

Anthropology section were invited to participate in an anonymous,<br />

broad-spectrum survey which addressed key issues concerning academic<br />

background, employment, and professional affiliations. The survey<br />

responses were then compiled to assess the range of employment options<br />

available to those who specialize in forensic anthropology. Nontraditional<br />

or non-academic opportunities were also included. The<br />

survey encompassed issues seen as relevant to students, educators and<br />

professionals. Topics addressed included the number, size and location<br />

of universities staffed with forensic anthropologists, the size of the<br />

graduate program offered and any relevant short courses or workshops<br />

offered. Topics regarding professional and educational background of<br />

the instructors were also addressed, as well as the extent to which<br />

students were included in relevant research and/or presentations.<br />

Sixty-nine percent of AAFS members participated in the survey.<br />

Results showed that 54% of those who participated held a doctoral<br />

degree, 34% held a MA/MS or MSc degree, and 7% held a BA/BS<br />

degree. Eighty-five percent of all participants held a degree in<br />

Anthropology. Reported employment affiliation included academia<br />

(44.5%), medicolegal agencies (19.1%), federal agencies/institutions<br />

(12.7%), museums (2.7 %), non-profit/non-governmental (2.7 %), selfemployed/consultant<br />

(5.5%), and unemployed, retired or students<br />

(12.7%). Of those who had an academic position, 26.9% were assistant<br />

professors, 25% were full professors, 19.2% were tenured Associates,<br />

25% were adjunct professors and 3.8% were untenured associates. Over<br />

half of those who participated in the survey reported regularly including<br />

students in their research and/or mentored graduate students.<br />

Approximately 46% responded that they did not have any graduate<br />

students with a concentration in forensic anthropology. Results also<br />

showed that the states with the most forensic anthropologists were<br />

California, Hawaii, New York, and Texas. Thirty-seven percent of<br />

survey participants reported earning between $50,000-$75,000 annually,<br />

28.6% between $75,001-$100,000, 16.9% over $100,000, 11.7%<br />

between $25,000-$50,000, and 5.2% reported earning less than $20,000.<br />

In addition, a survey was taken of job advertisements posted on the<br />

AAPA website from the last six years. This showed a wide range of<br />

career opportunities available to individuals with specialized training in<br />

forensic anthropology. Of 839 job listings, 321 or 42.3% could be filled<br />

by someone with training in forensic anthropology. Listings for<br />

specialists in physical/biological anthropology were the most prevalent<br />

(187), followed by positions in anatomy (82) and forensic anthropology<br />

(32). Osteology (14) and skeletal biology (6) positions had the fewest<br />

listings. Thirty-four post-doctoral positions were available in forensic<br />

anthropology and 72.3% were tenure-track positions.<br />

Forensic Anthropology, Employment, Education<br />

H80 <strong>Bio</strong>logy and Culture in the Modern Era:<br />

How Cultural Evidence Can Conflict With<br />

Forensic Significance<br />

Clarissa R. Dicke, AD*, 1325 East Orange Street, Tempe, AZ 85281;<br />

Laura C. Fulginiti, PhD, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007; and Mark A. Fischione, MD, Maricopa County<br />

Office of the <strong>Medical</strong> Examiner, 701 West Jefferson Street, Phoenix, AZ<br />

85003<br />

After attending this presentation, attendees will have seen an<br />

extreme case of ankylosing spondylitis. Attendees, most importantly,<br />

will understand that pathology and individual circumstance can help<br />

solve a case, but can also be greatly misleading. This presentation will<br />

demonstrate how evidence, circumstance of burial, and burial artifacts<br />

must be analyzed in both biological and cultural contexts.<br />

This presentation will impact the forensic community by<br />

demonstrating the importance of the cultural assessment of evidence,<br />

determining forensic significance in the face of conflicting evidence, and<br />

the presentation of a rare and extreme case of ankylosing spondylitis.<br />

One of the responsibilities of a forensic anthropologist is to<br />

determine the forensic significance of unknown human remains that are<br />

presented to the Office of the <strong>Medical</strong> Examiner. Often times the<br />

biological conditions and cultural circumstances of the case can be<br />

misleading. The analysis of evidence, circumstance of burial and burial<br />

artifacts must be done in both biological and cultural contexts and is<br />

required to understand whether a forensic case falls into the purview of<br />

the medical examiner. In the case described below, the remains were<br />

recovered from a shallow grave near Flagstaff, Arizona. The Federal<br />

Bureau of Investigation (FBI) had concerns that the grave might be<br />

clandestine and an attempt to hide a homicide. The recovery of the<br />

remains followed standard forensic protocols and revealed interesting<br />

clues to the identity of the individual.<br />

In April 2005, the FBI in Coconino County, AZ recovered<br />

skeletonized human remains from a shallow grave. The remains were<br />

consistent with those of an adult male of Asian ancestry (including<br />

Native American ancestry) and appearing to be 40-55 years old at the<br />

time of his death. Artifacts including a pair of black, lace top boots, two<br />

clear colored bottles, and a silver colored spoon were also submitted.<br />

The analysis of the decedent revealed that he had an advanced and severe<br />

case of ankylosing spondylitis.<br />

Ankylosing spondylitis is a chronic disease that causes<br />

inflammation of the joints between the vertebrae and the joints between<br />

the spine and the pelvic girdle. Over time, if it progresses, it will<br />

eventually cause the affected vertebrae to fuse by means of a layer of<br />

additional bone connecting the vertebrae. This condition is sometimes<br />

referred to as dripping candle wax because of its appearance. There is<br />

no known cause of ankylosing spondylitis, but heredity seems to play a<br />

role. The disease most frequently begins between ages 20 and 40, but can<br />

initiate before age 10. It affects more males than females and the risk<br />

factors include a family history of ankylosing spondylitis and male<br />

gender. Some symptoms include hip and back pain that may begin in the<br />

193 * Presenting Author


sacroiliac joints and involve all or part of the vertebral column, chronic<br />

stooping, fatigue, joint pain and joint swelling in the shoulders, knees,<br />

and ankles, limited expansion of the chest, and limited range of motion<br />

(especially involving spine and pelvic girdle).<br />

The location and manner of the individual’s burial prompted the<br />

FBI to treat this case as a possible homicide. The artifacts and some of<br />

the biological evidence, at first, led the forensic anthropologist to deem<br />

the case historic. However, when dealing with Native Americans living<br />

on or near the reservation, it is imperative to consider that Native<br />

Americans lived in “historic” conditions well into the modern age. It is<br />

the forensic anthropologist’s agenda to consider all evidence in an<br />

appropriate manner in order to determine forensic significance. The<br />

authors will present literature and photographs of the decedent and the<br />

evidence recovered from the grave to illustrate the conflicting evidence<br />

and the extent of the disease in this individual and to give participants in<br />

the meeting the opportunity to examine an advanced case of the disease.<br />

Ankylosing Spondylitis, <strong>Bio</strong>logy vs. Culture, Forensic Significance<br />

H81 Analysis of Thirty-Three Years of Forensic<br />

Anthropology Casework at California State<br />

University, Chico (1975-2008)<br />

Ashley E. Kendell, BS*, 1253 West 5th Street, Apartment 85, Chico, CA<br />

95928; and Ashley Hutchinson, BA, James Brill, BA, Eric J. Bartelink,<br />

PhD, Turhon A. Murad, PhD, and P. Willey, PhD, California State<br />

University-Chico, 400 West First Street, Department of Anthropology,<br />

Butte #311, Chico, CA 95929-0400<br />

The goal of this presentation is to summarize and assess statistical<br />

patterns in the forensic anthropological cases examined at California<br />

State University, Chico (CSUC) from January 1975 to April 2008.<br />

This presentation will impact the forensic community by providing<br />

demographic information on cases examined at the CSUC Human<br />

Identification Laboratory (CSUC-HIL) that will aid in evaluating trends<br />

in forensic anthropological casework in northern California. This study<br />

will provide comparative data for evaluating temporal and regional<br />

trends in forensic casework in North America, and also will shed light on<br />

the changing applications within forensic anthropology since the 1970s.<br />

The research is modeled after a similar study conducted at the<br />

Smithsonian Institution (Grisbaum and Ubelaker 2001). Case reports<br />

spanning 1975 to 2008 were examined, and a total of 319 cases were<br />

entered into the project database. For each case, the date of arrival,<br />

anthropologist, trauma type, age, sex, ancestry, and MNI were recorded.<br />

Cases were categorized as representing human or non-human remains, or<br />

both.<br />

Of the 319 cases recorded, 18.8% (n=60) were non-human or<br />

included non-human remains. Of the 264 human remains, 18.2% (n=48)<br />

were positively identified through efforts of the CSUC-HIL. <strong>Bio</strong>logical<br />

profiles were determined on an individual basis, when possible, as<br />

several of the cases were determined to have an MNI greater than one.<br />

These cases typically involved buried remains (e.g., archaeological), in<br />

which commingling was a hindrance to creating individual biological<br />

profiles.<br />

A MNI of 328 was determined for the 264 cases that were<br />

determined to be human remains. Of these 328 individuals, 43.3 %<br />

(n=142) were male and 28.9% (n=95) were female. In the remaining 91<br />

individuals, sex could not be determined due to the incomplete or<br />

fragmentary nature of the remains. Of the 328 individuals analyzed,<br />

10.4% (n=34) represented subadults.<br />

The frequency and regional distribution of casework were also<br />

analyzed. The majority of cases are from five northern California<br />

counties: Shasta (13.2%), Butte (9.1%), Tehama (8.2%), Nevada (6.6%)<br />

and El Dorado (6.6%). The remaining cases came from one of 27<br />

additional counties in California or from Nevada.<br />

* Presenting Author<br />

The extensive data set from CSUC (n=319) will provide an<br />

interesting temporal and regional perspective for comparison to other<br />

studies, specifically: Hrdlicka’s 37 cases from 1938-1942, Stewart’s 167<br />

cases from 1946-1969, Angel’s 646 cases from 1962-1986, and<br />

Ubelaker’s 667 cases from 1975-2000 (Ubelaker 2000). At CSUC, the<br />

number of case reports of remains determined to be human and nonhuman<br />

were examined by decade. Nonhuman remains comprised 28.6%<br />

of cases in the 1970s, although this includes only two cases. In the<br />

decades following, the percentage of nonhuman cases increased from<br />

13.3% (n=4) in the 1980s, to 18.8% (n=26) and 20.6% (n=28) for the<br />

1990s and 2000s, respectively. The frequency of human cases increased<br />

dramatically from five cases in 1970s to 108 cases from 2000-2008.<br />

This study provides an assessment and summary of the casework<br />

conducted at the CSUC-HIL, which will serve as a basis for comparison<br />

with other regions of North America. The results of this study indicate a<br />

dramatic increase in the use of forensic anthropologists in Northern<br />

California beginning in the 1990s.<br />

References:<br />

Grisbaum, Gretchen A. and Douglas H. Ubelaker<br />

2001 An Analysis of Forensic Anthropology Cases Submitted to the<br />

Smithsonian Institution by the Federal Bureau of Investigation<br />

from 1962 to 1994. Smithsonian Contributions to<br />

Anthropology; 45.<br />

Ubelaker, Douglas H.<br />

2000 A History of Smithsonian-FBI Collaboration in Forensic<br />

Anthropology,<br />

Especially in Regard to Facial Imagery. Forensic Science<br />

Communication<br />

2(4).http://www.ncjrs.gov/App/Publications/abstract.aspx?ID<br />

=240569<br />

Demographic Analysis, <strong>Bio</strong>logical Profile, Northern California<br />

H82 Detecting Buried Metallic Weapons<br />

in a Controlled Setting Using a<br />

Conductivity Meter<br />

Charles A. Dionne, BS*, University of Central Florida, Department of<br />

Anthropology, 4000 Central Florida Boulevard, Orlando, FL 32816<br />

The goal of this presentation is to introduce the attendees to the<br />

utility of the conductivity meter as a geophysical instrument used by<br />

forensic investigation teams in the search for buried weapons.<br />

Participants will gain a better understanding of how law enforcement<br />

agencies can benefit from the use of a conductivity meter when searching<br />

for buried metallic weapons.<br />

This presentation will impact the forensic community by<br />

demonstrating how the use of geophysical technologies by law<br />

enforcement for evidence searches is becoming more frequent. The field<br />

of forensic archeology has proven important for the improvement of<br />

forensic searches by performing controlled research with various<br />

geophysical technologies. By conducting controlled research, it is<br />

possible to test the applicability of geophysical instruments during<br />

194


searches for buried evidence at potential crime scenes or areas of<br />

disposal.<br />

This research project will involve the use of a conductivity meter to<br />

test the applicability of this instrument to detect buried metallic weapons.<br />

Overall, this project is one aspect of a larger project which includes<br />

multiple geophysical tools and tests their ability to detect buried metallic<br />

weapons. This presentation will solely focus on introducing the<br />

attendees to the conductivity meter and to the extent of its applicability<br />

for buried weapon detection. The overall objectives of the research were<br />

to: (1) investigate the capability of the conductivity meter to detect<br />

weapons of various metallic components and sizes at depths up to<br />

approximately 75cm, and (2) to create some guidelines on the proper use<br />

of a conductivity meter in a forensic setting.<br />

The conductivity meter chosen for this research was the portable<br />

Geonics EM38. This model is approximately 1m in length, has a<br />

maximum detection depth of 1.5m, and can provide preliminary results<br />

in the field. For purposes of this research project, the conductivity<br />

readings were recorded while the instrument was on the ground by<br />

pressing a trigger button on the handle. The conductivity values were<br />

saved using a portable data logger attached to the conductivity meter and<br />

were first uploaded into data management software provided by Geonics<br />

Limited. Next, the conductivity data was imported into Golden<br />

Software’s Surfer 8 (version 8.4) for analysis of the conductivity values<br />

for each data collection depth, and presentation of the data as contour<br />

maps.<br />

A mixture of 32 metallic items was specifically chosen for this<br />

research project representing three categories: firearms, miscellaneous<br />

metals, and blunt and sharp force objects. The items used include 16<br />

street-level decommissioned firearms (including pistols, revolvers,<br />

shotguns, and a rifle) that are constructed from various metals, 6<br />

miscellaneous pieces of metals (including copper and aluminium), and<br />

10 blunt or sharp force weapons (such as a hammer and a machete). The<br />

weapons were chosen to represent an assortment of various sizes and<br />

compositions. The research site was located in a flat and grassy area that<br />

was regularly mowed. The items were buried in 7 rows over a data<br />

collection grid measuring 15 by 19m. The size of the grid ensured that<br />

the weapons were evenly spaced with enough distance between each to<br />

avoid false results. Each burial hole was marked with an orange, plastic<br />

stake to easily identify each burial location. The conductivity values<br />

were obtained by recording data every 25cm along transects also<br />

separated by 25cm. Conductivity data was first collected when the<br />

weapons were buried at a depth of 30-35cm. The weapons were then<br />

reburied 5cm deeper each time data collection was performed down to a<br />

maximum depth of approximately 75cm.<br />

Initial results show that the conductivity meter is able to detect<br />

multiple targets from all 3 categories at several depths. For example, at<br />

a depth of 45-50cm, 10 of the 16 firearms, 2 of the 6 miscellaneous<br />

metals, and 6 out of 10 blunt or sharp force items were detected. The<br />

items that were not detected were mostly the smallest items in the grid<br />

such as the small revolvers, the copper tube, the piece of rebar, the knife,<br />

the screwdriver, and the brass knuckles. At deeper depths, the<br />

conductivity meter was still obtaining strong signals from the larger<br />

weapons such as the shotguns, the rifle, the machete, the hammer, the<br />

mallet, the prybar, the scissors, and some of the larger hand guns such as<br />

the magnum and the Ruger. It is also important to note that the control<br />

hole was never detected and therefore the positive results were the result<br />

of the detected weapons and not the disturbed soil. Overall, the<br />

conductivity meter provided strong results at all depths tested with large<br />

weapons and would be a viable geophysical instrument for law<br />

enforcement agencies that are searching for large hand guns, shotguns,<br />

or rifles.<br />

Forensic Archeology, Conductivity, Controlled Research<br />

H83 The Effects of Ethanol Abuse on<br />

Bone Mineral Density in the<br />

Proximal Femur<br />

Bridget Algee-Hewitt, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Rebecca J.<br />

Wilson, MA*, 3108 Rennoc Road, Knoxville, TN 37918; and Megan<br />

Katrina Moore, PhD, University of Tennessee, University of Tennessee,<br />

Department of Anthropology, Knoxville, TN 37996<br />

After attending this presentation, attendees will have a better<br />

understanding of secondary osteoporosis and the relationship between<br />

bone mineral density and alcoholism.<br />

This presentation will impact the forensic community by explaining<br />

that the results of this study using ANOVA showed no significant<br />

difference between the BMD of ethanol abusers and the control group.<br />

The authors conclude that it is preemptive at best to state whether or not<br />

a skeleton with a younger age and bone de-mineralization was possibly<br />

alcoholic.<br />

This research explores the effects of alcoholism on bone mineral<br />

density of the proximal femur using dual energy X-ray absorptiometry<br />

(DEXA). The clinical consequences of excessive alcohol consumption<br />

have been well documented in the medical literature. The goal of this<br />

research is to test the assumption that bones from a sample of known<br />

ethanol abusers will have reduced bone density compared to an agematched<br />

control sample.<br />

Due to confounding effects of alcohol related illnesses, research<br />

evaluating the changes in bone density related to chronic ethanolism has<br />

been limited. Moreover, population-based analyses of alcohol-related<br />

bone loss are hindered by a lack of control for patient ages, sex and age<br />

specific hormonal effects, variability in the duration and patterns of<br />

alcohol abuse, and questionable self-reporting, which yield obscured and<br />

contradictory results.<br />

Purportedly, it is common knowledge among forensic<br />

anthropologists that chronic alcoholics frequently present characteristics<br />

similar to those observed in individuals of advanced age or<br />

“osteoporotic” skeletons. This information is often inherited from<br />

mentors or practically acquired while working with skeletal collections<br />

for which medical history is reported or in similar “known” contexts.<br />

Alcoholism has received little attention in discussions of forensic<br />

anthropological method and theory. A recent literature review of AJPA<br />

and JFS shows an absence of empirical investigation and published<br />

documentations. As a result, suggestions of alcoholism are commonly<br />

relegated to side notes (possible alcoholic?). For example, the assessed<br />

age indicators do not warrant an assignment of “old age” for the<br />

unknown individual and do not support age-related diagnosis for the<br />

skeletal demineralization, especially if pathological explanations are not<br />

logical.<br />

The sample consists of the femora of 35 white males from the<br />

William M. Bass Donated Skeletal Collection at the University of<br />

Tennessee, Knoxville between the ages of 20 and 70 years old. Fifteen<br />

of the males reportedly suffered from alcoholism. This collection offers<br />

a unique opportunity to study skeletons known individuals with medical<br />

histories. Only males were sampled in order to reduce the effect of sexspecific<br />

risks typically found in the female skeleton. Due to the small<br />

sample of ethanol abusers, the control sample is age-matched. DEXA is<br />

a simple and inexpensive means of establishing bone mineral content<br />

(BMC) and bone mineral density (BMD = BMC/area) at different<br />

regions of the body. Each femur was placed in a plastic container filled<br />

with dry white rice to a depth of approximately 12 cm. The rice served<br />

as a soft-tissue density equivalent for the DEXA scans, as suggested by<br />

GE, the producer of the DEXA Lunar scanner. A 2 cm thick cube of lowdensity<br />

foam was placed under the lesser trochanter to approximate<br />

anatomical position. Standard measurements of bone mineral density<br />

195 * Presenting Author


(BMD)(g/cm2) were calculated automatically for the femoral neck,<br />

Ward’s triangle, the greater trochanter, proximal shaft and total BMD.<br />

The results of this study using ANOVA showed no significant<br />

difference between the BMD of ethanol abusers and the control group.<br />

The authors conclude that it is preemptive at best to state whether or not<br />

a skeleton with a younger age and bone de-mineralization was possibly<br />

alcoholic. There exist too many confounding factors related to chronic<br />

alcohol abuse to clearly state whether loss of bone mineral density is the<br />

direct result. Confounding variables include the effects of body mass,<br />

nutritional deficiencies and hormone balance, among others. For clinical<br />

applications, it is important to predict osteoporotic fracture and for the<br />

development of orthopedic devices. Bone density analysis may be of<br />

interest to forensic anthropology and bioarcheology in order to<br />

individuate human skeletal remains for other purposes, but low BMD<br />

does not conclusively suggest alcoholism in the current study.<br />

Alcoholism, Bone Mineral Density, DEXA<br />

H84 Geophysical Remote Sensing Applied to<br />

the Forensic Search for WWII Graves<br />

in Guadalcanal<br />

Rhett Herman, PhD, Radford University, Department of Chemistry and<br />

Physics, Radford University, Radford, VA 24142; Cliff Boyd, PhD,<br />

Radford University, Department of Sociology and Anthropology, Radford<br />

University, Radford, VA 24142; Jarrod Burks, PhD, Ohio Valley<br />

Archaeological Consultants, 4889 Sinclair Road, Suite 210, Columbus,<br />

OH 43229; Donna C. Boyd, PhD*, Department Sociology &<br />

Anthropology, Radford University, Radford, VA 24142; and Doug<br />

Drumheller, MBA, Greatest Generation MIA Recoveries, 2187 Ben<br />

Franklin Drive, Pittsburg, PA 15327<br />

After attending this presentation, attendees will have a better<br />

understanding of the use of selected remote sensing techniques (Ground<br />

Penetrating Radar and a capacitively coupled resistivity system) applied<br />

to the search for clandestine graves, including those from historic 19th<br />

and 20th century Virginia as well as covert mass graves from WWII in<br />

Guadalcanal, Solomon Islands. Recommendations for future forensic<br />

searches will be provided.<br />

This presentation will impact the forensic community by<br />

demonstrating remote sensing investigation of clandestine mass graves<br />

in a variety of diverse environmental and temporal periods. Advantages<br />

and limitations of these techniques in specific burial environments (e.g.,<br />

Central and Eastern Virginia and Guadalcanal, Solomon Islands) and<br />

19th and 20th century temporal contexts are highlighted, as are<br />

applications of these techniques in multidisciplinary forensic<br />

investigations.<br />

Geophysical remote sensing techniques have been applied to the<br />

forensic search for clandestine graves for more than 15 years. Recently,<br />

Schultz 1 has cited the need for additional controlled remote sensing<br />

research to elucidate the effectiveness of these techniques in different<br />

micro-environments and longer interment periods. The current research<br />

does just that, by applying Ground Penetrating Radar (GPR) and a<br />

capacitively coupled resistivity system (i.e., Ohm Mapper) to mid-19 th<br />

century and mid-20 th century sandy and clay as well as wet and dry burial<br />

contexts in both the northern and southern hemispheres.<br />

The ill-fated U.S. Marine Goettge Patrol was ambushed by the<br />

Japanese on the evening of August 12, 1942, in Guadalcanal, Solomon<br />

Islands. Only three of the patrol survived; Japanese accounts indicate<br />

that 17 of the dead Marines, along with some dead Japanese soldiers,<br />

were buried in a group of Japanese rifle trenches. Their remains have<br />

never been recovered, although there is much speculation about the<br />

probable location of their interment.<br />

In July, 2008, an interdisciplinary team of forensic anthropologists,<br />

archaeologists, historians, and physicists conducted the Goettge Patrol<br />

* Presenting Author<br />

Guadalcanal survey. The goal of this survey was to locate the Japanese<br />

defensive trenches where members of the patrol were supposedly buried<br />

by using geophysical remote sensing equipment (GPR, Ohm Mapper),<br />

followed by archaeological test excavations of the identified anomalies.<br />

Two GPR systems were used: the Noggin Plus 250 Smartcart with a 250<br />

MHz antenna and the Pulse Ekko GPR system with both 100 MHz and<br />

500 MHz antennae. The Ekko Mapper 3 and Voxler software programs<br />

were used to visualize and process the data. Nearly 7,000 square meters<br />

of the most likely target area (based on historical and archival research)<br />

were surveyed. In addition, a capacitively coupled resistivity system<br />

was used to survey a 2,400 square meter area of high burial probability<br />

(also surveyed by the GPR), which, when processed using Mag Map<br />

2000, produced a three-dimensional plan view of the data.<br />

Anomalies identified through these remote sensing techniques were<br />

then tested by hand excavation of standard archaeological test units and<br />

trenches. Although the clandestine graves of the Goettge Patrol were not<br />

identified, interpretation of the anomalies was instructive in<br />

understanding the history and soil stratigraphy of the site and the impact<br />

of natural and human factors on the area since WWII (e.g., ground water<br />

accumulation and depositional fill). These investigations also helped<br />

narrow the search area in terms of where the Goettge Patrol is not.<br />

The Guadalcanal remote sensing survey highlighted the<br />

complexities of using remote sensing techniques in sandy, wet soil and<br />

extended interment periods. Further elucidation of these variables was<br />

accomplished by applying the same technology to 19 th and 20 th century<br />

historic graves in Arlington, Virginia and at the R.J. Reynolds<br />

Homestead in Critz, Virginia. From these investigations, it was learned<br />

that identification of graves of considerable postmortem interval was<br />

possible, but necessitated the use of a multidisciplinary team approach<br />

integrating the specialized skills of archaeologists, forensic<br />

anthropologists, physicists, and historians.<br />

Reference:<br />

1 Schultz J. Sequential monitoring of burials containing small pig<br />

cadavers using ground penetrating radar. JFS 2008; 53; 279-287.<br />

Forensic Archeology, Remote Sensing, Clandestine Graves<br />

H85 Necessary Breaks With Conservator<br />

Standards: Cranial Reconstruction in<br />

Forensic Cases<br />

Laura E. Gibson, BS*, 2040 Larchmont Way, Clearwater, FL 33764;<br />

Heather A. Walsh-Haney, and Christen E. Herrick, BS, Florida Gulf<br />

Coast University, Division of Justice Studies, 10501 FGCU Boulevard<br />

South, AB3, Fort Myers, FL 33965-6565; Katy L. Shepherd, BS, Florida<br />

Gulf Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard, South, Fort Myers, FL 33965; Gertrude M. Juste, MD,<br />

District 15 Office of the <strong>Medical</strong> Examiner, 3126 Gun Club Road, West<br />

Palm Beach, FL 33406; and Margarita Arruza, MD, <strong>Medical</strong> Examiner’s<br />

Office, 2100 Jefferson Street, Jacksonville, FL 32206<br />

After attending this presentation, attendees will have a better<br />

understanding of the advantages of various methods used in the<br />

reconstruction of fragmentary skulls and teeth, when particular<br />

techniques are appropriate, and solutions to common problems that result<br />

from plastic deformation, missing fragments and taphonomy.<br />

This presentation will impact the forensic community by<br />

differentiating between processes that are better suited for forensic<br />

settings as opposed to museum/conservation contexts. Special attention<br />

to also paid to adhesive variables, such as pH, solubility, flammability,<br />

tensile/shear strength, and reactivity/stability.<br />

Most protocols used in skeletal reconstructions are rooted in<br />

methods created for museum curation and conservation laboratories<br />

where bone stabilization, preservation, aesthetic appeal, and future study<br />

are emphasized while timeliness and cost are less important. These latter<br />

196


two factors are extremely vital to forensic investigations, however,<br />

where funding is limited and time is in short supply. Also in forensic<br />

settings and in contrast to museum/conservation objectives, the<br />

completed skeletal reconstruction does not need to be indefinitely stable<br />

and destructive procedures are often acceptable. As such, forensic<br />

practitioners have broken from some museum/conservation standards<br />

while still maintaining many of the basic procedures necessary to ensure<br />

that osteological analyses lead to victim identifications and establishing<br />

a profile of trauma. To this end, the step-by-step forensic process is<br />

presented for use in the successful reconstruction of cranial bones and<br />

teeth that have been fragmented from peri- and/or postmortem trauma.<br />

This survey of conservator and forensic methods found that prior to<br />

cleaning and reconstruction, the standard procedures were markedly<br />

similar and included: the documentation of the fragmentary bones in situ<br />

(e.g., at the scene, transport containers, or soil matrix), radiography of<br />

the materials before processing, and localized evaluation of the bone to<br />

ensure it was structurally sound and therefore could withstand cleaning.<br />

Conservator and forensic methods also differed when the process of<br />

cleaning was surveyed. Cold water maceration, hot water maceration,<br />

and dry brushing were successful. Strong chemical regents (e.g.,<br />

hydrochloric acid, hydrogen peroxide, ethyl alcohol, methylated spirits,<br />

household degreaser, or household detergents) were rarely used. While<br />

this method of cleansing the bone was fast, cost effective, and did not<br />

tend to warp the bone, the bones remained slightly greasy and fatty<br />

thereby requiring suitable adhesives for reconstruction.<br />

Acid-free adhesive composed mostly of acetone and nitrocellulose<br />

(e.g., Duco TM cement) was ideal for forensic casework because it set<br />

quickly, was easily reversible (with acetone), and had moderate adhesive<br />

strength. On the contrary, conservators tended to use Acryloid B-72 or<br />

Polyvinyl Acetate (PVA) because long term strength and preservation<br />

was the main objective. Other factors that were considered when<br />

choosing an adhesive included: pH level, stability, solubility, and<br />

flammability. An adhesive that was pH neutral (or acid free) was<br />

imperative as an acidic or alkaline adhesive would damage bone.<br />

Selecting an adhesive that was stable under temperature and humidity<br />

fluctuations was also necessary in forensic contexts, but less important in<br />

museums, as humidity and temperatures were strictly controlled.<br />

Because forensic remains often retain some internal moisture through<br />

grease or fat, an ideal adhesive should be insoluble in water. Due to the<br />

adhesive properties necessary in forensic contexts, obtaining a<br />

flammable adhesive was sometimes unavoidable. However,<br />

practitioners should use caution and be aware of their adhesive’s<br />

flammability rating.<br />

Several cases are presented that sustained perimortem fractures via<br />

gunshot wound, burning, or blunt force trauma. Postmortem fracturing<br />

from removal of the calotte and jaw during autopsy was also present.<br />

Issues that arose from these types of trauma included disassociation of<br />

the teeth from their crypts, plastic deformation (e.g., a series of<br />

microfractures that causes warping), bone loss, and delamination. In<br />

order to ensure accurate cranial measurements and trauma analysis the<br />

vault and face were reconstructed separately. In addition, the vault and<br />

face were not fixed together with glue. Rather, inert dental wax was used<br />

allowing the calotte, basicranium or splanchnocranium to be moved in<br />

order to ensure the accuracy of the various measurements. In addition,<br />

replacing bone with dental wax along autopsy dissection lines increased<br />

our accuracy as the reciprocating saws removed from 2mm to 8mm of<br />

bone. As cases in point, this study presents examples in which<br />

classification of sex, ancestry, wound diameters, and numbers of impact<br />

sites changed based upon the reconstruction processes used.<br />

Anthropology, Fragmentary Remains, Reconstruction<br />

H86 Anthropology for Breakfast:<br />

A Semi-Cautionary Tale<br />

John A. Williams, PhD*, Anthropology & Sociology, Western Carolina<br />

University, 101 McKee Hall, Cullowhee, NC 28723<br />

After attending this presentation, attendees will have an<br />

understanding of the triage and decision making process that forensic<br />

anthropologists experience when confronted with an atypical item.<br />

This presentation will impact the forensic community by<br />

demonstrating why forensic specialists should be consulted, no matter<br />

how mundane the case may appear.<br />

Forensic anthropologists routinely are asked to identify non-human<br />

bone, and sometimes items that are not bone at all.<br />

A graduate student at a southeastern university made, what to her<br />

was, a disturbing discovery in her breakfast cereal. A store brand box of<br />

raisin bran contained an item that at initial observation appeared to be a<br />

piece of bone with dried, attached flesh and connective tissue. For<br />

reasons never stated the student approached the biology department of<br />

the university and asked for an identification of the unknown object. (It<br />

is surmised that legal action would be taken should the item be identified<br />

as animal in origin.) The biologist she contacted is a microbiologist with<br />

no hard or soft tissue anatomical background. Despite this, he confirmed<br />

that the item was some form of animal anatomy. Fortunately, the biology<br />

professor suggested that the student get a second opinion from a forensic<br />

anthropologist.<br />

The errant breakfast food item was brought to a forensic<br />

anthropologist at the university. After relaying the story of the discovery,<br />

the forensic anthropologist made a gross macroscopic examination of the<br />

item. The item was small (18.5 mm x 7.8 mm x 5.0 mm) and slightly Lshaped.<br />

The exterior texture was soft but not sticky. The visual<br />

appearance did strongly resemble a piece of dried flesh, not unlike jerky.<br />

The item, however, failed the first basic test, the “sniff test.” It did not<br />

smell like flesh, if anything the smell was neutral. This led to the<br />

conclusion that the item was not likely animal in origin.<br />

To confirm this initial conclusion, permission was obtained to<br />

examine the item in more depth. Only limited dissection was granted by<br />

the student, however. Using a Keyence digital microscope the item was<br />

examined thoroughly at various levels of magnification. Using a scalpel,<br />

a small area was dissected. All in all, the item had the appearance of<br />

dried or semi-dried flesh complete with dried blood. Digital x-rays were<br />

taken using a Faxitron unit to examine the internal structure. The<br />

radiographs indicated that the central core of the item had a different<br />

density than the outer surface. This inner core, however, was uniform in<br />

density and did not display the compact-cancellous bone contrast<br />

expected of bone. To confirm this, a rodent femur and a tree stem of<br />

similar size were also radiographed. The rodent femur had the<br />

radiographic signature of bone. The tree branch, like the unidentified<br />

item, displayed a uniform density with little distinction between the outer<br />

and inner surfaces.<br />

With this information it was concluded that the item was a piece of<br />

vegetative matter. It is likely a piece of grape vine with crushed red<br />

raisins adhering to the outer surface. No doubt “quality control” at the<br />

cereal factory was not at peak performance. The student was assured that<br />

there was no biological hazard created by the presence of this item in the<br />

cereal.<br />

Despite the knowledge of a forensic anthropologist on campus the<br />

biologist with no anatomical background made a determination as to the<br />

origin of this item. This is a dilemma forensic anthropologists continue<br />

to face; non-anthropologists (and in some cases anthropologists)<br />

stepping beyond their training and expertise. Fortunately for all<br />

involved, the correct origin of the item was ascertained, avoiding no<br />

doubt, later embarrassment. It is not known whether a new box of cereal<br />

was provided as a result of this discovery.<br />

Triage, Identification, Non-Human<br />

197 * Presenting Author


H87 Unusual Skeletal Variations Observed in<br />

an Adult Aboriginal Male: Case Study from<br />

Brisbane, Australia<br />

Donna M. MacGregor, MSc*, Queensland Police Service, Scientific<br />

Section, 200 Roma Street, Brisbane, 4001, AUSTRALIA<br />

After attending this presentation, attendees will understand the role<br />

of police crime scene examiners in Queensland with relation to skeletal<br />

recovery and the unique role they serve in Coronial investigations.<br />

Attendees will also understand that standard age techniques were unable<br />

in this instance to assist with determining a reasonable age range for this<br />

individual.<br />

This presentation will impact the forensic community by illustrating<br />

the unique role of police officers and routine variations encountered<br />

during skeletal casework within Queensland, Australia.<br />

On July 1, 2007, forensic scientists from the Queensland Police<br />

Service Physical Evidence Unit went to a bushland location within an<br />

industrial area approximately 18 kilometers southwest of Brisbane,<br />

Australia in response to the discovery of human remains. The remains<br />

were located on a vacant block of land surrounded by a heavy industrial<br />

area. This area was routinely used by truck drivers to park heavy<br />

vehicles. The human remains were completely skeletonized, devoid of<br />

tissue, and had associated items of clothing. The remains were located<br />

within a small area and exhibited limited scattering effects by local<br />

predators. Flyscreen spline containing cervical vertebrae looped around<br />

a tree was also located. A humpy (small, temporary shelter) was located<br />

near the site. Almost all of the skeletal elements were recovered. This<br />

included most of the long bones, disarticulated pelvis, cranium and<br />

mandible, ribs, vertebral bodies, sternum, thyroid cartilage, and hyoid<br />

bone. All of the teeth were also present.<br />

On the 3 rd of July 2007, a forensic osteologist from the Queensland<br />

Police Service went to the Queensland Health Forensic & Scientific<br />

Services morgue to assist with the postmortem examination of the<br />

skeletal remains. The remains were consistent with an Aborignal male<br />

with an approximate living stature of 173 +/- 3.91cm. The determination<br />

of age was difficult using traditional aging techniques. All long bones<br />

had fused. The sternoclavicular joint had fused. The thyroid cartilage<br />

was almost completely ossified and consistent with Stage 8 of Vleck’s<br />

method corresponding to an range of 51-58 years. However, the pubic<br />

symphysis was consistent with the Suchey-Brooks method Phase II<br />

suggesting an age range of 19-34 (95%). Extensive pathology and a wire<br />

was observed within the sternum and manubrium indicating previous<br />

thoracic surgery. The age range given to investigators at the time of the<br />

autopsy was 25-58 years at the time of death.<br />

The details of the biological profile obtained during the autopsy<br />

were supplied to the investigators to compare against the Missing Person<br />

Database. No links were obtained, and therefore no possible identity was<br />

forthcoming.<br />

During subsequent examinations of the recovered clothing,<br />

deterioated paperwork was located within an item of clothing. This<br />

paperwork provided crucial information which aided in the identification<br />

process. These documents included a bail conditions release form with<br />

a name believed to be that of the deceased. DNA taken at the time of<br />

autopsy confirmed the identity of the remains. The deceased was 27<br />

years of age. It was discovered that the deceased had been involved in a<br />

stabbing incident two years earlier and had undergone thoracic surgery.<br />

Also of interest was that no missing person reports had been lodged for<br />

this person. A search of police computer systems revealed that the<br />

deceased had been last involved with police approximately 8 months<br />

earlier.<br />

Forensic Osteology, Age Estimates, Scene Recovery<br />

* Presenting Author<br />

H88 Estimation of Age at Death From the<br />

Juvenile Scapula<br />

Natalie Uhl, MS*, 308 North Orchard Avenue, Apartment 7, Urbana, IL<br />

68101<br />

After attending this presentation, attendees will understand a<br />

method for estimating age at death from the juvenile scapula.<br />

This presentation will impact the forensic community by presenting<br />

a method for age at death estimation that can be utilized when juvenile<br />

remains are incomplete or fragmented.<br />

Age estimation in juveniles has traditionally focused on long bone<br />

lengths, epiphyseal union, and dental development, but when presented<br />

with fragmented or partial remains, other skeletal elements must be<br />

employed. Rissech and Black (2007) included an age estimation method<br />

that uses scapular measurements as a part of a broader study on the<br />

development of the scapula in juveniles. In that study, the authors<br />

utilized nine measurements and polynomial regression to explore and<br />

explain the growth of the scapula from birth to sexual maturity in a<br />

sample of 31 juveniles drawn from the Scheuer Collection housed at the<br />

University of Dundee. In order to estimate the age-at-death of an<br />

unknown individual, the Rissech and Black study presents eight<br />

regression equations derived from inverse functions of a simple linear<br />

regression. A ninth equation utilizing the measurement “acromial width”<br />

uses the inverse of a second order polynomial regression for age<br />

estimation. Because the study sample includes individuals past the age<br />

of sexual maturity each of the nine equations falls into one of two<br />

groups. The first group of equations is for individuals before the<br />

development of secondary sexual characteristics while the second group<br />

is for older individuals. Although it may seem appropriate to consider<br />

the sex of the individual, particularly in older individuals, their study<br />

pools males and females of all ages.<br />

The purpose of the current study is to test the applicability of the<br />

equations published by Rissech and Black (2007) for estimating age-atdeath<br />

in a sample of 19 th century Americans. The study sample consists<br />

of 40 individuals (19 males, 21 females) ranging from 0 to 22 years of<br />

age (mean = 9.9 years) from the Hamann-Todd Collection housed at the<br />

Cleveland Museum of Natural History in Cleveland, Ohio.<br />

Acquisition of the nine scapular measurements was fairly<br />

straightforward, with the exception of “glenoid mass” which is difficult<br />

to measure after age 16 or 17 when the coracoid process fuses to the<br />

superior margin of the glenoid. The results of the Rissech and Black<br />

study include positive correlations between actual and estimated age that<br />

range from 0.78 to 0.91. The results from this study were comparable to<br />

their findings, with correlations ranging from 0.83 to 0.92. Bias statistics<br />

indicate each equation is underaging the individuals on average, but the<br />

low inaccuracy values indicate that the overall estimates are accurate.<br />

The Rissech-Black method of juvenile age estimation is simple and<br />

applicable. This test indicates that their equations are highly correlated<br />

with age. While correlations are not necessarily the most appropriate<br />

way to judge the effectiveness of an aging method, highly positive<br />

correlations do indicate that the scapula can provide important<br />

information pertaining to age estimation. Long bone length, epiphyseal<br />

union, and dental development are generally the aging indicators of<br />

choice when dealing with juvenile remains, but this method offers an<br />

alternative for anthropologists when faced with fragmented or<br />

incomplete remains.<br />

Age Estimation, Juveniles, Scapula<br />

198


H89 Forensic Age Estimation of Living<br />

Individuals: A Retrospective Case Analysis<br />

Antonio De Donno, PhD*, and Valeria Santoro, PhD, Section of Legal<br />

Medicine - DiMIMP, P.zza Giulio Cesare n.11, Bari, 70124, ITALY;<br />

Carlo P. Campobasso, PhD, University of Molise, via De Sanctis, snc,<br />

Campobasso, 86100, ITALY; Nunzio Di Nunno, PhD, via Guido Dorso 9,<br />

Bari, 70125, ITALY; and Francesco Introna, PhD, Section of Legal<br />

Medicine - DiMIMP, P.zza Giulio Cesare n.11, Bari, 70124, ITALY<br />

The goal of this presentation is to demonstrate that it is necessary to<br />

standardize the methods used in the age estimation of living subjects, and<br />

that prudence is also necessary in the approach to age determination.<br />

This presentation will impact the forensic community by<br />

demonstrating the necessity of formal training in this area.<br />

Age estimation of living individuals undergoing criminal<br />

proceedings or requesting asylum is one of the most difficult problems<br />

in forensic medicine. It is a prerequisite for personal identification and<br />

it is increasingly important in criminal matters. In fact, if doubts arise<br />

regarding the age of a person suspected of a crime, forensic age<br />

estimation is promptly requested by authorities to ascertain whether the<br />

person concerned has reached the age of imputability (criminal<br />

responsibility). On the other hand, if an asylum seeker is a minor, his<br />

request must be granted.<br />

In Italy, the age limit for which a person is considered to have legal<br />

responsibility is 14 years, and the age to determine if an individual<br />

should be tried under juvenile delinquency laws or general criminal laws<br />

is 18 years.<br />

Particularly between the ages of 14 and 18 years, juvenile<br />

delinquency laws in Italy may be applied and it is possible for children<br />

to be incarcerated in juvenile detention centers if their responsibility for<br />

a crime is determined. The need for accurate techniques of age<br />

estimation has never been greater than it has been in the last two decades<br />

due to the increase in international migration. Most young immigrants<br />

have no valid proof of their date of birth (legal age) upon arrival in this<br />

country. They usually lack valid identification documents and often<br />

provide an incorrect age.<br />

This study is a retrospective review of a sample of 53 immigrants<br />

(32 males and 11 females) coming from two geographic areas which are<br />

centers of important world conflicts: the Balkan Peninsula (Slovenia,<br />

Belgrade, Zagreb, Albania) and the Middle East (Palestine, Lebanon,<br />

Iraq, Egypt).<br />

In these particular cases, forensic age estimation was requested of<br />

the Department of Legal Medicine at the University of Bari by local<br />

authorities in order to either ascertain criminal responsibility, provide<br />

temporary shelter, and/or diplomatic asylum. The period in question is<br />

from May 1989 through September 2007.<br />

The age estimation process began with a clinical examination of the<br />

individuals which consisted of recording the stature and weight of the<br />

individual, along with a description of his or her secondary sex<br />

characteristics, such as the presence of pubic and underarm hair, the<br />

development of the external genitalia, and breast development. With the<br />

aim of making an age estimate as precise as possible,<br />

ortopantomographs, and x-rays of the left hand and wrist on almost every<br />

subject were carried out in order to evaluate skeletal and dental age. In<br />

23 cases, pelvic x-rays were taken, and in a few other cases<br />

supplementary examinations were performed (vertebral x-rays, knee xrays,<br />

and shoulder x-rays).<br />

In the retrospective analysis of a sample of 53 subjects, 22 of these<br />

demonstrated a possible correspondence between the declared age and<br />

the biological age obtained through evaluation by the specialists.<br />

However, there was no correspondence for the other cases. In 11 cases<br />

the declared age was less than or equal to 14 years, and only 5 of these<br />

11 cases were confirmed by radiographic examination (OPG and<br />

hand/wrist X-rays).<br />

Similarly, there were only 27 cases in which the declared age and<br />

biological age corresponded. Another interesting finding was the<br />

correspondence between the results obtained from the analysis of the xrays<br />

of the left hand and wrist and the results obtained by the analysis of<br />

the ortopantomographs in almost all subjects. Statistical analysis was<br />

performed and the results showed a significant statistical difference<br />

between declared age and the assessed biological age (p


photographed before being placed into the two inch round jars with the<br />

various liquids. Observations were made at specified intervals<br />

depending on the agent under consideration. For example, muriatic acid,<br />

which is also known as hydrochloric acid, consumed all human tissue<br />

types very rapidly so observations were made at half hour intervals until<br />

the specimens were no longer present. For those specimens that were not<br />

completely consumed, a designation of “no longer recognizable” was<br />

assigned. Initially, two runs of muriatic acid were completed to ensure<br />

that there was consistency in the observed changes. The results of these<br />

two tests were indistinguishable.<br />

The results of the testing varied from consumption of human hair by<br />

household lye in three minutes to no observed change in all specimens<br />

placed into the natural organism product or water. Muriatic acid<br />

consumed all samples (except hair) in 24 hours or less. The rate of loss<br />

was steady over the course of the experiment. Sulphuric acid consumed<br />

the bone and the tissue over a period of several days while making the<br />

bone and tooth soft and viscous. Bleach consumed the hair in 20<br />

minutes, the fingernails in several days and merely whitened the bone<br />

and tooth. The cola darkened the bone, nails and tooth but had no<br />

measurable effect on any of the specimens. The fingernails turned<br />

fluorescent yellow in the lye but the bone and tooth were unaffected.<br />

While some of the substances were effective on individual<br />

specimens, the muriatic acid was the most effective across all of the<br />

tested material. The result of this experiment suggests that muriatic acid<br />

is the most likely agent used in the case described above. Future<br />

experiments will include more extensive testing of complete body parts<br />

as well as testing human blood and skin with the agents used in this<br />

study.<br />

Corrosive Substances, Human Bone, Human Tissue<br />

H91 Aquatic Taphonomy in a Lacustrine<br />

Environment: A Case Study From<br />

Southeastern Tennessee<br />

Jonathan D. Bethard, MA*, The University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, Tennessee 37996; and<br />

Murray K. Marks, PhD*, University of Tennessee, Graduate School of<br />

Medicine, 1924 Alcoa Highway, Knoxville, TN 37920-6999<br />

After attending this presentation, attendees will learn about<br />

characteristic taphonomic changes brought about after long-term<br />

submersion in a lacustrine environment.<br />

This presentation will impact the forensic community by describing<br />

a rare taphonomic context and adding to a growing body of literature on<br />

the subject of aquatic taphonomy.<br />

In addition to standard components of the biological profile,<br />

forensic anthropologists are often called to analyze taphonomic changes<br />

of ossified tissue from many types of environments. Though recent<br />

developments in forensic taphonomy have described numerous possible<br />

alterations to human remains, several types of taphonomic modification<br />

are poorly documented by forensic practitioners. For example, few<br />

studies have reported findings of skeletal remains recovered from vessels<br />

submerged in aquatic environments. The case study presented here<br />

describes the condition of one set of skeletal remains recovered from an<br />

automobile submerged for over half a century in a lacustrine setting.<br />

On February 22, 1956, a young adult female disappeared from<br />

Bradley County, Tennessee. Family and friends had no communication<br />

with her after this date and she was subsequently declared dead in 1975.<br />

Numerous scenarios surrounding the disappearance were discussed by<br />

members of her family and local community; however, none of these<br />

hypotheses offered any physical proof as to the missing woman’s<br />

whereabouts. The case remained unsolved for over fifty years and<br />

received little attention until local law enforcement recently dedicated a<br />

substantial portion of time to retracing her last known activities.<br />

* Presenting Author<br />

After the case was reopened, interest soon turned to an alleged car<br />

trip taken by the missing woman that February morning. Investigators<br />

traced the alleged route along the rural state highway and noticed the<br />

roadway’s proximity to a 1,900 acre lake. A diving team was assembled<br />

to search the lake bottom and subsequently found a vehicle that matched<br />

the description of the missing woman’s 1951 Chevrolet BelAire<br />

approximately 45 feet below the lake surface. Upon searching the<br />

interior of the automobile, divers located and recovered numerous<br />

skeletal elements and remnants of clothing. All items were then<br />

transported to the Forensic Anthropology Laboratory at the Regional<br />

Forensic Center in Knoxville, Tennessee for analysis.<br />

After a thorough drying period of several days, available skeletal<br />

elements were inventoried and it became clear that the remains of a<br />

single individual had been recovered from inside the automobile. The<br />

difficult scene prohibited a total recovery, as numerous portions of both<br />

the cranial and post-cranial skeleton were missing. It also became<br />

apparent that the lacustrine environment had a remarkable taphonomic<br />

effect on the skeleton, as numerous elements presented heavy<br />

taphonomic alterations.<br />

Taphonomic changes to the skeleton were pronounced. Most<br />

notably, portions of the skeleton comprised primarily of trabecular bone<br />

were heavily abraded and eroded. In addition, commonly damaged<br />

elements such as the scapulae and ribs were heavily fragmented and<br />

poorly represented. With the exception of the radii and ulnae, all long<br />

bone epiphyses were highly eroded or absent altogether. Of the six<br />

recovered vertebrae, none had complete bodies and all but one was<br />

represented exclusively by the neural arch. Pubes and ischia were absent<br />

while ilia presented a highly weathered appearance akin to long-term sun<br />

exposure.<br />

Though hindered by recovery and taphonomy, standard osteometric<br />

methods were used to develop the biological profile of the decedent. Sex<br />

was estimated from portions of the os coxae and metric analyses of the<br />

right radius and ulna. These data, along with an overall gracile<br />

appearance, led to a female sex diagnosis. Age-at-death was estimated<br />

from available portions of the auricular surface. Though portions of the<br />

retroauricular area were not present, the absence of billowing and<br />

presence of striae produced an age-at-death estimate of 25-34 years.<br />

Stature was calculated using the maximum length of the right radius and<br />

ulna. Ancestry was not definitively determined as the craniofacial<br />

skeleton and cranial base were entirely absent. Though no positive<br />

means of identification were possible from the available skeletal<br />

elements, available osteological data indicated the missing woman could<br />

not be excluded as a possible match. Given that the remains of a young<br />

adult female were recovered from the same type of automobile the<br />

missing woman drove, and was located in close proximity to a route she<br />

was known to travel,, it is argued that a presumptive identification is<br />

possible at this time.<br />

Aquatic Taphonomy, Lacustrine Environment, Forensic<br />

Anthropology<br />

H92 Recovery of Human Remains From Vehicles<br />

Submerged in Fresh Water<br />

Stephen P. Nawrocki, PhD*, and Anthony J. Koehl, BS*, University of<br />

Indianapolis, Archeology & <strong>Forensics</strong> Laboratory, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

After attending this presentation, attendees will begin to appreciate<br />

the unique difficulties and specialized procedures involved in conducting<br />

controlled recoveries of decomposed or skeletonized human remains<br />

from vehicles submerged in fresh water rivers and lakes. Two recent<br />

examples from Indiana are used to illustrate how anthropologists modify<br />

traditional techniques of archeological excavation and taphonomic<br />

reconstruction to fit these unusual circumstances.<br />

200


This presentation will impact the forensic community by using two<br />

recent examples from Indiana to illustrate how anthropologists modify<br />

traditional techniques of archeological excavation and taphonomic<br />

reconstruction to fit these unusual circumstances.<br />

The first case involved an automobile submerged in a major western<br />

Indiana river. The car was discovered by local authorities and linked to<br />

an individual who had been missing for five years. Divers verified the<br />

presence of human remains by retrieving a femur through the partially<br />

opened driver’s side window. The automobile was removed from the<br />

river and subsequently stored in a secure evidence bay. The University<br />

of Indianapolis Archeology and <strong>Forensics</strong> Laboratory (AFL) was<br />

contacted to assist in recovery of the remains from the car. The members<br />

of the AFL team were the first individuals to see the car’s interior since<br />

its retrieval from the river. Even though this forensic scene was confined<br />

to the automobile’s interior, it still required thorough and systematic<br />

processing. The driver’s side window was open approximately six<br />

inches and had faced up-river prior to discovery. Large deposits of river<br />

sediment had washed into the vehicle, mixing and burying the remains.<br />

Pneumatic “jaws of life” were used to open the passenger door, where<br />

the sediment was less pronounced. Excavation was conducted using a<br />

mix of hand trowels and plastic and wooden tools in order to minimize<br />

damage to the bones. Sediment was transferred to a wet-screening<br />

station to find small elements. While no formal mapping was conducted,<br />

the locations of bones were recorded as discovered, and a field inventory<br />

of the remains was conducted throughout the excavation process. The<br />

distribution of the individual bones allowed for a reconstruction of the<br />

likely original position and location of the decedent at the time of the<br />

crash. The body was completely skeletonized and the bones presented<br />

taphonomic modifications typical of fresh water interment, including<br />

sediment staining and superficial erosion.<br />

The second case involved a jeep submerged in a retaining pond in<br />

central Indiana. The vehicle was registered to an individual who had<br />

been missing for 1.5 years. It was removed from the water and initial<br />

investigation of its interior produced a partial corpse. The individual’s<br />

postcranial elements were articulated due to the protective nature of the<br />

clothing still on the body as well as by thick adipocere formation. The<br />

head and hands were fully skeletonized and dispersed throughout the<br />

sediment, which had accumulated along the floorboards. Similar<br />

recovery techniques were applied in this case, as described above.<br />

However, fewer elements were missing and the jeep had an open design<br />

that allowed water and sediment to flow more freely without being<br />

trapped.<br />

Both cases presented unique challenges and required the<br />

anthropologists to adapt and modify their archeological recovery<br />

strategies. Facilities and equipment for water screening large amounts of<br />

sediment are essential, and the local authorities will have to find a way<br />

to dispose of this material. Special safety procedures are required to<br />

protect the investigators from sharp, rusty metal, glass fragments, and<br />

even tiny fish bones, which can be incredibly sharp. Water action makes<br />

it difficult to reconstruct the original position of the body within the<br />

vehicle, information that may be essential to understanding the nature of<br />

the accident. Lastly, the taphonomic processes that modify human<br />

remains submerged in deep water are very different from those that affect<br />

remains on the surface or buried in the ground.<br />

Submerged Vehicles, Human Remains, Forensic Archeology<br />

H93 Decomposition Variables: A Comparison<br />

of Skeletal Remains Recovered After<br />

Long-Term Submersion in Florida<br />

Aquatic Environments<br />

Katy L. Shepherd, BS*, and Heather A. Walsh-Haney, PhD, Florida Gulf<br />

Coast University, Division of Justice Studies, 10501 FGCU Boulevard<br />

AB3, Fort Myers, FL 33965-6565; Valerie J. Rao, MD, District 4<br />

<strong>Medical</strong> Examiner’s Office, 2100 Jefferson Street, Jacksonville, FL<br />

32206; Khalil S. Wardak, MD, 5301 SW 31st Avenue, Fort Lauderdale,<br />

FL 33312; Predrag Bulic, MD, District 7 Office of the <strong>Medical</strong><br />

Examiner, 1360 Indian Lake Road, Daytona Beach, FL 32124; and<br />

Christena Roberts, MD, Office of the Chief <strong>Medical</strong> Examiner of<br />

Virginia, Western District, 6600 Northside High School Road, Roanoke,<br />

VA 24019<br />

The goal of this presentation is to establish baseline data that will<br />

serve to determine postmortem submersion intervals from subaqueous<br />

death scenes within Florida’s waterways.<br />

This presentation will impact the forensic community by providing<br />

medical examiner personnel, law enforcement agencies, and<br />

anthropologists with resources that will enable them to collect and<br />

analyze data concerning taphonomic variables specific to aquatic<br />

submersions. The presentation also demonstrates how these data are<br />

essential for the estimation of an accurate postmortem submersion<br />

interval (PMSI) by presenting several cases involving aquatic<br />

submersion.<br />

Subaqueous death scenes pose myriad investigative challenges<br />

including the accurate estimation of postmortem submersion interval<br />

(PMSI). The forensic standard in subaqueous PMSI has been broadly<br />

defined as one week on the ground’s surface equals two weeks in the<br />

water—no matter the geographic location. Many specific extrinsicenvironmental<br />

variables, however, are easily identified and data-mined<br />

from water management district environmental station websites that can<br />

yield relatively more precise estimation of PMSI specific to the<br />

geographic area of interest. To this end, both extrinsic environmental<br />

and intrinsic corpus delicti data were collected and analyzed to create<br />

PMSI for several forensic death scenes within Florida’s waterways in<br />

order to establish a PMSI baseline for the state.<br />

For this study, the extrinsic environmental variables included<br />

ambient and water temperature, salinity, pH level, presence or absence of<br />

flora and fauna, depth of immersion, subaqueous substrate (e.g., sand,<br />

soil, and cement), bacterial content, algal growth, water current speed,<br />

and trace mineral content. These data were easily accessed because of<br />

the State of Florida’s Water Resource Act which requires water<br />

management districts (Northwest Florida, Southwest Florida, St. Johns,<br />

Suwannee River, and South Florida) to manage and protect water and<br />

related natural resources through monthly (sometimes daily) data<br />

collection. As such, most of the extrinsic environmental data was<br />

obtained through water management districts’ websites<br />

(http://www.nwfwmd.state.fl.us/, http://www.swfwmd.state.fl.us/,<br />

http://sjr.state.fl.us/, http://www.srwmd.state.fl.us/,<br />

http://www.sfwmd.gov/). Additional extrinsic variables included the<br />

presence or absence of clothing, footwear, and other personal effects, as<br />

well as whether the remains were found within vehicles or other humanmade<br />

structures.<br />

Intrinsic corpus variables included the presence and absence of<br />

adipocere, location of adipocere, presence or absence of skin and muscle<br />

tissue, location of skin and muscle tissue, organ weights, organ histology,<br />

and skeletal inventory and analysis of bone integrity (e.g., cortical bone<br />

flaking, trabecular bone wasting, etc.).<br />

The study materials came from forensic cases distributed through<br />

several counties across the state of Florida, including Broward, Lake,<br />

Lee, and Suwannee counties. For each case, the forensic anthropologist<br />

201 * Presenting Author


conducted osteological analyses of identity, trauma, and time since death<br />

and the forensic pathologist conducted his/her own analysis. Three of<br />

the victims were discovered within structures, such as vehicles or boats.<br />

The submersion intervals ranged from a few days to approximately 30<br />

years. As such, the decomposition observed on the remains varied but<br />

provided a taphonomic baseline for PMSI to be created.<br />

Upon analysis, the data culled from the three types of variables<br />

(extrinsic environmental, extrinsic corpus, and intrinsic corpus) were<br />

consistent with expected patterns of decomposition. Skeletal inventories<br />

demonstrated an expected negative relationship between submersion<br />

interval and percentage of body recovered, with the exception of those<br />

remains contained within structures. Remains with the shortest<br />

postmortem submersion intervals exhibited soft tissue and organ<br />

retention, while those with the longest submersion intervals exhibited<br />

bone free from soft tissue. Remains displaying extensive adipocere, and<br />

thus delayed decomposition, encountered factors conducive to adipocere<br />

formation, including neutral or mildly alkaline pH levels and warm<br />

temperatures (between 15-30° C), around the time of initial submersion,<br />

which was consistent with previous research. Bone that was exposed to<br />

adipocere evidenced greatly reduced bone integrity through cortical<br />

flaking and trabecular bone wasting. Variables which appeared to<br />

greatly impact the rate of decomposition with relation to submersion<br />

interval included the following: water temperature, pH level, depth of<br />

immersion, presence/absence of clothing, and whether the remains were<br />

submerged within a structure (protected from flora, fauna, and water<br />

currents).<br />

Therefore, when medical examiners, anthropologists, and law<br />

enforcement recover remains after long-term aquatic submersion, the<br />

creation of a subaquatic taphonomic baseline is essential to establishing<br />

an accurate postmortem submersion interval.<br />

Forensic Anthropology, Decomposition, Postmortem<br />

Submersion Interval<br />

H94 Taphonomic Degradation to Bone<br />

Through Scavenging by Marine Mollusks<br />

of the Class Polyplacophora<br />

Audrey L. Scott, MA*, Simon Fraser University, Department of<br />

Archaeology, Simon Fraser University, Burnaby, British Columbia V5A<br />

1S6, CANADA<br />

After attending this presentation, attendees will gain a greater<br />

understanding of an underreported type of marine scavenging, the<br />

damage caused to skeletal elements by marine mollusks, and the<br />

characterization of such with special regards to differentiation from other<br />

types of scavenging. Specifically, mollusk scavenging has been<br />

compared to rodent gnawing; attendees will learn characteristics<br />

differentiating these two distinct processes.<br />

This presentation will impact the forensic community by increasing<br />

forensic knowledge on the taphonomy of long-term marine exposure,<br />

while contributing to the growing body of information regarding time<br />

elapsed time since deposition, and providing forensic practitioners with<br />

“real-life” examples of taphonomic processes which have previously<br />

only been discussed without adequate visual documentation.<br />

Knowledge of taphonomic processes is essential to the forensic<br />

anthropologist in estimating elapsed time since death and postmortem<br />

influences on remains. Terrestrial taphonomy is well understood and the<br />

subject of numerous experimental and regional studies, and yet marine<br />

taphonomy in comparison is relatively unexplored. This is problematic<br />

for forensic professionals in coastal areas, where marine contexts play a<br />

significant role in the postmortem interval.<br />

In February 2007, recreational divers off the coast of British<br />

Columbia, Canada recovered skeletal elements from a depth of<br />

approximately 20 meters / 60 feet below sea level. Suspecting them to<br />

* Presenting Author<br />

be human, the divers turned over the skeletonized elements to the local<br />

police (RCMP), who contacted forensic anthropologists at the Centre for<br />

Forensic Research at Simon Fraser University for examination of the<br />

remains.<br />

The skeletal elements were clearly of non-human origin. However,<br />

the unique taphonomic modification to the bone inspired further<br />

examination and consideration. Significant cortical bone mass was<br />

removed in deep, wandering channels and concavities. Several mollusks<br />

of the class Polyplacophora were adherent in the concavities at the time<br />

of recovery. Within the concavities, minute lines are etched in roughly<br />

parallel, though undulating, striations. These are likely the result of<br />

scavenging by the associated Polyplacophora who, like other mollusks,<br />

constantly expand and remodel their protective shells with calcium<br />

carbonate, requiring a high intake of nutritional minerals.<br />

Polyplacophora feed with a long, tooth lined radula used for scraping up<br />

sediments and substrates for their nutritional content. The microscopic<br />

teeth lining the radula are tipped with magnetite and must be constantly<br />

produced. As teeth are damaged and lost during feeding, new teeth are<br />

continuously mineralized and advanced into position. This constant<br />

need for dietary minerals suggests that submerged skeletal elements may<br />

be an ideal substrate for scavenging by various Mollusca species.<br />

This case review highlights how long-term scavenging by marine<br />

mollusks, specifically of the class Polyplacophora, influences the<br />

taphonomic degradation of the skeletal element. Photographic and<br />

radiographic documentation illustrate the characteristic nature of damage<br />

to the bone and provide a visual example of a regionally unique<br />

taphonomy which, until now, has only been superficially discussed in<br />

forensic taphonomic literature.<br />

Marine Taphonomy, Scavenging, Forensic Anthropology<br />

H95 Skeletal Remains in a Fluvial Environment:<br />

Microscopic Evidence of Glycoproteinous<br />

Adhesive of Balanus Improvisus on the<br />

Occlusal Surface of Mandibular Teeth<br />

Amanda Johnson, MPA*, Sam Houston State University, PO Box 2296,<br />

Huntsville, TX 77340; Joan A. Bytheway, PhD*, 23936 Northcrest Trail,<br />

New Caney, TX 77357; and Stephen M. Pustilnik, MD, Galveston County<br />

<strong>Medical</strong> Examiner’s Office, 6607 Highway 1764, Texas City, TX 77591<br />

After attending this presentation, attendees will understand how<br />

microscopic analysis can detect glycoproteinous adhesive of barnacles<br />

and may help determine placement of remains in a fluvial environment.<br />

This study may help determine the placement of mandibular or maxillary<br />

teeth, and possibly skeletal elements, in a fluvial environment even when<br />

only one or a few teeth are present and, with further research on the<br />

glycoproteinous adhesive, it may help determine postmortem interval in<br />

fluvial environments.<br />

This presentation will impact the forensic community by showing<br />

the necessity of microscopic analysis of the human skeleton even if<br />

macroscopically it appears nothing is present on the remains.<br />

Microscopic analysis revealed this mandible had been in a fluvial<br />

environment even though there were no visual indicators it had been.<br />

Barnacles are crustaceans that typically inhabit shallow salt waters<br />

with 75% living in water depths of less than 100 meters and 25%<br />

inhabiting intertidal zones. During the larval stage, the cypris antennae<br />

secretes a glycoproteinous adhesive that attaches to a hard substrate prior<br />

to metamorphosing to an adult form. Barnacles adhere themselves to<br />

substrates such as rocks, ship hulls, and oyster beds.<br />

In a recent microscopic examination of human dentition from<br />

skeletal remains brought to the Galveston County <strong>Medical</strong> Examiner’s<br />

Office, Texas City, Texas, the adhesive protein of Balanus improvisus, an<br />

acorn barnacle, was found on the occlusal surfaces of left PM 1 , PM 2 , and<br />

202


M 1 of the mandible. Other than the mandible found separate from the<br />

remaining skeletal elements, no other fluvial indicators, such as algal<br />

staining, circumferential staining, silt staining, or matrix compaction<br />

were present on the mandible. Without the microscopic analysis of the<br />

dentition, the presence of the adhesive protein and ultimately the<br />

determination that this mandible had been in a fluvial setting may not<br />

have been discovered.<br />

B. improvisus found on PM 1 measured 1.99mm in diameter. Two<br />

small adhesions of B. improvisus were found on PM 2, one measuring<br />

4.09mm and the other measuring 1.82mm. The adhesion on M 1<br />

measured 1.55mm.<br />

The adult B. improvisus lays eggs which hatch into the larval stage.<br />

In the initial larval stage, the nauplius larva has a pelagic swimming<br />

period before it molts into a bivalve larva, known as a cypris. The cypris<br />

searches for a short period of time for a settlement spot and eventually<br />

settles on a substrate where it lives out its adult life. In general, most<br />

barnacles live two years. The larva of B. improvisus typically settles<br />

during the late summer or early fall months and grows into an average<br />

diameter size of 10mm but can reach diameters of 20mm. B. improvisus<br />

has been found in the estuarine system in Galveston Bay, Galveston,<br />

Texas.<br />

Research shows that B. improvisus prefers smooth surfaces with<br />

which to attach. The highly cross-linked proteins deposited to attach to<br />

the substrate are so strong that they can remain on the substrate even<br />

after the carapace (body) of the barnacle is gone.<br />

This case report will show how the detection of the glycoproteinous<br />

adhesive of the barnacle may: (1) help determine placement of remains<br />

in a fluvial environment sometime during the taphonomic process, (2)<br />

help determine placement of mandibular or maxillary teeth, and possibly<br />

skeletal elements, in a fluvial environment even when only one or a few<br />

teeth are present, and (3) with further research on the glycoproteinous<br />

adhesive, it may help determine postmortem interval in fluvial<br />

environments.<br />

Balanus Improvisus, Glycoproteinous Adhesive, Human Dentition<br />

H96 Cremated Tooth Morphology: A User’s<br />

Guide to Identification<br />

Elizabeth M. Danner, BA*, School of Forensic and Investigative<br />

Sciences, University of Central Lancashire, Preston, PR1 2HE,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will understand how to<br />

identify burnt and fragmented dentition using external crown and root as<br />

well as internal pulp cavity and root canal morphology.<br />

This presentation will impact the forensic community by providing<br />

a detailed methodology for the identification of cremated dentition and<br />

by enabling practitioners to rapidly identify cremated dentition for the<br />

estimation of the minimum number of individuals, creation of<br />

postmortem dental records and interpretation of burn patterns.<br />

Conventional dental identification focuses on crown morphology as<br />

the most unique and most easily observed dental trait, but is of little use<br />

in cremations where the crown enamel commonly shatters into tiny<br />

shards. Dentine roots survive cremation and may even survive<br />

pulverization in a modern crematorium, but few authors address the<br />

subject of how to identify cremated dental fragments.<br />

To create a stringent identification system for forensic applications,<br />

this study applied population frequencies of both external and internal<br />

dental morphology to identify the dentition of the Late Bronze Age West<br />

Overton G 19 Cremation Cemetery housed at the University of Central<br />

Lancashire. An archaeological sample was chosen because the<br />

implantation of dental appliances alters tooth morphology and has been<br />

documented to impact cremation fragmentation patterns. Fragments<br />

from a previous analysis were observed with the aid of a magnifier and<br />

macroscope.<br />

Though a text book will picture the average tooth, actual teeth<br />

exhibit a great degree of variation in cusp, root and root canal number<br />

due to individual and regional differences. To account for this variation,<br />

identification was broken into six levels of certainty from broad traits<br />

shared by several teeth to very specific traits unique to a single tooth.<br />

The “uniqueness” of each trait was determined by White population<br />

frequencies reported in the dental literature and observations of British<br />

Medieval, Bronze Age and Victorian skeletons housed at the University<br />

of Central Lancashire.<br />

Fragments were identified to 6 increasing levels of certainty: (1)<br />

Position as anterior or posterior was determined by the number of cusps,<br />

roots, and pulp horns and the curvature of the cementum enamel<br />

junction, (2) Tooth type of incisor, canine, premolar or molar was based<br />

on the number and shape of cusps, pulp horns, roots, and root canals, (3)<br />

Differences in morphology, size and thickness of dentine and enamel<br />

between permanent and deciduous teeth identified dentition set, (4) Jaw<br />

as maxillary or mandibular was determined by differences in root, cusp,<br />

pulp horn and root canal shape, (5) Side determination as left or right<br />

was only possible when the arrangement of cusps or roots identified the<br />

mesial or distal side, such as the placement of the hypoconulid distally in<br />

mandibular molars, and (6) Identification of tooth number as first,<br />

second or third was also difficult as many teeth vary little or<br />

inconsistently between sequential teeth.<br />

The analysis of 479 dental fragments of 18 individuals (8 juveniles<br />

and 10 adults) identified the majority of fragments (74%) to position,<br />

most (66%) to dentition set and type, about half (45%) to jaw, and some<br />

to side (15%) and number (10%). Of the 479 fragments, only 26% did<br />

not contain enough features for identification, compared to the 50% not<br />

identified in a previous analysis using external morphology alone.<br />

In forensic applications, this marked increase in identification may<br />

improve the estimation of the minimum number of individuals (MNI)<br />

and reconstruction of perimortem events. Anterior teeth have been<br />

observed to suffer a higher degree of fragmentation and burning in<br />

vehicular crashes, but survive intact when the body decomposes prior to<br />

incineration. The high identification rate (74%) of fragment position<br />

may then indicate the timing of cremation in relation to time of death.<br />

The identification of fragments to dentition and type (66%) is used in<br />

estimation of the MNI through repetition of teeth and presence of<br />

deciduous teeth.<br />

Dentition, Cremation, Identification<br />

H97 Going Green: Environmentally Sound<br />

Practices in Human Decomposition<br />

Research and Laboratory Settings<br />

Michelle D. Hamilton, PhD*, and Jerry Melbye, PhD, Texas State<br />

University-San Marcos, Department of Anthropology, 601 University<br />

Drive, ELA 273, San Marcos, TX 78666-4616<br />

After attending this presentation, attendees will have a better<br />

understanding of specific policies and procedures that can be<br />

implemented in their own practices to establish ecologically sensitive<br />

protocols for both forensic anthropological laboratory and research work<br />

in the handling, processing, and curation of human remains.<br />

This presentation will impact the forensic community and the<br />

broader public at large by introducing ecologically-friendly approaches<br />

that researchers working with fresh and decomposing human remains<br />

can utilize in order to lessen the impact of harmful chemicals and<br />

products on the surrounding environment, and will identify areas where<br />

these changes can be made cost-effectively and with a minimum of<br />

interference or disturbance in already established practices.<br />

203 * Presenting Author


The Forensic Anthropology Center at Texas State (FACTS) is now<br />

host to one of the largest outdoor human decomposition laboratories in<br />

the world. As a result of initial negative public reaction towards the<br />

establishment of this facility, the initially perceived negative concern<br />

(the introduction of decomposition, pollutants, and other harmful<br />

contaminants into the environment) was turned into a positive attribute.<br />

A “green” strategy has been consciously applied in as many aspects of<br />

the program as possible. The location of the Forensic Research Facility<br />

is just a few miles south of Austin, Texas, a city often ranked within the<br />

top ten of America’s greenest communities in terms of recycling, energy,<br />

natural space, and transportation statistics.<br />

In order to incorporate this same spirit of environmental<br />

responsibility, FACTS is making a concerted and systematic effort to<br />

incorporate various aspects of eco-friendly practice at multiple levels,<br />

including: (1) in addition to previously established avenues in the<br />

acquisition of body donations, the targeting and soliciting anatomical<br />

gifts from ecologically-minded citizens, (2) the acquisition of an<br />

alternative flex-fuel vehicle to use for both body donation retrieval and<br />

transportation to forensic anthropological crime scenes, (3) an<br />

adjustment of the procedures employed during the placement of human<br />

bodies for open-air, buried, covered, or surface decomposition scenarios<br />

to reflect the most environmentally safe options, (4) the products used in<br />

the cleaning and processing of human remains are largely composed of<br />

biobased, biodegradable enzymes, degreasers, and other naturallyderived<br />

products for body processing and skeletal preparation, and (5)<br />

the equipment and materials used in the archiving and curation of<br />

skeletal remains are specifically chosen to represent those items that are<br />

multiple-use, recyclable, or otherwise environmentally responsible<br />

options. FACTS is situating its anatomical body donation program into<br />

the bigger picture of ecological awareness by also promoting it to those<br />

individuals looking into “green burial” options, a newer trend in funeral<br />

services viewed as a natural alternative to traditional chemical<br />

embalming and coffin burials. In addition, in an effort to avoid the use<br />

of dangerous substances and to reduce the release of harmful chemicals<br />

into the soil and groundwater at the open-air decomposition facility,<br />

FACTS will not accept bodies into the body donation program that have<br />

been previously embalmed or preserved.<br />

While FACTS has not achieved a completely green operation (and<br />

will never do so based on the realities of dealing with biohazardous<br />

waste, the need to observe universal precautions, and other intractable<br />

practicalities of forensic anthropological work), the laboratory is striving<br />

towards incorporating a full-range of alternatives and options that take<br />

advantage of newer products, technologies, and trends in the move<br />

towards a more ecologically-minded approach to research, community<br />

service, and laboratory protocol in forensic anthropological settings.<br />

Green Practice, Human Decomposition, Forensic Anthropology<br />

H98 A Study of the Human Decomposition<br />

Sequence in Central Texas<br />

Connie L. Parks, BA*, 8802 Featherhill Road, Austin, TX 78737;<br />

Elizabeth T. Brandt, BA, 232 Evans Liberal Arts, Anthropology<br />

Department 601 University Drive, San Marcos, TX 78666; Michelle D.<br />

Hamilton, PhD, Texas State University-San Marcos, Department of<br />

Anthropology, 601 University Drive, Austin, TX 78666; Jennifer Pechal,<br />

MS, TAMU 2475, Texas A&M University, College Station, TX 77843-<br />

2475; and Jeffery K. Tomberlin, PhD, Department of Entomology,<br />

TAMU 2475, College Station, TX 77843-2475<br />

After attending this presentation, attendees will understand the<br />

decomposition sequence for human remains found in the context of this<br />

study in the late spring and early summer seasons of South Central<br />

Texas. Professionals regularly involved in investigations of unidentified<br />

remains will benefit from the decomposition information and visuals<br />

presented.<br />

* Presenting Author<br />

This presentation will impact the forensic community by<br />

establishing a preliminary decomposition baseline for human remains in<br />

Central Texas and regions of similar climate and geography. This study<br />

provides the forensic community with the foundation for a new and<br />

original data source tailored to specific environmental conditions and<br />

compared against previously published descriptive and quantitative<br />

studies.<br />

Understanding the human decomposition sequence from varied<br />

geographic locations provides those charged with the investigation of<br />

unidentified human remains a tool for more accurately estimating the<br />

postmortem interval. Attendees of this presentation will gain insight into<br />

the timing and mechanisms of the decomposition sequence for human<br />

remains found within the context of this study during the late spring and<br />

early summer seasons of South Central Texas. Professionals regularly<br />

involved in time since death estimations of unidentified remains found in<br />

outdoor settings will benefit from the decomposition information,<br />

timelines, and visuals presented.<br />

The outdoor decomposition of human remains involves a suite of<br />

complex, highly variable processes. Early processes including autolysis,<br />

putrefaction, and insect activity are dependent on environmental<br />

conditions, particularly temperature and humidity. Other decomposition<br />

processes, such as animal scavenging, are also site specific to the local<br />

environment and its faunal constituency. Due to such dependencies, a<br />

“one size fits all” decomposition model is unrealistic. It is imperative<br />

that ecologically distinct regions establish specific benchmarks by<br />

conducting controlled analyses that consider local conditions. Although<br />

retrospective and experimental human decomposition studies have<br />

established decay rates for specific eco-locations, such studies have been<br />

limited and primarily confined to the Southeastern and Southwestern<br />

United States. In Central Texas similar studies have been performed<br />

using pigs (Sus scrofa) and other nonhuman substitutes; however, no<br />

study to date has utilized intact human remains. This report provides<br />

summarized data from the first controlled field study involving human<br />

remains at the Forensic Anthropology Research Facility, Texas State<br />

University-San Marcos.<br />

A donated human cadaver was placed at the open-air laboratory and<br />

regularly observed over a ten-week period. Data collected included the<br />

visual assessment of the stages of decomposition, insect specimens and<br />

observations of insect activity patterns, and weather conditions recorded<br />

at the permanent weather station located at the research facility.<br />

Additionally, the data were utilized to test a recently developed<br />

quantitative method for estimating the postmortem interval. Although<br />

two unexpected events occurred during the study, general results indicate<br />

a high degree of similarity with decomposition studies originating in the<br />

Southwestern United States, as well as preliminary support for a<br />

quantitative approach.<br />

The purpose of this study was to establish a preliminary<br />

decomposition baseline for human remains in Central Texas and regions<br />

of similar climate and geography. This study provides the forensic<br />

community with the foundation for a new and original dataset—one<br />

tailored to these specific environmental conditions, and compared<br />

against previously published descriptive and quantitative studies.<br />

Further research is critical for the continued refinement of this initial<br />

study, and future studies should include observations in different seasons<br />

and varying depositional and burial contexts.<br />

In addition to presenting the results of this study, the authors will<br />

briefly report on the current state of the Forensic Anthropology Research<br />

Facility, the largest and newest open-air decomposition laboratory in the<br />

world, and the third facility in existence explicitly utilizing donated<br />

human remains along with the University of Tennessee at Knoxville, and<br />

Western Carolina University. Expansion, construction, and current and<br />

future services will also be outlined, as will ongoing and future research<br />

designs which will build upon and complement this project to provide a<br />

better overall picture of the human decomposition sequence in Central<br />

Texas.<br />

Decomposition, Postmortem Interval, Accumulated Degree - Days<br />

204


H99 Forensic Osteology Research Station<br />

(FOREST): The First Donation<br />

Cheryl A. Johnston, PhD*, Western Carolina University, Department of<br />

Anthropology & Sociology, 101 McKee Building, Cullowhee, NC 28723<br />

After attending this presentation, attendees will come away with an<br />

enhanced view of human decomposition in the Blue Ridge<br />

Physiographic Province of North Carolina based on a case study of the<br />

first donation to be placed in the Forensic Osteology Research Station in<br />

Cullowhee, North Carolina.<br />

The expected impact of this presentation on the forensic community<br />

is to begin to fine tune our understanding of human decomposition via<br />

research focused on patterns of decomposition and their environmental<br />

specificity. Instead of waiting until sufficient data are generated to report<br />

large scale patterns in more than one physiographic zone (which could<br />

take decades), this presentation will benefit the forensic community by<br />

reporting observations as they are made in hopes that each individual<br />

donor can inform our audience in some way. An additional impact of this<br />

work is that collaborations will be sought with researchers at other<br />

institutions with outdoor decomposition laboratories and those planning<br />

future decomposition laboratories.<br />

The purpose of this study is to document the decomposition of the<br />

body of an adult male in the Blue Ridge physiographic province of North<br />

Carolina during the summer of 2008. On June 24, 2008, the clothed<br />

body was placed directly on the soil in the supine position on a south<br />

facing slope with the head inclined above the feet. The donor was placed<br />

in an area that is partially shaded by the forest canopy much of the day.<br />

Observations of decomposition and the environment were made and<br />

photographs were taken daily or every other day for the first month and<br />

weekly thereafter. Average temperatures during late June and July<br />

ranged from highs in the mid eighties to lows in the upper fifties and just<br />

over five inches of rain fell.<br />

After 48 hours, fly eggs began to hatch and exposed areas of skin<br />

were in the beginning stages of sloughing. There was little odor until the<br />

fifth day and the odor never became strong. By the third day the skin had<br />

begun to darken and two days later the lips had turned black and parted.<br />

First and second instar fly larvae and adult beetles were observed on day<br />

five. Bloating was noted after one week and at this point tissue reduction<br />

of the head and neck was well under way. Third instar fly larvae were<br />

present in large numbers by day eight. Portions of the facial skeleton,<br />

left clavicle and left first rib were exposed by the ninth day. Migration<br />

of fly larvae began on the twelfth day and bloating began to recede.<br />

Numerous beetle larvae were present early in the third week and fly<br />

activity slowed. By week four the soft tissues of the skull and left upper<br />

thorax were greatly reduced but much soft tissue remained on the right<br />

shoulder, abdomen and appendages and arthropod activity was minimal.<br />

During weeks five and six the tissue of the arms and legs reduced, but no<br />

bone was exposed.<br />

Prior to placing the donation and in order to collect terrestrial<br />

arthropods six pitfall traps were installed in the area where the body was<br />

to be placed, three pitfall traps were installed in other areas of the facility,<br />

and six pitfall traps were installed well outside the facility. The pitfall<br />

traps were collected at various intervals before and during<br />

decomposition. Prior to placing the donation as well as during<br />

decomposition, leaf litter samples for the collection of leaf litter fauna<br />

were collected in the facility and surrounding area. Leaf litter samples<br />

were processed in the laboratory using a Berlese funnel. Additional<br />

collections were made using sweep nets and forceps during<br />

decomposition. Arthropods observed include members of the families<br />

Calliphoridae, Silphidae, Staphylinidae, Histeridae, and Vespidae,<br />

among others.<br />

Decomposition, Environment, Arthropod<br />

H100 Taphonomic Signatures of Animal<br />

Scavengers in Northern California<br />

Eric J. Bartelink, PhD*, and Lisa N. Bright, BS, California State<br />

University-Chico, 400 West First Street, Department of Anthropology,<br />

Butte #311, Chico, CA 95929-0400<br />

After attending this presentation, attendees will gain a greater<br />

understanding of animal scavenging patterns on human remains from the<br />

Western U.S. The goals of this research are to: (1) document<br />

taphonomic signatures on human remains due to carnivore and rodent<br />

scavenging in northern California, and (2) address challenges in timesince-death<br />

estimates using taphonomic indicators.<br />

This presentation will impact the forensic community by<br />

highlighting important considerations for assessing taphonomic<br />

signatures on human remains due to animal scavenging, as well as<br />

implications for time-since-death estimations.<br />

Although taphonomic research involving animal scavenging has<br />

had a long history in paleontology and archaeology, only a handful of<br />

studies have focused on the scavenging of human remains from forensic<br />

contexts. Many of the forensic cases submitted to the Human<br />

Identification Laboratory at California State University, Chico (CSUC-<br />

HIL) derive from outdoor contexts and show extensive evidence of<br />

scavenging by carnivores and rodents. Northern California’s extensive<br />

forests and rural landscape are home to a number of key scavengers,<br />

including black bears, coyotes, squirrels, opossums, raccoons, and rats.<br />

The especially high frequency of carnivore gnawing marks on bone<br />

indicates that bears and canids (coyotes and dogs) are among the most<br />

active scavengers of human remains in the area. However, rodents also<br />

play a significant role in the scavenging of human remains.<br />

This study examines 21 forensic cases involving animal scavenging<br />

submitted to CSUC from 1986 to 2008. The majority of cases (n=16) are<br />

curated at the CSUC-HIL, with the remaining (n=5) examined through<br />

previous case reports. Each case was inventoried in detail, and all<br />

skeletal elements were examined for the presence of tooth impact marks.<br />

Elements that showed clear evidence of pits, punctures, and furrows<br />

were scored as carnivore gnawing damage. Similarly, linear, parallel<br />

striations were scored as evidence of rodent gnawing damage. To<br />

facilitate analysis, crania, ribs, hands, and feet are treated as single units<br />

rather than as separate elements. The frequency of each element<br />

represented was compared with the frequency affected by scavenging to<br />

evaluate the relationship between element survivorship and scavenging<br />

frequency. General patterns of involvement for carnivores and rodents<br />

are documented.<br />

Because the recovery of remains was primarily conducted by law<br />

enforcement, the representation of elements may be more informative of<br />

the recognizability and size of skeletal elements than actual element<br />

survivorship. For example, 95.2% of crania, 88.1% of femora, and<br />

83.3% of innominates were recovered, all which represent large elements<br />

easily recognizable as human. In contrast, small elements of the feet,<br />

hands, and the patella are the least represented (52.3%, 33.3%, and 28.6<br />

%, respectively). When elements were ranked by their representation<br />

and compared by scavenging frequency, no correlation was found (rho =<br />

0.162, p = 0.535).<br />

Overall, 31.2% (n=205) of the 658 total elements show evidence of<br />

animal gnawing, with carnivore damage accounting for 27.5% and<br />

rodent gnawing for 3.6%. Of the elements with evidence of scavenging,<br />

the majority are associated with carnivore damage (carnivore = 88.3%<br />

vs. rodent = 11.7%). For carnivore scavenged remains, the highest<br />

prevalence is found for elements of the lower limb. Although smaller<br />

elements are more likely to be consumed during scavenging activity, all<br />

element types are well-represented in the dataset. Of particular note is<br />

that rodent scavenging is primarily found on the skull and large<br />

appendicular elements. For example, rodent gnawing was not observed<br />

on ribs, scapulae, clavicles, patellae, or the vertebral column.<br />

205 * Presenting Author


Within-element patterns of carnivore scavenging are consistent with<br />

that reported in the literature—chewing activity is focused on nutrientrich<br />

cancellous portions of proximal and distal segments of long bones,<br />

the pectoral girdle, and the pelvic girdle. For rodents, chewing behavior<br />

is guided by both the need to sharpen continuously growing incisors and<br />

also the need for minerals (e.g., calcium). Due to functional constraints<br />

of the rodent jaw, gnawing is often directed toward portions of elements<br />

that have sharp crests, ridges, or borders. The data indicate that rodent<br />

gnawing damage is mainly associated with regions of the skull such as<br />

the superior borders of the eye orbit, nuchal lines, mastoid processes,<br />

mandibular rami, and crests and muscle attachments of large<br />

appendicular elements.<br />

The present study highlights the need to examine large samples of<br />

scavenged remains from different environments. The preliminary results<br />

of this study suggest that large carnivores (bears and canids) are the<br />

primary agents that modify human remains in outdoor contexts in<br />

northern California. Although rodents play a smaller role, nearly 12% of<br />

elements had significant damage due to rodent activity. Variation in the<br />

distribution of animal scavengers should be taken into account in timesince-death<br />

estimates.<br />

Taphonomy, Animal Scavenging, Time-Since-Death<br />

H101 Raccoon (Procyon Lotor) Soft Tissue<br />

Modfication of Human Remains<br />

Jennifer A. Synstelien, MA*, The University of Tennessee, The University<br />

of Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will be visually exposed<br />

to the unique scavenging strategies employed by the common raccoon;<br />

and the soft tissue manifestations thereof, over the course of soft tissue<br />

decay.<br />

This presentation will impact the forensic community by explaining<br />

the theory that postmortem scavengers are said to be attracted to open<br />

wounds. Animal depredation can quickly destroy evidence of<br />

perimortem soft tissue injuries. While canid soft tissue modification of<br />

human remains is generally recognized, procyonid (e.g., raccoon)<br />

modification has not been described. Given the unusual dexterity of its<br />

forepaws, the soft tissue artifacts produced by the scavenging raccoon<br />

are unlike canid depredation patterns. Recognition of raccoon<br />

modification of human remains may be crucial for the interpretation of<br />

soft tissue injuries thereby assisting the medicolegal investigator in the<br />

assignation of the manner of death.<br />

This paper characterizes the soft tissue artifacts produced by the<br />

scavenging common raccoon (Procyon lotor), as photographically<br />

documented at the University of Tennessee’s Anthropological Research<br />

Facility. From September 2003 through July 2004, multiple digital<br />

cameras were stationed at the Facility—a 2½ acre plot of land set aside<br />

for human decomposition research—to record the nocturnal behavior of<br />

small mammal scavengers. Post-July 2004, the cameras were<br />

sporadically operated through spring 2006. Near daily visits to the<br />

facility in daylight enabled detailed photographic, and written,<br />

documentation of soft tissue changes due to any previous night’s activity.<br />

The accumulation of digital video, and photography, has produced an<br />

archive of imagery documenting the condition of the body at the time of<br />

placement and the location, and timing, of soft tissue modification.<br />

Raccoons (Procyon lotor), in the order Carnivora, can be found<br />

throughout much of the United States. Although highly adaptable to<br />

diverse habitats, they prefer hardwood forests near streams, lakesides, or<br />

other bodies of water. They may establish dens in hollow trees,<br />

abandoned ground burrows, brush piles, caves or rock piles, drain pipes,<br />

and in, or under, buildings and structures. Urbanization has attracted<br />

many raccoons into metropolitan areas due to easily obtainable food,<br />

* Presenting Author<br />

water, and shelter. Exceptionally inquisitive, their unique dexterity<br />

enables them to manipulate objects and probe crevices extracting<br />

contents within reach for examination. The raccoon is highly<br />

omnivorous and forages at night for a variety of foods including fruit,<br />

berries, nuts, fish, mollusks, snails, earthworms, insects, crayfish, clams,<br />

frogs, turtles, carrion, and small rodents and birds as well as their eggs.<br />

By watching the behavior of other raccoons, they may incorporate new<br />

foods into their diet—such as corn, grain, vegetables, pet food, birdseed,<br />

and garbage. As an urban pest, they are known to uproot lawns while<br />

‘grubbing’ for insects and their larvae. Melon growers recognize<br />

signature raccoon damage by the single hole cored through the rind with<br />

extraction of the interior’s fleshy fruit.<br />

The body donation program at the University of Tennessee,<br />

Knoxville provides for the unique opportunity to view nocturnal<br />

scavengers undeterred by chain link and privacy fencelines. As an<br />

excellent climber and an acceptable digger, raccoons have been frequent<br />

visitors to the Facility for several years. Human donors, and/or donor<br />

families, are aware that bodies decompose in a natural outdoor setting.<br />

Taphonomy, Postmortem Scavenging, Common Raccoon<br />

H102 Estimating Ancestry Through Nonmetric<br />

Traits of the Skull: A Test of Education<br />

and Experience<br />

Amber D. Wheat, BS*, 232 Evan Liberal Arts, 601 University Drive, San<br />

Marcos, TX 78666<br />

After attending this presentation, attendees will understand the<br />

effects that education, experience, and the geographic region in which<br />

one works have on the accuracy of nonmetric ancestry determination.<br />

Statistical research results pertaining to the nonmetric method of<br />

determining ancestry will also be presented.<br />

This presentation will impact the forensic community by making<br />

the forensic anthropological community aware of the effects that<br />

education and experience in forensic anthropology have on the accuracy<br />

of ancestry estimation using nonmetric traits.<br />

The identifying characteristics of any unknown skeleton are age,<br />

sex, height, and ancestry. Among these four biological identifiers,<br />

ancestry is possibly the most difficult to assess. There are two main<br />

ways of estimating the ancestry of a skull: metric and nonmetric. The<br />

metric method involves twenty-one standard measurements that are<br />

entered into a computer based program (FORDISC 3.0). The program<br />

compares the measurements to those in a database containing<br />

measurements of known skulls from twenty eight populations. The<br />

program then classifies a particular skull into a population group. The<br />

nonmetric method involves a visual assessment of the skull, using the<br />

overall structure of the skull to classify it into an ancestral group. These<br />

two methods are often used together to determine the most precise<br />

ancestry of a skull.<br />

Many of the methods used for ancestry determination are<br />

considered subjective, especially methods of nonmetric visual<br />

assessment. Therefore the nonmetric method should be tested not only<br />

for the precision of each trait (intra- and inter-observer error), but also for<br />

the accuracy of these commonly utilized nonmetric traits among forensic<br />

anthropologists.<br />

This study used three blind tests presented to professional forensic<br />

anthropologists as well as students of forensic anthropology. These three<br />

tests were conducted in different geographic regions of the country. A<br />

total of twenty-seven people participated in the study. Of the twentyseven<br />

participants, six were in the PhD level, nine in the Master’s level,<br />

ten in the Bachelor’s degree level and two were currently in their<br />

undergraduate year studying physical anthropology. A questionnaire<br />

presented to each participant was used to determine a variety of things<br />

such as level of experience in forensic anthropology, level of education,<br />

206


familiarity with nonmetric traits, and estimated number of forensic<br />

anthropological cases on which the participant has worked. Eight<br />

complete skull casts of known ancestry and identity were used to obtain<br />

a broad number of responses. The skull casts consisted of four Asian<br />

skulls, two European skulls, and two African skulls. Each skull was<br />

placed next to a poster that listed nonmetric traits for the three main<br />

ancestral groups: European, African, and Asian. Each participant<br />

determined the ancestry of all eight skulls and classified each into one of<br />

the three ancestral categories. If the participant could be more specific<br />

in determining ancestry (narrowing the ancestry down from Asian to<br />

Native American), they did so. Also, each participant listed the<br />

nonmetric traits he/she used to determine the ancestry of each skull.<br />

The results of this study indicate there is no correlation between<br />

education level and/or professional expertise in the accuracy of using<br />

nonmetric skull traits to estimate ancestry. Based upon regression<br />

analysis, there is no significant difference between the accuracy rates of<br />

professional forensic anthropologists with a high level of experience and<br />

those with a low level of experience in determining the ancestry of a<br />

skull. Despite the fact that there is no difference in accuracy rates, those<br />

with higher levels of education were able to narrow down the ancestry of<br />

a skull more than those with lower levels of education. The first group,<br />

comprised of individuals with a PhD, correctly identified 68% of Asians,<br />

64% of Africans and 75% of Europeans. The second group, consisting<br />

of individuals with MA degrees, correctly identified 76% of Asians, 61%<br />

of Africans and 76% of Europeans. The third group, consisting of<br />

students with a BA degree and students pursuing a BA degree, correctly<br />

identified 71% of Asians, 58% of Africans and 83% of Europeans.<br />

Overall, participants were able to correctly identify 79% of the<br />

Europeans, 72% of the Asians and 60% of the African skulls. This study<br />

is ongoing and an increase in participant sample size will further refine<br />

these results.<br />

Ancestry Determination, Nonmetric Traits, <strong>Bio</strong>logical Profile<br />

H103 A Statistical Assessment of Cranial and<br />

Mandibular Morphoscopic Traits Used in<br />

the Determination of Ancestry<br />

Nicolette M. Parr, MS*, University of Florida, CA Pound Human<br />

Identification Laboratory, 1305 NE 6th Terrace, Gainesville, FL 32601;<br />

and Joseph T. Hefner, PhD, Statistical Research, Inc., 6099 East<br />

Speedway Boulevard, Tucson, AZ 85712<br />

After attending this presentation, attendees will learn the<br />

importance of utilizing a combination of both cranial and mandibular<br />

morphoscopic traits for ancestry determination.<br />

This presentation will impact the forensic community by<br />

demonstrating the advantages of using statistical modeling and<br />

multivariate statistics for the determination of ancestry.<br />

The determination of ancestry from the human skeleton is one of the<br />

most difficult and least precise aspects of the biological profile.<br />

However, an assignment of ancestry is of utmost importance for limiting<br />

the number of antemortem records used to compare with a postmortem<br />

profile and establish a positive identification. Ancestry is determined<br />

using a combination of craniometric analysis and an anthroposcopic<br />

assessment of a suite of morphological characteristics (morphoscopic<br />

traits) of the skull. Traditionally, emphasis has been placed on the<br />

cranium as the most diagnostic area of the skull, however, researchers<br />

have recently also turned to the mandible as a valid indicator of ancestry.<br />

This study looks at morphoscopic traits from the cranium and the<br />

mandible to see if, when used in combination, these traits increase<br />

accuracies in ancestry prediction. A second goal was to provide insight<br />

into the distribution of these traits among groups, with a careful<br />

consideration of the clinal distribution of morphological characters.<br />

Finally, several multivariate classification statistics were used to explore<br />

these distributions and select the methods and variables with the lowest<br />

classification errors.<br />

A total of 11 cranial traits and 12 mandibular traits were examined<br />

for 94 individuals (European Americans, n=48; African Americans=46)<br />

from the Terry Anatomical Collection housed at the National Museum of<br />

Natural History, Smithsonian Institution. Data were collected following<br />

standard descriptions and illustrations of each trait. Several statistical<br />

methods were used to verify the applicability of these traits for ancestry<br />

determination. Ordinal regression was used to determine the effect, if<br />

any, of ancestry, sex, and the interaction between ancestry and sex on<br />

each trait. The ordinal regression analysis suggests that ancestry has a<br />

significant effect on 8 cranial traits and 5 mandibular traits. Following<br />

the ordinal regression analysis, quadratic discriminant function analysis,<br />

CAP, logistic regression, and k-nearest neighbor statistics were generated<br />

to determine the classification accuracies of the combined cranial and<br />

mandibular traits. Cross-validated, stepwise classification accuracies<br />

ranged between 73% and 91%, depending on the variables used and the<br />

selected method of analysis. Logistic regression had the highest<br />

classification rate using these variables. A stepwise logistic regression<br />

analysis selected 5 cranial traits (IOB, MT, NAW, NO, and PBD) and<br />

three mandibular traits (torus development, chin prominence, and chin<br />

shape) and misclassified only 8% of the total sample (ρ=0.805, df=18,<br />

p>0.001). This level of accuracy is higher than previous studies using<br />

only cranial or mandibular traits, suggesting that the combination of<br />

these two regions of the skull should be considered during ancestry<br />

determination.<br />

The error rates generated using these methods greatly enhance our<br />

ability to predict ancestry from the skull. Added benefits of using<br />

statistical modeling to predict ancestry from the skull include the<br />

removal of subjectivity from the analysis (i.e., the experience-asevidence<br />

process) and the proper selection and weighting of the variables<br />

most useful for ancestry prediction.<br />

Ancestry, Nonmetric Traits, Multivariate Statistics<br />

H104 Morphological Variations of the<br />

Cervical Spine as Racial Indicators:<br />

A Validation and Observer Error Study<br />

Using the Terry Collection<br />

Joan E. Baker, PhD*, Joint POW/MIA Accounting Command Central<br />

Identification, 310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853; and Paul S. Sledzik, MS, National Transportation Safety Board,<br />

Office of Transportation Disaster Assistance, 490 L’Enfant Plaza, SW,<br />

Washington, DC 20594<br />

After attending this presentation, attendees will learn to recognize<br />

the degree of bifidity in the cervical vertebrae and its relative utility as a<br />

racial indicator in building a biological profile.<br />

This presentation will impact the forensic community by providing<br />

a validation study of a previously developed but infrequently used tool<br />

in forensic racial classification.<br />

Constructing a biological profile from skeletal remains relies upon<br />

metric and morphological examinations. The frequency of certain<br />

morphological features may help forensic anthropologists assess sex and<br />

ancestry. Many of the methods used to assess ancestry are based on<br />

observations and measurements of the skull. When such remains are<br />

lacking, forensic anthropologists must look to measurements and<br />

observations of the postcranial skeleton.<br />

This study undertook the validation of a method developed by<br />

Duray, Morter, and Smith (1999) in which the spinous processes of the<br />

second through seventh cervical vertebrae (C2 through C7) were<br />

assessed for one of three classifications of bifidity: bifid, partially bifid,<br />

and nonbifid. Their study relied upon the Hammann-Todd skeletal<br />

207 * Presenting Author


collection. Their results indicate that C2 and C7 showed, respectively,<br />

91% bifid and 98% nonbifid spinous processes for both ancestry groups<br />

(black and white), so the utility of other cervical vertebrae were<br />

examined. C3 and C4 were shown to be the most useful in determining<br />

race, with 76% of the study subsample being correctly classified (80%<br />

for white and 72% for black).<br />

For the current study, a sample of 591 randomly selected skeletons<br />

from the Terry Collection was analyzed for the degree of bifidity using<br />

the system developed by Duray et al. In a blind analysis the authors<br />

scored C2 through C7 for degree of bifidity as indicated above. Results<br />

indicated that C2 and C7 showed, respectively, 87% bifid and 88%<br />

nonbifid spinous processes for the combined (black and white) groups.<br />

Highly significant differences (p = < 0.01) were found between the<br />

ancestry groups at C3 through C6, whereas a significant difference (p =<br />

< 0.01) between males and females was found only at C5. As with the<br />

original study, C3 and C4 appear to be the best predictors of race.<br />

To test the repeatability of the method, two untrained observers<br />

assisted in assessing a subsample of 28 sets of vertebrae after reading the<br />

study by Duray et al. Prior to making their own observations, each<br />

untrained observer was also shown a sample of cervical vertebrae from<br />

the Terry collection to demonstrate the range of variation. Overall,<br />

classification disagreements between untrained and trained observers<br />

were noted in approximately 23% of observations. The authors also<br />

conducted tests of intraobserver and interobserver error by scoring a<br />

subset of 28 sets of vertebrae. Intraobserver error for the trained<br />

observers occurred in 8% to 12% of observations. All of the<br />

intraobserver errors involved discrepancies in the degree of bifidity<br />

(partial versus bifid or partial versus nonbifid) rather than strictly<br />

presence/absence (bifid versus nonbifid). Interobserver error occurred in<br />

11% of observations and included several instances of disagreement in<br />

presence/absence.<br />

In sum, bifidity in the cervical spine appears to be a useful method<br />

for racial assessment of the postcranial skeleton.<br />

Race, Vertebrae, Ancestry<br />

H105 Hispanic Affiliation: Definitions,<br />

Assumptions, and <strong>Bio</strong>logical Reality<br />

Kate Spradley, PhD*, Department of Anthropology, Texas State<br />

University - San Marcos, 601 University Drive, San Marcos, TX 78666;<br />

and Bruce E. Anderson, PhD, Forensic Science Center, 2825 East<br />

District Street, Tucson, AZ 85714<br />

The goal of this presentation is to present the forensic<br />

anthropological community with the inconsistencies in the usage of the<br />

term Hispanic and to review the current methods used when attempting<br />

to identify individuals considered Hispanic.<br />

This presentation will impact the forensic science community by<br />

discussing the importance of consistency, use, and meaning of the term<br />

Hispanic within the forensic science community in general and the<br />

forensic anthropological community in particular. The learning<br />

objectives are to present the forensic anthropological community with<br />

the inconsistencies in the usage of the term Hispanic and to review the<br />

current methods used when attempting to identify individuals considered<br />

Hispanic.<br />

Hispanic individuals make up the fastest growing population within<br />

the United States and are now the largest minority group therein. The<br />

term Hispanic is officially considered an ethnicity by the U.S. Census<br />

Bureau and the Office of Management and Budget directive No. 15. On<br />

the U.S. Census, an individual must specify a race of Black or White and<br />

then indicate whether or not they are Hispanic or non-Hispanic. Further,<br />

the term Hispanic is based on a linguistic classification of the Spanish<br />

language and encompasses many different countries separated by major<br />

geographic and cultural boundaries. Moreover, many individuals that<br />

* Presenting Author<br />

would be considered Hispanic in the U.S., indigenous Mayans for<br />

example, are not Spanish-speaking peoples.<br />

In spite of widespread utilization, no accurate or accepted use of the<br />

term Hispanic exists within the forensic anthropological community.<br />

This paper will review the use of the term Hispanic by the forensic<br />

anthropological community and will review the current methods used<br />

when attempting to recognize and identify Hispanic individuals. Based<br />

on an evaluation of the forensic anthropological literature, there is no<br />

agreement on the meaning or usage of the term Hispanic. In the Journal<br />

of Forensic Sciences and in the American Academy of Forensic Sciences<br />

Proceedings, the term Hispanic has been previously described by<br />

forensic anthropologists as a race, an ethnicity, an ancestry, a biological<br />

category, and as biologically meaningless. More specific terminology<br />

has been used to describe this biological heterogeneous group including<br />

Southwest Hispanic, Mexican-American, migrant workers, or border<br />

crossers, while still others use terms relating to national origin.<br />

How can forensic anthropologists tell the difference between a<br />

Southwest Hispanic, Mexican-American, a migrant worker, or a national<br />

origin group considered to be Hispanic when working with unknown<br />

skeletal remains? Hefner et al. (2007) presented results from a blind<br />

study that suggest forensic anthropologists have a difficult time<br />

recognizing and ascribing a racial or ancestry category to an individual<br />

self-described as Hispanic. Thus, the problem may not only lie with<br />

inconsistent and confusing terminology, but also with methods of<br />

identification.<br />

Sledzik et al. (2007) suggested that in the 21 st century forensic<br />

anthropologists will abandon racial classifications in lieu of geographic<br />

origins or population groups. This goal is certainly realized in research<br />

articles working with known populations, which are described by their<br />

geographic or national origins. However, when faced with an unknown<br />

set of skeletal remains, using a geographic origin in lieu of a generic term<br />

seems unlikely, especially for individuals considered Hispanic simply<br />

because the data is not available. Until more data become available that<br />

describe the range of variability that is inherent within the group<br />

currently known as Hispanic, applying a geographic label to an unknown<br />

set of skeletal remains will continue to be difficult. Differentiating<br />

southwest Hispanics from southeast Hispanics is currently possible in<br />

some situations due to contextual inferences, although further national<br />

and geographic separation is currently problematic.<br />

Hispanic, <strong>Bio</strong>logical Affiliation, <strong>Bio</strong>logical Profile<br />

H106 Morphoscopic Traits: Mixed Ancestry,<br />

Hispanics, and <strong>Bio</strong>logical Variation<br />

Joseph T. Hefner, PhD*, Statistical Research, Inc., 6099 East Speedway<br />

Boulevard, Tucson, AZ 85712<br />

The goal of this presentation is to highlight several multivariate<br />

statistical approaches that are useful for classifying these seemingly<br />

heterogeneous populations, which are often described as hybrid groups<br />

evincing cranial morphologies shared between multiple ancestries.<br />

This presentation will impact the forensic community in general,<br />

and the forensic anthropological community in particular, by exploring<br />

the distribution of morphoscopic traits in groups with complex<br />

population histories.<br />

The past decade has witnessed a dramatic increase in the number of<br />

research articles and presentations on cranial morphoscopic (nonmetric)<br />

traits within populations in the United States. Sadly, methodological and<br />

interpretative strategies applying these traits to predict ancestry in a<br />

forensic context remain largely unexplored. Previously, Ousley and<br />

Hefner presented multiple statistical methods appropriate for use with<br />

morphoscopic traits, yet the approach most often used by forensic<br />

anthropologists still relies almost exclusively on the experience of the<br />

observer rather than the distribution of these traits within populations.<br />

208


Recent research in the Journal of Forensic Sciences and in the American<br />

Academy of Forensic Sciences Proceedings underscores the ubiquity of<br />

the experience-as-evidence approach without acknowledging any<br />

inherent shortcomings.<br />

By exploring the range in variation of several commonly used<br />

morphoscopic traits using a large, worldwide sample (n=845) that<br />

includes individuals of self-identified mixed-ancestry, Hispanics,<br />

Africans, Europeans, and American Whites and Blacks, this presentation<br />

will demonstrate that the old assumptions of trait distribution, and the<br />

emphasis given to the experience of the observer, are not only<br />

typological, but also lead to unempirical and often incorrect<br />

classifications of mixed ancestry. The results of this study suggest that<br />

classifying an individual to “mixed” ancestry based on discordant trait<br />

values would only be tenable if all ancestral groups have been “mixed”<br />

for some time. If that is the case, then forensic anthropologists can<br />

correctly conclude that every decedent is of “mixed” ancestry, although<br />

this would negate the role of ancestry prediction in the biological profile.<br />

Thus, what are forensic anthropologists to do when confronted with<br />

Hispanics—a population often described as a hybrid group evincing<br />

morphologies shared between American Whites, Native Americans, and<br />

Africans—if these seemingly isolated populations also present<br />

discordant trait values? Several statistical methods that account for<br />

variation in trait frequencies have cross-validated classification<br />

accuracies nearing 87 percent. In a three-way analysis (i.e., Native<br />

Americans, American Whites, and Hispanics) using 12 variables with an<br />

overall correct classification of 87%, the Hispanic sample had a crossvalidated<br />

correct classification rate of 90 percent. The benefit of a<br />

statistical approach is thus twofold. First, the importance placed on the<br />

subjective experience of the observer is reduced, an attractive attribute in<br />

light of the Daubert ruling. The second benefit of a statistical framework<br />

is the attachment of variable weights in the analysis, empirically<br />

supporting and strengthening classification accuracies using<br />

morphoscopic traits, while accounting for the true nature of biological<br />

variation.<br />

Morphoscopic trait analysis remains an essential factor in the<br />

prediction of ancestry because of the emphasis and importance forensic<br />

anthropologists have historically placed on these slight variations in<br />

cranial form. However, when the actual distribution of these traits is<br />

understood, the discordance of multiple traits should come as no surprise<br />

and should not be treated as evidence of admixture or hybridity. On the<br />

contrary, discordance is evidence against the typological approach to<br />

ancestry prediction and represents the true nature of the distribution of<br />

morphoscopic traits among human groups.<br />

Morphoscopic Traits, Quantitative Methods, Ancestry<br />

H107 Shifting Morphological Structure:<br />

Comparing Craniometric Morphology<br />

in Founding and Descendant Populations<br />

Shanna E. Williams, PhD*, University of Florida, Department of<br />

Anatomy and Cell <strong>Bio</strong>logy, PO Box 100235, Gainesville, FL 32610-<br />

0235; and Ann H. Ross, PhD, North Carolina State University, Sociology<br />

and Anthropology, Campus Box 8107, Raleigh, NC 27695-8107<br />

The goal of this presentation is to explore the applicability of using<br />

cross-population data for individual biological profiling.<br />

This presentation will impact the forensic community by<br />

highlighting the importance of understanding biological variation in the<br />

determination of ancestry in unidentified remains.<br />

The Americas experienced an influx of morphologic diversity with<br />

the arrival of African slaves in the 17 th Century. Derived primarily from<br />

countries along Africa’s west coast, millions of Africans were<br />

transported in slave ships across the Atlantic Ocean, to either the<br />

Caribbean islands or North and South America. At present, more than 38<br />

million U.S. residents are of African descent (U.S. Census Bureau 2007).<br />

Moreover, autosomal DNA markers suggest this segment of the<br />

American population exhibits 22.3 +/- 15.9% European admixture<br />

(Wassel Fry et. al 2007). Despite several generations of intermarriage<br />

and interbreeding between African-American and European-American<br />

populations, however, African-Americans are often treated as<br />

morphologically analogous to their founding population (i.e., Africans)<br />

in forensic analyses, particularly those which are nonmetric in nature.<br />

The conflation of these two populations may very well obscure patterns<br />

of morphological variation unique to African-Americans and thus could<br />

have major medicolegal implications for the identification of unknown<br />

remains.<br />

The present study addresses this issue by applying geometric<br />

morphometric methods to the question of craniometric affinity in<br />

founding and descendant populations. The populations under<br />

investigation include native African slaves who died in Cuba (n=15)<br />

from the Morton Collection; modern Cubans (n=21) from a cemetery<br />

collection housed at the Museo de Montane, Havana; and, modern<br />

African-Americans from the Terry collection (n=47). Nineteen threedimensional<br />

type 1 and type 2 anatomical landmarks were collected.<br />

The landmark data were transformed by generalized Procrustes analysis<br />

(GPA) which optimally translates, scales, and rotates the points into a<br />

common coordinate system. Multivariate statistical analysis was then<br />

conducted on the newly derived shape variables. In order to reduce<br />

dimensionality, a principal component analysis (PCA) was performed on<br />

the covariance matrix of the aligned coordinates. A multivariate analysis<br />

of variance (MANOVA) test, performed on the first 14 principal<br />

component scores accounting for approximately 83% of the total<br />

variation, detected significant shape differences among the groups (F<br />

=14.38; df=28, 134; Pr >F=


H108 Non-Metric Trait Expressions Most<br />

Prevalent in Undocumented Border<br />

Crossers of Southwest Hispanic Descent<br />

From the Pima County Office of the<br />

<strong>Medical</strong> Examiner<br />

Carolyn V. Hurst, BA*, 354 Baker Hall, East Lansing, MI 48824<br />

The goal of this presentation is to inform attendees about the<br />

prevalence of certain non-metric traits in Hispanic individuals found in<br />

the desert near Tucson, Arizona.<br />

This presentation will impact the forensic community by presenting<br />

a suite of features that can help characterize individuals of Southwestern<br />

Hispanic ancestry.<br />

One of the foremost goals of forensic anthropology is to obtain a<br />

positive identification for a set of remains. This process begins with the<br />

assessment of the biological profile, including sex, age, stature, and<br />

ancestry, that can be used to delimit the list of missing persons that may<br />

potentially match the John or Jane Doe. While methods for determining<br />

sex, age, and stature have been standardized and accepted by the<br />

scientific community, ancestry remains a subject of contention. Much of<br />

this controversy is related to the stigma surrounding the subject of race<br />

and the reality that biological races do not exist. Although humanity<br />

varies along a continuum, ancestry is a socially assigned category that is<br />

based on an individual’s physical appearance. While forensic<br />

anthropologists recognized this fact, they also realize the utility of such<br />

assessments as descriptive aides in the forensic context.<br />

The issue of ancestry is further complicated by admixture that<br />

increasingly blurs the already arbitrary lines separating groups. One<br />

particular group that is characterized by admixture is Hispanics whose<br />

gene pool consists of variable influences from American Indian,<br />

Caucasian, and African ancestries. With this group rapidly growing and<br />

becoming the largest minority in the United States, it is important that<br />

forensic anthropologists can accurately classify these individuals. In<br />

2008, Birkby et al. published a paper describing the nonmetric skeletal<br />

traits that were utilized at the Pima County Office of the <strong>Medical</strong><br />

Examiner (PCOME) to identify Southwest Hispanic ancestry in the<br />

biological profile of undocumented border-crossers (UBCs). These traits<br />

include: shoveling of the anterior teeth, anterior malar projection, a short<br />

occipital shelf, less elaborate nasal sill, partial or no oval window<br />

visualization, molar enamel extensions, nasal overgrowth, a wide<br />

zygomatic frontal process, and femoral platymeria in the subtrochanteric<br />

region.<br />

The goal of this investigation is to evaluate the prevalence of the<br />

traits proposed by Birkby et al. in identifying Southwest Hispanics. In<br />

addition, other nonmetric traits were also scored to assess how<br />

commonly they occur in this group. Overall, 28 nonmetric traits were<br />

scored on the remains of 65 suspected UBCs from the PCOME. These<br />

traits included nine traits from Birkby et al. (2008), 12 traits from Hefner<br />

(2007), and several others from multiple sources. The frequency of these<br />

traits was then evaluated in order to ascertain their prevalence in<br />

populations of Southwest Hispanic descent.<br />

Results indicate that all of the trait expressions described by Birkby<br />

et al., except for nasal overgrowth, occurred in higher frequencies in the<br />

sample than alternative manifestations of those features. In addition, it<br />

was found that other traits may also be characteristic of those of<br />

Southwest Hispanic ancestry, like the presence of Wormian bones,<br />

venous markings, moderate interorbital breadth, lack of post-bregmatic<br />

depression, and moderate posterior zygomatic tubercle.<br />

Establishing a suite of features that can be used to identify<br />

individuals of Southwest Hispanic ancestry is an important endeavor to<br />

aid in the identification of a growing group of people in the United<br />

States. Despite the admixed nature of this group, certain trait<br />

expressions hold potential to accurately assess their ancestry.<br />

Nonmetric Traits, Ancestry, Southwest Hispanics<br />

* Presenting Author<br />

H109 Skeletal Fracture Patterns in<br />

Documented Cases of Torture,<br />

Assault, Abuse, and Accidents<br />

Erin H. Kimmerle, PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820; Matthias<br />

I. Okoye, MD, JD, The Nebraska Institute of Forensic Sciences, 5925<br />

Adams Street, Lincoln, NE 68507; John O. Obafunwa, LLB, 5540 South<br />

72nd Street, Lincoln, NE 68516; Thomas L. Bennett, MD, Yellowstone<br />

Pathology Institute, 2900 12th Avenue, North, Suite 260W, Billings, MT<br />

59101; and Paul F. Mellen, MD, East Central Indiana Pathologists, PC<br />

& PA Labs, LLC2401 West University Avenue, Muncie, IN 47303<br />

The goal of this presentation is to provide a comprehensive analysis<br />

of skeletal fracture patterns and associated soft tissue lesions resulting<br />

from inflicted and accidental injuries. The patterns of injuries based on<br />

a variety of mechanisms are described to aid in a differential diagnosis<br />

of the cause and manner of death when confronted only with skeletal or<br />

decomposing remains.<br />

This presentation will impact the community by reviewing more<br />

than 200 cases of blunt force trauma from a variety of mechanisms<br />

including torture, assault, and accidents to demonstrate intrinsic and<br />

extrinsic patterns that lead to a differential diagnosis of cause and<br />

manner of death. The outcome is a detailed analysis of the specific<br />

distribution and types of injuries resulting from a variety of blunt force<br />

mechanisms. This information is particularly critical in cases of<br />

enforced disappearances, extra-judicial execution, and torture as<br />

investigations into such cases often lead to multiple autopsies and<br />

varying opinions. The context of these types of investigations is further<br />

discussed.<br />

Medico-legal death investigations into enforced disappearances and<br />

extra-judicial executions provide critical physical evidence that<br />

corroborates witness and survivor testimony about the crimes<br />

committed. One of the most ubiquitous forms of human rights violations<br />

globally is torture and is often associated with extra-judicial executions.<br />

In these types of investigations it is common that multiple autopsies may<br />

be preformed at the request of various stakeholders such as law<br />

enforcement, prosecutors, and families. Multiple autopsies often lead to<br />

conflicting opinions about the cause and manner of death, further<br />

complicating the investigation.<br />

A 2005 investigation into a possible extra-judicial execution from<br />

Lagos, Nigeria resulted in three autopsies and the disappearance of<br />

critical skeletal evidence. It is an example of multiple opinions on the<br />

cause and manner of death ranging from ‘suicide by jumping from a<br />

window’ to a ‘gunshot injury to the head with staging of the body to<br />

appear as though the victim fell from a window.’ Police torture and<br />

deaths in custody in Nigeria have been documented by Human Rights<br />

Watch, Amnesty International, and even the government of the Federal<br />

Republic of Nigeria. The types of torture or cruel, inhumane, and<br />

degrading treatment of the victims most often includes repeated and<br />

severe beatings with rods, sticks, and other implements and may be<br />

associated with fatal gunshot injuries. The critical need for pathologists<br />

and anthropologists to be able to differentiate mechanisms of death from<br />

skeletal fracture patterns is exemplified by this case and discussed in<br />

greater detail.<br />

The purpose of this paper is to investigate specific fracture patterns<br />

that resulted from various forms of blunt force trauma to identify patterns<br />

of injuries that will aid in the diagnosis of abuse, assault, or torture and<br />

help differentiate inflicted from accidental trauma as in the Nigerian<br />

example. Data for 200 cases are presented. The ages at death range from<br />

infants to 89 years old and include data from several sources. Skeletal<br />

fracture data comes from autopsy records dating 1987-2008 from the<br />

Lancaster County Coroner’s Office in Lincoln, Nebraska; the Cook<br />

County <strong>Medical</strong> Examiner’s Office in Chicago, Illinois; and the Knox<br />

County <strong>Medical</strong> Examiner’s Office in Knoxville, Tennessee.<br />

210


Documented cases of torture come from medico-legal investigations in<br />

Lagos, Nigeria and published case studies from a variety of scientific<br />

sources. In all of these cases, the mechanism of death was attributed to<br />

blunt force trauma (BFT) or gunfire injuries associated with BFT at the<br />

time of death.<br />

The number and distribution of soft tissue injuries and skeletal<br />

fractures are documented for each mechanism of injury; documented<br />

torture (n=52), assault (n=8), child abuse (n=5), falls (n=12), crushing<br />

injuries (n=5), motor vehicle accidents (MVA, n=114), blasting injury<br />

(n=2), and small aircraft accidents (n=6). Further, the specific aspects<br />

and regions of bone fractures are summarized for each category. Distinct<br />

patterns of injuries for each of the listed mechanisms and best practice<br />

recommendations for differential diagnoses are provided. Further, the<br />

association between soft tissue lesions and skeletal fractures among<br />

various mechanisms of injury are discussed.<br />

Trauma, Skeletal Fractures, Torture<br />

H110 Assessing Directionality of Low Velocity<br />

Gunshot Wounds to the Vertebrae:<br />

A Preliminary Study<br />

Julie A. Henderson, BA*, PO Box 125, 130 4th Street, Morton, WA<br />

98356<br />

After attending this presentation, attendees will understand the<br />

importance of experimental research to determining the bullet trajectory<br />

in the vertebrae as well as main components that can be employed to<br />

determine the direction of fire: beveling, fragmentation, and fracturing.<br />

Incorporating all three factors is the most efficient method for<br />

determining direction of fire.<br />

This presentation will impact the forensic community by<br />

introducing a method for determining direction of fire developed from<br />

experimental research as opposed to case studies. This will, in turn, give<br />

forensic practitioners additional ways to reconstruct the events of a<br />

crime, confirm or contradict a witness statement, and differentiate<br />

between homicide and suicide.<br />

Firearms, handguns in particular, are common weapons used in<br />

violent crime in the United States and around the world. Penetrating<br />

trauma is the second leading cause of spinal injuries, and of the two<br />

major types of penetrating trauma to the spine (gunshot and stab<br />

wounds), the majority are gunshots. This prevalence amplifies the<br />

importance of stringent scientific investigations examining bullet<br />

trajectory in the vertebrae.<br />

Publications on bullet trajectory in postcranial bones tend to be case<br />

studies rather than controlled experiments. Therefore, an experiment<br />

was designed to produce gunshot wounds from known directions in the<br />

vertebrae of domestic pigs (Sus scrofa). The hypothesis was that the<br />

determination of bullet trajectory in vertebrae shot with a low velocity<br />

weapon is possible using a method modified from that developed for the<br />

cranium.<br />

Six vertebral columns from recently deceased pigs were shot with a<br />

9mm full metal jacket bullet, three each a minimum of three times from<br />

the anterior and the posterior directions: once in the cervical, once in the<br />

thoracic, and once in the lumbar vertebrae. Another two vertebral<br />

columns were shot from directions unknown to the researcher in order to<br />

permit a blind study of the method developed from the wounds of known<br />

directions. A total of 23 gunshots of known direction to various sections<br />

of vertebrae made up the known sample.<br />

Zones were assigned to each type of vertebrae (cervical, thoracic,<br />

and lumbar) based on the developmental anatomy of the pig vertebrae<br />

(Figure 1). In each zone, the researcher recorded the following categories<br />

of trauma: undamaged, fracture lines, comminuted, trabeculae exposed,<br />

obliterated, and unconnected piece.<br />

Figure 1: a) Zone assigned to the anterior side of the cervical vertebrae,<br />

b) Zones assigned to the posterior side of the cervical vertebrae<br />

The results indicated several general trends: (1) vertebrae shot from<br />

posterior-anterior were more fragmented and evinced more fracture lines<br />

on the neural arches and spinous processes, (2) the lumbar vertebrae<br />

were the least damaged overall, having the least number of adjacent<br />

vertebrae affected from each shot, and (3) although more cervical<br />

vertebrae were affected by each gunshot wound, the thoracic vertebrae<br />

displayed the most damage overall.<br />

It was concluded that a method incorporating all of the factors<br />

(beveling, fragmentation, and fracturing) was effective for determining<br />

direction of fire. A blind study was conducted consisting of three trials:<br />

(1) determining direction of fire using only previous knowledge, (2)<br />

using examples from the known sample to assist, and (3) using the<br />

criteria developed by the researcher along with the examples to<br />

determine direction of fire.<br />

The results of the blind study (Table 1) indicated a correlation<br />

between experience with gunshot trauma and the percent of cases the<br />

participants would successfully determine in Round 3. It also illustrated<br />

the complexity of determining trajectory on vertebrae and highlighted<br />

the potential benefits of future research with a larger sample size and<br />

human vertebrae.<br />

Table 1: Summary table of the results from the blind study.<br />

Participants with “No Experience” had Master’s or Doctoral level course<br />

work without any experience with gunshot wound cases. Participants<br />

who were “Experienced” had practical experience with gunshot wound<br />

cases<br />

Gunshot, Postcranial, Trajectory<br />

H111 A Radiographic Assessment of Pediatric<br />

Fracture Healing and Time Since Injury<br />

Christina A. Malone, BHS, BA*, Michigan State University, Forensic<br />

Anthropology Lab, A-439 East Fee Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will gain an<br />

understanding of the bone repair process, radiographic manifestation of<br />

fracture healing in children, and the time schedule this healing process<br />

requires.<br />

This presentation will impact the forensic community by<br />

demonstrating a schedule for fracture healing in children. Through the<br />

results presented, the schedule may enable forensic anthropologists to<br />

supply information on the timing of injuries to skeletonized remains that<br />

exhibit varying degrees of healing.<br />

Although the physiological process of fracture healing has been<br />

well studied, there is little information available on the radiographic<br />

assessment of the rates of pediatric fracture healing. As children are still<br />

211 * Presenting Author


in the formative phase of bone growth, healing of bone may occur at a<br />

faster rate than seen in adults. The goal of this study is to determine the<br />

applicability of radiographic assessment to pediatric cases involving<br />

fractures, produce stages of radiographic healing and descriptions, and<br />

provide a timeline for the stages of healing in infants and young children.<br />

It is expected to observe variation in the timing of healing based on the<br />

age of the individual and the bone injured.<br />

This study aims to develop a series of stages to describe and<br />

measure the typical bone fracture repair process and to evaluate, for each<br />

subject, the timing of the repair of each fracture. This study examines a<br />

collection of radiographs (n=345) of lower limb and forearm bone<br />

fractures from 116 individuals between the ages of 0 and 5. A series of<br />

stages is developed to describe and measure the typical bone repair<br />

process for these individuals. The sample is segmented into age groups<br />

(0-1 years, 2-3 years, and 4-5 years), and the variation in fracture healing<br />

rates is examined among these groups. Within each age group, the<br />

variation in fracture healing between the lower leg and forearm is<br />

determined. ANVOA is performed on the mean number of days that it<br />

took for healing to attain specific stages in each of the groups.<br />

The results of this project present a schedule of pediatric fracture<br />

healing, both through written descriptions of expected patterns in the<br />

healing process and in radiographic images of such stages. These images<br />

and descriptions will prove useful to forensic anthropologists when<br />

assessing radiographs or when assessing skeletal remains (in which case<br />

a radiograph could be taken to compare stages) and attempting to<br />

determine an estimation for when injuries may have occurred. The<br />

images and descriptions of the skeletal sample will also serve as an atlas<br />

for the fracture healing process. Finally, the study will determine the<br />

significance of the effect of age and skeletal location in fracture healing<br />

in infants and young children.<br />

In conclusion, this study examines the utility of radiographs when<br />

examining traumatized sub-adult remains. Through radiological data on<br />

the healing rate of pediatric fractures, the forensic anthropologist will be<br />

given another tool to assess the timing of traumatic injuries in the<br />

assessment of skeletal fractures. Additionally, the presented study would<br />

be able to assist in confirming or refuting the proposed timing of injuries<br />

in pediatric cases.<br />

Radiographs, Children, Fractures<br />

H112 Supra-Inion Depressions in a<br />

Pediatric <strong>Medical</strong> Examiner Sample:<br />

Support for a Synergy of Developmental<br />

and <strong>Bio</strong>mechanical Etiologies<br />

Sharon M. Derrick, PhD*, Harris County <strong>Medical</strong> Examiner’s Office,<br />

1885 Old Spanish Trail, Houston, TX 77054<br />

The goal of this presentation is to demonstrate the forensic<br />

significance of a small cranial anomaly, the supra-inion depression (SI),<br />

which has previously been associated with child death in Native<br />

American populations of archaeological age. Attendees will be provided<br />

with a description of SI morphology, a brief overview of the published<br />

literature regarding the anomaly, and the results of a review of crania<br />

from 659 medico-legal cases dating from 2005 - 2008 in which the<br />

maximum age of the decedent is 6 years. Case studies of crania that<br />

contain a supra-inion depression will be discussed.<br />

The impact to the forensic community lies in the dissemination of<br />

information regarding this little understood skeletal anomaly, the<br />

circumstances in which it develops in children presenting to medical<br />

examiner/coroner offices, and the importance of the SI as a symptom of<br />

morbidity on autopsy.<br />

Supra-inion depressions, concave features located in or lateral to the<br />

sagittal plane of the occipital just superior to inion, have been described<br />

* Presenting Author<br />

occasionally in the bioarchaeological literature. However, the etiology<br />

and incidence of these anomalies in the medical examiner setting has not<br />

been adequately studied. The discovery of a non-infectious, classically<br />

shaped SI in a 17 month old child with TORCH syndrome during<br />

postmortem examination at the Harris County <strong>Medical</strong> Examiner’s<br />

Office (HCME) in 2008 triggered a photographic review of all<br />

previously examined HCME medico-legal child death cases from the<br />

first six months of the year 2008 (112, 74 supra-inion regions clearly<br />

viewable). Due to the retrospective use of photographs, only the<br />

presence/absence of SI, associated infectious bone, sutural fusion, and<br />

distortion of the occipital, parietals and frontal were scored. Cause of<br />

death was recorded for all cases. Two additional cases from this time<br />

period with SI’s were identified (3/74 = 4%), a two year old female with<br />

a history of cerebral palsy and epileptic seizures whose cause of death is<br />

bacterial sepsis, and a two year old male who experienced a delayed<br />

hospital death with fever, cause of death pending. The cranium of the<br />

female child has a flattened occipital and the vault is unusually tall. No<br />

infectious bone reaction is visible in the area of the SI. The cranial shape<br />

of the male who spent a week in a hospital bed prior to death is normal<br />

in appearance, but the bony margins of the SI appear inflamed. In light<br />

of these preliminary results, a retrospective review of 447 cases from the<br />

years 2005-2007, as well as physical examination of current cases, are<br />

ongoing.<br />

The growth and development of the cranium is affected by a<br />

number of genetic/congenital disorders, for example, the various<br />

TORCH syndromes, Apert’s syndrome, Crouzon’s syndrome, and<br />

Pfeiffer syndrome. These disorders routinely result in premature<br />

synostosis of one or more of the major cranial sutures, causing the<br />

cranial bones to compensate in shape. Growth and development of the<br />

occipital is a complex process that derives from the fusion of four<br />

individual components: the squamous, two lateral components, and a<br />

basal component. Although it varies among individuals, fusion of the<br />

four components typically begins in the perinatal period and is complete<br />

by age six. Premature fusion of any of the major sutures during these<br />

ages can disrupt development of the occipital in relation to the four<br />

components and the other bones of the skull. The environment<br />

experienced by the child from infancy to six years can also impact the<br />

final shape of the occipital. Positioning of the infant on the back for long<br />

periods of time, especially if exacerbated by lack of movement resulting<br />

from developmental delays, can result in plagiocephalic or<br />

scaphocephalic abnormalities. Further, the supra-inion area is<br />

posteriorly projecting and the skin of the scalp is thin. The opportunity<br />

for bone involvement in this area following a skin infection may be<br />

increased. Bacterial and fungal infections, or even seborrheic dermatitis<br />

(cradle cap), may become severe in the absence of treatment, perhaps<br />

explaining the noted association between SI’s and infection.<br />

The association between the presence of SI’s, syndromic<br />

abnormalities, developmental pressure from biomechanical forces, and<br />

presence of infection in medical examiner cases suggests that SI’s may<br />

be an indicator of morbidity. These anomalies should be routinely<br />

observed and documented photographically during the pediatric<br />

postmortem examination.<br />

Supra - Inion Depressions, Occipital Anomaly,<br />

Forensic Anthropology<br />

H113 The Recovery of Human Remains<br />

From a Fatal Fire Setting Using<br />

Archeological Methodology<br />

Gregory O. Olson, MSc*, Office of the Fire Marshal, 2284 Nursery<br />

Road, Midhurst, Ontario L0L 1X0, CANADA<br />

After attending this presentation, attendees will understand the<br />

value of applying archaeological recovery methods at fatal fire scenes<br />

212


not only to maximize the amount of human remains recovered but also<br />

the associated artifacts surrounding the death.<br />

This presentation will impact the forensic community by providing<br />

insight into the utilization of essential skills for the recovery of critical<br />

evidence and a greater quantity of human remains.<br />

There is a natural tendency for those involved in fire settings to<br />

become overwhelmed simply by the magnitude and destruction of the<br />

scene itself. One can easily become overpowered at fires where there is<br />

large loss, and the path the investigator must take may be obscured by<br />

the scale of the scene. Fire investigations are often complex and difficult<br />

to interpret at first blush. Because of the potential for the fire<br />

investigator to become fixated or pre-occupied, one must develop an<br />

analytical and systematic approach to scene investigation.<br />

With strong emphasis being placed on the systematic approach to<br />

fire investigations, it is expected that fire investigators with experience<br />

and training in archaeological methods will successfully meet the<br />

rigorous test of the scientific method. A scientist observes the real world<br />

and draws conclusions from these observations. The observations are<br />

then tested to determine their validity. How then could archaeology or<br />

the application of archaeological methodologies assist the excavator at<br />

fatal fire scenes? “Archeology concerns itself with learning the details<br />

of everyday life as well as significant or unique events, arranging these<br />

reconstructions in chronological sequences to create histories,<br />

attempting to understand or explain why things happened the way they<br />

did…” (R.M. Stewart, 2002:1).<br />

Keeping this in mind, refined techniques of human remains<br />

recovery, the location of associated artifacts, the observation of body<br />

positioning within the context of the structure, and scene analysis will<br />

allow for a more accurate analysis to move toward proving this<br />

hypothesis. The primary objective of the study profiled in this<br />

presentation is to employ and contrast the methods of recovery of human<br />

remains in a fire setting in an attempt to increase the contextual and<br />

associational data acquired for accurate event reconstruction.<br />

This study basically involves a three-fold method; involving the use<br />

of “comparative” fires, the application of a questionnaire to over five<br />

hundred historical fatal fires within the Province of Ontario and firsthand<br />

fire excavations conducted in the everyday course of employment by the<br />

author.<br />

The “comparative” fires involved existing standing structures, prestaged<br />

with pig cadavers and artifacts associated with homicide, which<br />

were allowed to totally burn. Personnel who lacked formal training in<br />

the disciplines of archeology and anthropology conducted the initial<br />

search for human remains. Any recovered remains and artifacts were<br />

photographed, mapped in situ and collected. A second search team<br />

consisting of individuals experienced and trained in archeological<br />

techniques and a solid background in human osteology were utilized. A<br />

proper archaeological-style grid search was undertaken with any artifacts<br />

and human remains photographed, mapped and recorded.<br />

The quantitative relationship between the items recovered by the<br />

two teams was profiled and documented. At this point, there have been<br />

four “comparative” fires conducted.<br />

The historical portion of this study involves the application of an<br />

extensive questionnaire to over five hundred historical fires. The<br />

purpose of this questionnaire was to capture existing data involving the<br />

methods employed by previous fire investigators at these types of scenes<br />

by way of scene comparison and rate of recovery. The “day-to-day”<br />

scene data relates to firsthand knowledge of fatal fire scenes excavated<br />

by the author. The data obtained, including the amount of human<br />

remains recovered and artifacts associated to the fatal fire scene, are<br />

profiled in this method.<br />

To date, the resulting recovery analysis has proven overwhelmingly that<br />

the application of archaeological methods at these types of scenes both<br />

supports and authenticates the utilization of these methods. Two case<br />

studies will be presented in the recovery of fatal fire victims and articles<br />

associated to the deaths, both within a structure and a vehicle.<br />

Fire, Fatal, Archeology<br />

H114 From Scene to Seen: Post-Fire<br />

Taphonomic Changes Between the In<br />

Situ Context and the Medicolegal<br />

Examination of Burned Bodies<br />

Elayne J. Pope, PhD*, University of West Florida, Anthropology<br />

Department, 11000 University Parkway, Building 13, Pensacola, FL<br />

72701<br />

After attending this presentation, attendees will understand how the<br />

body’s physical appearance changes from the in situ condition at the<br />

scene until its evaluation by the medicolegal examiner due to recovery,<br />

handling (fragmentation), and transportation.<br />

This presentation will impact the forensic community by informing<br />

investigators about the physical changes that occur to fragile, burned<br />

human remains from the time of discovery, to recovery, to transportation,<br />

and to the medicolegal investigation (independent of the scene) of the<br />

physical condition of the burned human remains.<br />

It is often taken for granted that the physical condition of the body<br />

examined at autopsy accurately represents how it first appeared at the<br />

scene – unaltered. This presentation shows how the body literally<br />

changes its physical appearance from the in situ condition of the<br />

untouched “scene” and demonstrates how its appearance becomes<br />

altered during recovery, handling (fragmentation), and transportation to<br />

the point when the body is later “seen” and evaluated by the medicolegal<br />

examiner.<br />

Heat exposure transforms soft tissues and bone into charred, brittle,<br />

and fragmentary structures that break away from parts of the body during<br />

and especially after the fire. Experimental observation of human<br />

cadavers in fires shows that these fragile structures experienced further<br />

fragmentation and alteration of the body’s appearance during normal<br />

field search and recovery of burned human remains. The processes of<br />

burning and the different variables of fire suppression, discovery,<br />

clearing/extraction, recovery, and transportation were observed and<br />

documented for 5 bodies in vehicles and 2 bodies in burn cells (furnished<br />

model rooms).<br />

Fire Suppression: The different methods of fire suppression are:<br />

standard water jet stream, fogging, and natural extinguishment directly<br />

influenced the condition and appearance of the body after the fire. If the<br />

body is hit directly with a pressurized water jet stream from a fireman’s<br />

hose, the fragments of soft tissue and bone become displaced around the<br />

body. Of equal importance is the displacement of debris that falls on top<br />

of and around the body, and collapse of supporting structures (furniture,<br />

flooring) where the body is positioned. Pressurized jet stream<br />

suppression caused greater fragmentation of the body and the<br />

surrounding environment, thus expanding the search area and<br />

disintegration of smaller elements from water saturation and drainage.<br />

The technique of fogging sends the same pressurized water through an<br />

aspirating nozzle, thus creating a shower effect of smaller water droplets<br />

and is less destructive to tissues of the body and the surrounding<br />

structural materials. Foam or detergent can be added, but produces a<br />

similar effect by minimizing the damage to the victim. However, the use<br />

of water suppression can have the potential to wash away trace evidence<br />

and alter delicate skeletal trauma and should be considered during the<br />

postmortem examination. Natural or self-extinguishment is where the<br />

fire dies out from lack of fuel, but keep in mind that the body is a fuel<br />

load and the body’s fat can sustain a localized fire for hours, thus<br />

increasing the heat-related damage to the body.<br />

Search/Discovery: Fire scenes are challenging since most<br />

materials are visually altered and camouflaged among the ash and debris,<br />

including burned human remains. For this reason, it may not be obvious<br />

that there is a victim present at the scene, particularly if they are buried<br />

under similar-looking debris. During the search, fragile remains may be<br />

walked over, crushed, and further fragmented before being discovered,<br />

or disturbed by initial removal of large furniture/objects and raking of<br />

213 * Presenting Author


smoldering debris. Post-fire breaks are easily identified by the crisp and<br />

bright colors of the margins, as opposed to heat-related and traumatic<br />

fractures with more uniform coloration with adjoining cortical surfaces.<br />

Clearing and Extraction: Before the body is even touched, the<br />

methods of access can cause further fragmentation. For vehicles,<br />

different techniques of opening the doors, trunk, and roof will cause<br />

debris to fall on the body and movement of fragile remains. Different<br />

power tools such as a reciprocating or circular saw causes vibration of<br />

the vehicle and body. Hydraulic slow cutting saws (jaws of life) cause<br />

less vibration and movement, but still jar the body. Access to the body<br />

requires that the door and trunk locks must be forcefully pried open, thus<br />

shifting the body’s position. For structural fire scenes, most of the larger<br />

construction debris (roofing, ceiling, walls, etc) must be removed to gain<br />

access to the remains and likewise causes fragmentation of brittle burned<br />

human remains.<br />

Recovery: The field recovery team may or may not have<br />

osteological training, thus the recovery may involve the selection of<br />

larger and identifiable parts, leaving smaller fragments and pieces of the<br />

victim at the scene. Even careful handling of charred and calcined bone<br />

can result in fragmentation, especially when the larger parts are lifted<br />

and moved from the in situ context onto a sheet or body bag. Dry<br />

screening (if possible) is the best way to collect smaller fragments of<br />

bone, thus insuring all of the evidence and parts of the victim are taken<br />

for postmortem examination.<br />

Transportation: Movement and placement of fragile burned<br />

remains into a body bag is guaranteed to cause fragmentation, especially<br />

if the body bag is not supported by a backboard or a rigid structure.<br />

Picking up the flexible body bag at 2 or 4 points and movement from the<br />

scene means that the body’s weight can crush loose fragments and causes<br />

more fragmentation from handling as the remains are moved from the<br />

scene, loaded and removed from a transport vehicle, transferred to a<br />

secondary gurney or surface, and then opened for the postmortem<br />

examination. The thickness and rigidity of the plastic/fabric also should<br />

be considered as a contributing factor in pressing against the fragile<br />

remains, thus increasing fragmentation.<br />

Often the bodies of fatal fire victims are examined independent of<br />

the fire scene. The investigator should be aware that the condition of<br />

fragile, burned human remains changes its visual appearance from the<br />

point of discovery to the postmortem examination (independent of the<br />

scene) when the body’s physical condition is analyzed as evidence for<br />

the medicolegal examination of the victim’s manner and cause of death.<br />

Examples will show the progressive stages and causes of fragmentation<br />

from the point of discovery to laboratory examination.<br />

Fatal Fire, Burned Human Remains, Cremation<br />

H115 Human Cremains From a Controlled<br />

Car Fire<br />

Peer H. Moore-Jansen, PhD, Department of Anthropology, Wichita State<br />

University, 114 Neff Hall, Wichita, KS 67260-0052; Elayne J. Pope,<br />

PhD, University of West Florida, Anthropology Department, 11000<br />

University Parkway, Building 13, Pensacola, FL 72701; and Laura B.<br />

Bennett, BS*, 1013 Wisteria Drive, Derby, KS 67037<br />

After attending this presentation, attendees will have learned what<br />

happens to a human body when it has been subjected to fire.<br />

This presentation will impact the forensic community by presenting<br />

controlled research experiments in an area where very little research is<br />

available.<br />

Within the past two decades, a wealth of taphonomic research has<br />

emerged that focuses on isolating and identifying a variety of controlled<br />

environmental variables in order to establish patterns of postmortem<br />

changes. Vehicle fires are unique environments loaded with combustible<br />

* Presenting Author<br />

materials of plastics, foam, upholstery, carpet, rubber, and petrol-based<br />

products, all housed within the small space of a metal frame.<br />

The location and positioning of the victim’s body within a vehicular<br />

fire was found to directly influence the extent and types of burn patterns.<br />

Ten human cadavers and ten pigs were placed in different sections of<br />

cars: front seat, back seat, and trunk to: (1) observe the differences in the<br />

extent and patterns of heat-related damage, and (2) the average length of<br />

time that the bodies continued to burn after the manufactured fuels<br />

(interior) had naturally extinguished. Of course, each vehicle is unique<br />

in the amount and types of synthetic materials, compartment size (truck<br />

cab vs. minivan), interior construction (bucket or bench seat), age of the<br />

car’s materials (older or newer), and the amount of ventilation during the<br />

growth stage of the fire (windows open or closed). The salvage vehicles<br />

used in these burn experiments were manufactured before the year 2000.<br />

Newer models have different synthetic plastics and materials, which<br />

would produce accelerated results. On average, the vehicles burned for<br />

45 minutes to an hour, while the bodies continued to burn for different<br />

lengths of time depending on their placement within the vehicle.<br />

Front Seat: Bodies positioned in the front seats, typically bucket<br />

seats with upholstery over a wire frame seat, initially provided protection<br />

to the back and legs. As the fabrics and plastics burned away, the body<br />

remained supported on the wire frame seat frame, thus allowing ample<br />

circulation of heat and fire to all surfaces and more evenly distributed<br />

burn patterns of the body. Movement of the body was observed as<br />

supporting combustible materials burned away. For example, a body<br />

slumped over on the dashboard gradually lost this point of support and<br />

fell over into portions of the floor or driver’s seat. In some cases, the seat<br />

fell back, thus positioning the body into a prone position and partially<br />

into the back seat. Since the body burned on a wire frame seat, it<br />

remained elevated in the fire environment and continued to burn for<br />

several hours (2+) after the car fire had self-extinguished. The small fire<br />

burning under the body was due to the supply of melted body fat under<br />

the body and around the areas of the torso which continued to render the<br />

body into charred tissues and bone.<br />

Back Seat: Bodies positioned in the back seats had the least<br />

amount of heat-related damage when compared to those placed in the<br />

front seats and trunk of the same vehicle. The back seats consist of<br />

minimal upholstery over a broad, flat metal bench, which burns away<br />

early during the fire. Then the body remained in direct contact with the<br />

metal bench, thus preventing heat and circulation to points of contact,<br />

which resulted in partial burn patterns of only the areas exposed to the<br />

fire. Likewise, there was not enough fuel to sustain burning of the<br />

bodies, nor ample materials to sustain the wick effect from the body’s<br />

melted fat.<br />

Trunk: Bodies in the trunk, due to their protected environment,<br />

took longer for the fire to reach but burned intensely once the trunk was<br />

involved. This required that the back seat upholstery burned away and<br />

exposed the perforated metal structure, thus allowing ventilation and<br />

direct heat to reach the body. Some trunks housed a spare wheel, or at<br />

least a depressed wheel well. The presence or absence of a tire in the<br />

trunk was influential not only as a solid fuel source, but the metal rim<br />

elevated portions of the body and allowed the body’s fat to pool there as<br />

a sustaining fuel source. The trunk space became a miniature<br />

crematorium environment as air and heat circulated through the back<br />

seat and the burned out openings of the taillights. Bodies in the trunk<br />

burned intensely for over 4 hours past the initial car fire and left most of<br />

the body as charred and calcined bone, with the exception of some<br />

adherent tissues of the bulky torso. Their condition and preservation was<br />

drastically different than bodies burned in the front and back seats of the<br />

same vehicle.<br />

Results of these vehicular fires show that the location of the body<br />

within different areas of the vehicle directly influences the extent of heatrelated<br />

damage and burn patterns to a human body. These variables<br />

should be considered when examining bodies from burned cars, and the<br />

death investigator must be aware of how the immediate environment can<br />

214


e used to anticipate and explain unique burn patterns in fatal vehicle<br />

fires, or ones set to intentionally destroy evidence of a crime.<br />

Human Cremains, Car Fire, Human Remains<br />

H116 The Burning Question: A Case Analysis<br />

of Peri-Mortem Trauma vs. Post<br />

Fire Damage<br />

Alison Galloway, PhD, University of California, Social Science One FS,<br />

Santa Cruz, CA 95064; Elayne J. Pope, PhD, University of West Florida,<br />

Anthropology Building 13, 11000 University Parkway, Pensacola, FL<br />

32514; and Chelsey Juarez, MA*, Dept of Anthropology, UCSC Social<br />

Science 1, 1156 High Street, Santa Cruz, CA 95064<br />

After this presentation, attendees will be able to: (1) observe the<br />

progression of the pugilistic posture in remains exhibiting perimortem<br />

trauma, (2) identify the characteristic features that may indicate preexisting<br />

blunt force trauma in burned long bones, and (3) identify the<br />

important points of analysis when investigating perimortem trauma in<br />

burned remains.<br />

This presentation will impact the forensic community by outlining<br />

points of analysis for the investigation of blunt force trauma to burned<br />

remains that will positively assist anthropologists in the correct<br />

identification of pre-fire blunt force trauma.<br />

Correctly recognizing and identifying pre-existing perimortem<br />

trauma in burned human remains can be challenging especially when<br />

soft tissues and bone are destroyed. Despite the damage, it is critical to<br />

remember that the distinct characteristics of perimortem trauma can and<br />

do survive varying degrees of thermal destruction. Forensic<br />

anthropologists must work to correctly separate pre-fire perimortem<br />

trauma from thermal damages caused both during and after fire<br />

processes. The ability to do these tasks successfully may be<br />

compromised by transport of remains to forensic facilities during which<br />

time the friability of remains can lead to dramatic fragmentation. Using<br />

a recently adjudicated case and a recent case experiment, this<br />

presentation will investigate the telltale signs of pre-fire blunt force<br />

trauma.<br />

During November of 2007, the Forensic Osteological Investigation<br />

Laboratory at the University of California Santa Cruz was called in for<br />

blunt force trauma analysis of burned human remains. Of specific<br />

concern was the timing of a fracture to the right ulna associated with<br />

extensive thermal damage. The posterior portion of the ulnar shaft was<br />

completely destroyed and the remaining anterior mid-shaft demonstrated<br />

a fracture that extended into unburned bone. In this case, the ulna was<br />

analyzed for several categories critical to trauma timing:<br />

1. Fracture Refit<br />

2. Direction of Force<br />

3. Fracture Margin Deformation<br />

4. Color Change<br />

During analysis of these categories, several important features were<br />

noted. First, no disarticulation artifacts were noted which suggested that<br />

any pre-fire blunt force trauma to the body occurred while the bones<br />

were in anatomical relation to each other. Given this fact, the fracture<br />

suggested a direction of impact initiating within the interosseous crest<br />

which would have been difficult to sustain prior to burning. Second,<br />

microscopic analysis of the fracture indicated a close refit of the two<br />

fractured sections. Third, the fracture margins lacked deformation which<br />

contributed to their close reapproximation. In addition, the changes in<br />

coloration due to the thermal damage passed over the fracture line and<br />

did not extend into the fractured surface. Given the sum of these<br />

determinations it was determined that the defect may have been<br />

sustained after the fire due to the fragility of the materials.<br />

Shortly after the completion of the case trial, the opportunity arose<br />

to analyze a similar situation experimentally. In June of 2008, the San<br />

Luis Obispo country Fire Science Training Program held a forensic fire<br />

death investigation course. The course utilized in-class training and burn<br />

exercises to teach fire investigators proper fire death investigation<br />

techniques. Burn scene 4 consisted of a single adult male cadaver to<br />

which perimortem blunt force trauma was delivered to the left radius and<br />

left tibia. The fractures were retained completely within the tissue. The<br />

burn was recorded via video and thermocoupler for data consistency.<br />

During the course of the burn, the powerful contraction of the arm<br />

muscles caused the left radius to pull apart like a hinge, resulting in a<br />

stacking of the fractured ends. The complete and unfractured ulna<br />

eventually lost articulation with the radial fragments. In the lower limbs,<br />

both feet and muscles of the legs flexed completely into the pugilistic<br />

posture despite the complete fracture of the left tibia. The right and left<br />

distal tibia along with the feet were highly fragmented upon completion<br />

of the fire.<br />

Upon examination of the radius it was noted that:<br />

1. If a burned body in the pugilistic pose also shows hinging<br />

at a fracture site in the forearm, pre-fire trauma is<br />

indicated.<br />

2. Both fractured ends of the radius demonstrated thermal<br />

damage and warping and, as a result, the refit was poor.<br />

3. The thermal damage present on the fracture margin<br />

extended into the fracture as a result of its exposure to<br />

heat from the pugilistic movement.<br />

4. The direction of force required to cause a pre-fire fracture<br />

could be readily interpreted by anatomical association of<br />

the bones.<br />

This experimental situation reaffirmed the importance of analyzing<br />

areas of suspected blunt force trauma in burned remains for quality of<br />

fracture refit, suspected direction of force, fracture margin deformation,<br />

color change and, if possible, the position of bones and soft tissue<br />

following the pugilistic posture. Utilizing these categories as points of<br />

analysis during the investigation of blunt force trauma to burned remains<br />

will positively assist anthropologists in the correct identification of prefire<br />

blunt force trauma.<br />

Fire, Blunt Force Trauma, Trauma Timing<br />

215 * Presenting Author


Celebrating<br />

60 years<br />

H1 A Small Plane Crash With (Unforeseen)<br />

Large Legal Consequences<br />

Julie M. Saul, BA*, Frank P. Saul, PhD, and James R. Patrick, MD,<br />

Lucas County Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

43614-2673<br />

Viewers of this presentation will be better able to utilize forensic<br />

anthropology in sorting potentially commingled remains, and recognize the<br />

importance of radiology, both as an analytic tool and a permanent record.<br />

This presentation will impact the forensic community by emphasizing<br />

the value of radiology of remains as a means of analysis and interpretation,<br />

as well as permanent documentation in case unforeseen questions should<br />

arise.<br />

A small plane crash resulted in the death of three individuals: the<br />

owner (who was a licensed pilot), his son, and the pilot employed by the<br />

plane’s owner.<br />

The remains of one individual, who was later identified as the<br />

professional pilot, were fairly intact and collected in one body bag.<br />

The mangled and fragmented remains of the other two men, later<br />

identified as the owner and his son, were put into two separate body bags.<br />

Each set of remains was quickly and positively identified by<br />

comparison of antemortem and postmortem dental radiographs and<br />

returned to the two families.<br />

The authors’ anthropological services were not used, inasmuch as the<br />

identifications appeared to be straightforward and provided rapid closure<br />

for the families.<br />

Unfortunately, some time later, as aircraft and other insurance claims<br />

were being processed, a dispute arose between multiple opposing law firms<br />

as to whether or not the non-pilot son of the owner might have been flying<br />

the aircraft at the time of the accident, rather than one of the two licensed<br />

pilots aboard.<br />

The authors were called in at that belated point and were asked to<br />

answer the following questions: (1) was there commingling of remains<br />

within the body bags? and (2) could they help determine who was flying the<br />

plane (who was at the controls at the time that the plane crashed?<br />

Fortunately, the Coroner’s Office involved had a policy of always taking<br />

full body radiographs - in this case full body bag radiographs.<br />

The forensic anthropology procedures used to answer these seemingly<br />

simple questions are discussed in this presentation. They include<br />

determination of relative ages of the commingled body fragments, and<br />

identification of trauma to the extremities - using the available body bag<br />

radiographs.<br />

The remains of the hired pilot could be excluded from consideration,<br />

because his remains were found relatively intact and at some distance from<br />

the other two “sets” of remains. The radiographs of the single body bag<br />

containing the remains of the pilot showed no signs of commingling. This<br />

was a helpful starting point, because he was approximately 20 years old at<br />

death - about the same age as the non-pilot son.<br />

Age differences provided the main basis for determining that the<br />

fragmentary remains of the father and the son were indeed commingled<br />

within the two other body bags, inasmuch as the father was approximately<br />

45-years-old at death and the son was approximately 20-years-old at death.<br />

These findings were based primarily on radiographic evaluation of<br />

joint surface configuration and the presence or absence of persistent lines of<br />

density suggesting recent epiphyseal union (sometimes called “growth plate<br />

* Presenting Author<br />

<strong>PHYSICAL</strong> <strong>ANTHROPOLOGY</strong><br />

1948 ~ 2008<br />

scars” and not to be confused with the “Harris lines” associated with growth<br />

arrests followed by growth augmentation).<br />

The disarticulated and severely fractured feet were those of the older<br />

individual (the father, who was a licensed pilot), although they were located<br />

within the body bag containing other remains identified dentally as being<br />

those of the son. The damage present was consistent with that found in<br />

individuals “working” control pedals in both automobile and airplane crash<br />

situations. The foot of the younger individual (the son) showed minimal<br />

damage.<br />

Aircrash, Anthropology, Radiology<br />

H2 An Assessment of <strong>Bio</strong>logical Ancestry in<br />

an Unmarked Cemetery From Nevada:<br />

An Integrated Approach<br />

Kyle McCormick, BA*, Kate E. Kolpan, BA, Karen Smith Gardner, BA,<br />

Eric J. Bartelink, PhD, Beth Shook, PhD, and Turhon A. Murad, PhD,<br />

California State University, Department of Anthropology, 400 West First<br />

Street, Butte #311, Chico, CA 95929-0400<br />

After attending this presentation, the audience will understand the<br />

value of a multidisciplinary approach in the assessment of biological<br />

ancestry, and the inherent limitations between methods. Using a small<br />

historic cemetery sample, biological ancestry is assessed through the study<br />

of craniometric variation, non-metric cranial traits, and ancient DNA.<br />

This presentation will impact the forensic community in general by<br />

increasing the understanding of different methods used to evaluate<br />

biological ancestry and their value in constructing biological profiles of<br />

unknown individuals.<br />

This study presents an analysis of nine individuals recovered in 2000<br />

from an unmarked cemetery in Palisade, Nevada, a ghost town officially<br />

abandoned in 1961. The cemetery was discovered during a mining<br />

operation, which required that the burials be removed. The remains and<br />

associated grave items were excavated by local law enforcement, and were<br />

submitted to the Human Identification Laboratory at California State<br />

University, Chico for osteological analysis. An analysis of the coffin<br />

material and associated grave items suggests that these individuals were<br />

interred between 1880 and 1910. Because these individuals were buried in<br />

separate location in close proximity to the town’s main cemetery, it is<br />

hypothesized that the burial site may represent a segregated cemetery.<br />

Sex, age, and stature were estimated using standard osteological<br />

methods. The nine individuals consist of four males and five females, and<br />

range from 25 to 59 years of age. Stature was estimated using regression<br />

formulas from the 19th century Terry collection. Female stature ranged<br />

from 4’10” to 5’ and male stature ranged from 5’3” to 5’6”.<br />

Ancestry was assessed through craniometrics, non-metric traits, and<br />

ancient DNA. Cranial measurements were taken following guidelines<br />

outlined in the Forensic Databank. Each skull was measured twice by<br />

different authors to limit intra-observer error. Many of the skulls were<br />

fragmentary and/or showed evidence of deformation, which reduced the<br />

number of valid measurements that could be taken. Of the nine skulls, only<br />

individuals 4, 5, and 8 had crania intact enough for all measurements. The<br />

skull of individual 9 is incomplete and is excluded from the analysis. Also,<br />

216


Burial Sex Age Stature Ancestry FORDISC 3.0<br />

1 Female 40-49 4’10’’ +/-3.1” Black Post: 0.816 Typ: 0.307<br />

2 Male 40-49 5’6’’ +/-3.1” Japanese Post: 0.871 Typ: 0.004<br />

3 Male 25-34 5’4’’ +/-3.1” Black Post: 0.333 Typ: 0.071<br />

4 Female 30-39 4’11’’ +/-3.1” Black Post: 0.756 Typ: 0.589<br />

5 Female 40-49 5’0’’ +/-3.1” American Indian Post: 0.538 Typ: 0.993<br />

6 Female 50-59 4’11’’ +/-3.1” American Indian Post: 0.676 Typ: 0.355<br />

7 Female 35-45 4’11’’ +/-3.1” Black Post: 0.882 Typ: 0.344<br />

8 Male 30-35 5’3’’ +/-3.1” Guatemalan Post: 0.670 Typ: 0.127<br />

9 Male 35-39 5’4’’ +/-3.1” N/A N/A N/A<br />

burial 3 lacked a skull upon initial recovery. However, a skull discovered<br />

in 2001 at the site is thought to be associated with this burial. Ongoing<br />

DNA testing will be used to resolve this issue.<br />

FORDISC 3.0 was used to compare cranial measurement data from<br />

our sample against the modern Forensic Databank sample. In addition, 17<br />

non-metric traits were recorded for the dentition as well as the malar, nasal,<br />

and alveolar region following by Gill and Rhine (1990).<br />

<strong>Bio</strong>logical profiles and statistical results for FORDISC 3.0 (posterior<br />

probability and typicality probability) are provided in the table. FORDISC<br />

3.0 classified each individual into one of five groups: Black, Japanese,<br />

American Indian, and Guatemalan. However, the low typicality values for<br />

individuals 2 and 3 suggest that these crania are highly atypical of the<br />

classified groups. The non-metric assessment yielded similar results as the<br />

metric assessment, in that it also indicated that these individuals are of<br />

Asian, Native American, and/or African ancestry. However, none of the<br />

individuals showed non-metric cranial traits consistent with a single<br />

ancestral group. This may suggest that at least some of the individuals are<br />

of mixed ancestry.<br />

To help reconstruct the maternal genetic ancestry of this population,<br />

mitochondrial DNA was also extracted from a minimum of two samples<br />

from each individual. Haplotypes based on HVS I sequences were<br />

analyzed, and where applicable, haplogroups based on restriction fragment<br />

length polymorphisms were determined. Ongoing DNA testing will<br />

provide an additional line of evidence for evaluating the ancestry of these<br />

individuals.<br />

Although the metric and nonmetric assessment of ancestry suggests a<br />

biologically diverse sample, none of the individuals were classified as<br />

European ancestry. In conjunction with the grave items and other<br />

contextual information, our analysis suggests that these individuals may<br />

have been buried in a segregated location due to their biological (non-<br />

European) heritage. This study shows that osteological assessment of<br />

ancestry is just one key piece of the puzzle. When used in conjunction with<br />

other forms of evidence such as ancient DNA, and archaeological evidence,<br />

a more complete picture of biological heritage is achieved.<br />

Ancestry, Craniometrics, DNA<br />

H3 Separately Discovered Skeletal Remains and<br />

the Path to Reassociation: A Case Review<br />

Audrey Scott, MA*, Simon Fraser University, Department of Archaeology,<br />

8888 University Dr., Burnaby, British Columbia V5A 1S6, CANADA;<br />

David Sweet, DMD, PhD, Bureau of Legal Dentistry Lab, University of<br />

British Columbia, 6190 Agronomy Road, Suite 202, Vancouver, BC V6T<br />

1Z3, CANADA; Derek Congram, MSc, Simon Fraser University,<br />

Department of Archaeology, 8888 University Drive, Vancouver, BC V5A<br />

1S6, CANADA; and Stephen Fonseca, Office of the Chief Coroner,<br />

Identification and Disaster Response Unit, 2035-4720 Kingsway,<br />

Burnaby, BC V5H 4N2, CANADA<br />

After attending this presentation, attendees will have an understanding<br />

of the potential for missing minute, yet essential, pieces of artifactual<br />

evidence when recovering skeletal remains from the crime scene.<br />

Attendees will also have gained an understanding of the importance of<br />

interdisciplinary cooperation when reassociating skeletal elements and<br />

identifying an unknown deceased individual.<br />

This presentation will impact the forensic community by educating<br />

forensic practitioners and investigators about reassociating separated<br />

human skeletal remains, as well as emphasizing the importance of<br />

anthropological and odontological techniques for recovering minute and<br />

easily missed, yet vitally important, pieces of evidence.<br />

In late 2006 and early 2007, Forensic Anthropologists at Simon Fraser<br />

University and Forensic Odontologists at the BOLD Laboratory of The<br />

University of British Columbia received from the BC Coroners Service two<br />

separate cases involving the skeletonized remains of unknown individuals.<br />

The two scenes were located several kilometers distant from each other, and<br />

the discoveries were made several months apart. Distinct morphological<br />

characteristics and similar injury patterns suggested the remains actually<br />

represented one individual, which was later supported by DNA analysis.<br />

The cranium was discovered submerged in a semi-urban recreational<br />

lake, and exhibited evidence of a mostly healed Le Fort II fracture of the<br />

left maxilla. Additionally, there was a healed surgical trephination of<br />

approximately 1 cm in diameter on the left parietal, with an associated<br />

notch in the posterior-inferior margin. The root of a single tooth remained<br />

in situ; all other teeth had been lost antemortem or during the postmortem<br />

interval.<br />

Approximately six months later, the postcranial remains of an<br />

individual were found in a brushy, semi-urban setting approximately 3 km<br />

from the lake. This individual exhibited multiple severe healed fractures of<br />

the ribs, consistent with a major crushing chest injury. Screening of the<br />

associated soil matrix produced several artifacts of internal soft tissue<br />

microsurgery. A maxillary fixed dental bridge was recovered along with a<br />

mandible, although no cranium was found at this location.<br />

The similarities in injury patterns, degree of injury healing, and<br />

morphology of articulation points between the cranial and postcranial<br />

remains suggested a single unidentified person. Odontological examination<br />

revealed consistency between the dental bridge and missing maxillary<br />

dentition; the color, contour and surface condition of the cranium and postcranial<br />

remains; and the mandibular and maxillary alveolar contours. A<br />

goodness-of-fit examination supported a match of the temporomandibular<br />

joints and condylar heads; the shape and sizes of the dental arches; and<br />

articulation of the dental bridge with the lower anterior teeth. Forensic<br />

anthropological examination produced biological profiles of both cases<br />

which were of the same sex and age range. Both cases had injury patterns<br />

consistent with a severe trauma, and exhibited the same degree of healing,<br />

suggestive of a single event. A goodness-of-fit examination of the<br />

articulation of the occipital condyles and the unique morphology of the first<br />

cervical vertebra supported a single individual. The results of DNA<br />

analysis were consistent with the two sets of remains representing a single<br />

person.<br />

This unusual case presented a rare opportunity for the reassociation of<br />

disassociated remains, and highlights the importance of investigating<br />

217 * Presenting Author


improbable relations between distinct and apparently separate sets of<br />

remains. The discovery of the microsurgical hardware emphasizes the<br />

importance of a detail driven recovery and examination of unknown<br />

remains.<br />

Reassociation of Skeletal Elements, Forensic Anthropology,<br />

Forensic Odontology<br />

H4 Surgical Sutures as a Means of<br />

Identifying Human Remains<br />

Katy L. Shepherd, BS*, 10101 Villagio Palms Way, Unit 201, Estero, FL<br />

33928; Heather A. Walsh-Haney, PhD, Florida Gulf Coast University,<br />

Division of Justice Studies, 10501 FGCU Boulevard South, AB3, Fort<br />

Myers, FL 33965-6565; and Marta U. Coburn, MD, District 20 <strong>Medical</strong><br />

Examiner, 3838 Domestic Avenue, Naples, FL 34104<br />

After attending this presentation, the audience will understand how<br />

surgical sutures found in human remains may be used to help establish a<br />

positive identification.<br />

This presentation will impact the forensic community by providing<br />

anthropologists, medical examiners, coroners, and law enforcement another<br />

tool to aid in identifying decedents. This presentation also demonstrates the<br />

investigative process used to pinpoint suture manufacturers, and in turn the<br />

identification of the victim, by presenting a case where surgical sutures<br />

were a distinctive characteristic.<br />

In 2006, a set of skeletonized remains was discovered in a dense,<br />

wooded area adjacent to a residential gated community in Naples, Florida.<br />

The human remains consisted of a nearly complete skeleton and associated<br />

physical evidence that included a .357 magnum (found beside the remains),<br />

one spent bullet and shell casing, several unfired bullets contained within a<br />

box of ammunition, and a bicycle. Upon initial examination by the medical<br />

examiner and law enforcement personnel, the cranium was found to be<br />

fragmented, and the mandible had a midline fracture. Based on the scene<br />

evidence, the preliminary cause and manner of death appeared to be<br />

consistent with a single suicidal gunshot wound to the head. No<br />

identification was found with the remains nor was fingerprint evidence an<br />

option. A tentative identity was established by tracing the serial number on<br />

the gun.<br />

The forensic anthropologist conducted an osteological analysis of<br />

identity, trauma, and time since death. As such, the metric analysis of sex,<br />

ancestry, and stature using Fordisc 3.0 determined that these remains were<br />

a White (e.g., European American) male approximately 5’10” in living<br />

stature. Nonmetric analysis of the skull and pelvic morphology supported<br />

the metric sex and ancestry findings. Radiographic and gross examination<br />

of the skeletal remains, both before and after reconstruction, evidenced one<br />

cranial gunshot wound that entered on the right and exited on the left.<br />

Skeletal age was determined through visual examination of all joint<br />

surfaces, including the pubic symphysis, auricular surfaces of the ossa<br />

coxae, and sternal end of the right 4th rib and subsequent comparison with<br />

known age exemplars for White 20th century males. The most accurate age<br />

estimation was determined to be between 50 and 60 years of age. Time<br />

since death was determined to be from weeks to months and no more than<br />

one year as evidenced by the extent of skeletonization, lack of the odor of<br />

decomposition, relative completeness of the remains, and the mechanical<br />

integrity of the bones.<br />

Two green surgical sutures were discovered imbedded in the right<br />

acromial process of the scapula, which suggested that the decedent had<br />

undergone rotator cuff surgery—either as rotator cuff tendon repair,<br />

acromioplasty, or subacromial decompression. The dearth of published<br />

casework and research concerning the use of surgical sutures in human<br />

identification and the establishment of time since death required a<br />

consultation with a local suture and orthopedic implant manufacturer. To<br />

wit, several suture manufacturers were considered and the tentative identity<br />

was further bolstered by the biological profile and previous rotator cuff<br />

surgery.<br />

* Presenting Author<br />

There are several types of non-absorbable sutures, including, silk,<br />

nylon, polyester, polypropylene, and surgical steel. Non-absorbable and<br />

steel sutures are more likely to be found in forensic cases than absorbable<br />

sutures, so the concentration for this presentation will be on the former.<br />

Each manufacturer produces non-absorbable sutures of various colors and<br />

diameters that are determined by the suture material and the designed<br />

medical use. Non-absorbable sutures may be further classified based on<br />

whether they are constructed as a monofilament or multifilament (e.g.,<br />

twisted together, spun together, or braided).<br />

In addition to color, diameter, and construction materials, a nonabsorbable<br />

suture’s degradation may also help provide information<br />

concerning when surgery may have occurred and perhaps help narrow the<br />

time since death. While most non-absorbable sutures do not degrade<br />

completely, some materials, such as silk and nylon, do progressively lose<br />

their tensile strength. As such, suture manufacturing companies are able to<br />

assist in estimating timelines—whether determining when the surgery may<br />

have taken place or estimating time since death—based on degradation of<br />

the sutures as assessed by changes in the suture’s mechanical properties.<br />

There are several surgical suture manufacturers, each with readily available<br />

information on their products and these include: DemeTECH®, Arthrex®,<br />

United States Surgical, Syneture, Ethicon©, and CP <strong>Medical</strong>®. Many<br />

manufacturing companies have employees who are able to identify their<br />

products simply by visual recognition and can reference in-house research<br />

reports that address suture use, properties, and degradation. Therefore,<br />

when medical examiner’s and coroner’s offices, law enforcement agencies,<br />

and forensic anthropologists find surgical sutures with human remains, a<br />

useful investigative tool exists to narrow down the suture manufacturer,<br />

and may aid in determining the decedent’s identification and time interval<br />

since death.<br />

Surgical Sutures, Identification, Human Remains<br />

H5 Fractured Frontier: An Analysis of Fracture<br />

Patterns in a Historic Nevada Cemetery<br />

Carrie A. Brown, BA*, Nikki A. Willits, BA, Brenna K. Blanchard, BA,<br />

and Kristin L. Chelotti, BA, California State University, Department of<br />

Anthropology, 400 West First Street, Butte Hall 311, Chico, CA 95929<br />

This presentation will demonstrate the value of antemortem fracture<br />

analysis in the interpretation of life characteristics in unidentified skeletal<br />

remains. This poster presents evidence of antemortem fracture healing in a<br />

small historic burial sample.<br />

This presentation will impact the forensic community by furthering<br />

the understanding of fracture patterns and bone remodeling processes as<br />

they relate to the construction of biological profiles.<br />

In February 2000, an unmarked cemetery containing nine individuals<br />

was discovered in Palisade, Nevada, a deserted frontier railroad town. The<br />

remains were excavated by local law enforcement and transferred to the<br />

Human Identification Laboratory at California State University, Chico for<br />

analysis. Contextual information and grave items indicate that the<br />

individuals were interred in the late 19th to early 20th century. Of interest<br />

was the fact that these individuals were buried in a separate location from<br />

the marked town cemetery. The group consists of four males and five<br />

females, ranging in age from 25 to 59 years of age. Craniometric and nonmetric<br />

analyses suggest that at least eight of the individuals were of Asian<br />

or African ancestry.<br />

Of particular note is the high prevalence of traumatic injury present<br />

among seven of the nine individuals. These injuries consisted primarily of<br />

healed fractures, with no evidence of perimortem trauma. Several of the<br />

individuals also exhibit evidence of degenerative disease, especially of the<br />

spine and the lower limb. Individuals 2 and 7 have healed boxer’s fractures<br />

on the right fifth metacarpal. Individual 5 has a similar healed fracture on<br />

the right second metacarpal, and also exhibits an unreduced healed fracture<br />

of the distal right ulna. In addition, the left nasal bone shows probable<br />

evidence of an unhealed fracture. Individual 3 has an unreduced fracture of<br />

218


the left tibia and fibula with major bone remodeling and severe lateral<br />

displacement of the distal end. These fractures resulted in a height loss of<br />

approximately 2 cm for both the tibia and the fibula when compared to the<br />

contralateral side. Individual 6 has an unreduced healed fracture of the right<br />

distal ulna and a possible partial fracture of the right distal radius. A<br />

pseudoarthrosis is present at the radio-ulnar joint, as well as an increased<br />

porosity of the carpals, which is likely related to the trauma sustained from<br />

the fracture of the lower arm. Individual 8 has a separated neural arch of<br />

the fifth lumbar vertebra, consistent with spondylolysis, a stress-fatigue<br />

fracture. This individual also has a bony spur on the lateral surface of the<br />

right femur, which may be associated with trauma to adjacent muscle tissue.<br />

Individual 9 has several healed fractures of the ribs: left ribs V and IX and<br />

right rib XII. This individual also exhibits an unhealed depressed fracture<br />

of the right tibial plateau.<br />

Overall, boxer’s fractures are the most prevalent in the sample,<br />

although several other fractures are remarkable in their severity. The<br />

evidence of severe, unreduced fractures in individuals 3, 5, and 6 provide<br />

evidence for a lack of medical treatment. Although the sample size is small,<br />

there is some evidence for a different patterning of injury between the<br />

sexes. While males exhibit a higher prevalence of lower limb trauma, there<br />

is a trend toward upper limb injuries among females with fractures. The<br />

differential fracture patterning observed in males and females indicates a<br />

likely difference in activity type between the sexes.<br />

The high prevalence of fractures and marked degenerative conditions<br />

observed in several of the skeletons, in conjunction with other contextual<br />

evidence from the burial site, suggest that these individuals were of low<br />

socio-economic status. Furthermore, the severity of many of these injuries<br />

and the unreduced nature of some of the fractures suggest that these<br />

individuals may have had limited access to medical care and likely led lives<br />

of strenuous and possibly dangerous activity.<br />

Fractures, Antemortem Trauma, <strong>Bio</strong>logical Profile<br />

H6 Homicide by Lapidation in Neolitic Age:<br />

Results of Two Cases<br />

Antonio De Donno, PhD*, Section of Legal Medicine - DiMIMP -<br />

University of Bari, P.zza Giulio Cesare n.11, Bari, 70124, ITALY; Simona<br />

Corrado, MD, Sezione di Medicina Legale, Bari, 70100, ITALY; Valeria<br />

Santoro, PhD, Domenico Urso, MD, Piercarlo Lozito, DDS, and<br />

Francesco Introna, MD, Section of Legal Medicine, Department of<br />

Internal and Public Medicine (DiMIMP), University of Bari, P.zza Giulio<br />

Cesare n.11, Bari, 70124, ITALY; Aldo Di Fazio, MD, Section of legal<br />

medicine - Matera Hospital, via Montescaglioso n.5, Matera, 75100,<br />

ITALY; and Rocco Maglietta, MD, Section of Legal Medicine - San Carlo<br />

Hospital Potenza, via P.Petroni n.6, Potenza, 85100, ITALY<br />

The goal of this presentation is to identify the process of recovery and<br />

describe physical findings from skeletonized remains performed by a team<br />

of forensic anthropologists and archeologists.<br />

This presentation will impact the forensic community by identifying<br />

the process of recovering skeletal remains and presenting the<br />

methodologies and results used to reconstruct the biological profiles, race,<br />

sex, age, and stature of skeletal remains, date of death and probably manner<br />

of death.<br />

Introduction: While preparing a grave for oilduct in the little country<br />

of Marsicovetere in the South of Italy, workers discovered the remains of<br />

two skeletonized unknown individuals placed 2 mt of depth close to the<br />

other not in genu-pectoral or classic deposition. At the beginning it was<br />

performed a scanning of the archeological area to obtain digital 3D<br />

excavation map. Archeological recovery testifies Neolithic installation<br />

about the epoch of 4,000 years Before Christ. Records were taken and kept<br />

in the Ridola Museum in Potenza. Remains consisted of two full human<br />

skeletonized bodies highly fragmented. They were presumed to belong to<br />

prehistoric period in virtue of their extreme lightness and porosity; they<br />

were very fragile and then moved from grave, digging around skeletal<br />

remains and taking out together with ground. No clothing or other articles<br />

were found with remains, but just a stone with a pyramidal shape and<br />

dimension 4x4x5 cm.<br />

Forensic Anthropological and Odontological Examination: The<br />

general identity of the skeletal remains was determined by estimation of age<br />

and stature and the determination of the sex using anthropological methods<br />

for old remains. The estimation of age was based on pubic symphyseal<br />

phases and cranial suture closure. These criteria determined that the<br />

deceased was closer to 20 years than 40 years. The determination of sex<br />

was basically performed using morphological features of skull and pelvic<br />

bones and metric analysis of long bones fragments. The sex was clearly that<br />

of a female for both. The stature was estimated using the lengths of long<br />

bones, not fractured, which were measured using an osteometric board; the<br />

bones were used individually and in combination using tables available to<br />

determine the average stature, which was found to be respectively 161 + 1<br />

cm and<br />

152 + 2 cm.<br />

Odontological analysis showed that high maxillary was wide,<br />

characterized by a round palate with an intermolar distance of 6.5 cm.<br />

There were all the dental elements except for the second left molar<br />

(antemortem lack) and completions not damaged by decay. This aspect is<br />

coherent with the alimentary habits of Neolithic period that were lacking in<br />

sugars, even though carbohydrates, associated with game were introduced<br />

in feeding. The deep usury with dentinal exposure of incisive and molars<br />

is due to not refined feeding and the impurities of cereals. Typical of the<br />

period is also the wide diastem (6mm) between the middle incisives that is<br />

noticeable between the central and the lateral incisive and this last one and<br />

the left canine (3mm) too. The characteristics of the high maxillary can be<br />

refered to the jaw, where it can be observed the absence of decay and the<br />

deep usury of the canines and posterior sectors, characterized moreover by<br />

the disappearance of the cuspids particularly on the second premolars and<br />

molars.<br />

Radiocarbon Dating: Radiocarbon dating can provide useful<br />

information to elucidate the date of death of skeletonized human remains;<br />

interpretation was enhanced with analysis of different bone fragments<br />

within each skeletons by high resolution mass spectrometry. Radiocarbon<br />

analysis was conducted in this study on cortical and trabecular bone<br />

samples in dating and diagnostic laboratory of the University of Lecce. The<br />

radiocarbon analysis clearly assigned the bones to 4000 years BC.<br />

Instrumental Analysis: The skull showed an antemortem fracture<br />

pattern on the right temporal bone; this fracture was depressed, had a<br />

negative pyramidal shape 4x4x5 cm, and was not related with all the other<br />

skull postmortem fracture. Multislice-computed tomography (MSCT) and<br />

magnetic resonance imaging (MRI) are increasingly used for forensic<br />

purposes. To elucidate the skull fractures and pattern of injuries it has been<br />

used 3D computerized imaging; three-dimensional volume-rendered (VR)<br />

CT images can be helpful to understand the temporal bone. Matching<br />

between shape of injuries in temporal bone and shape of stone, found close<br />

to the skull, allowed to support the hypothesis of lapidation. At the moment<br />

remains are stored in the Ridola Museum in Potenza (Italy).<br />

Personal Identification, Neolithic Recovery, Radiocarbon Dating<br />

H7 Identification by the Numbers: A Case<br />

Study in Skeletal Trauma Examination<br />

and Surgical Implant Tracking<br />

Gwendolyn M. Haugen, MA*, St. Louis County <strong>Medical</strong> Examiner’s<br />

Office, 6039 Helen Avenue, St. Louis, MO 63134; Kathleen<br />

Diebold, MA*, St. Charles, Jefferson & Franklin, <strong>Medical</strong> Examiner’s<br />

Office, 3556 Caroline Street, Room C305, St. Louis, MO 63104; Mary<br />

E.S. Case, MD, Chief <strong>Medical</strong> Examiner of St. Louis, St. Charles,<br />

Jefferson, and Franklin Counties in Missouri, 6039 Helen Avenue, St.<br />

Louis, MO 63134; St. Louis County <strong>Medical</strong> Examiner’s Office, 6039<br />

Helen Avenue, St. Louis, MO 63134; and Charles W. Subke, Franklin<br />

219 * Presenting Author


County Sheriff’s Office, #1 Bruns Drive, Union, MO 63084<br />

The goal of this presentation is to illustrate how thorough skeletal<br />

analysis teamed with surgical implant investigation/tracking lead to the<br />

positive identification of unknown skeletal remains. Further, this<br />

presentation will illustrate the need for multi-agency/disciplinary<br />

cooperation in successful case resolution.<br />

This presentation will impact the forensic community by<br />

demonstrating how unknown skeletal remains can be positively identified<br />

through surgical implant tracking teamed with anthropological analysis.<br />

This case study demonstrates how uniquely numbered medical<br />

implants/devices can be used to search medical records for unknown<br />

individuals. A multidisciplinary/multi-agency approach provided different<br />

lines of evidence that brought this case to successful resolution.<br />

In March 2007, relatively complete skeletonized human remains were<br />

discovered lying on the ground surface near a major interstate in Franklin<br />

County, Missouri. The area of discovery was near an interstate exit and<br />

overpass that is known to attract transient individuals. Clothing and<br />

possible bedding materials were associated with the remains. No<br />

identification media were readily apparent for the deceased. Investigators<br />

from the Franklin County Sheriff’s Office, in conjunction with the Franklin<br />

County <strong>Medical</strong> Examiner’s Office, performed a detailed recovery of the<br />

remains and all associated evidence. The remains and associated clothing<br />

were removed in situ and transported to the <strong>Medical</strong> Examiner’s Office in<br />

St. Louis County, Missouri for examination by a forensic anthropologist.<br />

The skeletal remains were in a good state of preservation which<br />

facilitated a relatively complete biological assessment. Extensive<br />

antemortem and perimortem trauma was observed and documented. The<br />

majority of the observed antemortem trauma was present on the left side of<br />

the body. Of particular interest for possible identification were areas of<br />

antemortem trauma that had been fixed with surgical implants/devices<br />

which appeared consistent in age based on the observed level of bone<br />

remodeling. This suggested that they were produced from the same<br />

traumatic event. The cranium exhibited extensive surgical repair of left<br />

maxilla fractures with mini-plates and screws (n=3), surgical repair of left<br />

orbit fractures with orbital floor implants, and a healing fracture located on<br />

the superiomedial aspect of the left orbit. An antemortem fracture of the left<br />

proximal ulnar diaphysis had been stabilized with a plate and screws.<br />

Finally, the left tibia had been fixed with an intramedullary rod and screws.<br />

A subsequent oblique fracture event of the distal tibia had displaced one of<br />

the screws. The secondary fracture had not been medically treated and the<br />

bone was extremely reactive in this area. A healing oblique fracture of the<br />

left distal fibula was also observed. This fracture appeared to have occurred<br />

at the same time as the secondary fracture of the left tibia and also showed<br />

no evidence of medical treatment. Observed perimortem trauma included<br />

blunt craniocerebral trauma in addition to blunt and sharp trauma of the<br />

chest and neck consistent with homicidal violence.<br />

An identical service/trademark and unique numbering were observed<br />

on the surface of the intramedullary rod and the ulnar surgical fixation plate.<br />

A search on the service/trademark through the Missouri Intelligence Access<br />

Center (MIAC) linked the design with the company Synthes, Inc., a global<br />

provider of trauma implant devices. Synthes, Inc. was able to provide<br />

investigators with a list of hospitals nationwide that had received devices<br />

with the same numbering schemes. Although ulnar fixation plates are quite<br />

common, the unique combination of implants in this case provided<br />

investigators with a truncated list of possible individuals for comparison.<br />

The developed biological profile served to further shorten the list. From<br />

this abbreviated list, the Franklin County <strong>Medical</strong> Examiner’s Office<br />

requested and received medical records from a hospital in Tulsa, Oklahoma<br />

for an individual who had received both implants after being struck by a<br />

vehicle in 2002. Comparison of ante- and postmortem radiographs led to<br />

the positive identification of this victim. Identification was made within 90<br />

days of body recovery.<br />

This case study demonstrates how mulit-agency/multidisciplinary<br />

cooperation is imperative for timely case resolution. Although the<br />

numbering present on the surgical devices was not unique, investigators<br />

* Presenting Author<br />

were able to compile a shortened list of possible individuals which was<br />

further reduced by the developed biological profile.<br />

Identification Techniques, Trauma Analysis, Skeletal Remains<br />

H8 Practical Consideration of the Daubert<br />

Guidelines on Methods of Identification<br />

in the <strong>Medical</strong> Examiner Setting<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong> Examiner,<br />

Anthropology Division, Houston, TX 77054; Jennifer C. Love, PhD, and<br />

Luis A. Sanchez, MD, Harris County, <strong>Medical</strong> Examiner’s Office, 1885<br />

Old Spanish Trail, Houston, TX 77054<br />

The educational objective of this presentation is to consider the<br />

methodological dichotomy between satisfaction of the federal law<br />

regarding forensic testimony and the practical constraints of daily operation<br />

of a medical examiner’s office.<br />

This presentation will impact the forensic community by highlighting<br />

the dichotomy between the Daubert rules and practical constraints<br />

associated with identification in the medical examiner’s setting.<br />

Scientific identification is of primary importance in forensic death<br />

investigations. <strong>Medical</strong> examiner personnel, including anthropologists, are<br />

obligated to pursue positive scientific identification under certain<br />

circumstances including homicides, disfigurement, commingling and<br />

decomposition. The definition of positive identification varies based on the<br />

circumstances of death, and the distinction between what is required under<br />

different circumstances is significant in the application of current<br />

techniques of identification and the development of future ones. A<br />

quantified estimate of identity is often required in cases pending<br />

prosecution, whereas presumptive identification is acceptable in nonprosecutory<br />

cases. The Daubert ruling of 1993 is the most influential of the<br />

federal laws that pertain to this issue (Steadman et al. 2006). This particular<br />

court case has resulted in an increase in the scientific and statistical rigor<br />

required of methods of identification of the deceased. <strong>Medical</strong> examiner<br />

personnel must reconcile the practical constraints of the medical examiner<br />

context with the requirements of the law. The end results are concomitant<br />

conflicting interests in: (1) establishing a quantified estimate of identity, and<br />

(2) expediting the process of identification in the face of limited<br />

antemortem records and resources as well as familial demands.<br />

This presentation details a case in which the antemortem records<br />

available for positive identification were limited to MRI imagery of the<br />

head and other standard sources of antemortem data including fingerprints,<br />

dental records, and skeletal x-rays were not available. The decedent was<br />

found dead in his apartment following an altercation with other individuals.<br />

The decedent’s brother was on the scene at the time of the incident and<br />

survived. The parents of the decedent viewed a photo of the decedent and<br />

were able to visually identify him. Given the traumatic nature of the event<br />

and the interests of the family, identification by a method more expeditious<br />

than DNA comparison was essential.<br />

Positive identification of the decedent was achieved by consideration<br />

of several qualitative features visible on the MRI images rather than the<br />

application of a quantified method of antemortem and postmortem<br />

radiograph comparison. Visible on the MRI imagery was the decedent’s<br />

frontal sinus outline, his dentition, and a soft-tissue defect visible at autopsy.<br />

The frontal sinus morphology, as seen on the MRI imagery, was very<br />

complex and strongly resembled postmortem images in number of cells,<br />

bilateral dimension, bilateral asymmetry, superiority of side, distribution of<br />

partial bony septations, number of partial bony septations, distribution of<br />

complete bony cells, and number of complete bony cells (Reichs and<br />

Dorion 1992). The incomplete development of the third molars in both the<br />

postmortem and antemortem images indicated that the decedent was in the<br />

appropriate age category relative to the antemortem records. In addition, a<br />

sebaceous cyst noted at autopsy was clearly visible and located in the same<br />

position on the antemortem imagery. Taken together, these two<br />

220


characteristics were deemed appropriate for scientific identification<br />

following a conference between the anthropologists and the medical<br />

examiner presiding over the case.<br />

This case represents a situation in which limited antemortem records<br />

and familial demands required utilizing a method to expedite identification<br />

in lieu of a quantified method. Although the method applied was not<br />

quantified, subjectivity was minimized through accumulative findings.<br />

Active research in the development of identification methods that meet the<br />

demands of the Daubert ruling and the constraints of the medical<br />

examiner’s setting is ongoing by the Anthropology Division at the Harris<br />

County <strong>Medical</strong> Examiner’s Office.<br />

Forensic Identification, <strong>Medical</strong> Examiner, Daubert vs. Merrill-Dow<br />

H9 Archival Matters: The William R. Maples<br />

Collection at Florida Gulf Coast University<br />

Kevin A. Waters, BS*, Laura Gibson, BS, and Heather A. Walsh-<br />

Haney, PhD, Florida Gulf Coast University, Division of Justice Studies,<br />

10501 FGCU Boulevard South, AB3, Fort Myers, FL 33965-6565<br />

After attending this presentation, attendees will know how to identify<br />

special collections within the medical examiner/coroner’s offices and law<br />

enforcement agencies and the steps necessary to curate the documents.<br />

This poster presentation will help the forensic community by<br />

providing the techniques involved in archiving materials related to the life’s<br />

work of senior forensic scientists which will facilitate access to past<br />

research and data that will inevitability help to close current and future<br />

forensic cases and answer forthcoming research questions.<br />

All too often, the unpublished notes, slides, data, and live-action<br />

footage relative to the forensic research, casework, and experiences of<br />

retired or deceased forensic scientists have been stored in locations that<br />

were not easily located or accessible (e.g., familial closets, garages, and<br />

attics). As such, information that had the potential to flesh-out current<br />

research endeavors or solve existing or future forensic cases was lost. The<br />

special collections warehoused in universities, libraries, or digital archives,<br />

such as the National Clearinghouse for Science Technology and the Law<br />

(NCSTL), have become conduits for accessing this critical information. As<br />

a case in point, the William R. Maples Special Collection serves to highlight<br />

those data that would have been otherwise unavailable to the forensic<br />

science community and how the materials within were subsequently<br />

archived.<br />

In summer 2006, the William R. Maples Special Collection was<br />

donated to Florida Gulf Coast University (FGCU) in Fort Myers, Florida by<br />

his widow, Margaret Maples-Gilliland. Thankfully, Ms. Maples-Gilliland<br />

recognized the importance of ensuring that her late husband’s work was<br />

accessible to myriad interested forensic practitioners, rather than restricting<br />

access to family members as has been the case for the works of countless<br />

scientists over the years. The William R. Maples collection contained<br />

records that documented the various forensic cases and historic research Dr.<br />

Maples had conducted during his 28 year career as a forensic anthropologist<br />

and 35 years as a physical anthropologist. It comprised nearly 40 cardboard<br />

boxes—must of which contained, in meticulous detail, the date, location,<br />

and relevance of each document, photo, cast, bone, and videotape. Before<br />

the formal donation was completed, the collection had to be inventoried and<br />

appraised.<br />

The inventory required 120 volunteer hours and was beyond the<br />

capabilities of the Maples-Gilliland family. Importantly, volunteers were<br />

recruited from FGCU upper division undergraduate students who were<br />

criminal forensics majors and well-versed in Maples’ work. The process<br />

began with a rough sort and inventory which pinpointed the (1) quantity of<br />

items, (2) material integrity (e.g., could the object be fumigated and<br />

digitized?), and (3) subject matter of the collection. Once the collection was<br />

considered to be of sufficient size, stable and of forensic importance, it was<br />

fumigated. Then, all of the materials were organized by subject matter. For<br />

example, subject categories included titles such as “Czar Nicholas<br />

Romanov Investigation,” “Elephant Man Joseph Merrick,” “Francisco<br />

Pizarro Expedition,” “Medgar Evers Disinterment,” “Panama Human<br />

Rights Work,” “President Zachary Taylor Disinterment,” and so on.<br />

Surprisingly, the collection also contained Maples’ life history documents,<br />

including high school report cards, prom photos, West Point transcripts,<br />

copies of his children’s birth certificates, and other personal<br />

correspondences between Maples and his family, friends, and peers. These<br />

latter non-scientific materials were included in order for future researchers<br />

to understand the implicit, unavoidable, and often subconscious biases that<br />

may have shaped Maples’ data interpretations.<br />

Once the materials were organized by subject, each document, photo,<br />

cast, 8mm film, videotape and artifact was assigned a unique identification<br />

number (UIN). Quite simply, the numerical system began with number 1<br />

and ended with entry 3500. Each item was labeled with its UIN. An excel<br />

spreadsheet was used to catalog each UIN with a corresponding description<br />

of the item. The accuracy of the UIN assignments and corresponding item<br />

description and location was tested by checking 85 entries selected by a<br />

random number generator.<br />

All paper documents, slides, and live-action footage was digitized by<br />

using a flatbed scanner, slide scanner, and converted to DVD, respectively.<br />

Each artifact, cast, and skeleton was digitally photographed and added to<br />

the database. Then, the original materials and specimens were transferred<br />

to acid free containers and stored within the temperature and humidity<br />

controlled special collections room within the Florida Gulf Coast<br />

University Special Collections room. Additionally, all of the digitized data<br />

will be transferred to the National Clearinghouse for Science Technology<br />

and the Law for immediate web based access.<br />

William R. Maples, Special Collections, Skeletal Remains<br />

H10 A Summary of Trauma Specimens at the<br />

Armed Forces Institute of Pathology,<br />

National Museum of Health and Medicine<br />

Brian F. Spatola, MA*, and Franklin E. Damann, MA*, Armed Forces<br />

Institute of Pathology, National Museum of Health and Medicine, 6825<br />

16th St. NW, Building 54, Washington, DC 20306-6000<br />

The objective of this poster is to heighten awareness of this valuable<br />

resource for qualified researchers in the forensic sciences. In particular the<br />

collections contain approximately 2359 trauma specimens of interest to<br />

forensic anthropologists.<br />

The extensive collections of trauma and pathology housed at the<br />

museum cover a large historic period (antebellum to present) and can<br />

provide abundant data for research in wound ballistics, sharp force injuries,<br />

and blunt force trauma that can be used to expand knowledge in the forensic<br />

sciences, particularly in forensic anthropology.<br />

The Anatomy Department of the Armed Forces Institute of Pathology<br />

(AFIP) National Museum of Health and Medicine (NMHM) in<br />

Washington, DC houses a large number of specimens of interest to the<br />

forensic research community. The objective of this poster is to heighten<br />

awareness of this valuable resource for qualified researchers in the forensic<br />

sciences. In particular the collections contain approximately 2359 trauma<br />

specimens of interest to forensic anthropologists.<br />

The NMNH began as the Army <strong>Medical</strong> Museum (AMM) with the<br />

collection of thousands of surgical and autopsy specimens of Civil War<br />

gunshot wounds (GSW) collected at field hospitals and on the battlefield.<br />

Over time the AMM evolved into the world class pathology consultation<br />

organization that is known today as the Armed Forces Institute of Pathology<br />

(AFIP) with the NMHM as one of its many divisions. To this day, the<br />

museum continues to collect specimens relevant to forensic and medical<br />

221 * Presenting Author


investigations. Cataloged collections at the museum contain approximately<br />

12,000 specimens of forensic, medical, surgical and historic significance,<br />

19% of which documents the terminal effects of GSW and low velocity<br />

trauma. Specimens are often accompanied by medical records, narrative<br />

accounts and descriptions such as bullet caliber, make / model of weapon,<br />

blade type or other relevant information. Among these specimens there is<br />

also ample evidence of the body’s responses to bone trauma (i.e., healing<br />

and infection.)<br />

Of the museum specimens, high velocity GSW comprise the greater<br />

part (95%) of the trauma collections (n = 2249), with low velocity blunt<br />

force trauma (BFT) and sharp force trauma (SFT) comprising the remainder<br />

of the collection. Examples of gunshot injuries from a variety of civil and<br />

military weapons are present that document the effects of contemporary and<br />

historic firearms and the effects of cannon fire and shrapnel. High velocity<br />

trauma specimens found in the collection represent a span of time from<br />

antebellum into modern day medical examiner contexts.<br />

There are 42 examples of blunt force trauma represented in the<br />

collection consisting mostly of depressed fractures from diverse<br />

implements and contexts such as bricks, stones, falls, aircraft accidents,<br />

hammers, firearm butts, and other sources; dates of death from this portion<br />

of the collection range from 1863 to 1987.<br />

Examples of sharp force trauma consist of a total of 66 specimens.<br />

Implements include swords, hatchets, knives, ice-picks, unidentified sharp<br />

instruments and surgical saws, historic and modern. Sharp force trauma<br />

from historic battles can be found ranging from a variety of edged weapons<br />

particularly those identified as sabers.<br />

The high number of GSW in the collection is directly related to the<br />

museum’s history of accessioning specimens recovered from military<br />

conflicts making this one of the largest repositories of GSW specimens in<br />

the world. Select counts for individual collections are as follows: Milton<br />

Helpern New York City <strong>Medical</strong> Examiner collection (n = 162), Louis<br />

LaGarde cadaver study (n = 60), Bruce Ragsdale Antique and Modern<br />

Firearms Study (n = 8), U.S. Army Frontier Soldiers (n = 77), Civil War<br />

Soldiers (n = 1746), General Collection (n = 89).<br />

This presentation details some of the biological resources available at<br />

the NMHM to the research communities of the forensic and medical<br />

sciences. The extensive collections of trauma and pathology housed at the<br />

museum cover a large historic period (antebellum to present) and can<br />

provide abundant data for research in wound ballistics, sharp force injuries<br />

and blunt force trauma that can be used to expand knowledge in the forensic<br />

sciences, particularly in forensic anthropology. Research visits are<br />

coordinated by appointment only through the museum’s collections<br />

manager (BFS) following standard administrative procedures. Interested<br />

researchers and donors can reach the collections manager by following the<br />

links to the anatomical collections at http://nmhm.washingtondc.museum.<br />

Forensic Anthropology Research, Trauma, National Museum of<br />

Health and Medicine<br />

H11 Taphonomy and Dentition: Understanding<br />

Postmortem Crack Propagation in Teeth<br />

Cris E. Hughes, MA*, University of California at Santa Cruz, 5405<br />

Prospect Road, #7, San Jose, CA 95129; and Crystal A. White*,<br />

University of California at Santa Cruz, Crown College, 400 McLaughlin<br />

Drive, Santa Cruz, CA 95064<br />

Attendees will understand the taphonomic nature of crack propagation<br />

in teeth and the effects of it on the macro-and microstructure of the tooth.<br />

Also to be able to discern perimortem and postmortem cracking in teeth at<br />

the microscopic and biomechanical level.<br />

This is a pilot study will impact the forensic community by<br />

demonstrating a clear difference in the way a crack propagates in fresh teeth<br />

and decomposed or decomposing teeth. The ability of differentiating<br />

perimortem and postmortem tooth cracking at the microscopic level is<br />

shown in this study.<br />

* Presenting Author<br />

The goal of this poster presentation is to introduce the preliminary<br />

results of a pilot study that examines the role of taphonomy, specifically<br />

temperature on the dehydration and subsequent alteration in the macro- and<br />

microstructure of human teeth. After attending this poster, attendees will be<br />

able to understand how to differentiate between enamel and dentin crack<br />

propagation in teeth in the perimortem versus postmortem setting using<br />

basic microscopic examination techniques. In addition, they will acquire<br />

knowledge on the use of Sus scrofa teeth as an appropriate analogue for<br />

human teeth.<br />

Background: Taphonomy and it effects on the human body is a<br />

pervasive factor in the forensic analysis of skeletal remains. There has been<br />

much work on decompositional and taphonomic processes, including the<br />

effects of duration, exposure to the elements, and temperature on the<br />

appearance and quality of the human skeleton. However, there is a limited<br />

amount of research focusing on teeth, one of the most durable elements of<br />

the human body. In forensic cases, it is common to have teeth that exhibit<br />

vertical cracking, usually visible on the labial portion of the anterior teeth.<br />

It is thought that these cracks result from the dehydration process of the<br />

organic components of a tooth. Therefore, both temperature and the<br />

duration of exposure to a given temperature will influence the occurrence<br />

of vertical cracking in teeth.<br />

The majority of the work on vertical cracking in teeth comes from the<br />

Journal of Dental Research (Rasmussen et al 1976, Brown et al. 1972,<br />

Jacobs et al. 1973, Lloyd et al. 1978). Although studies pertaining to<br />

enamel or dentin cracking are present since the 1960s, these articles are of<br />

little use to the forensic anthropologist as the primary focus of these studies<br />

is simulating in vivo cracking in teeth, usually as a result of compressive or<br />

tensile forces. Due to the lack of research on taphonomic effects on vertical<br />

cracking in teeth, the current research works to understand the effect of<br />

temperature and exposure duration on tooth structure during the process of<br />

decomposition.<br />

Methodology: This pilot study uses a sample of 35 Sus scrofa<br />

mandibular incisors and premolars. The teeth were removed from the<br />

mandibles and divided into three groups, each being exposed to a<br />

temperature range of 105-120°F for up to fifteen days. Macroscopic<br />

observations were made while the tooth’s overall was still intact, while the<br />

microscopic observations were made from prepared 300mm thick sections<br />

at various portions of each tooth.<br />

Analyses: The macroscopic analysis includes biomechanical<br />

influence of tooth shape on the susceptibility to cracking, the variation in<br />

types of cracks present on the outer enamel, and the variation of the<br />

prevalence of cracks and the amount of time it takes for crack formation in<br />

each type of tooth. The microscopic analysis includes an examination of<br />

crack propagation from the external to internal tooth structures on the<br />

dehydrated Sus scrofa dentition, and compares this to the previously studied<br />

crack propagation in in vivo, or perimortem dentition. Finally, the<br />

usefulness of Sus scrofa dentition as an analogue for research on human<br />

dentition with the macrostructure and microstructure differences and<br />

similarities are discussed.<br />

Results: From this pilot study, it is clear that tooth morphology,<br />

duration of exposure, and temperature all influence crack propagation in<br />

dentition. Additionally, with minimal variation in structural differences but<br />

a general difference in tooth morphology, Sus scrofa anterior dentition<br />

serves well as an analogue to human dentition when examining microscopic<br />

crack propagation, but has no predicative ability for human dentition when<br />

studying macroscopic tooth morphology as a factor on crack propagation.<br />

Finally, the unique microscopic characteristics of the crack propagation<br />

path in postmortem, dehydrated dentition can be used as a way to determine<br />

trauma to the teeth as postmortem or perimortem.<br />

Tooth, Crack Propagation, Heat<br />

H12 Quantitative and Spatial Comparison of<br />

the Microscopic Bone Structures Of Deer<br />

(Odocoileus Virginianus), Dog (Canis<br />

222


Familiaris), and Pig (Sus Scrofa Domesticus)<br />

Zoe Hensley Morris, HBSc, MA*, University Of Western Ontario,<br />

Department Of Anthropology, Social Sciences Centre, London, Ontario<br />

N6A 5C2, CANADA; Mary H. Manhein, MA, Department Of Geography<br />

& Anthropology, Louisiana State University, Baton Rouge, LA 70803; and<br />

Ginesse A. Listi, MA, 1723 Lombard Drive, Baton Rouge, LA 70810<br />

After leaving this presentation, attendees will understand the<br />

importance of including spatial evaluations of microscopic bone crosssections<br />

for the inter-species histological comparisons and intra-species<br />

histological analysis. The research has forensic implications, suggesting<br />

additional means to differentiate fragmentary remains.<br />

The implications for this study will impact the forensic science<br />

community by suggesting future avenues of research for histologically<br />

differentiating species for both forensic and archaeological settings.<br />

Second, incorporating spatial analysis of microscopic structures in multiple<br />

elements from the same species could prove beneficial in differentiating<br />

variation of those structures within a particular species.<br />

Species-specific variables exist that change the structure and<br />

morphology of cellular bone tissue. Identifying and quantifying these<br />

differences is necessary in the evaluation of fragmentary bones in order to<br />

assign specific species identification. In order to under the influence of<br />

species of origin on microscopic bone tissue, the influence of development<br />

and biomechanic forces specific to a skeletal element must also be assessed.<br />

This presentation explores the preliminary study of the histological<br />

bone structures in terms of the their area, density and spatial location. In<br />

order to achieve this research goal, the cross-section of three major skeletal<br />

structures of three common, quadrupeds ubiquitous across North American<br />

and commonly found in association with human remains were compared.<br />

The specimens used for this research were taken from the comparative<br />

collection of the Louisiana State University’s Forensic Anthropology and<br />

Computer Enhancement Services (FACES) Laboratory. The study analyzed<br />

the mid-shaft cross-section of six femora, five humeri, and six mid-thoracic<br />

ribs of the white-tailed deer (Odocoileus virginianus); six femora, six<br />

humeri, and six mid-thoracic ribs of the domestic dog (Canis familiaris);<br />

and five femora, four humeri, and six mid-thoracic ribs of the domestic pig<br />

(Sus scrofa domesticus). Each skeletal element was divided into eight<br />

sections along known body planes. All histomorphometric measurements<br />

and observations were taken within these sections to explore the spatial<br />

organization of the microscopic structures.<br />

Plexiform bone observations suggest not only species-specific<br />

presence and absence of this bone structure but a relation to the skeletal<br />

element. There was an almost complete absence of this bone type in the<br />

mid-thoracic rib and reduced presence in the humerus versus the femur of<br />

all three species.<br />

Secondary osteon area isolated pig in all three skeletal elements from<br />

the other two species, suggesting a species-specific difference in osteon<br />

development. On the other hand, though similar in area, deer and dog<br />

showed interspecies, parallel patterns between like elements (humerus and<br />

humerus, femur and femur). Secondary osteon density followed an<br />

expected trend of increasing density associated with older animals.<br />

The implications for this study suggest future avenues of research for<br />

histologically differentiating species for both forensic and archaeological<br />

settings. Second, incorporating spatial analysis of microscopic structures in<br />

multiple elements from the same species could prove beneficial in<br />

differentiating variation of those structures within a particular species.<br />

Histology, Faunal Analysis, Osteon<br />

H13 Controlled Research Utilizing Geophysical<br />

Technologies in the Search for Buried<br />

Firearms and Miscellaneous Weapons<br />

Mary M. Rezos, BA*, 12644 Victoria Place Circle, Apartment 7216,<br />

Orlando, FL 32828; John J. Schultz, PhD, University of Central Florida,<br />

Department of Anthropology, 4000 Central Florida Boulevard, Orlando,<br />

FL 32816; and Ronald A. Murdock, MFS, and Stephen A. Smith, BS,<br />

Orange County Sheriff’s Office, 2500 W Colonial Drive, Orlando,<br />

FL 32804<br />

The goals of this research project are to familiarize the audience with<br />

the utility of geophysical technologies at a suspected weapon burial or<br />

dump site. Participants will gain an understanding of which geophysical<br />

tool, or combination of tools, is appropriate for a specific firearm search at<br />

a crime scene or suspected weapon burial site.<br />

This presentation will impact the forensic community by providing<br />

guidelines to forensic investigators regarding which geophysical tool, or<br />

combination of tools, is appropriate for a search for metallic weapons at a<br />

crime scene or suspected weapon burial site.<br />

The goals of this research project are to familiarize the audience with<br />

the utility of geophysical technologies at a suspected weapon burial or<br />

dump site. Participants will gain an understanding of which geophysical<br />

tool, or combination of tools, is appropriate for a specific firearm search at<br />

a crime scene or suspected weapon burial site.<br />

Locating metallic weapons such as firearms that have been discarded<br />

or buried by criminals often involves the use of a variety of search methods<br />

and technologies. Depending upon the size and composition of the<br />

suspected weapon, forensic scene professionals may incorporate advanced<br />

methods such as geophysical technologies into their investigation. The<br />

application of geophysical technologies in forensic investigations is a<br />

growing practice, creating a need for research in the area. One way to<br />

determine the applicability of geophysical search methods in a forensic<br />

investigation is through controlled research. This type of research provides<br />

opportunities to test the applicability of various geophysical technologies<br />

and also to improve standard geophysical detection methods, which can<br />

then be applied to real-life searches.<br />

This research was designed to demonstrate the utility of geophysical<br />

technologies at a crime scene or a suspected weapon burial site through<br />

controlled testing of buried weapons. Utilizing two types of metal detectors<br />

and a magnetic locator, the following objectives were addressed: (1) to test<br />

the ease with which these geophysical technologies may be used to detect<br />

buried weapons with little operator training, (2) to determine what effects<br />

the metallic composition of the weapons have on their detection, and (3) to<br />

determine which instrument is better at detecting specific weapons.<br />

The geophysical tools used in this research were chosen due to their<br />

accessibility and efficiency at detecting metal objects. Most law<br />

enforcement agencies will find these tools easy to purchase, relatively<br />

inexpensive, and perhaps most importantly, easy to use. Included in this<br />

research project are: (1) a Fisher M-97 basic all-metal detector, (2) a<br />

Schonstedt GA-72Cd® magnetic locator, which detects buried<br />

ferromagnetic objects such as iron and steel, but ignores non-ferric items<br />

such as aluminum and copper, (3) and a Minelab Explorer II advanced<br />

metal detector, which allows for metal discrimination by providing<br />

“signature” ferric and conductivity readings.<br />

The 30 metal objects included in this research are fourteen<br />

decommissioned street-level firearms (including a rifle, a shotgun,<br />

revolvers, and pistols), ten blunt or bladed weapons, and six pieces of<br />

assorted scrap metals. The scrap metals and miscellaneous weapons have<br />

been included to test the discrimination function of the advanced metal<br />

detector and to allow for a wider variety of metals to be tested on all three<br />

of the geophysical tools. The weapons were tested both on the surface as<br />

discarded weapons, and at a number of depths.<br />

Initial results have shown that using factory presets and medium levels<br />

on the geophysical technologies allows for detection and readings at<br />

multiple depths. The all-metal detector was able to detect each item on the<br />

ground surface; however, items made of aluminum and copper and some of<br />

the smaller miscellaneous weapons were not detected, even at the<br />

shallowest tested depth. As expected, and for both pre-burial and buried<br />

objects, the magnetic locator was able to detect ferric objects made of iron<br />

and steel and not those of copper or aluminum composition. Overall, the<br />

advanced metal detector was successful at detecting many of the weapons,<br />

223 * Presenting Author


including the firearms, while eliminating the trash metals of iron<br />

composition. Through the discrimination function of the advanced metal<br />

detector, valuable search time and resources are saved by not digging up<br />

false targets (trash metals) that the all-metal detector would detect. The<br />

magnetic locator would be an appropriate tool when searching for ferric<br />

items.<br />

Geophysical Technologies, Forensic Archaeology, Metal Detectors<br />

H14 Accuracy Testing of Computerized Facial<br />

Approximations by Comparison With<br />

Antemortem Photographs<br />

Diana K. Moyers, MA*, and Philip N. Williams, BS, Federal Bureau of<br />

Investigation Laboratory, Counterterrorism and Forensic Science<br />

Research Unit, Building 12, Quantico, VA 22135<br />

After attending this presentation, the audience will have an overall<br />

understanding of a cost-effective, automated method of facial<br />

approximation, an opportunity to visually compare computer generated<br />

images with corresponding antemortem photographs, and an overview of a<br />

unique application of facial recognition software for the identification of<br />

unknown human remains.<br />

This presentation will impact the forensic community by introducing<br />

and illustrating an automated, objective, inexpensive, and rapid method of<br />

completing facial approximations for use in the identification of skeletal<br />

and decomposing remains of victims of homicide, mass disasters, and war<br />

crimes.<br />

Traditional methods of facial approximation of unknown human<br />

remains combine forensic anthropology biological profiles, tissue depth<br />

charts, and artistic talent. Three primary issues with traditional methods are<br />

time, expense, and subjectivity. Often described as a blending of art and<br />

science, these methods require a skilled artist and are labor intensive and<br />

therefore expensive. Traditional methods do not effectively address<br />

decomposing remains or situations with a large number of remains, such as<br />

mass disasters and genocides.<br />

This research tested the ability of humans to match computer<br />

generated facial approximation images with antemortem photographs.<br />

Facial approximations produced by a computer prototype were without<br />

head or facial hair, and had closed eyes and a smooth skin surface. Previous<br />

studies by other researchers have compared traditional facial<br />

approximations with antemortem photographs, or compared computergenerated<br />

images with other computer-generated images. However, this is<br />

the first known research to test whether human volunteers could match<br />

computer generated facial approximations of test subjects (without hair and<br />

with closed eyes) with actual antemortem photographs of those test<br />

subjects. A second test was conducted to determine if facial recognition<br />

software could be used to match computer generated facial approximations<br />

with antemortem photographs. A comparison of human versus computer<br />

accuracy rates will be presented.<br />

Human Recognition of Computerized Facial Approximations:<br />

Ten human skulls of European ancestry (six females and four males) were<br />

selected for a photographic validation by face pool and resemblance rating<br />

validation tests. These ten test subjects were from the William M. Bass<br />

Donated and Forensic Skeletal Collections at the University of Tennessee at<br />

Knoxville. Facial approximations completed using a prototype software<br />

were visually compared with antemortem photographs by four participant<br />

groups (N = 103). Participants were asked to choose the face pool<br />

photograph that most closely resembled the facial approximation. In a<br />

second test, the same volunteers were asked to rate (on a scale of 1 to 5)<br />

how closely facial approximations of target subjects resembled an<br />

antemortem photographs. Results of the face pool and resemblance rating<br />

testing will be presented.<br />

Computer Recognition of Computerized Facial Approximations:<br />

Facial recognition software was used to test whether a computer would be<br />

more accurate in the matching of computerized facial approximations than<br />

* Presenting Author<br />

human recognition. As a subset of a larger research project, the same ten<br />

human skulls used in the human recognition testing were entered into a<br />

facial recognition software program. Antemortem photographs of the ten<br />

test subjects were added to the photographic database of the system.<br />

Results of the facial recognition testing and a comparison of human versus<br />

computer recognition will be presented.<br />

All facial approximations in this research were prepared using a<br />

cutting edge prototype, ReFace (Reality Enhancement Facial<br />

Approximation by Computational Estimation). This computerized facial<br />

approximation system is currently undergoing validation at the<br />

Counterterrorism and Forensic Science Research Unit (CFSRU) of the FBI<br />

Laboratory Division in Quantico, Virginia. The prototype extrapolates an<br />

“approximation” of a face from a computed tomography (CT) scan of an<br />

articulated skull using a database of CT scans of living individuals.<br />

Preliminary research on the prototype indicated that under optimal<br />

conditions, facial approximations of test subjects bore a striking<br />

resemblance to antemortem photographs (Moyers et al 2006). Additionally,<br />

the prototype has the ability to use CT data to extract a skull model from<br />

decomposing human remains without removing and defleshing the skull.<br />

As the process is fully automated, subjectivity has been eliminated. Time<br />

and expense are also minimized, as the system does not require artistic<br />

talent to produce a facial approximation.<br />

An objective, rapid, and low cost method of facial approximation is<br />

urgently needed to address the current backlog of more than 40,000<br />

unidentified sets of human remains in the United States (Ritter 2007), as<br />

well as high numbers of unidentified skeletal and decomposing remains<br />

from mass disasters and war crimes. In addition to the benefit of<br />

identification to victims and their families, such a system could provide<br />

assistance to national and international investigative and law enforcement<br />

agencies in the identification and prosecution of those responsible.<br />

References:<br />

1 Ritter, N. 2007. Missing Persons and Unidentified Remains: The<br />

nation’s Silent Mass Disaster. National Institute of Justice Journal<br />

256:2-7.<br />

2 Moyers, D. K. 2007. Validation Study of ReFace (Reality Enhanced<br />

Facial Approximation by Computational Estimation). Unpublished<br />

Thesis, University of Tennessee at Knoxville.<br />

3 Moyers, D K, H L Peters, M R Mahfouz, M A Taister. Validation of<br />

Computerized Facial Approximation Using Re/Face. Presented at the<br />

12th Scientific Meeting of the International Association for<br />

Craniofacial Identification Conference, November 1-4, 2006,<br />

Istanbul, Turkey.<br />

Facial Approximation, Facial Recognition, Computer Prototypes<br />

H15 Dual Energy X-ray Absorptiometry (DEXA)<br />

Scans for Skeletal Remains Identification of<br />

Anorexia Nervosa<br />

Bianca Vigil, MFS*, Ismail Sebetan, MD, PhD, and Paul Stein, PhD,<br />

Forensic Sciences Program, National University, 11255 North Torrey<br />

Pines Road, La Jolla, CA 92037<br />

After attending this presentation, the audience will understand the<br />

importance of DEXA scans for analyzing individuals with osteoporosis and<br />

using them for possible identification of unknown skeletal remains. This<br />

study presents new criteria for skeletal remains identification when dental<br />

remains are unavailable, and demonstrates the long-term impact of anorexia<br />

nervosa on postmortem signs as evidenced by forensic radiological<br />

examination.<br />

This presentation will impact forensic community by providing new<br />

criteria for skeletal remains identification and understanding of the long<br />

term impact of anorexia nervosa on postmortem findings as evidenced by<br />

forensic radiological examination. The attendees will understand the<br />

importance of DEXA scans for analyzing individuals with osteoporosis and<br />

using them for possible identification of unknown skeletal remains.<br />

224


Anorexia is a well-known social problem that is constantly changing<br />

the face of eating disorders. The immediate, physical and emotional harm<br />

caused by anorexia seems to be understood. Many young women with a<br />

history of anorexia tend to develop osteoporosis and reduced bone density,<br />

which leads to fractures. The severity of these fractures ranges from minor<br />

hairline fracture to femoral head collapse, which is seen in extreme cases of<br />

anorexia nervosa. However, the long-term collective effects are more<br />

difficult to interpret. Few postmortem forensic and anthropological studies<br />

have addressed this issue.<br />

This study examined the validity and problems associated with the use<br />

of radiological examination of skeletal remains as an identification tool<br />

when there is a concomitant history of anorexia. For instance, if long bone<br />

remains are found from an unidentified individual, and concluded to be<br />

from a young female with osteoporosis, they can be compared against<br />

missing person reports and medical histories to find the probable missing<br />

Jane Doe(s) providing that it is recognized to possibly originate from a<br />

young anorexic person rather than an older person with osteoporosis.<br />

DEXA scans of ten anorexic patients; nine non-anorexic (older)<br />

patients with osteoporosis, and one normal control were obtained from<br />

Sharp Outpatient Imaging Center, San Diego, CA. Bone mineral density<br />

(BMD) and T score, were also obtained and used to analyze the<br />

radiographs. T score defines the amount of bone a person has compared to<br />

an individual of the same gender with normal bone mass. Questionnaires<br />

were also sent to 75 doctors/physicians/specialists across the country in<br />

order to get their opinions regarding the DEXA scan data and its application<br />

to forensic science as shown in this study.<br />

Subjects were further divided into groups based on their T scores and<br />

diagnosis. Group 1(N=6) was anorexic only, Group 2 (N=5) was anorexic<br />

with osteoporosis, and Group 3 (N=9) was non-anorexic with osteoporosis.<br />

The DEXA scan data of these groups was compared using Student’s t test<br />

(p-value < .05) and Pearson product moment correlation coefficient (r) was<br />

used to compare the BMD and T scores between hip and lumbar spine.<br />

When the DEXA scan data of the groups were compared BMD total<br />

hip in Group 2 vs. Group 3 only marginally significant (p-value = .084).<br />

BMD lumbar spine in Group 1 vs. Group 2 and Group 2 vs. Group 3 was<br />

not significantly different (p-values .184 and .242, respectively). T score<br />

lumbar spine in Group 1 vs. Group 2 and Group 2 vs. Group 3 was also a<br />

non-significantly different (p-values .136 and .603, respectively). BMD<br />

and T score total hip and lumbar spine were also shown to have a positive<br />

correlation with one another (r = .881 and .890).<br />

This radiological data analysis would support the assumption that<br />

skeletal remains of a young anorexic individual may be mistaken for an<br />

older individual with osteoporosis, even if it is not in the hip region.<br />

Additionally, a significant portion of the questionnaire data, and specifically<br />

the question asking whether it is possible to confuse young anorexic bones<br />

and older osteoporotic bones, were in agreement with that assumption.<br />

This study showed a high possibility for incorrect differentiation<br />

between young anorexics with osteoporosis and older non-anorexics with<br />

osteoporosis, when skeletal remains alone are examined, especially in the<br />

lumbar region. While DEXA scans are very useful for current physical<br />

information, they are also imperative for studying long term anorexia. The<br />

scans track all patients’ measurements from the day they are diagnosed<br />

through every follow-up measurement until they either die or stop receiving<br />

treatment. These radiological records can be very informative for<br />

postmortem identification (i.e., mass disasters for example). Bone density<br />

scans also aid in the differentiation between malnourished remains and<br />

other bone pathologies, which by themselves are useful for identification of<br />

human remains.<br />

DEXA Scans, Anorexia Nervosa, Osteoporosis<br />

H16 Placement of the Human Eyeball and<br />

Canthi in Craniofacial Identification<br />

Carl N. Stephan, PhD*, Anne Huang, and Paavi Davidson, School of<br />

<strong>Bio</strong>medical Sciences, University of Queensland, Otto Hirschfeld Building,<br />

Brisbane, 4072, AUSTRALIA<br />

This paper will review the methods used for predicting/assessing<br />

eyeball and canthi position in craniofacial identification and it will quantify<br />

the anatomical relationships experimentally.<br />

The results of this investigation will improve eyeball and canthi<br />

positioning in superimposition and facial approximation methods. These<br />

data will, therefore, have immediate applicability and will be useful to<br />

forensic anthropologists worldwide.<br />

An accurate understanding of the spatial relationships of the deep and<br />

superficial anatomical structures of the head is essential for methods where<br />

faces must be assessed in relation to skulls (superimposition) or predicted<br />

from them (facial approximation). However, differences of opinion exist<br />

concerning: i) the position of the eyeball in planes other than the<br />

anteroposterior plane; and ii) the canthi positions relative to the bony orbital<br />

margins. Currently, little empirical evidence exists to support many of the<br />

proposed guidelines and, therefore, uncertainty accompanies almost all.<br />

This study elucidates and quantifies the spatial relationships of the globe<br />

and the canthi to the bony orbit by dissection in 14 adult human cadavers.<br />

While complete results will be released at the presentation of this paper, a<br />

pilot analysis using four cadavers indicates that the eyeballs were not<br />

centrally positioned within the orbits as commonly reported in the literature.<br />

Rather, the eyeballs were positioned closer to the orbital roof and lateral<br />

orbital wall by 1-2mm in each case, indicating that interpupillary distance<br />

is underestimated by 3mm using current methods. These results appear to<br />

have ramifications for current craniofacial identification techniques,<br />

especially in facial approximation where recognition is widely known to<br />

heavily depend upon the delicacies of the orbital region.<br />

Forensic Science, Facial Reconstruction, Video Superimposition<br />

H17 Analysis of the Auricular Surface on<br />

Multi-Slice Computed Tomography<br />

Reconstructions for Assessment of Aging:<br />

A Preliminary Study<br />

Fabrice Dedouit, MD*, Service de Médecine Légale, Hôpital de Rangueil,<br />

1 avenue du Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9,<br />

31059, FRANCE; Pierre Barrier, Philippe Otal, PhD, Hervé Rousseau,<br />

PhD, and Francis Joffre, PhD, Service de Radiologie Générale, Hôpital<br />

de Rangueil, 1 Avenue du Professeur Jean Poulhès,TSA 50032, Toulouse<br />

Cedex 9, 31059, FRANCE; and Daniel Rouge, PhD, and Norbert Telmon,<br />

PhD, Service de Médecine Légale, Hôpital de Rangueil, 1 avenue du<br />

Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9, 31059, FRANCE<br />

The goal of this presentation is to evaluate the possibilities of aging on<br />

two (2-D) and three dimensional (3-D) multi-slice computed tomography<br />

(MSCT) reconstructions of the auricular surface using criteria previously<br />

developed by Lovejoy, Buckberry, and Chamberlain, and original and<br />

specific MSCT criteria.<br />

This presentation will impact the forensic community by providing an<br />

example of anthropological application of the computed multi-slice<br />

computed tomography in forensic sciences.<br />

Background: Multi-slice computed tomography (MSCT) is<br />

uncommonly used in forensic pathology and anthropology. MSCT allows<br />

two (2D) and three-dimensional (3D) reconstructions, which can be helpful<br />

for osteoscopic analyses and consequently for age estimation.<br />

Technique: 46 coxal dry bones of the anthropological laboratory of<br />

Toulouse and Angers (France) were examined with a sixteen-detector row<br />

MSCT (Sensation 16, Siemens). For each bone, two acquisitions were<br />

performed. The first one concerned the entire coxal bone; two filters were<br />

used, one hard and one smooth filter. In this case the thickness of<br />

reconstruction was 0.8 millimetre and the collimation 0.4 millimetre. The<br />

second one was specifically focused on the auricular surface, with a<br />

thickness of reconstruction of 0.6 millimetre and the collimation 0.3<br />

millimetre. Two (with the MPR mode (Multi Planar Reconstructions)) and<br />

225 * Presenting Author


three–dimensional post-processing (with the VRT mode (Volume<br />

Rendering Technique)) were made in all cases. MPR reconstructions were<br />

performed in two planes: one parallel to the anterior branch (vertical axis)<br />

of the auricular surface and one parallel to the posterior branch (horizontal<br />

axis).<br />

For each subject numerous of criteria were studied. On 3D<br />

reconstructions and on photos, transverse organisation, pattern,<br />

macroporosity, apical and retro apical activities were quantified (absent,<br />

moderate, important) and analysed. On 2D reconstructions, macroporosity,<br />

auriculo-acetabular line (central line and juxta-linear cells), and bone<br />

gradient under and above this line were quantified (absent, moderate,<br />

important) and analysed. All these criteria were assessed by two different<br />

observers. One observer was an anthropology student and one was a<br />

forensic pathologist with anthropological qualifications.<br />

A first statistical analysis was performed to evaluate intra and interobservers<br />

variabilities on MSCT reconstructions and on photos by<br />

calculating the coefficient Kappa. A second statistical analysis was<br />

performed in order to compare estimations performed on MSCT<br />

reconstructions (2D and 3D) and on photos for each observer (inter-method<br />

evaluation with a Kruskal-Wallis test). A third statistical analysis was<br />

performed for each criteria used to determinate the age of death using boxand<br />

whiskers-plots.<br />

Results: The sample studied consisted of 46 Caucasoid subjects with<br />

32 males and 14 females.<br />

The intra-observer variabilities for each MSCT criteria were excellent<br />

with the coefficient of Kappa ranging from 0.75 to 0.93.<br />

The inter-observers variabilities for each MSCT criteria were excellent<br />

with the coefficient of Kappa ranging from 0.77 to 0.93.<br />

The inter-method evaluation between photos and 2D and 3D MSCT<br />

reconstructions had a coefficient of Kappa ranged from 0.59 to 0.90.<br />

Concerning the Kruskal-Wallis test performed for each criterion, all<br />

the P values were significant.<br />

Discussion: Values of the inter-observers and intra-observer<br />

variabilities objective the good reproducibility of the quantification and<br />

analyse of the selected criteria.<br />

The inter-method error varied according to the criteria. The<br />

concordance varied from medium to excellent. For example, concerning the<br />

macroporosity criteria, the concordance was medium between photos and<br />

2D reconstructions (coefficient of Kappa= 0.59), and excellent between<br />

photos and 3D reconstructions (coefficient of Kappa= 0.90).<br />

For the criteria used for the age of death, the box- and whiskers-plots<br />

illustrate the pertinence of the staging performed thanks to some items<br />

(present, moderate, absent) and their slight overlapping.<br />

For transposed dry bones criteria:<br />

- Moderate or absent transverse organisation or macroporosity<br />

isolate younger cases (younger than 40 years old).<br />

- Apical and retro apical activities had been considered by<br />

Lovejoy as secondary criteria. However, their absence is a good<br />

factor to differentiate people younger than 45 years old.<br />

- The dominant pattern (regular or irregular) separate accurately<br />

people older or younger than 40 years old.<br />

For specific MSCT criteria:<br />

- The loss of the continuity and the clear-cut aspect of the auriculoacetabular<br />

line associated to the absence of juxta-linear cells<br />

isolate individuals older than 50 years old.<br />

- The difference of bone density under and above the auriculoacetabular<br />

line, namely a bone gradient, is able to differentiate<br />

people older than 50 years old.<br />

Conclusion: Using MSCT reconstructions of the auricular surface in<br />

order to estimate the age of a person using transposed dry bones criteria and<br />

specific MSCT criteria is possible and seems to be efficient. This study is<br />

a preliminary study and analysis on a larger population is necessary to<br />

evaluate real possibilities of age estimation on MSCT images.<br />

Aging, Forensic Anthropology, Tomography<br />

* Presenting Author<br />

H18 Design Perspectives for Obtaining Facial<br />

Soft Tissue Depths From Cadavers Using<br />

a New Approach<br />

Janene M. Curtis, MS*, and Owen B. Beattie, PhD, University of Alberta,<br />

Department of Anthropology, 13-15 HM Tory Building, Edmonton,<br />

Alberta T6G 2H4, CANADA<br />

After attending this presentation, participants will have an<br />

understanding of potential causes of measurement error in the design and<br />

techniques of earlier methods in obtaining facial soft tissue depths, and gain<br />

an appreciation into the design proposed here to rectify these issues.<br />

This presentation will impact the forensic and medical communities<br />

by providing more accurate anatomical data for forensic facial<br />

approximation and surgical reconstructions. The newly designed apparatus<br />

could potentially help to obtain more accurate and precise measurements<br />

for future studies of facial soft tissue depths from different cadaveric<br />

populations, as well as provide a method to produce a gold standard in<br />

which this method could be used to compare other types of methods such<br />

as magnetic resonance imaging (MRI), computer tomography (CT),<br />

ultrasound, and X-ray in order to provide validation.<br />

Historically, past studies concerning facial soft tissue depth on<br />

cadavers have been made using the needle puncture technique, which<br />

involves inserting a needle into the flesh with a free hand until the needle<br />

strikes bone. The needle is either covered in soot or it contains a piece of<br />

moveable rubber. The needle is then removed and a measurement is taken.<br />

Sources of measurement error of this traditional method may include<br />

compression of the skin, variation in the angle at which the needle<br />

penetrates the skin, penetration of the bone due to the tip of the needle, and<br />

variation in reading a measurement after the needle is removed from the<br />

skin.<br />

In order to rectify these problems, the authors have designed a tissue<br />

depth apparatus (TDA) which could eliminate these concerns. The TDA is<br />

comprised of a micrometer head encased in acrylic glass with an attached<br />

blank drill bit. This structure is then situated in an open-faced acrylic glass<br />

box and the micrometer head can move in all planes. The micrometer head<br />

allows the measurement of a soft tissue depth to be taken directly as soon<br />

as the drill bit contacts bone with a consistent amount of pressure.<br />

Furthermore, compression problems can be avoided as the micrometer head<br />

can be zeroed as the tip of the drill bit first touches the skin surface. Since<br />

the micrometer head can be moved in all planes, the drill bit can be inserted<br />

into the skin at a consistent angle, perpendicular to the skin.<br />

The needle choice itself is an important part of the design of the TDA.<br />

A number of different types and dimensions of needles were tested for their<br />

applicability. A blank drill bit enclosed by a hypodermic needle was best<br />

suited for this purpose. The drill bit itself is flat bottomed, ensuring that its<br />

tip will not penetrate the bone surface when a consistent light pressure is<br />

applied, while the hypodermic needle decreases compression forces<br />

required to pierce the dermis, enabling one to retest a specific area.<br />

The accuracy and precision of the TDA design were tested initially<br />

using two phantom models followed by cadaveric tissue. The results of<br />

measurement error based on this method are compared with past results of<br />

traditional methods. With modifications, this design could be used on<br />

living subjects, to obtain soft tissue depths by ultrasound.<br />

Accuracy, Precision, Phantom Models<br />

H19 VICTIMS Identification Project:<br />

The Nation’s Unidentified...Who Are They?<br />

And What Can We Do?<br />

Philip N Williams, BS*, and Melissa A Torpey, MS, Federal Bureau of<br />

Investigation, Counterterrorism and Forensic Science Research Unit,<br />

226


Building 12, Quantico, VA 22135; and Lisa Bailey, BA, Federal Bureau of<br />

Investigation Laboratory, 2501 Investigation Parkway, SPU/Room 1115,<br />

Quantico, VA 22135<br />

The goal of this presentation is to introduce and promote the utilization<br />

and application of forensic anthropology within the Victims Information<br />

Catalog, Tracking, and IMage System (VICTIMS) Identification Project.<br />

The VICTIM System is a group of research projects and development<br />

efforts sponsored by various federal agencies and supported by the FBI<br />

Laboratory. The system will, for the first time, bring technology to the<br />

forefront of the national effort to identify the thousands of unidentified<br />

human remains that lay nameless in medical examiners and coroners’<br />

offices.<br />

This presentation will impact the forensic community by<br />

demonstrating the critical need for the deployment of useful tools and<br />

resources to the law enforcement communities and medical examiners and<br />

coroners’ offices. Currently the estimated number of unidentified decedents<br />

ranges from an approximate 14,000, on record at about 2,000 medical<br />

examiners and coroners’ offices, to a projected 40,000. VICTIMS is the<br />

first national attempt to apply a comprehensive approach to the problem.<br />

Forensic anthropology plays a crucial role in the capability, quality,<br />

and success of the VICTIM System. Unlike many of the current<br />

unidentified persons data entry files, there will be specific data entry<br />

options tailored explicitly towards a forensic anthropologist’s skeletal<br />

assessment of the remains. The system will accommodate forensic<br />

anthropology reports as well as highlight postmortem information that may<br />

critically coincide with antemortem information and aid in identification.<br />

The VICTIM System is a multifaceted and comprehensive project that<br />

for the first time would merge data from a range of sources and leverage the<br />

value of the information through the application of state of the art forensic<br />

technologies. The project has three primary components and significant<br />

implications for the field of forensic anthropology.<br />

One component is a set of Internet based applications (VICTIMS) for<br />

the data gathering and call-in effort being developed by the FBI Laboratory<br />

under an external contract to bring the data from local, state, and federal<br />

sources together in a single comprehensive file system and allow the<br />

presentation of the information over the Internet to interested parties. The<br />

system will be capable of handling a variety of data formats including, but<br />

not limited to, case information, autopsy information/physical descriptors,<br />

Computed Tomography (CT) scans, photographic images, dental and<br />

medical radiographs, and DNA data. In addition to providing collection,<br />

storage, and search capabilities, this system will also provide access to data<br />

from other automated systems within the law enforcement community via<br />

the Internet.<br />

A second element is an Evidence Preservation and Processing (EPP)<br />

facility for the sole purpose of examination and preservation of physical<br />

remains of unidentified decedents. The facility will provide CT scanning<br />

capabilities for gathering skeletal information on remains submitted for<br />

examination by the custodial agency. The CT scans will not only facilitate<br />

insight into the unidentified skeletal remains, but will provide a method to<br />

preserve the remains digitally. In addition, the facility will provide<br />

anthropological examinations of the submitted remains in an effort to<br />

determine a biological profile (containing age, sex, ancestry, and living<br />

stature), trauma analysis, and individualizing physical characteristics that<br />

would assist in the identification process. After the examination, the<br />

submitted remains will be returned to the originated agency of the remains,<br />

along with an anthropological report, if one was requested.<br />

A third component, and an extension of the VICTIMS website, is a<br />

referral service for law enforcement and medical examiners and coroners’<br />

offices. This service would provide information about local or nearby<br />

forensic resources including anthropologists, entomologists, odontologists,<br />

artists, and facilities offering radiological and other imaging services. The<br />

referral service will enable the creation of a list for each discipline with<br />

qualified forensic scientists, their location, and their contact information in<br />

an effort to enhance the quality of the data about an unidentified person and<br />

increase the likelihood of identification.<br />

Unidentified Decedents, VICTIMS Identification Project,<br />

Forensic Anthropology<br />

H20 Virtual Skull Anatomy: Three-Dimensional<br />

Computer Modeling and Measurement of<br />

Human Cranial Anatomy<br />

Summer J. Decker, MA, MABMH*, and Don R. Hilbelink, PhD,<br />

Department of Pathology & Cell <strong>Bio</strong>logy, University. of South Florida<br />

College of Medicine, 12901 Bruce B. Downs Boulevard, MDC 11, Tampa,<br />

FL 33612; and Eric J. Hoegstrom, MSBE, Department. of Chemical<br />

Engineering, University of South Florida, College of Engineering, 13201<br />

Bruce B. Downs Boulevard Tampa, FL 33612<br />

This presentation will demonstrate the value of computed virtual<br />

models of anatomical structures and three-dimensional (3D) rapid<br />

prototyping as an accurate tool in the study of human cranial anatomy. This<br />

presentation will compare three-dimensional data sets and computer<br />

modeling to traditional caliper methodologies, as well as to current<br />

morphometric software packages.<br />

This presentation will impact the forensic community by serving to<br />

increase scientific knowledge of new technologies and methods available to<br />

the forensic community that may ultimately increase the accuracy of human<br />

identification. Three-dimensional data sets from CT and MR images,<br />

regularly used in the medical community, are becoming of increasing value<br />

to other fields such as biological anthropology and the forensic sciences<br />

because of their ability to expand the accessibility of anatomical material<br />

beyond physical contact.<br />

Using three-dimensional (3D) imaging technology, researchers are<br />

able to create virtual computed models of anatomical structures for a wide<br />

range of educational and research activities. The goal of this study was to<br />

compare the accuracy of measurements made using computed 3-D imaging<br />

technology to data obtained by traditional caliper measurement<br />

methodologies and current morphometric software packages, such as<br />

morphologika 2 © (O’Higgins and Jones, 2006).<br />

This pilot study began by utilizing randomly selected specimens such<br />

as intact human cadaver heads and dry human skulls for use in CT and MR<br />

scans, virtual reconstruction, and prototyping.<br />

Virtual skull models were computed from the volumetric CT and MR<br />

image data using Mimics © version 10 (Materialise). Twenty five<br />

anthropometric measurements were selected from Buikstra and<br />

Ubelaker’s [1] index of standard cranial landmarks based on their<br />

effectiveness in establishing a biological profile in skeletal analysis.<br />

Measurements of the virtual computed skull models were made using 3ds<br />

Max © (Autodesk, version 9).<br />

A 3D rapid prototype was then generated, using a Zcorp 3D ZPrinter©<br />

310 Plus. In the 3-D printing, layer upon layer of fine ZP 102 Powder was<br />

pressed until it formed a prototype of the cadaver skull. After printing,<br />

Z-Bond TM 101 Medium Strength Cyanoacrylate Binder glue was used to<br />

fix the specimen for handling. The prototype was then measured using the<br />

same indices as the virtual skull. The printed model contains all external<br />

and internal anatomy of the actual skull including the frontal sinuses. After<br />

3D modeling and prototyping the specimen, the cadaver head was<br />

processed and the skull recovered and cleaned. Measurements were then<br />

taken from the actual skull. Comparisons were subsequently made with the<br />

models from the CT images and the prototype.<br />

In the study, the actual measurements of the virtual skulls were<br />

consistent with those taken from the actual skulls even considering interobserver<br />

error. Statistical analysis of the measurements data comparing all<br />

of the samples (actual, virtual and prototype), confirmed the accuracy of the<br />

computer modeling and measurement technologies. Additionally, it was<br />

found the prototypes to be a valuable reproduction of the original skulls,<br />

even taking into consideration artifacts from the printing process. Future<br />

steps will be taken to explore how to reduce inter-observer error further.<br />

By using methodologies developed and validated in this study, the<br />

researchers are now confident that anatomically accurate virtual and/or<br />

227 * Presenting Author


prototypic anatomical models can be produced using state of the art medical<br />

imaging and computer technology for use in a wide range of anatomical<br />

structures for use in medicine, biological anthropology and the forensic<br />

sciences.<br />

This study demonstrates that 3-D datasets are a useful and accurate<br />

tool to the study of human anatomy for both clinical and forensic purposes.<br />

Virtual anatomy will ultimately provide the opportunity to reevaluate<br />

current methods of analysis and create new ones which will, in turn,<br />

increase the accuracy of results and expand the accessibility to anatomical<br />

specimens beyond actual contact. The ongoing study includes the validation<br />

of this method to establish a biological profile (age at death, sex, ancestry<br />

and body type) based on the accuracy of morphological features of human<br />

skulls, as well as a comparison of virtual facial approximation methods.<br />

1 Buikstra JE, Ubelaker DH (eds.) (1994) Standards for Data<br />

Collection from Human Skeletal Remains. Arkansas Archaeological<br />

Survey Research Series No. 44.<br />

3-D Imaging, Computer Modeling, Human Cranial Anatomy<br />

H21 What Starts as a Homicide Ends as a<br />

Forgotten Cemetery: How <strong>Medical</strong><br />

Examiners, Law Enforcement, and State<br />

Archaeologists Work Together to Protect<br />

Archaeological Sites<br />

Christen E. Herrick, BS*,and Heather A. Walsh-Haney, PhD, Florida<br />

Gulf Coast University, Division of Justice Studies, 10501 FGCU<br />

Boulevard S, AB3, Fort Myers, FL 33965-6565; and E. Hunt Scheuerman,<br />

MD, 1856 Colonial Drive, Green Cove Springs, FL 32043<br />

After attending this presentation presentation, attendees will<br />

understand the jurisdictional issues involved in the scene recovery and<br />

analysis of prehistoric and historic skeletal remains and artifacts (e.g., those<br />

cases involving human remains, cultural artifacts, and parcels of land that<br />

legally have no forensic significance).<br />

This presentation impacts the forensic community by providing<br />

information to the various forensic stakeholders that become involved in<br />

cases that begin as medicolegal investigations of death that end as cases of<br />

archeological importance and therefore become the responsibility of the<br />

state archaeologist or private land owner.<br />

The treatment and recovery of archaeological remains, cultural<br />

artifacts, and land has become a delicate issue rife with controversy.<br />

Frequently, there are questions as to the appropriate and timely participation<br />

of the state archaeologist, as well as rules governing the transfer and final<br />

interment of Native American and historic (non indigenous) skeletal<br />

remains and associated cultural artifacts. Most federal and state statutes<br />

require that when a burial ground is uncovered during a non-archaeological<br />

activity (e.g., land development, criminal investigation), all activities that<br />

may disturb the remains and burial site must cease immediately, until such<br />

time as the state archaeologist’s representative makes a decision regarding<br />

the proper disposition of the remains, artifacts, and land.<br />

By statute, law enforcement must protect the scene and the medical<br />

examiner or coroner is responsible for the remains until the arrival of and<br />

further instruction by the legal representative of the State Bureau of<br />

Archaeological Research (BAR). The BAR representative may be an<br />

archaeologist, a skeletal analyst, or both. BAR scientists will analyze the<br />

site, human remains, and cultural artifacts to determine if they are<br />

forensically significant (e.g., 50 or 75 years dead, depending on the state).<br />

If the remains are determined to be of forensic importance, the district<br />

medical examiner or coroner retains custody of the remains and law<br />

enforcement retains jurisdiction over the scene until all pertinent forensic<br />

evidence is collected and the scene is released.<br />

The custody of remains that are not of forensic significance, as<br />

determined by BAR scientists are to be turned over to the state<br />

archaeologist (some states, such as Florida, require that this transfer of<br />

* Presenting Author<br />

custody take place within thirty days of taking custody of the remains).<br />

Most federal and state statutes require that these remains are studied by an<br />

osteologist, who will generate a report concerning the cultural affiliation<br />

and biological characteristics of the remains in question. Usually, cultural<br />

affiliation is determined through multiple lines of evidence such as crossreferencing<br />

GPS coordinates with the BAR’s master site file, taphonomic<br />

markers (e.g., coffin wear or coping), ancestry, the presence of disease<br />

markers or physical behaviors that may leave marks on bones or teeth (<br />

anemias, lack or presence of caries, or paramasticatory behaviors), C14<br />

dating, and stable isotope analysis.<br />

Penalties are far reaching for those who do not abide by the guidelines<br />

set forth in the Native American Graves Protection and Repatriation Act<br />

(NAGPRA) and other federal and state laws. Some states fine those who<br />

continue to disturb a burial between $5,000.00 to $150,000.00. A period of<br />

imprisonment of up to 5 years may also be imposed. In the state of Florida,<br />

the BAR tends to pursue these law breakers up to the fullest extent of<br />

the law.<br />

In Florida, the recovery of prehistoric and historic sites that contain<br />

human skeletal material is common, especially with constant new<br />

development. As such, we have provided examples that have culminated in<br />

the smooth transition of sites to the BAR from their forensic beginnings. In<br />

these examples, medical examiners, law enforcement agencies, and BAR<br />

have provided and public service that was well received by the general<br />

public, tribal entities, and land owners. This presentation will also<br />

underscore the importance that: (1) the forensic community needs to be<br />

aware of the geophysical, skeletal, and artifact markers of archaeological<br />

sites, (2) the legislation enacted to guarantee that all reasonable efforts are<br />

taken to ensure the protection of all human skeletal remains, as well as other<br />

cultural items deemed to be archaeological, and (3) steps necessary to<br />

protect the involved remains and artifacts in accordance with state and<br />

federal laws.<br />

Cultural Affliliation, Human Remains, Archaeology<br />

H22 Towards a Comprehensive Theory<br />

in Forensic Anthropology<br />

Cliff Boyd, PhD, and; Donna C. Boyd, PhD*, Radford University,<br />

Department of Sociology & Anthropology, Box 6948, Russell Hall 228,<br />

Radford, VA 24142<br />

The goal of this presentation is to examine the basis for theory in<br />

forensic anthropology. More specifically, this paper will discuss the<br />

interconnections between forensic anthropological research and<br />

investigation and broader anthropological and archaeological theory.<br />

This presentation will impact the forensic community by illustrating<br />

the application of Agency Theory, Behavioral Archaeology, and Nonlinear<br />

Systems Theory to the understanding of forensic events. These<br />

archaeological theories can assist in building a comprehensive theory in<br />

forensic anthropology.<br />

Even though theory has been an integral part of the discipline of<br />

anthropology since its beginning in the 19th century, the existence of a<br />

broad theoretical basis for forensic anthropology has been much debated.<br />

Because of past reliance on idiosyncratic and often unique case studies to<br />

illustrate forensic processes, some researchers have questioned whether a<br />

comprehensive forensic anthropological theory is even possible. This paper<br />

addresses this issue by proposing several current theoretical avenues toward<br />

understanding forensic events.<br />

Lyman (2002) calls for greater dialogue between the sister disciplines<br />

of taphonomy, forensic science and archaeology and the application of<br />

interdisciplinary research beyond established boundaries. Taphonomic<br />

theory and research have certainly had a significant impact on the conduct<br />

228


of forensic anthropology. However, more encompassing theoretical<br />

approaches transcending middle range taphonomic theory also can provide<br />

an explanatory basis in forensic anthropology. Archaeology, in particular,<br />

shares three major dimensions of analysis and interest with forensic<br />

anthropology: Time, Space, and Form (or material and physical remains).<br />

Three theoretical approaches currently applied by archaeologists—Agency<br />

Theory, Behavioral Archaeology, and Nonlinear Systems Theory—are<br />

explored in this paper for their applications to forensic anthropology.<br />

Agency Theory is a social/behavioral theory which focuses on the<br />

actions of individuals or groups of individuals and how their actions can<br />

conform to or transform social institutions (the structure of a society or<br />

culture) (Dobres and Robb 2005). Case studies are considered extremely<br />

important in Agency Theory, because if they are detailed enough, they can<br />

serve as illustrations of the impact (or lack thereof) of human agents in<br />

specific situations. As applied to forensic settings—especially crime<br />

scenes—it is important to consider the perpetrators, victims, and the<br />

individuals involved in recovery of remains and evidence as agents and to<br />

look at the consequences of their actions on the ultimate outcome and<br />

interpretation of the scene.<br />

Behavioral Archaeology (Schiffer and Skibo 1997) includes certain<br />

concepts that more specifically explore the consequences of actions by<br />

human agents over a sequence of events (Schiffer’s “behavioral chain”<br />

model). A behavioral chain includes activity sequences, performance<br />

characteristics (of tools or implements), technical choices by the agents,<br />

knowledge and experience of the agents, and situational factors (behavioral<br />

or environmental limitations affecting such activities as tool use, transport<br />

and disposal of material or human remains). These variables are clearly<br />

applicable to the interpretation and explanation of forensic events and their<br />

time, space, and form dimensions.<br />

Nonlinear Systems Theory (also related to Complex Systems Theory,<br />

Chaos Theory, or Catastrophe Theory) looks at the interaction of multiple<br />

variables and their consequences often through computer simulation<br />

(Beekman and Baden 2005). Nonlinear Systems theorists emphasize<br />

multivariate analysis because complex properties (or consequences) result,<br />

in real-life situations, from the interaction of many factors. The importance<br />

of human agents as well as what Schiffer calls situational factors are<br />

recognized equally. The value of specific case studies, as well as the<br />

multivariate factors affecting archaeological and forensic settings, are<br />

recognized and considered in analysis and are particularly relevant for<br />

explaining past forensic events.<br />

Illustrations of each of these theoretical approaches are presented in<br />

terms of their application to forensic anthropology. It is concluded that<br />

avenues for building an inclusive theory of forensic anthropology are<br />

possible. In fact, elements of these theoretical viewpoints are already being<br />

used by forensic anthropologists in the interpretation of forensic scenes.<br />

Their more explicit recognition makes it clear that forensic anthropology<br />

does indeed have a strong theoretical basis which we can continue to build<br />

upon. This theoretical base—grounded in current and well-established<br />

anthropological and archaeological theory—lends further credence to the<br />

in-court expert testimony of a forensic anthropologist.<br />

References:<br />

1 Beekman CS, Baden WW, eds. (2005) Nonlinear Models for<br />

Archaeology and Anthropology: Continuing the Revolution.<br />

Burlington VT: Ashgate Publishing.<br />

2 Dobres MA, Robb JE (2005) “Doing” Agency: Introductory<br />

Remarks on Methodology. Journal of Archaeological Method and<br />

Theory 12:159-166.<br />

3 Lyman RL (2002) Foreword. In Haglund, WD, Sorg, MH, eds.<br />

Advances in Forensic Taphonomy: Method, Theory, and<br />

Archaeological Perspectives. Boca Raton: CRC Press.<br />

4 Schiffer MB, Skibo JM (1997) The Explanation of Artifact<br />

Variability. American Antiquity 62:27-50.<br />

Theory, Forensic Anthropology, Archaeology<br />

H23 Beyond the Fire: Taphonomic Variables<br />

of Burned Human Remains<br />

Elayne J. Pope, MA*, University of Arkansas, Anthropology Department,<br />

330 Old Main, Fayetteville, AR 72701<br />

After attending this presentation, attendees will learn how different<br />

taphonomic variables can change or impact the condition of burned human<br />

remains.<br />

This presentation will impact the forensic science community by<br />

introducing several important taphonomic variables that directly affects<br />

how the human body burns in a fire and what is left for forensic analysis.<br />

These variables are inherent to most fire-related deaths, be it in cases of<br />

accidental death or homicide.<br />

Fire has the amazing ability to alter things in its path, with the human<br />

body being no exception. The victim’s body is an important variable to<br />

consider during fire reconstruction since it is a fuel load and contributes to<br />

the burning process. The material properties of tissues and how they burn<br />

differs for skin, fat, muscle, and bone. Each tissue has differential<br />

thicknesses, compositions, and layered anatomical arrangements. In<br />

addition to the body, some of the most significant variables include those<br />

introduced by characteristics of the individual, heat sources, combustible<br />

materials, conditions of the environment, spatial relationship of the body in<br />

the fire, extinguishment, and in some cases, criminal modification of the<br />

body before and/or after the fire.<br />

Individual: Variables of each victim play an important role in how<br />

the body burns and what is left for the forensic investigation, in terms of<br />

their age, sex, health, and weight.<br />

Age: can be broken down into developmental and degenerative<br />

stages, or more specifically, juvenile, adolescence, adulthood, and elderly.<br />

Juvenile and Adolescence: The body size of a young child differs<br />

considerably from an adult. Children typically have higher body-fat ratios<br />

than adults, and more importantly, their bones are growing and developing<br />

from birth through late adolescence and early adulthood. Young bone lacks<br />

the dense mineralization typical of the healthy adult skeleton, and has<br />

developing structures of epiphyses, diaphyses, and metaphyses, which<br />

survive the burning process.<br />

Adult: Bodies of adults are larger and have bulkier tissue mass and<br />

denser bones than children. Health and weight also vary more in adults than<br />

in children. The burned remains of healthy adults with average body<br />

weight, good muscle tone, and strong bones will leave significant evidence<br />

for analysis. Bulkier muscles can be expected to protect bone for a longer<br />

duration than the smaller tissue mass in children but, more importantly,<br />

adult bone is fully mineralized, dense, and more durable through most<br />

taphonomic changes, including fire.<br />

Elderly: Emaciated or poor muscle tone of elderly individuals<br />

provides less tissue protection around bone during burning in comparison<br />

to younger adults. The skeletal structure of elderly individuals, particularly<br />

those with degenerative bone loss such as osteoporosis, gradually become<br />

more fragile during life, particularly for those with osteoporosis, and<br />

burning only increases the fragility and brittleness of the skeletal remains.<br />

Sex: Males and females differ in their body size, composition, shape,<br />

and distributions of fat and muscle, and therefore respond differently to<br />

burning. Gender differences change as individuals pass through<br />

adolescence, early adulthood, middle age, and late adulthood. The relative<br />

amounts of body fat and distributions may differ for the sexes, but remain<br />

primarily concentrated around areas of the torso, abdomen, thighs, and<br />

central body. The important variable to consider here is how body size and<br />

relative distributions of body fat for the individual contribute as a fuel load<br />

during the burning process.<br />

Weight and Health: A person’s weight is variable throughout his or<br />

her lifetime with growth and development, changes in dietary habits, and<br />

changes in their metabolic rates as one ages. Individuals who are<br />

overweight or obese have more body fat than to those who are average<br />

weight or thin. The combination of open flame, liquefied body fat, and a<br />

wicking substance such as clothing or upholstery can sustain a localized<br />

229 * Presenting Author


fire.<br />

Heat Sources: A fire produces several sources of heat that affect<br />

human tissues, ranging from confected heat from superheated fire gasses,<br />

radiant heat, open flame, to direct burning of the body. A body can<br />

experience a range of injury from superficial damage of radiant heat coming<br />

from a distant room to direct flame impingement and thermal reduction of<br />

bodily tissues. Intensity of the radiant heat striking the body is a key factor,<br />

in addition to the temperature of the fire.<br />

Combustible Materials: Modern home furnishings contain both<br />

synthetic and natural materials. The more common synthetic materials are<br />

carpet, linoleum, vinyl, foam, and plastics. Common household items made<br />

with natural products include wooden furniture and flooring, cloth and<br />

textiles, books and paper products, and other items. Each material reacts<br />

differently to heat, and influences the fire dynamics and what is left for<br />

forensic analysis.<br />

Environment: A strong interrelationship exists among the<br />

environment, different fuels present, heat, size of the compartment/space,<br />

and how these factors directly affect a body as it burns.<br />

House Fires: Structural fires are challenging scenes because a threedimensional<br />

space is reduced to layers of charred debris. Structures can be<br />

houses, trailers, or buildings. House fires include a host of variables that<br />

influence how a fire travels, grows, and spreads. Spatially there is more area<br />

for a fire to travel along horizontal and vertical surfaces (walls, ceilings,<br />

furniture, and hallways).<br />

Vehicle Fires: Within cars, most of the interior is made of synthetic<br />

fabrics, carpet, plastics, and sometimes leather. The different properties of<br />

these materials, along with the small compartment size, can make for a fast,<br />

hot fire if ample ventilation and circulation exist, thus affecting what is left<br />

of the body.<br />

Spatial Relationships: Within a room or compartment space, the<br />

dimensions of height, length, and width influence the dynamics of a fire’s<br />

growth and development. The size of a room or rooms, levels of a house<br />

or building, presence of a basement, height of a crawlspace, or presence of<br />

a solid foundation likewise are contributing factors, particularly when a<br />

structure is mostly or completely destroyed by fire.<br />

During burning, structures of the walls, ceilings, roof, and floors begin<br />

to collapse along with contents of the house. A body may be directly<br />

affected by the disintegration of supporting structures of flooring and levels<br />

above and below. The combined effects of gravity, weight of a body, and<br />

structurally weakened flooring are optimal conditions for a body falling<br />

down to a lower level shortly after a structural fire is fully engulfed in<br />

flames.<br />

Extinguishment: Fire suppression tactics influences survival of<br />

burned body evidence. The pressure of a direct fire hose stream is on the<br />

order of 100 psi or more. If the body is hit with a direct stream it will<br />

displace evidence of the body, particularly fragile burned bone, projecting<br />

it several inches or feet from the in situ position of the victim. Damage can<br />

be done to the body if supportive structures of furniture or flooring around<br />

the body are hit with a straight powerful stream, causing the body to shift<br />

its position or fall, producing fragmentation.<br />

Criminal Activity: The use of arson to cover up criminal evidence or<br />

a victim’s identity presents some of the more interesting and challenging<br />

variables in fire-death investigation. Any number of materials, fuels, and<br />

environments mentioned above can be utilized to burn a body. In some<br />

cases, the fire is set to appear as an accidental structural or car fire to throw<br />

off investigators, or to destroy evidence of the victim’s identity, traumatic<br />

injury, or the victim’s remains, altogether. Intentional fragmentation and<br />

relocation or scattering of burned human remains is especially challenging.<br />

The taphonomic variables discussed in this presentation are but a<br />

handful of examples that must be considered for reconstructing and<br />

analyzing burned human remains. Each fire scene is unique because of the<br />

infinite combinations of materials and circumstances that are involved<br />

during a fire. The general principles discussed include standards utilized in<br />

the field of fire investigation. The human body adds a unique component<br />

that combines the investigative techniques and the expertise of arson,<br />

* Presenting Author<br />

forensic pathology, and anthropology.<br />

Taphonomy, Burned Bone, Fire Death<br />

H24 Estimation of Bone Exposure Duration<br />

Through the Use of Spectrophotometric<br />

Analysis of Surface Bleaching and its<br />

Applications in Forensic Taphonomy<br />

Mark O. Beary, MS*, University of Missouri at Columbia, 107 Swallow<br />

Hall, Columbia, MO 65211-1440; and Luis L. Cabo-Pérez, MS,<br />

Mercyhurst College, Department Applied Forensic Sciences, 501 East<br />

38th Street, Erie, PA 16546<br />

Upon completion of this presentation, attendees will be familiar with<br />

methods for quantifying bone surface color and how this data can be used<br />

to estimate the duration of time for which bone has been exposed to solar<br />

radiation.<br />

This presentation will impact the forensic science community by. The<br />

ability to estimate bone exposure duration will provide forensic<br />

investigators with an additional tool for refining estimates of the<br />

postmortem interval.<br />

This presentation will report on on-going research which aims to<br />

develop a new method of determining the exposure duration of bones by<br />

analyzing surface coloration changes resulting from solar radiation<br />

exposure. To date, analyzing sun-bleached bones has provided investigators<br />

with only a fraction of the information that these naturally modified objects<br />

have to offer. The term “bleached” has generally been taken to refer to<br />

bones that have been exposed to solar radiation, which imparts unto them<br />

some unknown amount of color alteration, given some unknown amount of<br />

time. Therefore, a “bleached” bone represents a point along a continuum of<br />

time, but until now no method has been developed to attempt to ascertain<br />

where that point lies on the continuum. Detailed color analysis of bone<br />

surfaces can be gained by employing spectrophotometric technologies, and<br />

this data can be used to establish rates of change per available solar<br />

radiation. Through this approach, color communication becomes objective<br />

and bone bleaching can be defined based on geographic parameters. This<br />

new method will provide forensic anthropologists another tool in<br />

determining the postmortem interval. Preliminary research results and the<br />

potential use of these methods will be discussed.<br />

Bone Bleaching, Postmortem Interval, Spectrophotometric<br />

H25 The Taphonomic Effects of<br />

Agricultural Practices on Bone<br />

Sarah A. Kiley, MS*, University of Indianapolis, Archeology & <strong>Forensics</strong><br />

Laboratory, 1400 East Hanna Avenue, Indianapolis, IN 46227<br />

After attending this presentation, attendees will learn how agricultural<br />

practices distribute and damage bone.<br />

This study will impact the forensic community and/or humanity by<br />

improving search and recovery strategies for human remains dispersed in<br />

cultivated fields.<br />

Forensic anthropologists are often asked to assist investigators in the<br />

search and recovery of human remains from a variety of outdoor contexts.<br />

The forensic anthropologist’s understanding of postmortem processes that<br />

affect remains can help to guide search techniques and maximize evidence<br />

recovery. Outdoor forensic scenes in the Midwest are often disturbed and<br />

concealed by standard agricultural practices. These practices hinder the<br />

processing and interpretation of a forensic scene by altering its context and<br />

dispersing the human remains. In addition, farming instruments may cause<br />

postmortem damage to evidence and bones, complicating laboratory<br />

analysis.<br />

In the forensic literature there are very few surveys on the effects of<br />

230


cultivation on forensic scenes and no experimental studies testing the<br />

dispersal characteristics of bone. However, the traditional archeological<br />

literature includes a considerable amount of experimental data on the<br />

movement of artifacts in cultivated fields, some of which may apply to<br />

forensic scenes. The direction of plowing, type of equipment, and duration<br />

of farming practices all contribute to the movement of artifacts in a field.<br />

This study tests the application of archeological models developed for<br />

artifacts and fills a research gap with a descriptive analysis of the movement<br />

of a bone sample in an agricultural field.<br />

Bones modified by agricultural practices are expected to have a unique<br />

taphonomic profile depending on the type of farming machinery used and<br />

the number of cultivations. The spatial distribution of recovered remains is<br />

likely to parallel the dominant plow direction and should widen with<br />

subsequent cultivations. Over time, the percentage of elements recovered<br />

will likely decline due to the destructive nature of agricultural practices,<br />

weathering effects on bone, and carnivore dispersal. Bones recovered are<br />

expected to sustain a combination of sharp-force and blunt-force trauma,<br />

with more episodes of cultivation resulting in more damage.<br />

This study used twelve nearly complete skeletonized (n = 8) and<br />

mummified (n = 4) pigs. The remains were painted different colors using<br />

exterior florescent paint to optimize the chance of recovery. Six of the pigs<br />

were placed in a sweet corn field and six were placed in a sorghum and<br />

buckwheat field. In both fields, a single datum was established outside of<br />

the plow zone. The datum was marked with a wooden stake set at ground<br />

level to permit relocation. Standard archeological mapping and recovery<br />

techniques were employed to record the positions of all visible bones in the<br />

field after plowing. Six pigs were recovered after one season of cultivation<br />

and six pigs were recovered after two seasons of cultivation.<br />

Plowing affected the number of elements recovered, resulting in a<br />

cumulative reduction of the number of surface elements. After only one<br />

season of cultivation, plowing showed a systematic effect on the linear<br />

displacement of remains in the direction of plowing. This displacement<br />

became more pronounced after two seasons of cultivation, with bones being<br />

found further from their original deposition points. Larger bones were<br />

recovered more frequently than small bones, consistent with the<br />

archeological and agricultural engineering literature. With continued<br />

seedbed refinement, tillage equipment mixes the soil, allowing smaller<br />

elements to fall into crevices while larger elements remain on the surface.<br />

Skeletal elements recovered after one season of cultivation showed<br />

significantly less trauma than those that were recovered after two seasons<br />

of cultivation, and repeated plowing continued to fragment and damage the<br />

remains. Mummified pigs exhibited significantly less fragmentation and<br />

damage than skeletonized pigs likely due to the protection of the bones by<br />

skin and soft tissue.<br />

The results of this study indicate plow direction has an impact on<br />

distributing remains horizontally in the direction of plowing, with each pass<br />

increasing the distribution. Overall the percentage of elements recovered<br />

after two seasons of cultivation (8%) is consistent with the archeological<br />

literature. This study will help guide search and recovery efforts when<br />

remains are dispersed in cultivated fields and thus may increase the<br />

percentage of bones recovered for analysis.<br />

Taphonomy, Plow Damage, Bone Trauma<br />

H26 The Reliability of Cadaver Decomposition:<br />

Can Non-Enteric Microbes Rapidly<br />

Contribute to Cadaver Breakdown in Soil?<br />

David O. Carter, PhD*, University of Nebraska, Department of<br />

Entomology, 202 Plant Industry Building, Lincoln, NE 68583-0816;<br />

David Yellowlees, PhD, School of Pharmacy and Molecular Sciences,<br />

James Cook University, Townsville, 4811, AUSTRALIA; and Mark Tibbett,<br />

PhD, Centre for Land Rehabilitation, University of Western Australia,<br />

Crawley, 6009, AUSTRALIA<br />

Following this presentation, attendees will understand that cadaver<br />

decomposition in soil is a process that can be associated with low rates of<br />

error and the rapid (< 24 hours) participation of non-enteric<br />

microorganisms.<br />

This will impact the forensic science community by demonstrating<br />

that cadaver decomposition can be a reliable process and soil microbial<br />

ecology might be used to accurately estimate the postmortem interval of<br />

buried bodies.<br />

Following this presentation, attendees will understand that cadaver<br />

decomposition in soil is a process that can be associated with low rates of<br />

error and the rapid (< 24 hours) participation of non-enteric<br />

microorganisms. This will impact the forensic science community by<br />

demonstrating that cadaver decomposition can be a reliable process and soil<br />

microbial ecology might be used to accurately estimate the postmortem<br />

interval of buried bodies.<br />

Two topical aims of forensic taphonomy are to locate and date<br />

clandestine graves. Achieving these aims requires an understanding of the<br />

fundamental processes and error rates associated with cadaver<br />

decomposition in soil. This understanding is currently lacking. This is<br />

primarily because human cadavers are difficult to acquire for<br />

decomposition studies (and very difficult to replicate) and forensic<br />

taphonomy has relied upon case studies and anecdotal evidence rather than<br />

experimental investigation. As a consequence, forensic taphonomy<br />

currently operates on several untested assumptions. For example,<br />

traditional dogma states that anaerobic enteric microorganisms dominate<br />

cadaver breakdown until the latter stages of decomposition, when aerobic<br />

soil and/or dermal microbes become active.<br />

This assumption was tested by incubating complete, incised, and<br />

eviscerated juvenile (8-10 days old) rat (Rattus rattus) cadavers in soils of<br />

contrasting texture (sand, loamy sand, clay). Soils were collected from<br />

tropical savanna ecosystems in Pallarenda (19°11’S, 146°46’E) and<br />

Wambiana (20°33’S, 146°08’E), Queensland, Australia. Pallarenda soil<br />

was a Rudosol and had a sandy texture (97.7% sand, 1.3% silt, 1% clay).<br />

Wambiana soil was a Vertosol and had a clay texture (30.9% sand, 20.8%<br />

silt, 48.3% clay). Soils were sieved (2 mm), weighed (500 g dry weight)<br />

into incubation chambers (2 litre), calibrated to a matric potential of –0.05<br />

megapascals (MPa) and incubated at 22 °C for seven days to equilibrate.<br />

Following equilibration, rats (Rattus rattus L., 18 ± 1 g) were killed with<br />

carbon dioxide and subjected to experimental treatment. Treatments<br />

comprised a complete cadaver, eviscerated cadaver, cadaver with a sewn<br />

incision only (to account for the effect of the incision) and a control (soil<br />

without cadaver). Cadavers were buried on their right side at a depth of 2.5<br />

cm. Cadaver decomposition was measured via cadaver mass loss (% wet<br />

weight), CO2-C evolution (an index of aerobic microbial activity and<br />

decomposition) and soil pH. This experiment was replicated four times<br />

resulting in 192 samples.<br />

Cadaver burial, regardless of treatment, resulted in a rapid (< 24 hours)<br />

significant increase in microbial activity, which was positively correlated to<br />

cadaver mass loss. Evisceration resulted in less cadaver mass loss and<br />

microbial activity in sand, and had no effect on decomposition in clay. It is<br />

concluded that soil and/or dermal microbial communities rapidly respond<br />

to cadaver burial and play a significant role in cadaver decomposition.<br />

These results also show that soil type can significantly affect cadaver<br />

breakdown.<br />

The relative variation (standard error/mean) of mass loss and CO2-C evolution show that the measurement of CO2-C was a more reliable method<br />

for assessing cadaver decomposition. The relative variation of mass loss<br />

measurements varied from 3%-47%. However, the relative variation of<br />

CO2-C measurements ranged from


H27 The Influence of Penetrative Trauma<br />

on the Rate of Decomposition<br />

Peter A. Cross, BSc*, 11 Lower Bank Road, Fulwood, Preston, 0 PR2<br />

8NS, UNITED KINGDOM<br />

The goal of this presentation is to aid a better understanding of the<br />

influence that penetrative trauma has on the process and rate of<br />

decomposition. This will assist in the more accurate assessment of<br />

postmortem interval (PMI).<br />

This presentation will impact the forensic science community by<br />

presenting research that suggests that penetrating trauma cannot be<br />

considered a major factor in the rate of decomposition and time to<br />

skeletisation of a gunshot trauma victim. It also supports other work that<br />

suggests disturbance may be an influential factor in decomposition (Adlam,<br />

2005; Adlam and Simmons 2007).<br />

Forensic Anthropologists utilise their knowledge of the processes of<br />

decomposition to estimate postmortem interval (PMI). An understanding<br />

of the factors that affect these processes and the degree to which factors,<br />

such as temperature, pH, and trauma influence the rate of decomposition is<br />

important for the accurate estimation of PMI.<br />

Previous work by Mann et al. (1990), Vass et al. (1992) and<br />

Campobasso (2001) suggest that penetrating trauma may accelerate<br />

decomposition. Although a more recent experimental PhD study (Kelly,<br />

2006) found no such influence, it is generally accepted that penetrating<br />

trauma may accelerate decomposition and time to skeletisation.<br />

An experimental study was carried out in the North West of England<br />

using the domestic pig (Sus scrofa). Two experimental groups, one having<br />

gunshot trauma to the head, body and limbs and the other without trauma<br />

were left to decompose on the ground surface. A further control group of<br />

pigs with gunshot trauma were used to assess the effect of investigator<br />

disturbance. Decomposition was measured by using weight loss, total body<br />

score (Megyesi, 2005) and changes in soil pH as indicators of soft tissue<br />

destruction. The attraction of arthropods to the carcases and sites of<br />

oviposition and maggot activity was also observed and recorded.<br />

Diptera were preferentially attracted to natural orifices, particularly<br />

those of the head in both groups. Attraction to and oviposition followed at<br />

the gunshot entrance wounds. However, in both groups oviposition also<br />

occurred at skin creases, such as those found between both fore and hind<br />

legs, simultaneously with that occurring at trauma sites. Although maggot<br />

masses were observed to become established more quickly in areas of<br />

trauma, other maggot masses at the non-trauma sites followed. No<br />

difference was found in time to skeletisation. No significant difference was<br />

found in weight loss between the two groups with p=0.544. Likewise, with<br />

total body score (p=0.8237) and changes in soil pH (p=0.6838), no<br />

significant differences were found. The effect of investigator disturbance<br />

was significant to weight loss (p=


Joseph T. Hefner, PhD*, and Natalie Uhl, MS, 1503 North Pennsylvania<br />

Street, Apartment 21, Indianapolis, IN 46202; and Nicholas V.<br />

Passalaqua, MS, Michigan State University, 203 Berkey Hall, East<br />

Lansing, MI 48824-1111<br />

The audience will be introduced to the variation observed in<br />

anatomical cranial specimens and to methods beyond taphonomic<br />

indicators for discriminating these specimens from forensically significant<br />

remains.<br />

This presentation will impact the forensic community by documenting<br />

the pattern and magnitude of variation among anatomical crania, beyond<br />

taphonomy.<br />

Prior to 1987, the majority of human remains purchased in the United<br />

States originated from and were prepared in the modern Republic of India.<br />

In 1987, under pressure from human rights groups, the ruling government<br />

of India banned the exportation of human remains. However, the skeletal<br />

material purchased from India and used in classrooms, teaching<br />

laboratories, and medical schools in the United States is commonly<br />

encountered during routine forensic anthropological investigations.<br />

Unfortunately, craniometric data for anatomical specimens originating from<br />

India is not currently available, probably due in large part to the lack of<br />

provenience information for these specimens. Yet, the cranial material<br />

traditionally associated with anatomical warehouses is variously described<br />

as a single, homogenous group (e.g., a shared taphonomic history) or as an<br />

extremely diverse and biologically heterogeneous jumble of populations.<br />

This presentation will examine the pattern and magnitude of cranial<br />

variation among anatomical cranial specimens, using a procedure outlined<br />

by Jantz and Owsley (2001—AJPA 114:146-155). This study uses the<br />

traditional linear craniometric data and three-dimensional coordinate data<br />

from 35 crania purchased from North American biological supply<br />

companies prior to the 1987 ban. In order to determine whether anatomical<br />

specimens can be considered an homogenous group, Mahalanobis distances<br />

(D2 ) were calculated between all pairs of anatomical specimens using a<br />

pooled within sample variance/covariance matrix calculated using Howells<br />

database. Next, a Defrise–Gussenhoven test between the paired distances<br />

was used to test the likelihood that the pairs of crania were drawn randomly<br />

from a single population. A sub-set of known Russian anatomical material<br />

was included to act as a test of the method. The calculated distances suggest<br />

the presence of at least three groups. The Russian sample and a spatially<br />

homogenous group of 7 anatomical specimen were distinct from the<br />

remaining twenty-two; the latter representing skeletal material likely from<br />

the Republic of India.<br />

The calculated Mahalanobis distances were then used to calculate the<br />

“typicality” probabilities for each of the anatomical crania relative to<br />

Howells worldwide sample of cranial material. Understanding that these<br />

crania did not originate from any one of the Howells groups, the typicality<br />

probability was used to evaluate the observed variation within the<br />

anatomical specimens. The general pattern supports the Defrise–<br />

Gussenhoven test. The 22 homogenous crania show greatest similarity to<br />

several Southwest Pacific groups (e.g., the Andaman from the Andaman<br />

Islands in the Bay of Bengal and the Atayal from Taiwan) and to European<br />

groups like the Berg from Carinthia, Austria. As expected, the Russian<br />

sample bears greatest similarity to European groups (e.g., Bergs and 20th<br />

century American Whites). The remaining 7 crania were most similar to<br />

African groups (e.g., Bushman and American Blacks).<br />

The taphonomic indicators typically associated with anatomical<br />

specimen include the presence of reconstruction hardware, taphonomic<br />

indications of reconstruction hardware—for instance, rust stains, holes<br />

drilled for screws, etc.—patina, and betel nut staining on the teeth. The<br />

crania used in this analysis exhibit at least one of these taphonomic profiles.<br />

However, staining on the teeth associated with betel nut chewing was<br />

documented only on the homogenous group of crania believed to have<br />

originated in India. The overall pattern of cranial variation and the<br />

associated taphonomic indicators suggest some level of homogeneity<br />

among anatomical crania purchased from India, but as expected, not among<br />

all anatomically prepared material.<br />

Anatomical, Variation, Mahalanobis<br />

H30 Decomposition and Postmortem Interval:<br />

A Critical Analysis of British Medico-legal<br />

Investigation and Trends in South Yorkshire,<br />

1995-2002<br />

Brooke L. Magnanti, PhD, Newcastle University, Sir James Spence<br />

Institute, Royal Victoria Infirmary, Newcastle-upon-Tyne, Tyne and Wear<br />

NE1 4LP, UNITED KINGDOM; and Anna Williams, PhD*, Cranfield<br />

University, Defence Academy of the United Kingdom, Shrivenham,<br />

Wiltshire SN6 8LA, UNITED KINGDOM<br />

This paper offers a systematic review of decomposition cases in a<br />

British urban environment, and analyses the efficacy of reporting<br />

decomposition by Home Office pathologists. Upon completion,<br />

participants will have a broad overview of the nature of the decomposition<br />

cases encountered by Home Office pathologists in South Yorkshire, and<br />

how this compares to the nation as a whole. There will be a clear break<br />

down of the different types of decomposition cases regularly seen in a<br />

British context, and a discussion of how the extent of decomposition visible<br />

on the body varies with time since death, and thus how it is valuable to the<br />

estimation of postmortem interval. The participants will learn how this<br />

potentially valuable resource is used by British pathologists, and how<br />

improvements can be made to ensure that the maximum amount of<br />

information is gathered. Suggestions will be made about increasing the<br />

depth of co-operation between pathologists and anthropologists in order to<br />

optimise decomposition data, and it is hoped that the participants will draw<br />

conclusions about the significance of such collaboration.<br />

This paper represents a critical assessment of the degree to which the<br />

extent of decomposition is used routinely in the estimation of postmortem<br />

interval. It confronts some of the existing problems with recording<br />

standards, and offers suggestions for improving reporting techniques and<br />

quantitative analysis of decomposition data. It should impact the forensic<br />

science community by challenging the status quo in Britain at the moment<br />

and advocating a more far-reaching, deeper collaboration between<br />

pathologists and anthropologists, to make the most of multidisciplinary<br />

expertise in everyday forensic cases. It highlights the differences between<br />

decomposition research in Britain and elsewhere, and analyses the<br />

translation of academic decomposition data into the practical forensic<br />

context. It is hoped that this presentation will pave the way for discussion<br />

and collaboration between forensic pathologists and anthropologists to<br />

improve estimation of postmortem interval.<br />

Estimations of postmortem interval based on the extent of<br />

decomposition are often sketchy and can be reliant on comparisons with<br />

case histories, data using less-than-ideal animal analogues, or on data from<br />

environment-specific collections. The authors suggest methods of<br />

addressing this problem by improving recording standards of<br />

decomposition cases through cooperation between forensic anthropologists<br />

and pathologists, to facilitate cross-region comparisons and research. This<br />

paper offers a systematic review of decomposition cases in a British urban<br />

environment, and analyses the efficacy of reporting decomposition by<br />

Home Office pathologists. It represents a critical assessment of the degree<br />

to which the extent of decomposition is used routinely in the estimation of<br />

postmortem interval, and offers suggestions for improving standardisation<br />

of reporting and quantitative analysis of decomposition data. Individuals<br />

resident in South Yorkshire whose postmortem examinations were<br />

performed at the Medico-Legal Centre, Sheffield, were studied. Cases were<br />

chosen for inclusion in the study based on home address and a reported<br />

presence of decomposition. The reporting of decomposition according to<br />

time since death is compared against an expected model for indoor and<br />

outdoor cases. The quality of assessment made by the investigators is<br />

discussed, with reference to the opportunity for cooperation between<br />

pathologists and forensic anthropologists to improve the application of<br />

decomposition data to routine cases.<br />

233 * Presenting Author


Decomposition, Forensic Anthropology, Postmortem Interval<br />

H31 Basement Bodies: The Effect of Light<br />

on Decomposition in Indoor Settings<br />

Branka Franicevic, MSc*, University of Central Lancashire, Department<br />

of Forensic and Investigative Science, Preston, PR1 2HE, UNITED<br />

KINGDOM<br />

The aim of this presentation is to introduce participants to the specific<br />

aspects of decomposition in indoor ambient with conditions involving<br />

access to insects but no or minimal access to light. During the presentation,<br />

examples of a serial homicide case of bodies found in the cellar will be<br />

demonstrated for comparative purposes, and the accuracy of their PMI<br />

estimation will be discussed.<br />

This presentation will impact on forensic sciences by making<br />

attendees aware of the importance of light as a variable, and the potential<br />

danger of bias in the estimation of postmortem interval (PMI) for human<br />

remains found in advanced stages of decomposition in basement settings<br />

such as cellars, subterranean vaults, metros, tunnels, caves, or crypts.<br />

The review of forensic entomology studies indicated that maggot<br />

development is almost entirely dependent on the ambient air temperature,<br />

but is nevertheless reduced in sunlit areas. Fully developed maggots are<br />

further recorded as largely sensitive to direct sunlight, resulting in the<br />

higher succession of shaded body parts. Since the impact of maggot masses<br />

on decomposition process in a mostly dark indoor ambient is unknown, the<br />

author hypothesized that given the favorable temperature conditions for<br />

larvae development, the remains exposed to the indoor ambient with no or<br />

minimal access to light will decompose faster than the remains exposed to<br />

direct sunlight or shaded indoor areas with same temperatures.<br />

Inasmuch as pig as an animal model is an acceptable substitute for<br />

human cadavers, three Sus scrofa ranging from 18 to 20 kg were used in the<br />

experiment. Pig carcasses were placed on purpose built flat steel mobile<br />

platforms on three levels of a building with identical humidity and room<br />

temperature throughout the experiment. The main animal model was in the<br />

cellar with no access to the light. Second controlled carcass was on the next<br />

level with natural exposure to daylight cycle, and the third controlled model<br />

was constantly exposed to light either natural or artificial. The study lasted<br />

from 03 May 2007 until 25 June 2007 when signs of skeletonization were<br />

shown on all pig models. Experiment control procedure included<br />

observations of decomposition at various times of day for the sample<br />

exposed to natural light; during the day for sample exposed to constant<br />

light, and during the night for sample in the cellar. Internal body<br />

temperature and insect activity was recorded regularly. Body mass was<br />

weighted by sliding the platforms with carcasses into immediate floor<br />

drive-thru scales to minimize disturbance. Average indoor temperature<br />

conditions were assumed in the experiment; temperature was controlled by<br />

air-conditioning system at 15˚C constant, and humidity of 40% was<br />

controlled by humidity generator.<br />

General patterns of decomposition to include bloating, deterioration,<br />

disintegration and the decay were observed on the samples. Fly succession<br />

on all three floors was noted within fifteen minutes from the start of the<br />

study with the subsequent insect succession following the familiar pattern.<br />

A significant site of insect activity was recorded on the main carcass in the<br />

cellar that decomposed considerably faster than the two control samples.<br />

Insect succession did not follow the usual pattern of preference to body<br />

openings. Maggot masses were noticed on all parts of the carcass allowing<br />

the succession to proceed relatively evenly. A sixteen day difference in<br />

decomposition was noted between the main and the first control sample<br />

exposed to natural day and night cycle, and the 22 days difference with the<br />

second control sample exposed to the light throughout the experiment.<br />

In addition to other variables that cause alterations to PMI estimation,<br />

changes introduced by the effect of light in indoor ambient must be<br />

considered, particularly with bodies found in basement settings. For this<br />

reason principles of decomposition patterns in dark indoor ambient for the<br />

* Presenting Author<br />

purpose of PMI estimations are recommended across the board for medicolegal<br />

investigators.<br />

PMI, Indoor Decomposition, Light<br />

H32 Taphonomic Effects of Vulture Scavenging<br />

Nicole M. Reeves, BA*, Texas State University-San Marcos, Anthropology<br />

Department, 601 University Drive, San Marcos, TX 78666<br />

Upon completion of this presentation, attendees will understand how<br />

vultures accelerate decomposition rates, leave markings on remains, and<br />

disperse elements. They will also recognize how this information affects<br />

interpretations made by forensic anthropologists.<br />

This presentation will impact the forensic community and humanity<br />

by highlighting important factors for forensic anthropologists to consider<br />

when interpreting taphonomic events and determining accurate postmortem<br />

intervals in scavenging cases.<br />

One of the goals of forensic anthropologists is to understand and<br />

recognize the processes that occur at, during, and after death. Scavenging<br />

is one of these taphonomic processes that affects the decomposition and<br />

dispersal of an organism after death, or postmortem. Many published<br />

studies of scavenging focus on the effects of terrestrial scavengers, while<br />

relatively few concentrate on avian scavengers. In the New World, vultures<br />

range from Canada to the southern tip of South America. The most<br />

common vulture species are the Turkey Vulture (Cathartes aura) and the<br />

Black Vulture (Coragyps atratus). Because these birds inhabit wide ranges<br />

and their main dietary component is carrion, it is important for forensic<br />

anthropologists to examine changes in decomposition, the extent of bone<br />

alteration, and the degree of bone scatter/movement that result from vulture<br />

scavenging activity. Isolating and analyzing the specific effects vultures<br />

have on remains will help in the evaluation of scavenging cases.<br />

In the summer of 2007, three pig carcasses (Sus scrofa) were placed<br />

outside in a large, grassy area in central Texas. The carcasses were exposed<br />

to vultures in succession, only one being offered at a time. Each was placed<br />

in the middle of a sixteen by sixteen foot fenced area to prevent access by<br />

terrestrial scavengers. A fourth pig carcass, used as a control for the rate of<br />

decomposition, was positioned in a large wire cage in the same area. The<br />

cage, wrapped in additional chicken wire, prevented vulture access but<br />

allowed for the same exposure to the elements and insects. Pigs were<br />

chosen as a substitute for humans due to their similarities in internal<br />

structures and progression of decomposition. To best represent adult human<br />

weights, each pig carcass utilized in the study weighed at least 100 pounds.<br />

Modification of the carcasses was recorded through the use of two motionsensing<br />

digital cameras and daily on-site observations. Date and time stamp<br />

features on the cameras provided an accurate record and timeline of events.<br />

Both the Turkey and Black Vultures waited approximately twentyfour<br />

hours after placement of the carcasses before beginning to scavenge,<br />

and did not feed at night. After their arrival, vultures alone completely<br />

skeletonized the exposed pig carcasses in less than twelve hours. In the<br />

midst of feeding, vultures were observed dragging, carrying, and dispersing<br />

elements of the carcasses around the original deposition site, leaving<br />

identifiable scratches and cuts on the bones. Turkey and Black vultures<br />

returned repeatedly to the remains, even after skeletonization, and<br />

continued to disturb and distribute elements. In at least one instance,<br />

elements were found outside of the six-foot tall enclosure. The movement<br />

of the carcass and markings on the remains are specific indicators of vulture<br />

scene modification and body alteration. While the carcasses exposed to<br />

vultures were skeletonized less than forty-eight hours after placement, the<br />

unexposed carcass took weeks to reach the same state.<br />

The significantly accelerated rate of decomposition, the signature<br />

markings on the bones, and the degree of bone scatter and transportation<br />

discovered in this study are important factors for forensic anthropologists to<br />

consider when interpreting taphonomic events and determining an accurate<br />

postmortem interval at vulture modified scenes.<br />

Taphonomy, Scavenging, Vultures<br />

234


H33 Computer Simulation for Drift<br />

Trajectories of Objects in the<br />

Magdalena River, Colombia<br />

Ana C. Guatame-Garcia, BSc*, University of Central Lancashire, Calle 9<br />

#0-95, Bogota, COLOMBIA; Luis A. Camacho, PhD, Universidad<br />

Nacional de Colombia at Bogota, Bogota, COLOMBIA; and Tal<br />

Simmons, PhD, Department of Forensic and, Investigative Sciences,<br />

University of Central Lancashire, Preston, Lancashire PR1 2HE,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will understand the<br />

application of computer modeling in the analysis of taphonomic process<br />

(specially transport) related to bodies disposed in water systems.<br />

This presentation will impact the forensic community by serving as an<br />

example of the use of technological tools in the investigation of forensic<br />

cases and the interdisciplinary collaboration.<br />

Within the field of forensic science there is a growing trend towards<br />

the use of computer models to represent transport and degradation<br />

processes to which human carcasses are subject along rivers. These may<br />

also be used to predict downstream distance traveled by such bodies under<br />

likely scenarios, thus helping both the search for victims and the<br />

identification of feasible points of entry.<br />

In studies of bodies disposed in moving waters, many problems arise<br />

since the bodies not only decompose but also are exposed to transport,<br />

disarticulation and dispersion. In such cases, computer modeling has<br />

proven to be an invaluable tool leading towards the understanding of former<br />

cases and the prediction of the flow pattern of bodies (Ebessmeyer and<br />

Haglund, 1994; Carniel et al., 2002).<br />

In this paper a one-dimensional hydraulic model has been coupled<br />

with an object transport model in order to predict the object drift trajectories<br />

and distance traveled with time. The object transport is modelled taking<br />

into account buoyant, hydrostatic and dynamic forces calculated using<br />

velocity, discharge and depth computed by the numerical hydraulic model.<br />

Results and information from previous research studies were incorporated<br />

into the modelling framework to represent the transport of living and dead<br />

human bodies of different densities and specific gravities (Krzywicki and<br />

Chinn, 1967; Donoghue and Minniguerode, 1977).<br />

The model was calibrated by means of physical experiments carried<br />

out in the Teusacá and Magdalena rivers (Colombia). Objects of 21 kg and<br />

44 kg and densities ranging from 0.98 to 1.02 g/cm3 were placed into the<br />

rivers, and their movement and drift trajectories were monitored and<br />

registered. Detailed hydraulic data during the experiments was gathered<br />

and the objects’ travel times were measured. The information was used to<br />

calibrate and validate the coupled hydraulic and object transport numerical<br />

model.<br />

Objects disposed at high flow velocity sections were observed to<br />

travel downstream with the main flow. Along bends, the objects typically<br />

followed a path close to the external river banks. In most of the cases, the<br />

objects moved after the bend with the main surface flow from the external<br />

river bank in the direction towards the opposite bank. Objects disposed at<br />

low flow velocity sections near the river bank were observed to get trapped<br />

for a long time before a circular motion forced the bodies back into the main<br />

flow. The presence of debris and snags in the river banks altered the<br />

direction and velocity of the surface flow, producing whirls and eddies<br />

where the floating body got trapped, reducing its effective longitudinal<br />

velocity. Along the 10 km long experimental stretch of the Magdalena<br />

River the actual observed ratio between the 44 kg (ρ = 0.99 g/cm3 ) object<br />

velocity and the mean flow velocity was 0.91 for a flow discharge of 950<br />

m3 /s. In turn, along the 50 m long experimental stretch of the Teusacá River<br />

the correlation between the 21 kg object (ρ = 1.02 g/cm3 ) velocity and the<br />

mean flow velocity was 0.9 for a discharge of 1.97 m3 /s.<br />

The calibrated model has been applied to a 400 km stretch of the<br />

Magdalena River – Colombia in order to simulate objects´s transport, and<br />

to predict their location after being disposed into the river at a certain time.<br />

The river model was implemented using hydrograph time series of data<br />

provided by the Institute of Hydrology and Meteorology of Colombia and<br />

hydraulic data gathered by the Hydraulic Laboratory of the National<br />

University of Colombia (1998 -2003). Travel times between 7.5 and 11<br />

days and a loss of mass of about 4.6 kg, were computed for human bodies<br />

traveling the 400 km river stretch.<br />

The study concludes that the density and the wetted surface area of the<br />

body are the main factors affecting the pattern of movement and traveled<br />

distance during a specific time interval along a river. Extrinsic factors<br />

related to the geometric configuration of the river and the physical and<br />

environmental conditions at the banks also affect the pattern of transport. In<br />

the studied Magdalena River stretch, the predicted body transport velocity<br />

is lower than the mean flow velocity by a factor ranging from 0.7 to 1.1,<br />

depending upon the presence of dead zones, and flow storage zones of<br />

recirculating water where the body can get trapped.<br />

Object Drift Trajectories Along Rivers, Hydraulic and Object<br />

Transport Numerical Modeling, Magdalena River<br />

H34 Experiential Education: The Use of<br />

Simulation in Training in Forensic<br />

Anthropology and Archaeology<br />

Margaret Cox, PhD*, Cranfield University / Inforce Foundation,<br />

Shrivenham, Swindon, UNITED KINGDOM<br />

After attending this presentation, attendees will have an increased<br />

understanding of the use of simulations as components of training in<br />

forensic anthropology and archaeology.<br />

This presentation will impact the forensic community by increasing<br />

their appreciation of the complexities, benefits and potential pitfalls of<br />

using experiential education (simulations) in training forensic anthrologists<br />

and archaeologists in aspects of mass fatality response. This may range<br />

from investigating mass graves and mass disaster scenes, to working within<br />

temporary mortuary.<br />

One of the most effective ways of teaching any subject is to combine<br />

qualitative and quantitative approaches via appropriate teaching vehicles.<br />

Much can be taught theoretically and practically in the lecture or seminar<br />

room, or in the laboratory or field. What cannot be taught via those modes<br />

is the ability to apply the skills learnt to a scenario that approximates to a<br />

‘real’ event or set of circumstances with complete participation by trainees.<br />

Mass fatality response, whether to crimes against humanity, natural<br />

catastrophe, transportation accident or terrorist attack, is a context that by<br />

definition has no “norm”, other than it will involve multiple fatalities. It is<br />

a context that is distressing and stressful and one that often has<br />

inappropriate and inadequate resources and personnel involved. It may<br />

involve a context where cultural and religious norms may be unfamiliar,<br />

where inappropriate authority may prevail, and where dangers to the health<br />

and well-being of responders are significant. Despite that, it is a context<br />

where we have a moral obligation to be able to respond effectively and<br />

efficiently for both judicial and humanitarian reasons.<br />

Experiential education has a role in such teaching and training. It is a<br />

teaching vehicle that ranges from computer simulations to employing<br />

teaching modes that mimic reality to a greater or lesser degree. The key<br />

with experiential education is that trainees are required to engage<br />

intellectually, emotionally, socially and often physically. They have to take<br />

the initiative, make decisions and be accountable for results. Very often<br />

such learning is done through unrelated activities that are totally removed<br />

from the context and subject area in which trainees are engaged. This is<br />

“safe” as those who do not perform effectively are doing so in a context<br />

removed from their area of normal professional practice.<br />

Experiential teaching vehicles should not be confused with “fieldwork”<br />

or “laboratory sessions” which provide a semi-realistic setting for<br />

what is a formal and formative educational approach. In such, the level of<br />

responsibility for the outcome on individual trainees is generally low. Only<br />

235 * Presenting Author


arely is such teaching a “real” group effort where success or failure of the<br />

overall task depends upon effective team work and where accountability<br />

rests on trainees.<br />

Experiential training for mass fatality respondents that is set within a<br />

“realistic” context (for example, simulated temporary mortuaries and<br />

scenes of mass fatality incidents) is extremely challenging for all involved.<br />

Trainees are required to implement skills and roles in a ‘real-life’ simulation<br />

that sets them in a context that mimics not only the reality of the roles they<br />

may be required to play, but significantly, also employs their day-to-day<br />

professional skills. This is a high risk approach to teaching. If it works it<br />

has immense benefits. If it does not it is extremely damaging to those<br />

directly affected. In this situation the stakes are high and should not be<br />

underestimated. If participants consider they have not performed well or<br />

‘failed’ in a context that mimics their professional role then the<br />

consequences can be significant – depending on how they react. This<br />

creates a highly charged teaching environment and emotionally challenged<br />

and exhausted trainees, and of course trainers.<br />

What is crucial in such training is that the trainers have the educational<br />

experience and understanding to recognize what is happening and take<br />

action to mitigate against adverse impacts before damage is done. It is not<br />

sufficient to put trainees into a difficult situation and leave them to cope.<br />

Such teaching must included periodic reviews that invite reflection on<br />

progress and on possible alternative strategies to challenges. This<br />

presentation examines aspects of this complex, risky but potentially hugely<br />

beneficial teaching strategy in light of the simulated mass fatality incident<br />

training sites (air-crash sites), mass graves, and temporary mortuaries<br />

designed and delivered by the Inforce Foundation.<br />

Simulated Mass Graves, Simulated Temporary Mortuaries, Training<br />

in Mass Fatality Response<br />

H35 Realism in Simulation Training:<br />

Examples of Mass Grave Excavation<br />

and Mass Fatality Incident Mortuary<br />

Simulation Exercises<br />

Roland Wessling, MSc*, Inforce Foundation, Cranfield University,<br />

Cranfield Forensic Institutde, Shrivenham, 0 SN6 8LA, UNITED<br />

KINGDOM<br />

After attending this presentation, attendees will have an increased<br />

understanding of the role that realism plays in simulation training and<br />

exercises and how different levels of realism can be achieved.<br />

This presentation will impact the forensic community by increasing<br />

their understanding about the importance of realism at certain stages in<br />

training and exercise programs and how different levels can be achieved to<br />

serve different purposes.<br />

Following on from Professor Margaret Cox’s presentation entitled<br />

“Experiential Education: the use of Simulations in Forensic Anthropology<br />

and Archaeology,” this presentation will focus on the important role that<br />

realism plays in simulation training and exercises. Different levels of<br />

realism can often be achieved relatively easily and with a minimum of extra<br />

effort and often without negative impact on budget. In most cases, the<br />

correct and most appropriate level of realism can be achieved by combining<br />

the expertise of experienced educators and experienced field practitioners.<br />

This presentation will first outline the role that different levels of<br />

realism can and should play at different stages in training and exercise<br />

programs. It will continue to explore the relevance such appropriate levels<br />

of realism and how they can benefit the trainee.<br />

Using two main examples, the methodology of applying realistic<br />

scenarios to simulation training will be demonstrated and how they can be<br />

achieved. It is not just a question of making scenarios as realistic as<br />

possible. At some stages in the training process, very high levels of realism<br />

can have a negative impact such as information overloading or taking<br />

emphasis away from basic procedural concepts.<br />

When realistic scenarios need to be developed, a number of criteria<br />

* Presenting Author<br />

needs to be observed: the scenarios must be relevant to the trainees; the<br />

environment in which the training takes place must match the scenario; the<br />

prior level of professional knowledge of the trainees must be incorporated<br />

into the training; and the ‘realistic scenario’ has to be truly based on actual<br />

and real experience from field operation. It cannot be stressed enough that<br />

whatever realistic element is introduced to a training and exercise program,<br />

it needs to be relevant to the trainees. This means that the team that plans<br />

and carries out the program is either knowledgeable with respect to the<br />

trainees’ background or that they seek such advice prior to planning the<br />

training. Training people in scenarios that is not relevant to their<br />

environment is rarely justifiable and most often a waste precious resources.<br />

The presentation will finally look at the possibility of incorporating<br />

research into such training programs. Since they are designed to simulate<br />

reality, a number of questions that confronts forensic practitioners can be<br />

addressed during simulation exercises. Not to do so is again a waste of<br />

resources and opportunity.<br />

Realism is a powerful tool that can be used in simulation training, but<br />

only if it is used at the right time, in a relevant context and by experienced<br />

educators and practitioners.<br />

Training in Mass Fatality Response, Simulated Mass Graves,<br />

Simulated Temporary Mortuaries<br />

H36 The Effects of Body Mass<br />

Index on Cremation Weight<br />

Shannon E. May, BA*, and Richard Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, 250 S Stadium Hall, Knoxville,<br />

TN 37996-0720<br />

The goal of this presentation is to determine the relationship between<br />

cremains weight and perimortem body mass index (BMI) in a multiregional<br />

United States sample. Additional contributing factors, sex, and<br />

age-at-death, are examined for their effect on cremains weight.<br />

This presentation will impact the forensic community by<br />

demonstrating the utility of cremains weight in the estimation of age and<br />

sex. Furthermore, cremains weight may be used to validate their<br />

association with an individual whose body mass index may be calculated<br />

from known stature- and weight-at-death.<br />

Cremation has become an increasingly popular funerary practice.<br />

Through this process bone is incinerated and mechanically reduced into<br />

particles comparable to sand or silt, ultimately removing most diagnostic<br />

features. Cremation is occurring with greater incidence in forensic contexts,<br />

presenting new challenges to forensic anthropologists in issues of evidence<br />

destruction, unethical disposal of remains, or disputed identity.<br />

Most research on burning and charring of skeletal material takes the<br />

form of controlled experimentation and case studies. A small body of<br />

research has amassed on the physical properties of cremains. Previous<br />

research includes that of Warren and Maples (1997) sourced from Central<br />

Florida, and that of Bass and Jantz (2004), using samples from the Eastern<br />

Tennessee area. These studies investigated cremation weight and the<br />

relationship with individual sex and age-at death. Both established a few<br />

general principles: cremains are derived almost exclusively from osseous<br />

material, and the heavier average weight of male versus female samples. In<br />

Bass and Jantz’ sample of 306 individuals, the male average outweighed<br />

female average by approximately 500g; while Warren and Maples’ male<br />

average was heavier by nearly 600g. In both studies, age-at death produced<br />

an expected negative correlation with advanced age.<br />

Although results are comparable, geographic variation exists. A third<br />

study comparing regional cremation weights by Van Deest (2007)<br />

introduced a sample of cremations from California. Results for sex and age<br />

correlations were consistent with the previous studies. Notably, the<br />

Tennessee sample was consistently heavier across both variables of age and<br />

sex; a result Bass and Jantz attributed to higher incidence of obesity in<br />

Tennessee, inducing higher bone mass.<br />

236


The present study addresses this issue, investigating the relationship<br />

between body composition and cremation weight. Body mass index (BMI)<br />

was adopted by the World Health Organization (WHO) in 1995 as the<br />

standard measurement of body fat in both health and epidemiological<br />

studies. Several difficulties surrounding BMI’s predictive value exist,<br />

including the inability to distinguish between subcutaneous adiposity verses<br />

lean mass. However, for the purposes of this study BMI remains the only<br />

available method.<br />

To obtain a sufficient sample size, data was combined from Warren<br />

and Maples (1997) anthropometry research, the William M. Bass Skeletal<br />

Collection of Knoxville, Tennessee, and the University of Tennessee-<br />

Chattanooga Donated Collection. All cremains were rendered through a<br />

commercial crematorium; amputees, bone donors, and skeletally immature<br />

samples were excluded from analysis. Total sample size contains 99<br />

cremations, consisting of 61males and 38 females.<br />

For each sample, body mass index (BMI) was calculated as weight<br />

divided by height squared: (kg)/ (m) 2 . WHO designates three levels of<br />

BMI: 18.5 to 24.99 “normal”, 25.00 to 29.99 “overweight”, and 30.00<br />

marks the threshold of obesity. Individuals of unknown perimortem stature<br />

or weight were also eliminated, for inability to calculate BMI. The<br />

relationship between BMI and cremation weight was assessed using a<br />

correlation coefficient and multiple linear regression, using SAS 9.3.1 and<br />

NCSS 3.0<br />

statistical software.<br />

Pearson’s Correlation Coefficient Test demonstrates a clear<br />

association between BMI and cremation weight (r = 0.56; R2 = 0.32; p =<br />


After viewing this poster attendees will have an understanding of the<br />

properties of saw cuts in bone created by saws without traditional blades.<br />

This presentation will impact the forensic community by adding<br />

additional means of documenting dismemberment in homicide and other<br />

investigations.<br />

The documentation of saw cuts in bone is well established. Each class<br />

of saw blade is characterized by class features: the number of teeth per inch<br />

(TPI), push versus pull stroke cutting, tooth offset, and tooth width (blade<br />

thickness).<br />

Today there are saws commercially available which do not use teeth<br />

as the cutting medium. In having no teeth these saws lack most of the class<br />

defining traits used in saw identification including the lack of directional<br />

cutting (push versus pull stroke). For this study two saws were chosen.<br />

The “MXZ” brand carbide saw has been advertised on television and<br />

the internet. This saw has a short blade (13 cm in length) encrusted with<br />

carbide chips. This saw is advertised to be able to cut through various<br />

materials including steel, concrete, and tile.<br />

The zip saw is common to hunting outlets and is used in field dressing<br />

deer to cut through the pelvis at the pubic symphysis. The saw consists of<br />

a fine braded chain of three stainless steel wires 48 cm in length. Smaller<br />

irregular segments of wire have been welded to the main wires creating a<br />

cutting edge. The cutting wire is attached to two short handles.<br />

In the absence of saw teeth one of the few practical properties of both<br />

saws is the cutting width or diameter. For the MXZ saw 10 measurements<br />

were made perpendicular to the blade recording the maximum width across<br />

the carbide chips. This width ranged from 1.85 to 2.23 mm with an average<br />

width of 1.99 mm. For the zip saw 10 measurements were made<br />

perpendicular to the long axis of the saw in the center segment of the saw<br />

recording the maximum width across the cutting wires. This ranged from<br />

1.40 to 1.59 mm with an average width of 1.51 mm.<br />

Experimental saw cuts were made using long bones of the white tailed<br />

deer (Odocoileus virginianus). Partial (false starts) and complete cuts were<br />

made. Kerf widths were measured for the partial cuts, and both partial and<br />

fully cut surfaces were examined for class-specific characteristics.<br />

The MXZ saw does not cut so much as gouge bone like sandpaper.<br />

The kerf width at mid cut ranged from 2.02 to 2.50 mm. This is greater than<br />

the measured width of the blade and is attributable to the lack of teeth to<br />

maintain blade control through the cut. Despite this the superior margins of<br />

the partial cuts were parallel throughout their range. Chipping was evident<br />

along the superior margins of both sides of the cut. The kerf floor was<br />

marked by parallel striations running the length of the floor. The kerf<br />

profile can be characterized as U-shaped with roughly parallel walls. The<br />

fully cut surfaces display fine striations similar to those of toothed saws.<br />

The striations were less sharp than in toothed blade cuts, however.<br />

The zip saw chisels bone more like a toothed saw but like the MXZ<br />

saw lacks the regularity provided by saw teeth. The zip saw also cuts in a<br />

curved axis with the cutting force varying in application with how the saw<br />

is applied to the bone. The kerf width at mid cut ranged from 1.50 to 1.60<br />

mm. This is nearly the same as the measured width of the blade. The<br />

superior margins of the partial cut surface were parallel throughout their<br />

range. Chipping was evident along only one side of the superior margin of<br />

the cut surface. Given the flexible blade this reflects the direction of<br />

pressure applied to the bone. The kerf floor was marked by parallel<br />

striations running the length of the floor. The kerf profile can be<br />

characterized as semi-circular with well rounded walls at the base. The<br />

fully cut surfaces are marked by fine curved striations similar to those<br />

created by circular and gigli saws. The curved striations were most obvious<br />

at the beginning and end of the cut. This corresponds to the most curved<br />

pressure being applied to the bone surface.<br />

In conclusion the absence of teeth, while removing a substantial<br />

amount of saw information, does not negate the possibility of identifying<br />

saw class.<br />

Bone, Cut Marks, Saws<br />

H39 DNA Quantification of<br />

Burned Skeletal Tissue<br />

* Presenting Author<br />

Jamie Daniel Fredericks*, Lower Bank Road, Fulwood, Preston,<br />

Lancashire PR2 8NS, UNITED KINGDOM; and Tal Simmons, PhD,<br />

Department of Forensic and Investigative Sciences, University of Central<br />

Lancashire, Preston, Lancashire PR1 2HE, UNITED KINGDOM<br />

After attending this presentation, attendees will understand the effects<br />

of temperature on gross morphology and DNA degradation in bone. The<br />

study will in turn provide an aid in producing a standardized protocol for<br />

extracting and processing DNA from burnt bone.<br />

This presentation will impact the forensic community by<br />

demonstrating high temperatures promote DNA degradation in skeletal<br />

tissue and that DNA is unlikely to be extracted from bone exposed to<br />

temperatures above 200°C. The use of PTB in DNA extraction has shown<br />

to increase DNA yields. PTB is a potential agent in increasing DNA yields<br />

for DNA profiling from small bone samples.<br />

Forensic anthropologists are often enlisted to utilize investigative<br />

techniques for the identification of human remains. Identifying human<br />

remains using conventional anthropological methods does not necessarily<br />

produce a successful positive identification. In such cases, other techniques,<br />

including DNA typing, may be pursued. Recovered human remains may<br />

have become too fragmented or may have lost their integrity for successful<br />

physical identification or may be accompanied by soft tissues that are too<br />

decomposed for DNA typing. As the only viable sample that may be<br />

available for identification, skeletal tissue is an extremely important source<br />

of DNA. Identifying individuals using DNA profiles derived from bone<br />

samples is becoming increasingly important and has been used to<br />

successfully identify victims from a wide range of scenarios including<br />

natural disasters, terror attacks and armed conflicts. Like all forensic<br />

samples, skeletal tissue can be recovered from a wide variety of<br />

environments. After death, nucleic acids can undergo spontaneous<br />

degradation, which can be accelerated by environmental factors including<br />

pH, temperature and other chemical exposure. These can all hinder DNA<br />

profiling. It is well documented that high temperatures promote DNA<br />

degradation in bone. However, the literature concerning DNA typing from<br />

skeletal tissue exposed to high temperature has thus far been inconclusive<br />

and lacks suitable controls. This study will compare two different DNA<br />

extraction techniques and determine the correlation between DNA<br />

degradation and temperature. This study will in turn provide an aid in<br />

producing a standardized protocol for extracting and processing DNA from<br />

burnt bone and establish potential links with gross morphology as a possible<br />

predictor of quality and quantity of DNA that can be extracted.<br />

Using Bos taurus as an animal model, eight radii were burnt using a<br />

muffle furnace at 100 °C, 200°C, 350 °C and 500 °C for one and three<br />

hours. An untreated sample of fresh radii was used as a control. Using two<br />

different extraction techniques, one using phenol: chloroform: isoamyl<br />

alcohol and the other using phenol: chloroform: isoamyl alcohol plus Nphenacylthiazolium<br />

bromide (PTB), DNA was extracted from each sample<br />

and compared. Samples were then semi-quantified on an agarose gel with<br />

appropriate ladders.<br />

From the results it is clear that an increase in temperature and time<br />

decreases the volume of DNA that can be extracted. High molecular weight<br />

DNA was extracted from untreated samples and samples that were exposed<br />

at 100°C for both one and three hours. Though lower molecular weight<br />

DNA was extracted from samples exposed to 200°C for one and three hours<br />

there was a distinct decrease as the exposure period increased. DNA from<br />

samples that have been exposed to temperatures of 350°C and 500°C for<br />

both one and three hours could not be extracted suggesting that the majority<br />

of DNA has been degraded. There was also a clear difference in gross<br />

morphology. Samples where DNA was extracted had little color change and<br />

intact integrity, while those where DNA extraction was unsuccessful had<br />

charcoal appearance and lateral cracking.<br />

There was also a difference in the volume of DNA extracted when<br />

using the two different protocols. PTB is an agent that cleaves advancedglycation<br />

end-products (AGEs) and results from nonenzymatic<br />

glycosylation. Glucose and other reducing sugars have been shown to react<br />

nonenzymatically with DNA and have been shown to affect both the<br />

238


physical and biological properties of DNA. AGE formation increases with<br />

age and temperature and may explain the fact that, of all the samples where<br />

DNA was extracted, the yield of DNA was increased when using PTB.<br />

This study has shown that temperature has a detrimental effect on<br />

DNA degradation. It has been seen to increase DNA yields from those<br />

where DNA was extant. PTB therefore may be an ideal reagent to increase<br />

DNA yields from small sample sets.<br />

DNA, Bone, Temperature<br />

H40 Early Diagenesis of Bone<br />

and DNA Preservation<br />

Miranda M.E. Jans, PhD*, Institute for Geology and <strong>Bio</strong>archaeology,<br />

Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081 HV,<br />

NETHERLANDS; Andrew J. Tyrrell, PhD, Joint POW/MIA Accounting<br />

Command, Central Identification Lab, 310 Worchester Avenue, Building<br />

54, Hickam Air Force Base, HI 96853; Odile Loreille, PhD, Armed<br />

Forces DNA Identification Laboratory, 1413 Research Boulevard,<br />

Rockville, MD 20850; and Henk Kars, PhD, Institute for Geology and<br />

<strong>Bio</strong>archaeology, Vrije Universiteit, De Boelelaan 1085, Amsterdam, 1081<br />

HV, NETHERLANDS<br />

After attending this presentation participants will understand the<br />

impact of microbial degradation on the preservation of bone and DNA.<br />

Factors that influence early postmortem degradation of bone will be<br />

characterized.<br />

This presentation will impact the forensic community by providing a<br />

straight forward method to estimate and anticipate DNA preservation in<br />

bone.<br />

Skeletal remains are an important resource for forensic identification,<br />

not only for osteological characteristics, but also as a source of DNA.<br />

Unfortunately degradation processes affecting bone can be detrimental to<br />

DNA survival. A major pathway of degradation in human bone is<br />

destruction of the bone structure by micro-organisms such as fungi and<br />

bacteria. This, presumably, has a significant effect on DNA preservation as<br />

bone porosity is increased and biomolecular material is removed. In a study<br />

on the preservation of archaeological bone it was found that intact human<br />

burials show more bacterial alteration than fragmented and processed<br />

bones. Based on this and other work it was hypothesised that bacterial<br />

alteration starts early postmortem during putrefaction of the body and is<br />

mainly caused by commensal bacteria that initially arrive in the bone via the<br />

vascular system. This type of degradation will, in that case, not occur in<br />

situations where putrefactive bacterial growth has been inhibited (e.g.,<br />

extreme temperatures, bactericidal chemicals), or where putrefactive<br />

bacteria have had no opportunity to access the bone (e.g. fragmentation or<br />

butchering).<br />

In the framework of an European Union Marie Curie Fellowship (FP6;<br />

project number 22210), human bone material sampled for DNA at the<br />

Central Identification Laboratory (CIL) has been analysed for degradation<br />

using histology and backscattered electron scanning electron microscopy<br />

(BSE-SEM). Histology is a useful technique to determine both extent and<br />

type of microbial degradation in bone. The aim of the project is to<br />

characterise early degradation of bone, as well as investigate the<br />

relationship between bone preservation and DNA results. More than 70<br />

samples from long bones were analysed at the CIL, from different sites in<br />

Europe, Asia and Oceania. The extent of preservation of the samples, as<br />

well as the pathway of degradation (microbial, physico-chemical) was<br />

assessed.<br />

From the preliminary results it becomes clear that significant<br />

microbial alteration takes place within the first 40-50 years postmortem in<br />

the majority of cases. Microbial alteration seems generally less extreme in<br />

the middle of the transversal bone section, indicating this as a preferred area<br />

for DNA sampling. The type of incident – e.g., plane crash or ground loss<br />

- influences whether bacterial alteration takes place, perhaps explaining<br />

unexpected DNA success in some fragmentary remains. Histology results<br />

will be compared to DNA yield to assess the influence of different types of<br />

degradation.<br />

After attending this presentation participants will understand the<br />

impact of microbial degradation on the preservation of bone and DNA.<br />

Factors that influence early postmortem degradation of bone will be<br />

characterized.<br />

This presentation will impact the forensic community by providing a<br />

straight forward method to estimate and anticipate DNA preservation in<br />

bone.<br />

DNA, Bone Preservation, Histology<br />

H41 The Effect of Carcass Weight on the<br />

Decomposition of Pigs (Sus scrofa)<br />

Heather J. Brand, BA*, 422 Queen Anne Heights, Victoria, British<br />

Columbia V8S 4K6, CANADA<br />

Participants to this presentation will gain knowledge of the factors that<br />

influence decomposition, particularly the effect of carcass size on rate of<br />

decomposition. Participants will also come to understand the variability<br />

associated with rate decomposition and the difficulty of standardizing a<br />

method of postmortem interval estimation.<br />

The results of this experiment will benefit forensic science in the fields<br />

of postmortem interval estimation and rate of decomposition research. The<br />

research demonstrates that carcasses weighing between 10-20kgs<br />

decompose at a rate that statistically is not significantly different. These<br />

results will further understanding of the effect of carcass weight on rate of<br />

decomposition when calculating postmortem interval.<br />

Establishing postmortem interval (PMI) is a complex procedure,<br />

which is influenced by many factors including rate of decomposition.<br />

Research is necessary to understand the precise effect of each influencing<br />

factor in order to increase the accuracy of PMI estimations. The aim of this<br />

study, conducted at the University of Central Lancashire, UK, is to<br />

determine the effects of carcass size on the rate of decomposition for<br />

surface depositions using domestic pig carcasses (Sus scrofa). Three<br />

weight groups of three carcasses each were established within the total<br />

sample size of nine pigs: 10kgs, 15kgs, and 20kgs. Each pig was humanely<br />

dispatched with a captive bolt to the cranium, which was plugged with a<br />

pithing cane to minimize physical trauma to the carcass. Carcasses were<br />

laid out wrapped in chicken wire to prevent vertebrate scavenging while<br />

still allowing insect access.<br />

Data collection was performed approximately every 45 ADD<br />

(accumulated degree days) between May 19 and July 15, 2007. Each pig’s<br />

rate of decomposition was recorded using Megyesi et al (2005) body region<br />

and total body scoring (TBS) method. Several factors known to influence<br />

decomposition were also documented: soil pH, regional weather<br />

conditions, rainfall, body temperature, interface temperature, lux, and<br />

carcass weight loss. Additionally, as part of the data collection procedure,<br />

Ppotographs were taken of the each carcass and maggots were collected<br />

from various bodily regions and reared for identification. According to<br />

Vass et al (2001) a total of 214 ADD is required for skeletonization of<br />

carcasses weighing between 0 and 49lbs (0-22kgs) based on a study with<br />

seven cadavers. However, ater this study’s conclusion at 734 ADD,<br />

complete skeletonization was still not observed. The author believes that<br />

this is due to record high rainfall experienced during the experiment, which<br />

deterred insect activity.<br />

Using a Pearson’s Correlation, a positive correlation was shown<br />

between ADD and carcass TBS, r (151) =.97, p


that no significant difference exists between carcass size and decomposition<br />

score, F(8, 144) = .202, p=.990, carcass size and percentage of weight loss,<br />

F(8, 144) =.280, p=.972, or any of the other factors controlled for.<br />

Carcass Weight, Decomposition, Accumulated Degree Days (ADD)<br />

H42 Patterns of Perimortem Fracture<br />

From Military Aircraft Crashes<br />

Franklin E. Damann, MA*, National Museum of Health and Medicine,<br />

Armed Forces Institute of Pathology, 6825 16th Street, NW, Bldg 54,<br />

Washington, DC 20306-6000; and Rebekkah Adler, BS, Derek C.<br />

Benedix, PhD, and Elias J. Kontanis, PhD Joint POW/MIA Accounting<br />

Command (JPAC), Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam Air Force Base, HI 96853-5530<br />

After attending this presentation, the attendee will understand the<br />

patterns of perimortem fractures of the extremities from fatal military<br />

aircraft crashes.<br />

This presentation impacts the forensic community by demonstrating<br />

how anthropological analyses of perimortem fractures augment traditional<br />

inquires of aviation pathology. This research is discussed within the<br />

historical context of aviation pathology, while drawing attention to<br />

applications of perimortem fracture analyses.<br />

This paper presents fracture pattern analysis among the six antimeric<br />

long bones; specifically, the frequency of fractured elements, the location of<br />

fractures within these elements, and the distribution of fracture types among<br />

the elements are evaluated. The authors hypothesize that given various<br />

incident parameters, such as aircraft performance power to weight ratios<br />

and seating position, the distribution of fracture types and locations among<br />

the six antimeric long bones will enable probability statements for<br />

differentiating individuals, thereby aiding identification of passengers from<br />

multi-seated aircraft by reducing the list of potential identities associated<br />

with specific sets of remains. With regard to seating position, it follows that<br />

the location of pilots and crew at the time of impact is important to this<br />

study. That stated, the particular activities of pilots and/or crew prior to a<br />

crash are not certain; undoubtedly, a pilot attempting to egress during<br />

decent will experience different fractures than one who remains at the<br />

aircraft controls. However, based on historic documentation we feel that<br />

the cases used herein include those representing controlled flights into<br />

terrain.<br />

The aircraft accidents reported in this study span a 27 year period from<br />

1942 to 1969 and include incidents from World War II, Korean War, and<br />

Vietnam War, with the majority of the samples from WWII. Frequency data<br />

are made available due to the efforts of the Joint POW/MIA Accounting<br />

Command Central Identification Laboratory (JPAC CIL) in fulfillment of<br />

the mission to recover and identify deceased U.S. service members.<br />

Therefore, the distribution of fractures discussed herein represents what is<br />

expected from non-survivor populations. Evidence-based data are recorded<br />

from CIL photographs, analytical notes, identification reports, and/or direct<br />

observation of skeletal remains. Fracture frequency data are compiled from<br />

32 individually-identified decedents involved in 18 separate aircraft<br />

crashes. For every case each long bone of the upper and lower extremities<br />

is divided into fifths and a complete inventory of elements by region is<br />

recorded as absent, present, or present with at least one perimortem fracture.<br />

If a region contains observable perimortem fractures then the fracture type<br />

is recorded as comminuted, oblique, transverse, spiral, and/or longitudinal.<br />

Prior to fracture analysis, sample bias is assessed since data are derived<br />

from archaeologically recovered remains. Fracture patterns are established<br />

by comparing ratios of fracture presence to total presence of elements and<br />

element regions.<br />

Recovery frequency of 85% is determined as a ratio of element<br />

regions present to total expected for the 32 individuals, suggesting<br />

relatively good preservation and recovery for the samples used in this study.<br />

Results of frequency tabulation and fracture pattern analysis are described.<br />

The frequency of fractures between right and left elements is equable,<br />

* Presenting Author<br />

suggesting no significant difference among right and left elements for this<br />

study. Observations between upper and lower extremity fractures for the 32<br />

casualties are consistent with that previously reported (χ2 = 4.370, df = 1, pvalue<br />

= 0.037) suggesting that the higher frequency of fracture in the lower<br />

extremities (0.61) relative to the upper (0.50) is not by chance alone.<br />

Interestingly, stratifying data by natural breaks in aircraft performance<br />

power-to-weight ratios the overall fracture distribution between aircraft that<br />

have a power-to-weight ratio ≤ 0.056 hp lb-1 is significantly different from<br />

those that have a ratio ≥ 0.15 hp lb-1 (χ2 = 4.841, df = 1, p-value = 0.028).<br />

Of particular interest however, is the fracture pattern of pilots compared to<br />

non-pilots, regardless of aircraft performance. In this study, pilots display<br />

a greater frequency of perimortem fracture (0.63) than non-pilots (0.41) for<br />

all elements evaluated; and in fact, pilots are expected to display fractures<br />

just over two times that of non-pilots (χ2 = 14.615, df = 1, p-value = 0.000).<br />

Based on the distribution of fracture ratios per element region, pilots<br />

experienced midshaft fractures with a greater frequency and consistency<br />

than non-pilots, suggesting odds of a pilot with a midshaft fracture is just<br />

over two times that of non-pilots. The greatest difference between pilots<br />

and non-pilots occurs at the tibia midshaft where odds of fracture are nearly<br />

four times that of non-pilots. Of all midshaft fractures (n = 75) 45% are<br />

comminuted fractures relative to the other four fracture types recorded.<br />

Demonstrated is the biomechanical response of bone to multiple acute<br />

forces and the relationship to the forward seating position through<br />

comparison of perimortem fracture frequencies of pilots and non-pilots that<br />

did not survive their respective crash incidents. Fractures resulting from<br />

multiple forces including longitudinal compression and angular and axial<br />

forces are typically displayed at the location of greatest load. As evidenced<br />

by the data collected in this study the area of greatest load experienced by<br />

bones of the extremities is at midshaft. In this study, discernible patterns of<br />

perimortem fracture among bones of the extremities emerge through<br />

anthropological analyses.<br />

Trauma, Perimortem Fracture, Aircraft Crash<br />

H43 Predicting the Location of Scattered<br />

Human Remains: When Will Heads<br />

Roll and Where Will They Go?<br />

Gretchen R. Dabbs, BA, MA*, University of Arkansas, 330 Old Main,<br />

Fayetteville, AR 72701<br />

Attendees of the presentation will be able to identify the slope at which<br />

fleshed and skeletonized heads will begin to roll downhill in a forensic<br />

setting.<br />

This presentation will impact the forensic community by providing<br />

Information useful to identify when it is feasible for investigators to identify<br />

slope as a factor in the distribution of skeletal remains, as opposed to other<br />

vectors such as carnivores. Additionally, GIS technology will be applied to<br />

the data to recognize potential for modeling the predicted final deposition<br />

of skeletal remains.<br />

The skull is one of, if not the, most forensically significant skeletal<br />

elements in the human body. Whether it be through assessment of nonmetric<br />

traits, or through the more complex collection of craniometric data,<br />

the skull provides the only reliable information for assessing ancestry. It<br />

can be used in the assessment of both sex and age, when the pelvis is either<br />

unavailable or ambiguous. The maxilla and mandible house the dentition,<br />

which is an easy and inexpensive method of positive identification via<br />

comparison with antemortem dental records. Unfortunately for law<br />

enforcement and forensic scientists, the old adage “Heads will roll!” takes<br />

a quite literal interpretation in forensic work. Recent case work in<br />

Northwest Arkansas has provided the inspiration for this pilot study.<br />

Situated in the foothills of both the Boston and the Ozark Mountains, the<br />

forested areas of Northwest Arkansas find level ground a scarce<br />

commodity. Whether it be due to carnivorous activity or the hilly terrain,<br />

the most common situation law enforcement and field recovery teams<br />

encounter include the obstacle of scattered body elements, which<br />

240


complicates the recovery process to the nth degree, and often results in the<br />

loss of information via incompletely collected remains. When the<br />

unrecovered elements include the skull, massive amounts of vital<br />

information have been lost. This work addresses one of the two major<br />

elements responsible for the scattered nature of skeletal remains in<br />

Northwest Arkansas, and many other areas of the country, the hilly terrain<br />

and its potential to disperse remains downhill. The results of a pilot study<br />

designed to ascertain the feasibility of continued research in the<br />

quantification of the degree of slope at which heads will begin to roll<br />

downhill in the forensic context are reported in this work. In a highly<br />

controlled laboratory setting, a single fleshed head from a cadaver donated<br />

for scientific research, with the first three cervical vertebrae attached, was<br />

experimentally rolled down a slope a total of 120 times, starting in three<br />

different positions. These three positions include facing uphill, facing<br />

downhill, and with the face towards the ground. It was physically<br />

impossible to place the skull in an anatomically correct position on the back<br />

of the skull, facing skyward, because the weight of the mandible pulled the<br />

rest of the head down and over onto the caudal surface of the attached<br />

vertebrae. This position was eliminated from the study early on in the<br />

process. Preliminary data suggests that the starting position of the head<br />

relative to the hillside influences the degree of slope required to break<br />

gravitational inertia and begin the downhill roll. In fleshed head<br />

experiments, the nose presented a hurdle that must be overcome for the<br />

head to roll downhill. First round research shows that heads facing uphill<br />

will roll on hills with lower slopes than heads positioned facing downhill.<br />

Further testing on the skeletonized crania is required and planned to identify<br />

the pattern unique to skeletonized remains. Additionally, this study uses<br />

GIS technology to examine the potential applicability and feasibility of this<br />

research in the design of field recovery plans. It is hypothesized that<br />

watershed analysis will allow the researcher to easily predict the areas of<br />

greatest likelihood of deposition of scattered remains based on the terrain<br />

and conditions of each specific recovery site quickly and easily using<br />

readily available United States Geological Services terrain maps.<br />

Forensic Recovery, GIS, Forensic Anthropology<br />

H44 Identifying Sharp Force<br />

Trauma on Burned Bones<br />

Daniel W. Jackson, MA*, and Pamela M. Steger, MS*, Travis County<br />

<strong>Medical</strong> Examiner’s Office, 1213 Sabine Street, PO Box 1748, Austin,<br />

TX 78666<br />

After attending this presentation, attendees will have a better<br />

understanding of the effects that liquid accelerant-only fires have on the<br />

identification of pre-existing sharp force trauma to the radius, ulna, carpals,<br />

and metacarpals.<br />

This presentation will impact the forensic community by<br />

demonstrating experimental research under controlled settings in order to<br />

confirm or deny interpretation of perimortem defects on burned remains.<br />

The role of the forensic anthropologist has become vital to fire<br />

investigations that involve human remains. It is likely that the forensic<br />

anthropologist will be asked to assist in interpreting skeletal defects that<br />

may have been caused by such forces as heat exposure and/or trauma to<br />

bones. To successfully complete this task, the anthropologist must be<br />

familiar with the various effects that fire has on human remains, as well as<br />

knowledge of fracture patterns and cut-mark morphology indicative of<br />

trauma. This study investigates the effects that liquid accelerant-only fires<br />

have on the identification of pre-existing sharp force trauma to the radius,<br />

ulna, carpals, and metacarpals. Wounds to these bones are commonly<br />

called defense wounds because they are created when victims try to defend<br />

themselves from a sharp instrument attack.<br />

This study tests the hypothesis that various forms of sharp force<br />

trauma produced on fresh bone and then subjected to fire will still retain<br />

identifiable cut morphology that can be used to differentiate the sharp force<br />

trauma from the fragmentation effect of the fire. Included in this study are<br />

several variables not combined together in previous experiments, making<br />

this investigation a unique approach to the problem of identification of<br />

sharp force trauma. These variables included multiple types of instruments,<br />

uncut remains used as study controls, outside observers for conducting<br />

blind testing, and use of a variety of different liquid accelerants.<br />

The experimental design used the distal half of pig (Sus scrofa)<br />

forelimbs to simulate human forearms. The limbs were acquired with the<br />

soft tissue still intact. In other words, there were no alterations to the limb<br />

to more closely approximate the fresh tissue state of a human inflicted<br />

during an attack. After five limbs were cut with a different instrument (meat<br />

cleaver, an ice pick, a common straight edged kitchen knife, a machete, and<br />

a serrated steak knife) they were placed together on a metal grate inside a<br />

large metal pan along with one uncut limb as a control. Subsequently, one<br />

gallon of a liquid accelerant was poured on top of all the limbs and into the<br />

pan. Only one accelerant was used at a time, and there was no mixing of<br />

liquids. The fire was started, allowed to burn until the liquid accelerant was<br />

completely consumed, and the fire was completely out. This procedure was<br />

repeated four times with four different accelerants. The accelerants<br />

included 87 octane unleaded gasoline, diesel, kerosene, and turpentine.<br />

With six limbs being used for each of the four accelerant burning episodes,<br />

a total sample size of 24 limbs was used in the experiment.<br />

The analysis phase consisted of attempting to identify sharp force<br />

trauma (if any) on the remains without knowing which tool was used. The<br />

attempt to identify injuries was done at the macroscopic level only. If no<br />

trauma was found, the remains were recorded as uncut. However, if<br />

evidence of sharp force trauma was found, an attempt was be made to<br />

correctly identify which particular tool was employed.<br />

While the destructive force of fire does often produce fractures, it has<br />

been demonstrated that defects caused by the sharp force trauma would still<br />

be identifiable after the fire. This experiment, then, is a test of the ability of<br />

forensic anthropologists to locate possible sharp force trauma on human<br />

remains in cases that involve fire.<br />

The results of the post-fire analysis compared with the pre-fire data<br />

made it clear that there are some limitations in the identification of sharp<br />

force injuries to burned remains. The current study showed that while the<br />

presence or absence of sharp force trauma was identifiable most of the time<br />

(73.9%), the presence of sharp force trauma was missed six times. The<br />

missed trauma was mostly due to extreme fragmentation of remains from<br />

their burning. Most often, it was the radius and ulna that were broken into<br />

numerous small pieces, making it difficult to find cut marks on these<br />

elements.<br />

Forensic Anthropology, Sharp Force Trauma, Burned Remains<br />

H45 Fracture Patterns in Fleshed and<br />

De-Fleshed Pig Femora Inflicted<br />

With Various Ammunition Types<br />

Joanna Yaffa Kay, BA*, 222 South 150th Circle, Omaha, NE 68154<br />

Upon the completion of this presentation, those in attendance will<br />

have received a broader knowledge of the field of ballistics and a greater<br />

understanding of the effects of bullets of varying construction, velocity,<br />

energy, and calibre impacting on the femur before and after being defleshed.<br />

The findings of this study will assist the forensic community in<br />

exploring new methods of estimating calibre size and ammunition type<br />

from long bone fracture patterns, which will assist investigators in<br />

identifying and/or excluding potential types of ammunition and weapons in<br />

the absence of fired cartridge casings. Discovering if there is a significant<br />

difference between bullet impact on fleshed and de-fleshed bones will help<br />

researchers conduct meaningful, accurate studies.<br />

In order to examine wound ballistics on long bones, controlled<br />

experiments were preformed on pig femora. The fleshed femora were shot<br />

from a distance of 1.5 feet between the muzzle of the gun and the target.<br />

241 * Presenting Author


Four replicates of the following ammunition were inflicted on separate<br />

femora: 9 mm jacketed soft point (JSP) bullets, 9 mm full metal jacket<br />

bullets (FMJ), .38 calibre jacketed soft point bullets, and .357 calibre full<br />

metal jacket bullets. Two replicates of the same ammunition were inflicted<br />

upon de-fleshed femora. The resulting wound ballistics was analyzed in<br />

order to make correlations between fracture patterns and specific<br />

ammunition.<br />

The aim of this study is to test the hypothesis that if a certain<br />

combination of calibre and type of ammunition is used to inflict injury on a<br />

femur, then the specific ammunition will produce fracture patterns and<br />

dimensions unique to that ammunition. This study also aims to determine<br />

if experiments on fleshed bone will produce similar results to experiments<br />

on de-fleshed fresh bones. Through an examination of parameters such as<br />

fracture patterns, number and length of fractures, and the number and size<br />

of bone fragments, it will become apparent whether or not there are<br />

significant differences between commonly used bullet calibres and types, as<br />

well as between fleshed and de-fleshed bones.<br />

The findings of this study will assist in exploring new methods of<br />

estimating calibre size and ammunition type from long bone fracture<br />

patterns, which will assist investigators in identifying and/or excluding<br />

potential types of ammunition and weapons in the absence of fired cartridge<br />

casings. Discovering if there is a significant difference between bullet<br />

impact on fleshed and de-fleshed bones will help researchers conduct<br />

meaningful, accurate studies.<br />

The impact of bullets on bones that were shot while the bones were<br />

fleshed was different from those that were shot when they were de-fleshed.<br />

The fleshed bones broke into fewer fragments and fewer fracture lines were<br />

formed around the entrance. In addition, only rarely did butterfly fragments<br />

form when the fleshed bones were shot; however, every bone shot after<br />

being de-fleshed presented butterfly fragments.<br />

In the first group of bones that were shot while fleshed, ammunition of<br />

the same calibre and from the same gun, but of differing bullet types,<br />

produced completely different results. The 9 mm JSP bullet caused more<br />

fragmentation, fracture lines, and more complex fractures than were<br />

presented in those bones shot with the 9 mm FMJ bullet. Though the 9 mm<br />

FMJ has a slightly higher kinetic energy, the energy transferred to the bone<br />

was more with the JSP bullet. Instead of penetrating straight through the<br />

specimen, the JSP bullet tends to deform and expand, causing the bullet to<br />

lose more energy, and hence cause more destruction, in the bone.<br />

In the group of bones shot when de-fleshed, both the 9 mm JSP and<br />

the .357 FMJ caused entrance wounds that did not produce a circular defect<br />

with a measurable diameter. The entrance wounds were of similar size,<br />

however, the exit wound of the .357 FMJ was larger than that of the 9 mm<br />

JSP. This shows that although the construction of the JSP bullet should<br />

result in more destruction because of deformation of the soft point bullet,<br />

the ammunition with greater kinetic energy caused more damage.<br />

Each 9 mm JSP and .38 JSP ammunition showed a complex spiral<br />

fracture with more than 3 intermediate fragments as well as complex<br />

irregular fractures with shattering, while the .357 FMJ and 9 mm FMJ<br />

showed only complex irregular fractures with shattering as labelled through<br />

the A/O Classification System (Orthopaedic 1996).<br />

The slight differences in calibre among the .38, .357 and 9mm did not<br />

seem to affect the specimen.<br />

Ballistics, Fracture Pattern, Gunshot Wound<br />

H46 Decomposition Scoring as a Method<br />

for Estimating the Postmortem<br />

Submersion Interval of Human<br />

Remains Recovered From United<br />

Kingdom Rivers - A Comparative Study<br />

Abigail C. Lagden, BSc*, and Tal Simmons, PhD, Department of Forensic<br />

and, Investigative Sciences, University of Central Lancashire, Preston,<br />

* Presenting Author<br />

Lancashire PR1 2HE, UNITED KINGDOM<br />

This presentation will make attendees aware of how a scoring system<br />

that reflects decomposition can be used reliably to estimate the postmortem<br />

submersion interval when human remains are recovered from an aquatic<br />

environment. They will also be provided with evidence that indicates how<br />

a single scoring system may be applicable across different aquatic<br />

environments.<br />

This presentation will impact on the forensic community by providing<br />

a better understanding of the variables that affect decomposition in aquatic<br />

environments and showing how this knowledge has been used to produce a<br />

reliable method for estimating postmortem submersion interval, that could<br />

be applicable across different aquatic environments.<br />

When human remains have been submerged in water for any length of<br />

time, estimation of the postmortem interval becomes difficult. This is due<br />

to the limited amount of research that has been carried out into the changes<br />

that occur when a body undergoes decomposition in an aquatic<br />

environment and what variables influence these changes. It is accepted that<br />

these decompositional changes, and the rates at which they occur, are<br />

different to those observed in terrestrial environments, but it is unclear how<br />

they differ and whether they also vary from one aquatic environment to<br />

another. This study aims to provide an understanding of how the<br />

decomposition of human remains progresses in the River Mersey, UK and<br />

whether it differs from decomposition as observed in other UK rivers.<br />

A fifteen year retrospective study was carried out of forty nine cases<br />

where human remains were recovered from the River Mersey, UK.<br />

Information was obtained by reviewing coroner’s case files, containing<br />

records of the individual’s demographics, police reports and postmortem<br />

examination reports. For a number of cases it was also possible to view<br />

postmortem and scene photographs.<br />

For each case, the body was divided into three areas; the head and<br />

neck; the torso; and the limbs. Information was then recorded for each area,<br />

detailing the characteristics of decomposition observed in the postmortem<br />

photographs, and those described in the pathologist’s report. Using this<br />

information, a scoring system was produced for each area to reflect the<br />

sequential stages of decomposition observed in the study sample. Each<br />

case in the sample was then scored using this system, and the three resulting<br />

scores summed to provide a Total Aquatic Decomposition Score (TADS).<br />

Multiple regression was carried out to establish which independent<br />

variables (sex, BMI, age, salinity, level of clothing, season of entry,<br />

postmortem submersion interval {PMSI} and accumulated degree days<br />

{ADD}) had an effect on the assigned decomposition score. Only PMSI<br />

and ADD showed a significant correlation with TADS, and separate<br />

regression models were produced to estimate each of these variables from<br />

TADS.<br />

Similar models had previously been produced for cases recovered<br />

from the River Thames, UK and the River Clyde, Scotland, UK, and<br />

comparisons were made among the three sets of results. An analysis of<br />

covariance (ANCOVA) was used to compare the regression models (TADS<br />

vs. ADD) for each of the three rivers. This revealed no significant<br />

difference between the models derived for the Mersey and the Clyde. The<br />

Thames model, however, was shown to have a significantly different<br />

intercept from the other two rivers, although there was no significant<br />

difference between the gradients. It is thought that this may be explained<br />

by inter-observer differences, as the scoring system produced for the<br />

Thames study was difficult to apply to the Mersey cases, resulting in similar<br />

scores for cases with very different decomposition characteristics.<br />

A further 21 cases were reviewed of human remains recovered from<br />

canals throughout Merseyside and Cheshire. Each case was scored using<br />

the system developed above and a regression model was applied to show<br />

the relationship between TADS and PMSI. When ANCOVA was used to<br />

compare this study sample with those from the three rivers, there was no<br />

significant difference between the canal, Mersey or Clyde models. The<br />

Thames model, however, was again shown to be significantly different to<br />

the other models.<br />

These results indicate that the stages of decomposition and the rate of<br />

decomposition in relation to ADD are consistent across the UK rivers<br />

242


studied. It also suggests that a single model for estimating PMSI may be<br />

applicable to other aquatic environments.<br />

Decomposition, Aquatic, Postmortem Interval<br />

H47 Sealed for Your Protection, Part I:<br />

The Effects of an Unknown Corrosive<br />

Agent on Human Bone<br />

Laura C. Fulginiti, PhD*, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007; Kristen Hartnett, PhD, Office of Chief <strong>Medical</strong><br />

Examiner, Forensic Anthropology, 520 1st Avenue, New York, NY 10016;<br />

Frank Di Modica, Phoenix Police Department, 620 West Washington<br />

Street, Phoeniz, AZ 85003; and Diane Karluk, MD, Maircopa County<br />

Office of the <strong>Medical</strong> Examiner, 701 West Jefferson, Phoenix, AZ 85007<br />

Upon reading this poster, the participant will learn that human bone<br />

can be completely destroyed by exposure to corrosive agents such as<br />

muriatic acid.<br />

The impact on the forensic community will be to raise the level of<br />

awareness regarding the detrimental effects of common household<br />

corrosives on human bone and teeth.<br />

After attending this presentation, attendees will be aware of the<br />

potential corrosive effects of common household chemicals on human<br />

skeletal remains. Characteristics of the chemical and methods to determine<br />

the type used will be presented.<br />

On July 7, 2001 a woman and her two children left home in Phoenix,<br />

Arizona to visit relatives in the Midwest. They never arrived. On August<br />

21, 2001, the woman’s husband was arrested based on blood and<br />

circumstantial evidence found at the residence. On April 1, 2002 he was<br />

convicted of three counts of first degree murder and given the death penalty.<br />

For the next three years, a variety of tips poured into the Maricopa<br />

County Sheriff’s Office regarding the location of the remains of the woman<br />

and her children. The lead author participated in several excursions to the<br />

house and surrounding desert areas to search for remains. Every skeleton<br />

recovered was thought to be the missing woman. At one point, the lead and<br />

third author were called to a county north of Phoenix to participate in the<br />

excavation of a mine where an informant claimed that the husband had said<br />

he dropped the body and covered them with tons of dirt and rock.<br />

On October 19, 2005 a crew crating palo verde trees in order to<br />

relocate them discovered two fifty gallon drums submerged in the rocky<br />

soil. The first drum was badly damaged by the backhoe and the contents<br />

thrown to one side. When the second drum was uncovered, the backhoe<br />

caught the edge of the lid and flipped it off to reveal the contents. A<br />

woman’s foot was sticking up out of the drum. When the workers went<br />

back to the first drum, they discovered that the material was human tissue.<br />

A third drum was discovered two weeks later after an extensive search.<br />

Sheriff’s detectives assumed that the adult victim was the missing woman<br />

and that the other two drums contained her children. The lead, second, and<br />

third authors participated in all of the search and recovery phases for each<br />

of the drums.<br />

The autopsy and subsequent anthropological and dental examinations<br />

of the bodies revealed that they represented portions of the missing victims.<br />

Age-at-death for the children was determined by radiographic and gross<br />

examination of the epiphyseal plates. The adult female received a standard<br />

anthropological examination and was subsequently circumstantially<br />

identified by dental radiographs. The original antemortem radiographs<br />

were flipped and therefore could not be used to establish positive<br />

identification.<br />

The remains of the adult female exhibited both perimortem traumata<br />

and postmortem damage. They were fairly complete however the tissue<br />

and bone appeared to be corroded, as if by some form of acid. There was<br />

damage to the facial skeleton, the arms and the legs of the victim. The<br />

female child was represented solely by portions of the pelvic girdle and<br />

proximal femora. She too exhibited the effects of some sort of corrosive<br />

substance, particularly on the shafts of the femora. The male child was<br />

represented by six fragments of bone. They were also from the pelvis and<br />

femora, but had the appearance of tree bark.<br />

In each of the areas where the drums were located, items of evidence<br />

supported the use of some type of corrosive material. There were numerous<br />

white plastic protective seals with “Sealed for your Protection” written<br />

across them; nine were recovered around the male child’s drum alone. In<br />

addition, the adult victim’s drum had breached into the soil and a large<br />

amount of greenish, yellow stained earth was located around the bottom of<br />

her drum. This material had a ph of 3.34 (acidic) with mostly chloride ions,<br />

which could be consistent with hydrochloric or muriatic acid.<br />

This poster presents the various aspects of this case including the<br />

search and recovery, the age-at-death determinations and the investigation<br />

of the corrosive material used to “dissolve” the remains. Ongoing research<br />

in the lab regarding the effects of different acidic materials on bone, teeth,<br />

hair, skin, tissue and muscle will be presented at a subsequent American<br />

Academy of Forensic Sciences meeting.<br />

Taphonomy, Acid Etching, Skeletal Remains<br />

H48 Mummification and Palynology:<br />

What We Can Learn in Regards<br />

to Time and Location of Death<br />

Cheslee Cornell*, and Nicole A. Wall, MFS, College of Saint Mary,<br />

Forensic Science Program 7000 Mercy Road, Omaha, NE 68106<br />

This research is dedicated to the amount of time it takes for the<br />

mummification process to take place in piglets, while being buried in<br />

different materials such as; a tarp, a rug, a plastic bag, and a fleece blanket.<br />

These piglets were documented periodically for changes in decomposition<br />

using soil analysis and also for pollen deposition. Acetolysis will be used<br />

to process and stain the pollen for identification and imaging purposes. It<br />

is has been proven beneficial to use swine in order to determine different<br />

aspects of the decomposition process which helps death investigators to<br />

accurately determine time of death issues. Also, checking different types of<br />

pollen present in different regions of Nebraska has been proven very<br />

beneficial in determining location and season of death as well. The piglets<br />

were buried in multiple locations around Omaha, NE. They were buried in<br />

Ashland, NE; Bennington, NE; Atkinson, NE; and Valley, NE. The soil<br />

types were identified and certain results regarding pH, conductivity, and<br />

moisture content were recorded. Currently, we are also considering lipid<br />

phosphate and fatty acid methyl ester analysis (along with nitrogen and<br />

carbon content) to give us more input concerning the certain soil changes<br />

that occur during the decomposition process. In the end, a timeline and<br />

pollen profile will be constructed based on the data obtained to help<br />

investigators understand the time it may take for small human victims to<br />

reach natural mummification status and also assist in determining the<br />

location (season) death.<br />

Mummification, Soil, Pollen<br />

H49 Forensic Osteology Research Station<br />

(FOREST): A New Facility for Studies<br />

of Human Decomposition<br />

243 * Presenting Author


Cheryl A. Johnston, PhD*, Western Carolina University, Department of<br />

Anthropology & Sociology, 101 McKee Building, Cullowhee, NC 28723<br />

Those attending this presentation will come away with an overview of<br />

Western Carolina University’s new outdoor laboratory for decomposition<br />

studies and an understanding of the nature of the research that will be<br />

carried out in the outdoor laboratory. Attendees will learn why it is<br />

important for there to be more than one outdoor decomposition laboratory<br />

in the United States.<br />

This work impacts the forensic community by its contribution to our<br />

collective knowledge and understanding of how humans decompose, how<br />

the timing of decomposition changes depending on the environment and<br />

how the environment is altered by decomposition. The forensic community<br />

will be further affected by this presentation because it includes a call for<br />

collaboration among researchers at other institutions with outdoor<br />

decomposition laboratories and those planning future decomposition<br />

laboratories.<br />

One of the questions forensic anthropologists are often asked is: how<br />

long does it take a body to decompose? The answer depends on numerous<br />

variables many of which have to do with the environmental conditions in<br />

which the decomposition occurs. Observations of decomposing human<br />

remains can help us formulate an answer in a given location. In order to<br />

formulate answers applicable to broader areas we must focus on collecting<br />

decomposition data and associated environmental data in more than one or<br />

two locations so that patterns specific to physiographic regions may be<br />

identified. There is a need for at least one outdoor decomposition laboratory<br />

in each physiographic region of the United States. There is a need to<br />

identify classes of data that will be collected similarly in each region.<br />

A new outdoor decomposition laboratory has been established in the<br />

mountains of Western North Carolina. It is touted in the popular press to be<br />

the second such facility in the nation although plans for several others are<br />

underway. The Western Carolina University outdoor laboratory has been<br />

dubbed the “FOREST” (Forensic Osteology Research Station). Its internal<br />

dimensions are roughly 17 meters by 17 meters and it is delimited by a<br />

wooden privacy fence and a chain link protective fence topped with razor<br />

wire. The FOREST is located in a rural area adjacent to Western Carolina<br />

University in Cullowhee, North Carolina on a 500+ acre undeveloped<br />

property recently acquired by the university. The surrounding terrain is<br />

mountainous and the facility is on a steep slope and is surrounded by and<br />

encloses moderately dense forest vegetation.<br />

It is known that the environment affects decomposition and that<br />

decomposition changes the environment in the vicinity of a body. Prior to<br />

placing the first corpse at the FOREST an environmental survey of the<br />

interior of the facility and the area immediately surrounding it was<br />

conducted in order to provide baseline data of the plant and animal life<br />

present as well as soil composition and chemistry. Future plans include<br />

repeating this survey seasonally as long as the facility is in use.<br />

Decomposition, Environment, Physiography<br />

H50 <strong>Bio</strong>mechanics of Blunt Ballistic Impacts<br />

to the Forehead and Zygoma<br />

Greg Crawford, MS,; David Raymond, MS*, Chris Van Ee, PhD, and<br />

Cynthia Bir, PhD, Wayne State University, 818 West Hancock, Detroit,<br />

MI 48201<br />

Upon reviewing this poster, investigators will gain insight into<br />

previously unknown biomechanics governing the impact response and<br />

tolerance of the forehead and face to blunt ballistic impacts. Injury criteria<br />

will be explored to identify key engineering parameters linking specific<br />

fracture morphology to impact characteristics.<br />

This presentation will affect the forensic community by offering a<br />

totally unique scientific data set on skull and facial fracture tolerance and<br />

morphology due to blunt ballistic impacts. Investigators will gain insight<br />

into the biomechanics of skull and facial fracture and be presented with a<br />

* Presenting Author<br />

complete set of fracture morphology data with linked with biomechanical<br />

parameters measured through leading edge instrumentation. This data will<br />

assist investigators in forensic reconstruction of skull and facial trauma.<br />

Circumstances leading to skull and/or facial trauma may not always be<br />

known due to the lack of witnesses, inability of the patient to recall or<br />

articulate the events that led to the trauma or patient death. A forensic<br />

biomechanist may be brought in to work with a forensic pathologist or a<br />

forensic anthropologist to relate the mechanics involved with causing<br />

particular types of fractures. He/she may perform evaluations of various<br />

impact scenarios using biomechanical surrogates and injury criteria to<br />

assess the likelihood of producing fractures that match the physical<br />

evidence. Unfortunately, the current biomechanical surrogates and injury<br />

criteria developed by automotive safety researchers fall short of providing<br />

necessary information for the reconstruction of specific fracture types due<br />

to a lack of controlled impact studies. Head injury criteria and<br />

biomechanical data are needed to extend the understanding behind blunt<br />

ballistic impact tolerance and for fracture-specific risk assessment. The<br />

primary goal of this research was the advancement of fracture-specific head<br />

injury criterion for the assessment of localized blunt ballistic impacts to the<br />

forehead and zygoma.<br />

Experimental impact testing was performed on five (5) isolated,<br />

unembalmed postmortem human subjects. Specimens were impacted to<br />

the frontal and zygoma regions of the face with a 38 mm diameter rigid<br />

impactor, launched via a ballistic air cannon. Specimens were instrumented<br />

with a nine-accelerometer array to document global head response. Local<br />

bone response was measured by Rosette-style strain gages attached to the<br />

outer cortical layer surrounding the impact sites. Soft tissue was left intact<br />

at the impact sites. Impact force was calculated from a 20,000 g<br />

accelerometer mounted to the rear aspect of the impactor. High speed video<br />

captured the impact at 10,000 frames per second. Post-test CTs were<br />

obtained along with detailed autopsies documenting resulting fracture<br />

patterns. Fracture criteria were explored through logistic regression<br />

analysis of measured parameters and compared with previously developed<br />

head injury criteria. Goodness of fit was evaluated by the chi-squared<br />

statistic, p-value and Nagelkerke R2 . Significance levels were set at p <<br />

0.05.<br />

Twenty (20) impacts were performed in total with ten impacts to the<br />

frontal bone and ten to the zygoma regions. Of the ten impacts to the<br />

forehead, fractures were produced in four cases. Fractures ranged from<br />

local linear to depressed, comminuted. Of the ten impacts to the zygoma,<br />

fractures resulted in four cases. Fractures were primarily of the “tripod”<br />

type in addition to comminuted fracture of surrounding bone. Peak fracture<br />

forces for the frontal bone and zygoma ranged between 4,413 to 9,438 N<br />

and 575 to 2,746 N respectively. Acceleration data from the array indicates<br />

that the skull does not respond as a rigid object under these loading<br />

conditions which limits the ability to utilize the nine-accelerometer array for<br />

estimating center-of-gravity acceleration. This indicates deformation-based<br />

measures should be investigated further in future experimental studies.<br />

Logistic regression results indicate that strain-based measures were<br />

statistically significant predictors of fracture followed by acceleration of the<br />

head (P < 0.05). While impact force demonstrated increase risk of fracture<br />

with increasing force, this was not a statistically significant predictor of<br />

fracture.<br />

Current biomechanical models are not equipped to measure skull<br />

deformation or strain. These measures are currently most effectively<br />

measured through finite element models. The basic biomechanical data<br />

from this study will first and foremost serve as validation for advancement<br />

of finite element models of the head to the blunt ballistic impact<br />

environment. Additional efforts can then be put forward into development<br />

of an advanced fracture-prediction model. The current results indicate that<br />

effort should begin with strain-based criterion for blunt ballistic forehead<br />

and facial fracture.<br />

<strong>Bio</strong>mechanics, Skull Fracture, Ballistics<br />

H51 The Effectiveness of Papain<br />

244


in the Processing of Remains<br />

Bobbie J. Kemp, MS*, University of Pittsburgh, Department of<br />

Anthropology, 3302 Wesley W. Posvar Hall, Pittsburgh, PA 15260;<br />

Luis Lorenzo Cabo-Pérez, MS, Mercyhurst College, Department of<br />

Applied Forensic Sciences, 501 East 38th Street, Erie, PA 16546; John J.<br />

Matia, BS, 901 Jancey Street, Pittsburgh, PA 15206; and Dennis C.<br />

Dirkmaat, PhD, Mercyhurst Archaeological Institute, Mercyhurst College,<br />

Glenwood Hills, Erie, PA 16546<br />

The goal of this presentation is to demonstrate the potential of the<br />

papain enzyme in the process of soft tissue removal.<br />

This presentation will impact the forensic community by<br />

demonstrating a simple, non-aggressive method of soft tissue removal, with<br />

applications in both forensic investigations and osteological collection<br />

curation.<br />

The removal of soft tissue to allow for direct examination of bone<br />

poses an important challenge to forensic anthropologists. The researcher is<br />

confronted with the issues of using a nondestructive method while<br />

remaining within time constraints. At present, the main alternatives<br />

available are based on maceration in either plain water or in solutions of<br />

chemicals or enzymes. True maceration in plain water is slow and<br />

infamously odiferous. Bleach or detergents serve both to speed the process<br />

and to mitigate the odor, but are much more aggressive to the bone tissue,<br />

requiring close monitoring. Heat treatment can be added to both types of<br />

maceration to increase reaction speed, but at the cost of significantly<br />

increasing their aggressiveness.<br />

The present study tests the utility and efficiency of papain for soft<br />

tissue removal in forensic settings. Papain is a proteolytic enzyme<br />

(protease) derived from the papaya fruit (Carica papaya). Proteases are<br />

highly specific enzymes that induce protein decomposition (proteolysis), by<br />

promoting hydrolysis of the peptide bonds that link amino acids. Therefore,<br />

these enzymes would primarily target the protein content of muscle and<br />

connective tissue (ligaments, tendons, and cartilage), rather than the mineral<br />

or tightly packaged organic matrix of the bone. Papain offers the advantage<br />

of being a versatile enzyme with a multitude of uses, including medical<br />

applications in the removal of scar tissue or herniated discs, or as a<br />

component of household meat tenderizers. This translates in a widespread<br />

commercial availability and, importantly, in a moderate cost.<br />

This experimental design was constructed to: (1) test the efficiency of<br />

a pure papain solution against those of other alternative solutions and a<br />

blank control, in terms of time and bone integrity, (2) assess the minimal<br />

effective concentration of papain required for significant tissue removal (an<br />

important factor in relation to the cost/efficacy ratio of the method), and (3)<br />

estimate the effect of papain concentration and time on bone integrity.<br />

Nonfrozen store-bought chicken (Gallus gallus) legs were used as an<br />

animal proxy in this study. Chicken legs were selected for study due to their<br />

uniformity and availability, allowing for more effective randomization and<br />

larger sample sizes. Additionally, the lower density and relative wall<br />

thickness of avian bones, as compared to mammals, was expected to result<br />

in higher ratios of organic to mineral bone content, and therefore higher<br />

rates of enzymatic bone destruction. This confers a necessary conservative<br />

approach to the bone destruction estimates, in comparison to those expected<br />

in human remains for the same concentrations of the enzyme.<br />

The chicken limbs were randomly assigned to different solutions of<br />

equal volumes of distilled water and varying concentrations of papain<br />

<strong>Bio</strong>Chemika powder from Sigma Aldrich, a solution of household meat<br />

tenderizer, and a control of water. All solutions were kept at a constant heat<br />

of 50°C. Soft tissues were manually removed at fixed times, avoiding the<br />

use of any aiding or surgical instrument, and the wet weight of the removed<br />

and remaining tissue (including bone) was recorded. Wet weight was also<br />

recorded before treatment, and wet and dry weights after treatment, in order<br />

to control for bone degradation in terms of weight loses.<br />

Differences in bone degradation were tested through a repeated<br />

measurements ANOVA design, with initial wet and final dry weights as<br />

dependent variables. Time differences were assessed through a one-way<br />

ANOVA analysis of the times required for complete tissue removal.<br />

Finally, linear regression techniques served to assess the influence of papain<br />

concentration on time for complete tissue removals.<br />

The results strongly suggest that papain maceration is a viable and<br />

efficient method for tissue removal, significantly reducing processing time<br />

and the risk of bone damage, deserving further research and application in<br />

forensic and curation contexts. The concentrations of papain necessary to<br />

obtain useful results place the method within a reasonable rank of costeffectiveness,<br />

especially in those cases where bone integrity and time<br />

constraints play a significant role. Pending a more detailed study, a<br />

preliminary yet reliable processing protocol for papain is provided.<br />

Papain, Maceration, Enzyme<br />

H52 Beating a Dead Pig to Death: An Actualistic<br />

Test of Archaeological Assumptions<br />

Kerriann Marden, MA*, Dept of Anthropology, Tulane University, 1326<br />

Audubon Street, New Orleans, LA 70118<br />

After attending this presentation, attendees will understand how<br />

forensic taphonomy can inform archaeological interpretations of a specific<br />

type of anthropogenic mark on bone.<br />

This presentation will impact the forensic community by<br />

demonstrating whether damage to human bone which has previously been<br />

attributed solely to the action of hammer and anvil could also result from<br />

trauma caused by interpersonal violence with stone weapons.<br />

When anthropogenic abrasion is observed on the surfaces of fractured<br />

archaeological long bone specimens, this taphonomic feature is generally<br />

assumed to indicate that that the bone was absent of flesh at the time it was<br />

broken, allowing the tools to abrade the bone surface. Several<br />

archaeological investigations of human remains recovered from pre-<br />

Columbian, ancestral pueblo sites of the Southwest have concluded that the<br />

assemblages represent cannibalized remains (most recently, see White<br />

1992; Turner and Turner 1997; Hurlburt 1999 and 2000; Lambert, Billman<br />

and Leonard 2000; Kuckelman, Lightfoot and Martin 2002). Abrasion of<br />

long bone surfaces along the fracture margins is among the suite of<br />

taphonomic traits which forms the basis of a cannibalism interpretation,<br />

with the assumption that this abrasion results from the use of hammer and<br />

anvil stone tool technology on defleshed human bone surfaces in order to<br />

exploit the marrow within (Turner and Turner 1999).<br />

This research tests the hypothesis that vigorous assault to fleshed<br />

skeletal elements with a stone weapon can produce abrasion on long bone<br />

surfaces which mimics that caused by hammer and anvil breakage of<br />

defleshed bone. It is hypothesized that violent interpersonal conflict—in<br />

which a stone club is wielded with sufficient velocity to shatter the<br />

underlying bone—could cause similar bone surface abrasion as the weapon<br />

head tears through skin and muscle and makes contact with underlying<br />

skeletal structures.<br />

It has been well established that modern analogues and experimental<br />

models can inform archaeological taphonomic interpretations (see for<br />

example Binford 1981; Bunn 1983 and 1989; Shipman and Rose 1984;<br />

Behrensmeyer, Gordon and Yanagi 1986; Blumenschine 1988; Fiorillo<br />

1989; Gifford-Gonzales 1989; Pickering and Wallis 1997; Saul and Saul<br />

2002). This actualisitic study used fleshed hind limbs of pigs (Sus scrofa)<br />

as analogues for human limbs, with one leg from each pair of limbs (n=5<br />

pair) fixed vertically with pipe vises, in order to simulate the semi-fixed<br />

response of a weight-bearing limb. Each bone was struck with a replica<br />

stone club with force approximating a blow given during warfare, and<br />

recorded in digital video format. The five antimeres were manually<br />

defleshed, then cracked open over an anvil rock using a hammerstone<br />

replica, which was also recorded in digital video format. All specimens<br />

were then macerated in hot water and examined for abrasion. Observed<br />

abrasion was recorded, photo-documented, and compared to archaeological<br />

samples displaying putative hammer and anvil damage. Results supporting<br />

the hypothesis will suggest that taphonomic agents other than perimortem<br />

hammer and anvil breakage could generate this form of abrasion, whereas<br />

245 * Presenting Author


esults rejecting the hypothesis will provide further evidence for the extant<br />

osteoarchaeological interpretation.<br />

Taphonomy, Trauma, Archaeology<br />

H53 Gunshot Residue (GSR) on Bone as a<br />

Potential Indicator of Gunshot Trauma<br />

in the Absence of a Bullet Wound Defect —<br />

A Noteworthy Observation<br />

Hugh E. Berryman, PhD*, Middle Tennessee State University,<br />

Department of Sociology and Anthropology, Box 10, Murfreesboro, TN<br />

37132; and Alicja K Kutyla, BS*, Middle Tennessee State University,<br />

MTSU Box 60, Murfreesboro, TN 37132<br />

Attendees will be shown a rib with fracture morphology consistent<br />

with blunt trauma that was produced by a bullet. Scanning Electron<br />

Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDXA) is<br />

used to confirm the presence of gunshot residue (GSR) along the fracture<br />

surfaces, and serves to clarify fracture mechanism.<br />

The use of an SEM and EDXA on bone fractures has the potential of<br />

impacting the forensic community by providing a means of determining<br />

whether a bullet was involved and a mechanism of trauma.<br />

During a recent examination of skeletal case for bone trauma, a<br />

fractured rib was found with missing bone fragments. It was conjectured<br />

that the fracture resulted from gunshot trauma, but it lacked the<br />

characteristic bevel of an entrance or exit wound. An examination of the<br />

bone fracture surfaces with a scanning electron microscope was proposed<br />

to search for microscopic particles from the bullet (i.e., bullet wipe) as a<br />

means of confirming the mechanism of trauma. However, upon<br />

examination no metal residue was found. The question then became<br />

whether it is possible to fracture a bone with a bullet without leaving<br />

microscopic metal particles.<br />

Pork ribs were used as a bone model. Each of four ribs, with<br />

approximately one inch of attached muscle, was placed inside a plastic bag<br />

and shot once at close range (i.e., 12 inches). The first three were shot with<br />

Remington .38 caliber, 158 grain, round nose lead bullets and the fourth<br />

with a Winchester .45 caliber, 185 grain, full metal jacket bullet. After each<br />

rib had been shot the muscle and as much of the periosteum as possible was<br />

physically removed. Each rib was then placed in a paper bag to dry in an<br />

incubator at 40º Celsius (approximately 104º Fahrenheit) for five days in<br />

preparation for the SEM. After the ribs were dry they were allowed to cool.<br />

The fracture pattern on each of the ribs was examined to verify bullet<br />

direction. The intended path was through the plastic bag, through<br />

approximately one inch of muscle and then through the rib, passing from<br />

external to internal. The bullet defect in the first three ribs produced the<br />

expected entrance wound bevel. The bullet missed the fourth rib<br />

completely, but the bone was nonetheless fractured by the proximity of<br />

bullet. The bone was likely missed due to the obscuring, overlying muscle,<br />

coupled with the inaccuracy of the shooter (i.e., first author). Had these<br />

bones been recovered from a skeletal case, three of them would have been<br />

interpreted as gunshot trauma; however, the rib not directly impacted by the<br />

bullet would have likely been interpreted as blunt trauma. The fracture<br />

morphology of this rib defines areas of tension and compression indicating<br />

an external to internal bending and associate plastic deformation typically<br />

associated with slow loading.<br />

Each rib fragment was placed in the Hitachi S-3400 SEM for visual<br />

analysis. The specimens were not coated with carbon or gold, as is the<br />

usual case. Although the four bones examined did not exhibit macroscopic<br />

evidence of bullet wipe, the surfaces near the fractures all exhibited<br />

microscopic concretions determined by the Oxford INCA Energy 200<br />

Dispersive X-Ray Analyzer as lead, antimony and barium (i.e., GSR). GSR<br />

is a common finding on a shooter’s hand or on other objects near the gun<br />

after firing, but it is surprising to find it on bone covered by muscle tissue<br />

* Presenting Author<br />

and enclosed within a plastic bag. Additionally, GSR was present on both<br />

the entrance and exit side of the bone. The mixture of antimony, barium and<br />

lead from the primer may accompany the bullet as a vapor and eventually<br />

deposits on the bone as it cools.<br />

This simple finding of GSR on both the entrance and exit side of the<br />

bone is both surprising and promising. The most obvious application of this<br />

observation—if borne out by future research—is its use as an indicator of<br />

bullet related trauma in bone fracture cases that may present as blunt<br />

trauma. Despite the forceful removal of soft tissue necessary to prepare the<br />

bones for this study, the GSR deposits remained intact. Future tests will be<br />

needed to determine whether GSR integrity on bone can be maintained<br />

through the decomposition process. With increased sample size,<br />

differences in amount or perhaps ratio of barium, antimony and lead could<br />

serve to indicate bullet direction. Observations, such as soot, stippling and<br />

powder residue, are currently used to estimate weapon to victim distance.<br />

Perhaps with additional research, GSR on bone could provide another<br />

means of determining weapon distance applicable to both autopsy and<br />

skeletal cases.<br />

The use of an SEM and EDXA on bone fractures has the potential of<br />

impacting the forensic community by providing a means of determining<br />

whether a bullet was involved and a mechanism of trauma.<br />

Gunshot Residue, Gunshot Trauma, Terminal Ballistics<br />

H54 Use of Facial Indices for Comparative<br />

Metric Facial Identification After<br />

Parametrical Superimposition<br />

Francesco Introna, MD*, Antonio De Donno, PhD, Domenico<br />

Urso, PhD, and Valeria Santoro, PhD, Section of Legal Medicine,<br />

Department of Internal and Public Medicine (DiMIMP) - University<br />

of Bari, P.zza Giulio Cesare n.11, Bari, 70124, ITALY<br />

The goal of this presentation is to prove the somatic correspondence<br />

between the criminal and the suspect by means of a mixed superimposition<br />

image.<br />

This study will impact the forensic community by demonstrating the<br />

possible use of facial indices for personal identification after a parametrical<br />

superimposition. The parametrical superimposition is a tested technique in<br />

which each suspect is positioned exactly in the same place and with the<br />

same posture assumed by the subject to identify, filmed during a crime,<br />

usually bank rubbery.<br />

If parametric superimposition is positive and close up of the face of the<br />

rubber is available then it is possible to perform a metric analysis between<br />

the image of the face of the criminal and the image of the face of the suspect<br />

obtained at the end of the best mixed parametrized superimposition in order<br />

to have personal identification on statistic basis. Different parameters can<br />

be used for comparing metric analysis between analogous marked points on<br />

the two faces in comparison (absolute distances, relative distances, triangle<br />

perimeters and area, form factors, facial indices).<br />

In a previous study we showed that no statistic comparison can be<br />

reliable unless prior parametrical somato-physical superimposition of the<br />

images of the subjects in comparison. At the current state of art, no<br />

comparison between facial indices can be accepted for identification<br />

purposes unless supported by positive findings in a prior parametric<br />

somato-physical superimposition.<br />

It is also supposed in anthropology that facial indices are not<br />

influenced by head movements. As a consequence we decide: (1) to test the<br />

opportunity to use facial indices as metric parameters to compare the two<br />

faces obtained at the end of parametric superimposition, and (2) to<br />

determine if facial indices evaluated on photo are not really influenced by<br />

head movements, in order to justify a metric comparison even in the case of<br />

a not perfect parametric superimposition.<br />

Materials and method: 20 subjects were invited to take up a precise<br />

series of different head positions and then filmed in two different times.<br />

246


Image acquisition was made, taking care to place each subject exactly on<br />

the same environment, position and attitude using the same lighting, filming<br />

equipment and technique. All the films were taken with diffuse, known<br />

studio lighting, using a professional video camera with variable focus fixed<br />

at a distance of about 4 mt. A prior superimposition, correctly carried out,<br />

was essential for the subsequent metric analysis of compared images. Two<br />

sets images of the face were taken for each subject from different facial<br />

angles (frontal, rotated 15° and 30° to the right and left, 20° flexion and 20°<br />

extension). In each images it was possible to identify accurately<br />

anthropological points such as glabella, nasion, gnathion, subnasal point,<br />

super and subauralis points, etc. The height of the face was measured as the<br />

distance between the nasion (the deepest point of the root of the nose) and<br />

the gnathion (the lowest point on the median sagittal plane of the front of<br />

the chin); the height of the nose, defined as the distance from the nasion to<br />

the subnasal point (apex of the naso-labial angle on the median sagittal<br />

plane); the height of the chin, defined as the distance between the stomion<br />

(the point where the median sagittal plane converges with the labial<br />

commissure, with the mouth closed) and the gnathion; the height of the ears,<br />

defined as the distance in a straight line from the apex of the helix to the<br />

lowest point of the lob). The following facial indices were thus calculated:<br />

Index X: (chin height/morphological height of the face); Index Y: (nose<br />

height/morphological height of the face); Index Z: (ear<br />

height/morphological height of the face).<br />

The four facial indices were then calculated from each image; the aim<br />

was to verify if there were substantial statistic differences comparing the<br />

index values of the face belonging to the same subjects taken in different<br />

time and in the same position of the head and then to verify if there were<br />

statistical differences comparing facial indices belonging to the same<br />

subjects taken in different time and in different position of the head.<br />

A dedicated program was used for the statistical analysis.<br />

Results showed: (1) the high reliability of discriminated power of the<br />

facial indices for personal identification just for images of the two faces in<br />

comparison placed in the same attitude, (2) the poor reliability of<br />

discriminated power of the facial indices in personal identification for face<br />

images in different position.<br />

These results stress the opportunity to use facial indices as metric<br />

parameters for personal identification in facial comparison only if a full<br />

positive previous superimposition is performed.<br />

Personal Identification, Facial Index, Parametrical Superimposition<br />

H55 Ancestry Informative Markers (AIMs)<br />

and Forensic Anthropologist’s New<br />

Competition: Understanding the Theories,<br />

Methods, and Techniques for Allocating<br />

Ancestry in the Field of Forensic Genetics<br />

Cris E. Hughes, MA*, University of Californiaat Santa Cruz, 5405<br />

Prospect Road, #7, San Jose, CA 95129<br />

The goal of this presentation is to better understand the present<br />

technological ability of geneticists to determine population affinity of<br />

individual humans. A brief history of the field of genetic contributions to<br />

understanding human phenotypic and genotypic variation and its role<br />

within forensics will be discussed. In addition, the presentation will review<br />

the current standing of this new genetic competition for determining<br />

ancestry, while considering the differences and similarities of the<br />

anthropological and genetic methods and theories for making this<br />

determination. The presentation will also examine the future roles for both<br />

fields in determining population affinity of human remains while discussing<br />

the capabilities and limitations unique to each.<br />

This presentation will impact the forensic science community by<br />

making attendees aware of the advances in the field of genetics that show<br />

potential for the ability to assess ancestry. Understanding the future roles<br />

for both anthropologists and geneticists in determining population affinity<br />

of human remains and the capabilities and limitations unique to each will<br />

aid in our understanding of one of the most complex questions in our field:<br />

ancestry, race, and morhpological variation.<br />

The goal of this presentation is to update the forensic anthropological<br />

community on the advances in the field of genetics that show potential for<br />

the ability to assess ancestry. After this informative presentation, the<br />

audience will better understand the present technological ability of<br />

geneticists to determine population affinity of individual humans. A brief<br />

history of the field of genetic contributions to understanding human<br />

phenotypic and genotypic variation and its role within forensics will be<br />

discussed. In addition, the presentation will review the current standing of<br />

this new genetic-based technique for determining ancestry, while<br />

considering the differences and similarities of the anthropological and<br />

genetic methods and theories for making this determination. The<br />

presentation will also examine the future roles for both fields in determining<br />

population affinity of human remains while discussing the capabilities and<br />

limitations unique to each.<br />

This new genetic technology called ancestry informative markers, or<br />

AIMs, and other types of population sorting genetics were originally<br />

developed for understanding population-based diseases or the prevalence of<br />

certain diseases in specific populations. Along with this research that<br />

utilized portions of the genetics sequence of populations, it became possible<br />

to look for genetic characteristics that were unique to each sampled<br />

population. With the discovery of these unique AIMs, the questions of race,<br />

region, and ethnicity have made their way into genetic studies. Sampling<br />

techniques, population boundaries, and preconceived ideas about race all<br />

play a major role in the interpretation of the genetic data. Additionally, the<br />

ethical treatment of data and public access to the data are presently disputed<br />

topics. Current discussions in the field of population genetics focus on<br />

these issues and how to approach these topics with an air of objectiveness—<br />

something that forensic anthropologists have sought to attain for decades.<br />

Though geneticist are far from reaching a conclusion, these dialogues<br />

often parallel those within forensic and physical anthropology surrounding<br />

race and morphological population variation. With the onset of a different<br />

field of expertise attempting to allocate and understand ancestry in the<br />

forensic context, it is the responsibility of the forensic anthropologist to<br />

understand how these assessments are made and how we can collaborate<br />

with the field of forensic genetics to initiate a more accurate understanding<br />

and ability of the allocation of ancestry.<br />

References:<br />

1 Bamshad M., Wooding S.,Salisbury B.A.,Stephens J.C. 2004..<br />

Deconstructing the relationship between genetics and race. Nat. Rev.<br />

Genet. 5, 598−609<br />

2 Yang et al. 2005. Examination of ancestry and ethnic affiliation using<br />

highly informative diallelic DNA markers: application to diverse and<br />

admixed populations and implications for clinical epidemiology and<br />

forensic medicine. Human Genet. 118:382-392.<br />

3 Hinds et al. 2005. Whole-Genome patterns of common DNA<br />

variation in three human populations. Science 307:1072<br />

4 Rosenberg et al. 2003. Informativenes of genetic markers for<br />

inference of ancestry. Am. J. Hum. Gen. 73:1402-1422.<br />

5 Collins-Schramm et al. 2004. Mexican American ancestryinformative<br />

markers: examination of population structure and marker<br />

characteristics in European Americans, Mexican Americans,<br />

Amerindians and Asians. Hum, Genet. 114:263-271.<br />

6 Kittles, R.A. and Weiss, K.M. 2003. Race, Ancestry, and Genes:<br />

Implications for Defining Disease. Annual Review Genomics Hum.<br />

Genet. 4:33-67.<br />

7 Templeton, A.R. 1999. Human Races: A Genetic and Evolutionary<br />

Perspective. American Anthropologist 100(3):632-650.<br />

Ancestry, Genetics, Race<br />

H56 Introduction to the Use and Limits of<br />

Elemental and Isotopic Analysis for the<br />

247 * Presenting Author


Forensic Provenancing of Unidentified<br />

Human Remains<br />

Jurian A. Hoogewerff, PhD*, University of East Anglia, , Norwich,<br />

Norfolk NR4 7TJ, UNITED KINGDOM<br />

The presentation is focused on familiarizing forensic anthropologists<br />

with elemental and isotopic analysis of human remains as part of the special<br />

session “new technologies in forensic anthropology.”<br />

This presentation will impact the forensic science community by<br />

providing a basic understanding of what information elemental and isotopic<br />

profiling can and cannot provide. In this presentation, attention will be<br />

giving to sampling techniques, test design, calibration and validation of the<br />

instrumental techniques, risk factors, and methods for interpretation. A<br />

quick overview of the state of the art and the directions for future research<br />

will be included.<br />

The ultimate goal in the investigation of unidentified human remains<br />

is establishing the identity of the individuals. DNA analysis and odontology<br />

are the only truly confirmative techniques but the identification requires<br />

reference samples and/or ante-mortem data. In cases where (initially)<br />

reference samples and/or ante-mortem data are not available geographical<br />

provenancing with environmental markers can provide the investigators<br />

with possibilities for more effective searching by excluding options.<br />

Of the environmental markers with a systematic and documented<br />

geographical distribution, pollen and the bio-available elemental and<br />

isotopic markers from water, soil, plants and livestock are the most<br />

promising for forensic investigations.<br />

Large scale systematic, roughly latitudal, spatial differences in the<br />

hydrogen and oxygen isotopic composition of rainwater and subsequently<br />

drinking water are transferred to humans and can be used for large scale<br />

geographical provenancing. Regional differences in bedrock geology, soil<br />

mineralogy and reflect themselves in the elemental and isotopic<br />

composition of regional food supplies which again are transferred to<br />

humans. In pre-modern populations with limited traveling and often local<br />

sourcing of food strong geo-chemical links can be observed with the<br />

regional elemental and isotopic profiles in the environment. In modern<br />

populations inter-regional travel and intercontinental sourcing of food can<br />

confound the theoretical characteristic regional fingerprints.<br />

Although contamination of the remains during environmental<br />

exposure or burial can confound the interpretation of the results the same<br />

analysis can often also indicate if such contamination has actually taken<br />

place.<br />

Consideration should be given to which parts of the remains will be<br />

sampled for analysis as different parts of the skeleton have different<br />

turnover rates and thus the analysis will give different results for different<br />

parts. Although the teeth are best preserved they will probably not be the<br />

best indication of the latest regional environmental background shortly<br />

before death.<br />

Nutritional status, disease and sex may affect both the elemental and<br />

isotopic profiles, e.g., heamochromatosis affecting iron status and the<br />

natural iron isotopic composition.<br />

Especially for the isotopic analysis it is useful to compare results to<br />

databases or spatial models and maps. However the test design and the<br />

analytical accuracy between different laboratories needs to addressed first<br />

and the effects on the interpretation needs to be assessed. A proper test<br />

design and investigation need also to deliver statements about the (spatial)<br />

uncertainty or likelihood of the results.<br />

Examples will be given of this research in which we investigate how<br />

to bring together all relevant case information, e.g., DNA profiles, physical<br />

anthropological traits, elemental and isotopic information, palynology and<br />

other environmental markers in one regional Geo-graphical Information<br />

System which will allow a new level of complexity and thus also a new<br />

level of querying and ultimately interpretation and provenancing of<br />

unidentified human remains.<br />

Forensic Anthropology, Human Provenancing, Geochemistry<br />

* Presenting Author<br />

H57 Extending the <strong>Bio</strong>logical Profile Using<br />

Stable Carbon and Nitrogen Isotope<br />

Analysis: Prospects and Pitfalls<br />

Eric J. Bartelink, PhD*, 400 West First Street, Department of<br />

Anthropology, Butte #311, CSUC, Chico, CA 95929-0400; Melanie<br />

Beasley, BS, 400 West First Street, Chico, CA 95929-0400; Chelsey A.<br />

Juarez, MA, Department of Anthropology, UCSC Social Science 1,<br />

1156 High Street, Santa Cruz, CA 95064<br />

After attending this presentation, attendees will learn about potential<br />

contributions of stable carbon and nitrogen isotope analysis in forensic<br />

anthropology. This paper will highlight areas where stable isotope analysis<br />

can contribute novel information to the biological profile of unidentified<br />

individuals, and will address some practical and theoretical limitations of<br />

these applications.<br />

This presentation will impact the forensic community by<br />

demonstrating a theoretical basis for applications of stable isotope analysis<br />

in forensic anthropology, and its potential for aiding in the positive<br />

identification of unknown individuals.<br />

Although stable isotope analysis has been used extensively by<br />

anthropologists since the 1970s to examine diet and migration patterns in<br />

prehistory, it has had very limited use in forensic anthropology. Stable<br />

isotope analysis is a commonly used tool by other forensic chemists to trace<br />

the origin or composition of soils, drugs, tainted foods, and poached<br />

animals. These same principles can be used by forensic anthropologists to<br />

provide a more comprehensive biological profile of unidentified remains,<br />

especially when standard methods of identification are unsuccessful.<br />

Although the biological profile typically consists of sex, age, ancestry,<br />

stature, and antemortem characteristics, stable isotope analysis can provide<br />

additional information regarding diet and migration history. Juarez [1]<br />

recently provided multi-elemental isotopic data using teeth from nativeborn<br />

Mexicans that may help to identify the birthplace for unidentified<br />

remains of border-crossers. Similarly, Regan et al.’s [2] multi-elemental<br />

isotopic study showed a high level of discrimination between dental<br />

remains of East Asian origin and those of U.S. servicemen and women,<br />

which has implications for identifying war-dead from past conflicts.<br />

Isotopes are atoms of the same element that have the same number of<br />

protons but a different number of neutrons. Unlike radioisotopes, stable<br />

isotopes do not undergo radioactive decay over time, and thus record<br />

chemical signatures of biological and geological processes in nature.<br />

Isotopes of the same element are chemically similar, but react at different<br />

rates in chemical reactions due to differences in atomic mass. This results<br />

in the differential incorporation of one isotope over the other, a process<br />

known as “fractionation”, which accounts for isotopic variation in nature.<br />

Stable isotope ratios are measured through mass spectrometry and values<br />

are reported relative to an international standard using the delta (δ) notation.<br />

Information on human diets is usually acquired through the study of<br />

stable isotopes such as carbon ( 13C/ 12C) and nitrogen ( 15N/ 14N), which are<br />

incorporated into body tissues and provide a chemical record of plant and<br />

animal foods consumed. Carbon isotopes in nature vary based on the<br />

different photosynthetic pathways (C3, C4, CAM) of plants, which are<br />

passed up the foodweb to humans. Nitrogen isotopes vary based on diet,<br />

habitat, and aridity, and can also record the trophic level of protein<br />

resources consumed. δ13C and δ15N values from bone record the average<br />

isotopic composition of the diet over the past 10-15 years of life. However,<br />

δ13C and δ15N values from dental tissues provide a permanent record of<br />

childhood diet as teeth are forming. Carbon and nitrogen isotopes from hair<br />

and keratin provide a more recent dietary record acquired during their<br />

period of growth.<br />

Despite recent advances in isotopic applications in forensic<br />

anthropology, several limitations need to be addressed. The global scale of<br />

food exportation, popularity of bottled water, and lack of baseline<br />

information on modern populations are all limiting factors. Stable isotope<br />

data will continue to be most useful in cases where osteological indicators<br />

248


and contextual information suggest that an individual is non- native to the<br />

area in which they died. This paper will present data from case studies<br />

derived from prehistoric, historic, and modern contexts to highlight<br />

potential uses, abuses, and limitations of stable carbon and nitrogen isotope<br />

analysis in forensic anthropology.<br />

References:<br />

1 Juarez CA. Refining the isotopic fingerprint in modern Mexican<br />

populations: using strontium, carbon, nitrogen, and oxygen to<br />

determine region of origin for deceased undocumented border<br />

crossers. Proceedings for the 59th Annual AAFS Meeting, San<br />

Antonio, TX, 19-24 Feb. 2007; (13)340.<br />

2 Regan LA, Falsetti A, Tyrrell A. Isotopic determination of region of<br />

origin in modern peoples: applications for identification of U.S. wardead<br />

from the Vietnam conflict II. Proceedings for the 59th Annual<br />

AAFS Meeting, San Antonio, TX, 19-24 Feb. 2007; (13):355.<br />

Stable Isotope Analysis, Forensic Identification, <strong>Bio</strong>logical Profile<br />

H58 Studies in Isotopic Variability:<br />

Investigating Human Tooth Enamel<br />

Chelsey A. Juarez, MA*, Department of Anthropology, UCSC Social<br />

Science 1, 1156 High Street, Santa Cruz, CA 95064<br />

After attending this presentation, attendees will learn about the various<br />

types and opportunities for isotopic variability within human tooth enamel<br />

studies. In particular issues of inter-tooth and intra-tooth variability, and<br />

sampling techniques will be discussed.<br />

This presentation will impact the forensic community by investigating<br />

and highlighting the sources of isotopic variability in tooth enamel studies<br />

that are of most concern to forensic anthropologist performing isotopic<br />

analysis.<br />

Stable isotope analysis has provided the forensic community<br />

with a powerful tool for determining region of origin and migrational<br />

patterns in modern populations. However, for forensic scientists<br />

isotopically analyzing region of origin in living populations sample<br />

consistency can be difficult to maintain. There are a number of scenarios<br />

that can affect the isotopic outcome ranging from dissimilar comparative<br />

samples to differing sample techniques. Creating baseline comparatives<br />

and even comparing samples between populations works best when<br />

samples are chemically similar (same tooth or bone type). Unfortunately,<br />

similar samples from a given population maybe difficult to obtain, and there<br />

are few studies on modern populations documenting the isotopic variability<br />

present within different teeth of a given individual or within the enamel of<br />

a given tooth. After attending this presentation, attendees will learn about<br />

the various types and opportunities for isotopic variability within human<br />

tooth enamel studies. In particular issues of inter-tooth and intra-tooth<br />

variability, and sampling techniques will be discussed. This presentation<br />

will impact the forensic community by pinpointing the sources of isotopic<br />

variability in tooth enamel studies that are of most concern to forensic<br />

anthropologist performing isotopic analysis.<br />

Anthropologists have been using stable isotope technologies to<br />

investigate the dietary habits and migrational patterns of archaeological<br />

populations for decades. However, stable isotope analysis of modern<br />

humans within a forensic context is relatively recent. Since 2000, forensic<br />

anthropologists have begun to explore the application of stable isotopes to<br />

studies on migration and region of origin determination of modern<br />

populations. The isotopic analysis of modern forensic material presents<br />

unique obstacles previously non-existent within archaeological<br />

populations. For forensic anthropologist, investigating region of origin the<br />

major obstacles of concern are the isotopic effects of the modern diet, and<br />

sample population similarity. Each of these areas represents major points of<br />

potential variability within modern samples. . In addition to the inherent<br />

isotopic variability of modern samples, sample collection methodologies<br />

and mass spectrometry choices can contribute variation to value outcomes.<br />

Unfortunately, the literature contains few references investigating the<br />

effects of these obstacles for modern population studies. For researchers,<br />

understanding and investigating these obstacles is critical to the<br />

maintenance and reporting of quality science<br />

References:<br />

1 Beard BL, Johnson CM.. Strontium Isotope Composition of Skeletal<br />

Material can determine the Birth Place and Geographic Mobility of<br />

Humans and Animals. Journal of Forensic Sciences, 2000.<br />

Sep;45(5):1049-61<br />

2 Brown CJ, Chenery SRN, Smith B, Tomkins A, Robert GJ, Sserunjogi<br />

L, Thompson M. A sampling and analytical methodology for dental<br />

trace element analysis. The Analyst.2002.(127)319-323.<br />

3 Dahl SG, Allain P, Marie PJ, Mauras Y, Boivin G, Ammann P, et al.,<br />

Incorporation and distribution of strontium in Bone. Bone, 2001. Apr;<br />

28(4):446-53.<br />

4 Price TD, Burton JH, Bentley RA. The Characterization of<br />

biologically available strontium isotope ratios for the study of<br />

prehistoric migration. Archaeometry. 2002. 44 (1) 117-135.<br />

5 Wright LE. Identifying immigrants to Tikal, Guatemala: Defining<br />

local variability in strontium isotope ratios of human tooth enamel.<br />

Journal of Archaeological Science, 2005. April 32 (4): 555-566.<br />

Stable Isotope Analysis, Variability, Tooth Enamel<br />

H59 X-ray Diffraction (XRD) Analysis of<br />

Human Cremains and Concrete<br />

Thomas E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner Office,<br />

3202 Amnicola Highway, Chattanooga, TN 37406; Jonathan W.<br />

Mies, PhD, University of Tennessee at Chattanooga, Department of<br />

Physics, Geology, and Astronomy, Department 6556, Chattanooga,<br />

TN 37403<br />

The goal of this presentation is to propose a new technology and<br />

method for the analysis of human cremains to distinguish between<br />

legitimate and contaminated ashes.<br />

This presentation will impact the forensic science community by. The<br />

attendee will have increased awareness of x-ray diffraction technology to<br />

enhance the scientific analysis of powderized human cremains, which is the<br />

standard product of the crematory industry and which typically has no<br />

visually recognizable bone fragments.<br />

In the continuing pursuit to objectively characterize human cremains<br />

and to identify those that have been substituted or contaminated, we have<br />

determined the mineralogy of cremains and Portland cement and a<br />

combination thereof using powder x-ray diffraction (XRD). Previous<br />

research used inductively-coupled plasma optical emissions spectroscopy<br />

(ICP-OES) to sort these same samples based on their chemical<br />

composition. The present study has demonstrated that, although chemistry<br />

is a good discriminator, the presence or absence of specific crystalline<br />

substances, as determined by XRD, may distinguish potentially<br />

contaminated cremains that were not identified as such by ICP. This<br />

methodology for analysis of cremains had not been proposed in the forensic<br />

anthropology literature at the time of the Tri-State Crematory Incident<br />

(February 2001, Noble, Georgia).<br />

Powder XRD is used to measure the very small (angstrom-scale)<br />

dimensions between atomic planes in crystal structures, which serve to<br />

identify and characterize crystalline materials. Sample preparation requires<br />

only that the material be ground to a flour-like consistency (1 to 5 µ) and<br />

loaded into a sample holder. For the present study, using a Philips<br />

249 * Presenting Author


diffraction patterns were acquired for 5° to 90° 2θ radiation, and standard<br />

procedures PW1830/3550/3710 diffractometer, Cu K and analytical<br />

conditions. To identify crystalline substances, diffraction patterns were<br />

compared with the ICDD reference database.<br />

Samples used for the present study include the known cremains of 8<br />

adult humans (six white males, two white females) and one Canis<br />

familiaris, one questionable set of cremains returned from the Tri-State<br />

Crematory, one sample of Type I general purpose Portland cement, and one<br />

sample of a 50/50 mixture of known human cremains and Portland cement.<br />

All 12 samples were submitted to the XRD lab at UTC without any<br />

identifying labels, with only the knowledge that the samples include human<br />

cremains.<br />

Peaks due to hydroxylapatite (56 peaks in combined reference patterns<br />

24-0033, 09-0432, and 34-0010, 5° to 80° 2θ) dominate diffraction patterns<br />

for the eight samples of human cremains and that two of Canis. Numerous<br />

extra peaks (not matched by hydroxylapatite) in these patterns suggest<br />

minor abundances of lime, sphalerite, sal ammoniac, sylvite, or other<br />

phosphates, but have proven difficult to match with certainty and may<br />

reflect chemical and structural complexities of biological hydroxylapatite<br />

and its cremation-related alterations. Although the sample from the Tri-<br />

State Crematory was found to contain hydroxylapatite (Hap) and was<br />

classified as human cremains based on ICP analysis, it was also found in the<br />

present study to contain significant amounts of mullite (Mul), kyanite<br />

(Kya), and corundum (Cor), common ingredients of refractory furnace<br />

linings and patching products. Calcium silicates (Ca3SiO5 and Ca2SiO4)<br />

were identified in the sample of Portland cement; the absence of<br />

hydroxylapatite in this sample rules out the presence of cremains. Although<br />

the 50/50 mixture was not recognized as such in the blind analysis, it was<br />

suspected of being contaminated cremains based on the identification of<br />

hydroxylapatite and the undue complexity of the diffraction pattern (31<br />

unmatched peaks, some prominent). Upon subsequent examination of<br />

diffraction patterns for the 50/50 mixture and its components, their relation<br />

is clear. These results are summarized below:<br />

Sample # Material XRD Result Unmatched peaks<br />

(Identity) )1(5° to 80° 2<br />

1 human cremains Hap 12<br />

2 human cremains Hap 5<br />

3 Canis cremains Hap 27<br />

4 human cremains Hap 12<br />

5 human cremains Hap 11<br />

6 human cremains Hap 12<br />

7 Tri-State cremains Hap, Mul, Kya, Cor 5<br />

8 human cremains Hap 16<br />

9 human cremains Hap 14<br />

10 human cremains Hap 14<br />

11 Portland cement Ca3SiO5, Ca2SiO4 6<br />

12 50/50 #6/#11 Hap 31<br />

In conclusion, powder XRD may be sufficient to discriminate<br />

cremains from those that are substituted or substantially contaminated.<br />

Undoubtedly, the combination of powder XRD, to identify crystalline<br />

substances, and ICP, to determine chemical composition, more perfectly<br />

authenticates cremains based on more complete compositional criteria.<br />

XRD is simpler in laboratory prep time, costs less per sample, and is widely<br />

available. These high-tech laboratory instruments, coupled with traditional<br />

anthropological methods (weight, color, fragments, artifacts) when<br />

applicable, take the analysis of human cremains to an unprecedented level<br />

of scientific objectivity.<br />

Human Cremains, X-ray Diffraction, Hydroxylapatite<br />

H60 Characterization of Lead, Transition Metal,<br />

and Rare Earth Element Composition of<br />

Human Bone by ICP-MS and LA-ICP-MS<br />

Thomas H. Darrah, MS*, University of Rochester, 227 Hutchison Hall,<br />

* Presenting Author<br />

University of Rochester, Department of Earth & Environmental Sciences,<br />

Rochester, NY 14627; Jennifer J. Prutsman-Pfeiffer, MA, University of<br />

Rochester <strong>Medical</strong> Center, Autopsy & Neuropathology, 601 Elmwood,<br />

Box 626, Rochester, NY 14642; and Robert J. Poreda, PhD, University of<br />

Rochester, 227 Hutchison Hall, University of Rochester, Department of<br />

Earth & Environmental Sciences, Rochester, NY 14627<br />

After attending this presentation, attendees will be better informed<br />

about the capabilities for compositional and isotopic analysis of trace<br />

elements in human bone by traditional ICP-MS techniques. The suitability<br />

of lead, strontium, and rare earth element isotopic compositions for<br />

geographical sourcing of human bones will be discussed. Lead isotopic<br />

analysis will also be used to differentiate between the anthropogenic<br />

sources of human lead exposure. Laser ablation ICP-MS will be used to<br />

provide spatial resolution of trace element concentrations within various<br />

bone tissues (cortical vs. trabecular).<br />

This presentation will have an impact on the forensic science<br />

community by demonstrating the utility of trace element systematics,<br />

isotopic composition, as well as LA-ICP-MS techniques for the analysis of<br />

human bone.<br />

Inductively Couple Plasma Mass Spectrometry has become an<br />

accepted method for highly sensitive, rapid, and reliable elemental analysis<br />

of human bones and biological tissue. Traditional ICP-MS techniques can<br />

provide accurate elemental composition at or below 1 ppb in human bones.<br />

In this study the utility of Laser Ablation (LA)-ICP-MS applications which<br />

can be used to provide rapid and accurate spatial determination of trace and<br />

minor element concentrations is explored. A second application will<br />

explore the ability of ICP-MS to determine the isotopic compositions of<br />

lead to determine the source of environmental lead in the body for trace<br />

elements (i.e., Pb, Sr, and REE).<br />

Laser ablation ICP-MS, will be used in an attempt to provide finite<br />

spatial resolution for trace metal concentrations within human femoral<br />

heads. Previous research has established that the residence time of trace<br />

elements can vary by more than an order of magnitude depending on the<br />

type of bone tissue (i.e., Pb: trabecular: 2-3 years vs. cortical ~30 years).<br />

LA-ICP-MS analysis has the ability to rapidly determine minor and trace<br />

element concentrations across bone transects. For this reason, it is expected<br />

that LA-ICP-MS determination of trace element concentrations (Pb, Cd,<br />

Zn, etc.) may be used to quantify and differentiate between long term, timeintegrated<br />

trace element exposure versus more recent anthropogenic or<br />

environmental inputs.<br />

Various geochemical isotopic techniques have been employed in<br />

attempts at forensic provenancing (Pb, Sr, O, C, N). The trace element<br />

isotopic values of Sr are predominantly a function of soil isotopic values in<br />

the areas where food is grown or animals graze or the water consumed. As<br />

humans consume food or water from a specific region they inherit the<br />

isotopic signature of a specific environment. The application of<br />

environmental typing techniques has become increasingly difficult as<br />

humans have expanded to a ‘global’ diet obtaining foods at grocers as<br />

opposed to farming or local markets etc. The use of two additional isotopic<br />

techniques of rare earth elements and Pb isotopes is proposed which may<br />

provide specific uses in forensic studies.<br />

In a similar manner to strontium isotopes, rare earth elements (REEs)<br />

or lanthanides have distinctive isotopic patterns based upon the geological<br />

history of local soils. In many cases geological fractionation can lead to<br />

very identifiable REE isotopic patterns in geographical regions.<br />

Traditionally REEs have been thought of as having concentrations too low<br />

to have a significant use for biological investigations. ICP-MS analysis can<br />

provide accurate quantification of REEs at the low ppb level. The fact that<br />

REEs also have exceedingly low environmental concentrations with the<br />

exceptions of those used in highly specific medical procedures (Gd as a<br />

contrast-enhancing agent for magnetic resonance imaging and Sm as<br />

radionuclide therapy for painful bone metastases) provides the opportunity<br />

to use REEs for specific forensic applications. Unlike Ca or Sr which have<br />

fairly substantial concentrations in drinking water, REE concentrations are<br />

exceedingly low in drinking water and therefore are almost entirely<br />

indicative of food supply or medical procedure. REEs may provide an<br />

250


alternative method of addressing geographical provenance free of external<br />

environmental influences. REEs have also proven useful in older fossil<br />

analysis as REEs are more resistant to the effects of diagenesis unlike other<br />

environmental isotopes.<br />

Unlike Sr, O, C, N, and REEs, the source of Pb to humans is largely<br />

environmental. The source and magnitude of trace metal exposure have<br />

changed in the last 30 years as environmental regulations have become<br />

more stringent (i.e., the removal of Pb from gasoline in the mid 70’s and the<br />

removal of Pb oxide as a primary pigment in white paint). This study<br />

initially looks at Pb isotopic composition in cortical and trabecular bones.<br />

The authors expect that as the environmental sources of Pb have changed,<br />

we may expect to find isotopic variations between cortical bone and<br />

trabecular bone, with residence times of greater than 30 years and 2-3 years<br />

respectively for Pb retention. As the major sources of Pb contamination<br />

have been removed from the environment, cortical bone is expected to have<br />

high concentrations and a mixture of soil, gasoline, and lead paint Pb<br />

isotopic values. Conversely, trabecular bone formed in the last few years<br />

may have lower concentrations with isotopic values indicative of a mixture<br />

between modern lead sources (coal combustion, smelters, and a more<br />

significant input from natural soil lead). Initial results of Pb isotopic<br />

analysis of human bones from our study and others indicate a mixture of Pb<br />

from numerous environmental sources as well as geographic provenance<br />

which will be further explored. Pb isotopes can be useful for provenance in<br />

cases where subjects are from distinct geographic regions (i.e., Australia vs.<br />

U.S.) with specific Pb isotopic compositions. However, we intend to focus<br />

on the use of Pb isotopic compositions of anthropogenic sources as related<br />

to environmental exposure. The isotopic patterns of lead ores are distinct<br />

yet consistent and therefore can be used for environmental analysis and<br />

potentially forensic studies. For example until 1975 Pb was added to<br />

gasoline as an anti-knocking agent. As most refineries in the United States<br />

are near the Gulf of Mexico, Mississippi Valley lead ore deposits were used<br />

as the Pb source. The distinct isotopic composition of this lead ore has been<br />

used in various environmental studies to determine the source of lead and<br />

may be useful in forensic studies.<br />

Unlike geological applications of Pb isotopes, which rely on<br />

accurately determining exceedingly small variations in isotopic<br />

composition, environmental, and forensic studies can differentiate source<br />

by using a three isotope plot (208Pb/206Pb vs. 207Pb/206Pb) of the stable<br />

radiogenic Pb isotopes. Utilizing all Pb isotopes allows for easy<br />

determination of drastically different isotopic values. Traditional<br />

geochemistry employs thermal ionization-MS with 0.05-0.1% analytical<br />

error. This method is expensive, which may be limiting to financially<br />

deplete departments. The method also requires complete specimen<br />

destruction. A comparison of lead isotopic data to traditional TIMS methods<br />

will be performed. Lead analysis by ICP-MS can achieve an analytical<br />

error ~1% and can easily differentiate between environmental sources of<br />

lead. This study will demonstrate the suitability of ICP-MS and LA-ICP-<br />

MS for a quick and reliable method of screening for both provenance and<br />

environmental isotopic variations of lead isotopes and trace element<br />

patterns.<br />

Lead, Bone Chemistry, LA-ICP-MS/ICP-MS<br />

H61 Comparison of Portable X-ray Florescence<br />

and Inductively Coupled Plasma Mass<br />

Spectroscopy in the Measurement of<br />

Lead in Human Bone<br />

Jennifer J. Prutsman-Pfeiffer, MA*, University of Rochester, University of<br />

Rochester <strong>Medical</strong> Center, Autopsy & Neuropathology, 601 Elmwood,<br />

Box 626, Rochester, NY 14642; and Thomas H. Darrah, MS, University of<br />

Rochester, 227 Hutchison Hall, University of Rochester, Department<br />

Earth & Environmental Sciences, Rochester, NY 14627<br />

After attending this presentation, attendees will be better informed of<br />

the use of portable X-Ray Florescence(pXRF) instrumentation in analyzing<br />

human bone for lead (Pb) concentration as compared to a traditional<br />

laboratory-based method of Inductively Coupled Plasma Mass<br />

Spectroscopy (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS).<br />

This presentation will have an impact on the forensic science<br />

community by demonstrating the utility of portable instrumentation for<br />

rapid, non-destructive analysis of inorganic elements in human bone.<br />

Portable XRF is a relatively new technology that has benefits of being<br />

non-destructive to specimen samples, easy to operate, and convenient to<br />

transport between laboratories or for use in the field. Portable hand-held<br />

units are routinely used in geology, scrap metal sorting, and environmental<br />

monitoring, most notably for the determination of unsafe levels of lead in<br />

soils and paint. XRF analysis in general is capable of giving a rapid reading<br />

of the elemental composition of inorganic material with good sensitivity for<br />

elements above phosphorus in the periodic table. Lead (Pb, Z = 82), for<br />

example, has a detection limit between 10 – 100 ppm. Additionally, the unit<br />

used in this study is built with a miniaturized X-ray source for atom<br />

excitation instead of a radioactive isotope, eliminating the need for special<br />

transportation permits as well as reducing the potential occupational<br />

exposure hazard of operators.<br />

The goal of this study is to explore the reliability of pXRF results with<br />

those of a “gold standard” of inorganic analytical analysis in bone<br />

chemistry, ICP-MS. The study will also explore the utility of laser ablation<br />

ICP-MS (LA-ICP-MS). Traditional ICP-MS requires destruction of a<br />

sample and acid digestion prior to analysis, while LA-ICP-MS requires<br />

minimal destruction of


commingled remains, or the rapid analysis of a large number of samples,<br />

whether bone, teeth, or other material containing inorganic elements. The<br />

capability of the equipment to measure more than one element per analysis<br />

may show to be useful in constructing elemental ratios between different<br />

fragments of material, to perhaps establish provenance to a single<br />

individual. This presentation will only focus on the inorganic element of<br />

Pb, with bone serving as the biomarker of environmental exposure.<br />

Portable X-ray Florescence (pXRF), Lead (Pb), Bone<br />

H62 Species Identification of Fragmented Bone:<br />

Evaluation of a New Method of Pyrolysis<br />

and X-ray Diffraction Analysis<br />

Sophie Beckett, MSc*, and Keith D. Rogers, PhD, Cranfield University,<br />

Cranfield Forensic Institute, Department of Materials and Applied<br />

Science, Shrivenham, Swindon, SN6 8LA, UNITED KINGDOM<br />

After attending this presentation, delegates will have been introduced<br />

to the method of pyrolysis and X-ray diffraction analysis for species<br />

identification of bone.<br />

The presentation will impact the forensic community through the<br />

availability of a quantitative analytical technique for species identification<br />

and is of interest to a wide range of forensic investigators. It is relevant to<br />

a wide range of forensic situations such as murder investigations, mass<br />

fatality response, customs investigations, quality assurance of crematoria<br />

practices, and quality assurance of animal feed production.<br />

When bone is recovered in forensic scene examinations or confiscated<br />

through customs investigations, the establishment of species identity is<br />

often crucial. In most cases, this is achieved by identifying unequivocal<br />

morphological features of a particular species on the recovered bone.<br />

However, species identification can be challenging when bone lacks any<br />

distinguishing morphological characteristics. Such situations arise, for<br />

example, with severely fragmented or powdered bone. In these cases, the<br />

limitations of the existing techniques that are currently available to forensic<br />

investigators restrict their success at species determination.<br />

This paper introduces a new means of species identification of bone;<br />

a combined method of pyrolysis and X-ray diffraction analysis. Research<br />

and development of this technique has shown that variation in the<br />

crystallographic characteristics of bone mineral exist between different<br />

animal species. Human bone, in particular, is distinct from that of other<br />

species studied. The method quantitatively discriminates between species<br />

based on this variation in bone mineral chemistry.<br />

The results of this research are evaluated and discussed with particular<br />

consideration of inter and intra species variation. The potential value of the<br />

method is also discussed in comparison with other techniques currently<br />

available to forensic investigators, in the context of their validity, reliability,<br />

and relevance as evidence in court.<br />

Species, Identification, Bone<br />

H63 Estimating Body Mass From Bone Mineral<br />

Density of Human Skeletal Remains<br />

Megan K. Moore, MS*, University of Tennessee, 301 Perkins Hall,<br />

Department of Mech, Aero, & <strong>Bio</strong>med Engineering, Knoxville, TN; and<br />

Dixie L. Thompson, PhD, University of Tennessee, Knoxville, Department<br />

of Exercise, Sports and Leisure Studies, 340 Health, Physical Education,<br />

and Recreation Building, Knoxville, TN 37996<br />

The goal of this presentation is to enable forensic anthropologists to<br />

* Presenting Author<br />

estimate body mass from human skeletal remains.<br />

This presentation will impact the forensic science community by<br />

showing a strong correlation between body mass and bone mineral density<br />

of the proximal femur and significant differences between different weight<br />

classifications for white females.<br />

This research explores the relationship of body mass and bone mineral<br />

density of the proximal femur using Dual Energy X-ray Absorptiometry<br />

(DEXA). The ability to estimate body mass from the human skeleton has<br />

received considerable attention, but previous research has failed to take into<br />

account extremes of body mass due to the restraints of the research<br />

collections. The William M. Bass Donated Skeletal Collection at the<br />

University of Tennessee, Knoxville offers a unique opportunity to study<br />

modern individuals of known age, height and weight.<br />

According to functional morphologists, bones need to be light enough<br />

for locomotion but strong enough for support. Bones must be strong<br />

enough to support the body mass of the ambulatory individual or otherwise<br />

fracture. As individuals become obese or emaciated, this relationship<br />

becomes exaggerated. The authors propose that body mass will correlate<br />

well with bone mineral density and could be used to estimate the body mass<br />

of unidentified human remains.<br />

Our research focuses on the proximal femur of a sample of skeletal<br />

remains of 23 modern white females between the ages of 32 and 84 with a<br />

mean age of 58. Height and weight data was available for all individuals to<br />

determine the body mass index (BMI)(kg/m2). All femora were cleaned<br />

and dried. Each femur was placed in a plastic container filled with dry<br />

white rice to a depth of approximately 12 cm. The rice served as a softtissue<br />

density equivalent for the DEXA scans, as suggested by GE, the<br />

producer of the DEXA Lunar scanner. A 2 cm thick cube of low-density<br />

foam was placed under the lesser trochanter to approximate anatomical<br />

position.<br />

Standard measurements of bone mineral density (BMD)(g/cm2) were<br />

calculated automatically for the femoral neck, Wards triangle, the greater<br />

trochanter, proximal shaft and total BMD. The Pearson correlation<br />

coefficient for total BMD and BMI is r = 0.73 and for the proximal femur<br />

and BMI, the correlation is r = 0.75. ANOVA and two-tailed paired t-tests<br />

were used to evaluate whether significant differences existed between<br />

different weight classifications. When comparing obese (BMI>30)<br />

individuals to emaciated (BMI


Lori E. Baker, PhD*, Baylor University, Department of Anthropology and<br />

Forensic Science, Forensic Research Lab, One Bear Place #97388, Waco,<br />

TX 76798-7388; Lee Meadows Jantz, PhD, Department of Anthropology,<br />

University of Tennessee, 250 South Stadium Hall, Knoxville, TN 37996-<br />

0720; Yasmine M. Baktash, BA, Baylor University, One Bear Place<br />

#97388, Waco, TX 76798; and J. Randall Pearce, DDS, 3769 West<br />

Andrew Johnson Highway, Morristown, TN 37814<br />

The goal of this presentation is to demonstrate that the application of<br />

instant glue or cyanoacrylate can help to prevent damage to teeth in skeletal<br />

collections without preventing subsequent DNA analysis.<br />

This presentation will impact the forensic community by providing a<br />

way to help preserve essential skeletal collections for future study.<br />

Skeletal collections are essential to forensic anthropologists and are<br />

used to establish criteria for the examination and identification of forensic<br />

skeletal cases. Vital information regarding population variation can be<br />

ascertained to determine biological guidelines regarding age, sex, stature<br />

and affinity. Reference collections therefore must be preserved for<br />

continued research and assessment.<br />

The Department of Anthropology at The University of Tennessee,<br />

Knoxville houses modern skeletal collections containing roughly 700<br />

individuals. These Forensic and Donated Skeletal Collections were<br />

initiated by Dr. Bill Bass in 1972 and 1981 respectively. Each year these<br />

collections are examined by researchers from around the world and have<br />

provided data to establish criteria for the identification and analysis of<br />

forensic skeletal cases. The importance of these collections and others like<br />

them is well documented in the hundreds of journal articles and scholarly<br />

presentations generated from the study of these curated skeletons.<br />

Unfortunately, because of the antiquity of some of the samples, preservation<br />

concerns have arisen. In particular, cracking and breaking of the teeth of<br />

older specimens has been observed.<br />

Instant glue or cyanoacrylate can help to prevent damage and<br />

degradation of teeth in skulls that undergo a great deal of handling such as<br />

those in study and reference collections and like those used during facial<br />

reconstruction. While cyanoacrylate protects teeth from successive<br />

damage, it is unknown if its chemical presence will preclude other types of<br />

future analyses such as DNA testing. This project investigates the viability<br />

of subsequent DNA analysis from teeth after the application of<br />

cyanoacrylate for preservation.<br />

The DNA from twelve teeth was examined. Six teeth were treated<br />

with cyanoacrylate and six teeth were untreated to serve as controls. Each<br />

set of teeth consisted of two incisors, two premolars and two molars. DNA<br />

was extracted using a silica/guanidine thiocyanate extraction procedure.<br />

DNA was quantified by qPCR as well as gel electrophoresis. Mitochondrial<br />

DNA sequence analysis was performed for each of the teeth to examine the<br />

quality of DNA after treatment as well as to assess any potential<br />

contamination contributed by researchers. Strict controls were employed to<br />

preclude and detect external DNA contamination.<br />

The quantity of DNA amplified from untreated samples was greater<br />

than the DNA from treated samples. Most likely a portion of the<br />

cyanoacrylate is not alleviated during the extraction process and carries<br />

over into PCR analysis and having an inhibitory effect on amplification.<br />

Although treated tooth samples had a diminished DNA quantity, all teeth<br />

were successfully analyzed. Mitochondrial DNA sequence analysis was<br />

possible from both untreated and treated teeth. Extraction and PCR blanks<br />

were void of signal and sequence data did not match that of any researchers<br />

involved in the study.<br />

Skeletal Preservation, DNA, Teeth<br />

H65 Forensic Bone Toxicology<br />

Melinda L. Carter, PhD*, 302 Heritage Drive, De Soto, IL 62924<br />

The goal of this presentation is to introduce a new direction in bone<br />

chemistry research that aims to identify what types of drugs or toxic metals<br />

are recoverable from skeletonized remains and how their presence and/or<br />

concentration will benefit medicolegal death investigation. The audience<br />

will learn the history of published research and case reports on this subject,<br />

as well as the development of a pilot study on how drug use affects skeletal<br />

and dental health.<br />

This presentation will impact the forensic community by identifying<br />

new toxicological data that can be obtained from skeletonized or badly<br />

decomposed remains. Such information can aid victim identification and/or<br />

determining circumstances surrounding the manner of death. The impact of<br />

chronic drug use and abuse on systemic skeletal health has significant<br />

clinical applications and will likely benefit future anthropological<br />

evaluations of remains in a medicolegal context.<br />

Many forensic anthropologists agree that future research needs to<br />

elucidate the meaning of the molecular structure of hard tissues. The<br />

application of stable isotopic bone chemistry, for example, to the<br />

identification of geographic origin of deceased Mexican immigrants (Juarez<br />

2007) or potential U.S. war dead (Beard and Johnson, 2000), is a novel use<br />

of an investigative tool long used in bioarchaeological research. Bone<br />

biochemistry changes continuously from birth to death because of its role<br />

in mineral homeostasis, acid-base balance, responses to changing<br />

mechanical forces, and hematopoiesis. In addition to digestive byproducts,<br />

bone can incorporate drugs and/or their metabolic byproducts as well as<br />

trace metals from blood, although the pharmacokinetics of their distribution<br />

and uptake into the organic and inorganic phases of bone are not<br />

understood.<br />

The first anthropological application of “forensic bone toxicology” of<br />

which the author is aware is the case summarized by Stout and Ross (1991).<br />

With only small bone fragments recovered, Dr. Stout employed<br />

microscopic and histomorphometric techniques (Milch et al. 1958) to<br />

identify tetracycline (an antibiotic) incorporated for some length of time<br />

into the victim’s bones. DNA ultimately confirmed identity of the victim,<br />

who had taken the drug for several months prior to her murder. Other<br />

forensic reports of finding drugs in bone samples are limited. The only<br />

published summary of drugs recoverable from bone is McIntyre et al.<br />

(2000). Noguchi et al. (1978), who showed that amitriptyline could be<br />

recovered from bone, thus confirming that the decedent had committed<br />

suicide, published the first paper urging others to analyze skeletal remains<br />

for toxicological evidence. Subsequent published case reports mostly<br />

document intentional or accidental drug overdoses. These reports include<br />

Terazawa and Takatori (1982; aminopyrine, cyclobarbital), Benko (1985;<br />

amobarbital, glutethimide), Bal et al. (1989; dextropropoxyphene,<br />

chlorazepate potassium), and Horak and Jenkins (2005; citralopram).<br />

Chronic alcohol abuse also can be assessed from rib marrow soon after<br />

death (Schloegl et al., 2006). Case studies on overdose and homicide<br />

victims buried from seven months to five years show that drugs can still be<br />

recovered from bone and/or marrow despite a lengthy postmortem interval<br />

(Terazawa and Takatori, 1982; Kajima et al., 1986; Kudo et al., 1997;<br />

Maeda et al., 1997; Raikos et al., 2001). Acute metal toxicity has also been<br />

determined from bone (aluminum, de Wolff et al., 2002; fluoride, de<br />

Menezes et al., 2003; lead, Lech, 2005). Controlled animal studies indicate<br />

that certain benzodiazepines (midazolam, Gorczynski and Melbye, 2001)<br />

and morphine (Cengiz et al., 2006) can be recovered from bone/marrow.<br />

Additional references for bone marrow research using animal models are<br />

listed in Schloegl et al. (2006). Bisphosphonates are the largest class of<br />

drugs that target bone mineral, but their use is widespread and less<br />

informative to forensic investigation (Russell and Rogers, 1999).<br />

Chronic substance use can have systemic effects on skeletal health in<br />

living patients. This presentation will address how the long-term use of<br />

alcohol, nicotine, statins, NSAIDS, antidepressants/-epileptics/-psychotics,<br />

heroine, methamphetamines, and other drugs adversely affect skeletal<br />

health in addicts. A developing research project will be outlined. Because<br />

drugs can be detected in bone, anthropologists should pursue toxicological<br />

analysis of skeletal remains. Further research is needed to assess bone<br />

pharmacokinetics, the diagnostic value of bone-drug concentrations, and<br />

the effects of the postmortem interval. Skeletal and dental pathology<br />

253 * Presenting Author


caused by chronic substance use might one day be recognized in human<br />

skeletal remains.<br />

Bone Chemistry, Toxicology, Drugs<br />

H66 In Vivo Facial Tissue Depth Study of Adult<br />

Chinese Americans in New York City<br />

Wing Nam J. Chan, MA*, 4720 210th Street, Bayside, NY 11361; Mary H.<br />

Manhein, MA, Department of Geography & Anthropology, Louisiana<br />

State University, Baton Rouge, LA 70803; and Ginesse A. Listi, MA, 1723<br />

Lombard Drive, Baton Rouge, LA 70810<br />

After attending this presentation, attendees will understand the basic<br />

principles of facial soft tissue depth studies, differences between facial soft<br />

tissue depth studies by populations, anatomical differences between<br />

Chinese-Americans and other American populations, and the elements and<br />

applications of forensic facial reconstructions.<br />

This presentation will impact the forensic community by providing<br />

key information to help identify remains from the underrepresented<br />

Chinese-American population in the American forensic community.<br />

The Chinese population has increased dramatically in the urban areas<br />

of the United States in the last five years. Despite this increase in population<br />

size, facial tissue depth information is limited for the population. As a<br />

result, when forensic facial reconstructions are created for Chinese<br />

individuals, datasets for other Mongoloid populations must be used.<br />

Previous studies have shown that different racial populations have varying<br />

facial tissue depth and this practice can result in inaccurate reconstructions<br />

that diminish the possibility of a positive identification. It is detrimental<br />

that each racial population has their own facial tissue depth dataset.<br />

Forensic facial reconstructions are created by forensic artists as a<br />

means of identification of skeletal remains when other conventional<br />

methods to produce an identification are unsuccessful. Traditional<br />

American methods of creating three dimensional facial reconstructions<br />

require the use of facial tissue depth datasets. Facial tissue depth datasets<br />

comprise of measurements collected at various facial landmarks. The<br />

number of landmarks used in data collection and facial reconstructions are<br />

at the forensic artist’s discretion. Some researchers obtain measurements<br />

from as few as 14 to as many as 54 facial landmarks for their datasets.<br />

Rubber markers are placed at the landmarks and clay is placed around the<br />

stoppers and slowly built up to resemble a human face. Soft tissue areas<br />

such as the nose and the ears are open to artistic interpretation.<br />

Various methods have been employed to collect facial tissue depth<br />

data. The oldest and most commonly used method for facial tissue depth<br />

data is the needle puncture method. Sooted needles are inserted into facial<br />

landmarks on cadaver subjects and the portion of the needles without soot<br />

is measured. Variations of the sooted needle method, including the needle<br />

and rubber stopper method, were used to collect facial tissue depth<br />

measurements. In recent years, ultrasound, CT, and MRI techniques have<br />

replaced the more traditional needle methods. In addition to these new<br />

techniques, cadaver studies were abandoned in favor of using live subjects.<br />

The use of live subjects for data collection produces accurate measurements<br />

and subsequently, more exact facial reconstructions. In vivo datasets are the<br />

measurements of living individual whereas cadaver datasets try to mimic<br />

living individuals using measurements taken in the prone position and from<br />

recently deceased individuals.<br />

The subjects of these facial tissue depth studies range in weight, body<br />

mass index, and age. The first studies divided the subjects into three weight<br />

categories: emaciated, normal, and overweight individuals. Emaciated<br />

individuals have the thinnest facial tissue whereas overweight individuals<br />

have the thickest facial tissue. The weight categories are divided using the<br />

body mass index. Age categories are divided at the researcher’s discretion,<br />

usually spanning ten years.<br />

The authors will present an in vivo adult New York City Chinese-<br />

American facial tissue depth dataset. The dataset consists of measurements<br />

from 101 individuals and 67 of the individuals are of normal weight.<br />

* Presenting Author<br />

Normal weight is identified as individuals having a BMI of 19-25, as<br />

designated by the Center for Disease Control. The individuals range from<br />

ages 18-90. The results of the study show noticeable differences between<br />

the Chinese individuals and those of other racial populations.<br />

Forensic Facial Reconstructions, Chinese Americans, Facial Tissue Depth<br />

H67 Who Is This Person? A Comparison<br />

Study of Current 3-Dimensional<br />

Facial Approximation Methods<br />

Summer J. Decker, MABMH*, and Don R. Hilbelink, PhD, Department.<br />

of Pathology and Cell <strong>Bio</strong>logy, University of South Florida College of<br />

Medicine, 12901 Bruce B. Downs Boulevard, MDC11, Tampa, FL 33612;<br />

Eric J. Hoegstrom, MSBE, Department of Chemical Engineering,<br />

University of South Florida College of Engineering, Tampa, FL 33612;<br />

Carl K. Adrian, Federal Bureau of Investigation, 2501 Investigation<br />

Parkway, Attn: Carl Adrian/IPGU Rm. #1170, Quantico, VA 22135; and<br />

Stephanie L. Davy-Jow, Department of Archaeology, University of<br />

Sheffield, Northgate House, West Street, Sheffield, S1 4ET, UNITED<br />

KINGDOM<br />

This presentation will provide insight into the current state of the field<br />

of facial approximation by providing the results of a unique threedimensional<br />

study conducted on a living individual by an international team<br />

of human identification specialists. The results of the clay modeling and<br />

advanced computerized facial approximations will be compared both<br />

visually and quantitatively. The strengths and weaknesses in each method<br />

will be addressed and comparison images will be provided.<br />

This presentation will impact the forensic community by serving to<br />

increase scientific knowledge of new technologies and methods available to<br />

the forensic community for human cranial identification. It will also<br />

attempt to advance current understanding of facial approximation methods<br />

which are commonly utilized by law enforcement to identify unknown<br />

individuals.<br />

The goal of this project was to test current three-dimensional facial<br />

approximation methods currently used by forensic identification<br />

researchers and specialists.<br />

Facial approximation is a common tool utilized in forensic human<br />

identification. Three-dimensional imaging technologies allow researchers<br />

to go beyond traditional clay models to now create virtual computed models<br />

of anatomical structures. The goal of this study was to compare the<br />

accuracy of available methods of facial approximation ranging from clay<br />

modeling to advanced computer facial reconstruction techniques.<br />

Anatomically accurate virtual models of both the skull and of the<br />

surface contour of the face were computed from CT image data of the head<br />

region of a living individual. The individual was CT scanned and the<br />

volumetric data from the scan was taken into the visualization software<br />

Mimics (© Materialise). A FloodFill method of seeding the image was done<br />

to select only the bone pixels in the data set. This 3-D volumetric pixel<br />

grouping was then filtered of artifact holes and closed to create one<br />

unsegmented structure. The data set was then rendered into a 3-D Model<br />

and exported as a Stereolithographic file (STL). The virtual facial<br />

approximation participants were provided with the STL files and a standard<br />

biological profile determined by a forensic anthropologist. Virtual models<br />

were created using 3ds Max © (v.9). An accurate full size prototype of the<br />

skull was then produced from the computed virtual skull model using a 3D<br />

ZPrinter 310 (© ZCorp) printer which was then submitted to the clay model<br />

specialist.<br />

A face was constructed on the skull prototype by an experienced,<br />

professional forensic visual identification specialist from the Federal<br />

Bureau of Investigation using traditional clay facial approximation<br />

techniques.<br />

Virtual facial approximations were also produced using two computerbased<br />

techniques. One method, utilized by law enforcement in the United<br />

Kingdom and developed by experts at the University of Sheffield, uses the<br />

254


software package, 3ds Max © (v.8) to create virtual clay models over the<br />

skull. The other method in this study tested the FBI’s new facial<br />

approximation software program, Reface ©.<br />

In the University of Sheffield’s FaceIT method, the skull image<br />

obtained from the CT was imported into 3ds Max © (v.8). A plane was<br />

constructed and placed to represent the Frankfurt Horizontal Plane to enable<br />

standardization of views. Tissue depth markers, represented by pyramids,<br />

were placed at 32 craniometric landmark points on the skull. Based on the<br />

anthropologist’s biological profile, the depths were taken from previously<br />

established data sets for the corresponding individual’s profile. A<br />

prefabricated facial muscle set was then scaled and deformed to match the<br />

morphology of the skull. Other anatomical features such as the eyeballs,<br />

lips, and ears were also imported from a feature data bank based on<br />

established anthropological characteristics.<br />

A visual information specialist from the Federal Bureau of<br />

Investigation was enlisted to test their most current computerized facial<br />

approximation method, Reface © software. The FBI’s software imports the<br />

STL files and creates a mask over the virtual skull based on a database of<br />

standard craniofacial features. The software package allows the user to<br />

make adjustments to the mask on a sliding scale for age and weight.<br />

The results from all three methods (clay and virtual) were compared<br />

visually to each other and collectively to the actual features of the living<br />

individual to determine the level of accuracy and detail that each provided.<br />

A quantitative study was also conducted to establish the accuracy of each<br />

method. This project demonstrates the wide range of variation between<br />

commonly used facial identification methods. The benefit of this study was<br />

having a living individual to test the strengths and weaknesses of each<br />

method. Resulting images and models will be available for conference<br />

participants to review to provide additional input into our evaluation<br />

process.<br />

Facial Approximation, 3-D Modeling, Human Identification<br />

H68 Advances in Computer Graphic<br />

Facial Recognition Software:<br />

Matching Facial Approximations<br />

to Antemortem Photographs<br />

Murray K. Marks, PhD*, University of Tennessee, Department of<br />

Anthropology, 252 South Stadium Hall, Knoxville, TN 37996; Diana K.<br />

Moyers, MA, Visiting Scientist, CFSRU, FBI Laboratory, FBI Academy,<br />

Building 12, Quantico, VA 22135; Peter H. Tu, PhD, GE Global<br />

Research, Imaging Technologies, 1 Research Circle, Niskayuna, NY<br />

12309; and Philip N. Williams, BS, FBI Laboratory, CFSRU, Building 12,<br />

Quantico, VA 22135<br />

After attending this presentation, attendees will understand the<br />

introductory nature of automated facial approximation technologies and the<br />

use of facial approximation software in comparative isolation of images<br />

from large photographic image data sets to identify unidentified human<br />

remains.<br />

Conventional facial approximation techniques suffer from a range of<br />

subjective inaccuracies that prevent human observers from accurately<br />

identifying an approximation with a known photograph of the victim. The<br />

use of automated facial recognition technology to analyze automated facial<br />

approximations will eliminate much of the subjectivity from the traditional<br />

process and strengthen the reliability of identifying unknown remains.<br />

A recent Bureau of Justice Statistics preliminary report states there are<br />

over 40,000 sets of unidentified human remains curated by medical<br />

examiners, coroners, and forensic anthropologists in the United States. [1]<br />

Additionally, hundreds or thousands of mutilated/disfigured and/or<br />

decomposing remains may result from genocide, warfare or mass natural or<br />

human-made disasters. Traditional methods of facial approximation are<br />

unable to effectively address these issues. Clearly, there is an urgent need<br />

to be able to systematically and correctly process large numbers of victims<br />

in a cost-efficient and expeditious manner.<br />

One such method in development is a computerized facial<br />

approximation system termed ReFace (Reality Enhancement Facial<br />

Approximation by Computational Estimation). Developed by the Federal<br />

Bureau of Investigation with General Electric Global Research, the<br />

prototype extrapolates an approximation of a face from a skull using a<br />

database library of computed tomography (CT) scans of living individuals.<br />

The purpose of this collaboration was to determine whether facial<br />

recognition software could more accurately match computer images with<br />

antemortem photographs than could be achieved by human examiners.<br />

Previous research has tested the success of the subjective human examiners<br />

in matching ReFace generated approximations with antemortem<br />

photographs. [2]<br />

Facial approximations from 50 skulls from the William M. Bass<br />

Donated Skeletal Collection at the University of Tennessee were prepared<br />

using prototype facial approximation software. Antemortem photographs<br />

of the test subjects were added to the photographic database of the facial<br />

recognition software. Each facial approximation was entered into the facial<br />

recognition system as an “unknown” with the anticipation that the actual<br />

antemortem photograph of test subjects would be selected as a potential<br />

match by the facial recognition software.<br />

The results were analyzed by those not involved in the approximation<br />

preparation or with the recognition testing. These results and the<br />

applicability of this method for forensic casework will be discussed.<br />

References:<br />

1 Ritter, N. 2007. Missing Persons and Unidentified Remains: The<br />

Nation’s Silent Mass Disaster. National Institute of Justice Journal<br />

256:2-7.<br />

2 Moyers, D.K. 2007. Validation Study of ReFace (Reality Enhanced<br />

Facial Approximation by Computational Estimation). Unpublished<br />

M.A.Thesis, University of Tennessee at Knoxville<br />

Facial Recognition, Facial Approximation, Computer Prototype<br />

H69 Accreditation of the Small Skeletal<br />

Laboratory: It is Easier Than You Think!<br />

Vincent J. Sava, MA*, JPAC, Central Identification Lab, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853; and John E.<br />

Byrd, PhD, JPAC, Central Identification Lab, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853-5530<br />

Upon the completion of this presentation, the participants will have a<br />

greater understanding of the importance of accreditation to the small<br />

skeletal laboratory, problems faced by laboratories working toward<br />

accreditation and effective work-arounds and solutions. Effective<br />

management strategies employed during the accreditation process, and the<br />

assistance available from the CIL in order to obtain accreditation.<br />

Additionally, the participant will gain an appreciation of the importance of<br />

accreditation in elevation the forensic anthropology profession.<br />

This presentation will impact the forensic science community by<br />

demonstrating how quality assurance programs in forensic laboratories and<br />

activities have been a growing trend over the past decade. Since 1999 the<br />

Joint POW/MIA Accounting Command, Central Identification Laboratory<br />

(JPAC-CIL) has implemented a stringent quality assurance program to<br />

ensure the scientific integrity of its casework. The CIL’s quality assurance<br />

program ultimately led to the Laboratory’s accreditation in trace evidence<br />

by the American Society of Crime Laboratory Directors Laboratory<br />

Accreditation Board (ASCLD-LAB) in 2003–the first forensic skeletal<br />

identification laboratory to be so credentialed. However, smaller skeletal<br />

laboratories, lacking the resources of the CIL, have been reluctant to<br />

undertake accreditation. Assistance and guidance outlined in this<br />

presentation may ease their accreditation process. Once additional skeletal<br />

laboratories are accredited, human identification can become a separate<br />

recognized discipline within<br />

ASCLD-LAB.<br />

Accreditation of forensic laboratories is becoming the norm in the<br />

255 * Presenting Author


forensic profession with some jurisdictions now legislating accreditation.<br />

With accreditation becoming almost universally accepted in the forensic<br />

profession, failure to achieve this milestone may have serious jurisprudence<br />

implications for deficient laboratories in the coming years. The human<br />

identification profession and forensic anthropology in particular, has lagged<br />

in efforts to have its laboratories accredited—with one notable exception.<br />

Since 2003, the Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory (JPAC-CIL) has been accredited under the<br />

American Society of Crime Laboratory Directors Laboratory Accreditation<br />

Board (ASCLD-LAB). The CIL sought accreditation for the following<br />

reasons:<br />

• To improve the quality of CIL services provided to the<br />

POW/MIA mission.<br />

• To develop and maintain criteria that can be used by the CIL to<br />

assess its level of performance and to strengthen its operation.<br />

• To provide an independent, impartial, and objective system by<br />

which the CIL can benefit from a total operational review.<br />

• To offer to the POW/MIA mission and to other users of CIL<br />

services a means of determining that the CIL has met established<br />

standards.<br />

Admittedly, the CIL was in a very favorable position to achieve<br />

accreditation relative to other skeletal identification laboratories. This<br />

research had ample budget, support from the higher echelons of command,<br />

and a management staff dedicated to the effort. As such, numerous<br />

obstacles were surmounted, including but not limited to:<br />

• SOP writing and implementation<br />

• Security upgrades<br />

• Facility improvements and expansion<br />

• Hiring of a full time Quality Manager and additional staff to<br />

offset declines in productivity<br />

• Equipment modernization<br />

• Available time<br />

• Progressive attitude of those involved<br />

During the initial accreditation process, and in the intervening years<br />

now leading to re-accreditation, the CIL gained an appreciation to just<br />

which obstacles are the most formidable for the smaller laboratory. The<br />

findings are surprising. All of the above obstacles have relatively easy and<br />

inexpensive fixes and uncomplicated work-arounds. Save one—the quality<br />

and quantity of staff involved.<br />

In this regard, the smaller laboratory has the advantage. A small staff<br />

with little annual turnover is easier to train, monitor, and to exercise<br />

corrective action over. In the CIL, with a staff of over 70 frequently<br />

deployed personnel (including managers), and an annual turnover rate of<br />

12-20 %, accreditation becomes increasingly difficult as management<br />

involvement with accreditation becomes diluted in favor of other issues.<br />

This is exacerbated by the fact that laboratory policies and SOPs naturally<br />

become more intricate as the quantity of staff increases. Add the fact that<br />

CIL case work (and human identification, in general) is more diverse than<br />

other forensic disciplines. Taken together, training is consistently a problem<br />

as there is almost no instance where the entire staff can be assembled and<br />

trained more than superficially on the current SOPs. In effect, as staff size<br />

increases, control is lost, in favor of a “herding cats” scenario.<br />

Other obstacles noted above seem formidable but chances are the<br />

small skeletal laboratory already has rudimentary systems and programs in<br />

place that would only need minor adjustments to bring them into<br />

compliance for accreditation. For example, existing intrusion detection<br />

systems (IDS) on university buildings may lend themselves to relatively<br />

inexpensive upgrades to achieve the desired standard. One university<br />

related that they already had an IDS in order to keep unauthorized persons<br />

from tampering with their x-ray machine. This university imposed safety<br />

requirement was adapted to evidence security. Evidence was eventually<br />

stored in a locked cabinet co-located in the room with the x-ray machine.<br />

Laboratories situated on the second floor or above do not need bars or<br />

similar barriers on the windows in most instances. These types of workarounds<br />

are numerous and widely varied and, are limited only by the<br />

imagination of the staffs involved.<br />

* Presenting Author<br />

As the CIL continues to expand it quality assurance programs, to<br />

include seeking re-accreditation under the more stringent ISO 17025<br />

standards, new sets of problems are generated. One is the issue of the<br />

competency of its subcontractors. Under ISO, the CIL is responsible to<br />

prove the competency of those it selects to subcontract tasks. Accordingly,<br />

the CIL has a certification program where we send our staff to certify the<br />

quality of operations of a subcontractor by conducting an on-site survey of<br />

their facilities and operations.<br />

For smaller skeletal laboratories that have the potential to act as a CIL<br />

subcontractor, the certification program is a valuable tool with which to<br />

achieve accreditation. Using ASCLD-LAB standards, the CIL will survey<br />

your laboratory and provide guidance and advice on what need to be done<br />

to achieve accreditation. A certification by the CIL means that the assisted<br />

laboratory can perform subcontracted work for the CIL and only has minor<br />

obstacles to over come to achieve full accreditation. In addition to sending<br />

teams to your laboratory, the CIL will help your laboratory get started by<br />

making its laboratory manual available to the participants. This will<br />

improve the quality of your laboratory from the onset while saving your<br />

organization hundreds of man-hours in work and staffing.<br />

In conclusion, the CIL believes it is in the best interests of the small<br />

skeletal laboratory to become accredited. Many of the staff in these<br />

facilities eventually become employed at the CIL. Additionally, until the<br />

qualifications of obtaining diplomate status in ABFA become more<br />

inclusive and less exclusive, working in an accredited laboratory may be the<br />

only professional credentials enjoyed by the majority of anthropologists.<br />

Finally, ASCLD-LAB is amenable to adopting Human Identification a<br />

recognized discipline provided more skeletal laboratories become<br />

accredited. Once this is done, anthropologists will have a stake in<br />

formulating the criteria for accrediting skeletal identification laboratories.<br />

Accreditation, ASCLD-LAB, Central Identification Laboratory<br />

H70 Testing the Demirjian Method and the<br />

International Demirjian Method on<br />

an Urban American Sample<br />

Nicole M. Burt, MS*, Forensic Anthropology Laboratory, Michigan State<br />

University, A-439 East Fee Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will understand how to use<br />

the Demirjian [1] dental aging method for subadults and the international<br />

Demirjian [2] dental aging method for subadults, as well as, understanding the<br />

validity of using the Demirjian method in America.<br />

This presentation will impact the forensic community by widely<br />

introducing a validated subadult dental aging method for the biological<br />

profile that works when ancestry is unknown. It will also highlight a<br />

subadult aging method that is commonly used by forensic anthropologists<br />

in Europe, [3] but that is not well known in the United States. Hopefully, this<br />

will lead to more integration of forensic anthropology techniques in the<br />

future.<br />

It is important to start testing the validity of the methods commonly<br />

used in forensic anthropology and begin to quantify their effectiveness. The<br />

Demirjian method [1] of subadult aging was based on a French-Canadian<br />

sample and the international Demirjian method [2] of subadult aging was<br />

developed using a sample composed of Australians, Belgians, English,<br />

Finns, French, French-Canadians, South Koreans, and Swedes. The<br />

international Demirjian method [2] was created for instances when ancestry<br />

was unknown. The international Demirjian method was also examined in<br />

this study to see if it was appropriate for the USA. The aim of this study<br />

was to test the applicability of the both the Demirjian method and<br />

international Demirjian method for estimating chronological age from<br />

dental age in a sample of multiple ancestry subadults from Detroit,<br />

Michigan.<br />

Digital panoramic dental radiographs of 104 males and 96 females of<br />

known age and sex between the ages of 6 and 12 years were collected from<br />

the University of Detroit Mercy Dental School. Thirteen individuals were<br />

256


excluded from the final study due to pathology. Ancestry was not<br />

controlled for and was only provided in 90 individuals’ case files. Even<br />

with limited recording, it is clear that the sample is very diverse, being made<br />

up of individuals of European, African, Latino, Middle Eastern, and Asian<br />

ancestry.<br />

The dental age was determined for all cases using both the Demirjian<br />

and international Demirjian methods. The total sample and the sample<br />

divided by age category was statistically analyzed to determine if the<br />

methods are applicable in the USA. Age categories were defined as young<br />

(6, 7, and 8-year-olds), middle (9 and 10-year-olds), and old (11 and 12year-olds).<br />

Paired t-tests were run to determine if the means of the<br />

chronological ages (CA) differed significantly from the dental ages (DA)<br />

for each method in the study. Significance was determined at the .01<br />

significance level. If there was no significant statistical difference between<br />

mean CA and mean DA, the method reliably estimates age.<br />

The results for the Demirjian method using the total sample showed<br />

that there was slight over aging of the sample as a whole, but that there was<br />

no statistically significant difference between chronological age and dental<br />

age. The result for the international Demirjian Method showed slight under<br />

aging of the sample and a significant difference between the means at the<br />

.01 significance level.<br />

Paired t-tests used on all three categories revealed a statistical<br />

difference between CA and DA using the Demirjian method in the young<br />

category, but not the middle or old categories. Paired t-test for the<br />

international Demirjian method had the opposite results with the young<br />

category, having no significant difference between CA and DA and a<br />

significant difference in the middle and old category.<br />

The results showed that the Demirjian method had no statistical<br />

difference between CA and DA for the total sample and could be used in<br />

America even when ancestry was not known. The method was the most<br />

appropriate in the middle and old age categories, but the international<br />

Demirjian method was more appropriate for the young category at the .01<br />

significance level.<br />

References:<br />

1 Demirjian A. 1986. Dentition, 2nd edition. In: Falkner F and Tanner<br />

JM, editors. Human growth: A comprehensive treatise. New York:<br />

Plenum Press; 269-298.<br />

2 Chaillet N, Willems G, and Demirjian A. 2004c. Dental maturity in<br />

Belgian children using Demirjian’s method and polynomial functions:<br />

New standard curves for forensic and clinical use. J Forensic<br />

Odontostomatol 22(2):18-27.<br />

3 Teivens A, Mörnstad H. 2001a. A comparison between dental<br />

maturity rate in the Swedish and Korean populations using a modified<br />

Demirjian method. J Forensic Odontostomatol 19(2):31-35.<br />

Subadult Aging, Dental Radiographs, <strong>Bio</strong>logical Profile<br />

H71 Dental Aging Methods and Population<br />

Variation as Demonstrated in a<br />

Peruvian Sample<br />

Douglas H. Ubelaker, PhD*, Department of Anthropology, NMNH - MRC<br />

112, Smithsonian Institution, Washington, DC 20560; and Roberto C.<br />

Parra, BA, Instituto de Medicina Legal del Peru, Av. Abancay 491 6to<br />

Piso, Lima, PERU<br />

After attending this presentation, attendees will understand the<br />

application of three dental aging methods to a contemporary Peruvian<br />

sample.<br />

This presentation will impact the forensic community by<br />

demonstrating that dental aging techniques involving metrics of intact<br />

single rooted teeth – previously tested on French and American modern<br />

samples – yielded similarly accurate results in a sample from Peru. The<br />

results indicate that the accuracy of this approach appears to be minimally<br />

influenced by regional and population variation. It also demonstrates the<br />

need for further studies of this type to be conducted on new, untested<br />

populations.<br />

Measurements of intact single rooted teeth have proven to be useful in<br />

methods of estimating skeletal adult age-at-death, especially in older adults.<br />

Lamendin et al. published such a technique in 1992 using three<br />

measurements of intact single rooted teeth: height of root transparency,<br />

height of periodontosis and total root height. This method was later tested<br />

on a contemporary French sample, which for one participant in the project<br />

provided more accurate estimates of age than other individual adult aging<br />

techniques. The study produced a mean error of approximately 10 years.<br />

Bang & Ramm (1970) conducted a similar study involving changes in root<br />

transparency with age by assessing dental sections as well as intact teeth.<br />

In 2002, Prince & Ubelaker applied the Lamendin technique to a<br />

modern American sample, collecting data from the Terry collection at the<br />

Smithsonian Institution. The results of its application to the Terry sample<br />

proved to be as accurate, and in some cases more accurate, than its<br />

application to the original French sample. The mean error for this study<br />

was 8.23 years, which was reduced to 7.70 years when the regression<br />

equations were adjusted for the American sample. Nevertheless, the<br />

accuracy of these methods when taking into account regional and<br />

population variation beyond the French and American samples remained<br />

unclear.<br />

The purpose of this study was to apply the above-mentioned dental<br />

aging methods to a population different from the previously tested French<br />

and American samples in order to gain insight into their accuracy in<br />

consideration of human variation. The chosen sample for this study<br />

consisted of 100 contemporary cadavers of known age and sex from various<br />

regions of Peru. These individuals consisted of 28 females ranging in age<br />

from 23 to 80 years, and 72 males ranging in age from 21 to 87 years.<br />

Methodological approaches proposed by Lamendin et al., Bang &<br />

Ramm and Prince & Ubelaker were applied to a sample of 100 single<br />

rooted teeth (24 maxillary and 76 mandibular). A regression equation<br />

specific to the Peruvian population was developed as part of this study.<br />

Analysis of these measurements in the Peruvian sample shows that the<br />

application of the Lamendin et al., Bang & Ramm and Prince & Ubelaker<br />

techniques to this previously untested population sample resulted in mean<br />

errors of estimation similar to those originally reported. When applied to<br />

the sample in Peru, the methods produced mean errors of 8.3 years for<br />

Lamendin et al., 8.8 years for Bang & Ramm and 7.6 years for Prince &<br />

Ubelaker. The results of the study suggest minimal impact of population<br />

variation of the features measured in the Peruvian sample, thereby<br />

increasing the reliability of utilizing these measurements in the estimation<br />

of age-at-death across various populations.<br />

Age-at-Death, Teeth, Peru<br />

H72 Multifactorial Determination of Age<br />

at Death From the Human Skeleton<br />

Natalie Uhl, MS*, 1503 North Pennsylvania Street, Apartment 21,<br />

Indianapolis, IN 46202<br />

This presentation will summarize a new method to combine age at<br />

death estimates from four commonly used skeletal indicators. The method<br />

is simple, applicable, and robust, and has lower inaccuracy and bias<br />

statistics than any of the individual indicators separately.<br />

This presentation will impact the forensic community by introducing<br />

forensic anthropologists to a new multifactorial age estimation method that<br />

is simple to use and reduces error in age estimation, thereby aiding in the<br />

identification of unknown human skeletal remains. This method is also<br />

applicable to South African populations.<br />

Accurately estimating the timing of death has been the subject of<br />

decades of research, method development, and testing for human<br />

osteologists because age determination from the skeleton, whether for an<br />

individual or a population, is critical in analyzing and describing human<br />

skeletal remains. Anthropologists have been developing age determination<br />

257 * Presenting Author


methods since the 16th century and continue to test and revise them today.<br />

Despite an abundance of research and data, a single method for determining<br />

age at death from the human skeleton that is both accurate and precise and<br />

that appropriately combines multiple estimation methods, continues to<br />

elude osteologists.<br />

The purpose of this study is to test and develop an easy, applicable, but<br />

valid method for combining individual aging indicators. Four of the most<br />

commonly used aging methods—the pubic symphysis, auricular surface,<br />

sternal ribs, and cranial sutures—were analyzed, first as individual<br />

indicators, and secondly as variables in several multifactorial methods. The<br />

study sample consists of 394 individuals (203 males, 191 females) from two<br />

different skeletal collections on two continents (230 blacks, 164 whites).<br />

Skeletal remains of known age, sex, and ancestry were analyzed at the R.J.<br />

Terry Collection housed at the Smithsonian Institution in Washington, D.C.,<br />

and the Pretoria Bone Collection housed at the University of Pretoria, South<br />

Africa.<br />

Summary statistics were calculated for the first three individual<br />

indicators, including mean age and standard deviation for each phase, the<br />

observed age range for each phase, and t-tests between adjacent phases to<br />

test for significant differences between means. For all of the individual<br />

indicators, the percentages of individuals’ actual ages falling into the<br />

published 95% confidence intervals were calculated. An analysis of<br />

covariance (ANCOVA) was used to test for significant sources of variation<br />

while holding age constant. Finally, inaccuracy and bias statistics were<br />

calculated for each subgroup, collection, and the overall sample, for each<br />

method.<br />

Three multifactorial methods were devised and analyzed using<br />

inaccuracy and bias statistics as well as the percentage of individuals’ actual<br />

ages falling within the prediction intervals. The first was the simple average<br />

of the means from the four individual indicators. An assessment of the<br />

spatial overlap of estimated age ranges ensued. First, the Total Minimum<br />

Range was recorded for each individual, followed by the Total Maximum<br />

Range.<br />

The final multifactorial method was linear regression. First, an allgroups<br />

regression equation was generated for the entire sample. Because of<br />

the consistent significance of ancestry in the ANCOVAs, two ancestryspecific<br />

regression equations were generated.<br />

Inaccuracy and bias statistics indicate that the pubic symphysis is the<br />

best overall individual indicator. The ANCOVA results show that ancestry<br />

consistently contributes to variation in all of the individual indicators while<br />

holding age constant, although the effects of all variables other than age<br />

were negligible in a practical sense. Compared to the individual indicators,<br />

inaccuracy was reduced in all of the multifactorial methods. The<br />

percentage of individuals’ actual ages falling into the predicted age ranges<br />

was comparable to most of the individual indicators. Ancestry-specific<br />

regression equations had the lowest overall inaccuracy and bias; however,<br />

an all-groups regression equation had only a slightly higher inaccuracy with<br />

the advantage of increased applicability.<br />

This study has produced a simple, applicable, yet robust method for<br />

combining individual age indicators. The accuracy and effectiveness of<br />

individual aging indicators improves when they are combined. Linear<br />

regression is the best multifactorial method to use when all four indicators<br />

are present; however, the simple average or overlapping ranges can be used<br />

when human remains are incomplete. While ancestry influences variation<br />

in the aging indicators, the U.S. standards utilized in this study appear to be<br />

applicable to South African populations.<br />

Age Estimation, Multifactorial Methods, South Africans<br />

H73 An Evaluation of the Skeletal Aging<br />

Method Using Adult Male Vertebrae<br />

* Presenting Author<br />

as Developed by Drukier, et al.<br />

Nanette Hollands, BSc*, Flat 8, 5 Bryanstone Road, Winton,<br />

Bournemouth, BH3 7JE, UNITED KINGDOM; and Piotr D.<br />

Drukier, MSc*, Bournemouth University, C134 Christchurch House,<br />

Talbot Campus, Fern Barrow, Poole, BH12 5BB, UNITED KINGDOM<br />

After attending this presentation, attendees will have an understanding<br />

of the age-related changes that occur in the thoracic and lumbar vertebrae<br />

and their usefulness in aging an adult male through observational analysis.<br />

This presentation will impact the forensic community by<br />

demonstrating the results of the test of the vertebral ageing method by<br />

Drukier et al. (2003) on an independent male sample. This gives the<br />

forensic anthropologist a new aging method that narrows age range<br />

estimations, and therefore gives more precise age-at-death estimation,<br />

essential in the identification of unknown human remains.<br />

Estimating age-at-death is one of the most important roles of the<br />

forensic anthropologist. When an anthropologist sets about establishing<br />

age-at-death they are hoping to determine “chronological age from<br />

physiological changes reflective of developmental and/or degenerative<br />

processes” (Cox and Mays, 2000: 64). In adults, due to the lack of growth<br />

processes, age determination is almost entirely dependent on processes of<br />

degeneration. The series of changes occurring at the pubic symphysis have<br />

been the most useful for age determination to date (Reichs and Bass, 1998:<br />

xix). However, the methods based on morphological changes of the pubic<br />

symphysis have their practical limitations as the pubic symphyses rarely<br />

survive in large samples. The accepted methods of analysis also provide<br />

large age ranges for each stage. For instance at a 95% confidence level<br />

Suchey-Brooks ranges include stage IV = 26 - 70 years for males and 23 -<br />

57 for females (Brooks and Suchey, 1990). The ranges, excluding stage 1,<br />

also have a large overlap, e.g. stage V = 25 - 83 years for males and 27 - 66<br />

years for females (Brooks and Suchey, 1990).<br />

In his original work on the pubic symphysis in Todd emphasised that<br />

the most accurate age estimation could only be made once the entire<br />

skeleton had been examined (Todd, 1920).<br />

It was attempted to create alternative aging methods using material<br />

that is often more readily available (Iscan & Loth, 1984, 1985) or more<br />

robust areas of the skeleton (Lovejoy et al., 1985). Such aging methods<br />

reliant on alternative skeletal material decreased the heavy reliance upon<br />

the pubic symphysis, especially within the forensic context widening the<br />

anthropologist’s options.<br />

Although there are many methods of age assessment available to<br />

forensic anthropologists there is currently little research available on the<br />

systematic age related changes in the vertebral column, to the extent that the<br />

focus has been on stages of epiphyseal ring union and is therefore restricted<br />

to adolescents (McKern and Stewart, 1957, Albert and Maples, 1995).<br />

Three aspects of vertebral morphology are known to undergo noticeable<br />

change with age. Firstly, the vertebral secondary centers, the epiphyseal<br />

rings, appear during puberty and fuse to the centrum between about ages 17<br />

– 25. Secondly, the inferior and superior aspects progress from a wellorganised,<br />

ridged configuration in younger individuals to an amorphous,<br />

often porotic appearance in older individuals. Thirdly, the inferior and<br />

superior edges transform from straight to wavy to sharply lipped with age.<br />

The method developed by Drukier et al. (2003) is specific to adult<br />

males and provides forensic anthropologists with an alternative/additional<br />

method to consider when attempting to age this already difficult period.<br />

The visual assessment and quantitive scoring of the nonmetric changes<br />

in three aspects of morphology, on the vertebral bodies (the vertebral ring<br />

union, the changes at the horizontal surfaces and the edges of the vertebral<br />

body) were used to test the vertebral method of age estimation. The<br />

exclusively male sample consisted of 30 individuals of known age-at-death<br />

from the 18th-19th century Spitalfields Collection, housed at The Natural<br />

History Museum, London, United Kingdom. For each individual the last<br />

five thoracic vertebrae (T8 – T12) were assessed alongside all lumbar<br />

vertebrae (L1 – L5).<br />

The results of the study followed the pattern described by Drukier et<br />

al. (2003) in that changes at the vertebral edge had the highest correlation<br />

258


with age, followed by epiphyseal union, and finally the horizontal surface.<br />

The relationship between the vertebral traits and age were not as strong as<br />

those achieved by the original study, yet still considered very significant.<br />

References:<br />

1 ALBERT, A. M., MAPLES, W. R. 1995. Stages of Epiphyseal Union<br />

for Thoracic and Lumbar Vertebral Centra as a Method for Age<br />

Determination for Teenage and Young Adult Skeletons. Journal of<br />

Forensic Science, 40 (4), 623-633.<br />

2 BROOKS, S.T., SUCHEY, J.M. 1990. Skeletal age determination<br />

based on the os pubis: a comparison of the Acsádi-Nemeskéri and<br />

Suchey-Brooks methods. Human Evolution 5: 227-238.<br />

3 COX, M., MAYS, S. 2000. Human Osteology in Archaeology and<br />

Forensic Science. London: Greenwich <strong>Medical</strong> Media.<br />

4 DRUKIER, P., SARAJLIC, N., KLONOWSKI, E. 2003. Age related<br />

changes in the adult male vertebral column. In: Proceedings:<br />

American Academy of Forensic Sciences Annual Meeting, Chicago.<br />

Denver: Publication Printers Corporation.<br />

5 ISCAN, M. Y., LOTH, S. R., WRIGHT, R. K. 1984. Age Estimation<br />

from the Rib by Rib Phase Analysis: White Males. Journal of<br />

Forensic Science, 29 (4), 1094-1104.<br />

6 ISCAN, M. Y., LOTH, S. R., WRIGHT, R. K. 1985. Age Estimation<br />

from the Rib by Rib Phase Analysis: White Females. Journal of<br />

Forensic Science, 30 (3), 853-863.<br />

7 LOVEJOY, C.O., MEINDL, R.S., PRYZBECK, T.R.,<br />

8<br />

MENSFORTH, R.P. (1985). Chronological metamorphosis of the<br />

auricular surface of the ilium: A new method for the determination of<br />

adult skeletal age at death. American Journal of Physical<br />

Anthropology, 68: 15-28.<br />

MCKERN, T. D., STEWART, T. W. 1957. Skeletal Changes in Young<br />

American Males. Technical Report EP-45, Headquarters,<br />

9<br />

Quartermaster Research and Development Command.<br />

Natwick, Massachusetts: Quartermaster Research and Development<br />

Centre Environmental Protection Research Division.<br />

10 REICHS, K., BASS, W. 1998. Forensic Osteology: Advances in the<br />

Identification of Human Remains. Second Edition. Springfield:<br />

Charles C. Thomas.<br />

11 TODD, W. 1920. Age changes in the pubic bone. American Journal<br />

of Physical Anthropology 3: 285-334<br />

Vertebral Aging Method, Age at Death Estimation,<br />

Forensic Anthropology<br />

H74 Spheno-Occipital Synchondrosis<br />

Fusion in the American Population<br />

Natalie R. Shirley, MA*, and Richard Jantz, PhD, University of Tennessee<br />

Department of Anthropology, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will have a comprehensive<br />

understanding of spheno-occipital synchondrosis fusion in the American<br />

population, with emphasis on the forensic application of aging standards<br />

developed from various methodologies and populations.<br />

This presentation will impact the forensic science community by<br />

providing updated standards for age estimation from the basilar<br />

synchondrosis and gives insight into skeletal development in human<br />

populations.<br />

The literature on spheno-occipital (or basilar) synchondrosis fusion<br />

reports that this maturation indicator fuses anywhere between the ages of 11<br />

and 25. Some studies report that females fuse a couple of years before<br />

males, whereas others do not comment on sexual dimorphism in basilar<br />

synchondrosis fusion. A recent study claims that the basilar synchondrosis<br />

is a useful age indicator in males, but that its utility is questionable in<br />

females. Certainly, such disparity is not desirable in a forensic context, nor<br />

does it adequately explain the variation present in the modern American<br />

population. For example, given that spheno-occipital synchondrosis fusion<br />

has been linked to puberty and the adolescent growth spurt, fusion at age 25<br />

would be anomalous. Presumably, these inconsistencies are due largely to<br />

the various methodologies used to develop the standards (i.e., radiographic,<br />

computed-tomography scanning, histological, direct inspection from<br />

autopsies, and direct inspection from dry skeletal material). Whereas<br />

radiographic, CT scanning, and histological studies give a more precise<br />

estimate of the onset of fusion, most forensic age estimates are based on<br />

direct inspection. Furthermore, skeletal maturation standards are<br />

population-specific and should not be extrapolated from one population to<br />

another. Finally, the established secular trend in skeletal dimensions and<br />

age-at-pubertal onset necessitates that age estimates of modern decedents<br />

be based on standards developed from modern populations.<br />

This study presents standards developed from 113 individuals between<br />

the ages of 5 and 25 years. The sample is a modern forensic sample with<br />

death years between 1980 and 2006 (the Forensic Data Bank, or FDB). The<br />

spheno-occipital synchondrosis was scored as open, partially closed<br />

(fusing), or completely closed (fused) via direct inspection of skeletal<br />

material. Based on the raw data for females, the earliest age at which fusion<br />

was complete was 14, and all females were fused by age 20. The earliest<br />

age of complete fusion in males was 16, with all males fused by age 22.<br />

However, age ranges such as these can be deceiving because they include<br />

outliers that can extend the age range by several years due to an<br />

insignificant, unrepresentative portion of the sample. Many times this<br />

proportion is less than 1% of the sample or, as was the case in this study,<br />

just 1 individual. For this reason, a transition analysis was applied to the<br />

FDB sample in order to determine the average age at which an individual<br />

transitions from non-union to complete union (partially-fused individuals<br />

were subsumed into the non-union sample). Transition analysis provides a<br />

robust estimate of age-at-fusion that is more representative than the age<br />

ranges which include outliers. The females in the FDB sample transitioned<br />

from non-union to complete union at 13.64 ± 0.93 years, and the males<br />

transitioned at 16.90 ± 0.74 years. These results reflect sexual dimorphism<br />

in basilar synchondrosis fusion and agree approximately with average age<br />

at puberty and its sexual dimorphism.<br />

During this presentation, the FDB results will be compared to those<br />

obtained using alternative methodologies, as well as to standards developed<br />

from non-American populations. Additionally, the secular trend in age-atpubertal<br />

onset will be addressed by comparing the modern FDB standards<br />

to those developed from a transition analysis of an earlier population (death<br />

years in the early 20th century). Studies such as this provide updated<br />

standards for the forensic community and give insight into skeletal<br />

development in human populations.<br />

Spheno-Occipital Synchondrosis, Age Estimation, Skeletal Maturation<br />

H75 A Curve Where No Hand Has Touched -<br />

Vertebral Ageing Method in Females<br />

Reuben Edwin Leigh Moreton*, Bournemouth University, 33 Corsair<br />

Drive, Dibden, Southampton, Hampshire SO45 5UF, UNITED<br />

KINGDOM; and Piotr D. Drukier, MSc*, Bournemouth University, C134<br />

Christchurch House, Talbot Campus, Fern Barrow, Poole, 0 BH12 5BB,<br />

UNITED KINGDOM<br />

After attending this presentation, attendees will have an understanding<br />

of the age-related changes that occur in the thoracic and lumbar vertebrae<br />

and their usefulness in aging an adult female through observational<br />

analysis.<br />

This presentation will impact the forensic community by<br />

demonstrating the results of the test of the vertebral ageing method by<br />

Drukier et al. (2003) on an independent female sample. This gives the<br />

forensic anthropologist a new aging method that narrows age range<br />

estimations, and therefore gives more precise age-at-death estimation,<br />

essential in identification of unknown human remains.<br />

259 * Presenting Author


Determining an individual’s age-at-death is crucial for Forensic<br />

Anthropologists in skeletal analysis. The methods used in age estimation<br />

involve observations of developmental and degenerative changes in bones,<br />

these observations are then assigned an age-range (O’Connell 2005). The<br />

age ranges given for older individuals are often so wide as to be<br />

meaningless, rendering them of little use in victim identification.<br />

The vertebral column was employed to initially investigate possible<br />

methodological refinement to decrease these ranges. To date there is<br />

limited research into the use of morphological changes of the vertebral<br />

column for estimating age-at-death. The majority of studies have focused<br />

upon the fusion of the epiphyseal ring to the vertebral body, limiting<br />

methods to younger individuals (McKern and Stewart 1957, Albert and<br />

Maples 1995).<br />

Recent research by Drukier et al. (2003) used a contemporary male<br />

sample from Bosnia and Herzegovina to create a quantitative scoring<br />

system for non-metric, age-related changes in the vertebral body. The three<br />

originally examined aspects of vertebral morphology were firstly the<br />

formation and fusion of the superior and inferior epiphyseal rings to the<br />

vertebral body, secondly a decrease in bone density and increased porosity<br />

of the horizontal body surface changing from a ridged structure to an<br />

amorphous and porotic in appearance, and thirdly a transition from a firm<br />

to wavy appearance at the margins of the body leading to sharp lipping and<br />

the formation of osteophytes.<br />

Recently Hollands (2007) used this scoring system to determine the<br />

age-at-death of individuals in an exclusively male sample.<br />

Ageing techniques based exclusively upon a male sample like Todd<br />

(1920) and McKern and Stewart (1957) have been found to consistently<br />

overestimate age-at-death when used on females (Gilbert and McKern<br />

1973). Variation between age estimates for males and females has also been<br />

seen when estimating age-at-death using the sternal rib end by Iscan et al.<br />

(1984, 1985). Certain areas of the human skeleton, notably the pelvis<br />

(Phenice 1969) and the skull (Giles and Elliot 1963), display extensive<br />

variation between males and females. In vertebral column sex differences<br />

were reported in mineral density of vertebrae and in the absolute and<br />

relative size of vertebral bodies (Snodgrass 2004) with males of ages 20 to<br />

30 years having a higher bone mass and an age-related increase in bone size<br />

that does not occur in females, in females over 50 years of age there is a<br />

higher chance of disconnection of trabecular bone (Moskilde 2000). When<br />

using Albert and Maples (1995) method for estimating age-at-death using<br />

vertebral epiphyseal ring fusion there are separate age-ranges for males and<br />

females, highlighting the differences in vertebral growth and development<br />

between the sexes.<br />

This current study tested the scoring system developed by Drukier et<br />

al. (2003) by applying it to a female sample to determine individual’s ageat-death,<br />

and discover if there is any variation in vertebral development and<br />

degeneration between the sexes. The sample consisted of 30 individuals of<br />

known age-at-death from the 18th-19th century Spitalfields Collection<br />

housed at The Natural History Museum in London, UK. For each individual<br />

the last five thoracic vertebrae (T8 – T12) were assessed together with all<br />

lumbar vertebrae (L1 – L5).<br />

Drukier et al. (2003) vertebral ageing method was evaluated by<br />

applying it to a female sample. The results were then compared to those<br />

achieved by Hollands (2007) who used the same method on exclusively<br />

male sample.<br />

References:<br />

1 ALBERT, A. M., MAPLES, W. R. 1995. Stages of Epiphyseal Union<br />

for Thoracic and Lumbar Vertebral Centra as a Method for Age<br />

Determination for Teenage and Young Adult Skeletons. Journal of<br />

Forensic Science, 40 (4), 623-633.<br />

2 DRUKIER, P., SARAJLIC, N., KLONOWSKI, E. 2003. Age related<br />

changes in the adult male vertebral column. In: Proceedings:<br />

American Academy of Forensic Sciences Annual Meeting, Chicago.<br />

Denver: Publication Printers Corporation. 249-250<br />

3 GILBERT, B. M., McKERN, T. W. 1973. A Method for Ageing the<br />

* Presenting Author<br />

4<br />

Female OS Pubis. American Journal of Physical Anthropology, 38<br />

(1), 31-38.<br />

GILES, E., ELLIOT, O. 1963. Sex Determination by Discriminant<br />

Function Analysis of Crania. American Journal of Physical<br />

Anthropology, 21 (1), 53-69.<br />

5 HOLLANDS, N. 2007. An Evaluation of the Skeletal Ageing Method<br />

Using Adult Male Vertebrae as Developed By Drukier et al.<br />

Dissertation (BSc). Bournemouth University.<br />

6 ISCAN, M. Y., LOTH, S. R. WRIGHT, R. K. 1984. Age Estimation<br />

from the Rib by Rib Phase Analysis: White Males. Journal of<br />

Forensic Science, 29 (4), 1094-1104.<br />

7 ISCAN, M. Y., LOTH, S. R., WRIGHT, R. K. 1985. Age Estimation<br />

from the Rib by Rib Phase Analysis: White Females. Journal of<br />

Forensic Science, 30 (3), 853-863.<br />

8 McKERN, T. D., STEWART, T. W. 1957. Skeletal Changes in Young<br />

American Males. Technical Report EP-45, Headquarters,<br />

9<br />

Quartermaster Research and Development Command. Natwick,<br />

Massachusetts: Quartermaster Research and Development Centre<br />

Environmental Protection Research Division EP-45.<br />

O’CONNELL, L. 2005. Guidance on Recording Adult Age at Death.<br />

In: M. BRICKLEY, J. I. McKINLEY, eds. Guidelines to the Standards<br />

for Recording Human Remains, IFA Paper No. 7. Southampton:<br />

BABAO. 18-21.<br />

10 PHENICE, T. W. 1969. A newly developed visual method of sexing in<br />

the os pubis. American Journal of Physical Anthropology, 30,<br />

297-301.<br />

11 TODD, W. 1920. Age changes in the pubic bone. American Journal<br />

of Physical Anthropology, 3, 285-334.<br />

Vertebral Ageing Method, Age-at-Death Estimation, Forensic<br />

Anthropology<br />

H76 Investigation of Second, Fourth, and<br />

Eighth Sternal Rib End Variation<br />

Related to Age Estimation<br />

Kathleen Alsup, MA*, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 307996<br />

After attending this presentation, attendees will better understand the<br />

impact of variation throughout the rib series on age estimation. This will be<br />

achieved by explaining how the right, second and eighth sternal rib ends<br />

will be aged (i.e., under- or over-aged) with the most commonly utilized<br />

methods for estimating age at death with rib ends.<br />

This presentation will impact the forensic community by<br />

demonstrating the necessity for continual re-analysis and updating of<br />

forensic anthropology’s most commonly utilized methods for age<br />

estimation.<br />

Estimating age at death accurately can be invaluable in answering<br />

important questions on forensic anthropology. Sternal rib ends have<br />

received a great deal of research attention as an area that uniformly changes<br />

with age. The Daubert decision has made rigorous testing and evaluation<br />

of forensic sciences’ most commonly used methods essential, and thus,<br />

forensic anthropologists must understand the timing differences in terms of<br />

age characteristics between ribs.<br />

Background: The most popular methods utilizing this area were<br />

developed by Iscan and coworkers [1, 2] using the right fourth rib from an<br />

autopsy population in Broward County, Florida. However, the accuracy of<br />

this method has been called into question, particularly on ribs other than the<br />

fourth and on ancestral populations other than European American. Yoder<br />

et al. [3] analyzed ribs two through ten in order to see if there was a significant<br />

difference between phase placements for rib four and all other ribs.<br />

Although most did not have significance in terms of differing phase<br />

260


placements, the authors did note that the percentage of differences were<br />

high for some ribs. This demonstrates that differences in terms of timing of<br />

degenerative changes are present in the rib series.<br />

Methodology: The right second, fourth and eighth sternal rib ends<br />

from the William M. Bass Donated Collection were examined using the<br />

methodology described by Iscan et al. [1 2] The pictures, casts and phase<br />

descriptions developed by these authors were used in order to determine<br />

phase placement. A total of 156 individuals (113 males and 43 females) of<br />

different ancestry were investigated. Eighty-five percent of the sample is<br />

Caucasian, 13% is African American and 2% is Latino. A Wilcoxon signed<br />

rank test was performed in order to determine if there was intra-observer<br />

error present in this study. Additional Wilcoxon signed rank tests were<br />

completed to demonstrate if a significant difference is present in the phase<br />

placements between the right, fourth rib and the right, second and eighth<br />

ribs. In order to better understand these differences, a transition analysis<br />

was performed for all ribs under investigation. Estimated transition ages<br />

were produced for the Iscan et al. [1] phases for comparison purposes using a<br />

means test. A last statistical procedure, t-tests, were performed in order to<br />

determine if there was significance between the transitions produced in this<br />

analysis and the transitions estimated from Iscan et al. [1]<br />

Results and Discussion: The Wilcoxon signed rank test demonstrated<br />

that there was no significant intra-observer error in this analysis. However,<br />

significance was found between the phase placements of the standard fourth<br />

rib and both the second and the eighth ribs for the male and total sample.<br />

No significant difference was found between phase placements in the<br />

female sample. Thus, the transition analysis was only performed on the<br />

male sample. This analysis showed that the second rib when aged with the<br />

Iscan et al. methods will significantly over-age individuals, while the eighth<br />

rib will consistently under-age specimens, although in some cases not<br />

significantly (significance was determined through the t-tests). Differential<br />

levels of stress within the rib series, which are produced by numerous<br />

factors, are the most likely cause of these dissimilarities found between<br />

phase placements for the second, fourth and eighth rib.<br />

References:<br />

1 Iscan MY, Loth SR, Wright RK. Age estimation from the rib by phase<br />

analysis: White males. Journal of Forensic Sciences 1984; 29:<br />

1094-1104.<br />

2 Iscan MY, Loth SR, Wright RK. Age estimation from the rib by phase<br />

analysis: White females. Journal of Forensic Sciences 30: 853-863.<br />

3 Yoder C, Ubelaker DH, Powell JF. Examination of variation in sternal<br />

rib end morphology relevant to age assessment. Journal of Forensic<br />

Sciences 46(2): 223-227.<br />

Sternal Rib Ends, Transition Analysis, Age Estimation<br />

H77 Age Related Histomorphometric<br />

Changes in Fetal Long Bones<br />

Courtney D. Eleazer, MA*, 7700 Gleason Drive, Apartment 39G,<br />

Knoxville, TN 37919<br />

The goal of this study is to investigate the age-related changes in<br />

histomorphometry among the six long bones of the fetal skeleton.<br />

Histological studies have become increasingly important in distinguishing<br />

fragmentary human remains from non-human remains, [1,2] as well as<br />

estimating age at death in forensic cases. [3, 4] However, little work has been<br />

done with subadult material due to its distinct growth patterns and unique<br />

microscopic composition.<br />

This study will impact the forensic community by providing a<br />

preliminary investigation into the potential of utilizing histomorphometry in<br />

the estimation of age at death of fetal remains. Microscopic methods may<br />

prove invaluable to the task of aging fragmentary remains that lack the<br />

characteristic features necessary for conventional methods.<br />

Seven stillborn cadavers of known gestational age and sex were<br />

donated to the Mineralized Tissue Histology Laboratory of the University<br />

of Tennessee by the <strong>Medical</strong> Examiners Office of the University of<br />

Tennessee Regional <strong>Medical</strong> Center. Because an autopsy was performed<br />

on these stillbirths, either upon the mother’s request or as routine protocol<br />

in a criminal investigation, permission was granted for histological<br />

sampling before incineration. The sample consisted of fetuses ranging in<br />

age from 17 to 35 weeks gestation with no two fetuses having the same<br />

gestational age. The six long bones of each fetus were embedded in epoxy<br />

resin, and thin sections were cut from the midshafts using a highconcentration<br />

Buehler Isomet low speed diamond blade saw. All sections<br />

were analyzed with a Leica DMRX light microscope at 16x, 50x, 100x, and<br />

200x power magnification. Histomorphometric analysis was conducted<br />

using a Dell Optiplex GX270 and Image-Pro Express software. For each<br />

slide, a maximum of 111 measurements were taken: maximum sagittal<br />

medullary diameter (anterior-posterior), maximum transverse medullary<br />

diameter (medial-lateral), medullary area, maximum cortical thickness<br />

(taken at each quadrant), minimum cortical thickness (taken at each<br />

quadrant), and a maximum of 25 separate trabecular diameters per<br />

quadrant.<br />

In order to account for potential growth retardation in these stillborn<br />

cadavers, the gestational age of each fetus was estimated via long bone<br />

length [5] and compared with actual age to quantify its developmental<br />

progress. The presence of distinct differences between actual gestational<br />

age and estimated developmental age in six of the seven fetal cadavers<br />

highlights the efficacy of analysis in terms of the latter. Considering that in<br />

the forensic setting, the actual age of a fetal specimen is unknown and that<br />

fetal death is often associated with growth retardation, all statistical analysis<br />

in this study was conducted employing developmental age as a factor.<br />

Due to the small sample size utilized for this study and the lack of<br />

replication in gestational age among these seven fetuses, the results of<br />

histomorphometric analysis should be interpreted as extremely preliminary<br />

in nature. Future research will benefit from the utilization of a much larger<br />

sample size containing multiple fetal specimens sampled from each<br />

gestational week. Only then can the full extent of variation in fetal<br />

histomorphometry be accounted for and generalizations concerning agerelated<br />

changes extrapolated to the entire fetal population as a whole.<br />

The results of Pearson’s rho correlation analysis reveal a statistically<br />

significant correlation between sagittal medullary diameter and fetal age for<br />

the femur, tibia, and fibula. Transverse medullary diameter was<br />

significantly correlated with age in the humerus, tibia, fibula, and radius.<br />

Regarding medullary area, the femur, tibia, and fibula were the only bones<br />

that possessed a correlation with age. Statistically significant correlations<br />

between both maximum and minimum cortical thickness and age were<br />

found for all six long bones. Among the six long bones, the humerus and<br />

tibia have the strongest correlations between cortical thickness and age, as<br />

roughly 65% and 56%, respectively, of the variation in the bone’s cortical<br />

thickness is explained by its positive linear relationship with age.<br />

The results of an ANCOVA employing age as a covariate indicate that<br />

age is a significant linear predictor of trabecular thickness in all long bones<br />

except the radius. The only long bone to possess an interaction effect<br />

between age and quadrant was the humerus; therefore, only in this bone<br />

does the rate of linear change in trabecular thickness with age differ by<br />

quadrant location.<br />

References:<br />

1 Harsanyi L. Differential diagnosis of human and animal bone. In<br />

Histology of Ancient Bone: Methods and Diagnosis. Grupe G. &<br />

Garland AN., eds. Berlin: Springer, 79-94.<br />

2 Cattaneo C, Dimartino S, Scali S, Craig OE, Grandi M, Sokol RJ.<br />

Determining the human origin of fragments of burnt bone: a<br />

comparative study of histological, immunological and DNA<br />

techniques. For Sci Inter 1999; 102; 181-191.<br />

3 Kerley ER and Ubelaker DH. Revisions in the microscopic method of<br />

estimating age at death in human cortical bone. AJPA 1978; 48;<br />

545-546.<br />

4 Stout SD. The use of cortical bone histology to estimate age at death.<br />

In Age Markers in the Human Skeleton. Iscan, ed. Springfield: CC<br />

Thomas; 1989; 195-207.<br />

261 * Presenting Author


5 Fazekas IG and Kósa F. Forensic Fetal Osteology. Budapest:<br />

Akadémiai Kiadó; 1978.<br />

Subadult, Histomorphometry, Age Estimation<br />

H78 Critical Study of Observations of the<br />

Sternal Extremity of the 4th Rib<br />

Laurent Fanton, MD*, Institut of Legal Medicine, 12 Avenue Rockefeller,<br />

Lyon, 69008, FRANCE; Marie Paule Gustin-Paultre, PhD, Lyon<br />

University, Lyon 1 University, Laboratory of <strong>Bio</strong>statistics ISPB, Lyon,<br />

F-69008, FRANCE; Habdelhamid Grait, MD, Milltary Hospital, Alger,<br />

ALGERIA; Aissa Boudabba, MD, Military Hospital, Alger, ALGERIA;<br />

Claire Desbois, MD, Lyon University, Lyon 1 University, Institut of<br />

Forensic Medicine, Lyon, F-69008, FRANCE; Patrice Stephane<br />

Schoendorff, MD, Institut Medico-Legal de Lyon, 12 Avenue Rockfeller,<br />

Lyon, 69007, FRANCE; Stéphane Tilhet-Coartet, MD, Institut of Legal<br />

Medicine, 12 avenue Rockefeller, Lyons, 69008, FRANCE; Daniel<br />

Malicier, MD, Institu Medico Legal, 12 Avenue Rockfeller, Lyon, 69007,<br />

FRANCE<br />

The goal of this presentation is to present a critical study from the<br />

estimation of the age at death by the sternal extremity of the 4th rib was<br />

reported. Its objectives were to assess its precision and reproductibility<br />

with a view to refining it.<br />

The method of estimation of the age in the death by the sternal<br />

extremity of the 4th rib does not appear to correspond to the current<br />

standards. This presentation will show the results of this study which are in<br />

favor of its improvement by a Bayesian approach.<br />

Age estimation in cadavers may clarify issues with significant legal<br />

and social consequences for individuals as well as for the justice. Methods<br />

for estimating age must have been presented to the scientific community, as<br />

a rule by publication in peer-reviewed journals, clear information<br />

concerning accuracy of age estimation by the method should be available,<br />

and the methods need to be sufficiently accurate. The sternal extremity of<br />

the 4th rib was suggested as a means of estimating age-at-death by Iscan<br />

twenty years ago. All such subsequent studies have systematically tended<br />

to overestimate the age of young subjects’ and to underestimate that of old<br />

subjects. Moreover, inter- and intra-observer variability has never really<br />

been checked. The present study sought to assess the precision and<br />

reproductibility of Iscan’s method, with a view to refining it. Eleven<br />

observers made two assessments, at a two-week interval, of the morphotype<br />

of three components (depth, wall and edge) of 59 4th ribs harvested from<br />

caucasian males (mean age: 48 y; range: 16-94) during forensic autopsy.<br />

Parametric (variance and mean) and non-parametric (quartile) analysis<br />

identified non-consensus ribs, and enabled a simplified protocol,<br />

minimizing the impact of observer experience and enhancing the<br />

independence of variables, to be designed. A feasibility study was then<br />

conducted on this protocol in the form of a consensus study of 54 ribs by<br />

two observers. Partial crossed correlations between the 6 predictive<br />

variables proved slight (rmin = 0.003, rmax = 0.41) at age given. A small<br />

improvement in the correlation between log age and scores on these new<br />

variables as compared to the original ones (r = 0.82 and 0.78, respectively)<br />

was also found. These preliminary findings bode well for improving<br />

Iscan’s method by a Bayesian approach.<br />

Age-at-Death, 4th Rib, Critical Study<br />

H79 Determination of Sex From Juvenile<br />

Crania by Means of Discriminant<br />

Function Analysis: A First Study<br />

Richard A. Gonzalez, PhD*, Department of Anthropology, Saint Lawrence<br />

University, 23 Romoda Drive, Canton, NY 13617<br />

* Presenting Author<br />

After attending this presentation, attendees will understand how sexspecific<br />

growth and developmental patterns in the human craniofacial<br />

skeleton can be used to develop sex determination standards by means of<br />

discriminant function analyses for the identification of juvenile skeletal<br />

remains.<br />

This presentation will impact the forensic community by<br />

demonstrating that it is possible to develop accurate methods for sex<br />

determination in unidentified juvenile remains.<br />

This study examines variation of craniofacial dimensions and<br />

morphology in juvenile humans. The major outcome of this investigation<br />

is the identification of sex specific developmental patterns in the<br />

craniofacial skeleton. In doing so, the study creates a set of standard values<br />

that facilitate the accurate determination of sex and a reduction in subjective<br />

error in the development of biological profiles of unidentified juvenile<br />

remains.<br />

Craniofacial growth variation between the sexes provides the basis for<br />

identifying sexual dimorphism in juveniles because the craniofacial<br />

skeleton reaches maturity early in life (Ackermann and Krovitz, 2002;<br />

Guihard-Costa and Ramirez-Rozzi, 2004; Smith, 1991). Growth of the<br />

craniofacial skeleton slows down from about 2.5 years of age with many of<br />

the adult features already established by the time the first permanent molar<br />

erupts (Ackermann and Krovitz, 2002; Guihard-Costa and Ramirez-Rozzi,<br />

2004; Smith, 1991). Given the early establishment of craniofacial form, it<br />

should be expected that sex-specific features be present during craniofacial<br />

development. Thus, the craniofacial skeleton provides the best sources for<br />

sex identification in the juvenile skeleton.<br />

To identify sexually dimorphic differences in the growth of the<br />

juvenile craniofacial complex, the study analyzed lateral cephalometric<br />

radiographs housed at the University of Michigan School of Dentistry<br />

(Riolo et al., 1974). These cephalometric radiographs represent an average<br />

local school population from the Ann Arbor, Michigan area (Dibbets,<br />

1995). Five-hundred and ninety-eight 11x14 lateral cephalometric<br />

radiographs with a range of 5-16 years of age were randomly selected. The<br />

sample was organized according to age group with males and females<br />

equally distributed. Each radiograph was traced on 11x17 hyprint vellum<br />

using a .05mm mechanical pencil. Eight craniometric points were identified<br />

and marked film-by-film. From these points, 20 measurements in<br />

millimeters and 17 angular dimensions were recorded from each subject<br />

using a Mitutoyo Mycal E-Z 300mm sliding.<br />

For data input and analysis, this investigation relied on The Statistical<br />

Package for the Social Sciences (SPSS) version 14.0. All data were<br />

organized according to the eruption standards of the maxillary permanent<br />

dentition. Before data analysis, a calibration scale converted raw data to<br />

natural size, since the radiographs utilized for the study have a<br />

magnification factor of 12.9%. The data were calibrated using the formula<br />

provided by Dibbets, (1995) and Dibbets and Nolte (2002).<br />

Calculation of descriptive statistics for all variables by age cohort and<br />

sex provided initial comparative information. Multivariate statistical<br />

procedures aided in the identification of possible sex differences in<br />

craniofacial growth. The multivariate statistical analyses consisted of a<br />

general linear model procedure (GLM MANOVA), which tested the main<br />

effects of interactions between the independent and independent variables,<br />

a canonical discriminant function analysis, which facilitated the<br />

identification of craniofacial growth trends, and a backward stepwise<br />

canonical discriminant function analysis, which created a series of<br />

predictive models for sex identification for each age group category.<br />

Statistical significance was observed on the Wilks’ Lambda and F statistic<br />

at the .05 level.<br />

The results of this investigation suggest that craniofacial sexual<br />

dimorphism results from variation in the rate and timing of growth, which<br />

leads to allometric differences between the sexes. Growth varies between<br />

age group and has independent control over the face and neurocranium. A<br />

combination of neurocranial and facial measures provide the best<br />

classification models for sex. The 15-16 age group yielded the greatest<br />

accuracy with 90% sex identification. In the younger age groups, sex<br />

identification was high for the age groups 7-8 (82%), 9-10 (83%), and 13-<br />

262


14 (83%). The 5-6 age group (71%) and in the 11-12 age group (77%) had<br />

lowest percentage for sex identification. The reliability of sex identification<br />

depends on stage of development and developmental trends. Therefore, the<br />

results of this study suggest that measures from the entire craniofacial<br />

skeleton must be used to derive accurate predictive models for sex<br />

identification.<br />

Sex Determination, Craniofacial Growth, Skeletal Profiling<br />

H80 Admixture and the Growing List of Racial<br />

Categories: Clarity or Confusion for<br />

Law Enforcement (and the Public)<br />

Conrad Bezekiah Quintyn, PhD*, Bloomsburg University, Department of<br />

Anthropology, 400 East 2nd Street, Bloomsburg, PA 17815<br />

After attending this presentation, attendees wil. have a clear idea of<br />

problems in trying to categorize “race” in multiracial individuals, and<br />

adding to the existing categories of race may be an hinderance to police<br />

(and the public) in finding missing people.<br />

This presentation will impact the forensic science community by<br />

demonstrating how in publicizing missing people, law enforcement must be<br />

able to use racial categories which are most familiar to the general public in<br />

order to increase the likelihood of finding these missing individuals; the<br />

goal is to bring closure for the families.<br />

Any subdivision of the existing racial categories into smaller units to<br />

categorize biracial or tri-racial individuals/populations might confound law<br />

enforcement and the public.<br />

“Race” is a convenient social tool employed by law enforcement for<br />

many practical purposes, an important one being to find people when they<br />

go missing. But the steady increase in biracial or tri-racial population<br />

groups and the constant flow of immigrants to the U.S. in the last fifty years<br />

have complicated the racial picture to the point where it is becoming very<br />

difficult to fit people into their neat racial categories as depicted on job<br />

application forms. “Race” is already a questionable concept (biologically);<br />

consequently, any attempt to pinpoint hybridization phenotypically, i.e.,<br />

cablinasian which, supposedly, is a mixture of African, Phillipino, and<br />

Asian ancestries, might be more a result of political correctness rather than<br />

reality. In practice, this cablinasian category will certainly cause confusion<br />

among law enforcement and the public since phenotypically these<br />

individuals would either have more Asian traits or more African traits (and<br />

less of any other traits) depending on the random sorting of genes in<br />

inheritance. In short, these individuals will be viewed as either Asian<br />

American or African American by the public.<br />

Interracial mating in this country goes back to the 17th century. In the<br />

aftermath of the Civil Rights movement in the late 60s and 70s and<br />

subsequent enlightened attitudes about race, interracial matings have<br />

steadily increased accompanied by a parallel increase in the population of<br />

biracial children. In addition, immigration has added to an already dynamic<br />

multicultural mix. All of this has led to further subdivision of the racial<br />

categories by the U.S. Census bureau (in coordination with state<br />

governments) to reflect this multiracial population. What we see is<br />

everything! The public can identify an African American, Asian American,<br />

Latino, or someone of European ancestry (Caucasoid) very easily. This<br />

makes it very convenient for law enforcement when they publicize the<br />

social race of a missing individual. But when unfamiliar terms are used,<br />

such as cablinasian, creole, or chamorro in conjunction with a photograph<br />

of the missing individual depicting African or Asian features, confusion<br />

ensues. We live in a cultural environment where every group wants to be<br />

identified by its own category or adheres to the concept of ideal types. If<br />

politicians concede to these groups and add to the existing racial categories<br />

out of a sense of duty or political correctness, then chaos will reign: the<br />

paperwork and existing problems of bureaucratic race will become even<br />

more complex. The general public, which includes law enforcement, is<br />

more familiar with the traditional categories, i.e., African American or<br />

black, Asian American, Native American or Indian, Caucasian or white,<br />

and Hispanic American or Latino which include Mexican, Cuban, and<br />

Puerto Rican. Individuals who categorize themselves within new<br />

categories, such as cablinasian, creole, chamorro, mestizo, etc., can be—<br />

phenotypically—merged into the respective traditional categories.<br />

In publicizing missing people, law enforcement must be able to use<br />

racial categories which are most familiar to the general public in order to<br />

increase the likelihood of finding these missing individuals; the goal is to<br />

bring closure for the families.<br />

Race, Biracial, Phenotype<br />

H81 Racial Admixture: A Test of Non-Metric<br />

Ancestry Estimation<br />

Lindsey L. Caldwell, BA*, 2245 College Drive, Apartment 178, Baton<br />

Rouge, LA 70808; MariaTeresa A. Tersigni, PhD, Department of<br />

Anthropology, Univeristy of Cincinnati, Braunstein 481 PO 210380,<br />

Cincinnati, OH 45221; and Mary H. Manhein, MA, Department of<br />

Geography & Anthropology, Louisiana State University, Baton Rouge, LA<br />

70803<br />

After attending this presentation, attendees will understand the<br />

methods of ancestry estimation used by physical anthropologists when<br />

cranial remains are assessed. They will learn the problems with these<br />

methods in the estimation of ancestry for skulls exhibiting mixed ancestral<br />

heritage. They will learn which non-metric traits tend to be used when<br />

assigning specific ancestries. Participants will also learn what the<br />

“understood” procedure is when metrics and non-metrics yield differing<br />

ancestry estimates.<br />

As race determination has always been a topic of debate among<br />

anthropologists, this presentation will impact the forensic science<br />

community by addressing the clines of traits found in admixed individuals.<br />

It also addresses the need for standardization of which non-metric traits<br />

should be weighted heavier than others in the analysis of individuals of<br />

mixed racial affinities.<br />

The researchers hypothesize that each observer will use a different<br />

suite of non-metric traits to establish the racial profile for a specific skull.<br />

Therefore, it is hypothesized that each observer will assign a racial affinity<br />

based on the weight the observer themselves give to various traits or trait<br />

gradations. These factors combined will affect the observer’s ability to<br />

correctly classify a mixed ancestry skull into the appropriate racial group<br />

according to current anthropological standards and will result in differing<br />

ancestry estimates for the same skull between researchers.<br />

Twelve individuals that exhibited racial admixture were selected from<br />

the skeletal collection Louisiana State University. These skulls were<br />

analyzed by researchers with various levels of experience and their ancestry<br />

was assessed, based on the ancestry standards published by Gill and Rhine<br />

(1990). After ancestry conclusions were drawn solely from the non-metric<br />

data, cranial measurements were taken and entered into FORDISC 2.0. The<br />

results of both the metric and non-metric data were then compared. When<br />

there was a discrepancy between the results of the non metric and<br />

morphometric traits, the researchers attempted to identify specific traits that<br />

would account for the differing results. Statistical analysis was employed<br />

to identify: (a) which non-metric traits each researcher noted, (b) the weight<br />

each researcher gave specific traits in final determination, (c) which traits<br />

are more dominant in persons representing two or more racial categories,<br />

and (d) the effect, if any, that the interaction of sex and ancestry may have<br />

on any given non-metric trait.<br />

The results of this research suggested very different racial<br />

classifications based upon non-metric and metric analyses. The researchers<br />

were asked to pick one or two main ancestral affinities as most individuals<br />

identify with one particular social race. After thorough examination of each<br />

skull, the non-metric data demonstrated these individuals possessed strong<br />

traits for racial admixture, while the Fordisc 2.0 analysis suggested only one<br />

ancestral group, either with very low typicality rates or an entirely different<br />

263 * Presenting Author


acial category as determined by the non-metric results. The non-metric<br />

traits were analyzed to determine which traits took dominance in<br />

determining race for each anthropologist. The analysis shows that the<br />

researchers focused primarily on the traits of the upper face (eye orbit<br />

shape, nasal shape, nasal aperture, and zygomatics) when assigning race<br />

and rarely used traits such as inion hook, rounded external auditory meatus,<br />

dental arcade shape, suture simplicity, and wormian bones to alter their<br />

racial assessment.<br />

The estimation of race from a skull is becoming increasingly more<br />

difficult as individuals are less and less made up of one specific racial<br />

affinity. As the need for an accurate race estimate is important to narrow<br />

the search for positive identifications, it is likely that different<br />

anthropologists will identify the same admixed individual as belonging to<br />

different racial categories. There is a need for standardization of this<br />

process and a need to identify which non-metric traits are more dominant in<br />

admixed individuals and thus contribute more to the overall phenotype of<br />

the individual.<br />

Racial Admixture, Non-Metric Analysis, Metric Analysis<br />

H82 Discriminant Function Analysis as<br />

Applied to Mandibular Metrics to<br />

Assess Population Affinity<br />

Gregory E. Berg, MA*, US Army Central ID Laboratory, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530<br />

After attending this presentation, attendees will be familiarized with<br />

the results of a study examining the metric characteristics of the mandible<br />

and their ability to predict ancestry.<br />

This presentation will impact the forensic community by offering<br />

another assessment of the mandible as a reliable indicator of population<br />

affinity for use in forensic casework.<br />

Forensic anthropologists tend not to rely heavily on mandibular metric<br />

data to determine population affinity for several reasons. First, the most<br />

widely available comparison groups are usually limited to U.S. Whites and<br />

Blacks. Second, when other populations are available for comparison, the<br />

sample sizes are relatively small and are not forensically relevant to U.S.<br />

casework. Third, anthropologists are more familiar with cranial metrics<br />

rather than those of the mandible. Therefore, there is a need to develop<br />

reliable formulae for deriving population affinity based mandibular metric<br />

data. This paper examines the ability to correctly classify an unknown<br />

individual using mandibular metrics through discriminant function analysis<br />

using populations that are forensically relevant in the United States.<br />

The study concentrates on individuals from approximately ten<br />

different populations that include American Whites and Blacks,<br />

Cambodians, Vietnamese, Central American Hispanics, Nubians, and<br />

Native Americans. The total sample size is in excess of 1000 individuals;<br />

all individuals are assumed to have late 19th to 20th century birth years,<br />

except for certain Native American groups and the Nubians. Eleven<br />

measurements were collected for each mandible in the study; eight were<br />

standard, one was a modified standard measurement, and two were newly<br />

defined. The standard measurements have been defined numerous times<br />

and the definitions given in Moore-Jansen et al. (1994) are followed. The<br />

two new measurements are the mandibular body breadth at the M2/M3<br />

junction and the dental arcade width at the third molar. The modified<br />

measurement is the mandibular body breadth at mental foramen.<br />

Step-wise linear discriminant function analyses using the Mahalanobis<br />

D2 distance statistic were undertaken on the data. These analyses<br />

concentrated not only on two populations at a time, but also up to ten group<br />

evaluations. Male only and female only comparisons as well as pooled sex<br />

comparisons were undertaken; many analyses used males only due to<br />

relatively small female sample sizes in certain populations. When present,<br />

missing data were estimated using multiple linear regression models, by<br />

population. Each analysis was cross-validated using a leave-one-out<br />

method for accuracy assessment. Frequently, the measurements of the<br />

mandibular angle and bicondylar width did not enter into the final<br />

discriminant functions.<br />

* Presenting Author<br />

A two population comparison between American Whites and Blacks,<br />

sexes pooled, yielded a cross-validated accuracy rate of 85% using four<br />

variables. Other two group comparisons for males only yielded crossvalidated<br />

accuracy rates between 83% and 94%. Nearly all three population<br />

comparisons, males only (for example American Whites, Blacks, and<br />

Cambodians) yielded cross-validated accuracy rates between 71% and<br />

75%. Several five population comparisons yielded cross-validated accuracy<br />

rates around 55%, approximately three times better than the expected<br />

accuracy if based on chance alone. Finally, all groups together yielded a<br />

47% accuracy rate, or over four times chance alone. Interestingly, secular<br />

change also is detectable in related groups over time, such as 19th and 20th<br />

century U.S. Blacks and Whites. These results are similar to the expected<br />

accuracy rates from other discriminant function analyses involving the<br />

skull, e.g., mandibular morphology and cranial metrics. Based on these<br />

results, the use of discriminant functions to assess population affinity via<br />

mandibular metrics is argued to be a valuable tool for the forensic<br />

anthropologist.<br />

Forensic Sciences, Mandible, Ancestry<br />

H83 A Test of Methods: Implications of<br />

Dimorphism, Population Variation, and<br />

Secular Change in Estimating Population<br />

Affinity in the Iberian Peninsula<br />

Ann H. Ross, PhD*, North Carolina State University, Sociology and<br />

Anthropology, Campus Box 8107, Raleigh, NC 27695-8107; Douglas H.<br />

Ubelaker, PhD, Department of Anthropology, NMNH - MRC 112,<br />

Smithsonian Institution, Washington, DC 20560; and Erin H.<br />

Kimmerle, PhD, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820<br />

The educational objectives of this paper are to discuss multiple<br />

craniometric and statistical methods for estimating population affinity, test<br />

the extent to which population variation may effect sex estimation, and<br />

explore the applicability of using cross-population data for individual<br />

biological profiling.<br />

This presentation will impact the forensic science community by<br />

providing an uderstanding of human variation and applying appropriate<br />

methods for identification across populations. Importantly it is<br />

demonstrated that population specific data are needed for accurate<br />

calibration when using metric analyses for sexual dimorphism and ancestry<br />

estimation. The outcome of this research is to demonstrate why forensic<br />

anthropologists should approach international work through a framework<br />

that accounts for population variation.<br />

One of the key components in the identification process is the ability<br />

to determine ancestry from a skeleton. Craniofacial variation defined by<br />

skull dimensions of size and shape are estimated by a proportion of both<br />

intrinsic (genetic) and extrinsic (environmental) factors. Because human<br />

populations differ morphologically in relation to size and shape,<br />

identification formulae should be customized to be population specific.<br />

The knowledge of the ethnic origins of an individual drastically narrows the<br />

search for missing persons that can ultimately result in victim identification.<br />

However, this is becoming increasingly challenging as individuals migrate<br />

to different populations and standards have been continuously appraised.<br />

The standards for classifying or differentiating closely related populations<br />

(e.g., “Hispanic”) using both traditional and modern three-dimensional<br />

methods are currently being addressed by numerous researchers.<br />

Recent studies have paid much attention to the problematic nature of<br />

using biologically meaningless terms such as “Hispanic”, which ignore<br />

geographic heterogeneity throughout the New World. To this end, we<br />

present a comparative study of among-group variation for two samples<br />

from the Iberian Peninsula (Oloriz Regional 19th Century, F= 27, M = 27;<br />

Wamba Local 16-17th Century, F = 25, M= 26) and Terry Whites (F = 22,<br />

M = 22) using a combination of traditional linear metric methods and<br />

modern approaches from the geometric morphometrics. The sample sizes<br />

264


for the traditional craniometric study was slightly smaller for each sample<br />

as those with any missing values were not included in the analyses. For this<br />

study sixteen traditional craniometric measures were utilized in the<br />

analyses. A discriminant function analysis was conducted using the<br />

traditional craniometrics to allocate crania into groups using<br />

crossvalidation. The degree of differentiation between the groups was<br />

measured using Mahalanobis D2 . Although human levels of sexual<br />

dimorphism are low compared to other primate species, males and females<br />

appear skeletally very different. Because the degree and pattern of sexual<br />

dimorphism vary by population, which can further complicate the accurate<br />

assignment of ancestry and sex in different populations, the degree of<br />

sexual dimorphism was also evaluated. The degree of sexual dimorphism<br />

was assessed with an index of sexual dimorphism or ISD [(male<br />

mean/female mean)/1] X 100. The similarity or dissimilarity in the degree<br />

of sexual dimorphism was evaluated using a nonparametric Spearman rank<br />

correlation coefficients. Fourteen standard craniofacial Type 1 and Type 2<br />

landmarks were used in the geometric morphometric part of the analysis.<br />

The among-group variation of the coordinate data was examined using<br />

multiple pairwise comparisons with Bonferroni correction.<br />

Both the traditional and morphometric cranial analyses detected<br />

significant differences among the samples (p-values > 0.001). Interestingly,<br />

19th Century Spanish males were closer to Terry White males, but both<br />

Spanish female samples were closer to each other than they were to the<br />

Terry females. The average ISD for all measurements is slightly higher for<br />

the Wamba Local 16-17th Spanish sample suggesting that they are<br />

somewhat more sexually dimorphic. The intraspecific rank correlations<br />

among the ISDs for all craniometric variables detected a moderate<br />

difference in the pattern of sexual dimorphism between the two Spanish<br />

samples (r=0.55) possibly indicating secular changes in sex dimorphism<br />

within the Iberian Peninsula. The varying levels of dimorphism among<br />

populations could affect the classification accuracy when attempting to<br />

assign an “unknown” to a particular reference group and further skew<br />

results for sex estimation when applying different standards across<br />

populations. These results obviate the importance of investigating regional<br />

or geographic morphological variations and further underscore the<br />

importance of calibrating methods to reflect the biology of the local<br />

population.<br />

Population Affinity, Sex Dimorphism, Spain<br />

H84 Cranial Histomorphology: Species<br />

Identification and Age Estimation<br />

Lindsay H. Trammell, MA*, Murray K. Marks, PhD, and Walter E.<br />

Klippel, PhD, University of Tennessee, Department of Anthropology, 250<br />

South Stadium Hall, Knoxville, TN 37966-0720; and Darinka Mileusnic-<br />

Polchan, MD, PhD, UTMCK, Department of Pathology, 1924 Alcoa<br />

Highway, Knoxville, TN 37920<br />

After attending this presentation, attendees will understand the<br />

histological characteristics of neurocranial elements and the usefulness of<br />

these elements in species recognition and estimation of age-at-death.<br />

This presentation will impact the forensic community by providing a<br />

methodology for identifying and aging fragmentary cranial remains at the<br />

microscopic level.<br />

Recent bone histological research on anthropological materials has<br />

focused on the postcranial skeleton and specifically, the pelvic and pectoral<br />

limb bones. The microscopic characteristics of these long bones have been<br />

utilized to ascertain the human or non-human status and to estimate age.<br />

However, few studies have undertaken a characterization of flat bones and<br />

it is not uncommon in the forensic setting to discover a skull or fragmented<br />

neurocranial elements.<br />

This histological research addresses several questions using human<br />

and non-human frontal, occipital, and parietal bones to discern the<br />

microstructure and to interpret inter-bone and inter-species difference. This<br />

study follows up previous research by Cool and coworkers (1995) and<br />

Clarke (1987) as it re-examines the utility of using vault bones to ascertain<br />

age-at-death. Current histological age estimating methods utilize the Kerley<br />

(1965) method relying on diaphyseal mid-shafts. Kerley’s method did not<br />

consider environmental and mechanical stress factors when it was created.<br />

Clarke (1987) considered the parietal and Cool et al, (1995) examined the<br />

occipital. Our research re-evaluates these questions and includes the frontal<br />

bone to ascertain the most accurate age estimation bone.<br />

Human cranial samples were secured at autopsy from known age, sex<br />

and ancestry victims from the University of Tennessee Regional Forensic<br />

Center. Nonhuman crania were sampled from specimens in the<br />

Zooarchaeological Collection in the Department of Anthropology at the<br />

University of Tennessee including animals from four different families:<br />

white-tailed deer (Odocoileus virginianus), goat (Capra hircus), pig (Sus<br />

scrofa), and dog (Canis familiaris).<br />

Bone cores were removed from identical regions of the frontal,<br />

parietal and occipital of each specimen. Thin sections were prepared using<br />

routine petrographic methods and examined under light microscopy to view<br />

histological characteristics. Human samples were neither significant to<br />

individual nor to bone. Basic structures analyzed in humans include<br />

primary and secondary osteons, secondary osteon fragments and lamellar<br />

bone. Plexiform bone characterized the nonhuman specimens along with<br />

some primary and secondary osteons. The presence of plexiform bone<br />

taken in congruence with quantitative measurements of secondary osteon<br />

area and Haversian canal area were successful in differentiating all human<br />

from nonhuman samples. In human, fractional volumes of secondary<br />

osteons, secondary osteon fragments and lamellar bone were recorded for<br />

the frontal, parietals and occipital. These variables were statistically<br />

compared using SPSS and analyzed to obtain the best correlation to age-atdeath.<br />

This research considers cranial microstructure of human and<br />

nonhuman samples and indicates that certain histological structures can<br />

differentiate between humans and between and within non-human species.<br />

This study also discusses the applicability of using the frontal, parietal and<br />

occipital bones to estimate age-at-death in humans.<br />

References:<br />

1 Clarke DF. Histological and radiographic variation in the parietal bone<br />

in a cadaveric population. Masters thesis, University of Queensland,<br />

Australia, 1987.<br />

2 Cool SM, Hendrikz JK, Wood WB. Microscopic age changes in the<br />

human occipital bone. J Forensic Sci 1995;40:789-796.<br />

3 Kerley ER. The microscopic determination of age in human bone. Am<br />

J Phys Anthropol 1965;23:149-164.<br />

Histology, Age Estimation, Neurocranium<br />

H85 Are Cranial Morphological Traits<br />

Population Specific? A Reevaluation of<br />

Traditional Sex Estimation Methodology<br />

Angela M. Dautartas, BS*, and Kanya M Godde, MA*, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand<br />

re-evaluation of traditional morphological cranial sex estimation methods<br />

in reference to specific population groups.<br />

This presentation will impact the forensic community by helping to<br />

improve the standards upon which anthropologists rely for construction of<br />

the biological profile. Continual testing and alteration of these methods to<br />

reflect modern populations is essential to ensure the highest possible<br />

accuracy.<br />

Visual analysis for sex estimation using the cranium and mandible as<br />

outlined by Buikstra and Ubelaker (1994) involves examination of five<br />

morphological traits on an ordinal scale, ranking from definite male to<br />

definite female. This system is well known, and has been commonly used<br />

by the forensic community for many years. Krogman tested the accuracy<br />

265 * Presenting Author


of this particular method by utilizing this particular suite of morphological<br />

traits in an attempt to identify the sex of 750 individuals from the Hamann-<br />

Todd collection (Krogman and Iscan, 1986). Although this collection<br />

included males and females of European and African ancestry, it was biased<br />

towards males of European ancestry. Even though Krogman returned a<br />

92% accuracy rate from examining the skull alone, because of the bias<br />

towards European males, the actual accuracy of this system may be lower<br />

for a more diverse sample. Stewart (1979) also tested this method,<br />

examining 100 male and female individuals of African-American descent<br />

from the Terry collection. While he noted that his accuracy was only 77%<br />

for this population, he attributed the lower success rate to the fact that the<br />

sample was heavily male biased.<br />

The aim of this study is to demonstrate that expression of cranial<br />

morphological traits are population specific, and therefore methods<br />

incorporating these traits may not be appropriate for all ancestral<br />

populations. For example, female individuals of African or African-<br />

American descent have been noted to display cranial traits that tend to<br />

mislead observers when assessing sex. Mastoid processes are typically<br />

larger in females of African descent than females of European descent.<br />

When using the standard scale to determine sex, larger mastoids are<br />

considered strongly indicative of a male individual. This example<br />

demonstrates that techniques that do not account for differences among<br />

populations may be inappropriate determinants of sex.<br />

In order to test our hypothesis, a sex estimation analysis of adult male<br />

and female individuals of African-American ancestry from the William<br />

Bass Donated Collection was completed. Each of the five morphological<br />

traits were visually examined and rated according to the scale set down by<br />

Buikstra and Ubelaker. The resulting estimation was then compared to the<br />

individual’s actual known sex.<br />

In order to evaluate the accuracy of using mastoid processes alone as<br />

determinants of sex, metric estimation was also completed. Measurements<br />

of mastoid length and mastoid breadth were obtained from the Forensic<br />

Anthropology Data Bank. These measurements were used to compute<br />

mastoid area separately in males and females of both European and African<br />

ancestry. Subsequently the measurements of each sex were compared<br />

across the populations to investigate any differences between the two<br />

groups. A t-test was used to determine if any significant differences do<br />

exist.<br />

Our results indicated that traditional morphological indicators of sex<br />

can reflect populational variation. Certain traits including the mastoid<br />

process, supraorbital margin and supraorbital ridge were expressed<br />

differently between the two ancestral groups. When the scale found in<br />

Buikstra and Ubelaker (1994) was applied to the populations without regard<br />

to ancestral differences, our accuracy rating was 79%. When the<br />

populations were separated and the Buikstra and Ubelaker scale was<br />

adjusted for ancestral differences, our accuracy rating increased to 88%.<br />

Further, mastoid measurements indicated that significant differences do<br />

exist between individuals of European ancestry and individuals of African<br />

or African-American ancestry.<br />

The results here suggest that cranial morphological traits are not only<br />

sex specific, but population specific, as well. Since sex determination<br />

accuracy increased when population specific scales were used, it is<br />

recommended that the method be revised to state that it is best applied to<br />

individuals of European descent and alternative scales be developed for<br />

other ancestries.<br />

References:<br />

1 Buikstra JE, Ubelaker D editors. Standards for data collection from<br />

human skeletal remains : proceedings of a seminar at the Field<br />

Museum of Natural History. Fayetteville: Arkansas Archaeological<br />

Survey, 1994.<br />

2 Krogman WM, Iscan MY. The human skeleton in forensic medicine.<br />

Springfield: C.C. Thomas, 1986. Stewart TD. Essentials of forensic<br />

anthropology. Springfield: C.C. Thomas, 1979.<br />

Cranial Morphology, Visual Sex Estimation, Population Study<br />

* Presenting Author<br />

H86 A Practical Method for Determining Sex<br />

From Human Chest Plate Radiographs<br />

Heather Garvin, MS*, 7471 SE 117th Terrace, Morriston, FL 32668; Luis<br />

Lorenzo Cabo-Pérez, MS, Mercyhurst College, Department of Applied<br />

Forensic Sciences, 501 East 38th Street, Erie, PA 16546; Kyra Elizabeth<br />

Stull, BA, Mercyhurst College, 501 East 38th Street, Erie, PA 16546; and<br />

Dennis C. Dirkmaat, PhD, Mercyhurst Archaeological Institute,<br />

Mercyhurst College, Glenwood Hills, Erie, PA 16546<br />

Upon completion of this poster presentation, participants will be better<br />

informed of the accuracy of past published sex determination methods as<br />

applied to human chest plates from a modern forensic sample. Participants<br />

will also become conscious of which sexual traits are most reliable from the<br />

chest plate region and will be presented with a new practical method for<br />

accurate sex determination.<br />

The presentation of this research will impact the forensic community<br />

by providing the necessary evaluation and associated statistics of proposed<br />

sex determination methods from the human chest plate, which is essential<br />

for Daubert compliances. The presentation also presents new practical<br />

methods which are accurate and lack complex, extensive procedures, so<br />

that they may be applied either radiographically in the medical examiner<br />

setting, or osteologically to the skeletal elements of the chest plate, for<br />

preliminary or supplemental sex determination.<br />

Highly decomposed or altered human remains often prevent quick<br />

assessment of the victim’s biological profile at autopsy. When their<br />

preservation or integrity do not allow for a diagnosis from soft tissues, the<br />

remains require further processing for osteological examination by a forensic<br />

anthropologist which adds extra time to the identification process, especially<br />

when aggressive maceration methods are avoided. Within this framework,<br />

radiographic examination of different anatomical areas can provide a useful<br />

tool for obtaining reliable, yet quick assessments of factors such as age, sex<br />

or ancestry, and serves to guide the initial stages of a forensic investigation,<br />

before processing and comprehensive osteological analysis can be<br />

completed.<br />

The present study explores the presence of sexual dimorphism in the<br />

anterior thorax region, and its potential for sex diagnosis from anterior chest<br />

plate radiographs. Although the skull and pelvis provide the most reliable<br />

indicators of sex in human skeletal remains, these areas may be absent or<br />

damaged. Additionally, anterior thoracic radiographs are easily taken during<br />

autopsy, as the chest plate is routinely removed during autopsy, and presents<br />

less orientation problems than other regions. Furthermore, both metric and<br />

morphological sex differences in the anterior thoracic region (including<br />

observations based on autopsy radiographs) are well documented in the<br />

literature. Among them, the degree and pattern of ossification of costal<br />

cartilage, morphological changes to the sternal ends of the ribs, and relative<br />

size and morphologies of the sternum are described as providing reliable sex<br />

estimates.<br />

Although these sexual markers have been noted since the 1980’s, they<br />

are scarcely used in forensic practice. A lack of proper associated probability<br />

estimates essential for Daubert compliance, such as percentages of correct<br />

classification and posterior probabilities, as well as the scaling problems<br />

derived from radiographic recordation, can likely be counted among the top<br />

causes of this neglect. The present study addresses these problems by:<br />

(1) testing the accuracy, in terms of percentages of correct classification, of<br />

existing sex determination methods based on radiographic examination of<br />

the sternal area, and of the individual traits employed in these methods,<br />

(2) exploring alternative methods to correct for radiographic scale, and (3)<br />

estimating the probabilities attached to the newly created alternative<br />

methods.<br />

Special attention is paid to costochondral ossification patterns and<br />

sternum morphology in this study. With respect to the former, typically<br />

only the sternal ribs are available to the forensic anthropologist (and lacking<br />

the associated costal cartilage). Given that most of the morphological<br />

changes to the sternal rib ends are a direct result of the costal cartilage<br />

ossification, a better understanding of sexual differences in cartilage<br />

266


ossification, as observed radiographically, can provide a useful insight into<br />

the traits considered in the osteological method.<br />

Sternum morphology is likewise highly dimorphic, and relatively easy<br />

to record from radiographs, given the density, placement and orientation of<br />

the sternum. If the scaling (distortion) problems can be eliminated, the<br />

radiographic observations could be easily extrapolated to defleshed bones.<br />

The study sample consisted of 105 chest plate radiographs of adult<br />

males and females, taken at autopsy. The radiographs were digitized and the<br />

appropriate metric and non-metric variables (including landmark data)<br />

recorded. A sex diagnostic was then obtained for each radiograph through<br />

various existing methods, and the corresponding percentages of correct<br />

classification estimated. Multivariate predictive equations for sex<br />

determination, and the corresponding probability estimates, were obtained<br />

through canonical variate analysis, for both sternal linear measurements and<br />

partial warps from landmark configurations. The process of rotation,<br />

translation and scaling attached to the landmark method serves to<br />

effectively remove scale effects, rendering size-free shape variables.<br />

Bivariate analysis through linear regression and analysis of covariance<br />

(ANCOVA) was applied to the data in order to explore the feasibility of<br />

using either ratios or residual analysis to correct for scaling effects, as well<br />

as to explore the general allometry of the potential sexual differences<br />

detected.<br />

Finally, non-metric analysis of individual stages and trait<br />

combinations was applied to assess the potential of costal cartilage<br />

ossification as a reliable sex marker. Results suggest that radiographic<br />

examination of anterior thoracic radiographs shows a high potential for sex<br />

estimation, at least in those individuals showing configurations close to<br />

their group centroids.<br />

Sex Determination, Sternum, Costal Cartilage<br />

H87 A Test of an Age-at-Death<br />

Method Using the First Rib<br />

Elizabeth A. DiGangi, MA*, Department of Natural and Behavioral<br />

Sciences, 10541 Hardin Valley Road, Knoxville, TN 37933; Jonathan D.<br />

Bethard, MA*, The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37996<br />

Attendees of the presentation will understand that the first rib has<br />

potential as an additional tool in the age-at-death toolkit available to<br />

anthropologists.<br />

This presentation will impact the forensic community by<br />

demonstrating that forensic anthropologists working domestically and on<br />

human rights issues in locations outside of the United States can improve<br />

their efforts by refining methods used to estimate age-at-death. Results<br />

from this research indicate that the first rib can be used to estimate age-atdeath<br />

as an isolated element or as a component in a multifactorial approach.<br />

The purpose of this study was to determine whether a method<br />

developed by DiGangi et al. [1] for estimating age-at-death from the first rib<br />

is an effective age-at-death method. The method was based on a revision of<br />

Kunos et al [2] and originally was developed using a Balkan population as the<br />

reference population. There are a number of issues involved with applying<br />

age-at-death methodologies developed using one reference population to<br />

another population of differing ethnic background and age structure. [3]<br />

Among these is the concern that different populations age at slightly<br />

different rates and in different ways, and that this leads to the possibility of<br />

bias when applying age-at-death methods to populations on which the<br />

method was not developed. [3] These questions become especially critical<br />

when accurately aging a skeleton has medico-legal significance, whether it<br />

is small-scale, as with an isolated forensic case, or large-scale, as with<br />

human rights investigations. Numerous researchers have reported on the<br />

significance of developing population-specific standards in human rights<br />

contexts (e.g., [4] , among others). These anthropologists have demonstrated<br />

that identification in human rights cases is improved when localized<br />

standards are developed.<br />

While the fourth rib has been used for some time in age-at-death<br />

estimation, Kunos and coworkers [2] indicate several limitations with the<br />

element. Oftentimes, the fourth rib is misidentified in unarticulated<br />

skeletons or damage to the sternal aspect precludes its use as an age<br />

indicator. Moreover, Kunos et al. indicate methods that rely solely on<br />

morphological changes of the costal face do not utilize other aspects of the<br />

rib that change throughout life, particularly the head and tubercle. These<br />

authors argue that the first rib is unambiguously identifiable in addition to<br />

its prolonged span of remodeling into the eighth decade and beyond. In<br />

addition, the fact that this method incorporates only two observations<br />

should make it simpler to learn and apply than other available<br />

methodologies that incorporate multiple observations.<br />

In order to determine if the first rib aging method developed using a<br />

Balkan reference population could be effectively used as an age-at-death<br />

method in the United States, the first ribs from known-aged males from the<br />

William M. Bass Donated Skeletal Collection were scored using the<br />

technique developed by DiGangi et al. Specifically, texture of both the rib<br />

head and tubercle facet were scored categorically. Categorical scores were<br />

then transformed to age-at-death estimates in the manner of DiGangi et al.<br />

A total of 114 individuals were scored, including right and left sides,<br />

when available. Ages at death for the test sample ranged from 19 to 96 years<br />

for males (with a mean age of 57.7 years). In addition, both authors scored<br />

50 individuals for the purpose of inter-observer testing. The correlation<br />

between best age and real age was tested for both left and right sides.<br />

Correlation coefficients were .490 and .687, respectively. Such results<br />

indicate while asymmetry is present between sides, the method developed<br />

by DiGangi and colleagues does capture age-related change. Moreover,<br />

56% of the target sample was accurately aged within ±10 years of real age.<br />

These results indicate that the method developed DiGangi et al. can help<br />

with age at death estimation in forensic contexts and can be incorporated<br />

into multifactorial age-at-death assessment.<br />

References:<br />

1 DiGangi EA, Bethard JD, Kimmerle E, Konigsberg LW. A New<br />

Method for Estimating Age-at-Death from the First Rib. Paper<br />

presented at 57th annual American Academy of Forensic Sciences<br />

Meeting, 2005.<br />

2 Kunos CA, Simpson SW, Russell KF, Hershkovitz I. First rib<br />

metamorphosis: its possible utility for human age-at-death estimation.<br />

AJPA 1999; 110:303-323.<br />

3 Schmitt A. Age at death assessment using the os pubis and the<br />

auricular surface of the ilium: a test on an identified Asian sample. Int<br />

J Osteoarcheol 2004; 14:1-6.<br />

4 Jantz RL, Kimmerle E. Variation in Size and Dimorphism in Eastern<br />

European Femora. Paper presented at 56th Annual American<br />

Academy of Forensic Sciences Meeting, 2004.<br />

Forensic Anthropology, Age-at-Death, First Rib<br />

H88 Classification of Frontal Sinus Patterns<br />

in Koreans by Three-Dimensional<br />

Reconstruction Using Computed<br />

Tomography<br />

Deog-Im Kim, PhD*, Department of Anatomy, Kwandong University,<br />

College of Medicine, 522, Naegok-dong, Gangneug, 201701, KOREA;<br />

Dai-Soon Kwak, PhD, Department of Anatomy, College of Medicine, The<br />

Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul,<br />

137701, KOREA; and Seung-Ho Han, MD, PhD, Department of Anatomy,<br />

Catholic Institute for Applied Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

KOREA<br />

Attendes of ths presentation will understand that the frontal sinus from<br />

computed tomography data might be helpful as an identification of<br />

unknown individuals of Korean in forensic studies.<br />

The impact of this presentation on the forensic community will<br />

267 * Presenting Author


demonstrate the usefulness of frontal sinus as the identification and a<br />

distinction among populations and the simply classified method by threedimensional<br />

reconstruction.<br />

The frontal sinus from computed tomography data might be helpful as<br />

an identification of unknown individuals of Korean in forensic studies.<br />

This presentation has presented the usefulness of frontal sinus as the<br />

identification and a distinction among populations and the simply classified<br />

method by three-dimensional reconstruction.<br />

The use of frontal sinus in identifying human skeletal remains is now<br />

an increasingly applied and accepted technique in forensic anthropology.<br />

The frontal sinus begins to develop at the age of five and six and does not<br />

change after the age 20 years except fracture or diseases. Computed<br />

tomography is becoming increasingly available and replacing gradually the<br />

radiographs rapidly. The aim of this study is described to define a simple<br />

and useful system for identification of an unknown person by threedimensional<br />

reconstruction of frontal sinus in Korean and compared with<br />

other populations.<br />

The material was the Digital Korean as human model database<br />

(http://digitalman.kisti.re.kr) at Department of Anatomy·Catholic Instituted<br />

for Applied Anatomy, College of Medicine, The Catholic University of<br />

Korea. The frontal sinus was classified based on four basic features:<br />

present sinuses, outline of upper border, partial septum, posterior extension,<br />

and measured twelve items included volume, width, and depth. The<br />

bilateral asymmetry index modified by Yoshino et al. (1987) and bilateral<br />

dimension are used as a classification in this study.<br />

The most common type of frontal sinus due to four features was<br />

present sinuses at both, absent partial septum, smooth shape of outline of<br />

upper border, and absent posterior extension at both sexes. In bilateral<br />

dimension by volume, middle size (10 cm3 < volume < 100 cm3 ) was the<br />

most common in both sexes and sides but large size (100 cm3 < volume<br />


through a cross-cut allometric analysis of outline complexity with age.<br />

Results suggest that both individual and group differences in sinus<br />

shape may be correlated with sinus size and expansion and, due to their<br />

effect size, they are not relevant for positive identification purposes. On this<br />

respect, the proposed methodology appears as a promising tool to shed<br />

additional light upon the developmental processes shaping the frontal sinus,<br />

both between and within different demographic groups, through its<br />

application to longitudinal data.<br />

Frontal Sinus, Sex, Ancestry<br />

H90 Sex Determination of Talus in Korean<br />

Using Discrimination Function Analysis<br />

U-Young Lee, MD*, Catholic Institute for Applied Anatomy, Department<br />

of Anatomy, College of Medicine, The Catholic University of Korea, 505,<br />

Banpo-dong, Socho-gu, Seoul, 137701, KOREA; In-Heok Chung, MD,<br />

PhD, Department of Anatomy, Yonsei University College of Medicine,<br />

Department of Anatomy, Yonsei University College of Medicine, 134<br />

Sinchon-dong, Seodaemoon-gu, Seoul, 120752, KOREA; Dae-Kyoon<br />

Park, MD, PhD, Deptartment of Anatomy, Colleege of Medicine,<br />

Soonchunhyang Univ, Soonchunhyang University, 366-1 Ssangyong-dong,<br />

Cheonan-si, Seoul 330946 KOREA; Yi-Suk Kim, MD, MS, Department<br />

of Anatomy, Gachon University of Medicine, 1198 Kuwol-dong,<br />

Namdong-gu, Incheon, 405760, KOREA; Deog-Im Kim, PhD,<br />

Department of Anatomy, Kwandong University College of Medicine, 522,<br />

Naegok-dong, Gangneug, 201701, KOREA; Je-Hoon Lee, MSc,<br />

Department of Anatomy, Catholic Institute for Applied Anatomy,<br />

Department of Anatomy, College of Medicine, The Catholic University of<br />

Korea,, 505 Banpo-dong,<br />

Socho-gu, Seoul, 137701, KOREA; and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505, Banpo-dong,<br />

Seocho-gu, Seoul, 137701, KOREA<br />

This presentation suggest that the talus could be helpful for sex<br />

determination in forensic anthropologic field, as the dimension of the talus<br />

is highly dimorphic between male and female in Korean and the<br />

discrimination function analysis classify sex with high accuracies.<br />

The talus of Korean is useful for sex determination in either case of<br />

complete or fragmentary state as the discrimination function equations<br />

obtained from nine measurements are specific for sex determination of<br />

Korean with high accuracy.<br />

The determination of the sex is essential in human identification, as it<br />

make the matching possibility decreased by half. The sex of the unknown<br />

individual is determined mainly by non-metric method observing the<br />

anatomical elements with sexual difference on bones. This method is<br />

depending on the presence or absence of these elements. Although the<br />

elements are as complete as possible to obtain accurate results, incomplete<br />

or fragmentary bones are more often excavated in forensic cases. Then, it<br />

is needed to devise analytical methods considering fragmentation.<br />

Statistical analysis using metric method provides more reliable and<br />

quantifiable estimation than non-metric method.<br />

Talus, one of the tarsal bones, is useful bone for human identification<br />

that is preserved more intact during the recovery of human skeletons<br />

comparing with long bones as its hardness and is readily distinguished even<br />

in fragmentary state as its characteristic morphology. Besides the merits of<br />

the talus in excavation, several statistical studies on the talus of the<br />

population groups excluding East Asian populations suggested that the<br />

discrimination function using metric data of this bone is able to classify sex<br />

with high accuracy. Therefore, it is the aim of this study to investigate the<br />

sex discriminating potential of the metric data from the talus in Korean, one<br />

of East Asian populations, and compare with other analysis on White and<br />

Black population.<br />

The descriptive and discrimination function analysis were performed<br />

on the data acquired from the nine measurements, referred by Steele (1976)<br />

and Bidmos et al. (2003), taken from 165 tali (118 male, 47 female) in<br />

Yonsei University of Korea. The talus of Korean is highly dimorphic<br />

between male and female as there were significant differences in all<br />

measurements (P < 0.01). The discrimination function equations were<br />

generated by univariate, bivariate and step-wise method. In the equations<br />

obtained from one variable, the equation using talar width had the highest<br />

accuracy of sex classification in 86.7% and the range of accuracy of each<br />

equation was 72.7% to 86.7%. The range of accuracy of the equations<br />

using two variables was 80.0% to 87.9% and the equation from talar width<br />

and height of head classified sex with the highest accuracy in 87.9%. The<br />

analysis by step-wise method selected the best 2 out of the 9 measurements:<br />

talar width and talar height. The accuracy of the equation by step-wise<br />

method was 86.1%. The reason why the step-wise analysis select talar<br />

width and talar height instead of talar width and height of head which were<br />

the variables of the equation with the highest accuracy in bivariate analysis<br />

might be that Wilk’s lambda in talar width and talar height was higher.<br />

In comparison with other population groups studied by Steele (1976),<br />

Bidmos et al. (2003, 2004), the talus of Korean had generally similar<br />

dimension of White and Black population except for South African Black<br />

with smaller dimension than Korean. In the discrimination functions, the<br />

variables with the accuracies over 80.0% are different from each population<br />

and the variables selected by step-wise method are also different. These<br />

results show that the variables with high accuracy in this study are specific<br />

for sex determination of Korean.<br />

Any equation calculated from one or two variables among nine<br />

measurements in this study provides high accuracy (72.7% ~ 87.9%). It is<br />

concluded that the talus of Korean is useful for sex determination in either<br />

case of complete or fragmentary state.<br />

References:<br />

1 Steele DG. The estimation of sex on the basis of the talus and<br />

calcaneus. Am J Phys Anthropol 1976;45(3 pt. 2):581-8.<br />

2 Bidmos MA, Dayal MR. Sex determination from the talus of South<br />

African whites by discriminant function analysis. Am J Forensic Med<br />

Pathol 2003;24(4):322-8.<br />

3 Bidmos MA, Dayal MR. Further evidence to show population<br />

specificity of discriminant function equations for sex determination<br />

using the talus of South African blacks. J Forensic Sci<br />

2004;49(6):1165-70.<br />

Talus, Sex Determination, Korean<br />

H91 Morphometrics of the Korean Thyroid<br />

Cartilage for Determination of Sex<br />

Dae-Kyoon Park, MD, PhD*, Department of Anatomy, College of<br />

Medicine Soonchunhyang University, 366-1 Ssangyong-dong, Cheonan-si,<br />

Seoul, 330946 KOREA; Deog-Im Kim, PhD, Department of Anatomy,<br />

Kwandong University College of Medicine, 522, Naegok-dong,<br />

Gangneug, 201701, KOREA; U-Young Lee, MD, and Seung-Ho Han,<br />

MD, PhD, Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Socho-gu, Seoul, 137701, KOREA<br />

After attending this presentation, the attendee will understand the<br />

results of a physical anthropological data of Korean thyroid cartilages<br />

applied for determination of sex of Koreans.<br />

This presentation will impact the forensic community by<br />

demonstrating the usefulness of thyroid cartilage for sex determination in<br />

Korean and another method for sex determination using morphometric<br />

analysis of thyroid cartilage.<br />

Each time a forensic anthropologist investigates the morphological<br />

characteristics of an unidentified victim who is badly decomposed or found<br />

in dried bones, many unknown questions are to be answered. [1] Among<br />

them, the answers to biological profile such as ethnicity, sex, age and statue<br />

are basic step to identify the victim. The biological profile could be<br />

estimated based on the knowledge of physical anthropology which is<br />

mainly collected by metric and non-metric characteristics of bones.<br />

However, studies about the soft tissue such as cartilage are fewer. The<br />

thyroid cartilage is located just below the hyoid bone and is the biggest<br />

cartilage in laryngeal cartilage. Similar to other cartilages and bones,<br />

269 * Presenting Author


thyroid cartilage is known to enlarge its size as the puberty onwards. Its<br />

sagittal diameter is nearly doubled during this process. Cho [2] reported the<br />

study concerning 22 items of measurement of the Korean laryngeal<br />

cartilage in both sexes, but difference between sexes after statistic<br />

procedures was negligible. The purpose of this study is to identify the sex<br />

based on the morphological analysis of the thyroid cartilage of Koreans.<br />

The thyroid cartilages were separated from the larynx and dissected<br />

from the surrounding connective tissue. Specimens were surveyed with<br />

digimatic caliper (Mitutuyo Co., Japan) in 110 specimens of the thyroid<br />

cartilages including 69 males and 41 females. In order to measure the angle<br />

of cartilage, each specimen was photographed (COOLPIX995, Nikon,<br />

Japan) with its anterior, both lateral and superior surface maintaining its<br />

anatomical position. Thirty items were measured including 20 surveyed<br />

items such as width of thyroid cartilage and ten measured items such as<br />

angle of superior horn. After the measurements, the statistic procedures<br />

were performed using SPSS software (Version 13.0, Chicago, IL).<br />

The measurement value of distance between superior horns did not<br />

show difference between sexes, but other 29 items of measurement did<br />

show difference between sexes after the statistic procedures. Male subjects<br />

exhibited larger values mainly related with the size of thyroid cartilage such<br />

as width, height and length of thyroid cartilage and height of lamina than<br />

female subjects (p


of sex, thus contributing significantly to positive identification in forensic<br />

cases.<br />

Forensic Anthropology, Humerus, Sex Identification<br />

H93 Evaluating Methods of Age Estimation of<br />

Fetal/Neonate Remains From Radiographs<br />

Using a Diverse Autopsy Sample<br />

Christopher R. Grivas, MS*, University of New Mexico, Department<br />

of Anthropology, MSC01-1040, Albuquerque, NM 87131; Debra<br />

Komar, PhD, Office of the <strong>Medical</strong> Investigator, 1 University of New<br />

Mexico, MSC11 6030, Albuquerque, NM 87131<br />

After attending this presentation, attendees will understand the validity<br />

of methodology used to estimate gestational age in human fetal and neonate<br />

remains.<br />

This presentation will impact the forensic community by testing<br />

methods that estimate the age of human fetal remains and raising issues that<br />

may affect the validity of such methodologies.<br />

The purpose of this presentation is to evaluate methods of estimating<br />

the age of fetal and neonate remains from radiographs and skeletal remains.<br />

Estimating the age of unknown remains can be an important step in<br />

establishing the identity of a fetus or infant as well as determining viability<br />

in homicides or clandestine disposals of remains. Previous studies have<br />

established a relatively linear relationship between gestational age and body<br />

size of a fetus. As a result, methods have generated linear regression<br />

equations that predict the age of an individual from the length of long<br />

bones. Although several methods exist, they have never been adequately<br />

evaluated nor tested on diverse populations.<br />

Method: Measurements were taken of both humerii, femora, and<br />

tibiae (when possible) by the first author from x-rays of 137 identified<br />

fetuses and young infants radiographed at autopsy from 1995-2006 at the<br />

New Mexico Office of the <strong>Medical</strong> Investigator. The sample included 20<br />

Native Americans, 4 African Americans, 58 White Hispanics, and 55 White<br />

non-Hispanics with approximately equal sex distribution. Age represented<br />

the number of completed weeks of gestation for fetuses and the total<br />

number of weeks gestation plus neonate survival time for infants. The<br />

range for this sample was 14-49 weeks. Each radiograph was assessed for<br />

proper positioning and long bones were measured to the nearest .005mm.<br />

The first and second author remeasured a subset of 30 individuals for intraand<br />

interobserver error tests using pairwise t-tests and the technical error of<br />

measurement (TEM). The magnification factor was calculated by<br />

radiographing skeletonized fetal remains and dividing the length of bone in<br />

the x-ray image by the length of the dry bone. The larger of the two sides<br />

was used for further analyses and the sexes and population groups pooled.<br />

Three published standards were tested. Method 1 generates a predictive<br />

regression equation from radiograph measurements of a single long bone; [1]<br />

Method 2 produces a predictive regression equation from radiograph<br />

measurements of the length of a long bone used to first estimate the body<br />

length (crown-heel length, CHL) of the individual; [2] and Method 3 utilizes<br />

a table for gross measurements of each long bone. [3] Age estimated by CHL<br />

was assessed from the most common clinically referenced source. [4]<br />

Results: The intra- (p-value = .2355, TEM = .2826) and interobserver<br />

(p-value = .1579, TEM = .4610) errors are relatively insignificant,<br />

suggesting that the measurements are replicable. Overall, Method 1<br />

performed the best, correctly predicting the age of 72.4% of individuals<br />

from the humerus, 75.2% from the femur, and 66.9% from the tibia.<br />

Method 2 correctly predicted the age of 64.7% of individuals from the<br />

humerus, 71.9% from the femur, and 62.1% from the tibia. Method 3<br />

accurately aged 63.8% of individuals from the humerus, 70.2% from the<br />

femur, and 55.3% from the tibia.<br />

Discussion: The two methods predicting age directly from long bone<br />

measurements performed better for all three bones than the method<br />

predicting age from the estimate of the total length of the body. With the<br />

exception of the femur for Method 3, each technique consistently<br />

underestimated the ages of misclassified individuals. Neither of the two<br />

radiographic methods (Methods 1 and 2) had corrected for the<br />

magnification factor. Interestingly, when the correction for magnification<br />

factor is removed, the results improve slightly for these two methods. The<br />

practical significance of adjusting for the magnification factor and possible<br />

explanations for these results will be discussed.<br />

Conclusion: Before a method can be widely accepted in forensic<br />

contexts, its internal and external validity must be rigorously evaluated.<br />

While the results of the prior studies suggest that the methods achieved<br />

adequate internal validity (i.e. were accurate when applied to the population<br />

from which they were developed), the results of this study indicate all three<br />

methods have poor external validity (i.e. perform poorly and cannot be<br />

generalized to other populations). Caution is warranted when using these<br />

standards to diverse populations. Additional testing is needed, as are<br />

standards that reflect greater population variation.<br />

References:<br />

1 Scheuer JL, Musgrave JH, Evans SP. The estimation of late fetal and<br />

perinatal age from limb bone length by linear and logarithmic<br />

regression. Hum <strong>Bio</strong>l 1980;7:257-65.<br />

2 Warren MW. Radiographic determination of developmental age in<br />

fetuses and stillborns. J Forensic Sci 1999;44:708-12.<br />

3 Fazekas I, Kósa K. Forensic Fetal Osteology. Budapest: Akademiai<br />

Kiado Publishers, 1978.<br />

4 Usher R, McLean F. Intrauterine growth of live-born Caucasian<br />

infants at sea level: standards obtained from measurements in 7<br />

dimensions of infants born between 25 and 44 weeks of gestation. J<br />

Pediatr 1969;74:901-10.<br />

Fetal Osteology, Age Estimation, Radiography<br />

H94 The Utility of the Samworth and<br />

Gowland Age-at-Death “Look-Up”<br />

Tables in Forensic Anthropology<br />

Nicholas Vere Passalacqua, MS*, 3518 Hagadorn Road, Okemos,<br />

MI 48864<br />

The goal of this study is presenting to the forensic anthropological<br />

community the forensic application of three new bioarchaeological age-atdeath<br />

estimation methods recently developed by Samworth and Gowland<br />

(2007), stressing their utility and applicability in forensic settings.<br />

This presentation will impact both forensic practice and future<br />

research, by demonstrating that the new methods, which were developed f<br />

bioarchaeological intent, are in fact applicable and useful in forensic<br />

settings, and that the new statistics used in creating these age-at-death<br />

“look-up” tables are worth further consideration and study within the field,<br />

as well as for paleodemographical purposes.<br />

Accurate age-at-death estimates are crucial to the forensic<br />

anthropologist when constructing a biological profile aimed at narrowing a<br />

missing persons list, to allow for timely and efficient identification of an<br />

unknown victim. To this goal, new methods are continuously constructed<br />

from known samples, while existing methods keep being updated, adapted<br />

and tested for their forensic use on contemporary populations. Validation of<br />

these newly developed methods for forensic purposes, in the spirit of the<br />

Daubert criteria, requires testing them on at least one independent sample<br />

of known individuals. From the paleoanthropological or bioarchaeological<br />

points of view, method validation on independent samples serves to obtain<br />

the corresponding associated probabilities, aiding in decision-making and<br />

comparison with other methods, as well as to assess their applicability to<br />

samples and populations different from those from they were obtained.<br />

The present contribution evaluates the forensic utility of three new<br />

age-at-death estimation techniques recently proposed by Samworth and<br />

Gowland (2007). These techniques are based on: (1) the pubic symphysis,<br />

(2) the auricular surface of the ilium, and (3) a multifactorial combination<br />

of these methods. Forensic utility and their applicability to American<br />

271 * Presenting Author


populations, will be tested through their application to three contemporary<br />

forensic samples.<br />

A particularly attractive feature of these three new procedures is that<br />

they are based on two well established ageing methods, widely known and<br />

regularly used within the forensic community. These techniques are the<br />

Brooks and Suchey (1990) pubic symphysis method, and the Lovejoy et al.<br />

(1985) auricular surface method. The Samworth and Gowland (2007)<br />

procedure provides individual corrected 68% and 90% confidence intervals<br />

for each of these methods, in the shape of user-friendly “look-up” tables.<br />

Even more interestingly, similar tools and statistics are provided for the<br />

combination of both methods (referred to as combined method hereafter).<br />

These new procedures were developed with a focus on<br />

paleodemography, and Samworth and Gowland (2007) warn about their<br />

heavy reliance on the aprioristic knowledge of the precise age-at-death<br />

distributions of the samples under study, which may cause them to be<br />

highly population- or even sample-specific. If this hypothesis were true, the<br />

sensitivity of the method to deviations from the distribution of the original<br />

study sample would limit importantly their immediate utility in North<br />

American forensic contexts. This would require the anew estimation of all<br />

confidence intervals, in order to adapt them to the North American<br />

population, and would impede their application to individuals of mixed,<br />

unknown, or uncertain ancestry.<br />

In the present study, the hypothesis of high sample-specificity is tested<br />

on three known samples of males and females of multiple, but<br />

predominantly European American descents: ((n=188) from the Bass<br />

Collection (University of Tennessee, Knoxville, TN); (n=66) from the<br />

Hamann-Todd Collection (Cleveland Museum of Natural History, OH) and<br />

(n=83) from the Forensic Data Bank (Jantz and Moore-Jansen 2000)).<br />

Results indicate that, in the samples under study, the Samworth and<br />

Gowland estimates from the pubic symphysis and auricular surface actually<br />

perform slightly better than the previous methods from which they were<br />

developed. Similarly, the combined method performs better in these<br />

samples than most attempts at multifactoria age-at-death estimation<br />

(Martrille et al. 2007, Saunders et al. 1992 and Passalacqua and Cabo<br />

2007). Interestingly, the combined method does not appear to further<br />

enhance neither the precision (bias/inaccuracy) nor the accuracy (percent<br />

correct classification) of the single pubic symphysis age-at-death estimate.<br />

On the contrary, it would in fact appear that the addition of the auricular<br />

surface estimate to the pubic symphysis estimate actually decreases the<br />

utility of the method. In conclusion, these new methods seem to be more<br />

robust to distribution deviations than originally proposed by Samworth and<br />

Gowland (2007). They are therefore suitable for immediate and reliable<br />

forensic usage in the United States and worth further research for their use<br />

in North American forensic contexts.<br />

Age-at-Death Estimation, Forensic Anthropology, Validation Study<br />

H95 Metric Sex Determination<br />

From the Mandible<br />

Nicolette Maria Luney Parr, BA, MS*, 1305 NE 6th Terrace, Gainesville,<br />

FL 32601-3732; Carlos J. Zambrano, MS, 5231 NW 56th Court,<br />

Gainesville, FL 32653; and Laurel Freas, MA, 3425 SW 2nd Avenue,<br />

#246, Gainesville, FL 32607<br />

The goal of this presentation is to examine patterns of metric sexual<br />

dimorphism within the mandible, and to provide a simple, accurate, and<br />

reliable means of sex determination.<br />

This presentation will impact the forensic community by providing an<br />

updated method to determine biological sex from unknown human skeletal<br />

remains using a contemporary sample.<br />

Assessing the biological sex of an individual is one of the first steps<br />

that the forensic anthropologist is faced with when constructing a biological<br />

profile. The designation of sex is of utmost importance because other<br />

aspects of the biological profile, such as stature, age and ancestry, rely on<br />

an a priori knowledge of the individual’s sex. It is widely known that the<br />

pelvis is the most accurate estimator of sex, followed by the cranium.<br />

However, these elements are not always present for analysis due to<br />

* Presenting Author<br />

incomplete recovery or taphonomic events. Additionally, even if the<br />

elements are present, many of the diagnostic aspects of the bones are often<br />

destroyed due to animal scavenging or weathering processes. As such,<br />

other skeletal elements must be evaluated for their usefulness in<br />

differentiating between the sexes.<br />

The mandible is one of the densest bones of the skeleton and therefore<br />

is one of the elements most likely to survive in an archaeological or forensic<br />

setting. While several metric and non-metric traits of the mandible are<br />

often cited as accurate indicators of sex, many of these values and traits<br />

have not been rigorously tested. A poster given at the 59th annual meeting<br />

of the American Academy of Forensic Sciences presented the results of a<br />

study on the utility of the mandibular angle (degree of rami inclination) and<br />

its corresponding, oft-cited 125° sectioning point for sex determination of<br />

unknown individuals. Contrary to what is often taught in classrooms and<br />

presented in introductory textbooks, this study showed that the mandibular<br />

angle is neither an accurate nor reliable indicator of sex (Zambrano et al.,<br />

2007). The current study seeks to elaborate on last year’s conclusions by<br />

finding an alternate metric means to quickly and accurately determine sex<br />

using the mandible.<br />

The study sample is composed of mandibular metric data from<br />

forensic cases compiled by two separate laboratories. The Florida data are<br />

derived from contemporary individuals from Florida and surrounding states<br />

processed at the C.A. Pound Human Identification Laboratory at the<br />

University of Florida (n = 171). The Forensic Data Bank sample is<br />

composed of cases analyzed and submitted to the University of Tennessee<br />

by forensic anthropologists from across the country (n = 490). A random<br />

sample of 150 individuals was held out of the combined forensic dataset for<br />

use as a test data set.<br />

Nine linear mandibular measurements (Moore-Jansen et al. 1994)<br />

from the remaining combined forensic sample (n = 511) were analyzed<br />

using stepwise linear discriminant function analysis, in an attempt to<br />

identify which dimension(s) of the mandible provided the greatest<br />

discrimination between the sexes. Among the nine measurements, bigonial<br />

breadth, ramus height, and chin height were chosen, based on partial Rsquare<br />

values, as the variables producing the greatest separation between<br />

sex groups. A linear discriminant function was created using the<br />

aforementioned measurements. Re-substitution and cross-validation results<br />

accurately sexed the mandible 82 – 87% of the time. Verification of the<br />

ability of the three variable function to discriminate was further tested on<br />

the hold-out test data and found to accurately sex individuals in 82% of the<br />

cases.<br />

These results are consistent with previous linear discriminant function<br />

studies of the mandible such as Giles (1964) with an accuracy of 85% and<br />

Steyn and Iscan (1998) with an accuracy of 82%. However, the current<br />

study has a much larger sample size than the previous two studies and is<br />

comprised of contemporary US forensic cases of mixed ancestry. As such,<br />

the study and test samples are more similar to those that are encountered in<br />

routine forensic casework. Over the years, sex estimation using the<br />

mandible has proven difficult. This study provides an alternate means to<br />

accurately and quickly determine the sex of an individual using three<br />

mandibular measurements.<br />

References:<br />

1 Giles E. 1964. Sex determination by discriminant function analysis of<br />

the mandible. Am. J. Phys. Anthrop. 22: 129-136.<br />

2 Moore-Jansen PH, Ousley, SD, and Jantz, RL. 1994. Data Collection<br />

Procedures for Forensic Skeletal Material. 3rd ed. University of<br />

Tennessee Forensic Anthropology Series, Knoxville, Tennessee.<br />

3 Steyn M, Iscan MY. 1998. Sexual dimorphism of the crania and<br />

mandibles of South African Whites. 98: 9-16.<br />

4 Zambrano CJ, Parr NM, Freas L, Falsetti AB, Warren MW. 2007.<br />

Evaluation of the mandibular angle as an indicator of sex. Poster<br />

presented at the 59th annual meeting of the Academy of the Forensic<br />

Sciences. San Antonio, TX.<br />

Mandible, Sex Determination, Linear Discriminant Function<br />

272


H96 Microscopic Age Estimation From<br />

the Anterior Cortex of the Femus<br />

in Korean Adults<br />

Yi-Suk Kim, MD, MS*, Department of Anatomy, Gachon University of<br />

Medicine and Science, Department of Anatomy, Gachon University of<br />

Medicine, 1198, Kuwol-dong, Namdong-gu, Incheon, 405760, KOREA;<br />

Yong-Woo Ahn, DDS, PhD, and Gi-Yeong Huh, MD, PhD, Institute of<br />

Forensic Medicine, School of Medicine, Pusan National University, 1-10,<br />

Ami-dong, Seo-gu, Busan, 602739, KOREA; Dai-Soon Kwak, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic University of<br />

Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701, KOREA; Dae-Kyoon<br />

Park, MD, PhD, Department. of Anatomy, College of Medicine<br />

Soonchunhyang University, 366-1 Ssangyong-dong, Cheonan-si, Seoul,<br />

330946 KOREA; and U-Young Lee, MD, and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505, Banpo-dong,<br />

Seocho-gu, Seoul, 137701, KOREA<br />

The objective of this study is to ascertain the usefulness of<br />

microscopic age estimation method based upon Korean adults using<br />

modified measuring methods from the femur with four histomorphometric<br />

variables, such as the most anterior cortical width, osteon population<br />

density, and average size of osteon and Haversian canal.<br />

This presentation will impact the forensic community by suggesting<br />

the possibility for microscopic age estimation method based upon Korean<br />

adults. Tthis study is a first attempt for microscopic age estimation method<br />

using the femur in Koreans, so it will be contribute to growth of concern for<br />

forensic anthropology of forensic sciences in different countries as well as<br />

Korea.<br />

The objective of this study is to ascertain the usefulness of<br />

microscopic age estimation method based upon Korean adults using<br />

modified measuring methods from the femur with four histomorphometric<br />

variables, such as the most anterior cortical width, osteon population<br />

density, and average size of osteon and Haversian canal.<br />

In studies on microscopic age estimation methods applied to the<br />

femur, variety of measuring fields and histomorphometric variables has<br />

been suggested. As considering the conditions of skeletal remains<br />

excavated from archaeological sites or forensic situations, utilitarian<br />

methods with small sampling site against complete cross-section and a few<br />

variables for efficiently quantifying the remodeling history of the bone were<br />

needed to develop. The objective of this pilot study is to ascertain the<br />

usefulness of microscopic age estimation method using modified<br />

measuring methods from the femur based upon Korean adults. The bone<br />

specimens of anterior femoral midshaft were removed from 19 Korean<br />

cadavers (10 males and 9 females) in wedge form that one of the saw cuts<br />

was kept perpendicular to the long axis of the shaft and depth of cut was<br />

limited to anterior half. The age range for the sample is 41 to 82 years with<br />

a mean and standard deviation of 62.4 and 12.1 years, respectively. Thick<br />

sections of 1-mm were cut from the perpendicular plane of the wedged<br />

femoral specimens using a diamond wheel. Then thin sections (less than<br />

100 um thick) per individual were prepared for histological analysis by<br />

manual grinding method. Five subperiosteal areas of each thin section were<br />

analyzed microscopically by indicating points (the most anterior point and<br />

points 10° and 20° to the left and right) on the glass cover slip of the bone<br />

slide. The most anterior cortical width, osteon population density, and<br />

average size of osteon and Haversian canal were measured using an<br />

Olympus BX-51 light microscope with simple polarizing attachment and<br />

image analysis solutions (Image-pro Plus 4.5.1, Media Cybernetics, Inc.,<br />

Silver Spring, MD, USA) at a magnification of ´100. Statistical regression<br />

analysis was performed using age at death as dependent variable. An<br />

analysis of covariance found no statistically significant differences in all<br />

variables between sexes. In all cases, the strongest associations with age for<br />

the pooled sexes were osteon population density and average osteon size (r2 = 0.654 and 0.554, respectively). For multiple regression method, osteon<br />

population density and average osteon size were selected as independent<br />

variable and its r2 and standard error of estimate were 0.746 and 6.460,<br />

respectively. These preliminary results indicate that five measuring points<br />

and two of four histomorphometric variables can be used to reliably<br />

estimate age at death in Korean adults.<br />

This work was supported by the Korea Research Foundation Grant<br />

funded by the Korean Government (MOEHRD) (KRF-2006-331-E00011).<br />

Age, Femur, Histomorphology<br />

H97 Sternal Rib Histomorphometry:<br />

A Test of the Age Estimation Method<br />

of Stout, et al. (1994)<br />

Sam D. Stout, PhD*, and Deborrah C. Pinto, MA*; Department of<br />

Anthropology, Ohio State University, 124 West 17th Avenue, 244 Lord<br />

Hall, Columbus, OH 43210-1364; Lara E. McCormick, MA*, The Ohio<br />

State University, 2894 Neil Avenue, #513A, Columbus, OH 43202; and<br />

Meghan-Tomasita C. Cosgriff-Hernandez, MA, and Annamaria C.<br />

Crescimanno, MA, Department of Anthropology, Ohio State University,<br />

124 West 17th Avenue, 244 Lord Hall, Columbus, OH 43210-1364<br />

After attending this presentation, attendees will understand the<br />

application of histological age estimation method for the sternal rib, and<br />

become aware of the effects of biological ancestry, and diagenesis on its<br />

accuracy.<br />

This presentation will impact the forensic community by providing<br />

valuable information regarding the application and limitations of the sternal<br />

rib method for histological age at death estimation.<br />

Stout et al. (1994) offer an age estimation method that employs<br />

cortical bone histomorphometry of the sternal end of the rib. The published<br />

age predicting formulas are derived from the original sample of fourth ribs<br />

of European ancestry used by Iscan et al. (1984, 1985) to develop their<br />

sternal rib phase method for age estimation. The purpose of this paper is to<br />

report the results of the application of this method to estimate age at death<br />

for an independent sample of ribs derived from a 20th Century,<br />

Midwestern, African American cemetery. Comparison of estimated ages<br />

and reported ages at death found that the Stout et al. (1994) sternal rib age<br />

predicting formula was not accurate when applied to this independent<br />

sample. Mean differences between reported and estimated ages at death<br />

among several observers ranged between -2.5 to -17.7 years, with standard<br />

errors of 6.2 and 9.9 respectively. Several factors may account for these<br />

results. First, Cho et al (2002, 2006) have reported population differences<br />

in bone remodeling rates for the mid-shaft rib. The resulting disparity<br />

between predicted and reported ages at death, therefore, may be due to<br />

population differences in age associated bone remodeling rates that are<br />

reflected in sternal rib histomorphometrics. Observed differences between<br />

reported and estimated ages, however, did not exhibit a clear pattern. The<br />

added effects of various degrees of diagenesis on sampling and the<br />

performance of histological age estimation are also discussed.<br />

Sternal Rib, Histomorphometry, Age<br />

H98 Accuracy of Regression Formulae<br />

for Racing and Sexing the Cranial<br />

Base in a Forensic Collection<br />

Maria Allaire, MA*, LSU FACES Laboratory, Louisiana State University,<br />

227 Howe-Russell Bldg, Baton Rouge, LA 70803; and Mary H.<br />

Manhein, MA, Department of Geography and Anthropology, Louisiana<br />

State University, Baton Rouge, LA 70803<br />

The goal of this presentation is to share results of a study that tested<br />

two researcher’s regression formulae for race and sex determination using<br />

the cranial base when applied to a modern forensic collection.<br />

This presentation will impact the forensic community by presenting<br />

results of a study that tests the accuracy of formulae for determining race<br />

and sex of the cranial base on a modern forensic collection.<br />

This presentation examines the applicability of Holland’s race<br />

273 * Presenting Author


determination (1986) and Wescott’s sex determination (1996) regression<br />

formulae when applied to a modern forensic collection that is housed at<br />

Louisiana State University’s Forensic Anthropology and Computer<br />

Enhancement Service (FACES) Laboratory. Testing was conducted on 77<br />

complete skulls that had been positively identified, or, if unidentified, skulls<br />

that clearly exhibited no admixture features. The 77 skulls consisted of 48<br />

males and 29 females. Of the 77 skulls, 41 were identified as white and 36<br />

were identified as black.<br />

In 1986, Holland analyzed 100 black and white crania from the Terry<br />

Collection and created five regression equations for race determination<br />

based on eight measurements from the cranial base with an accuracy rate<br />

ranging from 70 to 86%. In a separate control test involving 20 different<br />

skulls from the Terry Collection, Holland had a 75 to 90% accuracy rate.<br />

The interpretation of certain landmark locations on the cranial base led us<br />

to exclude some formulae that included these landmarks. Therefore, for<br />

testing and determining race from the cranial base, we used Holland’s<br />

regression formula #4 that involved the following four measurements: 1)<br />

the length of the occipital condyle defined as the maximum length of the<br />

left condyle as measured along its long axis from the ends of the articular<br />

surface; 2) the width of the occipital condyle defined as the maximum width<br />

of the left condyle as measured from the articular edges along a line<br />

perpendicular to the length; 3) the length of the foramen magnum defined<br />

as the maximum length of the foramen magnum as measured from basion<br />

to opisthion along the mid-sagittal plane, and 4) the width of the foramen<br />

magnum defined as the maximum width of the foramen magnum as<br />

measured perpendicular to the mid-sagittal plane. Holland’s #4 regression<br />

formula had an overall 70 to 75% accuracy rate. The 77 modern forensic<br />

collection skulls were measured and Holland’s #4 regression formula was<br />

applied. An accuracy of 57% was obtained.<br />

In 1996, Wescott analyzed 308 combined crania from the Hamann-<br />

Todd and Terry Collections and created five regression equations for sex<br />

determination based on five measurements from the cranial base with an<br />

accuracy rate ranging from 72.1 to 80%. In a separate control test involving<br />

83 different crania from the Hamann-Todd and Terry Collections, Wescott<br />

had a 63.6 to 90% accuracy rate. For testing and determining sex from the<br />

cranial base, we used Wescott’s regression formula #5 that involved the<br />

following five measurements: (1) maximum condyle length defined as the<br />

maximum edge to edge length of the articular surface of the occipital<br />

condyle measured along its long axis, (2) maximum condyle breadth<br />

defined as the greatest edge to edge breadth of the articular surface of the<br />

occipital condyle measured perpendicular to the long axis, (3) basion to<br />

hormion length defined as the length of the basilar process measured from<br />

basion to hormion,. (4) foramen magnum length defined as the length from<br />

endo-basion to opisthion, and (5) foramen magnum breadth defined as the<br />

maximum breadth of the foramen magnum measured perpendicular to the<br />

length. In Wescott’s research, his #5 regression formula had an overall 73.2<br />

to 90% accuracy rate. Of the 77 modern forensic collection skulls, 10 were<br />

eliminated due to anterior damage to the basilar process. Therefore, 67<br />

skulls were measured and Wescott’s #5 regression formula was applied. An<br />

accuracy of 68% was obtained.<br />

As suggested by both Holland and Wescott, these formulae may be<br />

applied when a skull has been damaged and only certain portions of it<br />

remain. Additional testing on larger forensic collections may improve the<br />

accuracy rate of these formulae, further enhancing their applicability on<br />

forensic cases.<br />

References:<br />

1 Holland, Thomas Dean. Race Determination of Fragmentary Crania<br />

b y<br />

Analysis of the Cranial Base. Journal of Forensic Sciences 1986:<br />

3 1 ( 2 ) :<br />

719-725.<br />

2 Wescott, Daniel Jay. The Effect of Age on the Sexual Dimorphism in<br />

the Adult Cranial Base and Upper Cervical Region. Masters Thesis.<br />

Wichita State University 1996.<br />

Race Determination, Sex Determination, Cranial Base<br />

* Presenting Author<br />

H99 Deconstructing or Perpetuating Race:<br />

The Status of Race in Forensic Anthropology<br />

Christina A. Malone, BHS, BA*, Michigan State University, Forensic<br />

Anthropology Laboratory, A-439 E. Fee Hall, East Lansing, MI 48823<br />

After attending this presentation, attendees will gain an understanding<br />

and increased awareness of the trends relating to the acceptance of the<br />

concept of race portrayed in textbooks and Journal of Forensic Sciences<br />

articles in the field of forensic anthropology over the past 35 to 45 years.<br />

This presentation will impact the forensic community and humanity<br />

by demonstrating the important role that the social construct of race has<br />

played in this scientific field. Through the literature presented, trends in the<br />

acceptance and non-acceptance of race will be examined and exemplified<br />

to give insight as to how the discrete categories of race are used today and<br />

have been used since 1960.<br />

Physical characteristics and human variation, as often studied by<br />

forensic anthropologists, have resulted in defining differences between<br />

people as “race.” The misconceptions that arose with such an explanation<br />

of physical differences have augmented the tremulous and malevolent past<br />

of the concept of race.<br />

The goal of this study is to examine the views of race that have been<br />

presented in the forensic anthropology literature and to extrapolate any<br />

trends from the opinions expressed by the authors. While the pattern of the<br />

acceptance of race in physical anthropology is never clearly defined, others<br />

have reported a decline in non-forensics journals. A similar decline in the<br />

acceptance of the existence of biological race as a valid description in<br />

forensic anthropology may be expected, although due to the utility of “race”<br />

in skeletal analysis, this trend is apt to be more gradual and not as pervasive.<br />

This study aimed to identify sections of forensic anthropology and/or<br />

human osteology textbooks and Journal of Forensic Sciences articles<br />

primarily concerned with race or human variation. Thirty-four textbooks<br />

published between 1962 and 2007 were examined, and 26 Journal of<br />

Forensic Sciences articles were selected from between 1972 and 2007. The<br />

author’s view presented in each of these texts was then classified as: (1) races<br />

do not exist, (2) races do exist, (3) author noncommittal, (4) race not<br />

mentioned, and (5) race accepted, but the author’s view was not explicitly<br />

stated.<br />

Results from the textbooks and the articles indicate a gradual decline<br />

in the acceptance of race in the field of forensic anthropology over the past<br />

35 to 45 years. Changes in the authors’ views were noted in both the<br />

manner in which race was discussed and the terminology used to describe<br />

such human variation. While there was no one span of years identified as a<br />

time of drastic change in regard to race, terminology employed by the<br />

authors demonstrated a shift to terms other than “race” as early as 1988 in<br />

textbooks and as late as 1995 in the journal articles. Overall, throughout the<br />

time period examined, there was an increase in “races do not exist,” and<br />

decreases in both “races do exist” and “race accepted.”<br />

In conclusion, these results suggest that that a gradual transition is<br />

occurring between the view of races existing to the view of races not<br />

existing. Forensic anthropology is a subset of physical anthropology but<br />

perhaps even more intertwined with the concept of race, because forensic<br />

anthropologists continue to struggle with appropriate terms for<br />

communicating with law enforcement personnel and the public.<br />

Race, Trends, Terminology<br />

H100 A Test of the FORDISC Sex Discriminant<br />

Function on a Korean Cranial Sample<br />

Helen Cho, PhD*, Department of Anthropology, Davidson College, Box<br />

6934, Davidson, NC 28035-6934; and Hee-Kyung Park, DDS, PhD,<br />

Seoul National University, 275-1 Yeongeon-dong, Jongno-Gu, Seoul<br />

National University, School of Dentistry, Seoul, 0 110-768, KOREA<br />

The objective of this presentation is to apply the software to a<br />

population excluded in the reference sample and to determine if the<br />

database from which FORDISC is based should include more specific<br />

modern reference groups.<br />

274


This presentation will impact the forensic community by further<br />

contributing to our understanding of human biological variation and<br />

applying the software to a South Korean population where forensic<br />

anthropology is a relatively new discipline.<br />

Sex estimation of human skeletal remains is one of the key analyses in<br />

forensic anthropology. Forensic anthropologists have been relying on<br />

discriminant function analysis as one of the powerful statistical tools in<br />

estimating individual characteristics in skeletal remains. FORDISC is a<br />

user-friendly computer software that is designed to assist in the estimation<br />

of sex and ancestry by employing discriminant function analysis. The<br />

reference groups used to create the program is based on the Forensic Data<br />

Bank (FDB) at the University of Tennessee-Knoxville, and includes the<br />

following populations: American black males and females, American<br />

Indian males and females, American white males and females, Chinese<br />

males, Hispanic males, Japanese males and females, and Vietnamese males.<br />

Due to human biological variation, the osteological methodologies<br />

developed from the reference groups may not necessarily apply to another<br />

population. However, due to the biological and cultural affinity among East<br />

Asian populations, FORDISC sex discriminant function may be applicable<br />

to modern Koreans. Thus, FORDISC 2.0 was tested on a pilot sample of<br />

modern South Korean crania for which sex was known through DNA,<br />

dental, and/or other identification methods.<br />

Thirty-one ethnic Korean individuals in this study represent forensic<br />

cases from various regions of the South Korean peninsula that were<br />

submitted by local law enforcement agencies to the National Institute of<br />

Scientific Investigation (NISI) in Seoul. A tooth or a small bone sample<br />

was removed and sent to the DNA Analysis Division at NISI for analysis.<br />

The amelogenin locus was used in sex determination through the<br />

Polymerase Chain Reaction (PCR) and electrophoresis of PCR products.<br />

The DNA output was submitted as XY for males and XX for females. At<br />

the Forensic Medicine Division, up to 24 cranial and ten mandibular<br />

measurements were collected as specified in the standard osteological data<br />

collection procedure (Moore-Jansen et al. 1994). Measurements from the<br />

individual cases were entered into the FORDISC program. To run the sex<br />

discriminant function, we excluded the XRB measurement, or maximum<br />

ramus breadth, in all individuals as the inclusion of XRB dramatically<br />

reduced the group samples and the analysis was not possible.<br />

FORDISC correctly classified the sex in 26 individuals (83.9%). Of<br />

the five that were misclassified, two individuals had cranial measurements<br />

which placed them close to the sectioning point or the overlapping region.<br />

Three of the five individuals were females and misclassified as males and<br />

two males were misclassified as females. It was expected that the software<br />

program would be applicable to modern Koreans due to their close affinity<br />

to the Chinese and Japanese populations, which are included in the<br />

FORDISC reference groups. However, the software should be tested on a<br />

larger Korean sample, and although ethnic Koreans in South Korea are<br />

relatively homogeneous, the need for FORDISC in Korea may be necessary<br />

due to the recent influx of immigrants from many regions of the world. As<br />

the authors of FORDISC intend, the FDB will continue to expand on the<br />

number of cases with definite sex and ethnicity and incorporate them into<br />

the database. Therefore, it is recommended that forensic anthropologists<br />

continue to employ multiple metric and non-metric methodologies when<br />

estimating sex and other individual characteristics.<br />

FORDISC, Discriminant Function, Korea<br />

H101 Sexual Dimorphism in the Juvenile Skeleton<br />

Kyra Elizabeth Stull, BA*, Mercyhurst College, 501 East 38th Street, Erie,<br />

PA 16546<br />

The research will introduce a study based on fetal development and<br />

sexual differentiation as well as sexual dimorphism among juvenile<br />

skeletons during the first year of life.<br />

The primary purpose of the current study is to investigate sexual<br />

dimorphism among juvenile skeletons through radiographic analysis. The<br />

metric results will impact both sex determination as well as age<br />

determination of juvenile remains.<br />

Reliable sex estimation can be attained from different skeletal<br />

elements in adult individuals. The secondary sexual characteristics in<br />

which adult sexing techniques are typically based are linked to the pubertal<br />

hormonal surge. The resulting skeletal size and shape differences are<br />

therefore absent in immature individuals. Consequently, it is often assumed<br />

that accurate sex estimation based on metric characteristics or<br />

morphological traits is not attainable before puberty.<br />

Still, from early embryological stages to the first year of life, humans<br />

experience a sexual hormonal surge as intense as that linked to pubertal<br />

sexual differentiation. Embryologic development is identical in both sexes<br />

until 8 weeks after conception, when the indifferent gonad develops.<br />

Testicular differentiation of the male is then triggered and regulated by the<br />

Sry gene, located on the Y chromosome. By week 12 the differentiation is<br />

largely complete, with characteristic male and female structures developed.<br />

In total, the most critical period for sexual differentiation seems to span<br />

from the 8th to the 24th week, but testosterone levels in males remain<br />

elevated for the first year of life, peaking around 3 to 4 months after birth.<br />

This postnatal period is known as the neonatal surge, where hormonal<br />

levels are equivalent to those in the second stage at puberty, the pubertal<br />

surge, when the secondary sexual characteristics develop.<br />

It is therefore reasonable to assume that the hormonal changes<br />

experienced during the neonatal surge could result in a substantial amount<br />

of sexual dimorphism in the infant skeleton, which would allow for the<br />

development of reliable metric sexing techniques for this period.<br />

The present study explores the presence of metric sexual differences<br />

in the juvenile skeleton. The study focuses on long bone dimensions, as a<br />

potential size dimorphism would also affect age estimates obtained from<br />

long bone measurements. The study sample consists of a set of radiographs<br />

assembled from the Erie County <strong>Medical</strong> Examiners Office, Buffalo, New<br />

York, as well as from forensic cases from Mercyhurst College. The<br />

radiographs involve juvenile individuals of known age, sex, and ancestry.<br />

The presence of sexual dimorphism in growth patterns and allometric<br />

relationships between different long bone dimensions was tested through<br />

ANCOVA (Analysis of Covariance) models. When applicable, the<br />

accuracy and reliability of the obtained sex markers were assessed through<br />

cross-validated percent correct classification estimates.<br />

The obtained results impact both sex determination, and current<br />

standard age determination from long bone dimensions in infants.<br />

Juvenile Sex Determination, Sexual Differences, Sexual Dimorphsim<br />

H102 Coming Unglued: The Use of Acrylic Resin<br />

Adhesives in Forensic Reconstruction<br />

Kate E. Kolpan, BA*, Eric J. Bartelink, PhD, and Georgia L. Fox, PhD,<br />

Department of Anthropology, California State University, Chico, 400 West<br />

First Street, Chico, CA 95929-0400<br />

After viewing this presentation, attendees will gain a greater<br />

appreciation for the use of polymer resin adhesives as an alternative to<br />

cellulose nitrate adhesives, such as Duco® cement, for reconstructing<br />

fragmented skeletal remains.<br />

This presentation will impact the forensic community by<br />

demonstrating the advantages of using a non-destructive adhesive with<br />

reversible properties for reconstructing fragmented and/or burned skeletal<br />

remains.<br />

Forensic anthropologists are often confronted with fragmented<br />

remains that require reconstruction. Adhesives are commonly used to refit<br />

bone fragments to aid in trauma analysis, identification of burn patterns on<br />

thermally-altered remains, the establishment of the MNI, and in the<br />

construction of the biological profile. Reconstruction is often a means to an<br />

end, thus, little attention has been focused on the long-term impact of<br />

different adhesives on bone. The use of a high-quality adhesive with<br />

reversible properties is beneficial in forensic reconstruction for a myriad of<br />

reasons. For example, if fragments are incorrectly refitted, the choice of<br />

adhesive will determine whether or not the process can be reversed, and<br />

also the degree to which fracture margins are chemically altered. This has<br />

275 * Presenting Author


medico-legal implications, as cases may need to be re-examined in the<br />

future by other specialists using new methods.<br />

Acryloid B-72 (Paraloid B-72) is a common type of acrylic polymer<br />

resin used by practicing conservators for reconstructing archaeological<br />

materials. Chemically, it is a methacrylate ethylacrylate copolymer that can<br />

be used as both a consolidant and an adhesive by varying the amount of a<br />

solvent, such as acetone or ethanol. Acryloid B-72 is converted into an<br />

adhesive by allowing the solvent to evaporate over a period of hours,<br />

leaving the adhesive behind. By adding solvent, the adhesive can be<br />

reconstituted to varying degrees of thickness. The process can be easily<br />

reversed by applying acetone to the area where bone fragments are<br />

conjoined. Museum conservators currently favor acrylic-based adhesives<br />

due to their high stability, transparency, mechanical resistance, and<br />

reversibility (Koob 1986). The same features that have made acrylic-based<br />

adhesives attractive to the conservation community can also be used by<br />

those working in forensic anthropology. The resistance of Acryloid B-72 to<br />

brittleness, cracking and yellowing, while still providing strength and<br />

hardness make it ideal for use in forensic reconstruction. Conjoined<br />

fragments can later be separated by applying acetone to the fracture<br />

margins. This is critical if fragments are not reconstructed correctly the first<br />

time, or if there is a later need to examine fracture margins microscopically.<br />

Acrylic resins are generally better alternatives to cellulose nitrate<br />

adhesives such as Duco® cement. Cellulose nitrate is a non-synthetic<br />

polynitrate ester of polysaccharide cellulose (Selwitz 1988). Unlike<br />

acrylic-based adhesives, cellulose nitrate resins have been found to be<br />

unstable over time, and often shrink, become brittle, and turn yellow in<br />

color. The chains of polymers in cellulose nitrate resins will also eventually<br />

crosslink, making the adhesive irreversible. Moreover, if cellulose nitrate<br />

becomes brittle, it may also pull bone away from the conjoined bone<br />

fragments, causing permanent damage to the fracture margins. As a result,<br />

the conservation community no longer recommends cellulose nitrate for use<br />

adhesive joins and repairs. Yet, the use of Duco® persists in archaeology<br />

and forensic anthropology for reconstructing fragmented remains.<br />

Cellulose nitrate maintains popularity due to its low cost, accessibility,<br />

familiarity, and rapid drying time (Johnson 1994).<br />

To better understand the effects on bone of using acrylic versus<br />

cellulose nitrate adhesives, chemical cross-linkage and damage to bone<br />

fragment margins were examined microscopically. Non-human bones were<br />

mechanically broken and rejoined using acrylic adhesive and cellulose<br />

nitrate resin. Acetone was later applied to the bone surface margins to<br />

reverse the adhesives. Using microscopic images, the degree of damage to<br />

fracture margins treated with acrylic versus cellulose nitrate adhesives was<br />

compared, as well differences in the degree of reversibility.<br />

This study was conducted to provide the forensic community with a<br />

greater appreciation for the suitability of acrylic adhesives in reconstructing<br />

fragmented skeletal remains, especially in cases that may be subject to<br />

future examination. While acrylic adhesives may not be ideal in all<br />

conditions (e.g., wet bone, temperatures over 40º Celsius), they are better<br />

suited for forensic purposes than cellulose nitrate adhesives, due to their<br />

minimal alteration of fracture margins, and their greater strength, stability,<br />

and long-term reversibility.<br />

References:<br />

1 Johnson, Jessica S. 1994 Consolidation of Archaeological Bone: A<br />

Conservation Perspective. Journal of Field Archaeology. 21(2):<br />

221-233.<br />

2 Koob, Stephen P. 1986 The Use of Paraloid B-72 as an Adhesive: Its<br />

Application for Archaeological Ceramics and Other Materials. Studies<br />

in Conservation. 31(1): 7-14.<br />

3 Selwitz, Charles. 1988. Cellulose Nitrate in Conservation Getty<br />

Conservation Institute: Getty Publications. http://www.getty.edu/<br />

conservation/publications/pdf_publications/nitrate.pdf.<br />

Adhesives, Forensic Reconstruction, Fragmentation<br />

H103 <strong>Bio</strong>mechanics of Blunt Ballistic Impacts<br />

* Presenting Author<br />

to the Head and Fracture Specific<br />

Injury Criteria Development<br />

David Raymond, MS*, Greg Crawford, MS, Chris Van Ee, PhD; and<br />

Cynthia Bir, PhD, Wayne State University, 818 West Hancock, Detroit,<br />

MI 48201<br />

After attending this presentation, attendees will be presented with a<br />

unique set of data regarding the biomechanics behind depressed<br />

comminuted skull fractures and blunt ballistic impact to the head.<br />

Engineering parameters responsible for the response and tolerance of the<br />

skull to blunt a ballistic impacts will be discussed with focus on the<br />

development of a new injury criteria for use in forensic case work.<br />

This presentation will affect the forensic community by offering<br />

leading-edge scientific data set on skull fracture from blunt ballistic impact<br />

and of the depressed, comminuted fracture type. Investigators will gain<br />

insight into biomechanics of skull fracture and the development of unique<br />

injury criteria for application in forensic reconstruction of skull trauma.<br />

Forensic applications of injury biomechanics is a unique and emerging<br />

field. Forensic biomechanics deals with reconstructing events that led to a<br />

documented injury. Skull fractures are forensic evidence that may be<br />

related to direct contact to the head by an external object and can assist in<br />

reconstruction of the impact conditions leading to the trauma.<br />

Circumstances leading to skull trauma may not always be known due to the<br />

lack of witnesses, inability of the patient to recall or articulate the events<br />

that led to the trauma or patient death. A forensic biomechanist may be<br />

brought in to work with a forensic pathologist or a forensic anthropologist<br />

to relate the mechanics involved with causing particular types of skull<br />

fractures. He/she may perform evaluations of various impact scenarios<br />

using biomechanical surrogates and injury criteria to assess the likelihood<br />

of producing fractures that match the physical evidence. Unfortunately, the<br />

current injury criteria and biomechanical surrogates developed by<br />

automotive safety researchers fall short of providing necessary information<br />

for the reconstruction of specific fracture types. Head injury criteria and<br />

biomechanical surrogates are currently needed for fracture-specific risk<br />

assessment. The primary goal of this research was the advancement of<br />

fracture-specific head injury criterion for the assessment of blunt ballistic<br />

lateral head impacts.<br />

Experimental impact testing was performed on eight (8) isolated,<br />

unembalmed postmortem human subjects. Specimens were impacted<br />

laterally in the region of the squamosal temporal bone with a 38 mm<br />

diameter rigid impactor, launched via a ballistic air cannon. Specimens<br />

were instrumented with a nine-accelerometer array to document global<br />

head response. Local bone response was measured by three Rosette-style<br />

strain gages attached to the outer cortical layer surrounding the impact site.<br />

Soft tissue was left intact at the impact site. Impact force was calculated<br />

from a 20,000 g accelerometer mounted to the rear aspect of the impactor.<br />

High speed video captured the impact at 10,000 frames per second. Posttest<br />

CTs were obtained along with detailed autopsies documenting resulting<br />

fracture patterns. Fracture criteria were explored through logistic regression<br />

analysis of measured parameters and compared with previously developed<br />

head injury criteria. Goodness of fit was evaluated by the chi-squared<br />

statistic, p-value and Nagelkerke R2 . Significance levels were set at p <<br />

0.05.<br />

Sixteen impacts were performed resulting in fractures to eight<br />

specimens with an average peak force of 5,079 ± 1572 N. Fractures were<br />

primarily depressed comminuted in nature. Acceleration from the array<br />

indicate that the skull does not respond as a rigid object under these loading<br />

conditions which limits the ability to utilize the nine-accelerometer array for<br />

estimating center-of-gravity acceleration. Deformation-based measures<br />

should be investigated further in future experimental studies.<br />

Logistic regression results indicate that strain-based measures were<br />

statistically significant predictors of fracture followed by acceleration of the<br />

head (P < 0.05). While impact force demonstrated increase risk of fracture<br />

with increasing force, this was not a statistically significant predictor of<br />

fracture (P=0.054).<br />

276


Technical limitations currently exist for developing strain or<br />

deformation-based criterion for use with biomechanical surrogates. Current<br />

biomechanical models are not equipped to measure skull deformation or<br />

strain. These measures are currently most effectively measured through<br />

finite element models. The basic biomechanical data from this study will<br />

first and foremost serve as validation for advancement of finite element<br />

models of the head to the blunt ballistic impact environment. Additional<br />

efforts can then be put forward into development of an advanced fractureprediction<br />

model. The current results indicate that effort should begin with<br />

strain-based criterion for blunt ballistic temporo-parietal skull fracture.<br />

<strong>Bio</strong>mechanics, Skull Fracture, Ballistic Impacts<br />

H104 Detection of Gunshot Residue (GSR)<br />

on Bone: Potential for Bullet Direction<br />

and Range Estimation<br />

Alicja K. Kutyla, BS*, Middle Tennessee State University, Department of<br />

<strong>Bio</strong>logy, Box 60, Murfreesboro, TN 37132; and Hugh E. Berryman, PhD,<br />

Middle Tennesee State University, Department of Sociology and<br />

Anthropology, Box 10, Murfreesboro, TN 37132<br />

After attending this presentation, attendees will appreciate the<br />

potential of using Scanning Electron Microscopy (SEM) with Energy<br />

Dispersive X-Ray Analysis (EDXA) to confirm both visually and by<br />

elemental composition, the presence of gunshot residue (GSR) on bone<br />

with the additional prospect of direction and range estimation.<br />

This presentation will impact the forensic community by presenting<br />

findings that may potentially lead to the development of techniques to<br />

estimate the distance of shooter to victim by the presence of GSR on bone.<br />

The purpose of this study was to determine if gunshot residue could be<br />

detected on bone at varying distances by visual means using Scanning<br />

Electron Microscopy as well as by elemental composition using Energy<br />

Dispersive X-Ray Analysis. Six pork ribs were shot at distances of one<br />

through six feet at one foot increments using American Eagle .45 caliber,<br />

230 grain, full metal jacket bullets. Each rib, with the meat intact, was<br />

placed inside a plastic Ziploc® bag and shot with the bullet penetrating the<br />

plastic, approximately one inch of muscle tissue, and the bone from external<br />

to internal surface. After each rib was shot the meat was removed using<br />

scissors and the periosteum was forcibly stripped from the bone. The ribs<br />

were placed in paper bags and put into an incubator to dry at 40 degrees<br />

Celsius (approx. 104 degrees Fahrenheit) for five days. The ribs needed to<br />

be completely dry so that vacuum could be achieved in the SEM without<br />

contaminating the instrument. After the ribs were dried they were removed<br />

and allowed to cool. The ribs were not coated with conducting material,<br />

such as gold or carbon as is common practice, in an attempt to be as nondestructive<br />

as possible.<br />

The fracture pattern associated with each rib was examined in order to<br />

verify the entrance side of the bone. For ease of placement of the rib into<br />

the specimen holder, the exit side of the rib was defined as the side of the<br />

bone directly opposite to the determined entrance side. The ribs were then<br />

positioned in the specimen holder so that the analysis could be performed<br />

on either the entrance or exit side of the bone and then placed in the<br />

specimen chamber of the Hitachi VP-SEM S-3400N for analysis.<br />

Visual analysis was performed as close to the fracture site as possible<br />

at 20kV and a working distance of 10mm. An area of high concentration of<br />

gunshot residue was identified and micrographs were taken of the site. The<br />

initial micrograph taken at 130X magnification was used to count the<br />

number of GSR particles present in a 400µm diameter circle. This initial<br />

micrograph was chosen due to the nature of the GSR particles as they tend<br />

to melt after a prolonged period under the electron beam. Elemental<br />

analysis was performed using the Oxford INCA Energy 200 Dispersive X-<br />

Ray Analyzer over the area of high concentration of GSR particles at 270X<br />

magnification, which was chosen due to the GSR particles melting part of<br />

the way through the analysis if performed at a higher magnification.<br />

Elements of interest that were identified were Lead, Antimony, Barium and<br />

Molybdenum which are known components of GSR.<br />

Results indicate that this is a feasible means to identify the presence of<br />

gunshot residue on bone both visually and elementally using SEM/EDXA<br />

from distances ranging from one to six feet. There is potential for visually<br />

differentiating between the entrance and exit sides of the bone as the<br />

gunshot residue appears to distribute differently on each side. Additionally,<br />

this technique may hold potential for the development of an objective<br />

method for estimating firearm to target distance as the number and diameter<br />

of GSR particles counted in this study tended to decrease with distance.<br />

Since the forceful removal of the periosteum did not seem to interfere with<br />

the adherence of these particles to the bone, further testing is planned to<br />

determine the affects of decomposition on GSR on bone.<br />

Gunshot Residue, Terminal Ballistics, Gunshot Trauma<br />

H105 Determination of Low Velocity<br />

Bullet Trajectory in Long Bones:<br />

An Experimental Investigation<br />

Regina L. McGowan, BA*, 3841 Branson Road, Victoria, BC V9C 4A7,<br />

CANADA<br />

After attending this presentation, colleagues will understand the<br />

different methods previously employed to determine direction of fire in the<br />

skull, and the importance of experimental study to determine if the method<br />

can be translated to postcranial long bones. They will understand the main<br />

components of factors that can be employed to determine direction of fire:<br />

beveling, entrance and exit wound morphology, and fracture sequencing.<br />

They will also see that from experimental investigation, it was determined<br />

that the most efficient method for determining direction of fire includes all<br />

three factors, as each on its own is insufficient.<br />

This presentation will allow the forensic community to learn of a<br />

method for determining direction of fire developed from experimental<br />

study as opposed to case study. This will in turn give forensic practitioners<br />

another method to reconstruct the events of a crime, differentiate between<br />

homicide and suicide and confirm or contradict a witness statement.<br />

Handguns are by far the most common weapon used in violent crimes<br />

in the United States (Federal Bureau of Investigations, 2005).<br />

Determination of the direction of fire can be used to evaluate witness<br />

statements, to differentiate between manners of death (e.g., homicide versus<br />

suicide), and to reconstruct events in mass homicides to enable authorities<br />

to prosecute guilty parties. Soft tissue markers used by pathologists may not<br />

be available if the remains are skeletal.<br />

The publications regarding the estimation of bullet direction in the<br />

cranium have been of two main types: determination of entrance and exit<br />

wounds by interpretation of defect beveling (Quatrehomme and Iscan,<br />

1998), and analysis of fracture sequence (Sexton, 1979; Dixon, 1984;<br />

Smith, et al. 1987). Publications on bullet trajectory in postcranial bones<br />

are available (Berryman and Gunther 2000; Langley 2007), but tend to be<br />

case studies without controlled factors. Therefore, an experiment was<br />

designed to produce gunshot wounds from known directions in the humeri<br />

of domestic pigs (Sus scofa). The hypothesis was that the methods used for<br />

the cranium would be useful, but may need to be refined due to the very<br />

different bone morphology in postcranial long bones.<br />

Twenty humeri from recently deceased articulated pigs were shot with<br />

a .357 Magnum full metal jacketed bullet in the midshaft: three from<br />

anterior to posterior, three from posterior to anterior, three from medial to<br />

lateral, and three from lateral to medial. The remaining eight humeri were<br />

shot from directions unknown to the researcher in order to permit a blind<br />

study of any method developed from the wounds of known direction. It<br />

was found that the humerus of the domestic pig was difficult to shoot when<br />

still articulated, and therefore 12 more humeri, clear of flesh but still very<br />

wet, were shot at a later date with the same bullet type and from the same<br />

distance. After determining that there were no significant differences in the<br />

fracture patterns between the fleshed and de-fleshed wet bones of the two<br />

shooting periods, the sample contained 22 humeri. Five bones were not<br />

277 * Presenting Author


used as they were missing a significant number of fragments, were hit<br />

tangentially or not hit in the shaft. All five experimental bones that were hit<br />

had damage only in the proximal epiphysis; therefore, 12 bones of known<br />

direction were present in the final sample.<br />

Beveling was defined as the amount of exfoliation of the bone surface<br />

divided by the cortex breadth in order to eliminate any effect this factor may<br />

have on beveling. There was significantly more internal beveling of<br />

entrance wounds than exits, and more external beveling on exit wounds<br />

than entrances. There were, however, two exit wounds that exhibited some<br />

amount of internal beveling, supporting earlier conclusions that lack of<br />

internal beveling is not a consistent indicator of an exit wound<br />

(Quatrehomme and Iscan, 1997, 1998). As expected, the size of the exit<br />

defect was significantly larger than the entrance defect. Entrance defects<br />

tended to be circular or ovoid in shape, and exit defects tended to have less<br />

defined edges and a more rectangular shape. However, none of these<br />

patterns were present in the entire sample.<br />

The humeri in this study tended to fracture in a double butterfly<br />

pattern, with primary radiating fractures emanating from the superior and<br />

inferior aspect of the entrance and exit. When fractures were sequenced,<br />

eight of twelve bones had radiating fractures from exit wounds that were<br />

halted by those from entrance wounds. In two bones, all fracture lines were<br />

ambiguous, and in two bones fractures from the exit halted fractures from<br />

the entrance, contradicting the sequencing theory.<br />

It was concluded that each analysis outlined above was not a<br />

consistent indicator of directionality on its own, but a method that included<br />

all of them (beveling, entrance and exit defect size and shape, and fracture<br />

sequencing) would be more effective. In the absence of the blind<br />

experimental group, this comprehensive method was taught to five forensic<br />

anthropology colleagues with no special background in gunshot trauma.<br />

Four colleagues correctly identified all twelve trajectories, and one<br />

colleague correctly identified 11 out of 12 trajectories. However, further<br />

research in this area is indicated, as a larger sample size would greatly<br />

benefit this study.<br />

References:<br />

1 Berryman, Hugh E. and Gunther, Wendy M.(2000) Keyhole Defect<br />

Production in Tubular Bone. Journal of Forensic Sciences, 45(2),<br />

483-7.<br />

2 Dixon, D.S. (1984) Pattern of Intersecting Fractures and Direction of<br />

Fire. Journal of Forensic Sciences, 29(2), p.651-4.<br />

3 Federal Bureau of Investigations (2006) Murder: Types of Weapons<br />

Used, Percent Distribution Within Region, 2005 [online]. Federal<br />

Bureau of Investigations. Available from: [July<br />

16, 2007].<br />

4 Langley, Natalie R. (2007) An Anthropological Analysis of Gunshot<br />

Wounds to the Chest. Journal of Forensic Sciences, 52(3), p. 532-7.<br />

5 Quatrehomme, Gerald and Iscan, M.Yasar (1997) Beveling in Exit<br />

Gunshot Wounds. Forensic Science International, 89, p.93-101.<br />

6 Quatrehomme, Gerald and Iscan, M.Yasar (1998) Gunshot Wounds to<br />

the Skull – Comparison of Entries and Exits. Forensic Science<br />

International, 94, p.141-6.<br />

7 Sexton, J.S. and Hennigar, G.R. (1979) Determining Sequence of Fire<br />

in Gunshot wounds: Two Case Reports. Journal of Forensic Sciences,<br />

24(3), p.610-7.<br />

8 Smith, O’Brian C., Berryman, Hugh E. and Lahren, Craig H. (1987)<br />

Cranial Fracture Patterns and Estimate of<br />

9<br />

Direction from Low Velocity Gunshot Wounds. Journal of Forensic<br />

Sciences, 32(5), p.1416-21.<br />

Gunshot, Postcranial, Trajectory<br />

H106 Fragmentation Patterns of Victims<br />

From a Fatal Aviation Accident<br />

Giovanna M. Vidoli, MSc*, 56 Mitchell Avenue, Binghamton, NY 13903<br />

After attending this presentation, attendees will gain an understanding<br />

* Presenting Author<br />

of how fragmentation patterns of the victims can assist in the analysis and<br />

investigation of plane crashes and the events prior to the crash. This study<br />

will evaluate if there exists a fragmentation pattern of victims in high<br />

velocity impact plane crashes as well as a relationship between the assumed<br />

seat locations of the victims and the extent of their injuries.<br />

This presentation will impact the forensic science community by<br />

demonstrating the ways in which the examination of the fragmentation<br />

patterns of human remains can add to the investigation of plane crashes as<br />

well as the recovery of human from the scene. In addition, it explores how<br />

this information can aid physical anthropologists during the triage of human<br />

remains from an aviation accident.<br />

On November 12, 2001, American Airlines Flight 587, a regularly<br />

scheduled passenger plane bound for Santo Domingo, Dominican<br />

Republic, crashed in a residential area in Belle Harbor, New York, shortly<br />

after take-off from JFK International Airport. All 260 people aboard the<br />

flight, including the pilot, co-pilot, seven crewmembers and 251<br />

passengers, were killed. In addition, five people on the ground were killed.<br />

This presentation assesses the injury and fragmentation patterns of Flight<br />

587 victims in correlation with their seat location on the plane. Previous<br />

studies of injuries of plane crash passengers focused on determining<br />

whether the injuries were preventable and, if so, suggested safety features<br />

to reduce airline crash related casualties. In view of the Flight 587<br />

passengers having no chance of survival, the objective of this study is to<br />

evaluate if there exists a fragmentation pattern of victims in high velocity<br />

impact plane crashes as well as a relationship between the assumed seat<br />

locations of the victims and the extent of their injuries. After attending this<br />

presentation, attendees will gain an understanding of how fragmentation<br />

patterns of the victims can assist in the analysis and investigation of plane<br />

crashes and the events prior to the crash.<br />

In total, 2,058 body fragments were recovered. To date, 1,750 bodies<br />

and body fragments are identified and 308 remain unidentified. There were<br />

112 nearly complete bodies recovered, including the five on the ground,<br />

163 partial bodies, and 1784 fragments. Autopsies were conducted on 251<br />

of the mostly whole and partial remains by <strong>Medical</strong> Examiners from the<br />

Office of Chief <strong>Medical</strong> Examiner, New York City. The autopsy reports of<br />

the victims include detailed information about the nature and extent of<br />

injuries. The descriptions of smaller fragments are less detailed but they<br />

include information regarding the body part, its size, and the extent of any<br />

burning. As in other disasters, the inclusion of physical anthropologists is<br />

pivotal in recognizing and accurately describing the fragments so as to<br />

obtain more detailed information to use in conjunction with <strong>Medical</strong><br />

Examiner reports. Using these reports, the injuries of each victim are<br />

classified by location (head/neck, face, thorax, abdomen, extremities, and<br />

external) and their severity is scored following a revision of the Abbreviated<br />

Injury Scale system. The injury scores and the number of fragments that<br />

have been identified for each victim are examined in conjunction with the<br />

location of the victim’s seat.<br />

Preliminary results of Flight 587 show that 35 nearly complete bodies<br />

from victims seated in the front half of the plane were recovered compared<br />

to 70 from the back half of the plane, consistent with a nosedive crash. In<br />

addition, 75% of autopsied victims had avulsed brains and crushed skulls<br />

with lower limbs as the most frequently amputated body area suggesting<br />

considerable forward motion at high velocity; the last recorded airspeed of<br />

Flight 587 was approximately 288 miles per hour. Although witness reports<br />

suggest that the plane was banking to the left prior to crashing, 1,207 body<br />

remains of victims seated on left side of the plane were identified while only<br />

433 remains from victims seated on the right side of the plane were<br />

identified. These results imply the remains of victims seated on the left<br />

suffered less postmortem damage facilitating both recovery and<br />

identification. Some witness reports also recalled a fire in the middle of the<br />

plane prior to crashing, however no autopsied victims, except those on the<br />

ground, had soot in the airways.<br />

The fragmentation pattern from this flight, which crashed shortly after<br />

take-off and in a nosedive with no prior explosion, can be compared to other<br />

flights to find similarities and differences in patterns. For example, TWA<br />

Flight 800 was also a high impact crash with no survivors however, Flight<br />

278


800 exploded in mid-air prior to crashing into the Atlantic Ocean. Unlike<br />

Flight 587, the TWA 800 investigators found no correlation between<br />

severity of injury and structural damage or seat location and no<br />

predominant injury to the upper or lower extremities consistent with an<br />

explosion (Vosswinkel and Brathwaite 1999). In addition, understanding<br />

how bodies fragment during a high velocity impact may aid anthropologists<br />

in disasters to re-associate remains during triage while sorting through<br />

commingled and fragmented remains.<br />

References<br />

1 Vosswinkel, J.M., JE; Brathwaite, CE (1999) Critical Analysis of<br />

Injuries Sustained in the TWA Flight 800 Midair Disaster. The Journal<br />

of Trauma 47(4): p. 617-621.<br />

Aircraft Crash, Fragmentation Patterns, Multiple Fatality Incident<br />

H107 Effect of Loading Environment on<br />

the Healing of Long Bone Fractures<br />

Tracey Tichnell, BS*, 354 Baker Hall, East Lansing, MI 48824<br />

The educational goal of this presentation will examines the timing of<br />

the healing sequence in long bones, without the aid of modern medicine,<br />

and investigates the effects of loading on the appearance of healing stages.<br />

This presentation will impact the forensic science community by<br />

examining the effects of various factors on the appearance of healing stages,<br />

practitioners will be better able to determine the timing of a particular<br />

traumatic event in cases of abuse and in the identification of postmortem<br />

remains.<br />

There have been several studies done to create a timeline for the<br />

healing of fractures using a variety of technologies. With the exception of<br />

a study on crania, these have focused primarily on long bones. Though<br />

these studies roughly agree on the timing of important stages in the healing<br />

process, none has addressed the observed difference between weightbearing<br />

and non-weight-bearing bones, especially during the critical callus<br />

formation stage. Previous work used a variety of long bones to increase the<br />

available sample size from clinical settings. By using a historical<br />

population and focusing on two analogous bones, this study uses an<br />

increased level of variable control to determine if this difference exists<br />

without the benefit of modern medicine and if it is significant.<br />

The Civil War Collection at the National Museum of Health and<br />

Medicine was used for both its size and documentation. Only femora and<br />

humeri were utilized from this collection as they were analogous but in<br />

different loading environments and only those caused by shot fractures,<br />

treated by the removal of the affected bone, and with the necessary<br />

documentation were included. This limited the sample size to 130 humeri<br />

and 62 femora. All the included fractures were comminuted. The healing<br />

stage of each specimen was noted and separate timelines created for the<br />

femur and the humerus. Those were then compared to find any differences<br />

between them.<br />

Initial callus formation was seen at approximately 44 days (6 weeks)<br />

for the femur and 62 days (9 weeks) for the humerus. Callus formation was<br />

complete by 145 days (~5 months) for the humerus, with an outlier at 219<br />

days still forming a callus. Femora did not complete callus formation for<br />

328 days (~11 months), with a severe case not completing formation in 525<br />

days. It should be noted that the fractures included in this study were severe<br />

with little attempt at resetting the bone. This callus initially appears lumpy<br />

and disorganized in appearance but will remodel to a smooth callus in about<br />

9-10 months for a humerus, however a femur requires more than a year to<br />

reach this stage. The length of the callus formation stage between these two<br />

bones is significant with ρ = 0.028 while the timing of these stages overall<br />

is not statistically significant, though there is a trend for the humerus to start<br />

later. With the use of modern medicine, callus formation begins at 7-10<br />

days and ends in 6-8 weeks on average.<br />

The differences seen in healing time and the length of stages between<br />

femora and humeri is likely due to differences in mechanical environment,<br />

a femur bears weight while a humerus does not. Though these timelines are<br />

rough, they illustrate that mechanical environment has a large affect on<br />

healing behavior. The large discrepancy between these timelines and those<br />

seen in modern medicine are likely due to a variety of causes including the<br />

severity of these injuries and lack of treatment, the prevalence of disease,<br />

and the unlikely survival of evidence for the early stages of callus<br />

formation. The use of historic populations to control for confounding<br />

variables, such as type of injury and treatment, can offer greater resolution<br />

of the factors affecting healing rates than clinical studies alone.<br />

<strong>Bio</strong>mechanics, Fracture, Healing<br />

H108 Cranial Bone Trauma: Misleading Injuries<br />

João Pinheiro*, Instituto Nacional de Medicina Legal, Instit Nacional<br />

Medicina Legal, Delegação do Centro, Largo da Sé Nova, Coimbra, 0<br />

3000, PORTUGAL; Andersen Lyrio da Silva, and Eugenia Cunha, PhD,<br />

Departamento De Antropologia, Universidade de Coimbra, Coimbra,<br />

3000-056, PORTUGAL; and Steven A. Symes, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East 38th, Erie, PA<br />

16546-0001<br />

Attendees of this presentation will learn from bone similar patterns of<br />

injuries how to distinguish among different weapons used in criminal cases.<br />

This presentation will impact the forensic science community by<br />

showing how interdisciplinarity (forensic pathology-forensic anthropology)<br />

can be useful in solving homicide complex cases, even in bodies fairly well<br />

preserved.<br />

Forensic pathologists and anthropologists are obligated to recognise<br />

traumatic patterns in soft tissue and bone. Additionally, these patterns may<br />

be analysed for potential weapons that could produce similar trauma. The<br />

cranium is commonly the area to be examined and researched in anticipation<br />

of obtaining the most information concerning the death of a victim.<br />

However, cranial injuries may take on such a capricious forms that less<br />

experienced personnel may find diagnosis difficult at best. The authors<br />

present two cases of complex skull fractures, similar in fracture pattern.<br />

Case A was a possible point of impact on the right side of skull, with<br />

radiating and concentric fractures, suggesting a gunshot wound. The other<br />

Case B, displays a quite different pattern: the body of the mandible exhibits<br />

a butterfly fracture with numerous fractures radiating across the entire<br />

cranial vault. There are numerous indicators that this is likely blunt trauma<br />

of the head.<br />

Case A was a complete and fairly well preserved body (the head<br />

skeletonized) whose autopsy revealed neither a traumatic injury nor a<br />

natural cause of death. While the skull was suspiciously consistent of a<br />

homicide by a gunshot wound, blunt force trauma was the real cause of<br />

death. Close examination of the internal skull demonstrated internal<br />

bending of concentric fractures, as opposed to concentric heaving fractures<br />

expected with ballistic trauma. No signs of pellets or gunshot holes were<br />

found. The skull was complete, although the biomechanics of the blunt<br />

force trauma made it difficult to juxtapose all the bone fragments in the<br />

reconstruction. Mixed with the skull, the remains sent for analysis also<br />

included an almost complete skeleton of a dog.<br />

Case B is a putrefied/saponified male found floating in a septic well,<br />

the head severely injured apparently by a blunt trauma. Police suspected a<br />

homicide and a disposed body. Observation of soft tissues and radiographs<br />

quickly dispelled criminal behavior and indicated suicide. The 12 gauge<br />

double barrel shotgun found at the bottom of the drained well, confirmed<br />

this hypothesis. Anthropological examination of skeletal trauma,<br />

particularly in the skull, often ignores internal bone surfaces. Initial<br />

examination of Case B, is an excellent example of how middle cranial fossa<br />

damage and pellet impact sites on the endocranially surface were missed.<br />

Suicide with a smaller gauge shotgun put into the mouth initially produced<br />

no signs of lead nor any entrance plug in the bone as one would expect with<br />

a gunshot wound. The biomechanics of the described fractures are<br />

discussed with emphasis on compression/tension bending of the mandible<br />

279 * Presenting Author


fracture, or “Kolusaiyn” fractures according to some authors, often<br />

observed in gunshot wounds to the head.<br />

Each case presents clear examples of the potential of multidisciplinary<br />

examination of bone trauma (forensic anthropology and pathology) even in<br />

fresh corpses, in order to achieve cause of death, weapon involved, and<br />

eventually, manner of death.<br />

Bone Trauma, Shotgun Wound, Blunt Trauma<br />

H109 Recognizing Patterned Fire<br />

and Heat Damage to Bone<br />

Steven A. Symes, PhD*, Mercyhurst Archaeological Institute,<br />

Mercyhurst College, 501 East 38th, Erie, PA 16546-0001; Christopher<br />

W. Rainwater, MS, Office of the Chief <strong>Medical</strong> Examiner, 520 1st Avenue,<br />

New York, NY 10016; Erin N. Chapman, BA, 216 Maiden Lane, Erie, PA<br />

16504; Desina R. Gipson, BA, 549 East Grandview Boulevard, Erie, PA<br />

16504; and Kyra E. Stull, BA, Mercyhurst College, 501 East 38th Street,<br />

Erie, PA 16546<br />

The goal of this presentation is to investigate patterned thermal<br />

destruction of bone, particularly when applied to medicolegal analyses of<br />

victims of fire. A focused, systematic approach to burn bone analysis is<br />

proposed through the observation of definitive bone-altering characteristics<br />

indicating whether the consumption of human tissues in fire is normal or<br />

abnormal.<br />

This presentation will impact the forensic community by elucidating<br />

thermal destruction patterns through the analysis of specific burning<br />

process signatures observed on bone while considering extrinsic properties<br />

of the fire constant.<br />

Burned bone research is well represented in the anthropological<br />

literature yet there is little technical consensus in the procedural analysis of<br />

specific types of residual skeletal trauma. This disparity appears rooted in<br />

the varied approaches in burned bone analyses and suggests that the<br />

forensic anthropology community requires additional research and samples<br />

to achieve reliable pattern recognition. It is the intention of this presentation<br />

to identify certain heavily researched burn variables and suggest that they<br />

may be recognized as constants in an all-encompassing fire. Designation of<br />

these variables as constant influences of heat and fire on a decedent may<br />

allow burning process signatures to become decipherable.<br />

By considering temperature, atmosphere, and duration as constants,<br />

thermal bone destruction becomes recognizable and patterned. These<br />

signatures include shielding soft tissues and body position, color change as<br />

the bone is subjected to heat-induced chemical changes, and finally heat<br />

shrinkage fractures in bone (Symes et al. 2008). If these features are<br />

documented on cases of burned remains, researchers are no longer<br />

restricted by the “constants of fire.” With this theoretical basis established,<br />

researchers can understand normal burn patterns as a whole and how each<br />

bone is consumed in a fire. For the purposes of this presentation, bone<br />

fractures, as a fire process signature, are demonstrated.<br />

While at least seven burned bone fracture types have been defined in<br />

the literature, this research has found one fracture pattern particularly<br />

diagnostic. The curved transverse fracture, sometimes labeled a “thumbnail<br />

fracture,” has been recognized and debated for decades in the literature by<br />

anthropologists. The research will demonstrate that curved transverse<br />

fractures not only indicate fleshed body consumption, but these also specify<br />

the direction of destruction on that element. By understanding the direction<br />

of bone destruction on major elements, the pattern of destruction of the<br />

individual can be documented and evaluated for normalcy.<br />

Curved transverse fractures are a reflection of a pattern that is well<br />

documented in victims consumed by fire – the pugilistic posture. The<br />

pugilistic posture is initiated by contraction of muscle fibers due to heat<br />

destruction as flexors generally override the extensors. This posture is<br />

retained until structures are destroyed and no muscle fibers cross joints to<br />

influence limb position. Curved transverse fractures on long bones are<br />

simply a reflection of this muscle destruction and contraction.<br />

* Presenting Author<br />

Heat altered muscle shrinkage action is discontinuous in nature.<br />

While the tension on muscle fibers is constant, their movements are not.<br />

The discontinuous nature is facilitated by increasing tension on the muscles<br />

and subsequent destruction of muscle and bone around the heavily burned<br />

attachment sites. As stretched muscle bundles eventually break free of<br />

attachments, muscle tension is temporarily relieved until heat once again<br />

produces more shrinkage. While at rest, muscle bundles create a line that<br />

will demarcate the next curved transverse fracture. As major muscles<br />

intermittently shrink up the shafts of bone, the residual curved transverse<br />

fractures inadvertently document direction of bone destruction specifically<br />

at that point on that element.<br />

In presenting this research, the authors simplify the complex and<br />

overwhelming destructive results associated with remains recovered from<br />

fire scenes. By illustrating a single burning process signature, curved<br />

transverse fractures, this presentation focuses on just one of three major<br />

variables that assist in the recognition of typical fire destruction of a fleshed<br />

body. As these data become increasingly recognizable, the process of<br />

thermal bone destruction is found to be patterned, predictable, and<br />

eventually useful in recognizing atypical behavior associated with victims<br />

of fire.<br />

Reference:<br />

1 Symes SA, A Piper, CW Rainwater, EN Chapman, and DR Gipson.<br />

Patterned Thermal Destruction Of Human Remains in a Forensic<br />

Setting. In: Analysis of Burned Human Remains. CW Schmidt and<br />

SA Symes, eds. In Press. New York: Elsevier, 2008.<br />

Burned Bone, Skeletal Trauma, Burn Fracture Pattern<br />

H110 Missing in Amazonian Jungle: A Case<br />

Study of Suspected Dismemberment<br />

Tania Delabarde, PhD*, Institut Francais d’Etudes Andines, Whymper<br />

442 y Coruna, Quito, ECUADOR; and Freddy G.H. Almagro, MD,<br />

Departmento Medico Legal de la Policia, Judicial de Pichincha Av.,<br />

Mariana de Jesus s/n y Av., Occidental, ECUADOR<br />

After attending this presentation attendees will understand the<br />

differences that exist between cut marks caused by bladed instrument and<br />

power saw in a case of homicidal dismemberment.<br />

This presentation will impact the forensic community by showing the<br />

benefits of an experimental approach using an animal model when<br />

examining forensic cases of suspected dismemberment under technological<br />

constraints.<br />

The aim of this presentation is to illustrate a practical approach in the<br />

analysis and interpretation of bone trauma related to a possible case of<br />

dismemberment.<br />

Intentional separation of body fragments is well documented in<br />

forensic literature. Generally, injuries related with dismemberment are<br />

caused by cutting, chopping and chiseling. <strong>Bio</strong>mechanical properties of<br />

bone are essential for the analysis and interpretation of cut marks as the<br />

bone response will differ according to location, frequency and causative<br />

agent. Dismemberment patterns are of particular importance as the actions<br />

and instruments used are a clear expression of the perpetrator intentions and<br />

therefore the manner of death can be established.<br />

This case study present the results of a forensic examination<br />

performed on three sets of disarticulated and incomplete human remains<br />

found in Amazonian jungle. A few months before this finding, two<br />

European tourists went missing in this area. Anthropological analysis for<br />

identification and the clothing associated with the decomposed remains<br />

were consistent with the antemortem data of the two missing persons. Body<br />

parts sustained a number of cut marks situated on different aspect of the<br />

skeleton. Despite intensive searches including a canine team, the recovery<br />

of victim’s remains was not complete (one of the two is only represented by<br />

lower half part of body). The location (Amazonian jungle) and the<br />

perpetrators actions (dismemberment and dispersion of body parts in river)<br />

were effective. DNA analysis was performed and confirmed reassembly of<br />

280


ody parts and identification of the two victims.<br />

Each cut mark was fully described with location, number, type (e.g.,<br />

false start) and measures (e.g., width, length and depth) following standard<br />

anthropological protocols. An experimental study was conducted by the<br />

author on pig bones and pieces of wood to examine and compare wound<br />

and witness marks produced by different instruments in order to corroborate<br />

causative agents and evaluate the manner of death. Despite incompleteness<br />

of the remains and a lack of laboratory facilities, a reconstruction of the<br />

possible sequence of traumatic events based on results of forensic<br />

examination and an experimental study provide evidence for a first attempt<br />

of dismembering at the level of knee joint of one of the victim with a long<br />

and heavy blade (possibly a machete) follow by a successful separation of<br />

body parts (trunk, legs…) using a power saw that have caused most of the<br />

damage present on both victim’s remains. The cause of death was<br />

ascertained for one of the two victims showing a penetrating injury through<br />

the right scapula inflected by a sharp bladed instrument. Due to its location<br />

the injury was considered as lethal.<br />

This case study constitutes for the forensic community a complement<br />

of the researches on bone trauma related to dismemberment activity trough<br />

an anthropological and practical approach based on an experimental<br />

comparison of cut marks with a basic microscope, looking at a variety of<br />

weapons and mechanism of injury.<br />

Dismemberment, Bone Trauma, Forensic Anthropology<br />

H111 An Epidemiological Study of Trauma<br />

in U.S. Casualties of the Korean War<br />

Joan E. Baker, PhD*, and Alexander F. Christensen, PhD, Joint<br />

POW/MIA Accounting Command, Central Identification Lab, 310<br />

Worchester Avenue, Hickam Air Force Base, HI 96853<br />

After attending this presentation, attendees will better understand the<br />

relationship between paleopathological diagnosis of skeletal trauma and<br />

historical epidemiology. Attendees will learn the value of this approach as<br />

a tool for predicting and recognizing patterns of combat-related trauma.<br />

This presentation will impact the forensic community by illuminating<br />

the relationships between paleopathology and epidemiology and their<br />

utility in the forensic identification process.<br />

Data on antemortem and perimortem trauma was collected between<br />

1996 and 2007 from more than 70 skeletons of U.S. casualties of the<br />

Korean War. While the CIL does not conduct analyses of perimortem<br />

trauma for medicolegal purposes—no judgments of cause or manner of<br />

death are associated with CIL identifications—skeletally visible<br />

antemortem traumata can be compared with individual biographical<br />

records, and perimortem traumata can be compared to historically<br />

documented circumstances of death.<br />

These data were compared with three related data sets. The first set<br />

includes the records on file at JPAC for skeletons from putative U.S.<br />

casualties processed by the Central Identification Laboratory in Kokura,<br />

Japan, in 1953 and subsequently buried as Unknowns in the National<br />

Memorial Cemetery of the Pacific (“the Punchbowl”), Honolulu. Both<br />

perimortem and antemortem trauma were recorded during anthropological<br />

analyses of these remains. The second set is the electronic database CARIS<br />

(Centralized Remains Information System), maintained by JPAC, which<br />

contains biological profiles for all unresolved (and a few resolved)<br />

casualties of the Korean War, as well as other conflicts, including records of<br />

antemortem trauma. The third set includes the data tabulations of<br />

perimortem trauma in two separate studies of combat casualties in the<br />

Korean War.<br />

Deaths in the Korean War, as in other conflicts, can be divided<br />

between those that occurred on the battlefield and those that occurred<br />

elsewhere. Logically, the causes of death may be expected to differ between<br />

these venues. For this reason, the JPAC-CIL sample consists primarily of<br />

those skeletons excavated in or around battlefield locations during the Joint<br />

Recovery Operations (JROs) conducted in the Democratic People’s<br />

Republic of Korea from 1996 to 2005. These are supplemented by multiple<br />

skeletons originally returned to the U.S. after the war by the Chinese<br />

government which were subsequently buried as Unknowns and later<br />

exhumed by the CIL for identification. These particular skeletons are also<br />

believed to derive from battlefield contexts. Those turned over to the U.S.<br />

by North Korean authorities between 1990 and 1994, many of which were<br />

alleged to come from Prisoner-of-War holding locations, will not be<br />

considered, nor will those recovered from sites in South Korea. Similarly,<br />

the historic epidemiological data on locations of wounds comes from those<br />

who were Killed in Action (KIA) as well as those who were Wounded in<br />

Action (WIA) and subsequently Died of Wounds (DOW). Whenever<br />

possible, the KIA numbers, which should be most directly comparable to<br />

the battlefield skeletal data, will be considered, although some remains<br />

from JROs have subsequently been identified as individuals known to have<br />

been treated for their wounds at an aid station.<br />

In current death investigations, forensic anthropologists are often<br />

called upon to address the circumstances of death, although not generally<br />

the cause or means, and as a result, the discipline has developed numerous<br />

techniques for reconstructing perimortem traumata. These techniques are<br />

generally applied to each skeleton as an individual case, with limited<br />

epidemiological applications (c.f., Baraybar 2007). For homicide victims,<br />

far more comprehensive and accurate epidemiological data can be provided<br />

by pathologists than by anthropologists. In historic and prehistoric contexts,<br />

bioarchaeologists may also address the circumstances of death for isolated<br />

individuals, but their general concern is paleoepidemiological, particularly<br />

for populations that lack significant demographic documentation. The<br />

sample considered here provides an opportunity to test whether a<br />

population-level study of trauma from an archaeologically derived skeletal<br />

sample is actually representative of what is historically documented about<br />

that population.<br />

Paleopathology, MIA, Combat<br />

H112 The Utility of the Identification Unit<br />

Concept in the <strong>Medical</strong> Examiner Setting<br />

Sharon M. Derrick, PhD*, Jason M. Wiersema, PhD, Ruth Mathis,<br />

Jennifer C. Love, PhD, and Luis A. Sanchez, MD, Harris County <strong>Medical</strong><br />

Examiner’s Office, Anthropology Division, 1885 Old Spanish Trail,<br />

Houston, TX 77054<br />

This presentation will demonstrate the formation, standard operating<br />

procedures, and immediate value of a specialized medical examiner<br />

identification unit staffed with anthropologists. Attendees will be given a<br />

comprehensive description of the innovative process that has led to success<br />

in difficult identifications of unidentified decedents for both current and<br />

cold cases at the Harris County <strong>Medical</strong> Examiner’s Office.<br />

The development of a specialized Identification Unit staffed by<br />

anthropologists in the medical examiner office setting will impact the<br />

forensic science community by demonstrating a novel and creative solution<br />

to the problems associated with identification of unknown individuals.<br />

Recent progress on the identification of three remaining decedents<br />

from the Houston “Mass Murders” of 1973 will be highlighted.<br />

The Harris County <strong>Medical</strong> Examiner’s Identification Unit (ID Unit)<br />

ensures all avenues available to identify an unknown decedent are pursued<br />

and all unclaimed decedents receive an appropriate and timely final<br />

disposition. The responsibility of the ID Unit is threefold: (1) to construct<br />

and disseminate complete unknown decedent descriptions, obtain all<br />

postmortem records, and submit biological samples for the purpose of<br />

identification, (2) to maintain and regularly audit case files of unidentified<br />

decedents for application of new technologies when appropriate, and (3) to<br />

process unclaimed decedents for final disposition. The ID Unit uses autopsy<br />

findings and anthropologic analysis to construct the biological profile of<br />

unknown decedents and disseminates the information to law enforcement,<br />

the media, and several websites. <strong>Bio</strong>logical samples are collected and<br />

submitted to the University of North Texas to be entered into CODISMP.<br />

281 * Presenting Author


Full skeletal radiographs and dental radiographs are taken and compared to<br />

possible matches as necessary. Cold cases of unidentified remains are<br />

audited for completeness and accuracy. In cooperation with the Harris<br />

County Community and Economic Development Department, unclaimed<br />

decedents and families in need of assistance for funeral arrangements are<br />

referred to Harris County Bereavement Services.<br />

Each member of the ID Unit takes the major responsibility for a set of<br />

related tasks beyond anthropologic analysis, although all are cross-trained<br />

in ID Unit responsibilities. The collaboration of anthropologists and a fulltime<br />

Identification Specialist at the HCME has provided the initiative,<br />

experience and staff time to move forward on difficult identifications of<br />

both current and decades-old cases, as well as provide for final disposition<br />

of those decedents without resources. As a direct result of this new program,<br />

three decedents from 1980s’ cases have recently been identified and the<br />

next of kin notified. Significant progress has also been made on the<br />

identifications of three adolescent male decedents received by the HCME<br />

35 years ago as alleged victims of a serial murderer. On August 8, 1973,<br />

seventeen year-old Elmer Wayne Henley fatally shot 33 year-old Dean<br />

Corll. The law enforcement investigation of this shooting led to the<br />

discovery of 27 adolescent male homicide victims and the eventual life<br />

imprisonments of Henley and an 18 year-old named David Brooks. Corll<br />

and 26 of the victims were brought to the Harris County Morgue (previous<br />

incarnation of the HCME) for autopsy, sending the office into disaster<br />

response mode. The majority of the victims (21) were identified within<br />

three months of autopsy and two more were identified in 1985 and 1994,<br />

respectively. The three remaining decedents are receiving special attention<br />

from the HCME ID Unit that includes a clay facial reconstruction project in<br />

collaboration with the FACES Laboratory at Louisiana State University.<br />

Successes with these types of cold cases and the continuing<br />

improvement in all aspects of the identification and final disposition of<br />

difficult current cases demonstrates the value of the ID Unit to the mission<br />

of the HCME.<br />

Unidentified, Anthropology, Corll/Henley<br />

H113 Evidentiary Standards for<br />

Forensic Anthropology<br />

Angi M. Christensen, PhD, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, Quantico, VA 22135; Christian M.<br />

Crowder, PhD*, New York City Office of Chief <strong>Medical</strong> Examiner, 520<br />

First Avenue, New York, NY 10016; and Tracy Rogers, PhD, Department<br />

of Anthropology, University of Toronto at Mississauga, Mississauga,<br />

Ontario L5L 1C6, CANADA<br />

After attending this presentation, the participant will understand the<br />

importance of establishing standards within the field of forensic<br />

anthropology and the role of a Scientific Working Group.<br />

This presentation will impact the forensic science community by<br />

emphasizing the importance of judicial representations of scientific<br />

evidence. As issues of professional standards and error rates continue to be<br />

addressed in the courts, it is imperative that the field of Forensic<br />

Anthropology be proactive by developing professional standards for our<br />

discipline. One measure to create and maintain professional standards is<br />

through Scientific Working Groups (SWG).<br />

Since the 1993 Daubert ruling, many forensic disciplines including<br />

anthropology have been forced to critically evaluate the techniques and<br />

methods used in their examinations. Disciplines like forensic anthropology<br />

may be problematic in the eyes of the courts since they employ a<br />

combination of traditional scientific methodologies and less rigorous<br />

observational methodologies, as well as case study evaluations. Critical<br />

questions and admissibility criteria of expert testimony have been<br />

established over the past two decades through three United States Supreme<br />

Court decisions. The decisions put forth from Daubert v Merrell Dow<br />

Pharmaceuticals Inc,. [1] General Electric Co v Joiner, [2] and Kumho Tire Co<br />

v Carmichael [3] were intended to ensure the reliability and usefulness of the<br />

* Presenting Author<br />

scientific or technical testimony admitted as evidence. [4] As a result, several<br />

recent papers have advocated more earnest consideration of the Daubert<br />

guidelines when conducting research and preparing testimony in forensic<br />

anthropology. This has likely contributed to the increased awareness and<br />

interest in quantifying, critically assessing, and re-evaluating some of the<br />

techniques most often used by forensic anthropologists. The issues of<br />

professional standards and error rates, however, have been less often and<br />

less aggressively addressed. This paper aims to more specifically identify<br />

areas where the field of forensic anthropology may improve regarding these<br />

issues, and encourage discourse among anthropologists to establish and<br />

employ standards in our field.<br />

The three court decisions, referred to as the trilogy, [4] outline the<br />

importance of judicial gate-keeping and emphasize the need for judges and<br />

legislators to set the standards for admitting testimony. It is recognized,<br />

however, that the standards for admissibility of expert testimony as<br />

determined by the courts are tethered to the standards of professional<br />

practice. Moreover, the Daubert opinion emphasizes that the courts should<br />

focus on principles and methodologies that underlie the evidence, not<br />

necessarily the conclusions they generate. At present there are no standards<br />

for the application of forensic anthropology methodologies including body<br />

recovery and skeletal analysis, and every organization has their own<br />

guidelines and standards their practitioners must follow. Some<br />

organizations such as JPAC and the FBI are accredited by the American<br />

Society of Crime Laboratory Directors (ASCLD), but ASCLD does not<br />

specifically recognize anthropology as an independently accredit-able<br />

discipline. The American Board of Forensic Anthropology was created to<br />

examine and certify forensic anthropologists and set standards for their<br />

individual proficiency, but this organization does not (nor does any other<br />

organization) provide protocols to ensure consistency and reliability in the<br />

application of forensic anthropological methodologies.<br />

An additional area that the authors acknowledge as in need of<br />

improvement is validation. While anthropologists have taken it upon<br />

themselves to validate and improve methods within the field, validation<br />

studies are often problematic due to the tendency of researchers to modify<br />

or adapt the techniques rather than test the methods as originally presented.<br />

The court ultimately decides the question of appropriate validation, but<br />

forensic anthropology as a discipline must set standards for a theoretical<br />

and empirical validation process to guide researchers and assist the courts.<br />

It is also important to understand that the point of developing methods<br />

under the rubric of evidentiary examination is not to completely quantify<br />

the field, and that subjectivity does not necessarily equal unreliability.<br />

Many forensic disciplines, including identification sciences like<br />

anthropology, involve some degree of subjectivity. It is therefore<br />

imperative to minimize the risk of error through proper training, quality<br />

assurance, validation, accreditation, and certification.<br />

Creating and maintaining professional standards is performed in many<br />

disciplines by Scientific Working Groups (SWG). A SWG consists of a<br />

group of experts in a particular scientific discipline that meets periodically<br />

to formulate and review standards (for both examination protocols and<br />

validation testing) applied in their respective fields, and standards set by<br />

SWGs are increasingly recognized and considered by courts. It is the<br />

recommendation of the authors to construct a Forensic Anthropology SWG<br />

to develop professional standards for our discipline. As the courts continue<br />

to raise the bar regarding professional standards, forensic anthropology<br />

must be committed to providing analyses that are of the highest quality and<br />

reliability, and the authors believe that creating and adhering to recognized<br />

standards will facilitate achieving this objective.<br />

Daubert, Scientific Working Group (SWG), Standards<br />

282


H114 An Electronic Data Management Tool<br />

for the Search for Missing Persons and<br />

Forensic Human Identification:<br />

The ICRC AM/PM DB<br />

Ute Hofmeister, MA*, Morris Tidball-Binz, MD, and Shuala M.<br />

Drawdy, MA, International Committee of the Red Cross, 19 Avenue<br />

de la Paix, Geneva, 1202, SWITZERLAND<br />

Attendees will gain awareness of a new software application to<br />

manage data related to the search of missing persons and forensic human<br />

identification. They will understand the main functions of this software and<br />

the impact its implementation can have on efforts to recover and identify the<br />

remains of victims of armed conflict.<br />

This presentation will impact the forensic community by presenting a<br />

new software application which aims to facilitate and help standardize<br />

forensic investigations into the whereabouts of those missing as a result of<br />

armed conflict or internal violence.<br />

Efficient management of data is essential for the quality of any<br />

forensic investigation; data standardization and centralization are especially<br />

important in larger operations which involve a variety of different actors.<br />

Experience has shown that in the absence of a readily available and<br />

universally applicable system, organisations working in the search for<br />

missing persons are often faced with the need for developing their own<br />

forms and tools, with limited capacity to take into account the experience<br />

accumulated elsewhere, and often with neither the time nor means to<br />

develop actually functional tools. Many existing systems are either not<br />

freely available and/or not designed to deal with often extensive but<br />

unspecific data managed in investigations into the fate of missing persons<br />

especially in conflict related and less developed contexts.<br />

Thus, responding to a need identified by experts during the<br />

consultative process that was part of the ICRCs major initiative on Missing<br />

Persons launched in 2002, the ICRC committed itself to produce a set of<br />

data management tools to support forensic practitioners and others involved<br />

in the investigations into the whereabouts of missing persons.<br />

These tools are based on the concrete recommendations developed<br />

through a number of different workshops and studies, involving academic<br />

institutions, experts and representatives of governmental,<br />

intergovernmental and non-governmental organizations from around the<br />

world. They are based on the accumulated experience of those working in<br />

the search of missing persons and identification of human remains over the<br />

last decades.<br />

This set of tools consists of Standard Reporting Forms on AMD and<br />

PMD to give guidance and serve as a means for standardizing and<br />

maximizing the quality of the data collection process, and of a software<br />

application for the management and analysis of the collected data, to<br />

support archiving, standardization, reporting, searching, analysis and<br />

matching of data.<br />

This tool was designed to be multilingual, flexible and configurable<br />

but user-friendly at the same time, with a strong and easy to use search<br />

engine and good provisions for data security.<br />

The AM/PM DB comprises modules on:<br />

• ante-mortem data, including detailed circumstances of<br />

disappearance which may lead to the discovery and<br />

identification of remains;<br />

• recovery/field data, including data on preliminary investigations<br />

and detailed archaeological information;<br />

• postmortem examinations, including pathology, anthropology<br />

and odontology;<br />

• hypotheses of identity and the identification process;<br />

• events related to disappearances or findings of human remains.<br />

Each module can manage multiple original interviews, witness<br />

statements or postmortem examinations respectively and their consolidated<br />

information. All main entities have sections for tracking of artefacts, any<br />

kinds of documents and samples. Personal roles and contact information<br />

can be managed contextually. Furthermore, the system provides a detailed<br />

operational journal and chain of custody form.<br />

Some special software functions are: built in methods and formulas for<br />

automatic calculations of anthropological estimations on sex, age, stature,<br />

laterality and ancestry; an automatic calculation for the MNI of<br />

commingled remains; the possibility for reassociating bones or body parts<br />

while preserving the original information; and an automated matching<br />

function, which matches all Missing Persons and Human Remains under<br />

investigation in a given context according to a number of selectable criteria<br />

designed to help reaching and then tracking hypotheses of identity,<br />

especially in operations with a large number of cases.<br />

The tool works in a network or as a standalone system with an<br />

automatic synchronization function and is compatible with other IT tools<br />

such as the Interpol DVI and GIS software. Distribution is free.<br />

The global challenge of investigations into the whereabouts of the<br />

missing is a humanitarian priority, which requires special tools and methods<br />

for optimizing the applicability and use of existing local and international<br />

investigative capacity. Responding to this need with this tool, the ICRC<br />

hopes to contribute to its pledge to support the forensic identification of<br />

missing persons.<br />

Forensic Human Identification, Missing Persons, Database<br />

H115 Elliptic Fourier Analysis of Vertebral<br />

Outlines for Victim Identification<br />

Josephine M. Paolello, MS*, and Luis L. Cabo-Pérez, MS, Mercyhurst<br />

College, Department of Applied Forensic Sciences, 501 East 38th Street,<br />

Erie, PA 16546<br />

The presentation demonstrates a new quantitative method for<br />

obtaining a victim identification from radiographic comparison. It examines<br />

the variability of the transverse process and its utility for this task. A<br />

discussion of the applicability of the method for other postcranial elements<br />

is also provided.<br />

This presentation will impact the forensic science community by<br />

proposing methodology provides percent correct classifications and ID<br />

probabilities appropriate for current Daubert compliant standards. Results<br />

suggest that EFA of the transverse process can be particularly useful to<br />

reduce large lists of potential victims, such as in mass disasters or human<br />

rights cases. Furthermore, this methodology easily allows for the direct<br />

addition of other skeletal structures to obtain even higher associated<br />

probabilities, impacting both current practice and future research.<br />

The comparison of antemortem radiographs with postmortem<br />

radiographs or photographs is one of the most common approaches to<br />

positive identification of skeletal remains. Traditionally, the method focuses<br />

mainly on cranial and mandibular elements, such as cranial sinuses and<br />

sutures, or dental elements, including the morphology and location of dental<br />

amalgams. This is related to the high variability of the outlines of these<br />

structures, which confers them a unique individual specificity allowing<br />

reliable ID assessments, even when performed just visually. Additionally,<br />

cranial and dental radiographs are among the most commonly registered<br />

antemortem records.<br />

Postcranial elements present some disadvantages in this respect. Many<br />

different postcranial elements exhibit a structural complexity and variability<br />

similar to those of cranial and dental structures, but their morphology is<br />

assumed to be less stable through time due to mechanical loadings and<br />

Wolff’s law. The predominance of dynamic articulations also increases error<br />

rates and variability related to radiographic perspective in postcranial<br />

elements.<br />

Within this framework, the transverse processes of the lumbar<br />

vertebrae appear as an optimal postcranial alternative for positive<br />

identification: their morphology remains relatively unchanged throughout<br />

283 * Presenting Author


adulthood and, unlike the spinous process or vertebral body, they very<br />

rarely experience degenerative osteoarthritic alterations over time.<br />

Additionally, antemortem radiographs of the lower back are reasonably<br />

common (primarily related to slipped vertebral discs), and pathologies and<br />

trauma observed in antemortem radiographs seldom affect the transverse<br />

processes.<br />

Still, positive identification attempts based on this region are typically<br />

visual, lacking any assessment of the populational frequencies of the<br />

features considered and, therefore, any associated probabilities. This<br />

contradicts the Daubert criteria for admissibility of scientific evidence in a<br />

United States court.<br />

The problem is common to most radiographic ID methods. Unlike<br />

fingerprints or DNA analyses, which rely on easily quantifiable discrete<br />

traits or base sequences, radiographic methods (with the exception of those<br />

relying on the presence or absence of dental elements or supernumerary<br />

bone structures) are mainly based on the matching of continuous outlines.<br />

Apart from the problematic definition of quantifiable landmarks, these<br />

types of structures are also affected by perspective variations between the<br />

ante- and postmortem records. The development of geometric<br />

morphometric methods during the last two decades, has created a new<br />

source for the identification and analysis of new structures that can provide<br />

Daubert-compliant identity assessments.<br />

The present study applies one of these techniques, Elliptic Fourier<br />

Analysis (EFA), to develop a new method and assess the utility of vertebral<br />

transverse processes for positive identification from antemortem<br />

radiographs. Parting from an approach similar to that of Angi Christensen<br />

(2003, 2004, 2005), antemortem and postmortem sets of records are<br />

simulated for a sample of 85 second lumbar vertebrae. Slight perspective<br />

differences between “antemortem” and “postmortem” radiographs were<br />

introduced to approximate the conditions expected in real forensic settings.<br />

Outlines of all left transverse processes were then produced, and<br />

transformed into Euclidean distances between all possible pairs of<br />

transverse processes after EFA and principal components analysis (PCA).<br />

The modification of Christensen’s methodology, through the<br />

introduction of PCA, serves to modify the variable space to produce<br />

orthogonal variables. The Euclidean distances are more appropriate in the<br />

new orthogonal space (becoming equivalent to weighted estimates, such as<br />

Mahalanobis distances, in non-orthogonal spaces), providing a more<br />

accurate description of overall shape differences. The stepwise estimation<br />

based on the percent of common variance explained, inherent to the PCA<br />

method, also serves to weigh the relative contribution of each harmonic to<br />

the characterization of the individual outlines. Finally, the examination of<br />

the principal components, representing meaningful shape differences,<br />

serves for a more revealing interpretation of the results, as well as to detect<br />

data input and recordation errors.<br />

Confidence intervals for the distance between matching pairs were<br />

then produced, and this criterion used to assess the possibility of two<br />

records representing the same individual. The results show that this<br />

methodology provides percent correct classifications and ID probabilities<br />

appropriate for current forensic standards, even when large lists of potential<br />

victims are considered. Furthermore, this methodology easily allows for<br />

the direct addition of other skeletal structures to obtain even higher<br />

associated probabilities.<br />

Geometric Morphometrics, Identification, Transverse Process<br />

H116 Left Hanging in Mandeville:<br />

Multiple Approaches in Search<br />

of a Positive Identification<br />

John W. Verano, PhD*, Brian Pierson, BA, and Anne Titelbaum, MA,<br />

Doris Z. Stone Laboratory of <strong>Bio</strong>logical and Forensic Anthropology,<br />

Department of Anthropology, Tulane University, 1326 Audubon Street,<br />

New Orleans, LA 70118<br />

The goal of this presentation is to illustrate how multiple lines of<br />

* Presenting Author<br />

investigation can be used to develop an identification in cases where<br />

decomposed remains of unknown decedents are found. Particularly in<br />

cases of indigent or transient individuals, few leads may be available. In<br />

such cases, if no potential matches can be made with missing persons<br />

reports, alternative strategies such as facial reproduction, press conferences,<br />

and DNA analysis may be necessary.<br />

This presentation will impact the forensic community by illustrating<br />

the importance of multidisciplinary collaboration in the identification of<br />

unknown skeletal remains.<br />

This presentation highlights a case from Louisiana which presented<br />

few leads and little hope for a successful identification. In 2006, a boy<br />

riding an ATV through a wooded area found what appeared to be a human<br />

skull and other bones underneath a large tree. Still hanging from a branch<br />

above was a largely skeletonized trunk and limbs, wearing jeans and a shirt.<br />

The boy returned home and notified the St. Tammany Parish Sheriff’s<br />

Office, which sent officers to the scene, along with death investigators from<br />

the St. Tammany Parish Coroner’s Office. The remains in the tree were<br />

found to be hanging from a nylon rope with a simple slip knot encircling<br />

the neck area, suggesting that the death may have been a suicide. The scene<br />

was photographed and described, and the human remains and clothing were<br />

collected.<br />

Staff from the coroner’s office brought the human remains and<br />

clothing to Tulane University’s Forensic Anthropology Laboratory on April<br />

12, 2006, requesting assistance with developing a biological profile of the<br />

individual and an estimate of time since death. Analysis by Verano and<br />

Titelbaum indicated that the remains were those of an edentulate white male<br />

approximately 45-55 years of age, of relatively short stature (est. 5’5”).<br />

Time since death was estimated as between eight months to a year, based<br />

on multiple criteria, including the position of the body (suspended) during<br />

decomposition, as well as evidence that the tree had been damaged by<br />

Hurricane Katrina (August 29, 2005), resulting in two distinct clusters of<br />

skeletal remains on the ground. Although the skeleton was mostly<br />

complete, it was noted that some bones were missing, and offered to assist<br />

with another search of the scene. The second search produced another<br />

sixteen skeletal elements, including four vertebrae, eleven hand and foot<br />

bones, and a fragment of costal cartilage. Some of the bones found on the<br />

ground showed carnivore gnawing, and some elements that were not found<br />

in either search, including the hyoid bone, may have been scattered or<br />

destroyed by carnivores.<br />

A search of missing persons records by the St. Tammany Parish<br />

Sheriff’s Office produced some preliminary leads, but all were excluded<br />

based on a lack of correspondence in age, stature, or antemortem injuries.<br />

Given the lack of progress in identification, a bone sample was sent to the<br />

FBI DNA Laboratory for possible matching with data in the National<br />

Missing Person DNA Database, and the Coroner requested that we do a<br />

facial reproduction. A three-dimensional facial reproduction was done by<br />

Pierson, and was presented in a local press conference in October, 2006.<br />

Following the press conference the sheriff’s office received numerous<br />

phone calls, including one strong lead towards identifying the individual. A<br />

landlord reported that he had rented a trailer to a man matching the<br />

description of the decedent, and that he subsequently had left without notice<br />

and had not been seen again. With this information, investigators located a<br />

possible relative in another state who agreed to provide a DNA sample for<br />

comparison.<br />

A bone sample from the decedent and a buccal swab from the possible<br />

relative were submitted to the FBI DNA Laboratory in Quantico, Virginia,<br />

for analysis and comparison. Mitochondrial DNA comparison revealed a<br />

match between the two samples, although unfortunately, the sequence<br />

identified was not a particularly rare one (observed in 8.65% of Caucasians<br />

in the FBI database). Nuclear DNA analysis is now being done in an<br />

attempt to provide a more secure identification, although based on their<br />

investigation, the St. Tammany Parish Sheriff’s Office is convinced they<br />

now have a secure presumptive identification.<br />

Human Identification, Facial Reproduction, DNA Analysis<br />

284


H117 The eBay® Mummy: A Case of a<br />

Scottish Mummy From Maryland<br />

for Sale in Michigan<br />

Kristin E. Horner, MA*, Department of Anthropology, Michigan State<br />

University, 354 Baker Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will be familiar with the<br />

characteristics of medical mummies, specifically those from the Burns<br />

Collection, and why the ability to recognize these mummies is important in<br />

medicolegal investigations.<br />

This presentation will impact the forensic community by raising<br />

awareness about a little-known, but historically significant, collection of<br />

medical mummies, with the possibility of restoring lost or stolen samples to<br />

the collection. This case highlights the importance of communication<br />

between state, federal, and international agencies. Human remains of<br />

historical significance can travel surprisingly long distances and turn up in<br />

unexpected places. It is important for forensic anthropologists to be<br />

cognizant of this when presented with an unusual specimen.<br />

In October 2006, a woman in Port Huron, Michigan, put a mummy up<br />

for sale on the internet auction site eBay®. The mummy was recovered by<br />

police and transported to the St. Claire County <strong>Medical</strong> Examiner’s Office<br />

for examination. On October 16, the mummy was transported to the<br />

Michigan State University Forensic Anthropology Lab for further analysis.<br />

It was at this point that the mummy was recognized as being a member of<br />

the Burns Collection of medical mummies housed at the Maryland College<br />

of Medicine.<br />

The Burns Collection originated in Glasgow, Scotland in the early<br />

1800s. Allen Burns was a Scottish anatomist and talented dissector who<br />

prepared many preserved anatomical specimens. Upon his death in 1813,<br />

the collection went to his protégé, Andrew Russell, who shortly thereafter<br />

sold his share in the collection to Granville Sharpe Pattison. Pattison<br />

brought the collection to the U.S. and sold it to the <strong>Medical</strong> School in 1820.<br />

Since 1820 the collection, which may have originally numbered in the 100s,<br />

has suffered from neglect and theft.<br />

The Burns Collection is a varied set of anatomical specimens, but all<br />

are preserved in a similar manner and most are dissected with a strong<br />

emphasis on the cardiovascular system. The specimens have a characteristic<br />

medium to dark brown coloring, often with injection of the arteries with a<br />

red substance. The dissection style is similar throughout the collection,<br />

with nerves, muscles, and ligaments being distracted from their original<br />

anatomical position to be separated from surrounding structures. Great care<br />

has been taken in the dissection of all of the specimens to show anatomical<br />

structures clearly and in great detail. Adult cadavers in the collection are<br />

cut up, whereas children often appear as complete specimens.<br />

Radiographs of the specimen were used to evaluate age at death. CT<br />

scans were also helpful in this case because the radiopaque material used to<br />

inject the arteries prevented an unobstructed view of the bones and teeth.<br />

Age at death estimation was based primarily on dental development and<br />

eruption as assessed on radiographs and CT scans. This estimate was<br />

supplemented with epiphyseal closure data obtained from radiographs.<br />

The eBay® mummy is a juvenile, aged 6-9 years at death. Sex and<br />

ancestry are undetermined. The mummy is very well preserved, although<br />

it has suffered some damage over time. The dissection focuses on the<br />

circulatory system in the trunk region, with the removal of all abdominal<br />

and pelvic organs. The heart was likely preserved in the thorax at one time,<br />

but has since been lost. The specimen shows a medium to dark brown<br />

coloration throughout. The arteries are injected with a solid, reddish,<br />

radiopaque substance.<br />

The eBay® mummy presents the coloration, artery injection, and<br />

dissection style that are characteristic of the Burns Collection. There are<br />

several juvenile specimens in the Burns Collection that are very similar to<br />

the individual in question. There is little doubt this specimen was removed<br />

in the past from the Burns Collection.<br />

<strong>Medical</strong> Mummy, Anatomical Specimen, Burns Collection<br />

H118 Uncovering the Truth Behind the Killings:<br />

Predicting Patterns of Perimortem Trauma<br />

Using Skeletons Exhumed From Ex-Military<br />

Bases in Guatemala<br />

Shirley C. Chacon, BA*, and Gillian M. Fowler, MA, Fundacion de<br />

Antropologia Forense de Guatemala, Avenida Simeon Cañas, 10-64, Zona<br />

2, Guatemala City, 01002, GUATEMALA<br />

After attending this presentation, participants will learn about the<br />

types of perimortem trauma that were inflicted on the Guatemalan<br />

population in military bases during the armed conflict. They will become<br />

aware of the fact that all aspects of the population were affected and that the<br />

FAFG is using these patterns to predict trauma in future exhumations.<br />

The Guatemalan Forensic Anthropology Foundation (FAFG) has to<br />

date worked on 847 cases totaling more than 5000 skeletons. Of these 847<br />

cases, 12 have taken place within Guatemala’s ex-military bases distributed<br />

throughout the country, comprising 386 skeletons. It is estimated that<br />

during Guatemala’s armed conflict 200,000 people were killed, spanning all<br />

ages, and 50,000 were disappeared. Many of the disappeared were<br />

transferred to the military bases from other areas, and as a consequence the<br />

majority of skeletons exhumed from these bases are awaiting identification<br />

pending DNA testing. Despite the lack of identification, all of these<br />

skeletons have been analyzed and are being held in evidence by the FAFG.<br />

The analysis of these remains revealed that the majority of skeletons<br />

exhumed from ex-military bases have evidence of perimortem trauma as<br />

well as signs of antemortem torture. Typical traumas observed in the<br />

skeletons from this type of exhumation are ballistic bone traumas to the<br />

cranium, blunt trauma to the thorax, knife-cut wounds to the cervical area,<br />

blunt-sharp trauma (machete wounds) to the cranium and thorax and<br />

decapitations. It is hypothesized that the type of trauma will vary depending<br />

on factors such as the type of grave, or the biological profile of the victims.<br />

It is the intention of this paper to search for and present patterns of trauma<br />

based on a number of selected independent variables. It is not the purpose<br />

of this paper to detail the antemortem torture, but to conduct a statistical<br />

analysis of the perimortem trauma observed in the skeletons, and as a result<br />

to be able to predict the type of trauma based on a single independent<br />

variable or a number of independent variables.<br />

A statistical analysis will reveal if it is possible to predict the type of<br />

trauma from a number of independent factors including sex, age grouping,<br />

size of grave (number of skeletons), placement of bodies in the grave,<br />

presence of clothing, depth of grave, presence of ballistics, presence of<br />

rope-type artifacts, signs of antemortem torture, etc. It is expected that a<br />

pattern of perimortem trauma will emerge linking a type of lesion with a<br />

particular group or circumstance.<br />

Five cases were selected consisting of skeletons with the cause of<br />

death well established. One of these cases is an ex-military base situated in<br />

the department of Chimaltenango, where 218 skeletons were recovered,<br />

consisting of 154 male adults, 40 female adults, 12 sub-adults and 12<br />

elderly victims. These statistics show that the military campaign was not<br />

only directed at adult men of fighting age, but rather the population as a<br />

whole. Typically the types of perimortem trauma observed in the victims<br />

recovered from this ex-military base are gunshot wounds to the cranium,<br />

decapitations and various sharp-force traumas to the thorax and the anterior<br />

285 * Presenting Author


cervical region.<br />

The results of the analysis will be used to inform the exhumations of<br />

military bases in the future and will serve as a part of the forensic report<br />

produced by the FAFG for the Prosecutors Office.<br />

Perimortem Trauma, Ex-Military Base, Guatemala<br />

H119 Unearthing Peru’s Buried Secrets:<br />

La Cantuta Revisited<br />

Jose P. Baraybar, MSc*, Equipo Peruano de Antropología Forense,<br />

Toribio Pacheco 216, Lima, Lima 18, PERU; and Bertrand Ludes MD,<br />

PhD, Institut de Medicine Légale de Strasbourg, 11, Rue Humann - 67085<br />

Strasbourg, France<br />

The learning objectives of this presentation are to discuss the physical<br />

evidence of one of the most serious violations to Human Rights (HHRR)<br />

that took place in Peru during the regime of President Alberto Fujimori<br />

(1990-2000, and to present the results of the second examination of the<br />

human remains, 14 years after they were recovered using a<br />

multidisciplinary approach combining forensic anthropology and human<br />

genetics.<br />

This presentation will impact the forensic community by showing the<br />

importance of forensic anthropological analysis in cases of human rights<br />

violations particularly those involving enforce disappearance and attempted<br />

destruction of the evidence through the analysis of a case in Peru.<br />

Governments in the process of national judicial reform are tasked with<br />

investigating human rights (HHRR) abuse and extra-judicial executions of<br />

former regimes, often many years after the crimes occurred. The rule of law<br />

projects underway in Peru are in the process of locating and exhuming<br />

graves and performing postmortem examinations (sometimes even second<br />

autopsies) from past HHRR violations. Investigations into such cases not<br />

only have the challenges associated with “cold cases” but often must sort<br />

through evidence previously altered to cover–up crimes committed. The<br />

following presentation is a discussion of such a case in Peru, representing<br />

one of the most serious HHRR cases during the regime of President Alberto<br />

Fujimori (1990-2000).<br />

In July 1993 authorities exhumed some boxes containing burnt human<br />

remains in a land fill in the outskirts of Lima. The location of the remains<br />

was tipped to the media by “COMACA” (Commanders, Majors and<br />

Captains) a dissident group within the military opposing the regime of<br />

President Alberto Fujimori and his spy chief Vladimiro Montesinos.<br />

According to the same information, the human remains belonged to nine<br />

students and a professor (two females and nine males) abducted a year<br />

earlier (17-18 July 1992) from the University of La Cantuta, East from<br />

Lima. At the time, the University of Lima had been under military control<br />

and the now known the students and the professor were abducted by a task<br />

force of the military under the direct command of Montesinos also known<br />

as the “Colina” group, who were responsible for several other major crimes<br />

(http://www.cverdad.org.pe/ifinal/<br />

pdf/TOMO%20VII/Casos%20IlustrativosUIE/2.22.%20LA%20CANTUT<br />

A.pdf).<br />

At the time of the initial investigation, the Office of the Prosecutor<br />

concluded that the remains had been buried and then exhumed to be burnt<br />

and reburied in secondary graves. The identity of the remains was<br />

determined to belong to one of the missing students. Further a set of keys<br />

opened the locker of a second missing student. However there was no<br />

information regarding whether all ten victims were buried in that location,<br />

nor was the cause of death estimated for any of the remains. Following the<br />

passage of Laws (Law 26479 and 26492) passed in 1995 under the Fujimori<br />

* Presenting Author<br />

regime, giving amnesty to all members of security forces and civilians<br />

accused of HHRR violations, such as those committed by the “Colina”<br />

group, the Interamerican Court of Human Rights ordered the Peruvian State<br />

to investigate the case properly and to locate and identify the human<br />

remains of the ten victims among other reparative measures<br />

(http://www.corteidh.or.cr /docs/casos/articulos/seriec_162_esp.pdf).<br />

Following this order by the Court, the Peruvian Forensic Anthropology<br />

Team (EPAF) was appointed by the Peruvian Judiciary to carry out the<br />

exhumation and analysis of the remains fourteen years after their initial<br />

discovery.<br />

This presentation discusses the process and result of this investigation.<br />

It also emphasizes important issues and challenges of investigating HHRR<br />

cases under transitional judiciary reform and highlights critical methods for<br />

anthropologists working in similar contexts. The exhumation of the remains<br />

uncovered four heavy coffins containing the disarticulated and fragmented<br />

remains representing at least nine individuals. Most of the weight and<br />

volume of the coffins were made only by refuse, probably collected during<br />

the initial operation. Only eight individuals were however related to the<br />

case, since the ninth individual was represented by a single distal phalanx<br />

of a child aged 8 to 10 years. The missing students and professor were<br />

between the ages of 18 and 48 years. At least three individuals had been<br />

exposed to fire at different temperatures (from combustion to calcination),<br />

showing typical changes associated with postmortem burning.<br />

One individual was complete and sustained four gunshot wounds to<br />

the head, two of which were caused by a “double tap”. Three other<br />

unrelated cranial fragments showed posterior gunshot wounds indicating a<br />

certain pattern concerning the manner of death of the victims (homicide).<br />

Methods for identification including STR DNA analysis are discussed.<br />

Fifteen years after the fact, all remains of the missing students and<br />

professor have not been located. The results of the analysis corroborate<br />

testimonies of some of the perpetrators. It is clear however that a negligent<br />

recovery by the Peruvian police in 1993 contributed to add unrelated<br />

evidence (refuse and child’s phalanx), but were not thorough enough as to<br />

find the remains of all victims. It is expected that in its forthcoming<br />

sentence, the Peruvian Court will order further investigations to determine<br />

the whereabouts of the victim’s remains in order to repatriate them to their<br />

families.<br />

Fujimori, Disappearance, Double-Tap<br />

H120 How Easily Can We Derive Cause and<br />

Manner of Death on the Basis of Dry<br />

Bones? Lessons Derived From Coimbra<br />

Identified Skeletal Collections<br />

Eugenia Cunha, PhD*, Joan V. Badal, and Andersen Líryo, Department<br />

of Anthropology, University of Coimbra, Coimbra, 3000-056,<br />

PORTUGAL; João Pinheiro, Instituto Nacional de Medicina Legal,<br />

Delegação de Coimbra, Largo da Sé Nova, Coimbra, 3000, PORTUGAL;<br />

and Steven A. Symes, PhD, Mercyhurst Archaeological Inst, Mercyhurst<br />

College, 501 East 38th, Erie, PA 16546-0001<br />

After attending this presentation, participants will be able to: (1)<br />

evaluate the potential of a reference skeletal collection to forensic<br />

anthropology, (2) evaluate the difficulty to derive cause and manner of<br />

death from dry bones, and (3) evaluate the danger of infering to much from<br />

dry bones.<br />

This presentation will impact the forensic science community by<br />

increasing awareness of the importance of reference skeletal collections to<br />

forensic anthropology and of the need to be more accurate in cause and<br />

manner of death determination statements. The importance of a previous<br />

taphonomic interpretation is emphasized since postmortem cahnges can<br />

disguise perimortem trauma.<br />

The Coimbra identified skeletal collection is a unique research<br />

resource available to forensic anthropology. The identification of each of<br />

286


the individuals permit the validation of a series of methods applied in<br />

forensic anthropology increasing thus their accuracy. The project presented<br />

here demonstrates attempts to increase the accuracy of cause and manner of<br />

death determinations on the basis of traumatic skeletal lesions. It is well<br />

know that those objectives of a forensic anthropology examination are<br />

particularly hard to be accomplished. Among the 505 identified individuals,<br />

death certificates indicate 31 died from violent causes between 1898 and<br />

1932. All of these 31 skeletons were recently subjected to a thorough<br />

anthropological examination performed before reading individual records,<br />

i.e., without knowing, a priori, the exact cause of death. In a further stage,<br />

the conclusions of the anthropological exam were compared with the<br />

original cause of death stated on the individual record. Homicides, suicides,<br />

accidents, falls are some of the causes of death stated on the obituary<br />

records. Later, for those who had been autopsied, the autopsy report,<br />

completed in the 1920s, were analyzed and again, cause and manner of<br />

death were compared particularly in what traumatic injuries descriptions<br />

were concerned. Below we discuss the agreements and disagreements<br />

between the present day anthropological analysis and the autopsy reported<br />

for three interesting cases.<br />

In one case, while the death was caused by a single gunshot to the<br />

thorax, the anthropologist, by means of the anthropological analysis, was<br />

unable to recognize cause of death because the injuries besides being subtle<br />

were hard to differentiate from postmortem changes.<br />

In a second case, both the anthropological exam and the autopsy report<br />

produced a similar cause of death: blunt force trauma to the head. However,<br />

the fractures observed on the dry bone produced improved results than<br />

those reported by the pathologist. In dry bones it was possible to follow the<br />

fractures lines pattern in much accurate way.<br />

Finally, in a third case, the anthropologist was not able to predict cause<br />

of death even though the death was a severe trauma on the vertebral<br />

column, solely on the basis of the skeleton due to taphonomic alterations<br />

disguising perimortem trauma. Indeed, taphonomic changes are a<br />

paramount factor in the interpretation of traumatic events on the basis of dry<br />

bones since they preclude more reliable interpretations.<br />

These three cases exemplify the practicality, utility, and limitations of<br />

forensic anthropology contributions to cause and manner of death, where<br />

case one illustrates that bones do not represent the whole body. Case two<br />

demonstrates the advantages of examining the traumatized human skeleton<br />

in a dry state as opposed to fresh autopsy examinations. However, the dry<br />

bones in case three limited accurate analysis due to taphonomical influences<br />

and of the evidence. In all, this was a rare opportunity to enhance both the<br />

potentials and limits of dry bone to cause and manner of death assessments.<br />

Trauma, Cause of Death, Bone<br />

H121 Renewed Search, Recovery, and<br />

Identification Efforts Related to<br />

the September 11, 2001 Attacks<br />

of the World Trade Center<br />

Bradley J. Adams, PhD*, Christian Crowder, PhD, and; Frank<br />

DePaolo, MPAS, Office of Chief <strong>Medical</strong> Examiner, 520 1st Avenue,<br />

New York, NY 10016<br />

This presentation will highlight several of the projects associated with<br />

the renewed search and recovery efforts occurring at Ground Zero and the<br />

surrounding area.<br />

This presentation will impact the forensic science community by<br />

demonstrating the role of anthropology in this type of work will be stressed.<br />

In addition, the unique challenges posed by operating under hazmat<br />

conditions will be discussed.<br />

Two thousand seven hundred-fifty people died in New York City from<br />

the World Trade Center attacks on September 11, 2001. As a result of two<br />

airplane crashes and the collapse of two sky-scrapers, the search and<br />

recovery efforts were extremely challenging and on a scale that was<br />

previously unmatched. Due to the magnitude of the incident and the forces<br />

involved, fragmentation of bodies was extensive. Initial recovery efforts<br />

were largely handled by the emergency service agencies in New York City.<br />

By the time the recovery ceased, nearly 20,000 human remains ranging in<br />

size from small bone fragments to nearly complete bodies had been<br />

recovered. These remains were sent to the Office of Chief <strong>Medical</strong><br />

Examiner (OCME) in New York City for identification.<br />

In April 2006, OCME initiated an on-site presence at the Deutsche<br />

Bank, a 40-story building at the southern edge of the World Trade Center<br />

site. The building was slated for deconstruction due to damage associated<br />

with the attacks. The OCME’s role in this deconstruction project was<br />

triggered by an increased frequency in the number of small bone fragments<br />

encountered on the roof by laborers. Since the project site was considered<br />

to be contaminated (primarily with asbestos and heavy metals), the search<br />

and recovery operation had to be conducted under hazmat conditions<br />

utilizing appropriate personal protective equipment. Work was eventually<br />

completed on the rooftop and the interior, resulting in the recovery of<br />

several hundred small (generally < 1/8 inch) bone fragments from the<br />

rooftop alone.<br />

In October 2006, human remains were again discovered. This time the<br />

remains were found at the World Trade Center site in an abandoned<br />

manhole by utility workers. These remains were immediately confirmed to<br />

be related to World Trade Center victims. This triggered an obvious interest<br />

in the likelihood that additional human remains could be encountered in<br />

other areas at and around Ground Zero. The Mayor’s Office quickly called<br />

for the resumption of search and recovery activities and designated the<br />

Office of Chief <strong>Medical</strong> Examiner as the lead agency. Following an<br />

extensive review process involving numerous agencies, additional areas of<br />

concern were identified. These areas included other subterranean structures<br />

(e.g., sewers and manholes), additional building rooftops, and roadways.<br />

The renewed efforts have resulted in the completed search of several<br />

building rooftops and hundreds of subterranean structures. Large-scale<br />

excavations have also been conducted, resulting in the removal of<br />

thousands of cubic yards of material that requires hand-screening. In order<br />

to handle this large amount of material, an elaborate screening facility was<br />

constructed specially for this project. By the end of this project it is<br />

anticipated that the budget will exceed $30 million.<br />

The skills of forensic anthropology and archaeology are essential<br />

components for ensuring that the most comprehensive and accurate job<br />

possible is achieved during this recovery project. Archaeologists direct the<br />

excavations at and around the WTC site. Although heavy equipment is<br />

used to excavate, archaeologists direct the progress and implement the<br />

appropriate techniques to ensure that excavation depths are sufficient and<br />

appropriately documented. Understanding site formation processes and<br />

interpreting soil stratigraphy is crucial for undertaking this large-scale<br />

endeavor. Forensic anthropologists have the expertise in human osteology<br />

and are able to recognize even the smallest of bone fragments and to<br />

distinguish them from the non-human remains that are frequently<br />

encountered. OCME’s Forensic Anthropology Unit carries the<br />

responsibility of ensuring the forensic integrity of the fieldwork, in addition<br />

to performing analyses of the potential human remains recovered during the<br />

project. Due in large part to this specialized work, the OCME as an agency<br />

recognized the critical role of anthropology and, as a result, the full-time<br />

anthropology staff has grown in size to eight people. During the height of<br />

the project, a crew of approximately 25 temporary, contract anthropologists<br />

also participated in various aspects of the daily operations, especially the<br />

hand-sifting work.<br />

Through this renewed WTC recovery work, hundreds of additional<br />

human remains have been recovered. Most of these remains are small<br />

fragments, usually ranging in size from < 1/8 inch to several inches in size.<br />

Every fragment is submitted for DNA testing for identification purposes.<br />

Many of the remains have been linked to previously identified individuals,<br />

while others have resulted in the association of remains to individuals who<br />

were previously unidentified.<br />

World Trade Center, Mass Disaster, Forensic Anthropology<br />

287 * Presenting Author


H122 The Use of Material Culture to Establish<br />

the Ethnic Identity of Victims in Genocide<br />

Investigations: A Validation Study From<br />

the American Southwest<br />

Debra Komar, PhD*, and Sarah Lathrop, PhD, University of New<br />

Mexico, Office of the <strong>Medical</strong> Investigator, MSC 11 6030, 1 University of<br />

New Mexico, Albuquerque, NM 87131; and Christopher R. Grivas, MS,<br />

University of New Mexico, Department of Anthropology, MSC01-1040,<br />

Albuquerque, NM 87131<br />

After attending this presentation, attendees will understand the<br />

potential for using clothing and personal effects to accurately categorize<br />

victims of genocide or war crimes.<br />

This presentation will impact the forensic community by providing an<br />

accurate, independent scientific method of establishing the ethnic identity<br />

of the victims of genocide, a crucial step in the successful prosecution of<br />

genocide and war crimes charges.<br />

Successful prosecution of genocide requires that the victims constitute<br />

one of the four groups protected under international law: national, religious,<br />

ethnic or racial. Establishing victim social identity in prior tribunals has<br />

been largely presumptive, based on untested methodology, or relied on the<br />

positive identification of victims. This paper details a validation study of<br />

one untested method: the use of material culture in establishing ethnic<br />

identity. Classes of clothing and personal effects were scored for 3,430<br />

individuals of known White Hispanic or White non-Hispanic ancestry from<br />

the autopsy records of the Office of the <strong>Medical</strong> Investigator in New<br />

Mexico from 2002 through 2005. Only positively identified decedents over<br />

age 18 who died unnatural, unexpected deaths (homicidal and accidental<br />

manners of death) were included in the study. Excluded were those who<br />

had experienced thermal damage resulting in the destruction of clothing or<br />

artifacts or whose clothing or personal effects were removed by hospital<br />

personnel or law enforcement prior to autopsy.<br />

Personal effects were divided into three major categories: those<br />

providing evidence of nationality or personal identification (driver’s licenses<br />

or government issued documents, currency); items indicating language (non-<br />

ID documents, jewelry, prescribed medications, books) and articles<br />

suggesting religious affiliation (jewelry, icons, documents such as prayer<br />

cards).<br />

Data were entered into an Excel spreadsheet and statistical analyses<br />

were conducted using SAS version 9.1. Categorical variables were<br />

analyzed for univariate associations using chi-square or Fisher exact tests<br />

and continuous variables were compared using t-tests.<br />

Following preliminary analysis, a second categorical system was<br />

introduced that evaluated the material evidence associated with each<br />

individual in terms of its potential to establish ethnic identity. Evidence was<br />

ranked according to its relative contribution. For example, evidence of<br />

language was considered more reliable in isolation than evidence of<br />

religious affiliation, currency or clothing styles. Multiple sources of<br />

information were considered preferable to isolated indicators. A total of 5<br />

classes of identity potential were scored for the total sample:<br />

1. Well-defined, multiple sources of identity. Criteria include at<br />

least one source of national identity and one indicator of<br />

language or religious affiliation.<br />

2. Reasonable sources of identity. Criteria include either multiple<br />

sources of potential information (i.e. indicators of religious<br />

affiliation) OR a single credible source of identity (evidence of<br />

language or nationality).<br />

3. Ambiguous evidence of identity. Clothing or personal effects<br />

were recovered but such evidence was not definitive (i.e.<br />

indicators of religion only).<br />

4. No potential for identity. No material culture was associated<br />

with the decedent OR only a single, non-descriptive item (such<br />

as underwear) was present.<br />

5. Investigator error. Evidence was noted as present at autopsy but<br />

* Presenting Author<br />

was not described in sufficient detail to allow for categorization.<br />

Individuals in this category were removed from subsequent<br />

analysis.<br />

A model was then developed to predict ethnic affiliation in unknown<br />

individuals. Based on the relative frequency of a trait within the two<br />

populations, the presence of the trait was considered neutral (no significant<br />

difference between populations), or as an indicator of either Hispanic or<br />

non-Hispanic ethnicity. Blinded, breakout subsets (n=100, 50 White<br />

Hispanic, 50 White non-Hispanic) were randomly selected and the ethnicity<br />

of the individual was estimated using the evidence available. A total of 400<br />

individuals were tested representing the following subsets: general<br />

population (drawn from potential identity classes 1 through 4); potential<br />

identity class 1 (well-defined); potential identity class 2 (reasonable);<br />

potential identity class 3 (ambiguous).<br />

Intraobserver error tests were conducted and kappa statistics were<br />

calculated to determine the reliability and reproducibility of trait scoring,<br />

classification of potential identity evidence and ethnicity prediction models.<br />

A random sample of 25 individuals was re-scored and the results were<br />

compared to prior data. Kappa statistics were interpreted using the<br />

classification proposed by Landis and Koch (1977).<br />

Statistically significant differences (all p values were less than 0.0001)<br />

were seen in evidence of language, nationality and religious affiliation<br />

between the two groups, as well as clothing types and currency. Predictive<br />

models used to estimate ethnic affinity in the random, blind subsets<br />

produced an overall accuracy of 80.5% and estimates of 61 to 98% in<br />

specific subsets.<br />

Failure to adequately establish victim group identity has resulted in<br />

overturned verdicts. In 2006, the International Criminal Tribunal for<br />

Rwanda was found to have erred in failing to take judicial notice of the<br />

ethnic identity of the victims. Prosecutors can no longer afford to<br />

presumptively address the victims’ cultural identity in acts of genocide.<br />

This study indicates that material culture can provide reliable evidence of<br />

ethnic affinity in genocide investigations, providing forensic scientists with<br />

a means of accurately establishing victim social identity.<br />

Forensic Science, Forensic Anthropology, International Human<br />

Rights Investigation<br />

H123 A Population Approach to the Problem<br />

of the Missing and Unidentified With<br />

Emphasis on the Status of Migrant<br />

and Undocumented Workers<br />

Erin H. Kimmerle, PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler, Soc 107, Tampa, FL 33820; Anthony<br />

B. Falsetti, PhD, C.A. Pound Human Id Laboratory, C/O Cancer/<br />

Genetics Research, PO Box 103615, Gainesville, FL 32610; and Ann H.<br />

Ross, PhD, North Carolina State University, Sociology and Anthropology,<br />

Campus Box 8107, Raleigh, NC 27695-8107<br />

The objectives of this paper are to discuss the problem of unidentified<br />

decedents and strategies at the local and state level to improve identification<br />

methods. Special attention is given to the role of families through this<br />

process and the importance of the information they provide. The purpose<br />

of the study is to use a population based approach to profile the missing,<br />

such as immigrants, migrants and un-documented workers to better serve<br />

these underrepresented groups. A demographic analysis of solved and<br />

unsolved cases from the American Southeast is presented.<br />

This presentation will impact the forensic science community by.<br />

Using the American Southeast as an exemplar will serve as a model for<br />

others to employ. Further, framing the problem of the unidentified with<br />

research and outreach initiatives aimed towards population specific<br />

methods and protocols should improve the identification process.<br />

Outcomes: Using the American Southeast as an exemplar will serve<br />

as a model for others to employ. Further, framing the problem of the<br />

288


unidentified with research and outreach initiatives aimed towards<br />

population specific methods and protocols should improve the<br />

identification process.<br />

The FBI’s National Crime Information Center (NCIC), Missing<br />

Person and Unidentified Person files (as of December 31, 2006) reports<br />

110,484 recorded active missing person cases and 6,208 unidentified person<br />

cases, which is a 2.2% increase over reported cases from 2005. Within the<br />

Unidentified Person File, 73.81% (n=1,043) of cases are of unidentified,<br />

deceased individuals; 0.5 % (n=7) are unidentified catastrophe victims; and<br />

25.69% (n=363) of cases include living but unidentified persons. However,<br />

experts estimate that there are approximately 40,000 to 50,000 unidentified<br />

sets of human remains in the United States, which highlights a significant<br />

problem in that only 1.24% of the unidentified remains are accounted for<br />

by the NCIC database. Local and State level databanks account for some<br />

of this discrepancy, offering a variety of alternative means to share<br />

information about the deceased in hope that a witness or family member<br />

will come forward and offer information. For example, the Florida<br />

Unidentified Decedents Database (FLUIDDB) has more than 500 open<br />

cases in the state of Florida alone.<br />

The number of cases that remain unidentified is due in part to the low<br />

priority and attention given to “cold cases”, the overall accuracy and<br />

applicability of identification methods ranging from the initial parameters<br />

of biological profiles to DNA analysis, the access families have to<br />

information and knowledge about Unidentified and Missing persons, and<br />

the willingness or ability of witnesses or family members to come forward.<br />

The pool of persons who go missing and subsequently become part of the<br />

unidentified population is predominately adult, male, under-represented<br />

minorities, foreign-born individuals, and people from at-risk groups (i.e. the<br />

elderly, mentally ill, or individuals with substance abuse). In particular, a<br />

growing obstacle to the identification of unidentified decedents (UIDs) is<br />

the increase of foreign-born immigrants, including migrant workers and undocumented<br />

persons in the United States. Increasingly, individuals of<br />

foreign born Nationality, is an important component in unidentified cases as<br />

there may not be access to information about who is missing, personal data<br />

about the decedent, nor family members available to aid the identification<br />

process.<br />

The demographic structures of identified cases are compared with<br />

unidentified cases and the reported missing. The demographic profiles of<br />

individuals identified through the C.A. Pound Hunan Identification<br />

Laboratory at the University of Florida, the Forensic Data Bank maintained<br />

at The University of Tennessee and the <strong>Medical</strong> Examiner’s Offices of<br />

Georgia and North Carolina are compared. The value of a population<br />

approach to individual estimation is demonstrated through demographic<br />

analysis and a comparative discussion of population variables of the<br />

Missing and Unidentified; as well as the databases and processes in place<br />

aimed towards human identification in the United States.<br />

Recommendations for policy and methodological changes are further<br />

discussed such as the application of population based research strategies<br />

that account for biological and cultural variation related to identification<br />

parameters; the development of bilingual searchable databases with<br />

anonymous information submittal capabilities; and the incorporation of<br />

biological information of the decedent along with possible biological traits<br />

and personal or cultural artifacts such as descriptions and photographs of<br />

personal effects, tattoos, and facial approximations into searchable webbased<br />

databases that facilitates the monumental task of identifying<br />

unidentified or unknown decedents in a way that is appropriate given the<br />

population in question.<br />

Identification, Unidentified Decedents, Demography<br />

H124 Establishing a Central Database for the<br />

Missing and Unidentified of Louisiana<br />

Mary H. Manhein, MA*, and Helen B. Mathews, MA, Louisiana State<br />

University, Department of Geography and Anthropology, 227 Howe-<br />

Russell Building, Baton Rouge, LA 70803<br />

The goal of this presentation is to inform attendees of a statesponsored<br />

database of information on all missing persons and unidentified<br />

remains cases in Louisiana.<br />

This presentation will impact the forensic community by presenting<br />

information on the construction of a state database, how case information<br />

has been gathered, and the current status of case resolution. Such a database<br />

is meant to act as a central location for data on all missing persons and<br />

unidentified remains cases in a state. By creating a central location for data,<br />

the goal is to assist law enforcement in resolving cases that otherwise might<br />

remain unsolved.<br />

The issue of unsolved missing persons and unidentified remains cases<br />

continues to be a problem in this country. Few states offer a centralized<br />

location for detailed information on missing persons and unidentified<br />

remains cases. Without a centralized information system in place,<br />

comparisons between cases that could potentially result in a positive<br />

identification may go unnoticed by the agencies involved. As agencies are<br />

forced to confront new cases that arise, the trail grows colder on cases that<br />

remain unsolved. When a cold case involves unidentified remains, these<br />

remains may end up on the back shelves in coroners’ offices or they are<br />

buried or cremated before all possible identifying information has been<br />

collected. The authors propose that more unresolved cases could be solved<br />

if each state developed a central location for all the data available on all<br />

missing persons and unidentified remains cases reported in their state.<br />

For almost thirty years the Louisiana State University Forensic<br />

Anthropology and Computer Enhancement Services Laboratory (LSU<br />

FACES Lab) has worked with both Louisiana agencies and agencies across<br />

the United States on unidentified remains cases. The lab has assisted in<br />

hundreds of successful identifications. However, there are cases on record<br />

at the LSU FACES Lab which still remain unidentified. In April, 2004, the<br />

LSU FACES Lab began a collaborative effort to address the issue of<br />

unresolved cases. Thanks to funding from the President’s DNA Initiative,<br />

the LSU FACES Lab and the North Louisiana Criminalistics Laboratory<br />

established the Louisiana Identification Data Analysis (IDA) Project. The<br />

funding allowed for DNA testing on every unidentified homicide case on<br />

record at the LSU FACES Lab. The goal of the IDA Project was to develop<br />

DNA profiles to work in conjunction with the anthropological profiles<br />

established on each unidentified remains case.<br />

In 2006, a bill was presented to the Louisiana State Legislature that<br />

would allow for the establishment of the Louisiana Repository for<br />

Unidentified and Missing Persons Information Program to be maintained<br />

by the LSU FACES Lab in conjunction with the North Louisiana<br />

Criminalistics Laboratory. The bill was signed into law and became Act<br />

227 (http://www.legis.state.la.us). The law allowed for the development of<br />

a database on all missing persons and unidentified remains cases reported<br />

in the state of Louisiana. The database combines data on unidentified<br />

remains (i.e., DNA profiles, anthropological assessments, facial<br />

reconstructions, and other case specific information) and data on missing<br />

persons (i.e., biological information, dental records, family reference<br />

samples, and other case specific information). The state of Louisiana<br />

provides all funding for the database. Although a statewide database is<br />

paramount to assist in resolving unsolved local cases, it is also important<br />

that the information be available on a national level. DNA information on<br />

Louisiana’s unidentified cases and family reference samples will be entered<br />

into the FBI’s national CODIS database for comparison across state lines.<br />

The Louisiana Repository for Unidentified and Missing Persons<br />

Information Program has already generated some success, much of which<br />

is due to the ability of the researchers to travel and actively seek case<br />

information. By taking an aggressive stance, rather than waiting for cases<br />

and samples to be submitted, the LSU FACES Lab has managed to<br />

establish additional contacts and collect more case information than<br />

otherwise would have been possible. As data continues to be collected<br />

across the state of Louisiana, the expectation is that more success stories<br />

will be generated from this project.<br />

Missing Persons, Unidentified Remains, Louisiana<br />

289 * Presenting Author


H125 Resolution of Cold Identity Cases:<br />

Resources, Methodology, and a<br />

Review of Some Success Stories<br />

Dana Austin, PhD*, and Paul E. Coffman, Tarrant County <strong>Medical</strong><br />

Examiner District, 200 Feliks Gwozdz Place, Fort Worth, TX 76104-4919<br />

This paper will present the listener with an overview of many<br />

resources available for finding the identity of unidentified individuals.<br />

Successfully resolved cases will be presented as examples.<br />

This paper will impact the forensic community by providing resource<br />

material and examples whereby the resources were successful.<br />

This paper will present the listener with an overview of the methods<br />

used by the Tarrant County <strong>Medical</strong> Examiner District (TCME), located in<br />

Fort Worth, TX, to resolve cases of long-standing unidentified bodies. The<br />

attendee will be advised of multiple databases and resources for assistance<br />

in resolving their own unidentified cases. The TCME has been able to solve<br />

several cases recently with a positive identification and notification of<br />

family members, in most instances. The time period from death to positive<br />

identification ranges from 4 to 22 years. Methods used to make positive<br />

identification include matches from the Missing Persons DNA database,<br />

and fingerprint matches made by comparing morgue fingerprints to known<br />

fingerprints suggested by AFIS. In this paper, the successful cases are<br />

reviewed enabling us to learn how the identity was originally missed and<br />

what can be included in our standard protocols in order to lessen the<br />

likelihood of cases remaining unresolved.<br />

As of July 2007, the Tarrant County <strong>Medical</strong> Examiner District had 76<br />

cases of unknown identity dating back to 1982. The cases, 63 males and 13<br />

females, are assigned to 18 different law enforcement agencies. Forty-six<br />

cases were ruled homicide or undetermined and 30 were ruled accident,<br />

suicide or natural. We have found that the manner of death has significant<br />

impact on the support we receive from the law enforcement agencies that<br />

are assigned these cases. Homicide cases necessarily allow for continued<br />

manpower from the police agency. Over one-third of the cases had<br />

circumstances that suggested that the decedent was homeless/vagrant at the<br />

time of their death.<br />

A grant-funded part time position at the Tarrant County <strong>Medical</strong><br />

Examiner district provided additional manpower to review the cases for<br />

solutions to identification and submission to national databases such as<br />

NCIC, Missing persons DNA databank, Unidentified Decedent Reporting<br />

System (UDRS) and the Mexican national identification system and DNA<br />

database, SIRLI (Sistema de Identificacion de Restos y Localizacion de<br />

Individuos). Within three weeks of the new hire we had our first successful<br />

resolution.<br />

This paper will review successfully resolved cases with specific<br />

attention to reasons why the identification was not made initially and<br />

lessons learned after the identification was complete that may assist us in<br />

future casework. Resources that are available to medical examiners/<br />

coroners and law enforcement will be presented so that others may have<br />

access to resources need to resolve their own unidentified cases.<br />

Human Identification, NCIC, AFIS<br />

H126 Identity Crisis: The Number and<br />

Quality of Unidentified Decedent<br />

Data and a New Solution<br />

Melissa A. Torpey, MS*, and Philip N. Williams, BS, Federal Bureau of<br />

Investigation Counterterrorism and, Forensic Science Research Unit, FBI<br />

Academy, Building 12, Quantico, VA 22135<br />

The goal of this presentation is to discuss the extent of the problem of<br />

unidentified human remains, how forensic anthropologists can play a key<br />

role, and a working solution. Missing persons and unidentified remains<br />

* Presenting Author<br />

continue to be a staggering problem for law enforcement, medical<br />

examiners and coroners’ offices, forensic scientists, and the public as a<br />

whole.<br />

Approximately 14,000 unidentified human decedents are on record at<br />

nearly 2,000 medical examiners and coroners’ offices, but the number of<br />

unidentified decedents that are without records are unknown. Recent<br />

statistics suggest that each year an additional 1,000 deceased persons<br />

remain unidentified and so the number of unidentified human remains<br />

continues to climb and persists as a significant and constant national<br />

problem. This presentation will impact the forensic science community by<br />

significantly increasing insight into the caliber of the problem of<br />

unidentified human remains and an understanding of both the existing<br />

efforts for identification and the future implications of forensic<br />

anthropology’s contribution to these efforts.<br />

Currently, the FBI’s National Crime Information Center (NCIC)<br />

reports approximately 6,200 unidentified persons files in its database. The<br />

NCIC plays an important role in missing and unidentified persons cases, but<br />

its limitations many times hinder both the utility and success of the<br />

database, its search criteria, and its results. However, many times it is the<br />

quality of the data or the lack of forensic expertise that prevents the success<br />

of identification. The progress and advancements in the forensic science<br />

field as a whole has exceeded the capabilities of the NCIC. An in depth<br />

investigation into the quantity and quality of the data in the NCIC will be<br />

presented.<br />

Traditionally, forensic anthropologists only examine skeletal remains<br />

and, while many unidentified cases are skeletal or in a state of advanced<br />

decomposition, forensic anthropologists have become increasingly utilized<br />

as consultants for fleshed bodies as well. Whatever the circumstance, the<br />

ultimate goal for any forensic anthropologist is identification. As the<br />

popularity of forensic anthropology increases, so does the knowledge that<br />

the field exists and can make significant contributions to the problem of<br />

unidentified remains.<br />

There are several resources available to law enforcement agencies,<br />

medical examiners and coroners’ offices, and other forensic science experts<br />

including the NCIC, CODIS(mp), ViCAP, and IAFIS. An initial effort to<br />

address the overwhelming number of unidentified human remains was the<br />

utilization of DNA. The CODIS(mp) or National Missing Person DNA<br />

Database was created in 2000. At the Center for Human Identification<br />

(CHI) at the University of North Texas Health Science Center, DNA testing<br />

is being performed on skeletal remains, missing persons’ families, and<br />

direct reference samples free of charge. Anthropological examinations on<br />

unidentified human remains are also performed there; all in an effort to<br />

identify the unknown.<br />

The newest resource for unidentified remains is the Victims<br />

Information Catalog, Tracking, and IMaging System (VICTIMS)<br />

Identification Project. This system is Internet based and, for the first time,<br />

creates a comprehensive database with the capabilities to hold all of the<br />

information about an unidentified decedent. This information is available<br />

in varying degrees to law enforcement, medical examiners and coroners’<br />

offices, and the public. The success of this database lies in the hands of the<br />

forensic science experts who examine and provide information about an<br />

unidentified person. An extension of the VICTIMS Identification Project is<br />

a referral service where law enforcement agencies and medical examiners<br />

and coroners’ offices seeking forensic expertise can search for local experts<br />

in a nearby area. The last aspect of the VICTIMS Identification Project is<br />

an Evidence Preservation and Processing (EPP) facility, which will enable<br />

the examination and preservation of physical remains of unidentified<br />

decedents, as well as support anthropological research.<br />

Unidentified Human Remains, Forensic Anthropology, VICTIMS<br />

Identification Project<br />

H127 Comparison of Two Methods of Age<br />

Determination Using Histomorphology:<br />

Periosteal vs. Endosteal Surface Equations<br />

290


Andrea Clowes, BA*, Michigan State University, 16789 Chandler Road,<br />

#1422A, East Lansing, MI 48823<br />

After attending this presentation, attendees will gain a greater<br />

understanding on the applicability of estimating age through the<br />

histomorphological evaluation of bone, and more specifically, the relevance<br />

of endosteal and periosteal surfaces in such analysis.<br />

This presentation will impact the forensic community by employing a<br />

simple histological method of determining age at death that many do not<br />

realize exists. The estimation of adult age at death typically relies on<br />

standard techniques that use the pubic and rib bones. When these bones are<br />

not present, estimating age at death can prove to be challenging. In fact,<br />

forensic cases involving unidentified individuals whose remains are not<br />

fully present, fragmented, and/or otherwise damaged can prove impossible<br />

to positively identify. Forensic techniques of bone histology, the<br />

microstructural analysis of tissue, are known to be good aging techniques.<br />

This is important because establishing the age at death in a human remains<br />

case is a critical component in positive identification. By narrowing the age<br />

range, identification becomes more likely.<br />

Two histological aging methods were tested: (1) The Hauser Method<br />

(Hauser, R, D Barres, M Durigon, and L Derobert, 1980. Identification par<br />

l’histomorphometrie du femur et du tibia, Acta medicinae legalis et socialis.<br />

30:91-97), and (2) the Kerley-Ubelaker Method (1978). By directly<br />

comparing the two methods, the applicability of the equations of Hauser et<br />

al. will be showcased next to those already well established by Kerley-<br />

Ubelaker. The ease of use and repeatability of the Hauser method provides<br />

an attractive alternative to those more complicated. This method will prove<br />

to be of great use in the determination of age in damaged bone.<br />

Since its original presentation, the Kerley-Ubelaker technique has<br />

become a standard histological method for the determination of age in<br />

forensic anthropology (Kerley, 1965; Ahlqvist and Damsten, 1969; Kerley<br />

and Ubelaker, 1978; Stout and Gehlert, 1980; Robling and Stout, 2000).<br />

Though considered one of the more accurate, Kerley-Ubelaker’s method is<br />

less than ideal in circumstances in which the periosteal surface of the bone<br />

(the outer fibrous layer) has been worn away due to erosion, chemical<br />

substances, burning of the remains or other processes. This research tests<br />

the system developed by Hauser et al. utilizing endosteal and periosteal<br />

bone and compares the results with those of the Kerley-Ubelaker updated<br />

method which utilizes the outer perisoteal layer (Kerley, 1965; Kerley and<br />

Ubelaker, 1978; Hauser et al, 1980).<br />

There are two main strengths to the Hauser method: the application of<br />

the endosteal surface of bone for age analysis (to avoid difficulty in<br />

circumstances in which the periosteal surface is damaged), and the ease of<br />

use of the method itself. When analyzing Hauser, the diameter of the<br />

circular field was decreased to 1.16mm (area 1.06 mm²). Two areas of each<br />

bone (periosteal and endosteal) were utilized for separate equations. As<br />

such, they were treated as separate methods. The full analysis is dependant<br />

only upon the counting of present Haversian canals which are either present<br />

or are not.<br />

The Kerley-Ubelaker method is based on the identification of osteons,<br />

osteon fragments, and measurement of the percentage of present lamellar<br />

bone. An osteon includes those Haversian systems that are equal to or<br />

greater than 80% complete while fragments are defined as less than 80%<br />

completeness. The field size is circular with a diameter of 1.62 mm (area<br />

of 2.06 mm²). A circular image of 1.62 mm was placed over a calibrated<br />

image captured through the Sigma Scan Pro 5.0 program.<br />

This research validates the Hauser method of aging unknown<br />

individuals as well as provides an additional option when severe<br />

fragmentation eliminates other histological methods, such as Kerley-<br />

Ubelaker. The Hauser method, specifically the equation which utilizes the<br />

endocortical surface, provides an accurate method for estimating age,<br />

which opens the door for future research on the medullary cavity of bone.<br />

Histology, Age Determination, Endosteal<br />

H128 Osteon Area Measurements -<br />

A Validation Study<br />

MariaTeresa Tersigni, PhD, Department of Anthropology, University of<br />

Cincinnati, Braunstein 481 PO 210380, Cincinnati, OH 45221; Amy<br />

Michael, BA*, 416 West Genesee, Apartment 1, Lansing, MI 48933;<br />

Amber Heard, BA, 16789 Chandler Road, #1632, East Lansing, MI<br />

48823; Christina Malone, BHS, BA, 180 Arbor Glen Drive, Apartment<br />

203, East Lansing, MI 48823; and John E. Byrd, PhD, Joint POW/MIA<br />

Accounting Command, Central Identification Lab, 310 Worchester<br />

Avenue, Hickam Air Force Base, HI 96853-5530<br />

After attending this presentation, attendees will become familiar with<br />

this method for osteon area measurements. This presentation will also<br />

identify the need for the validation of this measurement technique as the<br />

purpose of this study is to analyze the error rate produced within and<br />

between observers for the measurement of osteon area.<br />

This presentation will impact the forensic science community in<br />

validating the use of osteon area measurements in forensic work as a<br />

reliable method of osteon size estimation as well as a method that is able to<br />

be replicated with a high degree of consistency. This research also<br />

identifies the need for experience and practice with this measurement<br />

technique, as with any other type of scientific measurement technique.<br />

This research determines the inter-observer and intra-observer error<br />

rate of researchers with varying levels of experience measuring the area,<br />

circumference and diameter of human osteons. The independent variables<br />

are individual level of experience, while the dependent variables include<br />

consistency among and between individuals with novice, intermediate and<br />

advanced experience in this technique.<br />

Four researchers, with varying levels of experience with the technique<br />

(termed novice, intermediate and advanced) were asked to measure the<br />

area, circumference and diameter for the same 361 osteons(contained in<br />

multiple captured images), using Image Pro Plus 4.5 microscopy software.<br />

The two novice researchers each had only a 20 minute instruction to the<br />

method. The intermediate researcher had more than 10 hours of experience<br />

measuring the osteon area using this Image Pro Plus 4.5 software. The<br />

advanced researcher had over two years experience measuring osteon area<br />

using the Image Pro software and image capture system. Each researcher<br />

was asked to measure the area and greatest diameter of the same group of<br />

osteons in each image. Some of the groups of osteons were measured by<br />

each researcher various times throughout each measurement session to test<br />

the inter-observer error rate of each researcher. This allowed the researchers<br />

to measure the same osteons several different times within the same day to<br />

determine their consistency in measurement. Histomorphometric data was<br />

collected using a Leica DM 2500 transmitted light microscope equipped<br />

with 10x wide field oculars, 5x, 10x, 20x UPLanFL objectives, and a Leica<br />

DFC480 R2 color firewire digital camera. Each of the images was captured<br />

at 10x ocular lens and 10x objective lens. The area data was exported to an<br />

Excel spreadsheet, where all area and diameter measurements were<br />

compared within and between researchers. The data was compared using<br />

the SAS statistical package. The data suggests that the level of experience<br />

the researchers have with the technique and the equipment plays an<br />

important role in the accuracy of their measurements. It seems that the<br />

more familiar the novice researchers got with measuring the osteons the<br />

more consistent their measurements were when measuring the same<br />

osteons over again.<br />

Osteon Area, Intra-Oberver Error, Inter-Observer Error<br />

H129 Osteon Area and Circularity: A Method<br />

for the Assessment for Human and<br />

Non-Human Fragmentary Remains<br />

MariaTeresa A. Tersigni, PhD*, Department of Anthropology, University<br />

of Cincinnati, Braunstein 481, PO 210380, Cincinnati, OH 45221; Amy<br />

291 * Presenting Author


Michael, BA, 416 West Genesee, Apartment 1, Lansing, MI 48933; and<br />

John E. Byrd, PhD, JPAC/CIL, 310 Worchester Avenue, Hickam Air Force<br />

Base, HI 96853-5530<br />

After attending this presentation, attendees can expect to learn the<br />

method for the measurement of osteon area and the assessment of<br />

circularity of osteons based upon digital measurements taken from human<br />

remains, and how these measurements can help with the assessment of<br />

fragmentary remains.<br />

This presentation will impact the forensic science community by<br />

demonstrating a method that allows for the assessment of whether remains<br />

are human or non-human when osseous fragments are too small for other<br />

methods of gross or genetic identification. This can benefit the forensic<br />

community by adding to the methodology available for the identification of<br />

highly fragmentary osseous remains as found in mass disasters, military<br />

conflicts or other situations which result in the fragmentation of individuals.<br />

The impetus for this research is the lack of current methods within the<br />

forensic studies which can accurately assess human from non human<br />

remains when the remains are highly fragmentary in nature. Although many<br />

researchers have attempted to use histological methods to analyze these<br />

types of remains, there is still no conclusive way to determine whether a<br />

fragment of bone is human or non-human in nature when circular osteons<br />

are present at the microscopic level. This study, by using a large sample of<br />

osteons from all of the long bones of the human body, will identify an<br />

osteon area measurement range for humans based upon a modern sample.<br />

In addition to the osteon area measurements, this study also looks at the<br />

overall shape of human osteons and compares that to the shape of nonhuman<br />

osteons for use as an additional method to distinguish between<br />

human and non-human fragments of long bones.<br />

To accomplish this, three thin sections were selected from each of the<br />

following long bones from 5 different individuals: humerus, radius, ulna,<br />

femur, tibia, and fibula. These thin sections represented a midshaft,<br />

proximal, and distal portion of each long bone shaft to account for osteonal<br />

size and density differences throughout the shaft of each long bone. A<br />

minimum of 30 osteons were measured from each thin section of bone<br />

using the Image Pro Plus 4.5 digital microscopic measurement program. A<br />

total of over 3400 osteons were measured from the aforementioned sections<br />

of the long bones. Of the measured osteons, all had digital area<br />

measurements recorded. Additionally, the circumference and maximum<br />

diameter were taken for over 2300 of the 3400 osteons. All of the recorded<br />

measurements were exported to an Excel spread sheet. From there, the<br />

areas, circumferences and diameters were subjected to various statistics,<br />

including the range of areas within and between skeletal elements and<br />

determination of circularity based upon the equations used for a circle ().<br />

This research shows that the overall majority of human osteons are not<br />

circular in shape, but rather elliptical in nature, while non-human osteons<br />

tend to be very circular. The osteon area range for humans based upon this<br />

sample can help eliminate non-human osteons that fall outside of this area<br />

range.<br />

Osteon Area, Osteon Circularity, Human vs. Non-Human Histology<br />

* Presenting Author<br />

292


H1 A Histological Examination of Odocoileus<br />

Virginianus for Forensic Application<br />

Lindsay H. Trammell, MA*, University of Tennessee-Knoxville,<br />

Department of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996-0720<br />

After attending this presentation, attendees will understand the<br />

applications of bone histology in forensic settings as well as the<br />

importance of the histological character of non-human remains<br />

(Odocoileus virginianus) to successfully differentiate them from<br />

fragmentary human remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how the development of a histological<br />

database for nonhuman species will aid forensic investigations by<br />

providing a comparative standard to more accurately determine the<br />

identity of fragmentary remains as being human.<br />

Few researchers have endeavored to approach the issue of bone<br />

histology in non-human specimens. In the forensic setting, the discovery<br />

of fragmentary remains poses the question of identity. Is it human or nonhuman?<br />

Determining the origin of such fragments is essential for defining<br />

an investigation, but if the remains do appear to be non-human, further<br />

analysis is not always of primary interest.<br />

If the specimen does prove to be non-human, it is often useful and<br />

important to learn the identity of the animal species. Being able to<br />

successfully identify bone fragments by genus or species aids the physical<br />

anthropologist. A more clear understanding of what non-human species<br />

look like at the histological level would essentially strengthen the<br />

determination of identification.<br />

The white-tailed deer (Odocoileus virginianus) is common to the<br />

Southeastern United States and in that region is sometimes found in<br />

forensic settings, commingled with or alongside of human remains.<br />

Developing a firm grasp of the histological character of the white-tailed<br />

deer is the first step of many in the establishment of a comprehensive<br />

method of using histology for the identification of osseous fragments.<br />

To adequately assess Odocoileus virginianus, it is necessary to<br />

understand variation in histological character as a function of location on<br />

the diaphysis of a bone as well as differences between bones. The<br />

developmental stage of the deer may also have an affect on the appearance<br />

of any histological traits as bone remodels with increasing age.<br />

To address these questions, this research focused on right long bones<br />

procured from five deer of varying ages: 0.75 years, 1.5 years, 2.5 years,<br />

3 years, 4 years, and 6.5 years. The femur, humerus, radius, metacarpal,<br />

metatarsal, and tibia were separated out for thin-section preparation and<br />

histological analysis.<br />

With the aid of a Buehler Isomet 1000 saw, two 0.08 mm sections<br />

were cut at three-centimeter intervals on each diaphysis of the bones. The<br />

bone samples were then mounted on slides using Permount solution and<br />

cover slips and left to dry. These thin-sections were examined under a<br />

Leica DMRX research light microscope at 100x magnification. The<br />

presence of all histological structures was described and noted for each<br />

slide. Digital images of the characteristic plexiform bone and primary<br />

canals were photographed using a Sony video uplink. When evidence of<br />

bone remodeling was recorded, area measurements were taken on<br />

secondary osteons and Haversian canals via Image Pro Express 4.0.<br />

The observations and the collected measurement data from each<br />

femur and humerus of the deer samples were subjected to a repeated<br />

measures ANOVA to assess inter- and intra-bone variability among and<br />

between the deer. The statistical findings will provide a good basis to<br />

indicate if white-tailed deer can be positively identified by histological<br />

Physical Anthropology<br />

analysis regardless of the loci of the bone fragment in question and<br />

regardless of age.<br />

The statistical analysis results indicated no significant mean<br />

differences within shafts or across ages for osteon area in the femur or<br />

humerus. The results also indicated no significant mean differences within<br />

shafts or across ages for Haversian canal areas in the femur. A significance<br />

difference was noted between the Haversian canal areas in the nine-month<br />

deer and the 2.5-year-old deer humeri.<br />

Based on the findings, a blind test was performed on five unidentified<br />

bones samples to discern deer from other ungulates based on osteon areas.<br />

The methodology and results of this research were successfully utilized to<br />

distinguish white-tailed deer bone from Sus scrofa (wild board), Ovis<br />

Aries (sheep), and Capra hircus (goat). The ability to do so speaks to the<br />

usefulness and reliability of bone histology in forensic anthropology and<br />

calls for more similar research endeavors in the future.<br />

Histology, Fragmentary Remains, White-Tailed Deer<br />

H2 Identification of the Rib Number<br />

by Metric Study in Korean<br />

Deog-Im Kim*, Seung-Ho Han, PhD, Dai-Soon Kwak, PhD, and Je-<br />

Hoon Lee, Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701, South<br />

Korea; Yi-Suk Kim, MD, Department of Anatomy, Gahon University of<br />

Medicine and Science, 1198 Guwol-dong, Namdong-gu, Incheon,<br />

405760, South Korea; Dae-Kyoon Park, PhD, Department of Anatomy,<br />

College of Medicine, Soonchunhyang University, 366-1, Ssangyongdong,<br />

Cheonan-si, Chungcheongnam-do, Seoul, 330946, South Korea;<br />

U-Young Lee, MD, Division of Forensic Medicine, National Institute of<br />

Scientific Investigation, Sinwol 7dong, Yangcheon-gu, Seoul, 158707,<br />

South Korea; and In-Hyuk Chung, PhD, Department of Anatomy,<br />

College of Medicine, Yonsei University, 134, Sinchon-dong, Seodaemungu,<br />

Seoul, 120752, South Korea<br />

After attending this presentation, attendees will understand that the<br />

importance and purpose of placing ribs in their proper anatomical order<br />

are to determine the number of individuals and for the application of<br />

techniques for establishing age-at-death using cartilaginous and osseous<br />

changes in the sternal end of the ribs.<br />

This presentation will impact the forensic community and/or<br />

humanity by investigating a correct sequence of ribs and the usefulness of<br />

ribs as a distinction among populations.<br />

Rib seriation has important applications in both bioarchaeology and<br />

forensic anthropology. The correct siding and sequencing of human ribs<br />

are an essential process in forensic anthroplogy and medico-legal<br />

investigation. The importance and purpose of placing ribs in their proper<br />

anatomical order are to determine the number of individuals represented,<br />

apply techniques for establishing age-at-death using cartilaginous and<br />

osseous changes in the sternal end of the ribs. The aim of this study is<br />

described a rib seriation correctly in Korean and compared with other<br />

populations.<br />

The sample was the dry rib of 50 sets that known age and sex at<br />

Department of Anatomy, College of Medicine, Yonsei University. The<br />

method investigated was based on three metric variables: superior costotransverse<br />

crest height (SCTCH), articular facet of the tubercle-to-angle<br />

length (AFTAL), and head-to-articular facet length (HAFL).<br />

Analysis of variance showed that SCTCH, AFTAL, and HAFL were<br />

significantly associated (P less than 0.001) with rib number on both right<br />

and left sides. The variables SCTCH and HAFL were associated with the<br />

293 * Presenting Author


central ribs (3rd through 6th) on both sides. SCTCH generally increased<br />

in size with rib number and variables AFTAL and JAFL showed a<br />

tendency to increase from ribs 2 – 7). The accuracy of discriminant<br />

analysis was 81.3% in SCTCH, 83.3% in AFTAL, and 85.4% in HAFL on<br />

both sides. THE variable AFTAL (r2=0.86) is the useful dimension for rib<br />

seriation and SCTCH (84%) is useful for sexual dimorphism.<br />

This result would distinguish between European Whites and Koreans<br />

using the rib.<br />

Rib Seriation, Sex Determination, Korean<br />

H3 Pedagogy of Practicing Forensic<br />

Anthropologists: A Collection of<br />

Our History<br />

Joseph T. Hefner, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Natalie M.<br />

Uhl, BS, University of Indianapolis, 1400 East Hanna Avenue,<br />

Indianapolis, IN 46227; Stanley Rhine, PhD, University of New Mexico,<br />

Department of Anthropology, MSC01-1040 Anthropology, Albuquerque,<br />

NM 87131-0001; and William M. Bass, PhD, University of Tennessee,<br />

Department of Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

37996<br />

After attending this presentation, attendees will have an historical<br />

view of the Physical Anthropology Section of the American Academy of<br />

Forensic Science as well as understand the need to facilitate the collection,<br />

preservation, and documentation of the pedagogical history of the section.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that the academic history of modern<br />

practitioners represents the foundation upon which the profession has<br />

grown. Collecting, preserving, and documenting this lineage is of great<br />

importance to the understanding of modern forensic anthropology.<br />

The History Committee within the Physical Anthropology section of<br />

the American Academy of Forensic Science was established at the 2005<br />

AAFS meetings in New Orleans, LA. The committee is chaired by Dr.<br />

John Williams and includes Dr. Douglas Ubelaker, Dr. Eugene Giles, Mr.<br />

Greg Berg, Ms. Anne Marie Mires, and Mr. Joe Hefner. Charged with the<br />

collection, preservation, and documentation of the history of the Physical<br />

Anthropology section, the committee is actively seeking to document all<br />

levels of activity, including the academic histories for Physical<br />

Anthropology section members.<br />

The pedagogical nature of anthropology is a fundamental<br />

characteristic of the entire field. Historical figures like Earnest Hooton and<br />

Franz Boas are recognized for their contributions to a stable crop of<br />

students, many of whom are now recognized as some of the most<br />

influential members in the field. These very ‘students’ are now ogled at<br />

meetings, the victims of drive by “name tag sightings” and murmurs<br />

concerning a recent journal article or book. The academic lineage of<br />

forensic anthropology is essential for understanding current philosophies.<br />

In a 1992 volume of The Connective Tissue, Dr. Stanley Rhine<br />

documented the academic lineages of nearly 130 MAs and PhDs within<br />

the field, gathering information on degree date, advisors, and location.<br />

Originally proposed by Dr. Madeline Hinkes, the information in Rhine’s<br />

list derived from the AAFS membership list, AAA guides, and informants,<br />

most notably Dr. Walter Birkby and Dr. Ted Rathbun. His dataset, which<br />

has acted as a catalyst for the current study, has unfortunately drifted into<br />

relative obscurity. Most of the recent PhD recipients recorded by Rhine in<br />

1992 are now professors themselves, producing MAs and PhDs.<br />

Collecting up-to-date information will prevent any large gaps in the<br />

knowledge base of academic history.<br />

In order to explore both traditional and nontraditional paths that have<br />

led current practitioners to the field, this poster seeks to document the<br />

academic lineage of the Physical Anthropology section of the American<br />

Academy of Forensic Science, by drawing on Dr. Rhine’s previous work<br />

* Presenting Author<br />

and by adding those individuals not included in the original compilation.<br />

Anthropologists are encouraged to provide information on their advisors,<br />

schools attended, and individual academic lineages. The purpose of this<br />

presentation is to explore these inter-relationships and provide the Section<br />

insight into its origins.<br />

Preparatory analysis suggests the North American School of forensic<br />

anthropology can be traced almost entirely to the British School under the<br />

direct influence of Sir Author Keith. Keith is directly linked through<br />

historical figures such as Hooton, McCown, and others. The legacy of<br />

figures not traditionally associated with forensic anthropology provides<br />

insight into current methodologies and suggests the likely origins of some<br />

of the current practices. Academicians like Dr. William Bass and Dr.<br />

Alfred Hulse are noteworthy for their scientific contributions, but the large<br />

number of students that they produced is most significant for the current<br />

research. Likewise, researchers and non-academicians are noteworthy for<br />

their scientific contributions, but the student mentoring they have provided<br />

is also of great importance. The academic history of modern practitioners<br />

represents the foundation upon which the professional has grown.<br />

Collecting, preserving, and documenting this lineage is of great<br />

importance to the understanding of modern forensic anthropology.<br />

Pedagogy, History, Physical Anthropology<br />

H4 Forensic Anthropology in the<br />

Courtroom: Trends in Testimony<br />

Elizabeth A. Murray, PhD*, College of Mount St. Joseph, 5701 Delhi<br />

Road, Cincinnati, OH 45233-1670; and Bruce E. Anderson, PhD*,<br />

Forensic Science Center, 2825 East District Street, Tucson, AZ 85714<br />

After attending this presentation, attendees will learn about the<br />

frequency and nature of expert witness experiences among the<br />

membership of the Physical Anthropology section of the American<br />

Academy of Forensic Sciences.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the need for trends in testimony to be shared<br />

among the forensic anthropology membership and can be used to<br />

potentially direct areas of research in the future.<br />

A certain amount of recent research by forensic anthropologists has<br />

apparently been induced or promoted by the Daubert decision. Numerous<br />

papers and presentations have focused on issues such as error rates and the<br />

replicability of previously published analytical methods. This research is<br />

certainly needed and the authors correctly stress the importance of the<br />

results of such research in terms of how forensic anthropology opinions<br />

should be rendered within the medico-legal resolution of a particular case.<br />

Partly because of this, the authors felt that it could be quite instructive to<br />

tabulate the types of issues in which forensic anthropologists are actually<br />

testifying. Results of such tabulation may prove useful in directing future<br />

research in forensic anthropology.<br />

To obtain data related to this issue, the authors utilized the services of<br />

a commercial survey company to conduct an anonymous and IRBapproved<br />

on-line survey. The National Office of the American Academy<br />

of Forensic Sciences sent an electronic link to the survey to all ranks of<br />

membership in its Physical Anthropology Section. At the time of the<br />

writing of this abstract, 99 individuals had responded to the survey,<br />

representing a wide range of experience levels, from students to<br />

individuals who have been practicing for over 30 years. Survey questions<br />

asked respondents their current educational level, their primary<br />

employment setting, and the approximate percentage of their workload<br />

devoted to casework, research, and teaching in the field.<br />

After being asked to provide basic career information, the survey<br />

queried whether or not the respondent had ever testified as an expert<br />

witness in the field of forensic anthropology (including courtroom and<br />

other forms of sworn testimony). At the time of the writing of this<br />

abstract, 56.6% of the survey respondents had testified, although most<br />

testified rarely. If they had testified, participants were asked to answer<br />

294


further questions about courtroom experiences throughout their career.<br />

Questions about sworn testimony were related to the frequency of such<br />

experiences, as well as the typical nature of the expert opinions forensic<br />

anthropologists are asked to render. Respondents were asked how often<br />

their testimony involved chain of custody issues, providing a biological<br />

profile, positive identification, traumatic injuries and other pathologies,<br />

the postmortem interval, matters of recovery or scene investigation, and<br />

whether or not they had provided a second opinion relevant to the work of<br />

another anthropologist. To assess trends in the field, the survey asked<br />

anthropologists to break these experiences into those occurring in the past<br />

five years, and if the extent of their practice exceeded five years, how often<br />

and what types of testimony they typically provided earlier in their career.<br />

Initial survey results regarding the past five years indicate that most<br />

forensic anthropologists do not frequently serve as expert witnesses.<br />

When forensic anthropologists have provided sworn testimony in the past<br />

five years, it is more often regarding trauma and pathology, recovery or<br />

scene investigation, or the postmortem interval. Forensic anthropologists<br />

are least asked to render opinions on chain of custody issues, positive<br />

identifications, and are very seldom asked to testify as second opinions<br />

relative to the work of other anthropologists. When compared to the<br />

expert witness experiences of anthropologists in the earlier years of their<br />

career (for those with more than five years of experience) the frequency of<br />

most types of testimony shows little change over time. However, survey<br />

data suggest increases in testimony with regard to recovery and scene<br />

investigation, and the postmortem interval. The poster presentation will<br />

provide a more robust examination of these data and a discussion on the<br />

final survey results.<br />

Expert Witness Testimony, Forensic Anthropology, Daubert Decision<br />

H5 Houston Mass Murder Victims:<br />

33 Years Later<br />

Sharon M. Derrick, PhD*, Michele Hunt, BS, and Luis A. Sanchez, MD,<br />

Harris County <strong>Medical</strong> Examiner’s Office, 1885 Old Spanish Trail,<br />

Houston, TX 77054<br />

After attending this presentation, attendees will learn about the<br />

difficulties inherent in forensic identification of skeletonized decedents in<br />

general through a description and evaluation of the standard steps that are<br />

taken in a medical examiner setting to identify these individuals. Further,<br />

because the identification of homicide victims from “cold cases” presents<br />

a different set of challenges, an example of the process as it applies to an<br />

older high-profile case will be provided and discussed.<br />

The description and evaluation of methodological solutions used to<br />

identify skeletonized individuals recovered from a forensic context several<br />

decades in the past will impact the forensic community and/or humanity<br />

by providing information on the efficacy of these solutions to other<br />

researchers in the field. Successful resolution of older cases also offers<br />

justification for the presence of at least one full-time staff anthropologist<br />

and a designated identification unit at medical examiner facilities.<br />

Viewers of this poster presentation will be shown the difficulties<br />

inherent in forensic identification of skeletonized decedents in general<br />

through a description and evaluation of the standard steps that are taken in<br />

a medical examiner setting to identify these individuals. Further, because<br />

the identification of homicide victims from “cold cases” presents a<br />

different set of challenges, an example of the process as it applies to an<br />

older high-profile case will be provided and discussed.<br />

Skeletonized individuals recovered under forensic circumstances<br />

often remain unidentified for an extended period of time even in light of<br />

modern DNA analysis, new investigative methods, and artist facial<br />

reconstruction efforts. Cold cases that were investigated prior to the<br />

routine use of these methods may have resulted in the release of the<br />

decedent for burial as an unknown individual, or the remains may have<br />

been retained in a medical examiner facility awaiting a positive<br />

identification. The presence of forensic anthropologists on staff in the<br />

medical examiner office setting and the formation of a designated<br />

identification unit provide the initiative, experience and person-hours to<br />

move forward on these difficult identifications. As a result of the<br />

development of such innovative programs, carefully conserved decedents<br />

from a mass murder case have received recent intensive study at the Harris<br />

County <strong>Medical</strong> Examiner’s Office (HCME) in Houston, Texas.<br />

The mention of Dean Corll, Elmer Wayne Henley, and David Brooks<br />

still elicit strong reactions from adult residents of Harris County and<br />

surrounding areas. It has been 33 years since the summer night that their<br />

murder spree was exposed, but the violent nature of the crimes still<br />

resounds, even in this age of graphic films and video games. Corll, also<br />

known on the street as “The Candy Man,” died that night, but Henley and<br />

Brooks are both serving prison terms and continue to seek parole. The<br />

media interview Henley on a regular basis and this keeps the story fresh in<br />

the Houston community’s consciousness.<br />

On August 8, 1973, Henley called law enforcement after fatally<br />

shooting Dean Corll. Henley also advised officers that there were a<br />

number of bodies buried in a boathouse on the northwest side of Houston.<br />

According to documents from the time period, seventeen adolescent males<br />

in various stages of decomposition were discovered buried in the floor of<br />

the boathouse. Another nine adolescent males were subsequently<br />

recovered near Galveston and Lake Sam Rayburn, Texas, bringing the<br />

number of verified homicides in the investigation to 26. The 17 sets of<br />

remains recovered from the boathouse were brought to the HCME in<br />

Houston for postmortem examination. The nine sets of remains from the<br />

other two county jurisdictions were later transported to the HCME for<br />

additional examination. The majority of these decedents were identified<br />

and released. However, three of the recovered individuals and additional<br />

commingled remains (MNI = 4) were never identified and remain at the<br />

HCME.<br />

The three discrete sets of unidentified remains were examined and a<br />

biological profile was developed by Dr. David Glassman, D-ABFA in<br />

2004. Deoxyribonucleic Acid (DNA) was recovered from these<br />

individuals in 2006 and submitted to the HCME Forensic Laboratory for<br />

analysis. The additional commingled remains are currently being<br />

examined and profiled by HCME staff. The new information collected<br />

from these cases will be used to seek identification through reference<br />

samples obtained from living relatives and any corroborating evidence<br />

provided by friends or acquaintances. The objective of this renewed focus<br />

on the Houston Mass Murder cases is to provide an identity for these<br />

individuals and ultimately release them from the HCME facility.<br />

Corll, Henley, Unidentified<br />

H6 The Bone Histology of Bear<br />

Paws and Human Hands<br />

Brannon I. Jones, MA*, University of Tennessee, 250 South Stadium<br />

Hall, Department of Anthropology, Knoxville, TN 37996<br />

After attending this presentation, attendees will learn about the<br />

potential histological differences in the metacarpals and phalanges of a<br />

human hand and a black bear (Ursus americanus) paw.<br />

This presentation will impact the forensic community and/or<br />

humanity by aiding in the separation and identification of morphologically<br />

similar osseous human and nonhuman remains.<br />

The similarities between the bones of human hands and bear paws<br />

have been noted by numerous authors, and the morphological similarities<br />

and differences have been described extensively. While useful when<br />

whole bones are discovered, gross morphological characteristics may fail<br />

in the context of damaged or fragmented bones. In these situations, an<br />

alternative method of identification is necessary. Histology has been used<br />

to describe both human and nonhuman bones, and can be employed in<br />

separating bones as similar as those in this study. The histology of bear<br />

295 * Presenting Author


ones has been limited to femur and tibia midshaft cross sections, so<br />

descriptions of bear metacarpals and phalanges is needed in order to<br />

differentiate these from the same bones in humans.<br />

The hands of a human male in his mid-thirties and the front paws of<br />

a two to three year old bear were obtained for this study. The right second<br />

ray of each was selected for study in order to remain consistent with<br />

previous research focusing on the second metacarpal of humans. Each ray<br />

consisted of the metacarpal, proximal phalanx, and middle phalanx, the<br />

distal phalanx was used only in the human. Thin sections were made using<br />

Buehler isomet low speed saw at midshaft of all bones, and thin sections<br />

were also made at the proximal and distal ends of the metacarpals and<br />

proximal phalanges. All thin sections were cut 12 µm thick and ground<br />

using a Metaserv 2000 grinder/polisher. Slides were viewed using a<br />

LEICA DMRX light microscope and photographed using the computer<br />

program ImagePro Express.<br />

Several quantitative and quantitative features were examined in order<br />

to determine the difference between human and bear bones at the<br />

histological level. Quantitative measurements included maximum osteon<br />

diameter (µm), osteon area (µm2 ), maximum Haversian canal diameter<br />

(µm), and Haversian canal area (µm2 ). One to four osteons were<br />

measured per thin section and the values averaged for each species. The<br />

means were then tested using ANOVA to see if they differed between<br />

human and bear. All four variables gave p-values less than 0.05, meaning<br />

humans and bears were statistically different in all four measurements. In<br />

addition, osteon density and lacunae density were calculated for both<br />

species, and both of these variables appear to differ by species, with bear<br />

bone having more osteons and lacunae per area examined.<br />

The qualitative features that were analyzed included osteon banding,<br />

resorption spaces, and plexiform bone. Osteon banding appeared only in<br />

the bear thin sections, specifically in the second metacarpal, and never in<br />

the human thin sections. Resorption spaces which appeared in rows were<br />

also indicative of this osteon banding and were seen in a few of the bear<br />

thin sections and never in the human thin sections. Plexiform bone, which<br />

is usually a nonhuman trait, was also seen in a few of the bear thin sections<br />

and never in the human thin sections. While preliminary, this study<br />

indicates that it is possible to differentiate between bear and human<br />

metacarpals and phalanges using a combination of qualitative and<br />

quantitative microscopic features.<br />

Bone Histology, Nonhuman Remains, Black Bear<br />

H7 Exhumation of an Historical<br />

Gravesite at Taos Cemetery<br />

Mary H. Dudley, MD*, Sedgwick County Regional Forensic Science<br />

Center, 1109 North Minneapolis, Wichita, KS 67214; Joy Vetters, BS,<br />

Wichita State University - Department of Anthropology, 1845 Fairmount,<br />

Wichita, KS 67260; and Angela E. Benefiel, BA, Sedgwick County<br />

Regional Forensic Science Center, 1109 North Minneapolis, Wichita,<br />

KS 67214<br />

The goal of this presentation is to identify the process of recovery and<br />

describe physical findings from skeletonized remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by identifying the process of recovering skeletal remains,<br />

agencies to notify and information which may be obtained from skeletal<br />

remains.<br />

While preparing a grave in the Kit Carson family cemetery plot in<br />

Taos, New Mexico, workers uncovered the remains of an unknown<br />

individual. Cemetery records did not show a previous burial at that site.<br />

The remains were disinterred and transported to the Office of the <strong>Medical</strong><br />

Investigator (OMI) in Albuquerque, New Mexico for examination and<br />

determination of their medical-legal significance. This poster presentation<br />

details who to contact if remains are found, the process of exhuming<br />

remains, and the evaluation of the remains conducted by individuals from<br />

* Presenting Author<br />

OMI and the Laboratories of Physical Anthropology, Maxwell Museum of<br />

Anthropology, University of New Mexico.<br />

When human remains are discovered, there are several agencies to<br />

notify. It is important to establish if the remains are of forensic or historical<br />

significance. In New Mexico, agencies to notify include the local police<br />

department, Office of the <strong>Medical</strong> Investigator, and the Historical<br />

Preservation Division, the Anthropology department, the Forest Service,<br />

cemetery records office, city archives, and the Office of Indian Affairs.<br />

When exhuming remains forensic anthropologists and most law<br />

enforcement personnel are aware that careful collection of everything<br />

(bones, teeth, hair, clothing, valuables, and samples of the casket and nails)<br />

and to utilize the correct tools, such as a camera, gloves, brush, sieve,<br />

trowel, and a shovel to record the grave site and preserve the remains<br />

without damaging them on recovery.<br />

The remains were determined to be historic in nature and thought to<br />

represent a 5’5’’ Hispanic male who was in his mid-30s at the time of<br />

death. After evaluating the remains, several interesting anomalies and<br />

evidence of trauma were identified. This individual showed little<br />

osteoarthritic development in the lumbar vertebrae. The superior surface<br />

of the sacrum and the fifth, fourth, and second lumbar vertebra were seen<br />

to have slight lipping. On the right scapula, there was an isolated rounded<br />

osteophyte on the inferior margin of the posterior portion of the glenoid<br />

fossa. These observations were considered appropriate for the degree of<br />

arthritic change for the age of mid-30’s. The thyroid and cricoid cartilages<br />

were ossified.<br />

Prior to death, this individual had five teeth missing. There was an<br />

abscess formation in the upper jaw above the left lateral incisor suggesting<br />

possible tooth decay. On the sternum, there were two fusion anomalies that<br />

produced foramina including a 7x10mm defect centered in the fourth<br />

element of the corpus of the sternum and a second defect in the xiphoid<br />

process, which was fused to the corpus. The sternum foramen may be<br />

mistaken for a gunshot wound defect to the untrained observer.<br />

This individual showed several interesting areas of antemortem<br />

trauma. The right nasal bone had been mildly fractured and healed<br />

without distortion. There were also fractures in the 7th and 10th left ribs.<br />

Fractures to the proximal left humerus and proximal left radius<br />

demonstrate a significant amount of damage, drastically altered<br />

appearance, and irregular bone formation. Radiographs revealed<br />

radiopaque particles at both fracture sites which are characteristic of lead<br />

fragments resulting from a gunshot wound. A persistent infection set in<br />

and a bony involucrum formed, which resulted in osteomyelitis and<br />

periostitis, most likely resulting in a draining fistula.<br />

This exhumation stirred interest in the Taos area and a newspaper<br />

article described the findings of the UNM Anthropology Department and<br />

showed a clay facial reconstruction for view, in case someone recognized<br />

him as a distant relative from old photos. His remains were returned to the<br />

Taos area.<br />

Forensic Anthropology, Antemortem Trauma, Exhumation<br />

H8 The Relationship Between Bone<br />

Weight and Age at Death<br />

Emily J. Loucks, BA*, University of Tennessee, 250 South Stadium Hall,<br />

Department of Anthropology, Knoxville, TN 37996; and Brannon I.<br />

Jones, MA, University of Tennessee, 250 South Stadium Hall,<br />

Department of Anthropology, Knoxville, TN 37996<br />

The goal of this presentation is to determine the relationship between<br />

bone weight and age at death in skeletons from the William M. Bass<br />

Donated Collection.<br />

This presentation will impact the forensic community and/or<br />

humanity by aiding in the age estimation of unidentified remains and the<br />

separation of commingled remains.<br />

296


Bone weight has been studied intermittently with various approaches<br />

and goals. Previous studies have utilized skeletons with various<br />

taphonomic histories and bone conditions. Researchers have used bones<br />

from anatomical collections, fresh cadavers, and naturally skeletonized<br />

individuals. Due to differences in histories, the conditions of the bones<br />

have varied from dry but still greasy, dry and mechanically degreased, and<br />

dry and naturally degreased. These studies have compared relationships<br />

between individual bones within a single skeleton, whole skeletal weight<br />

and age, individual bone weight and age, and the effects of disease. In<br />

addition, the differences in ancestral groups, male and female individuals,<br />

left and right sided bones, and weight bearing versus non-weight bearing<br />

bones have been studied.<br />

The sample employed in this study is approximately 400 white males<br />

and females 20 to 100 years of age from the William M. Bass Donated<br />

Collection at the University of Tennessee. Note was made of obese<br />

individuals and those with chronic illnesses and disease. Each of the<br />

skeletons shares a common taphonomic history, including decomposition<br />

at the Anthropological Research Facility and processing. Most of the<br />

individuals decomposed on the ground surface of a wooded environment;<br />

however, several individuals decomposed in shallow burials. Processing<br />

included removal of soft tissue and simmering in hot water.<br />

For each of the skeletons, the following bones were weighed in<br />

grams with a digital scale: clavicle, scapula, humerus, radius, ulna, os<br />

coxae, sacrum, femur, tibia, and fibula. The left and right were both<br />

measured for all paired bones. Individual bones exhibiting pathology or<br />

orthopedic devices that may affect weight were excluded. Measurements<br />

of each bone were used to control for size. For example, in the humerus,<br />

the maximum length, epicondylar breadth, and maximum diameter of the<br />

head were used.<br />

The relationship between bone weight and age at death was analyzed<br />

by performing regression analysis and producing correlation coefficients<br />

for several variables. A test for independence was executed for each bone<br />

in order to determine that bone weight was not dependent on size. Once<br />

independence was determined, the relationship between age and weight<br />

for each bone was analyzed in four separate groups: male left, male right,<br />

female left and female right. In addition, the relationship between age and<br />

each entire limb was examined. Preliminary results show that for the<br />

humerus, weight and size are independent of one another. A significant<br />

inverse relationship was found between age and weight for both males and<br />

females, although the relationship was stronger for females. Males and<br />

females both showed a higher correlation between age and weight in the<br />

left humerus than the right humerus, which may be related to handedness.<br />

Similar results are expected for the other arm bones; however, the weight<br />

bearing bones of the pelvis and lower limbs may not show such a strong<br />

correlation.<br />

While this study is preliminary and not capable of aging an individual<br />

from bone weight, it is hoped that further research will allow weight to be<br />

used in combination with other techniques to estimate age at death. With<br />

the complexity and confusion of some current aging techniques, the<br />

prospect of simply weighing a bone or combination of bones and<br />

narrowing in on an age at death makes this and future research<br />

worthwhile.<br />

Bone Weight, Human Variation, Age at Death<br />

H9 Paleopathological Diagnosis of Leprosy in<br />

Skeletons From a French Medieval Leper<br />

Pauline Saint-Martin, MD*, Service de Médecine Légale,<br />

Hôpital Trousseau, CHRU Tours, Tours, 37044, France; Norbert<br />

Telmon, MD, PhD, and Henri Dabernat, MD, PhD, Laboratoire<br />

d’Anthropobiologie, UMR 8555, CNRS, 39 allees Jules Guesde,<br />

Toulouse, 31400, France; Christian Theureau, Laboratoire<br />

d’Archéologie Urbaine, Chateau de Tours, 25 quai d’Orleans, Tours,<br />

37000, France; Patrick O’Byrne, MD, Service de Médecine Légale,<br />

Hôpital Trousseau, CHRU Tours, Tours, 37044, France; and Eric<br />

Crubezy, PhD, Laboratoire d’Anthropobiologie, UMR 8555, CNRS, 39<br />

allees Jules Guesde, Toulouse, 31400, France<br />

After attending this presentation, attendees will understand that the<br />

paleopathology of leprosy can be very useful in the understanding the past<br />

history of the disease and use this understanding to predict its course in the<br />

future. The study of skeletons may enrich the relatively poor oesteological<br />

documentation of leprosy in Middle Age in Europe.<br />

This presentation will impact the forensic community and/or<br />

humanity by discussing the excavation of a sample of human skeletons<br />

from a medieval leper site that has provided the largest sample from this<br />

period in France. The findings that 45% of the skeletons buried in the<br />

Saint-Lazarus chapel of Tours suffered from leprosy will provide a unique<br />

opportunity to interpret historical sources, medical documents, and<br />

oesteoarcheological data regarding medieval leprosy.<br />

Introduction: Leprosy is a chronic granulomatous infectious disease<br />

caused by Mycobacterium leprae. According to documentary sources,<br />

leprosy was a relatively common occurrence in later Medieval Europe. It<br />

seems to have culminated in the 13th and 14th centuries when around one<br />

quarter of the adult population died with signs of leprosy. However, the<br />

number of cases diagnosed in archaeologically derived skeletal material<br />

from all areas of Europe is low. When leprosy affects the skeleton, a<br />

number of specific and non-specific bony changes occur during the<br />

pathogenesis. In the present study, all the bone lesions in the skeletons<br />

from 57 tombs of the necropolis of the Saint-Lazarus chapel (Tours,<br />

France) in relation to a diagnosis of leprosy are described and discussed.<br />

Material and Methods: The Saint-Lazarus chapel appears to have<br />

been in use from the 12th to the 17th centuries and was known to have<br />

been a medieval leper colony. The excavated skeletons were found during<br />

a building construction in 1993. In total, 57 burials were identified. The<br />

57th burial was in fact identified as scattered remains from disturbed<br />

burials. Sex and age for all burials were determined according to current<br />

anthropological methods. All the bone lesions were noted by two different<br />

observers. Pathognomonic skeletal changes of low resistance<br />

(lepromatous) leprosy included erosive changes of the anterior nasal spine,<br />

resorption of the alveolar ridge with frequent loss of incisor teeth and<br />

palatal perforations (facies leprosa). A variety of secondary skeletal<br />

changes may develop due to peripheral neural involvement by the<br />

infectious process. The most characteristic of these are trophic<br />

reabsorptive changes in the terminal phalanges of the feet and hands. The<br />

phalanges frequently are the site of other absorptive changes which lead to<br />

“shark-tooth” deformities. Periostisis of the tibiae and fibulae may be the<br />

consequence of ascending secondary infections or of periosteal<br />

involvement by the primary infection.<br />

Results: 39.3% of the skeletons were males, 21.4% were females,<br />

14.3% were adolescents. Sex determination was not possible for 25% of<br />

the individuals. Rhinomaxillary changes were noted for 45% of the<br />

available skulls: among them there were seven cases of nasal spine<br />

atrophy, six irregular perforations of the superior surface of the hard palate<br />

and 2 central atrophy of the maxillary alveolar process two skeletons<br />

presented acro-osteolysis of the 5th metatarsal. Periostisis of the tibiae<br />

and fibulae was found on five skeletons. Enthesophytes and osteolytic<br />

lesions were noted at the insertion sites of several ligaments. Cribra<br />

orbitalia was found on two individuals.<br />

297 * Presenting Author


Discussion: Only 45% of individuals known to live in a medieval<br />

leper colony had pathognomonic lesions of the disease, although leprosy<br />

sufferers were banished and removed from society. There may be many<br />

reasons for this. First if people contract the high resistant (tuberculoid)<br />

form of the infection they may not develop any bone changes. Second,<br />

people with leprosy may have died before there was time for bone change<br />

to occur. In both these scenarios, the evidence would be absent skeletally.<br />

Thirdly, leprosy may have been misdiagnosed: people with another<br />

disease may have been labeled as leprous. A number of other diseases that<br />

may produce the same skeletal lesions are discussed.<br />

Paleopathology, Leprosy, Facies Leprosa<br />

H10 Bone Fragmentation Created by<br />

a Mechanical Wood Chipper<br />

John A. Williams, PhD*, Western Carolina University, Department of<br />

Anthropology and Sociology, Cullowhee, NC 28723<br />

After attending this presentation, attendees will learn that<br />

dismemberment using a mechanical wood chipper quickly reduces bone to<br />

small fragments as well as the fact that despite fragmentation it is possible<br />

to segregate bone based on the type of woodchipper used.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the possibly of identifying the class of<br />

machine used to mechanically fragment bone.<br />

A recent motion picture highlighted the use of a mechanical<br />

woodchipper in the disposal of human remains. Although body<br />

dismemberment using this means appears efficient, documented cases are<br />

rare. To determine the effect of a mechanical woodchipper on bone, a<br />

sample of 10 long bones of White Tailed Deer (Odocoileus virginianus)<br />

were processed through a commercially available 6.5 hp<br />

woodchipper/shredder. Modern wood chippers utilize two different<br />

rotating blades or hammers in reducing the size of vegetative matter. The<br />

chipper uses several short blades directly attached to a flywheel powered<br />

by a gasoline motor. The shredder component uses a single blade similar<br />

to that of a lawnmower attached to the motor shaft. For the particular unit<br />

used in this procedure, material processed by either the chipper or shredder<br />

is forced out a single opening using spring loaded flails mounted to a<br />

flywheel.<br />

Five bones were processed through the chipper component and five<br />

were processed through the shredder component. After processing the<br />

bones were cleaned and dried. The dried bone fragments were weighed to<br />

the nearest gram. Mechanical sieves segregated the fragments by size.<br />

Three categories were created: larger than a size 5 sieve, between a size 5<br />

and size 10 sieve, and smaller than a size 10 sieve. The segregated<br />

fragments were weighed and the percentage of the total dry weight was<br />

calculated. The mean weights for each category were compared by<br />

processing type. A t-test was significant at the .001 or higher that the<br />

means were significantly different for chipper vs. shredder.<br />

The largest fragments (greater than a size 5 sieve) were further<br />

segregated into two subcategories, those with attached cancellous bone<br />

and those without attached cancellous bone. The percentage weight of<br />

cancellous attached bone fragments of the total fragment weight was<br />

calculated. Chipped bone and shredded bone displayed the lowest and<br />

highest weight percentage of cancellous attached bone at 28% and 73%<br />

respectively. A t-test was not significant that the means for cancellous<br />

attached fragments were different for chipper vs. shredder.<br />

Comparing the two processing types found that the chipper reduced<br />

the bone to smaller, more uniform fragments (average of 39.8% vs. 73.4%<br />

of total weight greater than a size 5 sieve). Some shredded fragments<br />

exceeded 38 mm in length and were identifiable as to bone type (i.e.,<br />

humerus). The size of these fragments was such that further analysis was<br />

still possible. Chipped fragments rarely exceed 12 mm in length.<br />

* Presenting Author<br />

The most useful criteria in determining what form of wood<br />

chipper/shredder was used are: 1) fragment size segregation, 2)<br />

identifiable fragments as to bone type. Both methods are predicated on<br />

complete or near complete recovery of fragments. Any loss of fragments<br />

will alter the prediction of wood chipper type.<br />

Bone Trauma, Woodchipper, Dismemberment<br />

H11 Microscopic Characteristics of Hacking<br />

Trauma on Bone: The Potential for<br />

Interpretation and Identification<br />

Ariana P. Ridgely, BA*, Department of Anthropology, New York<br />

University, 25 Waverly Place, New York, NY 10003<br />

After attending this presentation, attendees will gain a better<br />

understanding of the utility of microscopic characteristics of hacking<br />

trauma in correct weapon identification as well as the results of qualitative<br />

analysis of microscopic (and macroscopic) characteristics of cut marks<br />

inflicted by hacking trauma, using various common sharp instruments, as<br />

observed in Stereo zoom and 3D incident light microscope images of<br />

striations present on kerf walls.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing the utility of microscopic characteristics of<br />

hacking trauma in weapon identification, their potential in creating<br />

reliable sets of class characteristics in future tool mark analysis, and the<br />

usefulness of different kinds of light microscopy in interpretation of cut<br />

marks.<br />

After attending this presentation, attendees will gain a better<br />

understanding of the utility of microscopic characteristics of hacking<br />

trauma in correct weapon identification. Specifically, attendees will learn<br />

the results of qualitative analysis of microscopic (and macroscopic)<br />

characteristics of cut marks inflicted by hacking trauma, using various<br />

common sharp instruments, as observed in Stereo zoom and 3D incident<br />

light microscope images of striations present on kerf walls.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing the utility of microscopic characteristics of<br />

hacking trauma in weapon identification, their potential in creating<br />

reliable sets of class characteristics in future tool mark analysis, and the<br />

usefulness of different kinds of light microscopy in interpretation of cut<br />

marks.<br />

While the field of tool mark analysis continues to grow and while<br />

much attention has been given to characteristics of saw and slice marks on<br />

bone, little research has been conducted in order to determine if similar<br />

patterns and class characteristics can be extracted from cut marks caused<br />

by hacking trauma. The few studies that have been published focused only<br />

on the microscopic characteristics of specific sharp instruments, namely<br />

cleavers, axes, and machetes. In addition, these studies have all employed<br />

scanning electron microscopy to gain images of striations on cut mark kerf<br />

walls. While SEM is becoming a more and more popular method for<br />

viewing tool marks, it has several disadvantages for practical use<br />

including: time intensive preparation of samples, sample size necessary,<br />

and high cost. In addition, it must be recognized that not all institutions<br />

have access to SEM and it should be determined if there is an alternative<br />

imaging system that can adequately capture these images. Light<br />

microscopy has several practical advantages. Images can be taken from<br />

simple casts without altering the cast or specimen and light microscopes<br />

are less complicated to use and are more common.<br />

In the current study, various types and sizes of knives (plus a machete<br />

and axe) were used to create hack marks in large sections of femora<br />

previously cut and cleaned for other research. Each tool was assigned one<br />

femur consisting of a fragment cut from approximately mid-shaft and a<br />

longer section including distal shaft, metaphysis, and epiphysis. Multiple<br />

cut marks (hack marks) were made using each tool and were then casted<br />

using low viscosity injection –type impression material. Casts were<br />

298


viewed under both stereo zoom (Leica MZ-APO) and real-time 3D<br />

incident light (Edge Scientific H160) microscopes. Images captured were<br />

then analyzed for striation patterns and the ability to match images of<br />

specific cut marks to each other and to their respective weapon. In<br />

addition, images and patterns were compared to determine if larger tooltype<br />

characteristics could be determined.<br />

While striation patterns were successfully captured and these images<br />

could generally be associated with cut marks from the same bone (and<br />

therefore, weapon) and respectively to the tool used, overall tool class<br />

characteristics were much more difficult to define and may prove<br />

unreliable. Light microscopy was adequate in visualizing striation<br />

patterns on kerf walls. However, more research comparing the images<br />

captured to some taken using SEM must be done to show whether one<br />

method is better than the other for studying hacking trauma characteristics.<br />

These results show that although kerf striations on cut marks caused<br />

by hacking trauma can potentially be used for identification of specific<br />

weapons used, more research is required in order to create reliable class<br />

characteristics that could be used to determine tool-type when no<br />

suspected weapon is available.<br />

Forensic Anthropology, Cut Mark Analysis, Microscopy<br />

H12 Inter-Tidal Decomposition Patterns<br />

in Croatia: An Experiment using<br />

Sus scrofa Pedal Elements<br />

Branka Franicevic, MSc*, University of Bradford, Department of<br />

Archaeological Sciences, Bradford, BD7 1DP, United Kingdom; and<br />

Robert F. Pastor, PhD, University of Bradford, <strong>Bio</strong>logical Anthropology<br />

Research Centre, Department of Archaeological Sciences, Bradford,<br />

BD7 1DP, United Kingdom<br />

The goal of this presentation is to introduce participants to key<br />

aspects of decomposition patterns for individual body parts in a<br />

Mediterranean coastal environment during late autumn. It will address<br />

aspects of decay uncharacteristic for the decomposition of a whole corpse,<br />

and the main components of the process essential for the application to the<br />

post-mortem interval (PMI) determination. Photographic and descriptive<br />

data will be presented of the unique decomposition patterns of individual<br />

body parts from pig carrion in two inter-tidal zones of the Adriatic coast,<br />

Croatia. Aquatic insect activity, identified for the first time for this<br />

geographic region will also be discussed.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the identification of environmental and other<br />

factors that serve as a basis of decomposition patterns of different body<br />

parts. Application of the decomposition models presented in this study<br />

may aid in producing a more accurate estimation of PMI for dismembered<br />

and disarticulated human limbs.<br />

This presentation will introduce participants to key aspects of<br />

decomposition patterns for individual body parts in a Mediterranean<br />

coastal environment during late autumn. It will address aspects of decay<br />

uncharacteristic for the decomposition of a whole corpse, and the main<br />

components of the process essential for the application to the post-mortem<br />

interval (PMI) determination. Photographic and descriptive data will be<br />

presented of the unique decomposition patterns of individual body parts<br />

from pig carrion in two inter-tidal zones of the Adriatic coast, Croatia.<br />

Aquatic insect activity, identified for the first time for this geographic<br />

region will also be discussed.<br />

This poster will demonstrate that various PMI techniques used for a<br />

whole corpse and skeletonized remains in medico-legal investigations<br />

may overlook the potentially different biological and taphonomic<br />

decomposition processes of individual body parts. The impact of these<br />

findings on forensic sciences and/or humanity includes the identification<br />

of environmental and other factors that serve as a basis of decomposition<br />

patterns of different body parts. Application of the decomposition models<br />

presented in this study may aid in producing a more accurate estimation of<br />

PMI for dismembered and disarticulated human limbs.<br />

In a temperate central European coastal environment, soft-tissue<br />

decomposition could depend on the microclimate typical of marine or<br />

riverine ecosystems. In shallow waters for instance, typical factors that<br />

could cause soft tissue modification are of both terrestrial and aquatic<br />

nature, such as air temperature, exposure to the sunlight, or tidal<br />

fluctuation.<br />

However, because putrefaction is almost certainly bacterially driven,<br />

it is hypothesized that with certain isolated single remains, absence of<br />

gastrointestinal organs result in the potentially different bacterial action<br />

affecting decomposition.<br />

This experimental study was conducted in two inter-tidal zones,<br />

marine and riverine. The distance between the two depositories was<br />

approximately 70 metres to simulate isolated resources for small<br />

vertebrates and invertebrates in two different coastal sub zones in close<br />

proximity. Wire meshes were placed on the riverbank and on the shore<br />

platform, and exposed to sunlight throughout the day. Samples were in the<br />

middle tide zone and were submerged approximately every six hours. The<br />

sample size represented limb bones of a minimum of 20 Sus scrofa (ulnae,<br />

radii, carpals, metacarpals, tibiae, fibulae, tarsals, and metatarsals. Ten<br />

limbs in random order were used per depository. Observations of<br />

decomposition changes and the environmental data such as sea surface<br />

and air temperature were recorded daily. Microorganism extraction and<br />

pH sediment measurements were conducted twice a week. Fieldwork was<br />

carried out for the duration of 31 days, during the period from 28 October<br />

to 27 November 2005.<br />

A total of five stages of decomposition were observed during a onemonth<br />

period: Fresh, Putrefaction, Early Disintegration, Advanced<br />

Disintegration, and Decay. Contrary to previous research in this<br />

environment, all stages were purely terrestrial in nature, omitting bloating,<br />

floating, and submersion. The study demonstrated the process of<br />

decomposition of isolated single remains in this habitat to be more<br />

complex than occurs in the body as a whole, with an indication of a slower<br />

decomposition in comparison to whole carcasses, possibly due to the<br />

limited bacterial action involved. The effect of relative humidity and<br />

exposure to sunlight on rates of decomposition was significant.<br />

Spearman’s rank correlation coefficient for humidity was: r=+0.90,<br />

p=0.08 for marine, and r=+0.94, p.0.01 for riverine sample. Exposure to<br />

sunlight yielded r=+0.92, p=0.07 for the marine sample and r=+0.90,<br />

p=0.03 for riverine sample. Interestingly, salinity was only marginally<br />

significant and for the riverine sample only (r=-0.76, p= 0.13), with the<br />

variable correlation of -0.76 to 0.94. None of the other environmental<br />

variables correlated significantly with the rates of decay.<br />

Variability in decomposition patterns between marine and riverine<br />

microenvironments also yielded significant results for the number of days<br />

spent in each stage (Mann-Whitney test U= 338, n=2, p=0.032), indicating<br />

a different pattern of decomposition between two sites (stated with 95%<br />

confidence). This is reflected in different rates of decay, biomass removal,<br />

and insect and scavenger succession.<br />

Postmortem events in nature regularly include scavenger succession<br />

and limb dispersions, natural disarticulation or dismemberment as part of<br />

clandestine disposals. For these reasons, principles of decomposition<br />

patterns of isolated single remains for the purpose of PMI are<br />

recommended across the board to medico-legal investigators in dealing<br />

with single body remains in coastal environments with a similar climate to<br />

Croatia.<br />

Postmortem Interval, Body Parts, Croatian Coast<br />

299 * Presenting Author


H13 The Difference Between an Individual’s<br />

Self-Reported, Perceived, and Actual<br />

Height and Its Forensic Significance<br />

Valerie B. Russell, BA*, 8 Thomas Court, Valley Cottage, NY 10989<br />

After attending this presentation, attendees will understand patterns<br />

of reporting error in self-reported height, discrepancies between the ways<br />

that others perceive an individual’s height, and factors that may influence<br />

these discrepancies such as diurnal variation in a person’s height and how<br />

these differences may affect the positive identification of an unknown,<br />

deceased individual.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing insight into the variability between an individual’s<br />

estimated stature when it is reported via different means. Using the<br />

different methods discussed in this approach may furnish investigators<br />

with a very large range for an individual’s stature which could preclude a<br />

positive identification from being made.<br />

The role of the anthropologist in death investigations has ranged from<br />

the recovery to the analysis of human remains from single cases of<br />

homicide to mass fatality incidents in all corners of the world. In many<br />

cases, the forensic anthropologist is given the task of comparing<br />

antemortem (AM) records with postmortem (PM) information. The most<br />

common characteristics usually compared include basic attributes of the<br />

biological profile of the deceased, such as age, sex, and stature. The<br />

usefulness of these attributes for identification purposes relies on the<br />

existence of AM records for comparison purposes. It has long been noted<br />

that records do not accurately reflect an individual’s height because of the<br />

difference between self-reported and actual measured height (Schlichting<br />

et al., 1981; Himes and Roche, 1982; Palta et al., 1982; Stewart, 1982;<br />

Boldsen et al., 1986; Giles and Hutchinson, 1991; Willey and Falsetti,<br />

1991). Furthermore, how biased is an estimation of that individual’s<br />

stature by others, taking into account the demographics of that population?<br />

The sample consists of Caucasian volunteers between the ages of 18<br />

and 45 (n=63). A wall-mounted stadiometer was calibrated and stature<br />

was measured to the nearest one-tenth of a centimeter. Volunteers arrived<br />

in groups of five and were asked to silently estimate their own height and<br />

the height of the other volunteers in the group, recording these values in<br />

the corresponding spaces on their data collection sheets. After the data<br />

sheets were collected, their standing height was measured three times per<br />

volunteer. Volunteers returned between five and eight hours later and were<br />

measured three more times. Diurnal variation, the differences between<br />

self-reported, perceived and actual height, and the range of perceived<br />

heights were calculated.<br />

The researcher’s objectives are to discover if there are any patterns<br />

and/or relationships between sex and self-reported height, how an<br />

individual’s height is perceived, and the variability of actual height at both<br />

times it was measured during the day. Also, determining if an individual’s<br />

height has any affect on the accuracy of how they perceive another’s<br />

height will be useful when family members and friends are called upon to<br />

provide information about an individual, which frequently happens in<br />

contexts outside the developed world, when documents of the deceased<br />

are nonexistent more often than not.<br />

When a positive identification for a deceased individual is sought,<br />

AM medical records may be one of the primary sources for providing<br />

information. Measured stature may be available from this source,<br />

although information may not be up-to-date. If medical records are not<br />

available, other forms of identification, such as a driver’s license, may be<br />

used for comparison, which would supply investigators with a selfreported<br />

stature estimation. In some cases, family and friends will be<br />

asked to provide information about the deceased, although they may have<br />

different perceptions of an individual’s stature. These three sources of<br />

information may generate a very large range for an individual’s purported<br />

stature, which could preclude a positive identification.<br />

Unidentified, Stature, Self-Reported<br />

* Presenting Author<br />

H14 Sex and Stature Estimation Based on the<br />

Calcaneus, Talus, and Metatarsal Length<br />

Dawn M. Strohmeyer, MS*, 12 Bridge Street, Hitchin, Hertfordshire SG5<br />

2DE, United Kingdom; and Tal L. Simmons, PhD, Department of<br />

Forensic and Investigative Science, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, United Kingdom<br />

After attending this presentation, attendees will understand an<br />

alternative method to sex determination and stature estimation based on<br />

the bones of the feet.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a means to aid in identification when remains<br />

are in a poorly preserved state allowing the investigator to determine sex<br />

and estimate stature based on the resilient bones of the feet.<br />

It has long been known that a relationship exists between lower long<br />

limb bone lengths and stature; this is often used to estimate stature.<br />

However, on occasion an individual is only represented by fragments of<br />

the long bones, or the smaller, more compact bones of the feet. Although<br />

a relationship exists between the maximum length of these bones and an<br />

individual’s height, very little research documents the utility of estimating<br />

stature from foot bones.<br />

The purpose of this study was to provide investigators with stature<br />

regression formulae for use on the bones of the feet. Using the maximum<br />

length measurement of the right and left calcaneus, talus, and all ten<br />

metatarsals of 200 individuals (50 each of White females, White males,<br />

Black females, and Black males) from the Terry Collection, discriminate<br />

analyses were performed to confirm significant differences existed<br />

between the groups used in this study. Regression analyses followed<br />

which produced formulae to estimate stature based on race and sex for use<br />

when intact lower limb bones are not present.<br />

Results from this study indicate that the foot bones are poor in their<br />

predictability of sex, race, and stature. However, when other methods of<br />

sex and stature estimation are unavailable, the bones of the feet provide a<br />

possible alternative method. In this study, more accurate sex determination<br />

was achieved based on the measurements for blacks than whites. Stature<br />

regression formulae from the foot bones of black females were found to<br />

be at least as accurate as those for metacarpals and fragmentary limb<br />

bones; foot bones from the other groups were not as accurate.<br />

Ultimately, the aim of this study was to aid in the identification of<br />

servicemen from the Vietnam and Korean Wars who are recovered from<br />

archaeological contexts with poor skeletal representation or preservation.<br />

The robust and compact nature of the foot bones used in this study allows<br />

them to be recovered, especially in a burial or internment context.<br />

Therefore, this investigation was completed on these bones in order to<br />

offer investigators an alternative method of stature estimation when the<br />

use of other methods is not possible.<br />

Stature, Metatarsals, Calcaneus<br />

300


H15 Sex Determination of Koreans<br />

Through Cervical Vertebrae<br />

Dae-Kyoon Park, MD, PhD*, Soonchunhyang University, Department of<br />

Anatomy, College of Medicine, 366-1, Ssangyong-dong, Cheonan-si,<br />

Chungcheongnam-do, Choenan-si, Seoul 330946 Korea, Republic of<br />

Korea; U-Young Lee, MD, National Institute of Scientific Investigation,<br />

Division of Forensic Medicine, 331-1 Sinwol 7-dong, Yangcheon-gu,<br />

Seoul, Seoul 158707 Korea, Republic of Korea; Yi-Suk Kim, MD,<br />

Gachon University of Medicine and Science, Department of Anatomy,<br />

1198 Guwol-dong, Namdong-gu, Incheon-si, Seoul 405760 Korea,<br />

Republic of Korea; Deog-Im Kim, BA, and Seung-Ho Han, MD, PhD,<br />

The Catholic University of Korea, College of Medicine, Catholic<br />

Institute for Applied Anatomy, Department of Anatomy, 505, Banpodong,<br />

Seocho-gu, Seoul, Seoul 137701 Korea, Republic of Korea; and<br />

In-Hyuk Chung, MD, PhD, Yonsei University College of Medicine,<br />

Department of Anatomy, 134, Sinchon-dong, Seodaemun-gu, Seoul,<br />

Seoul 120749 Korea, Republic of Korea<br />

After attending this presentation, attendees will understand the<br />

preliminary results of biological profiles of Koreans from the documented<br />

skeletal collection at Yonsei University in Korea.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the results of a metric study about the cervical<br />

vertebrae that shows sexual dimorphism and the usefulness of the<br />

documented skeletal collection at Yonsei University for determination of<br />

biological profiles in Koreans.<br />

Terry collection specimens housed at the Smithsonian Institution and<br />

Hamann-Todd collection individuals at the Cleveland Museum of Natural<br />

History are two well-known examples of documented human skeletal<br />

specimens. Many statistical studies of morphological characteristics about<br />

documented human skeletal specimens have been performed and provide<br />

information about the characteristics of a population. On the basis of these<br />

results, reconstruction of biological profile for unidentified skeletal<br />

remains can be possible. However, the statistical data about Korean<br />

ancestry has not been established because documented human skeletal<br />

specimens are lacking in Korea. The Department of Anatomy at Yonsei<br />

University College of Medicine has been collecting the skeletons from<br />

dissecting cadavers after anatomy class since the 1990s, and<br />

approximately 100 specimens were collected. This study will demonstrate<br />

the preliminary results on the determination of sex by metric study of the<br />

cervical vertebrae derived from studying this documented collection.<br />

This study attempted to duplicate a series of metric dimensions as<br />

defined by previous studies; however, the sample size in the dissecting<br />

cadavers was limited. The list of measurements taken includes the<br />

dimensions of the vertebral body, dimensions of vertebral foramen (spinal<br />

canal), and the size of the vertebrae. Twenty-one measurements of the<br />

atlas [length and width of atlas, maximum length and width of superior<br />

and inferior articular facets, maximum breadth between superior and<br />

inferior articular facets, sagittal and transverse diameter of vertebral<br />

foramen (spinal canal)] and 14 measurements of the axis were taken. All<br />

measurements were taken using digimatic caliper (Mitutoyo Co., Japan)<br />

and statistical analyses were performed using SPSS (version 11.0).<br />

Among the 21 measurements of the atlas, the maximum breadth<br />

between the superior articular facets exhibited the strongest principal<br />

component for determination of sex. Atlas width also exhibited strong<br />

relation with sex, while maximum lengths and widths of superior &<br />

inferior articular facet did not. The latter measurements were reported to<br />

suggest sexual dimorphism in previous studies, and this fact might cause<br />

difficulty in determination of sex for fragmentary atlas in Koreans.<br />

However, six measurements were selected in arbitrary discriminant<br />

functions, and showed more than 85% of hit ratio. Concerning the 14<br />

measurements of the axis, axis width exhibited the strongest principal<br />

component for determination of sex, and discriminant functions showed<br />

more than 80% of hit ratio. The sagittal and transverse diameter of the<br />

vertebral foramen (spinal canal) of the axis appeared to exhibit a<br />

relationship with sex, but those of the atlas did not.<br />

This presentation could indicate that metric data of cervical vertebrae<br />

are helpful to determine the sex in Koreans especially certain<br />

measurements of the atlas and axis. Also the documented skeletal<br />

collection at Yonsei University could be helpful to establish the Korean<br />

biological profile. Further investigation is necessary so that differences<br />

among ancestries could be performed, and common landmarks for<br />

measurements of sex-determination using cervical vertebrae would be<br />

established.<br />

Koreans, Sex-determination, Cervical Vertebrae<br />

H16 Stages of Epiphyseal Union in the Cervical<br />

Vertebrae of Young Adult Skeletons<br />

Melissa A. Torpey, MS*, Michigan State University, 7 Gardenwood<br />

Drive, Asheville, NC 28803<br />

After attending this presentation, attendees will have an<br />

understanding of the stages of epiphyseal union of the cervical vertebral<br />

centra and its utility in aging an individual through observational analysis.<br />

This presentation will impact the forensic community and/or<br />

humanity by contributing to the overall body of knowledge of forensic<br />

anthropology and skeletal analysis. Age estimation is one of the greatest<br />

challenges faced by forensic anthropologists and this presentation expands<br />

the knowledge of the maturation of the cervical vertebrae and its utility for<br />

age estimation for young adult skeletons.<br />

The goal of this presentation is to introduce the application of the<br />

Albert and Maples (1995) stages of epiphyseal union to the cervical<br />

vertebrae and the utility of doing so. These findings contribute to the<br />

overall body of knowledge of skeletal analyses, specifically focused on the<br />

understanding of the timing and rate of epiphyseal union in the cervical<br />

vertebrae, as well as the rest of the vertebral column.<br />

For this study, 77 individuals from the Hamann-Todd Osteological<br />

Collection housed at the Cleveland Museum of Natural History were<br />

observed. The sample consisted of 11 white females, 27 black females, 15<br />

white males, and 24 black males aged 12 to 27 years at death. Eleven<br />

surfaces of the cervical vertebral centra were scored based on the method<br />

developed by Albert and Maples (1995). The eleven surfaces include the<br />

inferior surface of C2 and the superior and inferior surfaces of C3 through<br />

C7. Each surface received a score between 0 and 3 to represent the stage<br />

of epiphyseal union. Stage 0 represents no union, stage 1 represents<br />

beginning union with minimal attachment between the epiphyses and<br />

centra, stage 2 is characterized by almost complete union, and stage 3 is<br />

characterized by a completely mature vertebral body.<br />

A review of the literature displays past discussions on the sequence<br />

of epiphyseal union throughout the body by Stevenson (1924) and Todd<br />

(1930), and radiographic analyses of epiphyseal union by several authors<br />

including Flecker (1942) and Girdany and Golden (1952). A radiographic<br />

analysis of epiphyseal union can only demonstrates incomplete or<br />

complete epiphyses, whereas an anthroposcopic analysis enables the<br />

researcher to observe the progression of union of the epiphyses, and<br />

therefore, facilitates the development of a scoring method. Observations<br />

about the extent to which the union has progressed are important in<br />

understanding the amount of time it takes for complete fusion to occur and<br />

any pattern in how the fusion occurs.<br />

The timing and rate of epiphyseal union for the cervical vertebrae<br />

was studied to determine its relationship to the known age of the decedents<br />

in the sample. Results from cervical vertebral centra were compared to<br />

results of thoracic and first two lumbar vertebrae from the previous Albert<br />

and Maples (1995) study to determine if the rate and pattern of epiphyses<br />

of the centra were similar or different.<br />

Observational and statistical analyses of the rate and pattern of the<br />

progress of epiphyseal union of the vertebral centra were performed.<br />

301 * Presenting Author


Observations did not result in significant findings regarding the pattern of<br />

epiphyseal union for the vertebral centra. However, in regards to<br />

comparison throughout the entire vertebral column, the vertebral centra<br />

epiphyseal union of the cervical vertebrae initiated union as early as 12<br />

years whereas the youngest individual to exhibit beginning union on any<br />

vertebrae was 14 years in females and 16 years, 4 months in males in the<br />

Albert and Maples (1995) sample of thoracic and first two lumbar<br />

vertebrae. Statistical analyses resulted in the same correlation between<br />

age and stage of epiphyseal union as that found by Albert and Maples<br />

(1995) showing the reliability of the scoring method throughout the entire<br />

vertebral column. This study demonstrated that aging an individual<br />

through observations of cervical vertebral centra epiphyseal union is as<br />

accurate and reliable as using the thoracic and first two lumbar vertebrae.<br />

The results of this research provide additional information about<br />

cervical vertebral centra epiphyseal union including the time at which<br />

beginning union initiates, the progress of union, and the age of complete<br />

union. This information aids in an age analyses for a biological profile of<br />

an unknown individual. This research could potentially help in both<br />

archaeological and forensic situations, such as in mass disaster or mass<br />

grave circumstances, concerning commingled remains.<br />

Cervical Vertebrae, Age, Epiphyseal Union<br />

H17 New Method of Skeletal Age Estimation<br />

Based on Progressive Morphological<br />

Changes in Vertebral Column<br />

Eva-Elvira Klonowski, PhD*, Nermin Sarajlic, PhD, MD, and Senem<br />

Skulj, BSc, International Commission on Missing Persons, Alipasina<br />

45A, Sarajevo, 71 000, Bosnia and Herzegovina<br />

After attending this presentation, attendees will be introduced to a<br />

new method of age estimation based on changes in the morphology in<br />

thoracic and lumbar vertebrae.<br />

This presentation will impact the forensic community and/or<br />

humanity by allowing forensic anthropologists to verify and use this new<br />

aging method for narrowing age ranges estimation, and therefore for more<br />

correct age at death estimation, essential in identification of unknown<br />

human remains.<br />

The estimation of age at death from the skeletal remains of unknown<br />

individuals is an essential part of the identification process (Krogman and<br />

Iscan, 1986). During the last decades many anthropologists have tried to<br />

modify old aging methods as well as develop new ones in order to achieve<br />

greater accuracy in estimation of age at death of unknown skeletal<br />

remains. Most of these efforts were concerned either with improving and<br />

testing the effectiveness of accepted standards or with introducing new<br />

aging methods based on age-related changes in such bones as the sternal<br />

rib (Iscan et al., 1984) and the auricular surface of ilium (Lovejoy at al.,<br />

1985). These latter sites were chosen because previous observations<br />

indicated that changes occurred in these skeletal elements throughout an<br />

individual’s life.<br />

Although reported figures differ, about 30,000 people were<br />

unaccounted for and considered “missing” after three and a half years of<br />

war in Bosnia and Herzegovina (1992-1995). The exhumation and<br />

identification process began immediately following the end of the war.<br />

During the examination of hundreds of skeletal remains exhumed in<br />

Bosnia and Herzegovina, the authors found that the pattern of changes<br />

observed in the vertebral body can be used as additional indicators for<br />

estimation of age at death. The variables that contribute to the overall<br />

pattern of change include (1) the sequence of fusion of the internal rim of<br />

the epiphyseal rings to the surface of the vertebral body, (2) the subsequent<br />

absorption of the rings into body, and (3) age related changes to superior<br />

and inferior edges and surfaces of the body itself.<br />

The progression of the union of epiphyseal rings in thoracic and<br />

lumbar vertebrae in teenagers and young adults was studied and described<br />

* Presenting Author<br />

by McKern and Stewart (1957) and Albert and Maples (1995). Vertebral<br />

ring epiphyseal unification was observed from the anterior as well as the<br />

superior and inferior sides of the vertebral body. While examining the<br />

vertebrae, the authors realized that Albert and Maples’ (1995) description<br />

of unification of the epiphyseal rings related only to the fusion of the<br />

external margin of the ring to the vertebral body, while fusion of the<br />

internal rim of the ring was not observed.<br />

The remains used in this study comprise individuals killed during<br />

ethnic cleansing actions in 1992 in Krajina, in northwest Bosnia. All of the<br />

individuals examined for this study were exhumed from mass graves in<br />

the Krajina, between 2001 and 2005. For this study, a series of six<br />

vertebrae from 360 skeletal remains representing males of known age<br />

were examined. For each individual, the last three thoracic (Th10 – Th12)<br />

and first three lumbar (L1 – L3) were examined. The remains were<br />

completely skeletonized. The process of decomposition of soft tissues and<br />

skeletonization was natural and all examined vertebrae were dry, showing<br />

no trace of soft tissue (e.g. free of intervertebral cartilage and periosteum),<br />

which enabled the observation of changes in fusion of the vertebral rings.<br />

Three features at the vertebrae bodies were examined: fusion of the<br />

internal rim of epiphyseal rings observed from posterior (dorsal) view,<br />

changes in shape of the superior and inferior edges of the vertebral body<br />

and changes of texture of the superior and inferior surface of the vertebral<br />

body. Each vertebra was scored according to the presence and<br />

development of those three features with age.<br />

A comparison of real and estimated ages of identified remains has<br />

shown that age-related changes observed in the vertebral column can<br />

contribute significantly to narrowing estimated age ranges, especially for<br />

individuals between the ages of 25-45 years, who constitute the majority<br />

of the missing from Bosnia and Herzegovina.<br />

References:<br />

1 Krogman, W.M., and Iscan, M.Y. (1986). The human skeleton in forensic<br />

medicine (2nd edition), Springfield, Illinois: C.C. Thomas<br />

2 Ýscan, M.Y., Loth S.R., and Wright R.K. (1984). Age estimation from<br />

the rib by phase analysis: white males. Journal of Forensic Sciences,<br />

29(4): 1094-1104.<br />

3 Lovejoy, C.O., Meindl, R.S., Pryzbeck, T.R., and Mensforth, R.P. (1985).<br />

Chronological metamorphosis of the auricular surface of the ilium: A new<br />

method for the determination of adult skeletal age at death. American<br />

Journal of Physical Anthropology, 68: 15-28.<br />

4 McKern, T.W., and Stewart, T.D. (1957). Skeletal age changes in young<br />

American males. Natick, Massachusetts: Quartermaster Research and<br />

Development Command Technical Report EP-45.<br />

5 Albert, A.M., and Maples, W.R. (1995). Stages of epiphyseal union for<br />

thoracic and lumbar vertebral centra as a method of age determination for<br />

teenage and young adult skeletons. Journal of Forensic Sciences, 40 (4):<br />

623-633.<br />

Age Related Changes, Aging Techniques, Forensic Anthropology<br />

H18 Progression of Intra-Epiphyseal<br />

Union and its Predictive Capability<br />

in Fragmented Remains<br />

Maureen Schaefer, MA*, University of Dundee, Anatomy and Forensic<br />

Anthropology, Faculty of Life Sciences, MSI/WTB Complex, Dundee,<br />

DD1 5EH, United Kingdom<br />

The goal of this presentation is to document the progression of intraepiphyseal<br />

union for the major long bones of the limbs. Statistical analysis<br />

will be used to support progression patterns for confidence in the forensic<br />

context.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting a new and innovative method for the analysis and<br />

re-association of commingled and fragmented juvenile remains.<br />

Understanding the pattern by which union progresses in an epiphysis<br />

302


offers the ability to reasonably predict the possible range of maturity of the<br />

entire epiphysis based on a recovered fragment. Once biological maturity<br />

of that epiphysis is assessed then re-association with similarly mature<br />

material is permitted.<br />

Commingled and fragmentary remains pose specific problems in the<br />

analysis and description of human skeletal remains. The loss of key<br />

skeletal features commonly used to indicate sex, age, stature or race can<br />

hinder the ability to establish biological profiles and therefore the accurate<br />

reassembly of individuals. However, if a biological indicator is only partly<br />

missing, the part remaining may yet provide sufficient evidence to predict<br />

the condition of the missing fragments, thus still allowing some viable<br />

indication of biological identity.<br />

Understanding the temporal sequence in which the various epiphyses<br />

of the body unite can be useful for re-associating bones from individuals<br />

of similar chronological age, but perhaps different maturity status<br />

(Schaefer, 2006). However, if only part of an epiphysis is present, the<br />

maturity assessment of the epiphysis as a whole may be skewed if the full<br />

pattern of fusion options is not fully understood. For example, if an<br />

epiphysis that is actively fusing becomes fragmented and the only<br />

fragment of bone that is recovered displays complete union, then the<br />

temptation will be to assume that the entire epiphysis has fused. This will<br />

inevitably lead to an over assessment of age and potentially incorrect<br />

biological profile and/or impede reassociation of parts. However if it is<br />

known that this is the first part of the epiphysis to commence union, then<br />

the range of possible ages can be extended to reflect the precocious nature<br />

of this feature. The fusion status of the fragment may provide useful<br />

ranges of potential maturity for the epiphysis as a whole if the sequence in<br />

which union progresses through the epiphysis is fully understood.<br />

Progression of union was documented on a sample of 73 Bosnian<br />

males by recording the status of intra-epiphyseal union around the<br />

periphery of the bone. This was achieved by functionally dividing the<br />

epiphysis into segments in much the same way as a two dimensional map<br />

documents three-dimensional objects. The epiphysis was conceptually<br />

“unrolled” into a flattened continuous scale so that it was possible to<br />

visually record the location where peripheral union had, or had not, taken<br />

place.<br />

Intra-epiphyseal progression was established for the epiphyses of the<br />

proximal humerus, ulna, femur and tibia, the distal radius, femur and tibia<br />

and the ischial tuberosity. Progressions patterns were first determined<br />

using observational analysis and were later confirmed through statistical<br />

analysis. Mathematical computations required that the visual data be<br />

transformed into a numerical format. Each segment of an epiphysis was<br />

assigned a score between zero and four depending on its degree of fusion<br />

(0 = no union, 1 = less then 1/3 union, 2 = around half union, 3 = more<br />

than ¾ union, and 4 = complete union). A Kruskal-Wallis Analysis of<br />

Variances was then performed comparing each segment of an epiphysis to<br />

each of the other segments of that same epiphysis. If the mean scores<br />

between any of the two segments displayed a statistically significant<br />

difference then it could be inferred with some confidence that the union<br />

status of one segment was either in advance of, or retarded to, the other<br />

segment.<br />

The results of this analysis show that the first and or last areas to unite<br />

on an epiphysis are frequently statistically different from the other<br />

segments of that epiphysis indicating that there is a predictive progression<br />

to intra-epiphyseal maturation which may be of sufficiently significant<br />

value to aid in the assessment and reassociation of fragmented remains.<br />

Reference:<br />

1 Schaefer M. Forensic application of epiphyseal sequencing. Proceedings<br />

of the American Academy of Forensic Sciences, 2006;24H.<br />

Epiphyseal Union, Commingled Remains, Bosnia<br />

H19 Age Determination From the Medial<br />

and Lateral Clavicle: A Re-Evaluation<br />

of Present Scoring Systems<br />

Natalie L. Shirley, MA*, and Richard L. Jantz, PhD, The University of<br />

Tennessee Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

After attending this presentation, attendees will become aware of the<br />

differences between various scoring systems used to determine age from<br />

the medial clavicle and will understand the usefulness of applying a<br />

transition analysis to this aging method. Additionally, this presentation<br />

will explore the lateral clavicle as a useful aging tool.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the necessity for continual updating of the<br />

samples from which standards are developed and a re-evaluation of<br />

methods, updating of samples and using modern data to assess age of<br />

modern skeletons.<br />

The Daubert decision has made rigorous testing and evaluation of<br />

forensic methods essential in all fields of the forensic sciences. In forensic<br />

anthropology, the documentation of secular change in human skeletal<br />

dimensions necessitates continual updating of the samples from which<br />

standards are developed. This research answers the call for the reevaluation<br />

of methods and updating of samples.<br />

Background: The medial end of the clavicle is the last epiphysis to<br />

fuse in the human skeleton. This epiphysis remains unfused into<br />

adulthood, sometimes into the late twenties. Furthermore, whereas limb<br />

bone epiphyses can fuse in as little as 1 year, union of the medial clavicle<br />

takes at least 2 to 3 years 1 . Consequently, the medial clavicle can provide<br />

accurate age estimates of young adults.<br />

Early attempts at developing a scoring system include those of<br />

Stevenson 2 and Todd and D’Errico 1 . Today, most anthropologists rely on<br />

McKern and Stewart’s 3 system developed using the Korean War sample of<br />

American males, Webb and Suchey’s 4 system developed using an autopsy<br />

sample from Los Angeles county, and/or Black and Scheuer’s 5 system<br />

developed using 18th, 19th, and 20th century skeletons from three<br />

European collections.<br />

Typically, transition analysis is used to analyze senescent changes in<br />

bone 6 , but the medial clavicle is a good candidate for such an analysis<br />

because the extended development of this epiphysis is represented in a<br />

series of stages. In this study, transition analysis shows the average age at<br />

which an individual transitions from one stage to the next.<br />

Methodology: This study’s sample is a subset of the University of<br />

Tennessee’s William F. McCormick Clavicle Collection, a modern<br />

autopsy collection assembled between 1986 and 1998. The sample<br />

consists of 563 individuals born between 1962 and 1983 (424 males and<br />

139 females). The individuals were between the ages of 12 and 33 at the<br />

time of death. Ninety-five percent of the sample is Caucasian, 4% is<br />

African American, and the remaining 1% are Asian, Latino, and Indian.<br />

The lateral clavicular epiphysis was scored as “not fused”, “fusing”,<br />

or “fused”. The medial clavicles were scored with Todd and D’Errico 1 ,<br />

McKern and Stewart 3 , Webb and Suchey 4 , and Black and Scheuer 5 . The<br />

McKern and Stewart system was found to be the most comprehensive in<br />

estimating stage of union. This scoring system utilizes 5 phases: 0=no<br />

closure, 1=beginning union, 2=active union, 3=recent union with scar, and<br />

4=complete union with no scar. The other systems were either lacking an<br />

important phase or included phases that could not be evaluated on this<br />

skeletal sample. Consequently, a transition analysis was performed on the<br />

McCormick clavicle sample using this scoring system, as well as on<br />

McKern and Stewart’s data for the medial clavicle. Additionally, a<br />

transition analysis was performed on the McCormick data for the lateral<br />

clavicle using the 3 stages mentioned earlier.<br />

Results and Discussion: According to the transition analysis of the<br />

lateral epiphysis, the average age at which an individual goes from “no<br />

303 * Presenting Author


fusion” to “fusing” is 17 years. The average age at which an individual<br />

proceeds from “fusing” to “fused” is 19 years. There were no significant<br />

differences between males and females. The earliest age at which fusion<br />

began was 17 years. All individuals were fused by age 23.<br />

The transition analysis produced the following results for the medial<br />

clavicle:<br />

Transition McKern and Stewart McCormick McCormick<br />

Males Males Females<br />

Phase 0 to Phase 1 19.81 ± 0.22 16.95 ± 0.34 14.77 ± 0.65<br />

Phase 1 to Phase 2 21.82 ± 0.22 20.42 ± 0.27 19.07 ± 0.48<br />

Phase 2 to Phase 3 23.59 ± 0.26 24.28 ± 0.25 23.28 ± 0.47<br />

Phase 3 to Phase 4 26.23 ± 0.32 27.21 ± 0.22 27.06 ± 0.40<br />

These results show that differences exist between males and females<br />

concerning the average age at which fusion commences (Phase 0 to Phase<br />

1); specifically, fusion begins earlier in females. Furthermore, the McKern<br />

and Stewart sample and the McCormick sample show differences in the<br />

first two transitions. The McCormick individuals begin fusion earlier than<br />

the Korean War males. This difference could be due to secular change in<br />

growth. Therefore, these results show the importance of modern data to<br />

assess age of modern skeletons.<br />

References:<br />

1 Todd TW, D’Errico J. The clavicular epiphyses. Am J Anat 1928;<br />

4:25-50.<br />

2 Sevenson PH. Age order of epiphyseal union in man. Am J Phys<br />

Anthropol 1924;7:53-93.<br />

3 McKern TW, Stewart TD. Skeletal age changes in young American<br />

males: analyzed from the standpoint of age identification. Natick,<br />

Massachusetts: Quartermaster Research and Development Center,<br />

Environmental Protection Research Division; 1957. Report No.: EP-45.<br />

4 Webb PAO, Suchey JM. Epiphyseal union of the anterior iliac crest and<br />

medial clavicle in a modern multiracial sample of American males and<br />

females. Am J Phys Anthropol 1985;68:457-66.<br />

5 Black S, Scheuer L. Age changes in the clavicle: from the early neonatal<br />

period to skeletal maturity. Int J Osteoarchaeology 1996;6:<br />

425-34.<br />

6 Boldsen JL, Milner GR, Konigsberg LW, Wood JW. Transition analysis:<br />

a new method for estimating age from skeletons. In: Hoppa RD, Vaupel<br />

JW, editors. Paleodemography: age distributions from skeletal samples.<br />

Cambridge: Cambridge University Press, 2002; 73-106.<br />

Age Estimation, Medial Clavicle, Transition Analysis<br />

H20 Forensic Age-at-Death Estimation<br />

From the European American Male<br />

Sacrum: A New Component System<br />

Nicholas V. Passalacqua, BA*, Mercyhurst College, Department Applied<br />

Forensic Sciences, Zurn 119A, 501 East 38th Street, Erie,<br />

PA 16546<br />

The goal of this presentation is to demonstrate a new method for<br />

determining age-at-death from the human sacrum.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing another researched skeletal region, increase the<br />

potential of age-at-death assessment, and demonstrate the utility of a new<br />

sequentially-coded component system, allowing for a greater<br />

understanding of the morphological gestalt than previous “summing”<br />

component systems.<br />

The present contribution describes a newly developed sequentially<br />

coded component system for evaluating seven morphologies of the human<br />

sacrum in the production of statistically valid chronological age estimates.<br />

Accurate age-at-death estimation from human skeletal attributes is<br />

critical for establishing a comprehensive and forensically significant<br />

* Presenting Author<br />

biological profile of an unknown individual, which in turn facilitates the<br />

victim identification process. The introduction of novel techniques for<br />

reliable estimation of chronological age from previously unresearched<br />

skeletal areas represents a valuable contribution to the field for a number<br />

of important reasons: 1) it enhances the capability of assessing age in<br />

incomplete, fragmented, and/or commingled sets of human remains,<br />

especially in cases in which other diagnostic areas may be lost or<br />

taphonomically altered; and 2) by increasing the number of skeletal areas<br />

studied in the unknown individual, new age estimation techniques often<br />

serve to narrow the confidence intervals of the final age assessment. This<br />

is particularly valuable when new techniques provide accurate age<br />

estimates for later adult stages, as degenerative processes show a much<br />

higher population variability in comparison to the developmental<br />

processes, typically resulting in wider confidence intervals.<br />

The primary aim of this study was to determine whether<br />

morphological changes observed in the auricular surface of the sacrum<br />

and associated structures (seemingly mirroring the degenerative aging<br />

processes observed in the conjoining structure of the ilium), could be<br />

statistically correlated with chronological age. The sacrum is particularly<br />

useful for age estimation in that a number of clearly defined<br />

developmental changes (such as fusion of the first sacral vertebral body<br />

epiphysis) continue well into adult life of the individual. Therefore,<br />

evaluations of morphological changes documenting both degenerative and<br />

developmental stages might be combined to produce a new, more precise<br />

analytical technique for estimating age at death from the sacrum.<br />

The first phase of the present study consisted of the analysis of a<br />

sample of 109 sacra of European American males from the early 20th<br />

century Hamann-Todd Collection (Cleveland Museum of Natural History,<br />

Cleveland, Ohio), to assess age-trait correlations and develop the<br />

morphological stages and confidence intervals associated with the new<br />

method. Seven developmental and degenerative non-metric traits of the<br />

sacrum were studied including: fusion of sacral body elements 1 and 2,<br />

fusion of sacral body elements 2 and 3, degree of auricular apical lipping,<br />

state of auricular surface epiphyseal fusion, first sacral vertebral body<br />

epiphyseal union, auricular surface microporosity, and auricular surface<br />

macroporosity.<br />

Originally, each morphological character was scored according to<br />

multiple trait variants (3-5 character states), similar to those employed in<br />

age determination from the ilium. However, the initial results<br />

demonstrated that in most cases the intermediate trait stages did not<br />

significantly contribute to the accuracy or precision of the age estimates,<br />

when compared to those obtained by coding most traits as binomial<br />

variables (i.e., on a presence-absence basis). This significantly simplifies<br />

the scoring system and serves to reduce inter-observer error.<br />

The results of the initial phase of the study suggested that by<br />

including both developmental and degenerative features in the analysis,<br />

the seven traits could be sequentially arranged to reflect the differential<br />

timing of significant aging events (i.e., clearly defined age-correlated<br />

morphological changes). Consequently, a sequential coding component<br />

system was developed in which coding scores for each of seven traits were<br />

arranged to produce a seven-digit score. The order of appearance of each<br />

trait within the seven-digit score was calculated to maximize the<br />

Spearman’s rank correlation coefficient of the code with age. Rank order<br />

statistics were selected to obtain a coding system in which a higher score<br />

in the seven-digit code corresponds more frequently to an older individual.<br />

Each unique seven-digit component score was then translated into a verbal<br />

and graphic description of the combination of morphological traits<br />

(morphological stage) and associated with an appropriate statistically<br />

validated chronological age interval (68 and 95% probabilities).<br />

The new analytical method was tested on an independent sample of<br />

modern sacra from the William M. Bass Donated Collection (n=150),<br />

housed at the University of Tennessee, Knoxville. The method proved to<br />

be forensically accurate when tested on this independent sample.<br />

This research indicates that the sacrum can be used to reliably<br />

estimate age-at-death in European American male individuals.<br />

Age-at-Death Estimation, Sacrum, Forensic Anthropology<br />

304


H21 Accuracy of Age Estimates<br />

Using the Pubic Symphysis<br />

Michael Finnegan, PhD*, Kansas State University, 204 Waters Hall,<br />

Manhattan, KS 66506-4000<br />

The goal of this presentation is to reports the accuracy of three<br />

methods of age estimation, based on the metamorphosis of the pubic<br />

symphysis as assessed by advanced student and professional forensic<br />

anthropologists, and promotes the continual self-evaluation of extant<br />

methodologies.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the results of this study that support the<br />

usefulness of age estimates based on the pubic symphysis and should<br />

positively impact the methods of choice in the application and practice of<br />

forensic anthropology.<br />

During the 26th Annual Meeting of the Mountain, Desert and Coastal<br />

Forensic Anthropologists (Lake Mead 24 – 26 May 2006) a workshop was<br />

held on the parameters of age assessment from the pubic symphysis.<br />

Backgrounds, samples and general rationale were presented for the<br />

methods of Todd, McKern and Stewart, Gilbert and McKern and Suchey<br />

and Brooks. The meeting participants were then divided into eight groups.<br />

Each group was given 10 pubic bones. Each individual scored each of the<br />

10 bones by the method they were most familiar. The scoring sheet<br />

required which method or technique was used and the number of years<br />

experience working with aging techniques (5 year increments). The<br />

remainder of the scoring sheet had columns for recording the pubic<br />

symphysis identification number, age estimate (either years or phase),<br />

known age, and difference between the estimated age and the known age.<br />

Reprints of articles of the different methods were available and standard<br />

pubic symphysis casts were available for the Suchey-Brooks and the<br />

Gilbert-McKern methods. Illustrations were available for the Todd<br />

method.<br />

The pubic bones used in this study were part of the Teixeira autopsy<br />

collection dating from 1982 and 1983. Age is known for all specimens,<br />

and sex and ancestry are known for most specimens (68.75%). At the time<br />

of collection the pubic bones were cut parallel to and 1 to 1.5 cm away<br />

from the symphysis surface. Therefore, there is little or no inferior ramus,<br />

certainly not enough to accurately assess sex. The known ages of the<br />

pubic bones for each group varies, but each set of ten pubic symphyses has<br />

the same number of samples in each decade from the second through the<br />

seventh decade. The known ages in this sample range from 17 to 82 years.<br />

Eleven females and 44 males are in the sample, but equality of sex was not<br />

considered when generating the eight sub-groups. The basic sample held<br />

a variety of recorded ancestries: Negro = 6; White = 33; Mulatto = 11; and<br />

Japanese = 5. As such, sex and ancestry distributions were neither noted<br />

nor controlled.<br />

Summary statistics were generated from the workshop scoring sheets<br />

as reported in Tables 1 and 2. The breakdown of years of experience, the<br />

method of choice, range of error and the best single and mean estimations<br />

are presented. The mean years of experience fell in the category of less<br />

than 10 years (roughly 9.7). The mean error without regard to the method<br />

used was 11.58 years.<br />

Table 1. Summary statistics, experience.<br />

Number of Method Used<br />

Experience Individuals Suchey-Brooks Todd McKern-Stewart<br />


contacted. Of those, 725 consented to participate in this study, while 398<br />

declined participation. Unfortunately, due to reasons such as disease,<br />

examination conditions, and other restrictions, the bone segments of 165<br />

decedents for which permission was granted were not removed during<br />

examination and are not included. The sample also includes bone<br />

segments that were retained in Forensic Anthropology cases and<br />

unidentified individuals (N = 44), and from Barrow Neurological Institute<br />

(N = 24). Ultimately, viable bone segments from 630 individuals were<br />

obtained.<br />

The collection amassed consists of pubic symphyses and fourth rib<br />

ends from 419 males and 211 females, ranging in age from 18 to 99 years<br />

of age at death. The average age at death of the females in the sample is<br />

59.1 years and the average age of the males is 52.6 years. Individuals<br />

classified by the medico-legal system at the FSC as Asian, Black,<br />

Caucasian, and Native American are represented. A comprehensive<br />

database was created in Microsoft Excel that contains the pertinent<br />

biological information about each specimen (age, sex, race, etc.), drug and<br />

alcohol abuse history when available, and any other important<br />

information.<br />

Age was estimated using the Suchey-Brooks and Ýþcan and Loth<br />

methods. Correlation and contingency table comparisons between actual<br />

ages and estimated ages were performed as well as comparisons between<br />

the accuracy of the rib and pubic symphysis, and inter- and intraobserver<br />

error. The correlation results indicate that there are significant differences<br />

in the observed vs. actual ages in both the ribs (r = 0.75329, p < 0.001) and<br />

pubic symphyses (r = 0.68169, p < 0.001). Two volunteers with differing<br />

levels of experience also scored a subset of the whole sample (N = 100).<br />

These correlation results suggested that there were significant differences<br />

in the observed vs. actual scores for the two volunteers (vol. 1 pubic<br />

symphysis r = 0.58048, p < 0.001 and rib r = 0.72027, p < 0.001; vol. 2<br />

pubic symphysis r = 0.69936, p < 0.001 and rib r = 0.65517, p < 0.001).<br />

A CROSSTABS analysis was conducted to determine how many<br />

individuals were under- or over-aged using both phase methods.<br />

Intraobserver tests did not produce significant results.<br />

Next, the pubic symphyses and rib ends were seriated and sorted<br />

separately based on morphological characteristics without prior<br />

knowledge of the age at death. The female and male ribs were each<br />

placed into seven distinct morphological groups. New descriptions and<br />

age ranges were created and tested. The male and female pubic<br />

symphyses were also segregated into seven phases. A late phase, phase<br />

seven, was described for both males and females, and is comprised of<br />

individuals over 70 years of age at death. Summary statistics were<br />

calculated for each phase and descriptions for each phase were created.<br />

Based on the samples collected during the grant period, this study<br />

will build on the innovative work of earlier anthropologists who<br />

established the accepted aging standards utilized in forensic anthropology<br />

and bioarchaeology today. The current standards were developed after a<br />

great deal of effort and scientific insight on the part of the researchers.<br />

Although adequate, the methods are problematic due to sample size and<br />

statistical issues. Furthermore, the research collections from which the<br />

aging standards were developed are not easily accessible. Thus, this<br />

research has created a new, large, and modern documented sample that<br />

will be available for study and retesting.<br />

Pubic Symphysis, Sternal End of Fourth Rib, Aging<br />

* Presenting Author<br />

H23 Age Estimation From the Posterior<br />

and Middle Part of the Ilium<br />

Clotilde Rougé-Maillart, MD*, and Nathalie Jousset, MD, Service de<br />

Médecine Légale, CHU - 4 rue Larrey, Angers, 49933, France; Bruno<br />

Vielle, MD, Departement de Statistique, CHU - 4 rue Larrey, Angers,<br />

49933, France; Eugénia Cunha, MD, PhD, Departamento de<br />

Antropologia - Faculdade de Ciências, Universidade de Coimbra,<br />

Coimbra, 3000-056, Portugal; and Norbert Telmon, MD, PhD, Service<br />

de Médecine Légale, hôpital de Rangeuil - 1 Avenue Jean Poulhès,<br />

Toulouse, 31403, France<br />

The goal of this presentation is to describe a revised method for<br />

estimating adult age at death using the auricular surface and the<br />

acetabulum.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a revised method using the acetabulum and<br />

the auricular surface that preserves the os coxa and can be used on a large<br />

population with known ages.<br />

Introduction: The study of the posterior and middle part of the<br />

pelvis is of interest in forensic anthropology since it is an anatomical<br />

region that is very often preserved. The Lovejoy technique, using the<br />

auricular surface, has brought about many studies and attracted many<br />

authors foremost among them Buckberry and Chamberlain who utilized<br />

the criteria described by Lovejoy and developed new methods. By using<br />

this research as a starting point, in a preliminary study, acetabular criteria<br />

was described. The goal of this new study was to test these acetabular<br />

criteria and to link them to auricular surface reading criteria, as described<br />

by Buckberry and Chamberlain.<br />

Method: The study concerned 463 os coxae of known age and sex<br />

from Caucasian individuals (identified collection of Coimbra – Portugal).<br />

The examiner was not aware of the age of the bodies when assessment was<br />

made. Four criteria with the auricular surface were described, using<br />

Buckberry and Chamberlain’s method. The features used were transverse<br />

organization, surface texture, porosity and changes in the morphology of<br />

the apex. Each of the features was recorded independently and assigned a<br />

series of numerical scores corresponding to successive stages of degrees<br />

of expression. Concerning the acetabulum, three criteria were isolated:<br />

appearance of the acetabulum rim, appearance of the acetabulum fossa and<br />

apical activity. These criteria were observed and assigned a series of<br />

numerical scores corresponding to successive stages of degrees of<br />

expression. The age correlation of various criteria read at the acetabulum<br />

level and that of the auricular surface were studied. SPSS (software<br />

package for statistical analyses) were applied to evaluate the data. To argue<br />

the appropriateness of the variables and quantify correlation with age,<br />

Kruskal-Wallis tests were calculated. Mean, standard error and standard<br />

deviation have been considered. Intra- and inter-observer variability was<br />

also studied. A paired t-test was calculated for 114 individuals with both<br />

left and right auricular surfaces present. The difference between males<br />

and females with a regression line for both data sets was tested and a<br />

Spearman’s correlation coefficient was calculated.<br />

Results: Kruskal-Wallis statistics to quantify the correlation of each<br />

criterion with known age at death were all significant. This correlation is<br />

better once a score is established corresponding to the sum of ratings for<br />

the various criteria. Similar observations can be made regarding<br />

acetabulum criteria. Studying the correlation between the overall score<br />

(sum of acetabulum and auricular surface scores) and age is of interest.<br />

The method was tested for intra-observer error. Results are better when the<br />

overall score is studied. It’s the same thing with the inter-observer error.<br />

There were no significant differences between ages for males and females<br />

and between sides.<br />

Several total scores were found to have similar ranges, distributions<br />

and mean ages (using Buckberry and Chamberlain’s method). These<br />

scores were grouped together to produce seven stages for the purposes of<br />

age estimation. A Bayesian analysis was used to provide probability of<br />

age, given the stage.<br />

306


Discussion: Four acetabular criteria and four auricular surface<br />

criteria were isolated which have a correlation with age. Establishing<br />

these scores (sum of criteria) allows a better age-based correlation to be<br />

obtained. Establishing an overall score, including acetabular criteria and<br />

auricular surface criteria, allows a good level of correlation to be obtained<br />

with age, with low intra- and inter-observer variability. Several total<br />

scores to define a methodwere established. It has been shown that there is<br />

no significant difference between sexes and sides.<br />

Conclusion: The study of the acetabulum is of interest for the age<br />

estimation of adult subjects. The joint study of the acetabulum and the<br />

auricular surface allows a higher correlation with actual age to be<br />

obtained.<br />

The revised method using the acetabulum and the auricular surface is<br />

interesting. It’s easier to apply and has low levels of inter- and<br />

intraobserver error. The method outlined here needs to be tested using a<br />

large, multiracial known-age population.<br />

Skeletal Age at Death, Auricular Surface, Acetabulum<br />

H24 Bones in Aid of Forensic Pathology:<br />

Trauma Isn’t Only Skin Deep<br />

Laurent Martrille, MD*, Service de Médecine Légale, CHU Lapeyronie,<br />

191 Avenue du Doyen Gaston Giraud, Montpellier cedex 5, 34295,<br />

France; Cristina Cattaneo, MD, PhD, Istituto di Medicina Legale,<br />

Università Degli Studi, Via Mangiagali 37, Milano, 30133, Italy; Steven<br />

A. Symes, PhD, Mercyhurst Archaeological Institute, 119 Zurn Hall,<br />

Erie, PA 16546; and Eric Baccino, MD, Service Médecine Légale, CHU<br />

Lapeyronie, Montpellier, 34295, France<br />

After attending this presentation, attendees will understand how the<br />

forensic anthropologist could assist the pathologist in the autopsy room in<br />

some cases in which soft tissues are not sufficient to understand the<br />

mechanism of the wound.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how the recent demands of forensic science<br />

have paved the way for forensic anthropology to assume multiple<br />

functions in understanding cause and manner of death.<br />

Introduction: Traditionally the role of forensic anthropology as a<br />

legal discipline has focused strictly on the study of skeletal remains.<br />

However, recent demands of forensic science have paved the way for<br />

forensic anthropology to assume multiple functions in understanding<br />

cause and manner of death.<br />

The role of the forensic pathologist is to examine all tissues at<br />

autopsy in fresh or putrefied cadavers, but rarely do they have time or<br />

expertise to closely examine bone. Anthropologists can assist in filling<br />

that gap to produce essential information at autopsy. In many cases, bony<br />

characteristics of trauma may be more revealing and less deceptive than<br />

soft tissues. That being said, autopsies should not stop with descriptions of<br />

soft tissues and cursory descriptions of the skeleton. The areas involved<br />

with bony trauma should be removed and processed free of soft tissues for<br />

a proper examination and documentation. This presentation will introduce<br />

numerous case studies that demonstrate the utility of bone removed from<br />

autopsy as evidence, and demonstrate how bone lesions contribute to a<br />

more accurate understanding of the cause and manner of death.<br />

Materials and Methods: Case 1. A well-preserved 35-year-old<br />

Caucasian male arrived at the morgue with multiple stab wounds to the<br />

head and thorax. The skin lesions presented with linear cuts at 90° or acute<br />

margins. After being cleaned, an examination of the underlying skull cap<br />

showed the presence of triangular puncture wounds under the overlying<br />

apparent linear cut wounds. The offending instrument was, in fact, a pick<br />

with a pointed but triangular cross-section.<br />

Case 2. A slightly putrefied 70-year-old Caucasian female was found<br />

dismembered. Soft tissue analysis revealed illegible putrefied margins of<br />

cuts adjacent to the dismembered areas and irregular linear lacerations on<br />

the parietal region. Cleaning the bones showed the effect of blunt force<br />

injury on the head and saw mark analysis on the bone revealed characters<br />

of the saw used for the dismemberment.<br />

Case 3. A well preserved 40-year-old Caucasian male died after<br />

being hit by a car. The legs showed only blunt soft tissue lesions, mainly<br />

lacerations. After removing the soft tissue, the analysis of the underlying<br />

tibia and fibula showed a butterfly fracture, crucial in reconstructing the<br />

direction of the impact.<br />

Case 4. Two male Caucasian 30-year-olds, slightly putrefied, were<br />

found with illegible lacerations on the skin of the head. Cleaning and<br />

reconstructing the entire skull allowed for the interpretation of the exact<br />

site of impact, minimum number of impacts, and even the chronological<br />

order of the blows.<br />

Case 5. The charred remains of a 30-year-old male were recovered.<br />

Nothing could be seen on the burnt head. However, reconstruction of the<br />

fragments of cranium showed clear signs of a typical burning and definite<br />

signs of trauma.<br />

Results and Discussion: These cases illustrate the utility of skeletal<br />

examination at autopsy and demonstrate the value of trauma examination<br />

in bone as major contributors to the final and accurate analysis of cause<br />

and manner of death.<br />

Forensic Anthropology, Trauma Examination, Pathologist<br />

H25 Propeller Impacts: Injury Mechanics<br />

and Bone Trauma<br />

Anne M. Kroman, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996; Tyler A.<br />

Kress, PhD, BEST Engineering, 2312 Craig Cove Road, Knoxville, TN<br />

37919; and David J. Porta, PhD, Bellarmine University, Department of<br />

<strong>Bio</strong>logy, 2001 Newburg Road, Louisville, KY 40205<br />

After attending this presentation, attendees will gain an<br />

understanding of the mechanics of injury in propeller impacts to the<br />

human body as they relate to speed of impact and propeller design.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing the understanding of the correlation between<br />

impact speed and resultant fracture patterns, and the correlation between<br />

propeller design and soft and osseous tissue damages.<br />

Numerous swimmers are injured or killed every year due to impact<br />

from boat outboard motor propeller strikes. Even boats traveling at<br />

relatively low speeds can create large amounts of soft tissue and bone<br />

damage. These wounds often bear characteristic patterning of longitudinal<br />

impact zones in both bone and soft tissue; useful to both forensic<br />

pathologists and anthropologists in determining cause and manner of<br />

death. While propeller impacts are fairly easily recognized, the exact<br />

injury mechanics have received comparatively little attention. Differences<br />

in propeller design, boat velocity, and motor rpm influence the resultant<br />

injury patterns – leading to conflicting opinions in the forensic community<br />

over the “classification” of propeller impact as either blunt or sharp<br />

trauma.<br />

Injury mechanics associated with propeller impacts were<br />

investigated, as well as the differences created by speed and a propeller<br />

alternative design. Ten cadaveric specimens were used for the testing (4<br />

human and 6 porcine). Two tests were conducted per specimen, resulting<br />

in a total of 20 tests. The human tests were conducted at speeds of<br />

approximately 5 to 7.4mph (with increasing propeller spinning speeds<br />

respectively). The porcine tests were conducted at speeds of<br />

approximately 1, 5, 7.4, and 15 mph (with propeller spinning speeds<br />

increasing respectively again). Two different propeller designs were<br />

examined in testing. One was a standard propeller design, with three<br />

blades of aluminum. The other was a “ring-style propeller” – a propeller<br />

in which all the tips of the three blades are joined together by an aluminum<br />

ring.<br />

307 * Presenting Author


The human cadavers (recently deceased) were frozen post-mortem as<br />

“fresh specimens” (i.e. no preservatives were used) until thawed at the<br />

time of the tests. Specimens were refrigerated until a few hours before<br />

testing. Just prior to testing, each human specimen was fitted with swim<br />

attire and a mask. Porcine cadaver specimens were euthanized shortly<br />

before testing. Testing was performed in a unique facility at The<br />

University at Buffalo, part of the State University of New York system.<br />

The Center for Research and Education in Special Environments<br />

(CRESE) provides a controlled environment that allows for safety,<br />

privacy, and repeatability such that real-world boating accidents could be<br />

simulated as closely as possible. The facility houses a toroidal pool that is<br />

8’ wide, 8’ deep, and 200’ in circumference. The water was maintained at<br />

73 degrees F throughout the testing. A large centrifuge is located at the<br />

center of the pool and a platform is suspended over the pool from the<br />

centrifuge arm. An outboard boat motor was mounted to the platform.<br />

Instrumentation allowed for inputting and recording of motor travel speed<br />

and RPM. The motor was towed at 5 or 7.4 mph around the pool to the<br />

impact site for the human tests. The motor was towed at 1, 5, 7.4, and 15<br />

mph around the pool to the impact site for the porcine tests.<br />

Each of the tests was recorded with standard and high speed video<br />

(1,000 f/s). The high speed video was essential in understanding the<br />

mechanics of the injury and the interaction between the cadaver and the<br />

boat propeller. A difference was seen between the standard propeller and<br />

the ring style propeller in how the body was engaged by the blades.<br />

Post-test dissection showed classic multiple parallel lacerations and<br />

numerous vertebral, rib, and skull fractures for the standard prop tests. At<br />

these low speeds the standard prop gives rise to incisive, sharp-force injuries<br />

that affect both soft and osseous tissues (skull, face, ribs, scapula, and<br />

vertebra). The standard prop, in longitudinal impacts at just under 8 mph,<br />

produced life-threatening injuries. The ring-style propeller imparts more of<br />

a scooping-like blunt trauma that, at worst, results in large lacerations and<br />

avulsions that appear, in the four human cadavers, to only affect the<br />

superficial tissues. That is, at these low speeds, the ring-style propeller<br />

seems to kind of “bite” or “scoop” the superficial skin and fatty layers while<br />

primarily scooting/pushing along the muscles and bones, whereas the<br />

standard prop penetrates deeper and into the muscles and bones.<br />

The injury mechanisms behind propeller strikes are complicated, as<br />

are most violent impacts to the human skeleton. However, controlled<br />

experimental testing can provide an increased understanding of the effects<br />

of speed of impact, as well as propeller design. Testing showed that both<br />

of these variables do influence the injuries to soft tissue, and the fracture<br />

patterns in bone.<br />

Bone Trauma, Experimental Testing, Propeller Impact<br />

H26 Standardizing Saw and Knife<br />

Mark Analysis on Bone<br />

Steven A. Symes, PhD*, and Christopher W. Rainwater, BA, Mercyhurst<br />

College, 501 East 38th Street, Erie, PA 16546; and Susan M. Thurston<br />

Myster, PhD, Hamline University, PO Box 196, St. Paul, MN 55104<br />

As a part of a series of presentations covering toolmarks on bone, the<br />

goal of this presentation is to discuss toolmark relevance, particularly in a<br />

court of law. Earlier presentations (Symes, Kroman et al. 2006; Symes,<br />

Rainwater et al. 2006) classified major approaches and common pitfalls<br />

regarding toolmark analysis while promoting the use of tool class<br />

characteristics. This presentation will identify and explore historic<br />

misperceptions regarding toolmarks, introduce a systematic approach for<br />

the analysis of toolmarks, present initial results of toolmark examination<br />

produced by a series of new mass-produced saws, and discuss the<br />

relevance of these changes to future toolmark analysis.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a standardized, systematic approach to<br />

toolmark analysis on bone will promote cohesion among forensic<br />

professionals thereby enhancing the resolution of skeletal trauma<br />

evidence.<br />

* Presenting Author<br />

Forensic anthropologists – once limited to traditional identification<br />

issues – are becoming more involved in investigations of death events,<br />

directing their expertise to the analysis and interpretation of traumatic injuries<br />

and taphonomic influences. This broadening role is evident in forensic<br />

anthropology’s contribution to cases of dismemberment and mutilation.<br />

The evidentiary value of toolmark analysis in these cases is<br />

compelling. However, its potential at times is impeded by a lack of<br />

interdisciplinary research and communication among anthropologists,<br />

pathologists and criminalists.<br />

Anthropologists (osteologists) are uniquely qualified to examine<br />

defects in bone but lack a background in toolmark examination.<br />

Pathologists commonly work with marks created by tools, but rarely have<br />

time to devote to this specialized analysis. Likewise, criminalists are not<br />

usually positioned or equipped to examine fresh specimens removed from<br />

the recently deceased. The objective of each professional is the same; to<br />

narrow the possible range of tools used in a crime and assist investigators<br />

in narrowing their search for the tool(s) used in the commission of a crime.<br />

Nevertheless, each profession remains generally unaware of the others’<br />

efforts and advances.<br />

This glaring discrepancy is compounded by the fact that forensic<br />

toolmark research appears to have stagnated in the midst of a forensic<br />

climate that demands a closer look at ignored or unrealized evidence.<br />

Historically, disregard for toolmarks on bone is enhanced by<br />

misperceptions that analysis fails to produce significant information in an<br />

investigation. This flawed thinking can be traced to two sources.<br />

First, the archaic view that every pass of a saw tooth on bone erases<br />

the marks left behind by the previous tooth has resulted in an inherent error<br />

in the standard approach to saw mark analysis. While this view may reveal<br />

limitations in individual characteristics, it essentially disregards the vast<br />

potential of “class characteristics.”<br />

Second, traditional anthropological approaches are outdated with the<br />

advent of the anthropologists’ relatively new and evolving association<br />

with the recently dead. Hypotheses developed for historic or prehistoric<br />

peoples serve a different purpose than those analytical results developed in<br />

a modern forensic case.<br />

While it is tempting to examine toolmark striae for generic patterns<br />

or striation frequency, these uninformed approaches will likely be<br />

subjected to subsequent judicial scrutiny where admissibility may be<br />

challenged based on accuracy, reliability of the technique, replicability,<br />

and absence of validation studies. The repercussions of an ‘academic’ as<br />

opposed to an applied forensic approach can be nothing short of an<br />

obstruction to justice.<br />

This presentation will outline experimental approaches to<br />

researching toolmarks on bone while outlining methodologies for the<br />

examination, analysis, and documentation of such marks. Saw mark class<br />

characteristics will be systematically analyzed in order to produce tool<br />

descriptions that may be useful when presented in court. This approach is<br />

simplified in order to standardize methods and to make features more<br />

recognizable. This simplified approach is attempted despite the fact that<br />

mass-produced “junk” saws lack conformity to age-old saw manufacture<br />

standards. In the end, toolmark analysis on bone with guidelines,<br />

standards, and the appropriate equipment should result in productive<br />

answers to the frequently asked question: what is the potential of toolmark<br />

analysis in dismemberment interpretation?<br />

References:<br />

1 Symes, Steven A., and Anne M. Kroman, Susan M. Thurston Myster,<br />

Christopher W. Rainwater and John J. Matia, 2006,<br />

Anthropological Saw Mark Analysis on Bone: What is the Potential of<br />

Dismemberment Interpretation? Paper presented at the 59th Annual<br />

Meeting of American Academy of Forensic Sciences, Seattle.<br />

2 Symes, Steven A., and Christopher W. Rainwater, Susan M. Thurston<br />

Myster and John J. Matia, 2006, Tool Mark Analysis of Knife and Saw<br />

Dismemberment. Paper presented at the 91st International Education<br />

Conference of the International Association of Identification, Boston.<br />

Saw Marks, Dismemberment, Skeletal Trauma<br />

308


H27 Ballistics-Induced Depressed<br />

Skull Fractures<br />

Kathryn Haden-Pinneri, MD*, Office of the <strong>Medical</strong> Examiner of Harris<br />

County, Joseph A. Jachimiczyk Forensic Center, 1885 Old Spanish Trail,<br />

Houston, TX 77054; and Gregory Berg, MS, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853-5530<br />

The goal of this presentation is to educate forensic scientists about the<br />

association of depressed skull fractures and a particular type of ballistic<br />

trauma.<br />

This presentation will impact the forensic community and/or<br />

humanity through knowledge gained regarding another etiology for<br />

depressed skull fractures.<br />

Ballistic trauma of the skull most commonly results in an interiorly<br />

beveled entrance wound and, if applicable, an exteriorly beveled exit<br />

wound. As will be discussed, certain types of firearm trauma can result in<br />

atypical bone injuries. The authors will present the case of a 28-year-old<br />

white female who died approximately 12 hours after presentation to the<br />

hospital for a reported perforating gunshot wound of the head. In support<br />

of this case and its findings, further corroborative case examples will be<br />

discussed.<br />

The autopsy of the primary case revealed a thin white female with a<br />

bandaged head. Under the bandage, the hair was completely matted with<br />

blood, through which an irregular sutured wound on the top of the head<br />

was visible. Removal of the sutures revealed an irregular 1-1/2 inch<br />

abraded laceration on the left parietal scalp. An additional curvilinear 1/2<br />

inch partial thickness laceration was just posterior and medial to the<br />

sutured wound. An oval skull depression was directly under and visible<br />

through the laceration. No obvious projectiles or lead wipe were present<br />

on the cranial radiograph.<br />

Reflection of the scalp revealed hemorrhage encompassing the left<br />

frontal and parietal subscalpular tissue and a large subgaleal hemorrhage<br />

overlying both parietal bones. Removal of the subgaleal hemorrhage<br />

revealed a 1 x 7/16 inch oval depression fracture of the left parietal bone<br />

just posterior to the coronal suture. The concavity depth was<br />

approximately 3/16 inch. An “X”-like fracture pattern was in the<br />

depressed portion of bone and the lateral fracture margin had a ‘stacked’<br />

appearance. The underlying brain had corresponding fracture contusions.<br />

Given the depressed skull fracture, the lack of typical entrance and<br />

exit wounds on the skin, and the semi-circular laceration on the skin, it was<br />

initially felt that this injury was due to blunt impact trauma, possibly from<br />

the grip or butt of a gun. However, closer inspection revealed grey residue<br />

on the ‘stacked’ edge of the fracture. No firearm residue was grossly<br />

visible on or under the skin. Since the edges of the wound could not be<br />

re-approximated, the possibility of a tangential or graze gunshot wound<br />

was considered.<br />

Police detectives brought the weapon in question to the <strong>Medical</strong><br />

Examiner’s Office the next day and the wounds were re-examined. The<br />

weapon was placed against the skin and the pattern of the semi-circular<br />

laceration fit the gun’s muzzle end exactly. The initial report stated that<br />

two projectile casings, possibly felt to be ‘old’ were at the scene, but no<br />

bullets were recovered. Upon request, the scene was re-examined and two<br />

bullets were located, one of which had hair, blood and tissue on it. One<br />

edge of this bullet was flattened. Based on these findings, a tangential<br />

gunshot wound was confirmed.<br />

Depressed skull fractures typically pose no significant dilemma for<br />

forensic anthropologists and pathologists with regards to the type of<br />

trauma involved, as they are typically associated with blunt force impacts.<br />

This case illustrates that ballistic trauma may also cause depressed skull<br />

fractures when the trajectory of the projectile is tangential to the bone.<br />

Typically, tangential or graze gunshot wounds result in a keyhole type<br />

fracture with interior beveling on the entrance side and exterior beveling<br />

on the exit side. While unusual, if a bullet’s path is extremely tangential,<br />

it can graze the skull without complete penetration, causing a depression<br />

fracture.<br />

It is important for forensic anthropologists and pathologists to keep<br />

firearm trauma in mind when dealing with depressed skull fractures.<br />

Should only skeletal elements be available for examination (unlike the<br />

presented case), different conclusions could be drawn with regards to the<br />

source and type of the trauma, thereby potentially altering the<br />

investigation of potential suspects.<br />

Depressed Skull Fracture, Tangential Gunshot Wound,<br />

Ballistic Trauma<br />

H28 When the Bullet Hits the Bone: Patterns<br />

of Gunshot Trauma to the Infracranium<br />

Katharine A. Chapman, BA*, Texas State University, Department of<br />

Anthropology, 601 University Drive, San Marcos, TX 78666<br />

The goal of this presentation is to survey the basic principles of<br />

gunshot trauma and its effects on bones of the infracranium. Attendees<br />

will also learn the intricacies of a graduate student’s anthropology research<br />

project involving pig carrion and guns.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing the lack of information involving gunshot trauma<br />

to the bones of the infracranium. In forensic anthropology today, there is<br />

a great amount of data surrounding gunshot wounds (GSW) to the skull.<br />

The orientation and composition of the squama allows for distinctive and<br />

predictable damage. However, the skull is not always the object of trauma<br />

in a homicide. Many times the only physical remains the anthropologist<br />

has to examine are sections of long bone or other portions of the skeleton.<br />

It is here that a dearth in information could be detrimental to the science.<br />

The overall goal of this project was to add an important section to the<br />

science of forensic anthropology with the understanding of gunshot<br />

trauma to the infracranium.<br />

The amount of trauma sustained in a GSW is determined by the loss<br />

of a bullet’s kinetic energy. Kinetic energy of the bullets is equal to half<br />

of its mass multiplied by its velocity squared, or KE = (1/2)mv2 . These<br />

variables were tested using weapons and ammunition with different<br />

calibers, weights, jacketing, and muzzle velocities. The three weapons<br />

examined were the AK-47, the .308 Winchester, and the 9mm pistol.<br />

These weapons were loaded with a .30 caliber 123-grain hollow point<br />

bullet, a .308 caliber 168-grain hollow point bullet, and a 147-grain<br />

bonded hollow point bullet, a 124-grain full-metal jacketed bullet, and a<br />

115-grain non-bonded hollow point bullet, respectively.<br />

Five pig carrion were shot under controlled conditions by an officer<br />

of the Comal County (Texas) Sheriff’s Department. The pigs were<br />

radiographed and then macerated to examine the underlying osteological<br />

trauma. Both methods of examination supported the hypothesis that<br />

specific types of weapons and ammunition result in specific patterns of<br />

trauma. An overwhelming amount of trauma occurred on the bones of the<br />

pigs shot with the high velocity weapons, while the remains of the pigs<br />

shot with the low velocity weapon sustained relatively little fracturing.<br />

After further examination, it will be possible to predict the amount of<br />

trauma incurred by specific guns and ammunition. With some<br />

standardization, it should be possible to utilize this information to infer<br />

class of weapon that results from ballistic trauma in forensic cases. The<br />

overall goal of this project is to add an important section to forensic<br />

anthropology with the understanding of gunshot trauma to the infracranial<br />

skeleton.<br />

Gunshot Trauma, Infracranium, Kinetic Energy<br />

309 * Presenting Author


H29 Controlled Fracture of Bones Before<br />

and After Degradation Under<br />

Different Environmental Conditions<br />

Lori E. Baker, PhD, Baylor University, Department of Anthropology,<br />

Forensic Science, and Archaeology, One Bear Place #97388, Waco, TX<br />

76798; Carolyn P. Skurla, PhD*, Baylor University, Department of<br />

Mechanical Engineering, One Bear Place #97356, Waco, TX 76798;<br />

Zachary Kelm, BS, Mayo Clinic College of Medicine, 200 1st Street SW,<br />

Rochester, MN 55905; Casey Anderson, Baylor University, Department<br />

of Anthropology, Forensic Science, and Archaeology, One Bear Place<br />

#97388, Waco, TX 76798; David R. Webster, BS, Baylor University,<br />

Department of Mechanical Engineering, One Bear Place #97356, Waco,<br />

TX 76798; Kieran P. McNulty, PhD, Baylor University, Department of<br />

Anthropology, Forensic Science, and Archaeology, One Bear Place<br />

#97388, Waco, TX 76798; Kristy Bernard, BS, University of New Haven,<br />

Department of Forensic Science, 300 Boston Post Road, West Haven, CT<br />

06516; and Eric A. Schaefer, and Daniel C. Bland, Baylor University,<br />

Department of Mechanical Engineering, One Bear Place #97356, Waco,<br />

TX 76798<br />

The goal of this presentation is to provide research results pertaining<br />

to the examination and comparison of perimortem trauma with subsequent<br />

weathering to postmortem trauma induced at increasing time intervals.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing additional information regarding the determination<br />

of ante-, peri-, or post-mortem bone trauma.<br />

Mechanical strength of the bone and the appearance of the fracture<br />

site as a function of environmental conditions and exposure time will be<br />

presented. The authors hypothesized that the application of different<br />

treatment conditions would have differing effects on the mechanical<br />

properties, fracture mechanics, and appearance of bone. The objective of<br />

the study was to compare the fracture behavior and mechanical properties<br />

of bone under three degradation conditions during a four-month period of<br />

time. A mechanical test method was designed to simulate blunt force<br />

trauma from a pipe or crowbar.<br />

The humerus (H) and fused radius/ulna (R/U) from the forelimbs of<br />

18 sheep (Ovis aries), Rambouillet and Columbia crossbreds, were used.<br />

A custom-designed three-point bend test jig on an MTS 858 Mini <strong>Bio</strong>nix<br />

II was used to break the bones. A one-inch diameter indenter modeled a<br />

standard crowbar and was used to inflict blunt force trauma to the midshaft<br />

of the bone in a cranial-caudal (i.e., anterior-posterior in the human)<br />

direction at a speed of 6 in/s. Three sets of bones served as controls and<br />

were broken after removal of soft tissues. One set of controls (H & R/U)<br />

and five additional sets were each set outside under the following<br />

conditions: 1) full sun, 2) shade, and 3) submerged in water. One set of<br />

bones (H & R/U) for each of the environmental conditions was broken at<br />

1, 2, 4, 8, and 16 weeks. The experiment took place during the summer in<br />

central Texas (May to August 2006). Peak load (lbs) was measured for<br />

each bone. The fracture surface of each bone was photographed and<br />

analyzed using Scion Image to determine inner and outer diameter at midshaft<br />

in the medial-lateral and cranial-caudal directions. Total area of the<br />

bone was also calculated. These measurements were used to calculate<br />

stress in order to normalize the measurements to control of size differences<br />

between animals. A standard formula used to calculate the bending stress<br />

is s = -Mc/I. A simplifying assumption was made that the shape of the<br />

midshaft of the bone was elliptical.<br />

Data from this study were compared to a preliminary study<br />

conducted in central Texas during the winter (November 2004 to February<br />

2005). During the current test period, the average high temperature was<br />

93.1°F, the average low temperature was 69.4°F, and the average daily<br />

rainfall was 0.054 in., and during the preliminary study the average high<br />

temperature was 63.0°F, the average low temperature was 42.7°F, and the<br />

average daily rainfall was 0.089 in. The mechanical properties of bone<br />

were significantly affected by environment in both studies and distinct<br />

* Presenting Author<br />

differences were noted between the appearances of ante-mortem vs. postmortem<br />

trauma. The biggest differences in mechanical properties for the<br />

current study were seen at 2 weeks. The changes in mechanical behavior<br />

of the bones that were stored submerged in water appeared to be similar in<br />

both studies. However, for the specimens stored in the shade, the<br />

difference in temperature made a difference in the degradation of<br />

mechanical properties. The specimens that were tested in winter took<br />

longer to show a drop in peak load. Specimens that were exposed to the<br />

sun in the summer also showed a decrease in peak load much earlier in the<br />

study than those tested in the winter.<br />

Bone, Blunt Force Trauma, Fracture Mechanics<br />

H30 Abstract Withdrawn<br />

H31 Sources of Error in Genetic and<br />

Osteological Sex Determination:<br />

Lessons from Physical Anthropology<br />

Krista E. Latham, MS*, Temple University, Department of Anthropology,<br />

1115 West Berks Street, Gladfelter Hall, 2nd Floor, Philadelphia, PA<br />

19122; and Luis M. Cabo-Perez, MS, Jeremy J. Beach, MS, and Dennis<br />

C Dirkmaat, PhD, Mercyhurst College, Department of Applied Forensic<br />

Sciences, 501 East 38th Street, Erie, PA 16546<br />

The goal of this presentation is to present forensic scientists with an<br />

understanding of the error associated with both the genetic and<br />

morphological based tests of sex determination, and to stress the fact that<br />

forensic scientists should employ and understand a wide range of scientific<br />

tools when analyzing human remains in a forensic context.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing important information on the advantages and<br />

limitations of genetic and morphological sex determination, and will<br />

present a critical assessment of the interpretational error associated with<br />

the techniques using anthropological examples.<br />

An important duty of the forensic scientist is to present their opinion<br />

in a judicial setting. An experienced expert witness should be prepared for<br />

conflicting opinions presented by opposing council. An opportunity for<br />

such a situation to arise may involve the determination of sex from skeletal<br />

remains. Determining sex from the skeleton can be accomplished by both<br />

morphological and genetic analyses. Forensic anthropologists are skilled<br />

at an osteological determination of sex and are aware of the error<br />

associated with interpretation of their analyses. Such investigations are<br />

extremely accurate when the entire skeleton is present for examination,<br />

and become more difficult as skeletal elements are missing and/or<br />

fragmented. Non-metric analyses examine sexual dimorphic differences<br />

in the size and shape of bones, and rely on the training of the investigator.<br />

Metric analyses employ classification based on measurements of various<br />

skeletal elements. Many forensic anthropologists use the discriminant<br />

functions in FORDISC software to classify the individual based on<br />

comparison to a data base of individuals of known sex. They should be<br />

trained in the interpretation of the results involved in classifications,<br />

should have a working knowledge of the statistical methods employed by<br />

FORDISC, and should understand that the probability of an individual<br />

being misclassified is not random.<br />

Determination of genetic sex employs polymerase chain reaction<br />

(PCR) amplification of X and Y chromosome-specific DNA fragments of<br />

different sizes. Misclassification can occur with this test and has been<br />

attributed often to a deletion in the relevant area of the Y-homologue.<br />

Other interpretational issues include contamination, stochastic fluctuation,<br />

and preferential amplification. Laboratory contamination is rare;<br />

however, remains can become contaminated during collection. Stochastic<br />

fluctuation, or sampling error, and preferential amplification are both<br />

phenomena that may occur with the low quality and quantity DNA<br />

310


associated with forensic evidence. Females have two X chromosomes and<br />

failed amplification of one X-homologue would still indicate a female.<br />

Males have one X and one Y chromosome. In a male sample, failed<br />

amplification of the X-homologue would raise concern, but would not lead<br />

to misclassification due to the presence of the Y-homologue. However, if<br />

the X-homologous fragments are preferentially amplified over the Yhomologous<br />

fragments, male samples would be misclassified as female.<br />

A forensic DNA analyst must therefore have the ability to analyze and<br />

interpret samples that are usually highly degraded, and must have an<br />

understanding of the physical evidence as well as the techniques used to<br />

analyze that evidence.<br />

Genetic sex tests are automatically included in genetic identification<br />

tests like CODIS (combined DNA index system). With what is being<br />

called the “CSI Effect” the general public is over confident in scientific<br />

evidence, especially genetic evidence. There can be instances where<br />

morphological and genetic sex could provide conflicting results, and it is<br />

imperative that forensic experts understand the strengths and weaknesses<br />

of all of the scientific techniques involved in the analysis of skeletal<br />

remains.<br />

Sex Determination, Osteology, Genetics<br />

H32 Skeletal Markers of Parturition II:<br />

Reanalysis of a Modern American Sample<br />

Elizabeth A. DiGangi, MA*, Pellissippi State Technical Community<br />

College, Department of Natural and Behavioral Sciences, 10915 Hardin<br />

Valley Road, Knoxville, TN 37993; and Jonathan D. Bethard, MA*,<br />

The University of Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will learn that parity<br />

status cannot be inferred with accuracy from the bony pelvis, especially<br />

from the dorsal side of the pubis. The research presented here tested<br />

markers of parturition against known obstetric histories, and the results<br />

indicate that workers should not infer parity status from the dorsalis pubis.<br />

This presentation will impact the forensic community and/or<br />

humanity by stressing that the inference of parity status from the bony<br />

pelvis should not be included as an aspect of the biological profile in<br />

forensic case reports.<br />

The William M. Bass Donated Collection curated by the Forensic<br />

Anthropology Center at The University of Tennessee was utilized for this<br />

research. A previous version of this paper was presented at these meetings<br />

(Bethard 2004), and the authors wished to update and increase the dataset<br />

with recent female donations. The purpose of this study was to increase<br />

the knowledge of the correlation between dorsal pitting and pregnancy for<br />

all females of known parity status in the Bass Donated Collection. Female<br />

skeletons of known parity status (n=45) were scored for the degree of<br />

dorsal pitting of the pubis. Pits on the dorsalis pubis were scored as either<br />

absent, trace to small, or moderate to large (after Stewart 1970). Pubic<br />

bones scored as “absent” were unremarkable with regard to dorsal pitting<br />

while “trace to small” indicated the presence of shallow depressions.<br />

“Moderate to large” dorsal pits were a minimum of 5mm in diameter and<br />

noticeably deep. In addition, 150 paired male pubic bones in the<br />

collection were examined for changes described by Stewart (1970), Angel<br />

(1969), and other workers with the intent of demonstrating that there are<br />

factors other than pregnancy that can cause changes to the dorsalis pubis.<br />

A thorough literature review indicates that workers have maintained<br />

mainly negative correlations between parturition and morphological<br />

markers of the dorsalis pubis. Stewart (1970) discusses Angel’s (1969)<br />

contribution to this issue, and hypothesizes that Angel would be wary of<br />

the use of his description of these morphological markers in forensic case<br />

reports. Stewart himself notes that, “some women can bear children …<br />

without any scarring” and proposes the use of “extreme care” when<br />

analyzing forensic skeletons (1970). Suchey and colleagues (1979) found<br />

that age and number of pregnancies were most important when analyzing<br />

the degree of dorsal pitting, and they also found 4 males out of a sample<br />

of 781 with moderate to large pitting. This indicates that while rare, there<br />

are factors that induce morphological changes on the dorsalis pubis other<br />

than pregnancy. More recently, Cox and Scott (1992) found that there was<br />

no relationship between pubic pitting and known parity status<br />

Non-parametric chi-square analyses were performed on the female<br />

sample to test the relationship between parity status/pitting (P=.328) and<br />

pitting/age (P=.773). Such results corroborate previous findings that<br />

indicate a weak association between the presence of pitting on the dorsalis<br />

pubis and pregnancy. Such results also demonstrate that age-related<br />

changes of the dorsalis pubis do not have a significant effect on the<br />

presence or absence of pitting. Moreover, out of 150 paired male pubic<br />

bones examined, 4 males (2.67%) had “trace to small” changes on the<br />

dorsalis pubis, further indicating that the identification of factors other<br />

than pregnancy causing such changes could be a direction of future<br />

research.<br />

References:<br />

1 Angel JL. The basis of paleodemography. Am J Phys Anthropol<br />

(30):425-438; 1969.<br />

2 Bethard JD. Skeletal Markers of Parturition. Poster presented at the 56th<br />

Annual Meeting of the American Academy of Forensic Sciences. Dallas,<br />

Texas.<br />

3 Cox M and A Scott. Evaluation of the obstetric significance of some<br />

pelvic characters in an 18th century British sample of known parity status.<br />

Am J Phys Anthropol (89):431-440; 1992.<br />

4 Stewart TD. Identification of the scars of parturition in skeletal remains<br />

of females. In Personal Identification in Mass Disasters. ed: TD Stewart.<br />

National Museum of Natural History: 127-133; 1970.<br />

5 Suchey JM, Wiseley DV, Green RF, and TT Noguchi. Analysis of dorsal<br />

pitting in the os pubis in an extensive sample of modern American<br />

females. Am J Phys Anthropol (51): 517-540; 1979.<br />

Parturition, Forensic Anthropology, Skeletal <strong>Bio</strong>logy<br />

H33 Geometric Morphometrics of the<br />

Scapula: An Assessment of Ancestry<br />

Natalie M. Uhl, BS, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227; Joseph T. Hefner, MA, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN 37996; and John J.<br />

Schultz, PhD, University of Central Florida, 4000 Central Florida<br />

Boulevard, Orlando, FL 32816<br />

After attending this presentation, attendees will understand the<br />

classificatory power of the scapula using geometric morphometric<br />

methods. An analysis of landmark data will be presented to assess the<br />

differences in the scapular shape of modern American white and black<br />

males. It will provide an alternative to traditional methods of ancestry<br />

determination that require the cranium or rely on simple linear<br />

measurements of the postcranial skeleton.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the classificatory power of the scapula and<br />

encouraging anthropologists to investigate the geometric morphometrics<br />

of other postcranial elements and their use in the determination of<br />

ancestry.<br />

The determination of ancestry is an integral component of the<br />

biological profile generated by forensic anthropologists for unknown<br />

skeletal remains. The postcranium is regularly under-utilized for ancestry<br />

determination; this is due in part to the classification rate attributable to the<br />

cranium and mandible. Anthropologists have noted general differences in<br />

body form between populations, leading to the use of the postcranial<br />

skeleton for differentiating between populations using traditional linear<br />

measurements. However, the scapula is rarely used during ancestry<br />

determination and traditional linear measurements are generally limited to<br />

311 * Presenting Author


the maximum width and height of the scapula. The current study builds<br />

on Snow (2004) and utilizes geometric morphometrics to explore the<br />

shape differences in modern American White and Black males as reflected<br />

in the morphology of the scapula.<br />

To determine whether differences in shape exist between modern<br />

American White and Black males, 14 landmarks were taken on 76<br />

individuals from the William M. Bass Donated Skeletal Collection curated<br />

at the Department of Anthropology, University of Tennessee, Knoxville,<br />

TN. Coordinate data were collected from the scapulae using a Microscribe<br />

3DX digitizer (Immersion Corporation, 2002). A Generalized Procrustes<br />

Analysis (GPA) was performed using Morphologika (O’Higgins and<br />

Jones, 2006). A GPA analyzes landmark data by stretching and<br />

appropriately fitting the data through a transformation, rotation, and<br />

translation process (Rholf, 1996). Morphologika outputs the principal<br />

components and residuals employed in subsequent analyses in SYSTAT.<br />

A thin-plate spline analysis of the group means demonstrated several<br />

differences in shape between Black and White males. In particular, Black<br />

males exhibited an increased concavity of the subscapular fossa, and a<br />

more superior and medially positioned glenoid fossa. Furthermore, the<br />

Black male sample demonstrates a substantial anterior projection of the<br />

coracoid process. To determine how well these differences in morphology<br />

discriminate ancestry groups, a discriminant function analysis (DFA) was<br />

performed on the first ten PC scores. Using only 10 PC scores reduces the<br />

dimensionality and avoids over-fitting of the data, while still accounting<br />

for most of the shape variation. The DFA produced significant results<br />

(Wilk’s λ = 0.3580, F = 11.2978, dF = 10,63, p< 0.0001), suggesting the<br />

scapula is an excellent element for ancestry determination. In fact, crossvalidated<br />

(jackknifed) classification accuracies were 88% using only 10<br />

PCs and accounting for nearly 100% of the variation.<br />

This research demonstrates the classificatory power of the scapula<br />

and should encourage anthropologists to investigate the geometric<br />

morphometrics of other postcranial elements and their use in the<br />

determination of ancestry.<br />

Ancestry, Geometric Morphometrics, Discriminant Function<br />

Analysis<br />

H34 Refining the Isotopic Fingerprint in<br />

Modern Mexican Populations: Using<br />

Strontium, Carbon, Nitrogen, and<br />

Oxygen to Determine Region of Origin for<br />

Deceased Undocumented Border Crossers<br />

Chelsey A. Juarez, MA*, 240 River Street, #1, Santa Cruz, CA 95060<br />

After attending this presentation, attendees will understand the<br />

incorporation of stable isotopes into human teeth and bone, the importance<br />

of sampling methodology on isotopic mapping and the varying rates of<br />

precision possible during isotopic mapping of modern populations.<br />

This presentation will impact the forensic community and/or<br />

humanity through its pioneering application of stable isotopic analysis to<br />

deaths within a forensic context.<br />

The goal of this presentation is to present the progress on the<br />

expansion of a mass spectrometry-based method for the identification of<br />

region of origin in modern Mexican populations through analysis of<br />

strontium, carbon, nitrogen and oxygen isotopes in human tooth enamel.<br />

Previously, this project had presented data on the success of strontium<br />

isotopes in the region of origin determination of these populations.<br />

Through the inclusion of carbon, nitrogen, and oxygen isotopes the project<br />

has expanded and refined the isotopic fingerprint of these populations.<br />

After attending this presentation attendees will understand the<br />

incorporation of stable isotopes into human teeth and bone, the importance<br />

of sampling methodology on isotopic mapping and the varying rates of<br />

precision possible during isotopic mapping of modern populations. This<br />

* Presenting Author<br />

study will impact the forensic community through its pioneering<br />

application of stable isotopic analysis to deaths within a forensic context.<br />

Background: Strontium isotope ratios and strontium concentrations<br />

collected in teeth and bones have been analyzed by archaeologists to<br />

investigate patterns of residential mobility and migration in prehistoric<br />

peoples. In this study a similar methodology is applied to forensic material<br />

to determine the region of origin for Mexican individuals that died while<br />

crossing the border into the United States. Every year approximately<br />

seven-hundred immigrants die while crossing the border between Mexico<br />

and the United States. The tragedy of this situation is compounded by low<br />

success rates in identification and repatriation of these individuals to their<br />

countries of origin. For forensic anthropologists, much of the difficulty of<br />

identifying and repatriating deceased immigrants found in border areas<br />

stems from an inability to narrow their regions of origin. Because studies<br />

estimate that approximately 86% of undocumented immigrants who cross<br />

the U.S. border are Mexican nationals this project focuses on advancing<br />

identification within that population. In order to employ identification<br />

technologies such as DNA, or dental analysis, investigators must first<br />

determine a searchable region in which to locate family, personal records<br />

and or legal documents. The aim of this project is to develop a tool for<br />

identifying region of origin in modern Mexican populations. The data<br />

discussed here are the latest stage of research on the creation of a region<br />

of origin map derived from dental enamel analysis of donated teeth from<br />

persons born in various Mexican states and regions. The map is being<br />

created from the donated teeth of Mexican-born individuals of known<br />

origin and will be used for cross-comparison with deceased bordercrossers<br />

of unknown origin.<br />

Methodology: The teeth used for this project came from clinics in<br />

Mexico and California that donated the extracted teeth of their Mexican<br />

born patients. This investigation utilized the permanent molar teeth of 50<br />

individuals. These tooth samples retained the accompanying information<br />

on the individuals region of origin within Mexico, their age, and sex. Each<br />

tooth was washed with dilute acetic acid to ensure the removal of any<br />

depositional contamination and analyzed using TIMS and MC-ICPMS.<br />

Results and Discussion: The goal of this project is to provide the<br />

most accurate pathway to identification possible. The initial results of this<br />

isotopic expansion are promising and build upon the previous presented<br />

research, revealing the formation of five clearly distinct separate and<br />

identifiable isotopic populations that correspond to five specific<br />

geographical regions. The presence of these new and more clearly defined<br />

ranges strongly supports previous research and brings this study one step<br />

closer to working identifications.<br />

Isotopes, Region of Origin, Border Death<br />

H35 Assessment of Determination of<br />

Handedness Using Standard Osteological<br />

Measurements of the Shoulder Girdle<br />

and Arm Long Bones from Individuals<br />

of Known Handedness<br />

Marie Elaine Danforth, PhD*, and Andrew R. Thompson, BA, University<br />

of Southern Mississippi, Department of Anthropology and Sociology, 118<br />

College Drive, #5074, Hattiesburg, MS 39406<br />

After attending this presentation, attendees will be able to better<br />

evaluate accuracy in determination of handedness in skeletal remains<br />

using standard arm bone dimensions.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting the first analysis of the relationship between a<br />

number of standard measurements of the upper limb and handedness in a<br />

larger sample of individuals of known handedness.<br />

A variety of studies in forensic anthropology have attempted to assess<br />

the ability to determine handedness using skeletal markers.<br />

312


Morphological indicators used have included degree of beveling of the<br />

glenoid fossa and radial tendon attachment characteristics. Other<br />

investigations have worked with long bone size. Based on Wolff’s Law,<br />

they have assumed that arm bones on the side of handedness will be larger.<br />

However, most of these analyses have used only a small subset of the<br />

upper limb measurements standardly taken, and have evaluated them in<br />

prehistoric skeletal populations with the expectation that about 10% will<br />

be left-handed. While a few studies have involved individuals of known<br />

handedness, they have had serious limitations. For example, Blackburn<br />

and Knusel (2006) primarily looked at only one measurement, epicondylar<br />

breadth; Schulter-Ellis (1979) evaluated a few more measurements, but<br />

the sample size was ten. This project improves upon these investigations<br />

by analyzing all of the measurements suggested in the Standard<br />

Osteological Database (Buikstra and Ubelaker 1994) on a larger sample of<br />

individuals of known handedness.<br />

Data for 34 individuals (26 right-handed, 8 left-handed) were taken<br />

from several sources, including various local forensic cases and the<br />

database of donated cases at the University of Tennessee. Both sexes were<br />

represented as were African, European, and Hispanic ancestries.<br />

Measurements included both length and transverse dimensions of the<br />

scapula, clavicle, humerus, ulna, and radius. As with the previous studies,<br />

it was hypothesized that dimensions would be greater on the side of<br />

handedness.<br />

Bone length differences were addressed first since several studies<br />

have suggested they varied by handedness. The humeri were found to be<br />

longer on the side of handedness in 38% (10/26) of cases as compared to<br />

about 70% for both the radii and ulnae; the mean length differential<br />

between sides for the individual bones was 2.1 mm. When the combined<br />

radius and humerus lengths were compared bilaterally, the greater sum<br />

correlated with side of handedness in 63% (14/22) of individuals with a<br />

mean length difference of 2.9 mm. For the combined length of all arm<br />

long bones, values were 60% (12/20) and 4.1 mm, respectively.<br />

Results of analysis of transverse measurements were of mixed<br />

success. Scapular and clavicular dimensions showed extensive bilateral<br />

variation, inaccurately predicting handedness in over half of the cases,<br />

especially left-handers. Greater epicondylar breadth correlated with<br />

handedness in 18 of 28 (64%) individuals, or just slightly better than that<br />

reported in Blackburn and Knusel’s (2006) study. When differences were<br />

present in the maximum midshaft measurement of the humerus, the side<br />

of handedness was larger in 84% of individuals. The minimum diameter<br />

measurement was correct in 60%. Transverse measurements of the radius<br />

and ulna offered less promise since they were much more likely to be<br />

bilaterally symmetrical. When a consistent pattern of differences was seen<br />

(at least two of the four measurements varied), it favored the side of<br />

handedness in 50% (10/20) of cases; perhaps equally noteworthy, it<br />

favored the opposite side in 6 of 20 (30%) cases. Among all of these data,<br />

no distinctions by sex or ancestral group were seen.<br />

Overall, use of the standard measurements is not very encouraging in<br />

determining handedness. The humeral midshaft dimensions seem to be<br />

the most accurate followed by length of the individual forearm bones. In<br />

contrast, the other measurements considered had accuracy rates barely<br />

higher than those associated with flipping a coin. It is still possible that<br />

the basic assumption is not necessarily flawed. Steele and Mays (1995)<br />

have argued that variation in bone lengths, and presumably transverse<br />

dimensions as well, are primarily related to environmental factors.<br />

Furthermore, extensive bilateral asymmetry has been found in many<br />

prehistoric populations, but results here may suggest that modern<br />

individuals are less likely to perform the strenuous activities necessary to<br />

produce size differentials similar to those seen in the past. Therefore, it is<br />

recommended that additional means beyond bone asymmetry be<br />

developed to more accurately assess handedness.<br />

Handedness, Long Bone Measurements, Bilateral Asymmetry<br />

H36 Bilateral Asymmetry and Handedness:<br />

Are they Really Related?<br />

Kathryn R.D. Driscoll, MA*, University of Tennessee, Knoxville,<br />

Department of Anthropology, 250 South Stadium Hall, Knoxville,<br />

TN 37996<br />

After attending this presentation, attendees will better understand the<br />

statistical correlation between handedness and the bilateral asymmetry<br />

found in human skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing whether bilateral asymmetry can and should be used<br />

to determine handedness. Determining the handedness of an unknown<br />

individual would expand the biological profile. Every characteristic that<br />

strengthens the biological profile of an individual makes an impact on the<br />

forensic community.<br />

Being able to recognize identifying characteristics from skeletal<br />

remains is essential in the practice of forensic anthropology. Any<br />

improvement in identification techniques is beneficial to those practicing<br />

in the field. Determining the handedness of an individual from their<br />

skeletal remains is a tool that can be used by the forensic scientist in<br />

helping to develop a more complete biological profile from which to<br />

identify an individual.<br />

Bilateral asymmetry of the limbs has been used as an indicator of<br />

handedness in skeletal remains. When an individual has an arm<br />

(specifically the humerus) that is longer on the right side- it has been<br />

assumed that they were likely right handed. Another example, Kerley<br />

(1972) indicated that the bilateral asymmetry seen in clavicles could be<br />

used to determine handedness. In contrast, an individual with a longer<br />

right leg (especially the tibia) is believed to be left handed due to the use<br />

of the opposite leg as a “plant leg.” While this practice of identifying<br />

handedness is widely (and loosely) used, the statistical significance of the<br />

difference has not been thoroughly examined; it has been seen as a given<br />

that the sides should differ because of difference in usage.<br />

Numerous studies have been done that have examined the asymmetry<br />

that exists within an individual skeleton; this asymmetry has been used as<br />

an indicator of handedness. The reverse rationalization has also been<br />

given- handedness has been used to explain bilateral asymmetry. Steele<br />

and Mays (1995) examined upper limb bones within skeletons dating from<br />

the eleventh to the sixteenth century, while Èuk, Leben-Seljak, and<br />

Tefanèiè (2001) noted bilateral asymmetry within a medieval sample.<br />

Steele and Mays noted distinctive asymmetry while the medieval<br />

skeletons exhibited correlations between the humerus and the opposite<br />

tibia. However, obviously, the actual handedness is unknown in these<br />

samples. Glassman and Bass (1986) recognized the lack of known<br />

handedness, and instead, looked for correlations between jugular foramen<br />

size and limb length (both which have been used as indicators of<br />

handedness) within single individuals. They did not find significant<br />

association between the jugular formation size and the limb length within<br />

single individuals. Because handedness was unknown for this sample,<br />

determining which characteristic (if either) was related to handedness was<br />

not possible.<br />

The lack of known handedness was a definite limiter in each of the<br />

above studies. In 1980, Schulter-Elli utilized medical school cadavers<br />

with known handedness. This study supported use related differences;<br />

however, the sample only included ten pairs of arms (humerus, radius and<br />

ulna) and scapulae. The current study was an effort to correlate bilateral<br />

asymmetry with handedness by utilizing a larger sample of skeleton with<br />

known handedness.<br />

The William M. Bass Donated Skeletal Collection housed at the<br />

University of Tennessee in Knoxville was utilized in this study. Whenever<br />

possible, a biological questionnaire is completed when an individual is<br />

donated. These include a question related to handedness. This<br />

information in conjunction with the skeletal remains presented a good<br />

opportunity to examine the actual statistical correlation between<br />

handedness and bilateral asymmetry.<br />

313 * Presenting Author


For this study, the maximum length of each pair of limb bones (arms<br />

and legs) and the clavicles were measured. After examining the 105<br />

individual donations with known (self reported) handedness; the results<br />

were not particularly supportive of practiced identifications. Those<br />

individuals reported to be right handed exhibited significant difference<br />

between the sides; they exhibited bilateral asymmetry. However, lefties<br />

showed no significant asymmetry. In addition, when the left and right<br />

handed samples were joined, it was not possible to separate them into<br />

groups of handedness. The sample was made up more heavily of<br />

individuals noted as “right handed”; therefore, there was a sampling bias.<br />

However, the ratio of the sample does mimic the ratio of handedness seen<br />

in the general population. Establishing the handedness of an unknown<br />

sample would prove very difficult unless it was a more unique sample than<br />

was available here.<br />

Handedness, Bilateral Asymmetry, Limb Bones<br />

H37 Correlation of Forensic Anthropologic<br />

Findings With DNA Profiles Obtained<br />

From Cold Cases<br />

Heather Walsh-Haney, MA*, and Sulekha R. Coticone, PhD*, Florida<br />

Gulf Coast University, 10501 FGCU Boulevard, Ft. Myers, FL 33965<br />

After attending this presentation, attendees will understand the<br />

methods of extraction of DNA from environmentally challenged samples<br />

(bones) that can be used for cold cases.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing the physical anthropologist alternate methods to<br />

detect DNA from samples commonly seen in cold cases providing rapid<br />

resolution of cases.<br />

The identification of missing and unidentified persons in cold cases<br />

poses a number of challenges. Current Deoxyribonucleic acid (DNA)<br />

extraction methods, apart from being extremely time consuming and<br />

labor-intensive, carry additional risks of degradation and contamination.<br />

The recovery of DNA from bones presents specific difficulties in DNA<br />

purification and the amplification using polymerase chain reaction in the<br />

presence of inhibitors. Moreover, samples of DNA extracted from bones<br />

may be highly degraded and difficult to extract in sufficient quality and<br />

quantity. Associating anthropologic findings from macroscopic analyses<br />

with DNA results provide (1) for an effective method for rapid resolution<br />

of cases, and (2) a direct test of the accuracy of traditional anthropological<br />

analyses.<br />

In the present study cold case samples (N=45) from Florida <strong>Medical</strong><br />

Examiner Districts 4 and 20 were initially analyzed using forensic<br />

anthropologic methods: nonmetric and metric analysis of bones and teeth<br />

in order to determine the unknown decedent’s biological profile, e.g., age,<br />

ancestry, sex, and stature. Age estimation was determined through<br />

macroscopic analysis of the sternal end of the right fourth rib and pubic<br />

symphyseal surfaces. Ancestry, sex, and stature were primarily<br />

determined through metric assessment (in mm.) with FORDISC 3.9.<br />

Subsequently, fibular bone was excised from each decedent using a<br />

Stryker oscillating bone saw. A new saw blade was used for each sample<br />

in order to prevent contamination. The fibular sections consisted of one<br />

(1) 2-inch by 4-inch window that was be divided in half and placed into<br />

sterile test ampoules (e.g., one COVARIS and one mortar/pestle sample)<br />

following Armed Forces DNA Identification laboratory (AFDIL) protocol.<br />

When the right fibula was absent the right fibula was substituted.<br />

For DNA extraction, a novel ultrasonic technology, the Covaris<br />

E200, was utilized to rapidly and effectively extract even trace amounts of<br />

DNA from human long bones. Notably, this technology not only extracts<br />

DNA but also preserves its integrity since there is minimal heating or<br />

foaming during the automated extraction process. The goal for the<br />

extraction procedure involved minimal handling of DNA after extraction<br />

to prevent contamination of the DNA obtained from other sources e.g.,<br />

* Presenting Author<br />

technician, anthropologist, and other cases. Human bones were processed<br />

using the Covaris Cryo prep unit, followed by ultrasonic treatment with<br />

the Covaris E200. DNA was obtained by salt extraction followed by<br />

purification with silica beads. Subsequently, the DNA was amplified using<br />

primers designed for the amelogenin locus. Both agarose and capillary<br />

electrophoresis analysis revealed DNA of high quality and quantity from<br />

control bone samples. The authors will also present data from some cold<br />

cases correlating the sex and origin based on anthropological findings vs.<br />

STR analysis. The protocol is being optimized to decrease inhibition and<br />

degradation for use with environmentally compromised samples including<br />

those human skeletal remains that have been burned, both during the post<br />

and perimortem intervals, and/or exposed to the elements years (e.g.,<br />

water, sun, wind, and soil) for months to years.<br />

Anthropologic Findings, Bones, DNA Extraction<br />

H38 Ossification of Laryngeal Structures:<br />

As Indicators of Age<br />

Heather M. Garvin, BA, BS*, 1422 Pearce Park, Apartment # 6, Erie,<br />

PA 16502<br />

After attending this presentation, attendees will understand the<br />

reliability of using the fusion of the greater horns of the hyoid and<br />

ossification of the thyroid cartilage as age indicators as well as the general<br />

trends of these processes.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how radiographic examination of the<br />

laryngeal structures from a modern forensic population can provide<br />

further data regarding these aging patterns and suggests that, while general<br />

trends can be noted, determination of a narrow age range is not possible.<br />

A detailed literature search reveals conflicting conclusions regarding<br />

the pattern of ossification of the laryngeal structures, specifically the<br />

fusion of the greater horns of the hyoid and the calcification and<br />

ossification of the thyroid cartilage. While all studies agree that the two<br />

processes occur after the age of 20, there are disputes regarding the<br />

reliability of using the patterns of fusion and ossification for age<br />

determination.<br />

Although Forensic Anthropology is a rapidly growing field, the<br />

reliance of <strong>Medical</strong> Examiners on anthropological experts is still below<br />

par. While skeletal remains or individual body parts are likely to find their<br />

way to a Forensic Anthropologist, sending decomposed, fleshed<br />

unidentified bodies presents logistical difficulties for many offices.<br />

Experienced Forensic Anthropologists may not be available locally, and<br />

unless the Anthropologist is willing to retrieve the body from the <strong>Medical</strong><br />

Examiner’s Office, an anthropological examination is unlikely.<br />

Radiographic analyses present a compromise to the current situation.<br />

Areas known to ossify with age such as the thyroid cartilage and costal<br />

cartilages are generally extracted during routine autopsies. The process of<br />

taking radiographs of such structures and developing the film can be<br />

completed in a matter of minutes, and can be ready for examination even<br />

before the autopsy has been completed. Because these radiographic<br />

techniques do not interfere with any standard autopsy procedures, it also<br />

presents an opportunity for Forensic Anthropologists to study large<br />

modern samples. Furthermore, the legal and moral issues faced when<br />

attempting to retain bone samples for analysis, are less frequently<br />

encountered.<br />

In this study, 106 isolated laryngeal structures removed by the<br />

<strong>Medical</strong> Examiners during autopsy were radiographically examined.<br />

Fusion of the greater horns of the hyoid and thyroid cartilage ossification<br />

patterns were noted, along with the age, sex, and ancestry of each<br />

individual. Statistical analyses were run to determine if any significant<br />

correlation existed between the fusion and ossification patterns with age.<br />

These data were also analyzed for population patterns or trends to the<br />

results of previous studies.<br />

314


Results conclude that although sexually variant trends may be noted,<br />

correlating the degree of ossification to such narrow age ranges as<br />

provided by previous studies, is neither practical, nor accurate.<br />

Ossification patterns were insignificant between racial groups. Likewise,<br />

fusion of the greater horns of the hyoid was proven to be erratic and only<br />

useful when fused to conclude that an individual is a middle-aged to older<br />

adult.<br />

Traditional studies have presented theories suggesting the hyoid<br />

fuses, and thyroid cartilage ossifies with age, and that this information<br />

may be used to facilitate age determination. However, these older studies<br />

generally establish small sample sizes. The most well known study,<br />

conducted by Cerny in 1983 used a sample of five ossified thyroid<br />

cartilages to create general trends for age groups, which forensic<br />

anthropologists still refer to today. Examining these patterns on a modern,<br />

known sample improves and may serve to disprove the reliability of such<br />

techniques. Furthermore, a closer investigation may reveal that aging is<br />

likely only one of many influences in these processes, where ossification<br />

may only be related to age at death in a merely probabilistic way, similar<br />

to the probability of undergoing a particular process or event during a<br />

particular life span. This scenario is a far cry from the narrow age ranges<br />

applied to the hyoid and thyroid cartilage from past studies.<br />

Thyroid Cartilage, Hyoid, Ossification<br />

H39 Age Related Changes of the Distal Humerus<br />

Emily Jeavons, BS*, Bournemouth University, School of Conservation<br />

Science, Talbot Campus, Poole, Dorset BH12 5BB, United Kingdom<br />

After attending this presentation, attendees will understand how the<br />

distal humerus and the supra-condylar ridges in particular, changes with<br />

age and whether sex, handedness or occupation have any effect on these<br />

changes.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing the idea that the distal humerus undergoes<br />

distinct and recordable changes as an individual ages and suggest that<br />

these changes could be a contributor to multifactoral age at death<br />

estimation.<br />

This study evaluates seven morphological changes, which occur at<br />

the distal humerus. It aims to discover if these changes are age-related and<br />

whether they can be used to estimate the age at death of an unknown<br />

individual.<br />

The morphological changes studied were classified as Lateral Ridge,<br />

Lateral Enthesophytes, Double Ridge, Macro Porosity, Pinprick Porosity,<br />

Medial Ridge and Medial Enthesophytes. Lateral Ridge and Medial<br />

Ridge assess the overall appearance of the lateral and medial<br />

supracondylar ridges of the humerus respectively, Lateral Enthesophytes<br />

and Medial Enthesophytes assess the percentage coverage by<br />

enthesophytes along the lateral and medial supracondylar ridges, Macro<br />

Porosity and Pinprick Porosity assess the percentage coverage by porosity<br />

along the lateral supracondylar ridge and Double Ridge assess the<br />

presence of two ridges forming along the lateral supracondylar ridge.<br />

A scoring system was created so that the severity of each of the seven<br />

morphological changes could be recorded, for each humeri studied. A<br />

sample of both left and right humeri belonging to individuals of known<br />

age and sex from the Christchurch Spitalfields collection was studied. All<br />

appropriate humeri from the Spitalfields collection were scored using the<br />

system developed.<br />

The results were subjected to statistical testing and then analysed to<br />

see if any of the observed changes could be significantly related to age at<br />

death. Due to the anatomical position of the area studied, other factors,<br />

such as handedness, occupation and sex, could also contribute to the<br />

severity of any changes that occur. For this reason, comparisons were<br />

made between males and females, and left and right humeri.<br />

Age at death showed a significant correlation with four of the<br />

observed morphological traits for females, Lateral Ridge score and Double<br />

Ridge score for left and right humeri, and Medial Ridge score and Medial<br />

Enthesophyte score for left humeri only. For males, age at death showed<br />

a significant correlation with Medial Enthesophyte score for the left<br />

humeri only.<br />

Male scores were significantly higher than female scores for Lateral<br />

Ridge for both left and right humeri, and Pinprick Porosity for left humeri<br />

only. Female scores for Medial Enthesophytes were significantly higher<br />

than male scores for left humeri only.<br />

The scores from right humeri were significantly greater than the<br />

scores from left humeri for Lateral Ridge for both males and females, and<br />

for Lateral Enthesophytes for males only. The scores from left humeri<br />

were significantly greater than those from right humeri for Medial<br />

Enthesophytes for females only.<br />

A multiple regression analysis using dummy variables was carried<br />

out. The outcome showed that age at death could not be accurately<br />

predicted using the seven morphological traits studied, but the model for<br />

females was far more accurate than the model for males. If further work<br />

could be carried out, it may be possible to produce a model that would<br />

predict age at death from the distal humerus, but only for female<br />

Individuals.<br />

Distal Humerus, Age-Related Changes, Supra-Condylar Ridge<br />

H40 The Determination of Age Using<br />

the Acetabulum of the Os Coxa<br />

Kyra E. Stull, BA*, 108 Firethorne Drive, Greer, SC 29650; Dustin M.<br />

James, BA, 7735 Village Drive, Knoxville, TN 37919; and Joseph T.<br />

Hefner, MA, 241 South Stadium Hall, Knoxville, TN 37996<br />

The goal of this presentation is to provide the audience with analyses<br />

of several features of the acetabulum of the os coxa as an indicator of age<br />

at death. Participants will be introduced to a new methodological<br />

approach using this feature, as well as a reexamination of the methods<br />

introduced by Rouge Maillert et al. (2004).<br />

This presentation will impact the forensic community and/or<br />

humanity by providing another nonmetric approach for the determination<br />

of age at death. Revisions of previously published methods combined<br />

with employing a larger sample size and multiple ancestries permits a<br />

more comprehensive examination. The authors’ method, combined with<br />

other nonmetric analyses, provides further support when making a<br />

determination of age. With the os coxa’s longevity and little susceptibility<br />

to trauma, this method could be employed in a variety of contexts.<br />

Statistically and anthroposcopically, the rim follows a predictable<br />

degenerative pattern that is correlated with age and is appropriate as a new<br />

method of analysis.<br />

Multiple regions of the os coxae have been used in studies related to<br />

aging methods. Several researchers have documented the use of the<br />

acetabulum in aging studies, but most have inadequate or inappropriate<br />

sample sizes, or they are restricted to white males. The current study<br />

considers several characters of the acetabulum on the os coxa for<br />

degenerative changes to assess the technique as an age at death estimator.<br />

Drawing on the previous work of Rouge Maillart et al. (2004), 400<br />

modern individuals ranging from 15 to 96 years old, and of known sex and<br />

ancestry, were observed from the William Bass Skeletal Collection housed<br />

at the University of Tennessee, Knoxville, Tennessee and the Hamilton<br />

County <strong>Medical</strong> Examiners Office, Chattanooga, Tennessee. Individual<br />

os coxae were assessed for the progression of degeneration in three major<br />

areas of the acetabulum: the acetabular rim, the acetabular fossa, and the<br />

apex of the lunar surface. Each variable was subdivided into several<br />

character states following anatomical descriptions and/or previously<br />

published descriptions of degenerative change.<br />

Results indicate that degeneration of the acetabulum occurs linearly<br />

and is positively associated with progressive age. Boxplots of the mean,<br />

standard error, and standard deviation were visually examined for a<br />

315 * Presenting Author


general understanding of the significance of each variable. Spearman<br />

correlation analysis and Kruskal-Wallis (K-W) tests were performed on<br />

the dataset. Kruskal-Wallis, a nonparametric analysis of variance, has<br />

been previously demonstrated to be appropriate for ordinal data. The<br />

Kruskal-Wallis tests suggest both sex and ancestry are correlated<br />

significantly with age. Of the three acetabular variables, only rim<br />

morphology and acetabulum apex were consistently correlated and<br />

significant in the K-W tests. This is apart from the black male and female<br />

sample, both of which likely suffer from small sample sizes. White males<br />

and females showed significant correlation between age and the<br />

degenerative changes on the rim (males: r (6) = 0.526, p < .001; females:<br />

r (6) = 0.573, p < .001) and the apex (males r (6) = 0.390, p < .001;<br />

females: r (6) = 0.394, p < .001). These two traits also had significant<br />

Kruskal-Wallis tests (K-W = 161.425 and 115.280, respectively, p < .002).<br />

Acetabulum, Age at Death, Os Coxa<br />

H41 Matjes River Rockshelter:<br />

A Case of Commingled Remains<br />

Ericka N L’Abbe, PhD*, Marius Loots, BSc, and Natalie Keough, BSc,<br />

University of Pretoria, Faculty of Health Sciences, Department of<br />

Anatomy, PO Box 2034, Pretoria, 0001, South Africa<br />

After attending this presentation, attendees will have alternative ideas<br />

for researching forensic problems on existing skeletal collections, gain<br />

insight into one approach to sorting and documenting cases of large scale<br />

commingling, and learn about the basic demography of the Matjes River<br />

skeletal collection.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a better understanding of sorting such remains in a<br />

forensic context. This study benefits both physical and forensic<br />

anthropologists in that it presents alternative sources for researching<br />

current problems and demonstrates what can be achieved from human<br />

remains when modern techniques, such as DNA, are not available. For<br />

local archaeologists, the results will help in understanding the human side<br />

to the cultural remains found on the site.<br />

The sorting of commingled remains is not an uncommon practice in<br />

South Africa, where several forensic cases have been known to contain<br />

more than one person. The greatest number of skeletal remains from a<br />

single forensic case has come from the town of Duiwelskloof, in which the<br />

disarticulated bones of 11 people were packed into a grain bag and<br />

discarded in the forest. This case brought about an interest in exploring<br />

various anthropological methodologies in sorting human remains and how<br />

they could be applied in a situation where the outcome of a court case was<br />

not dependent on the result of the study.<br />

Between 1932 and 1956, one of the largest collections of human<br />

remains was removed from the Matjes River Rockshelter, which dates<br />

from 3,000 to 10,000 BP. However, the methodologies used to excavate<br />

these skeletons were less than adequate. After removal, the bones were<br />

stored by skeletal element and hence, commingled. This afforded an<br />

opportunity to test various approaches to sort the remains into individuals<br />

and, at the same time, the demographics (sex and age) of the commingled<br />

group in question could be described.<br />

The first phase of the study was to determine the extent of the<br />

collection, the minimum number of individuals (MNI) as well as to<br />

provide an estimation of age and sex for the remains. Each box of bones<br />

in the collection and each possible individual in a box was assigned a<br />

unique number and photographed. All bones were counted and the most<br />

common skeletal elements were selected to establish an MNI. In the skull,<br />

the most numerous were the right parietal and the left mandible with 80<br />

and 71 unique pieces, respectively. A similar pattern was observed in the<br />

upper limbs with 115 left humeri, 95 left radii, and 119 left ulnae. No less<br />

than 50 persons were recorded from the lower limbs. Approximately, 27<br />

females, 27 males and 17 persons of indeterminate sex were recorded. Of<br />

* Presenting Author<br />

these 39 were adults, 27 juveniles and 5 of indeterminate age. As skeletal<br />

elements are paired with each other, it is expected that the estimation of<br />

age and sex will change. In conclusion, it is possible to say that the Matjes<br />

River skeletal collection contains at least 100 people; future research will<br />

focus on developing techniques in which various skeletal elements can be<br />

sorted to specific individuals.<br />

Studies on commingled skeletal collections will serve to provide a<br />

better understanding of sorting such remains in a forensic context. This<br />

study benefits both physical and forensic anthropologists in that it presents<br />

alternative sources for researching current problems and demonstrates<br />

what can be achieved from human remains when modern techniques, such<br />

as DNA, are not available. For local archaeologists, the results will help in<br />

understanding the human side to the cultural remains found on the site.<br />

Skeletons, Research Collections, Commingled Remains<br />

H42 Differential Wound Healing Patterns<br />

in Bone: A Case Study Involving<br />

Multiple Antemortem Injuries<br />

Allison Bouwman, BA*, Jessica Dimka, BS, Jennifer Halpain, BS,<br />

Turhon A. Murad, PhD, and Eric J. Bartelink, PhD, California State<br />

University, Chico, 400 West First Street, Department of Anthropology,<br />

Butte #311, Chico, CA 95929-0400<br />

After attending this presentation, attendees will gain a greater<br />

understanding of differential healing patterns of antemortem injuries,<br />

skeletal changes associated with amputation, and potential osteological<br />

changes resulting from eye implant surgery.<br />

This presentation will impact the forensic community and/or<br />

humanity by enhancing the understanding of bone remodeling processes<br />

in antemortem injuries when the mechanism and date of injury are known.<br />

In August 2001, human remains were discovered along a roadside in<br />

northern California and were submitted to the Human Identification<br />

Laboratory at California State University, Chico for analysis. The remains<br />

were subsequently identified and later donated by the next-of-kin for<br />

educational purposes. The biological profile indicated that the remains<br />

belonged to an adult male, between 40 and 50 years of age, with an<br />

estimated stature between 6’2” and 6’4”. Although Fordisc 3.0 classified<br />

the decedent as Hispanic male (posterior probability = .434, typicality =<br />

.625), the cranium could not be excluded from several of the other<br />

reference samples in the databank. Nonmetric analysis of the skull further<br />

suggested a combination of European and Asian traits. The decedent was<br />

identified as an adult male, 46 years of age, with a reported stature of 6’2”.<br />

Although the missing persons record reported the decedent as “White”, the<br />

individual is believed to have been of mixed ancestry.<br />

Prior to his death, the decedent sustained numerous injuries resulting<br />

from a motorcycle accident, including fractures of the thorax, the vertebral<br />

column, the distal right radius (Colles’s fracture), the proximal right<br />

humeral head, the left and right innominates, the right proximal foot<br />

phalanges of digits I and III, the left femur, and the left tibia and fibula.<br />

The left femur sustained a massive comminuted fracture and was repaired<br />

with an internal fixation device, which is enveloped by hypertrophic bone<br />

growth along the lateral aspect of the diaphysis. The injury to the left tibia<br />

and fibula resulted in a “below-the-knee” amputation. These elements are<br />

represented by their proximal ends, and both show enclosed medullary<br />

shafts at the amputation site. The decedent also had an implanted left eye.<br />

The inferior border of the left orbit shows significant evidence of bony<br />

remodeling, with perforations that interconnect the orbit with the nasal<br />

aperture and maxillary sinus. The orbital plate and inferior orbital margin<br />

are also depressed relative to the contralateral side, and show marked<br />

asymmetry.<br />

Although these injuries resulted from a single traumatic event, there<br />

are substantial differences in the degree of wound healing between<br />

elements. Injuries of the ribs, phalanges, radius, innominates, and<br />

316


amputation site all appear to be well healed. However, the fracture of the<br />

left femur shows active signs of hypertrophic bone formation, indicating<br />

an earlier stage of healing compared with the other injuries.<br />

This presentation focuses on differential processes of healing and<br />

bone remodeling associated with antemortem trauma. The injuries in this<br />

case study were sustained in the same event but show varying stages of<br />

healing. This study highlights that a greater understanding of the timing<br />

and pattern of antemortem injuries can be especially useful for the<br />

purposes of identification.<br />

Amputation, Antemortem Trauma, Orthopedic Devices<br />

H43 Hyoid Fusion and the Relationship With<br />

Fracture: Forensic Anthropological<br />

Implications<br />

Jonathan D. Bethard, MA*, and Christine M. Pink, MA, The University<br />

of Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37916<br />

After attending this presentation, attendees will understand that<br />

fracture of the hyoid bone is dependent on the type of traumatic force<br />

applied to it. The research presented here was tested on a sample of hyoid<br />

bones from the McCormick Collection curated at the University of<br />

Tennessee. Fracture was statistically compared with fusion of greater<br />

horns to the body and results indicate that the hyoid is a diagnostic element<br />

for reconstructing various kinds of trauma. However, the relationship<br />

between fusion and fracture is statistically insignificant in this sample.<br />

This presentation will impact the forensic community and/or<br />

humanity by stressing that hyoid bones should be carefully examined in<br />

any instance of suspected neck trauma and that fusion of the great horns<br />

to the body is not a statistically significant indicator of the presence or<br />

absence of fracture.<br />

Although hyoid fractures only comprise a mere 0.002% of all bony<br />

fractures (Bagnoli et al. 1988), their importance in forensic contexts<br />

cannot be overlooked. Oftentimes such fractures are indicative of direct<br />

trauma to the neck resulting from manual strangulation, ligature<br />

strangulation, or hanging (Ubelaker 1992; Pollanen and Chiasson 1996;<br />

Polannen and Ubelaker 1997). While some hyoids may be more likely to<br />

fracture than others, numerous factors influence the likelihood of such<br />

occurrences (Pollanen and Chiasson 1996). Such variables include the<br />

magnitude and position of applied force, rigidity of the bone itself, and<br />

shape (Pollanen and Chiasson 1996).<br />

The union of the parts of the hyoid is correlated to the age and sex of<br />

the individual to which they belong. Over time, the greater cornua fuse to<br />

the hyoid body and “essentially become one bone” (Guilbeau 1992). In<br />

order to determine the occurrence of hyoid fusion, O’Halloran and Lundy<br />

(1987) examined hyoid bones of 300 autopsy case from Oregon and<br />

California. According to their findings, some fusion was observed in the<br />

third decade and increased with age, resulting in “70% of the joints in men<br />

and 60% of the joints in women fused by age 60” (O’Halloran and Lundy<br />

1987). Unlike the previous study, Miller and coworker’s examination 188<br />

male and 127 female hyoid bones found “little evidence for a sex<br />

difference in the age at which bilateral fusion occurs” (Miller et al. 1998).<br />

Furthermore, the author’s argue that numerous elderly individuals present<br />

hyoids with either unilateral or bilateral non-fusion.<br />

In theory, a hyoid with bilateral fusion would be more likely to fail<br />

than a hyoid with unfused cornua. The literature reveals variable<br />

frequency rates of fracture dependent on the type of trauma inflicted and<br />

the degree to which the hyoid bone is ossified. Ubelaker’s (1992) review<br />

of hyoid bone fracture delineated three types of trauma that<br />

characteristically result in bone failure. He writes that hyoid fractures<br />

resultant of hanging have an incidence that ranges from 6 to 20%. Luke<br />

et al. (1985) note that the variable location of ligature placement, along<br />

with other mechanical factors such as drop height, account for the low<br />

frequency of hyoid fracture during hanging. The frequency of fracture due<br />

to ligature strangulation is substantially higher with rates ranging from 13<br />

to 54% (Ubelaker 1992). Manual strangulation rates appear to be the<br />

highest with frequencies ranging from 17 to 71% (Ubelaker 1992).<br />

Furthermore, in an attempt to qualify prior reports, Pollanen and Chiasson<br />

(1996) evaluated the radiographs of twenty hyoid bones of victims of<br />

manual strangulation. Of the twenty hyoids utilized in their study, ten<br />

exhibited fracture and ten displayed no sign of fracture. Their data<br />

illustrated that 70% of fractured hyoids were fused, whereas 30% of<br />

unfractured hyoids were fused. Pollanen and Chiasson assert “this data<br />

indicates that age-dependant fusion of the hyoid bone increases the<br />

probability of hyoid bone fracture.”<br />

In order to evaluate the relationship between hyoid fusion and its<br />

propensity for fracture, hyoid bones from the McCormick Collection<br />

curated by the Department of Anthropology at the University of Tennessee<br />

were examined. Condensed case reports ranging from 1986 to 1996 were<br />

evaluated to determine instances of fatal neck trauma including manual<br />

strangulation, ligature strangulation, and hanging. Hyoids for which all<br />

data (sex, age-at-death, and manner-of-death) were available were<br />

exclusively examined (n=28). Mean age-at-death of the sample was 37.28<br />

years and 32.1% (n=9) of hyoids in the sample were fractured.<br />

Interestingly, 100% (n=4) of manual strangulation cases were fractured<br />

while 20.8% (n=5) of hanging cases were fractured. Although the sample<br />

size is small, these results produce similar frequencies to those of Luke<br />

and colleagues (1985) and Ubelaker (1992).<br />

Non-parametric chi-square analyses tested the relationship between<br />

the state of fusion and fracture and produced statistically insignificant<br />

results (P=.600). Such results do not indicate a significant relationship<br />

between fusion of the greater cornua and fracture. These findings suggest<br />

that forensic anthropologists should carefully examine all suspect cases of<br />

fatal neck trauma and that predictable patterns between hyoid fusion and<br />

fracture are elusive as evidenced by this sample.<br />

Hyoid Bone, Neck Trauma, Forensic Anthropology<br />

H44 The Potential Diagnostic Value of Scanning<br />

Electron Microscopy in the Differential<br />

Diagnosis of Bone Lesions: A Pilot Study<br />

Wendy E. Potter, BA, MS*, Department of Anthropology, MSC01-1040, 1<br />

University of New Mexico, Albuquerque, NM 87131<br />

The goal of this presentation is to illustrate the potential diagnostic<br />

value of scanning electron microscopy in the differential diagnosis of bone<br />

lesions and the anthropological analysis of human remains in forensic<br />

settings.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting microscopic skeletal lesion margin characteristics<br />

for three different types of neoplastic diseases and by introducing new<br />

terminology to describe the microscopic features observed in the SEM<br />

images.<br />

The goal of this presentation is to illustrate the potential diagnostic<br />

value of scanning electron microscopy (SEM) in the differential diagnosis<br />

of bone lesions and the anthropological analysis of human remains in<br />

forensic settings.<br />

The study of pathological conditions in skeletal samples is restricted<br />

to bony manifestations of disease; the differential diagnosis of bone<br />

lesions identifies certain pathological conditions as likely candidates,<br />

although none can be eliminated based on the standards currently<br />

available. While paleopathological analyses have the liberty to stop at this<br />

point, forensic investigations require more specificity, particularly in cases<br />

of unidentified individuals represented solely by skeletal remains.<br />

Previous anthropological studies have demonstrated the necessity of<br />

multidisciplinary approaches for the most accurate study of pathological<br />

conditions in archaeological specimens. Current non-destructive methods<br />

317 * Presenting Author


for diagnosing disease from the skeleton include gross morphological<br />

examination and radiography of the lesions. This pilot study represents<br />

the initial phase of a research project that will test whether SEM<br />

contributes any additional diagnostic information to the identification of<br />

pathological conditions by examining the margins of lesions resulting<br />

from various disease processes in a modern documented sample. The<br />

hypothesis to be tested is as follows: SEM will illustrate differences in the<br />

margin morphology of bone lesions. The null hypothesis is that there is<br />

no difference in the data provided by gross morphology, radiography, and<br />

SEM. The alternative hypothesis is that significant differences exist<br />

among the morphological data provided by gross examination,<br />

radiography, and scanning electron microscopy. The criterion for<br />

determining if a difference exists is whether new terminology is needed to<br />

describe the microscopic morphological features observed in the SEM<br />

images. If the current descriptors are inadequate, then SEM is inherently<br />

contributing new information.<br />

Three specimens with clinically diagnosed cancers (metastatic breast<br />

cancer, diffuse histiocytic lymphoma, and multiple myeloma) were drawn<br />

from the Maxwell Museum of Anthropology’s documented skeletal<br />

collection. Gross observation, radiography, and SEM were used to<br />

examine bones with lesions. The skeletal elements were radiographed<br />

using a Hewlett Packard 43805N Faxitron X-ray machine, and the<br />

backscattered electron detector was utilized to gather topographic<br />

information from the bones in the low vacuum mode of the JEOL JSM-<br />

5800LV scanning electron microscope (equipped with Oxford Isis 300<br />

digital image capturing). To test whether scanning electron microscopy<br />

contributed information not available through current methods, all three<br />

images (digital photographs of gross morphology, radiographs, and SEM<br />

images) for each specimen were visually assessed and a written<br />

description of the observed morphology was generated.<br />

The preliminary results of this research indicate that SEM—in<br />

conjunction with radiography and gross morphological examination—is a<br />

valuable tool for the recognition of neoplastic disease from skeletal<br />

remains in modern populations and forensic settings. Based on the<br />

specimens examined, scanning electron microscopy contributes additional<br />

data not previously available using traditional techniques; the microscopic<br />

features observed in the SEM images were not adequately described by<br />

standard gross morphological or radiographic terminology. Accordingly,<br />

feedback from the forensic community will be sought to refine new<br />

terminology that accurately and meaningfully captures the variation<br />

observed. However, a larger sample size (encompassing other<br />

pathological conditions) is necessary to strengthen this conclusion and<br />

determine whether SEM contributes diagnostic robusticity to the<br />

differential diagnosis of bone lesions in forensic anthropological contexts,<br />

as well as paleopathological and bioarchaeological research. Such<br />

diagnostic specificity would greatly benefit forensic anthropological<br />

investigations by contributing to the determination of cause and manner of<br />

death and/or the identification of unknown individuals.<br />

Skeletal Lesions, Osteology, Scanning Electron Microscopy<br />

H45 Evaluation of the Mandibular<br />

Angle as an Indicator of Sex<br />

Carlos J. Zambrano, MS, Nicolette M. Parr, MS*, Laurel Freas, MA,<br />

Anthony B. Falsetti, PhD, and Michael W. Warren, PhD, C.A. Pound<br />

Human Identification Laboratory, Department of Anthropology,<br />

University of Florida, PO Box 103615, 1376 Mowry Road, Gainesville,<br />

FL 32610<br />

The goal of this presentation is to demonstrate the utility of the<br />

mandibular angle as an indicator of sex in unknown human skeletal<br />

remains.<br />

* Presenting Author<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that the mandibular angle is a poor indicator<br />

for determining biological sex.<br />

Determining the biological sex of unidentified human skeletal<br />

remains is one of the most crucial components of the biological profile<br />

created by the osteologist as ancestral designations and age assessments<br />

are known to be affected by this factor. The accuracy of the sex<br />

determination is in turn often dependent on which skeletal elements are<br />

present for analysis. Ideally, the os coxae are employed because their<br />

morphology is particularly indicative of an individual’s sex.<br />

Unfortunately, the morphological features that are most useful for sex<br />

estimation are often destroyed by taphonomic forces such as erosion or<br />

scavenger activity. Additionally, the preferred elements for the estimation<br />

of sex are not always present for analysis due to their initial absence thus<br />

forcing the anthropologist to examine other elements to determine sex.<br />

The cranium also presents characteristics that are useful for sex<br />

assessment; however, these features may be damaged or lost as well. The<br />

mandible is one of the densest bones in the skeleton and is more likely to<br />

survive taphonomic forces in an archaeological or forensic context.<br />

Although, sex estimates using the mandible are generally not as accurate<br />

as other elements it is at times the only useful or available element present<br />

for analysis.<br />

It is generally accepted and taught in classrooms that the mandibular<br />

angle is an indicator of sex, where males have a squared and more vertical<br />

angle, while females tend to have a more obtuse angle. The mandibular<br />

angle is a standard osteometric measurement taken with a mandibulometer.<br />

Standard osteometric manuals describe the measurement as the angle made<br />

by the inferior border of the body and the posterior border of the ramus.<br />

Few texts give more than a general statement about the mandibular angle,<br />

usually suggesting that it is a non-metric indicator of sex. The document<br />

that provides a numeric threshold reference is an obscure older European<br />

text that suggests that an angle > 125 degrees is female and an angle < 125<br />

degrees is a male (Acsadi and Nemeskeri 1970).<br />

This study examines the validity of the mandibular angle<br />

measurement as an indicator of sex using data derived from the Terry<br />

Collection and modern forensic cases. The Terry collection sample<br />

consists of 315 individuals (166 females, 149 males) of African and<br />

European ancestry. The forensic sample will be of a comparable size and<br />

composition derived from cases processed by the C.A. Pound Human<br />

Identification laboratory at the University of Florida.<br />

Statistical analysis is performed on the sample as a whole, by<br />

ancestry group, and by sample. The percentages of individuals falling<br />

above and below the 125 degree threshold are calculated. Additionally,<br />

ANCOVA is used to determine if sex, ancestry, age, or sample have an<br />

effect on mandibular angle measurements. Preliminary results indicate<br />

that there is a great deal of overlap in mandibular angle measurements<br />

between males and females. With ancestry groups combined the 125<br />

degree threshold misclassified 55 % of males, and 37 % of females. When<br />

controlling for ancestry the threshold misclassified 63 % of European<br />

males and 33 % of European females. The threshold misclassified 47 %<br />

of African males and 41 % of African females. The ANCOVA results<br />

indicate that ancestry has a significant relationship with mandibular angle<br />

variance; however, age and sex do not. The above results suggest that the<br />

mandibular angle is a poor lone indicator of sex and that the 125 degree<br />

threshold is not a statistically significant boundary between males and<br />

females in the samples. When attempting to determine the sex of an<br />

individual it is necessary to use as many indicators as possible, although<br />

the mandibular angle is a poor indicator of sex this study did not<br />

investigate its usefulness for sex estimation with other traits. Additionally,<br />

the results indicate that population differences exist and require further<br />

exploration along with other indicators to determine the relationship<br />

between sex and ancestry.<br />

Mandibular Angle, Sex Determination, Forensic Anthropology<br />

318


H46 Test of a Method Regarding Sex<br />

Indication of the Human Hyoid Body<br />

Michelle L. Osborn, BA*, Department of Geography and Anthropology,<br />

Louisiana State University, Howe-Russel Building, Baton Rouge, LA<br />

70803; Mary H. Manhein, MA, Department of Geography and<br />

Anthropology, FACES Lab, Louisiana State University, E105 Howe-<br />

Russell Building, Baton Rouge, LA 70803; and Michael Leitner, PhD,<br />

Department of Geography and Anthropology, Loiusiana State University,<br />

E111 Howe-Russell Building, Baton Rouge, LA 70803<br />

After attending this presentation, attendees will become familiar with<br />

the three measurements of the human hyoid (out of 16 possible<br />

measurements) that have been used repeatedly to demonstrate differences<br />

between the sexes. Also, this presentation will evaluate the strengths and<br />

weaknesses of taking measurements of the hyoid from radiographs (or<br />

photographs) as opposed to measuring actual bones. Results of two<br />

studies will be discussed and compared.<br />

This presentation will impact the forensic community and/or<br />

humanity through the value of the potential for using the hyoid as a<br />

reliable sex indicator.<br />

For forensic anthropologists, one of the smallest bones in the human<br />

body may hold information that can identify an unknown victim. A<br />

discriminant function that correctly identifies the sex of 76% or more of<br />

human hyoids may aid in the sexual identification of an unknown person<br />

(especially when other bones are not available). The purpose of this<br />

project is to test the discriminant function method for indicating sex of<br />

human hyoids as outlined by Reesink et al. (1999). Reesink et al.’s<br />

function is based on three measurements taken from radiographs of the<br />

hyoid bone: the maximal medial height of the corpus (MMH), the anterior<br />

posterior thickness of the corpus (ATP), and the maximal transverse<br />

diameter of the corpus (MTD). With that method, Reesink et al. (1999)<br />

correctly identified sex 76% of the time. The current study repeats the<br />

research by Reesink et al. (1999), but instead of using radiographs,<br />

measurements were taken from actual donated hyoids curated at the<br />

Forensic Anthropology and Computer Enhancement Services (FACES)<br />

laboratory at Louisiana State University. The measurements used in the<br />

current study were interpreted as being the height of the body, the<br />

thickness of the body, and the width of the body (see also Devlin’s hyoid<br />

body measurements pp. 95-97). The FACES lab collection consists of 198<br />

total hyoids of which 107 are males, 27 are females, and 64 are of<br />

unknown sex. All three measurements must be present to correctly use the<br />

discriminant function, and 55 males and 20 females in the FACES lab<br />

collection met these requirements.<br />

Preliminary results of the current study suggest that all three<br />

measurements of the hyoid show statistically significant differences<br />

between males and females at α = 0.001. This finding is supported by<br />

Reesink et al. (1999 p. 358) and Devlin (2002). Therefore, all three studies<br />

reflect that size differences exist between the hyoid bodies of males and<br />

females. In fact, in her 2002 dissertation, Devlin states “Males exhibit<br />

taller, wider, and thicker hyoid bodies in comparison to females” (p. 148).<br />

Reesink et al.’s (1999) results from their discriminant function<br />

suggest that male values will be less than zero while female values will be<br />

greater than zero. In contrast, preliminary results of the current study<br />

where the actual bones were measured suggest that while there is a<br />

significant difference (α = .05) between the male and female results, as<br />

derived from the discriminant function, both female and male results are<br />

negative. Specifically, the mean for all discriminant function results is -<br />

2.1783 for females and -1.2091 for males, respectively. Possible<br />

explanations for these differences in results for the two studies may<br />

include interpretation of the exact location of measurements taken<br />

(especially the ATP) and also the disparities that might arise from taking<br />

measurements from radiographs as opposed to actual bones. Future<br />

studies with larger collections could help address these concerns.<br />

References:<br />

1 Reesink, E.M., A.A.H Van Immerseel, R. Brand, and TJ.D. Bruintjes,<br />

(1999) Sexual Dimorphism of the Hyoid Bone? International Journal of<br />

Osteoarchaeology, 9: 357-360.<br />

2 Devlin, Joanne Lorraine, (2002) Morphological Considerations of the<br />

Human Hyoid Bone. Dissertation, University of Tennessee, Knoxville.<br />

Human Hyoid, Discriminant Function, Sexual Dimorphism<br />

H47 Efficient Processing of Human<br />

Remains Using Dermestid Beetles<br />

Karen R. Cebra, MS, MSFS*, California State University at Chico,<br />

Anthropology Department, 400 West 1st Street, Chico, CA 95929<br />

After attending this presentation, attendees will understand the<br />

behavior and ecology of dermestid beetles in a captive, laboratory<br />

environment will be understood such that they can be used to efficiently<br />

and effectively process human remains in a timely fashion.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the advantages of using dermestid beetles in<br />

the processing of human remains found in forensic cases and by describing<br />

new methods to efficiently and effectively use and maintain a dermestid<br />

colony.<br />

Beetles of the family Dermestidae (Order Coleoptera) are known to<br />

feed and breed on animal proteins. Places that process animal products,<br />

for example tanneries, are therefore vulnerable to infestation by<br />

dermestids. In nature, dermestid beetles are commonly found on<br />

decomposing remains in the late stages of decay – long after such species<br />

as blowflies (Family Calliphoridae) have left. The animal proteins present<br />

in raw hides and skins are suitable habitat for larval development and a<br />

single female adult dermestid can lay hundreds of eggs. The eggs hatch<br />

after about a week into larvae that undergo several molts (instars), pupate<br />

and emerge as adults. It is the larval stages that feed on the animal<br />

material; therefore, in the case of the processing of human remains, it is<br />

the larvae that clean the skeleton. The entire cycle from egg to adult varies<br />

widely depending on temperature and humidity. Increased temperature<br />

and humidity typically speed development whereas a decrease in these<br />

factors slows it. In addition to temperature and humidity, it is important to<br />

understand that remains in nature do not undergo the same succession of<br />

insect colonization as those that are processed in a laboratory<br />

environment. An argument often made against using beetles of the genus<br />

Dermestes (literally “skin-eaters”) to clean human remains is the time it<br />

takes for the beetles to complete the job (Byers, 2000), but with a good<br />

understanding of the ecology and behavior of the beetles, the rate at which<br />

a specimen can be cleaned can be controlled. Procedures for preparing a<br />

specimen for placement into a beetle colony describe defleshing,<br />

removing the eyes, tongue and brain, and drying. All of these ideas are<br />

predicated on the behavior of beetles in nature and each of these processes<br />

adds time in addition to the time the remains are in the colony itself. Other<br />

techniques, such as boiling, have been used in cases where the time<br />

required for beetles has been thought to be unavailable. However, these<br />

techniques pose risks to the bone, such as cracking or demineralizing, that<br />

dermestids do not. It is for this reason that the Physical Anthropology<br />

Human Identification Laboratory (PAHIL) at California State University<br />

at Chico prioritizes the use of dermestids in the processing of human<br />

remains. Such a colony has been maintained successfully for many years.<br />

A recent time-sensitive case of homicide at PAHIL which was received<br />

and completely processed from May 23 to June 6, 2006 demonstrates that,<br />

in fact, a dermestid colony can completely clean a skeleton in far less time<br />

than the literature suggests. The initial preparatory steps and maintenance<br />

of the colony used in this case in order to maximize processing efficiency<br />

and minimize the risk to the colony will be discussed. Photographs will<br />

be presented that document the daily progress of the colony and the<br />

319 * Presenting Author


conditions under which it was kept. Close-up photographs of bone injury<br />

will be used to demonstrate the high quality of work that can be produced<br />

by dermestid beetles.<br />

Reference:<br />

1 Byers, Steven N. Introduction to Forensic Anthropology: a textbook.<br />

Allyn & Bacon, Boston, MA. 2002.<br />

Dermestid, Skeleton, Processing<br />

H48 Bodies and Body Parts: When and<br />

How to Record Them During the<br />

Excavation of Mass Graves<br />

Hugh H. Tuller, MA*, and Joan Baker, PhD, Joint POW/MIA Accounting<br />

Command, Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, Hawaii 96853<br />

The goal of this presentation is to highlight the pitfalls that<br />

accompany defining differences between a “Body” and “Body Part” or<br />

“Body Portion” within a mass grave context and propose a standard<br />

method of recording such remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how consistency in defining and recording<br />

human remains from a mass grave context is important not only within a<br />

single grave, but between graves and over the course of the entire<br />

investigation. Inconsistent definitions and recording during excavation<br />

will lead to problems during mortuary examination. Mission planners<br />

should carefully consider their systems of recording prior to any<br />

operational activity.<br />

Human remains within a mass grave context, especially secondary<br />

depositions, are regularly recovered in a disarticulated state. Care in<br />

exposing and removal of remains from a grave by an observant excavator,<br />

knowledgeable in human skeletal anatomy, is one of the most important<br />

steps in limiting (and hopefully eliminating) further disarticulation.<br />

Another important step, though often disregarded, is the consistent<br />

classifying and subsequent recording of disarticulated remains.<br />

Inconsistencies in defining incomplete portions of body could have an<br />

adverse effect on mortuary operations.<br />

When dealing with large numbers of remains the order of autopsy<br />

typically takes into consideration the types of remains to be examined.<br />

Complete bodies are regularly processed first while incomplete bodies are<br />

examined later with an eye towards reassociation of disarticulated body<br />

portions. With hundreds (or thousands) of remains waiting to be<br />

processed, a decision may be made to bypass or delay examination of<br />

disarticulated body parts in an effort to streamline autopsy time, money,<br />

and energy, or to produce more identifications in the beginning while<br />

allowing reassociation activities to take a back seat. While not all<br />

mortuaries may operate in this manner, most will use the<br />

recovery/evidence log to set the basic order of remains examination. The<br />

classification of remains at the time of recovery may thus dictate the order<br />

of mortuary examination. Consistency in the classification of recovered<br />

remains therefore becomes an important issue.<br />

In addition, consistent classification of remains is necessary to assist<br />

with reassociation of disarticulated remains. When dealing with hundreds<br />

to thousands of remains an ordered method of categorizing them is needed<br />

to ensure that an organized approach to reassociation is maintained.<br />

Methods such as spatial analysis of recovery location data, which relies on<br />

database queries, would be limited when recovered remains are recorded<br />

inconsistently.<br />

While classifying and recording of recovered remains may seem<br />

straightforward, the fact is, defining what constitutes a body as opposed to<br />

a portion of body is problematic. Recovered remains are regularly<br />

classified as a “Body” or “Body Part” (sometimes with additions of<br />

“General Bone/General Body Part” to identify single disarticulated<br />

bones). Unfortunately there appears to be no agreed upon classification<br />

* Presenting Author<br />

system regarding what constitutes a “Body” as opposed to a “Body Part.”<br />

If a complete body is to be classified and then recorded in the evidence log<br />

as a “Body,” what do you classify a body missing an arm? Should it still<br />

be recorded as a “Body”? What if it is missing two arms, its head, and a<br />

portion of its upper torso? As a body becomes more disarticulated, at what<br />

point should the terminology be changed from “Body” to “Body Part”? It<br />

is often left up to the individual doing the recovery, guided by past<br />

experience and loose, sometimes changing definitions, which decides how<br />

the set of remains they are exposing are classified. What might constitute<br />

a “Body” for one recovery team member may be a “Body Part” to another.<br />

Complicating the discrepancies between individuals defining the<br />

remains is the timeframe over which large investigations take place. ICTYtype<br />

post-conflict missions regularly rotate personnel during a single<br />

season, excavate several graves during that season, and continue<br />

performing in this manner for several years. Inconsistent recording<br />

between individuals, different teams working different sites, and over<br />

several months/years accumulate causing large discrepancies within the<br />

reporting.<br />

This presentation will introduce a comprehensive classification<br />

system for use during recovery operations. While this system may not fit<br />

all mission situations, it is presented as an example of such a system<br />

mission planners should be considering prior to the start of an investigation.<br />

Consistent classification of remains over the entire length of an<br />

investigation, especially if such investigations will take months or years to<br />

complete, is essential. Mission planners should seriously consider the<br />

methods that they will be employing in the mortuary and how recovery<br />

classifications can affect their plan. Integrating a consistent recovery<br />

classification system with mortuary operations will help to more<br />

accurately organize examination schedules (and thus streamline autopsy<br />

time, cost, and energy) and maximize available recovery observations and<br />

data for mortuary analysis.<br />

Mass Grave, Defining Remains, Forensic Archaeology<br />

H49 Putting It All Together:<br />

Recovery, Assembly, and<br />

Analysis of Multiple Body Parts<br />

Emily A. Craig, PhD*, and Cristin Rolf, MD, Kentucky <strong>Medical</strong><br />

Examiner’s Office, 100 Sower Boulevard, Suite 202, Frankfort,<br />

KY 40601<br />

The goal of this presentation is to presents a unique example of<br />

human butchering. The attendees will learn some protocol adaptations that<br />

were necessary for recovery and assembly of 57 separate parts. Attendees<br />

will see how professionals in anthropology, pathology, search and rescue,<br />

and law enforcement worked together as a team.<br />

This presentation will impact the forensic community and/or<br />

humanity presenting a unique example of human butchering. It will also<br />

inject some effective ways to recover, process, and analyze multiple<br />

widely-scattered bones and body parts. These methods may be used in<br />

any case where recovery and identification of large numbers of disrupted<br />

human remains is problematic.<br />

This case report presents a unique example of human butchering and<br />

explains to attendees some protocol adaptations necessary for recovery<br />

and assembly of 57 separate parts. It highlights a successful outcome<br />

resulting from teamwork between anthropology, pathology, search teams,<br />

and law enforcement officers.<br />

A young female victim was beaten to death and her body cut to pieces<br />

inside the bedroom of her boyfriend’s mobile home. The dissected tissues<br />

were then taken to two different and widely separated rural locations<br />

where some were randomly scattered and others were hidden. A chance<br />

discovery shortly after the crime allowed investigators to recover a<br />

significant amount of material from one site on the first day. The suspect<br />

directed investigators to a second site two days later.<br />

320


Because many of the dissected parts involved bare bone fragments, a<br />

forensic anthropologist was called to both scenes to assist in the recovery<br />

and identification of the scattered tissues. A field inventory of identified<br />

pieces assisted in the overall scope of the investigation, and almost<br />

complete recovery of the victim. At one site, many of the pieces had<br />

simply been tucked under branches and logs, but others had been covered<br />

with leaves, stones, and loose dirt. At the other site, it appeared as if the<br />

suspect had stood at the edge of a rural road and thrown individual pieces<br />

into a ravine. The pattern of dissection and concealment reflected the<br />

suspect’s previous history of illegal killing and butchering of white tail<br />

deer. For example, the viscera were removed en bloc and covered with a<br />

slab of limestone. Muscles and skin were cut cleanly from the extremities<br />

and then the underlying bone was serially sectioned. The flesh over the<br />

abdomen was removed as if it were a cut of brisket, before a distinctive<br />

tattoo was cut off and hidden in a different location.<br />

Although there was only one victim, the scene recovery protocol was<br />

typical of one that would be employed in a mass fatality incident. The<br />

initial recovery scene covered approximately 5 acres and included dense<br />

woods, overgrown meadows, a fire pit, a railroad track and tunnel. (The<br />

suspect initially told investigators that he had stood over the tunnel and<br />

tossed body parts onto numerous moving trains, so trains up and down the<br />

East Coast had to be detained and searched). The second scene was<br />

several miles from the first, and included a steep bank along a winding<br />

rural road. At both scenes, individual numbers were assigned to each<br />

specimen and the location of each one documented with the “total station”<br />

mapping system. The initial numbering system was maintained<br />

throughout the investigation by the use of indelible markers, strips of<br />

plastic, and digital photography.<br />

At autopsy, as the medical examiner described each individual piece<br />

of bone and tissue, the anthropologist assembled the body. This had to be<br />

done in layers with the skeleton assembled first, and then sections of soft<br />

tissue matched by muscle groups and cut-marks. The posterior side of the<br />

body was re-assembled and documented first. Then the pieces of flesh<br />

were removed, each bone and bone fragment turned over, and then the<br />

anterior half of the body was reassembled and documented. The left breast<br />

of the victim was the only body part not recovered.<br />

Human Butchering, Crime Scene, Teamwork<br />

H50 Percentage of Body Recovered and its<br />

Effect on Identification Rates and<br />

Cause/Manner of Death Determination<br />

Debra Komar, PhD, Office of the <strong>Medical</strong> Investigator, MSC11-6030, 1<br />

University of New Mexico, Albuquerque, NM 87131-0001; and Wendy E.<br />

Potter, MS*, Department of Anthropology, MSC01-1040, 1 University of<br />

New Mexico, Albuquerque, NM 87131-0001<br />

After attending this presentation, attendees will better understand the<br />

relationship between the percentage of remains recovered and the ability<br />

of investigators to identify the remains and determine cause and manner of<br />

death.<br />

This presentation will impact the forensic community and/or<br />

humanity by describing and quantifying previously unreported<br />

correlations between variables of interest to investigators and providing<br />

data for comparing identification rates in individual case work and mass<br />

death scenarios.<br />

After attending this presentation, attendees will better understand the<br />

relationship between the percentage of remains recovered and the ability<br />

of investigators to identify the remains and determine cause and manner of<br />

death. This presentation will impact the forensic community by<br />

describing and quantifying previously unreported correlations between<br />

variables of interest to investigators and providing data for comparing<br />

identification and ruling rates in individual case work and mass death<br />

scenarios.<br />

Forensic anthropologists frequently encounter cases in which only<br />

partial or fragmentary remains are recovered. Intuitively, investigators<br />

would predict that the greater the proportion of a decedent’s body that is<br />

recovered, the greater the probability that the individual will be positively<br />

identified and that the cause and manner of death can be determined. This<br />

study reports how the percentage of remains recovered affects rates of<br />

positive identification and cause and manner of death determination.<br />

This study examined a total of 773 cases involving decomposed and<br />

skeletal remains analyzed by forensic anthropologists at the New Mexico<br />

Office of the <strong>Medical</strong> Investigator (OMI) from 1974 to 2006. All<br />

individuals were initially unidentified. The percentage of remains<br />

recovered was scored as follows: complete; 76 to 99% present; 51 to 75%<br />

present; 26 to 50% present; < 25% present; or represented by a single<br />

skeletal element. The presence or absence of the skull (complete or<br />

partial) was also noted. The cause, manner, and identification status of<br />

each case was recorded.<br />

Results indicate significant correlations between the percentage of<br />

the body recovered and the rate of positive identification. The ID rate for<br />

all cases (n=773) was 77%. ID rates were highest (89%) when complete<br />

bodies were recovered (n=221), 81% when 50% or more of the body was<br />

found (n=483), but only 56% were identified when less than 50% of the<br />

remains were present (n=193). In cases where no portion of the skull was<br />

recovered (n=66), the ID rate was 61%. It is interesting to note that the<br />

introduction of DNA testing to establish ID (circa 1996) had little effect on<br />

ID rates. ID rates for all cases pre-1996 (n=520) was 76%, while 79% of<br />

the 252 post-1996 cases were positively identified.<br />

Similar patterns were seen in the relationship between the body<br />

percent recovered and cause/manner determination. In the total sample,<br />

the cause of death could be determined in 66% of cases, while the manner<br />

was determined in 62% of all cases. Rates were again highest in complete<br />

bodies (83% cause, 79% manner). When more than 50% of the body was<br />

recovered, rates were 71% and 68% for cause and manner, respectively.<br />

Rates dropped to 40% for both cause and manner when less than half of<br />

the body was recovered, as well as when no skull was present.<br />

These findings were compared to data drawn from typical autopsy<br />

and death investigation cases (approx. 4,100 – 5,000 cases per year) from<br />

the New Mexico medical examiner’s office. The office maintains a<br />

positive identification rate of 94 to 96%. Cause of death is determined in<br />

98.5 to 99% of all cases, while manner is ruled 96 to 98% of all deaths<br />

investigated. Manner of death distributions were dramatically different<br />

between typical autopsy cases and the anthropology consult cases. For<br />

example, homicides account for 4% of typical cases but 27% of<br />

anthropology cases.<br />

The results of this study were also compared to prior published<br />

reports on anthropological consult cases. Identification rates for skeletal<br />

remains in the current study were significantly higher than those reported<br />

by Marks (W.M. Bass and the Development of Forensic Anthropology in<br />

Tennessee. JFS 40(5): 741-750, 1995) for US anthropologists (25 – 30%)<br />

and William Bass (50%). Cases in this study had higher percentages of<br />

remains recovered and greater evidence of trauma than those reported in a<br />

summary of FBI consults from 1962 to 1994 (Grisbaum and Ubelaker,<br />

Smithsonian Contributions to Anthropology #45, 2001).<br />

These findings are of interest to anthropologists working on<br />

individual casework, as well as those tasked with recovery and<br />

identification in mass death scenarios. The results also argue for the<br />

participation of anthropologists in body recovery whenever necessary to<br />

maximize recovery rates.<br />

Forensic Anthropology, Positive Identification, Cause and Manner of<br />

Death<br />

321 * Presenting Author


H51 The Fourth Era of Forensic Anthropology:<br />

Examining the Future of the Discipline<br />

Paul S. Sledzik, MS*, National Transportation Safety Board, Office of<br />

Transportation Disaster Assistance, 490 L’Enfant Plaza East, SW,<br />

Washington, DC 20594-2000; Todd W. Fenton, PhD*, Department of<br />

Anthropology, 354 Baker Hall, Michigan State University, East Lansing,<br />

MI 48824; Michael W. Warren, PhD*, Department of Anthropology,<br />

University of Florida, PO Box 117305, Gainesville, FL 32611; John E.<br />

Byrd, PhD*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Christian Crowder, PhD*, Office of the Chief <strong>Medical</strong><br />

Examiner, 520 First Avenue, New York, NY 10016; Shuala M.<br />

Drawdy, MA*, International Committee of the Red Cross, 19 Avenue de<br />

la Paix, Geneva, 1202, Switzerland; Dennis C. Dirkmaat, PhD*,<br />

Department of Applied Forensic Sciences, Mercyhurst College, 501 East<br />

38th Street, Erie, PA 16546; Alison Galloway, PhD*, Chancellor’s Office,<br />

University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA<br />

95064; Michael Finnegan, PhD*, Osteology Laboratory, Kansas State<br />

University, 204 Waters Hall, Manhattan, KS 66506; Laura C.<br />

Fulginiti, PhD*, and Kristen Hartnett, MA*, Maricopa County Forensic<br />

Science Center, 701 West Jefferson, Phoenix, AZ 85007; Thomas D.<br />

Holland, PhD*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Murray K. Marks, PhD*, Department of Anthropology,<br />

University of Tennessee, 225 South Stadium Hall, Knoxville, TN 37996;<br />

Stephen D. Ousley, PhD*, Repatriation Office, Department of<br />

Anthropology, NMNH-MRC 138, Smithsonian Institution, Washington,<br />

DC 20013-7012; Tracy Rogers, PhD*, Department of Anthropology,<br />

University of Toronto at Mississauga, Mississauga, Ontario L5L 1C6,<br />

Canada; Norman J. Sauer, PhD*, Department of Anthropology, 354<br />

Baker Hall, Michigan State University, East Lansing, MI 48824; Tal L.<br />

Simmons, PhD*, Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston, Preston PR1 2HE, United<br />

Kingdom; Steven A. Symes, PhD*, Department of Applied Forensic<br />

Sciences, Mercyhurst College, 501 East 38th Street, Erie, PA 16546-0001;<br />

Morris Tidball-Binz, MD*, International Committee of the Red Cross, 19<br />

Avenue de la Paix, Geneva, 1202, SWITZERLAND; and Douglas<br />

Ubelaker, PhD*, Department of Anthropology, NMNH-MRC 112,<br />

Smithsonian Institution, Washington, DC 20560<br />

After attending this presentation, attendees will learn about trends in<br />

training, education, research, and employment that are creating the future<br />

of forensic anthropology as a broad-based scientific discipline.<br />

Forensic anthropology is experiencing new trends in training,<br />

education, research, and employment that are impacting its future. The<br />

impact of these changes will impact how other forensic disciplines think<br />

of forensic anthropology and its interactions with forensic anthropologists.<br />

As a scientific discipline, forensic anthropology is relatively new.<br />

Stewart (1979) and Thompson (1982) have both recognized three eras in<br />

the development of forensic anthropology. In the period before World War<br />

II, although physical anthropologists consulted occasionally on forensic<br />

cases, there was no formal instruction, little published research, and scant<br />

attention by the medicolegal community. From the 1940s to the early<br />

1970s, forensic anthropology garnered increased attention by the military<br />

(for war dead identification), other government agencies, and medicolegal<br />

investigative departments. The field professionalized in the 1970s with<br />

the establishment of the physical anthropology section within the AAFS<br />

and the creation of the ABFA. This third period was also characterized by<br />

an increase in the number of AAFS section members, research and<br />

publications, training programs, employment, and acceptance by the<br />

forensic community.<br />

A fourth era of forensic anthropology has recently emerged. Several<br />

trends characterize the era. Grounded in skeletal biology and anatomy, the<br />

new forensic anthropology employs a broad knowledge of anthropology,<br />

* Presenting Author<br />

human variation, and human biology in solving forensic questions.<br />

Forensic science laboratories, crime laboratories, and medical examiner<br />

offices employ forensic anthropologists to do more than traditional<br />

forensic anthropology- laboratory management, crime scene<br />

documentation, missing persons administration, quality assurance, and<br />

forensic project management are now routinely conducted by forensic<br />

anthropologists. Forensic anthropologists are now asked to serve as<br />

forensic managers to solve large-scale human identification problems in<br />

cases of disasters, mass graves, human rights, and missing persons.<br />

Employment of forensic anthropologists with MA/MS degrees in nonacademic/applied<br />

positions has increased over the past decade, a trend that<br />

speaks to the potential of forensic anthropology outside its traditional<br />

roles.<br />

These trends in the field lead to several questions:<br />

• Is a new definition of the field required?<br />

• Are students receiving the training necessary to succeed in these<br />

new areas?<br />

• Is the field prepared to handle these new challenges?<br />

• What trends in biological science, law, forensic science, and<br />

culture will impact forensic anthropology?<br />

• What legal decisions and ethical trends will impact the field?<br />

By looking at trends in research, the evolution of training programs,<br />

the broad-ranging employment of forensic anthropologists, and the<br />

application of the science to solve complex human problems, this<br />

symposium examines this new era in forensic anthropology. Among the<br />

topics to be discussed are:<br />

• Future of education and training<br />

• Future of trauma analysis<br />

• Future of assessing ancestry<br />

• Considerations for ethical standards in forensic anthropology<br />

• Forensic anthropology and meeting evidentiary/legal demands<br />

• Management of forensic laboratories and projects<br />

• Changing role of forensic anthropology in medical examiner/<br />

coroner setting<br />

• Future of human rights work and humanitarian identifications<br />

• Future of employment<br />

The session will conclude with a discussion among participants and<br />

questions from the audience.<br />

Future of education and training: The profession of forensic<br />

anthropology requires advanced graduate training within physical<br />

anthropology, especially human skeletal biology, and closely related fields<br />

such as human biology/anatomy and archaeology. Therefore, the<br />

academic programs and faculty providing the required graduate training<br />

share a profound responsibility as gatekeepers to the profession. Faculty at<br />

institutions offering degree programs that seek to prepare these future<br />

forensic anthropologists must provide the educational framework that<br />

defines the field, while at the same time the evolving roles of practicing<br />

forensic anthropologists must constantly re-define academic programs.<br />

This symbiosis revolves around twin missions: The education and training<br />

of the next cohort of traditional academic anthropologists; and the training<br />

of practicing forensic anthropologists with specialized knowledge and<br />

expertise that lies beyond traditional physical anthropology.<br />

The 1970s and early 1980s marked the establishment of the first<br />

graduate programs that implemented specialized curricula to prepare<br />

students for careers in forensic anthropology. The first graduate programs<br />

specializing in forensic anthropology during this “establishment phase”<br />

were those at Arizona, Florida, New Mexico, South Carolina and<br />

Tennessee.<br />

Our “Fourth Era” of forensic anthropology can be witnessed as the<br />

“expansion phase”, marked by an explosion in student interest nurtured by<br />

an exponential growth in media attention. This resulted in an increase in<br />

the number of universities teaching undergraduate courses on the topic,<br />

and the development of several new graduate programs specializing in<br />

forensic anthropology, including Michigan State, Mercyhurst, UC-Santa<br />

Cruz, CSU-Chico, U-Indianapolis, and SUNY Binghamton.<br />

322


In the past, academic training in forensic anthropology has been<br />

conducted exclusively within a physical anthropology curriculum, focusing<br />

mainly on human osteology and skeletal biology. In fact, many members of<br />

the AAFS Physical Anthropology section graduated from departments that<br />

did not provide specialized curricula on topics in forensic anthropology.<br />

However, the increasing breadth and scope of the field, including issues of<br />

human identification, skeletal trauma, estimating postmortem interval,<br />

taphonomic modification of bone, war crimes and mass disaster<br />

investigations have lead to widening roles for forensic anthropologists. Do<br />

these ever-widening roles require specialized, interdisciplinary skills not<br />

offered by traditional academic-based anthropologists?<br />

As the “Fourth Era” of forensic anthropology begins, a critical<br />

assessment must be undertaken to determine whether educational<br />

programs are keeping pace with recent trends and are progressing in ways<br />

that best serve the needs of the discipline. It is time to closely examine the<br />

required courses in the academic curriculum producing forensic<br />

anthropologists. Any consideration of the future of education and training<br />

in forensic anthropology must begin with a consideration of the future of<br />

the field itself. Originally defined as a laboratory-based discipline in which<br />

physical anthropologists are occasionally enlisted by law enforcement, it<br />

is not surprising then that, until the last ten years, only a handful of<br />

individuals worked full-time professionally as forensic anthropologists.<br />

Recently, an increasing number of non-academic jobs with forensic<br />

anthropology in the title or in the job description have appeared. This has<br />

occurred primarily because: 1) medical examiners now well-realize that<br />

forensic anthropologists have skills at the crime scene and at autopsy that<br />

provide valuable assistance to the multidisciplinary attempts at<br />

identification, determining cause and manner of death, and estimation of<br />

the postmortem interval, and 2) forensic anthropologists are indispensable<br />

members of both overseas human rights organizations and both private<br />

and governmental-directed disaster assistance teams.<br />

It is clear that in the Fourth Era, forensic anthropology has been<br />

redefined as a robust and unique scientific field that requires specialized<br />

training. This requires new discussions related to educational philosophy,<br />

as well as future goals and standards for the profession. What are the<br />

essential components in the graduate education and training of a forensic<br />

anthropologist in this new era? Essential components to be discussed<br />

include: 1. Experience with large samples of human skeletons to provide<br />

the most basic and crucial understanding in human skeletal variation; 2.<br />

Specialized coursework on topics within forensic anthropology; and 3.<br />

Hands-on experience with real forensic cases.<br />

It is also necessary to examine whether graduate programs with<br />

specializations in forensic anthropology are keeping pace with the trends<br />

in the field. Do the current programs meet the philosophical and practical<br />

needs of the profession? Such efforts by the programs at Florida,<br />

Mercyhurst, Michigan State, and Tennessee will be presented.<br />

A discussion of the differing goals of Masters and PhD programs is<br />

also important. Classically, the primary goal of PhD programs in physical<br />

anthropology is to produce academics. Has the increasing number of jobs<br />

in forensic anthropology impacted this goal? In addition, the role of<br />

Masters degree programs in forensic anthropology will be addressed.<br />

Does a Masters degree open up any doors in forensic anthropology, or is<br />

it simply a stepping-stone to a PhD program?<br />

Finally, basic issues surrounding graduate student admission criteria<br />

need to be examined. With increasing student interest and an upsurge in<br />

the number of applications to graduate schools, the question whether<br />

graduate programs have a responsibility to limit the number of students<br />

accepted into programs needs to be discussed. Issues such as challenges to<br />

fund students, access to forensic casework opportunities, and the ability to<br />

place graduated students in the job market must be considered.<br />

Changing role of forensic anthropology in medical<br />

examiner/coroner setting: Forensic anthropologists have long been<br />

consulted by medical examiners and coroners in jurisdictions across the<br />

United States. Historically, many were biological anthropologists who<br />

were either informally trained or self-taught with regard to the<br />

medicolegal aspects of the discipline. Primarily employed as university<br />

professors, their involvement with forensic casework was due to their<br />

expertise with skeletal remains rather than their knowledge of the<br />

medicolegal structure. During the last twenty years, this model has<br />

evolved. Programs designed to train students in all aspects of forensic<br />

anthropology, including areas previously the domain of law enforcement<br />

and the legal community, arose and flourished. Doctoral and Master’s<br />

level students were emerging with specialized knowledge designed<br />

specifically for the medicolegal arena, but they were still primarily<br />

involved with the academic community. The last ten years have seen a<br />

further evolution of forensic anthropologists employed in medical<br />

examiner and coroner offices, largely because of increased public, media,<br />

and professional attention on the field.<br />

During the past year, several medical examiner offices in the United<br />

States advertised openings for full-time forensic anthropologists. These<br />

individuals will join a dozen or so practitioners already gainfully<br />

employed as full-time forensic anthropologists working at medical<br />

examiner or coroner offices. In addition, there are many more individuals<br />

whose primary occupation is serving medical examiners as consultants or<br />

contract employees.<br />

The nature of the casework handled by these experts is also changing.<br />

In 1998, Reichs observed that between 1986 and 1995, approximately<br />

47% of all casework reported by diplomates of the American Board of<br />

Forensic Anthropology was derived from medical examiner/coroner<br />

offices. In a small sample of forensic anthropologist currently working in<br />

the United States, this percentage has jumped to 85%. Similarly, Reichs<br />

reported that skeletal remains accounted for the majority of cases for most<br />

of the diplomates. This number has also shifted, with the sample polled<br />

demonstrating that decomposed and fresh bodies have increased<br />

substantially, and that the number of consultations involving the<br />

determination of traumatic injury to bone account for a large percentage of<br />

the caseloads.<br />

Future of human rights work and humanitarian identifications:<br />

Over the past two decades, forensic specialists have played an increasingly<br />

active role in helping to expose the truth about violations of human rights<br />

and humanitarian law and in the humanitarian identification of victims of<br />

armed conflict and mass disasters. In the 1970’s and 80’s, the conflicts<br />

experienced by various countries throughout Latin America resulted in<br />

tens of thousands of disappeared persons. The first use of forensic<br />

anthropology to investigate these crimes was made in Argentina in the<br />

early eighties, resulting in the creation of a specialized team and the<br />

development of procedures later used elsewhere. In the mid 90’s, scores<br />

of anthropologists and archaeologists of various nationalities were<br />

seconded to the Balkans to assist in the collection of evidence for the<br />

International Criminal Tribunal for the former Yugoslavia and to work<br />

with various organizations in the process of identification of the victims of<br />

the conflicts. Investigations continue there in what is, so far, the largest<br />

and costliest international forensic operation ever carried out to investigate<br />

the missing. The media attention given to the conflicts in the Balkans<br />

helped to sensitize the international community to the torment experienced<br />

by families who have lost a family member but are without news of their<br />

whereabouts. It also helped boost the forensic community’s participation<br />

in clarifying the fate of the missing.<br />

However, as the 21st century progresses, it appears that the forensic<br />

work in the Balkans can be considered the exception, not the rule. In most<br />

regions of the world in which people have gone missing, there are few, if<br />

any external organizations addressing the issue of the missing, and the<br />

constraints faced by investigators are often high, including lack of<br />

resources and security concerns. Thus forensic professionals find<br />

themselves stepping out of their traditional roles in the laboratory and the<br />

field to offer support and advice to a number of relevant actors in these<br />

contexts, from governmental authorities tasked with clarifying the fate of<br />

the missing, to family associations seeking psychological support, to local<br />

forensic professionals who are unfamiliar with the complex process of<br />

identification of large numbers of remains.<br />

As forensic anthropologists and archaeologists continue to play an<br />

increasingly active role in exposing violations of human rights and<br />

323 * Presenting Author


humanitarian law, it is imperative that tomorrow’s scientists understand<br />

some of the legal, cultural and scientific challenges they may face when<br />

applying their skills and knowledge for humanitarian purposes.<br />

Forensic anthropology and meeting evidentiary/legal demands:<br />

The traditional definition of forensic anthropology as the application of<br />

physical anthropological analyses in a medico-legal setting is no longer<br />

sufficient to describe the current philosophical, methodological, and<br />

theoretical scope of forensic anthropology. In particular, methods<br />

developed within traditional physical anthropology are typically designed<br />

to address population level questions, not individual identity, and have<br />

little need to consider the potential legal and social ramifications of<br />

unreliable or inaccurate results. In contrast, forensic analyses must meet<br />

specific legal demands due to the evidentiary nature of the results.<br />

Because of the guidelines established from the United States Supreme<br />

Court in Daubert v. Merrell Dow Pharmaceuticals, 113 S.Ct. 2786 (1993),<br />

and from the Canadian courts in R. v. Mohan, 89 C.C.C. (3d) 402 (1994),<br />

and in the wake of the United States v. Plaza, Criminal NO. 98-362 (2002),<br />

anthropological methods may be challenged in court. Thus, it is critical<br />

for forensic anthropologists to ascertain, under the rubric of evidentiary<br />

examination, the effectiveness of current analytical methods.<br />

While the results of a standard biological profile are rarely the focus<br />

of courtroom testimonies, the submission of the forensic anthropological<br />

report places all of its contents under legal scrutiny. Furthermore, the<br />

forensic anthropologist must be cognizant of how analytical results are<br />

expressed within the report and on the stand. Quality assurance is<br />

necessary for all forensic anthropological methods to insure method<br />

transparency (e.g., recognize method limitations). Researchers must clearly<br />

state method accuracy and precision in a manner that is not only statistically<br />

significant, but also forensically meaningful. Research intended to conduct<br />

validation studies of existing techniques must be performed exactly as<br />

described; modifications by each new team of researchers produces<br />

unlimited new methodologies, not validations of existing ones.<br />

Standardization of research results, including appropriate statistical models<br />

and levels of precision, in the form of best practice protocols will help<br />

ensure the high quality of forensic anthropological research, and provide a<br />

secure foundation for forensic anthropologists in the courtroom.<br />

Future of trauma analysis: Historically, the physical anthropologist<br />

identified “more or less skeletonized” remains, with occasional requests to<br />

“describe any evidence of bone damage” (Stewart 1979). The traditional<br />

role of forensic anthropologists never considered, much less allowed,<br />

debates of cause and manner of death because the academician, with skills<br />

rooted in skeletal biology, only worked on dry, unidentified skeletons<br />

associated mainly with cold investigations. Today, forensic science<br />

demands nothing less than circumstances of death. Anthropologists can<br />

no longer veil or ignore these issues or their consequences in court. The<br />

evolution in the courtroom parallels the changes occurring in the field as<br />

taphonomy and trauma (ante, peri, and postmortem) interpretations now<br />

occupy much if not most of forensic anthropologists’ energies.<br />

With the emergence of this ‘new’ forensic anthropology,<br />

professionals, for the first time, are seeing the potential of working<br />

alongside forensic pathologists and realizing the value of soft tissues. This<br />

partnership lays the groundwork for modern anthropological trauma<br />

assessment where the anthropologists are privy to smoking-gun<br />

investigations and eyewitness accounts. Eventually, in this scenario,<br />

bones are retained and processed free of soft tissue for closer<br />

examinations, as evidence. Trauma assessment in bone essentially<br />

remained stagnant in anthropology until the flesh was ‘put back on’ and<br />

the body, not just the skeleton, was examined. The role of forensic<br />

anthropology is evolving, with strides toward improved trauma and<br />

taphonomic assessments; keeping in mind, this is the only area of<br />

anthropology pressured by burden of truth.<br />

Future of assessing ancestry: For most of the 20th century,<br />

American forensic anthropology approached ancestry as a three- or fourway<br />

decision: European, African, Native American, or sometimes Asian,<br />

reflecting its physical anthropological heritage and overarching American<br />

belief in the existence of discrete biological races. In the latter part of the<br />

* Presenting Author<br />

20th century, demographic realities and Repatriation legislation<br />

necessitated a finer-grained assessment of ancestry than the traditional<br />

racial approach: assessments such as “Mongoloid” or even “Native<br />

American” were no longer sufficient. Evaluating ethnicity to the tribal<br />

level has proven to be quite doable, and unusual comparisons such as<br />

Alaskan Eskimo or Indian vs. Chinese, Sioux vs. Chippewa, Mandan vs.<br />

Arikara, and many others have been successfully conducted using<br />

craniometrics, mandibular metrics, cranial angles, and postcranial<br />

measurements. The same is true for Hispanic groups from the Americas.<br />

The construction of databases, especially the Forensic Data Bank, has<br />

proven essential to recording and evaluating human skeletal variation<br />

geographically and temporally. Given the increased mobility of humans<br />

around the world and human rights cases emerging all over the globe,<br />

more remains from various parts of the world need to be documented and<br />

added to the existing databases in order to improve the precision and<br />

accuracy of evaluating ancestry. The affinities of unknown remains can<br />

only be judged by the comparative samples available.<br />

During the 21st century, forensic anthropologists (and other forensic<br />

scientists) will abandon the race concept when generating the biological<br />

profile in favor of probable geographic origins. Evaluating ancestry will<br />

be much more appropriate, refined, and productive than assessing race.<br />

Craniometrics will continue to be used most extensively to quickly<br />

investigate possible ancestries, estimate sex, and find morphological<br />

outliers. Statistical methods integrating metric and non-metric attributes<br />

will be used more frequently. Given the changing demographics in the<br />

United States, all American forensic anthropologists will benefit from a<br />

ethnic or “tribal” outlook on human variation, minimally with the<br />

indigenous African, Asian, Caribbean, Central American, and South<br />

American groups continuing to migrate to the US.<br />

Considerations for ethical standards in forensic anthropology:<br />

Acceptable methods of handling human remains are decided by legal<br />

measures, professional standards and personal beliefs. For forensic<br />

anthropologists, professional standards are sketchy and behaviors are<br />

often influenced by the background of the individual investigator,<br />

circumstances of the death, and framework or level of institutional<br />

oversight.<br />

Ethics is the judgment system by which the profession distinguishes<br />

acceptable and unacceptable behaviors. These beliefs are partly enacted<br />

into the legal system, detailing actions which are proscribed with<br />

appropriate forms of punishment or retribution activated within a statute<br />

of limitations. Some acts are not subject to criminal prosecution but are<br />

contestable in civil court.<br />

Other actions, not illegal or formally contestable, are distasteful and<br />

seen as characteristic of someone not holding the same values as the<br />

majority of citizens. These acts may be viewed as evidence that the<br />

practitioner is greedy, self-centered, ignorant, misguided, or antisocial.<br />

Although punishment is not mandated, social repercussions may include<br />

diminished/destroyed reputation, shunning, or intervention.<br />

Professional organizations codify the distinction of what is legal yet<br />

unacceptable into a Code of Ethics, outlining ideals to which all should<br />

aspire or characteristics of unacceptability. The authority behind these<br />

codes varies by organization. Some consider them merely a guide for<br />

good behavior while others strictly enforce them, barring violators from<br />

continuing membership.<br />

Each individual is also guided by a personal code of ethics. This<br />

incorporates religious or spiritual beliefs and often reflects values with<br />

which each person was raised. There may be wide variation among<br />

individuals for acceptable personal behavior even though they may<br />

tolerate different behavioral expressions in others.<br />

Handling of human remains are governed by legal requirements and<br />

by the personal code of ethics that each forensic anthropologist possesses.<br />

However, professional ethics cover only the expert witness aspect of the<br />

work and do not bear on the use of human remains in research and<br />

investigation. The forensic anthropologist faces a large “gray area” in<br />

which claims of scientific value, or “giving voice to the dead,” only partly<br />

support his or her actions.<br />

324


It is time that forensic anthropology held its place within biomedical<br />

research ethics where such guidelines are considered ubiquitous and<br />

universal. Professional standards could provide guidance if they<br />

acknowledge both research and casework functions. First, forensic<br />

anthropologists must conduct their work with respect to disciplinary<br />

standards – adequate sampling strategies, acknowledgement of<br />

confounding factors, transparency of methodology, replicability of<br />

techniques, and shared information. Second, forensic anthropologists<br />

must conduct their work with respect toward the victims whose remains<br />

are examined, their surviving families, and/or recognized representatives.<br />

Whenever possible, families should provide informed consent to the study<br />

and deceased’s identity should be protected. When anatomical samples<br />

are taken, documentation should facilitate the repatriation back to the<br />

remains. Anatomical specimens should be retained only if other means of<br />

recording are inadequate for the study. Religious beliefs and cultural<br />

practices of the populations from which samples are drawn should be<br />

accommodated as much as possible. A common standard of ethics is<br />

difficult but not impossible to achieve and the authors hope to begin that<br />

conversation with this presentation.<br />

Management of forensic laboratories and projects: Ironically, the<br />

relative “newness” of forensic anthropology as a recognized discipline is<br />

also one of its strengths within the increasingly complex and integrated<br />

world of forensic science. Training in forensic anthropology continues to<br />

be broad-based and closely tied to its roots in academic anthropology. For<br />

this reason, forensic anthropologists are trained in, or at least exposed to,<br />

a wide range of procedures, techniques, and paradigms, including<br />

anatomy, osteology, odontology, statistics, molecular biology,<br />

archaeology, geology, material-evidence analysis, and cultural relativity<br />

and sensitivity.<br />

Anthropologists, by virtue of this broad academic training, are well<br />

suited to the task of overseeing and managing large interdisciplinary<br />

forensic projects in which the integration of disparate scientific fields is<br />

vital to a successful outcome. Further, many anthropologists who have<br />

become accustomed to directing research programs (such as large<br />

archaeological projects) accrue valuable management experience. Such<br />

projects typically present challenges of recruiting qualified personnel,<br />

managing multidisciplinary teams, working with limited budgets, coping<br />

with high personnel turnover, and timelines.<br />

I Employment in forensic anthropology: Traditionally, forensic<br />

anthropologists were trained as academics, with employment coming from<br />

within the higher education system. Some anthropologists worked for the<br />

military and other government agencies, with research and consultation as<br />

their main focus. Forensic anthropologists conducted skeletal analysis for<br />

identification and associated interpretations, both as casework and for the<br />

development of new scientific methods. Their teaching responsibilities<br />

included training young anthropologists in the methods of forensic<br />

anthropology.<br />

As the fourth era of the field defines itself, employment trends have<br />

seen forensic anthropologists using their skills beyond the traditional<br />

sphere. They are now employed in medical examiner offices, federal and<br />

state crime laboratories, disaster response agencies, non-governmental<br />

human rights organizations, and research institutions. This trend typifies<br />

the growth of forensic anthropology beyond skeletal casework. These<br />

jobs often include skeletal analysis as part of the responsibilities, but the<br />

actual position title does not usually say “forensic anthropologist.” As the<br />

next generation of forensically trained anthropologists begins their search<br />

for employment, trends in forensic science, societal pressures, and<br />

political agendas will impact areas of potential employment. A savvy<br />

forensic anthropologist may look outside traditional employment (i.e. in<br />

academe) to positions that may not list “forensic anthropologist” in the<br />

title. Federal agencies such as the Department of Homeland Security, the<br />

State Department, the Central Intelligence Agency, the Department of<br />

Justice, and the Department of Health and Human Services can benefit<br />

from broadly trained forensic anthropologists who can address complex<br />

questions in human identification, search/recovery, and medicolegal<br />

interpretation. Positions such as grant officer, scientific analyst, and<br />

program analyst are well suited for anthropologists with broad forensic<br />

training. Areas such a biometrics, disaster fatality assessment, terrorismrelated<br />

forensic issues, and cultural issues of crime in the global setting are<br />

just some of the areas where a broadly trained forensic anthropologist<br />

could participate. Government contract firms with forensic, biometric,<br />

and disaster focuses are another avenue of employment. Anthropologists<br />

are currently employed in non-governmental organizations involved in<br />

human rights and humanitarian issues (International Committee of the Red<br />

Cross, Physicians for Human Rights, International Commission for<br />

Missing Persons, and Equipo Argentino de Antropología Forense), both in<br />

technical (fieldwork) and program management positions. In state and<br />

local medical examiner/coroner offices and crime laboratories, forensic<br />

anthropologists have proven their value to the medicolegal investigative<br />

process. As this employment trend continues, the field must consider the<br />

development of training programs for such positions. Potential<br />

developments in science and culture that may impact future forensic<br />

anthropologists could include areas such as nanotechnology, DNA<br />

modification, new weaponry, the man-machine interface, human cloning,<br />

increasingly sensitive surveillance systems, and new types and definitions<br />

of crime and justice in an expanding multicultural society.<br />

Forensic Anthropology, Future, Education<br />

H52 A New Method for Evaluating Orbit Shape<br />

Shanna E. Williams, MA*, University of Florida, C.A. Pound Human<br />

Identification Laboratory, 1376 Mowry Road, Gainesville, FL 32610<br />

After attending this presentation, attendees will be introduced to a<br />

novel quantitative method of orbital shape analysis as it relates to<br />

discussions of sex and race in human skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by offering an alternative technique of data collection and<br />

analysis of human orbital anatomy.<br />

Skeletal determination of race using orbital morphology is typically<br />

discussed qualitatively in terms of simple, descriptive labels (e.g., round,<br />

square, sloping, etc.). While inherently understandable, such labels are<br />

incapable of meaningfully characterizing the continuum of shape<br />

variability within and between human populations. Further, these<br />

descriptors rely upon individual subjective observation to demarcate<br />

between one character state and another. Moreover, even when<br />

measurements are taken of the orbital region, they are typically in the form<br />

of linear distance measures (height and breath). The resultant orbital index<br />

is then partitioned into descriptive ranges of wide, average, or normal<br />

(Krogman 1962; Bass 1995). These established qualitative and<br />

quantitative methods of data collection may fail to capture all of the<br />

available information regarding individual and populational orbit shape.<br />

The present study addresses this issue by applying 3D semilandmarks<br />

to the orbital region. Semi-landmarks are often employed to<br />

capture anatomical structures lacking distinct landmarks, such as<br />

boundaries and surface curvature. One hundred twenty individuals evenly<br />

distributed by race (Black, White) and sex were compiled from the Terry<br />

Collection, Smithsonian Institution. Superior and inferior rim curvature<br />

for both orbits was captured by collecting a sequence of points along the<br />

structure’s gross outline (continuous stream data) using a Microscribe®<br />

3DX portable digitizer. The beginning and endpoints of the superior and<br />

inferior orbital curve corresponded to accepted landmarks<br />

(maxillofrontale and frontomalare anterior). Semi-landmarks were then<br />

created within a beta program (Slice 2005), which applies an algorithm<br />

that resamples each curve into a user-defined number of evenly-distributed<br />

points (10 points per curve; four curves). The semi-landmark data were<br />

transformed by generalized Procrustes analysis (GPA), which optimally<br />

translates, scales, and rotates the points into a common coordinate system.<br />

Multivariate statistical analyses were then performed on the resulting<br />

shape variables. In order to reduce dimensionality a principal component<br />

analysis (PCA) was performed on the covariance matrix of the aligned<br />

325 * Presenting Author


coordinates. A multiple analysis of variation (MANOVA) was then<br />

conducted using the PCA scores to test whether sex and race have<br />

significant effects on orbit shape.<br />

Both sex (F=2.63; df= 42; Pr>F=F=F=


set conservatively at 0.90. The average difference in trials per observer,<br />

regardless of direction, was 3.1 degrees. The range of variation was -15<br />

to +11 degrees. In all cases, these differences are highly significant. Interobserver<br />

error tests showed similar results. When inter-observer tests<br />

were conducted against a target response (the average of all twelve<br />

observations on each femur), significant differences were found for nearly<br />

every comparison.<br />

Two clearly defined problems were identified in this study. First,<br />

delineating a radiographic true lateral position in dry bone was difficult for<br />

the investigators. Small positional differences of each femur increased or<br />

decreased the subsequent angle measurement. Second, aligning a ruler<br />

with the “distal one third of the femur parallel to the posterior cortex of the<br />

bone,” as prescribed in the method’s instructions was problematic. In<br />

most instances, femoral curvature was such that a parallel line was<br />

difficult to clearly and consistently define without landmarks. Also, the<br />

distal one third of the femur is a relatively arbitrary location, causing<br />

further discrepancies between investigators’ measurements.<br />

Based on this study, the authors suggest that while the Craig (1995)<br />

method for assessing race has utility, specific radiographic positioning of<br />

dry bone and refined landmarks for the intercondylar shelf angle should be<br />

developed in order to minimize inter- and intra-observer error. For<br />

example, utilizing advanced digital imaging or clearly defining two points<br />

on the femoral shaft that would provide a means for drawing a consistent<br />

line parallel to the posterior cortex could be potentially useful refinements.<br />

It is anticipated that further experimentation will result in methods that<br />

decrease observer error and improve the method’s overall reliability.<br />

Reliability, Racial Determination, Distal Femur<br />

H55 Isotopic Determination of Region of<br />

Origin in Modern Peoples: Applications<br />

for Identification of U.S. War-Dead<br />

From the Vietnam Conflict II<br />

Laura A. Regan, PhD*, Armed Forced <strong>Medical</strong> Examiner System, 1413<br />

Research Boulevard, Building 102, Rockville, MD 20850; Anthony B.<br />

Falsetti, PhD, C.A. Pound Human Identification Lab, University of<br />

Florida, PO Box 103615, 1376 Mowry Road, Gainesville, FL 32601;<br />

and Andrew Tyrrell, PhD, Joint POW/MIA Accounting Command-<br />

Central Identification Laboratory, 310 Worchester Avenue, Hickam AFB,<br />

HI 96853<br />

After attending this presentation, attendees will understand the<br />

benefits and limitations of undertaking a multi-element approach when<br />

utilizing stable isotopes for determining region of origin of human dental<br />

remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing information on a method that may facilitate<br />

identification of unknown individuals. The method uses multi-element<br />

stable isotope analysis of human dental tissues to suggest the natal origin<br />

of individuals. It is anticipated that this technique will be especially useful<br />

as a lead generator for human remains that have been recovered/obtained<br />

from either unknown, unreliable, or suspect contexts.<br />

This study is novel in that it is the first of its kind, in a forensic<br />

setting, to compile a large reference sample of isotopic ratio values of<br />

multiple elements from individuals with known natal regions. The goal of<br />

the study was to create a database of “geolocational fingerprints” utilizing<br />

carbon, oxygen, strontium, and lead isotope ratios sampled from the teeth<br />

of modern people. This database is intended to assist in determining the<br />

region of origin for unidentified skeletal material without an established or<br />

well-documented provenance. The preliminary efforts of this project<br />

focused on determining the natal isotopic signatures individuals from<br />

Southeast Asia and the United States of America. These regions were<br />

primarily selected in order to assist the effort to identify the approximately<br />

1,800 U.S. service personnel who remain unaccounted for from the<br />

Vietnam conflict, but the results also apply to the identification efforts for<br />

service personnel who are missing from the Korean War and the Pacific<br />

theater during World War II. The authors utilized the operating hypothesis<br />

that the isotope ratios incorporated into Southeast Asian and American<br />

dental enamel during childhood are distinct and that these differences can<br />

be used to determine region of origin.<br />

An East Asian reference population of 61 individuals was sampled<br />

from the Joint POW/MIA Accounting Command-Central Identification<br />

Laboratory (JPAC-CIL) “Mongoloid hold” collection. This collection<br />

consists of remains unilaterally turned over to the CIL that have been<br />

identified as originating in East Asia, but that have been refused<br />

repatriation by their country of origin. The isotopic ratios derived from the<br />

enamel of the East Asian reference sample were compared against those<br />

obtained from the third molars of 228 patients who underwent recent<br />

dental extractions with the 10th Dental Squadron, United States Air Force<br />

Academy, Colorado Springs, Colorado. Living subjects completed<br />

surveys detailing their childhood residency and physiological, behavioral,<br />

and cultural factors that might potentially affect isotopic deposition in<br />

enamel.<br />

While the ranges of all isotopes examined overlapped to an extent for<br />

the two populations, the least squares means for all isotope values<br />

examined exhibited statistically significant differences between the East<br />

Asian and American cohorts, based on the results of a conservative<br />

multivariate analysis of variance. A linear discriminant function was<br />

created that correctly classified individuals, through resubstitution and<br />

cross-validation, as belonging to one of these two groups by 95% or better.<br />

Strontium values from individuals reared for a portion of their childhood<br />

in the U.S. displayed a distinct trend toward homogenization, with the<br />

mean value for 87Sr/ 86Sr varying only slightly from that of seawater.<br />

Additionally, semi-quantitative calculations of enamel lead concentrations<br />

indicated the concentration of lead in the East Asian teeth was at least an<br />

order of magnitude greater than the American values, hinting at another<br />

potential discriminating factor.<br />

When compared to isotopic signatures developed for geographic<br />

areas of Southeast Asia, the information in this study will assist in<br />

identifying the origin of unknown dental remains undergoing analysis by<br />

the JPAC-CIL. These data will serve as the foundation for a more<br />

comprehensive database of modern, human, geolocational isotope values<br />

that will assist not only in the identification of fallen servicemen and<br />

women, but could have potentially far wider reaching applications in the<br />

identification of victims of mass fatality incidents, undocumented and<br />

otherwise unknown suspected aliens who perish attempting entry into the<br />

U.S., and local “Jane and John Doe” cases by allowing for the inclusion or<br />

exclusion of potential matches based on geographic natal regions.<br />

Stable Isotopes, Geographic Origin, Vietnam Conflict<br />

H56 Richard Jantz: A Man of<br />

Impressive Numbers<br />

Lee Meadows Jantz, PhD*, Department of Anthropology, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will learn about the<br />

impact Richard Jantz has had on the field of Forensic Anthropology.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the professional contributions Richard Jantz<br />

has made in the field of forensic anthropology.<br />

Richard L. Jantz was born in a rural Kansas farming community a<br />

while ago. He was raised in Halstead, KS, where his parents still reside.<br />

He attended University of Kansas for his undergraduate and graduate<br />

degrees, studying under the greats such as Bass, Kerley, and McKern,<br />

studying along side other notables such as George Gill, Doug Ubelaker,<br />

and Ted Rathbun. His early research in human variation yielded his MA<br />

327 * Presenting Author


thesis, Some Aspects of Laterality in University of Kansas Male Students.<br />

His doctoral research focused on skeletal research, specifically cranial<br />

variation in Arikara. It was during this period of his career that he began<br />

to appreciate the contributions of WW Howells. These themes have<br />

carried through his very productive career.<br />

Richard’s first academic position was held at the University of<br />

Missouri, where he worked for a year as an instructor prior to finishing his<br />

degrees. He followed this with a short two-year stint at the University of<br />

Nebraska. He was an instructor, then after receiving his PhD, became an<br />

assistant professor. While he was a Plains man, he realized that it was<br />

really too cold in the winter. When Bill Bass called him from the warmer<br />

climes of East Tennessee to offer him a position, he was more than willing<br />

to make that move. Thus began his 36-year (and continuing!) career at the<br />

University of Tennessee.<br />

Numbers are this man’s game. Working with students and<br />

colleagues, Richard has developed several different databases including<br />

one for dermatoglyphics (with the late H. Brehme), Plains skeletal metrics<br />

(with D. Owsley, P. Key, and T. Zobeck), the Boas anthropometic data<br />

(with D. Hunt), and probably the most familiar to this audience, the<br />

Forensic Data Bank (with many of you). Following in the footsteps of<br />

Howells, Richard’s practice of sharing the wealth of data has allowed<br />

many researchers to contribute to the field of study.<br />

Continuing in this vein, data requires statistical manipulation.<br />

Although not a computer geek, Richard is a number cruncher. He has<br />

provided statistical advice and analysis to innumerable students and<br />

practitioners in the field. A major contribution to the area of forensics is<br />

FORDISC (now available in its third version), the custom discriminant<br />

function software developed by Richard and his student/colleague, S.<br />

Ousley. FORDISC has changed the way most forensic anthropologists<br />

approach the analysis of unidentified skeletal remains today.<br />

Richard has been relatively lucky in his career as a professor. He has<br />

many wonderful students as illustrated by this session. After a student<br />

graduates, he considers him or her a colleague as evidenced in his many<br />

collaborations. While this session is in honor of his career, let it be<br />

known….his career is not over. He is looking forward to many more<br />

interesting projects as well as hopefully finishing many of the ones in<br />

which is currently involved.<br />

Jantz, Forensic Anthropology, Databases<br />

H57 Estimating Geographic Ancestry<br />

of Hispanic Crania Using<br />

Geometric Morphometrics<br />

Katherine M. Spradley, PhD*, and Bridget F.B. Algee-Hewitt, MA,<br />

The University of Tennessee, Department of Anthropology, 250 South<br />

Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will understand the use of<br />

geometric morphometrics in ancestry estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing the issue of ancestry determination of Hispanic<br />

individuals using geometric morphometric methods.<br />

Correct ancestry estimation for American Blacks and Whites is<br />

possible due to documented reference samples such as Terry, Todd, and<br />

more recent collections including the William M. Bass Donated<br />

Collection, and the Forensic Anthropology Data Bank (FDB). However,<br />

there is no Hispanic equivalent of these large reference collections. The<br />

increasing Hispanic population in the U.S. makes it necessary to obtain<br />

appropriate reference samples for ancestry determination. Because there<br />

is no large reference collection of recent forensic Hispanic skeletons, cases<br />

from forensic anthropologists around the county must be relied on to better<br />

understand and identify the increasing number of Hispanic skeletons<br />

found in a forensic context.<br />

* Presenting Author<br />

Traditional craniometric morphometric methods in addition to years<br />

of experience are widely employed in ancestry determination. Results<br />

presented at this meeting by the first author (2004) suggest that traditional<br />

craniometrics, at best, provide a 45% classification rate (cross-validated)<br />

for Hispanic individuals when compared to American White, American<br />

Black, Guatemalan Mayan, and Argentinean samples. Because Hispanic<br />

individuals are a hybrid population of European and Indigenous Spanishspeaking<br />

individuals, correct ancestry estimation is more problematic.<br />

Geometric morphometric methods are suggested to better discriminate<br />

among groups that are closely related.<br />

This presentation uses three-dimensional landmark data to examine<br />

the morphological differences between size and shape in Hispanics,<br />

American Whites, and Guatemalan Mayans. Because it is important to use<br />

samples that represent recent forensic anthropological cases that are seen<br />

in the U.S., for this analysis, Hispanics (n = 41), American Whites (n =<br />

57), and recent Guatemalan Mayans (n = 70) were used as reference<br />

samples. The Hispanic and American White samples are from the Forensic<br />

Anthropology Data Bank (FDB) and were collected by the first author.<br />

The American Whites are positively identified individuals and the<br />

majority of the individuals are from Tennessee.<br />

The Hispanic sample used in this paper contains either positively<br />

identified or contextually identified individuals. Individuals in the latter<br />

group are from U.S. border crossing fatalities found by immigration<br />

officers patrolling the border. Of the border crossing fatalities, only<br />

individuals with enough soft tissue present to indicate a positive<br />

identification of sex were used. The Guatemalan Mayan sample was<br />

collected from the Forensic Anthropology Foundation of Guatemala<br />

(FAFG); this is a recent forensic sample and consist of mostly male<br />

individuals. The context is modern Mayan, from Rabinal and Comalapa,<br />

and are either positively identified or contextually identified.<br />

Landmarks (n = 35) were chosen that represent the overall cranial<br />

vault and face. A general Procrustes analysis was performed in<br />

Morphologika 2 (O’Higgins and Jones, 2006) and a discriminant function<br />

analysis was run in SAS 9.1 (SAS INSTITUTE). The cross-validated<br />

classification rate for Hispanic individuals using geometric morphometric<br />

methods is 80.5%, an improvement from the 45% utilizing traditional<br />

morphometric methods. Results will be presented along with a discussion<br />

of the major morphological differences between Hispanics, American<br />

Whites, and Guatemalan Mayans.<br />

Ancestry, Hispanic, Geometric Morphometrics<br />

H58 Morphological Variation in the<br />

Cranial Base: Implications for<br />

Sex and Ancestry Estimation<br />

Ashley H. McKeown, PhD*, Department of Anthropology, University<br />

of Montana, Missoula, MT 59812; and Daniel J. Wescott, PhD,<br />

Department of Anthropology, University of Missouri, Columbia,<br />

MO 65211<br />

After attending this presentation, attendees will understand the<br />

patterns of morphological variation of the cranial base that characterize<br />

males and females and American whites and blacks and how this variation<br />

can be used to estimate sex and ancestry for unknown individuals.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how differences in the cranial base between<br />

males and females are primarily due to size, while variation among<br />

American whites and blacks are primarily due to shape. These patterns<br />

must be acknowledged when estimating sex and ancestry from this region<br />

of the human cranium.<br />

This research uses three-dimensional coordinate data observed on<br />

crania from known sex and ancestry collections and the tools of geometric<br />

morphometrics to evaluate morphological variation in the cranial base.<br />

328


Standard statistical analyses are employed to assess the utility of using the<br />

size and shape variation to estimate sex and ancestry.<br />

Variability in craniofacial morphology has been used successfully to<br />

estimate sex and ancestry for unidentified skeletal remains. While<br />

research has focused on the variation present in the face and cranial vault<br />

that permits relatively accurate assessments of sex and population<br />

affiliation, investigations into the morphological variation of the cranial<br />

base have been limited. Nevertheless, the research conducted thus far<br />

does suggest the presence of sex and ancestry based variation in the<br />

dimensions of the cranial base. As anthropologists are often confronted<br />

with fragmentary cranial remains, approaches to sex and ancestry<br />

estimation that utilize the cranial base can be useful. To further investigate<br />

the nature of the variation and assess its utility for sex and ancestry<br />

estimation, differences in size and shape are evaluated using three<br />

dimensional coordinate data observed on crania from known sex and<br />

ancestry collections.<br />

The sample is comprised of crania of known sex and ancestry<br />

(American white and blacks) from the William M. Bass Donated Skeletal<br />

Collection (n=56) housed at the University of Tennessee and the Terry<br />

Collection (n=340) housed at the National Museum of Natural History,<br />

Smithsonian Institution. Sixteen landmarks from the cranial base were<br />

recorded as three dimensional coordinates and used for the analysis. The<br />

coordinate data was subjected to Procrustes fitting via a general least<br />

squares procedure that orients the configurations in a common coordinate<br />

system and scales the configurations to remove size differences. Size is<br />

retained in the centroid size for each configuration which permits the<br />

inclusion of this variable in analyses. Using the tools of geometric<br />

morphometrics, the fitted coordinates are used to explore shape variation<br />

between the sexes and among the groups. Further analyses based on the<br />

fitted coordinates and centroid size, including principal components and<br />

canonical discriminant analysis, were used to evaluate whether the size<br />

and shape variation present among the groups is useful for estimating sex<br />

and ancestry.<br />

Differences in the cranial base between males and females are<br />

primarily due to size, while variation among American whites and blacks<br />

are primarily due to shape. These patterns must be acknowledged when<br />

estimating sex and ancestry from this region of the human cranium.<br />

Sex, Ancestry, Geometric Morphometrics<br />

H59 Craniometrics as Jantz Taught Us:<br />

Multiple Lines of Evidence to Deduce the<br />

Affiliation of Painted “Aztec” Skulls<br />

Susan M.T. Myster, PhD*, Hamline University, MB 196, 1536 Hewitt<br />

Avenue, St. Paul, MN 55104; Erin Kimmerle, PhD, University of South<br />

Florida, Soc 110, 4202 East Fowler, Tampa, FL 33620; and Ann H.<br />

Ross, PhD, North Carolina State University, Campus Box 8107, Raleigh,<br />

NC 27695-8107<br />

After attending this presentation, attendees will understand how to<br />

use linear and three-dimensional coordinate data in discriminate function<br />

analyses to verify the national or ethnic affiliation of crania of unknown<br />

geographic and temporal origin. Participants will also develop an<br />

appreciation for the necessity of considering and evaluating other types of<br />

evidence including reported mortuary practices and artistic representation<br />

when concluding national and/or ethnic origin.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the importance of using multiple lines of<br />

evidence to differentiate “historic” from forensic cases. This presentation<br />

also illustrates multiple statistical methods for estimating national and<br />

ethnic affiliations.<br />

Five painted adult skulls, reported to be pre-contact Aztec, were at<br />

various times on exhibit at the Field Museum of Natural History in<br />

Chicago, Illinois. Documentation pertaining to acquisition reveals little<br />

information about provenience. The markings on the skulls are elaborate,<br />

decorative, colorful, and primarily geometric in design. The morphology<br />

of the skulls suggests a more recent origin than 400 – 800 years ago.<br />

Additionally, the skulls lack any “indigenous” traits that would be<br />

expected to characterize pre-contact Mexican remains. The authors of this<br />

investigation thought that the postmortem modifications in the form of<br />

these elaborate paintings, as well as the inconsistent morphology were<br />

highly suspicious. To authenticate the origin of the skulls, three lines of<br />

evidence are used; 1) traditional craniometrics analyzed using FORDISC,<br />

2.0 and the known samples that comprise the associated craniometric<br />

database, 2) 3D Cartesian coordinate size and shape variables using<br />

regional data from Central America, and 3) bioarchaeological,<br />

archaeological, and ethnohistorical evidence of documented mortuary and<br />

other cultural practices of the Aztec. The inclusion of the third line of<br />

evidence highlights the application of the biocultural approach, the<br />

methodology of which puts the “anthropology” in “forensic<br />

anthropology.”<br />

First, using FORDISC 2.0 American Hispanic males (which in this<br />

version of FORDISC primarily consist of individuals of Mexican descent)<br />

as well as White, Black, and American Indian males and females are used<br />

in a discriminant function analysis to classify the “Aztec” skulls. Two of<br />

the five skulls classify as White Females. The other three skulls each<br />

classify as a Hispanic Male, American Indian Male, and Black Male,<br />

respectively. Finding that the population variation of the five skulls is<br />

highly heterogeneous suggests they are not of pre-contact “Aztec” origin<br />

or even from a single population.<br />

To further investigate the possible origin of these skulls, the authors<br />

present the among-sample variation and classification results using threedimensional<br />

landmark coordinates of the skulls when compared to<br />

samples of pre-contact Mexicans from Tezontepec (n = 6), 20th century<br />

Mexicans from Tarasco (n = 20), and documented samples of Spanish (n<br />

= 20), American Whites (n = 20), and Terry Blacks (n = 20). The<br />

landmark-based Procrustes superimposition approach, based on geometric<br />

morphometry, was used. Thirteen standard craniometric landmarks were<br />

used to reflect the among-group variation. A multivariate analysis of<br />

variance (MANOVA) and Mahalanobis squared distances (D2 ) were used<br />

to examine group membership.<br />

Given the possible age(s) and cultural affiliation of the 5 skulls in<br />

question, bioarchaeological, archaeological and ethnohistorical sources of<br />

information on Aztec mortuary ritual and other cultural practices were<br />

consulted and the data derived from them are incorporated into the final<br />

interpretation regarding national, ethnic, and/or ancestral affiliation(s).<br />

Variables are identified that represent documented alteration for aesthetic<br />

or cosmetic purposes, body preparation after death, and disposition<br />

practices, including evidence for cranial shape modification, dental<br />

alteration, painting, incising, carving, burning, dismemberment, and<br />

cannibalism. Central to the verification effort, was not only a comparison<br />

of the five skulls to the forensic databases available, but to consider the<br />

biological and cultural distinctions between groups living within the Aztec<br />

sphere of influence in order to narrow the possible ethnic or ancestral<br />

affiliation. These groups include those of the Triple Alliance that<br />

maintained their own cultural identity, those that succumbed to Aztec<br />

social and political influence, the Aztec, and those that were sacrificed as<br />

part of ritual offerings.<br />

This study serves as a reminder that the line between historic and<br />

forensic, “Hispanic”, “American Indian” or “Other” may be blurred.<br />

Careful consideration of multiple lines of evidence, including cultural<br />

practices, and the aid of statistical modeling as offered through FORDISC<br />

and modern methods from geometric morphometrics are imperative<br />

anthropological tools.<br />

Craniometrics, Classification, Authentication<br />

329 * Presenting Author


H60 Repeatability and Error of Cranial<br />

Landmark Coordinates<br />

Ann H. Ross, PhD*, North Carolina State University, Department of<br />

Sociology and Anthropology, CB 8107, Raleigh, NC 27695-8107; and<br />

Shanna Williams, MA, University of Florida, C.A. Pound Human<br />

Identification Laboratory, Gainesville, FL 32611<br />

After attending this presentation, attendees will be introduced to<br />

issues of intra- and inter-observer error in the collection of threedimensional<br />

landmark coordinates.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing issues of repeatability and error in geometric<br />

morphometric methods of data collection.<br />

Historically, size and shape analyses have relied on the application of<br />

multivariate statistical methods to linear distances, ratios, and/or angles<br />

derived from caliper measurements (Lynch et al. 1996; Rohlf and Marcus<br />

1993; Ross et al. 1999). One of the limitations of caliper derived metric<br />

data is that the measurements are confined to the positions of the caliper<br />

endpoints, which are defined by anatomical locations or landmarks. The<br />

end result is a linear distance measure incapable of fully capturing all of<br />

the information available about the relative positions of these landmarks<br />

in space (Bookstein 1991).<br />

Modern methods of the geometric morphometrics address many of<br />

the shortcomings associated with traditional metrics by focusing on the<br />

analysis of landmark coordinates (Rohlf and Marcus 1993). Unlike<br />

traditional metrics, coordinate data fully archive all of the geometric<br />

information available in the anatomical structures. These newer threedimensional<br />

methods have gained much popularity in physical<br />

anthropology over the last decade being adopted by many evolutionary<br />

theorists, clinicians, and forensic anthropologists. Data capturing<br />

techniques range from direct digitization of landmarks via 3D digitizers to<br />

point extraction from scanned images. However, these new modes of data<br />

acquisition and analyses have undergone little to no systematic testing for<br />

accuracy. The purpose of this study is to evaluate the repeatability and<br />

error associated with the collection of cranial landmark data using these<br />

newer modalities. Three skulls were selected for this study from the C.A.<br />

Pound Human Identification Laboratory. Nineteen standard homologous<br />

cranial landmarks were collected using a Microscribe 3DX and G2X ®<br />

digitizer and the software ThreeSkull written by Steve Ousley. Each skull<br />

underwent three separate digitization sessions by two separate observers<br />

for a total of six digitizations for each skull. Because the skulls were not<br />

“fixed” in a common coordinate system between digitizing sessions,<br />

interlandmark linear distances (ILDs) were used in the subsequent<br />

statistical analysis rather than the landmark coordinates. All possible ILDs<br />

between the nineteen landmarks (n = 171) for each digitizing session (n =<br />

3) for each observer (n = 2) for each skull (n = 3) were calculated using<br />

the program PAST (Paleontological Statistics, 2001, http://folk.uio.no/<br />

ohammer/past/download.html). Digitization error (within-subject error or<br />

the proportion of the total variance explained by multiple digitizing<br />

sessions of the same skull) was tested using a mixed model analysis of<br />

variance (ANOVA). Sixteen percent of the 171 ILDs showed error in<br />

excess of five percent. Repeatability (between-observer variation) was<br />

tested using ANOVA using the general linear model (GLM) routine.<br />

Significant between-observer difference was found for fourteen ILDs.<br />

The majority of the between-observer variation included Type III<br />

landmarks (e.g., alare and euryon). These landmarks are fairly accurate<br />

when instrumentally derived as linear distances in traditional<br />

morphometrics (e.g., maximum cranial breadth or XCB). However, they<br />

are highly variable when attempting to archive their exact anatomical<br />

location and the authors caution the use of Type III landmarks in geometric<br />

morphometrics.<br />

Cranial Landmarks, Repeatability, Geometric Morphometrics<br />

* Presenting Author<br />

H61 Morphological Variation of the<br />

Human Knee: Implications for<br />

Sex and Ancestral Designations<br />

Erin B. Waxenbaum, MA*, C.A. Pound Human Identification Lab,<br />

University of Florida, PO Box 103615, 1376 Mowry Road, Gainesville,<br />

FL 32610; Anthony B. Falsetti, PhD, C.A. Pound Human Identification<br />

Lab, University of Florida, PO Box 103615, 1376 Mowry Road,<br />

Gainesville, FL 32601; and David R. Hunt, PhD, National Museum of<br />

Natural History, Smithsonian Institution, Department of Anthropology,<br />

Washington, DC 20560<br />

The goal of this presentation is to present to the participant of the<br />

results of analyses designed to describe the observed variation in the<br />

human knee joint based on age, sex and ancestry. The attendee will learn<br />

of the trends in morphological variation of the knee and the implications<br />

for both the forensic and medical communities.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the utility of the observed variation found in<br />

this analysis of the knee joint may be used to differentiate between living<br />

populations allowing sex and ancestral designations to be made in a<br />

forensic context.<br />

The clinical literature has noted variation in the knee joint, for the<br />

purposes of knee related surgeries, between male and female individuals<br />

of African and European ancestry. This observed variation is critical to<br />

pre-surgical planning for repair and or implantation of artificial devices.<br />

Similarly, these authors (Waxenbaum et al. 2006) highlighted significant<br />

variation in the intercondylar eminence length of the proximal tibia which<br />

was attributed solely to population (evolutionary ancestry) and not found<br />

to be influenced by either sex or age. This presentation expounds upon<br />

previous analyses in order to determine whether other factors of size<br />

and/or shape of the distal femur and proximal tibia correlate to the<br />

population variation in the knee previously detected.<br />

Eleven measurements (five of the distal femur; six of the proximal<br />

tibia) were added to the two measurements for each individual from the<br />

previous analysis for a total of thirteen measurements. Four populations of<br />

individuals were analyzed - (all material used in this analysis is housed at<br />

the National Museum of Natural History, Smithsonian Institution) Terry<br />

White (n = 94), Terry Black (n = 100), Eskimo and Aleutian populations<br />

from Alaska (n = 201), and a population of Arikara from South Dakota (n<br />

= 120). Individuals were sampled from both sexes and were separated into<br />

“older” and “younger” categories for age analysis given the archaeological<br />

nature of the Alaska and South Dakota remains.<br />

The original intercondylar eminence data were re-analyzed including<br />

a small population of male, Chinese individuals (n = 51) and the<br />

previously detected trends held; neither sex nor age made a significant<br />

difference in the length of the proximal tibial eminence. However,<br />

population remained a significant factor (P


H62 Sex Determination in the Human Sacrum:<br />

Wing Index and Sacral Curvature<br />

Michaela M. Huffman, BS*, National Museum of Natural History,<br />

Department of Anthropology, MRC112, 10th & Constitution Avenue NW,<br />

Washington, DC 20560-0112; and David R. Hunt, PhD, National<br />

Museum of Natural History, Department of Anthropology/MRC112, 10th<br />

& Constitution Avenue NW, Washington, DC 20560-0112<br />

After attending this presentation, attendees will learn about results in<br />

the use of wing index as a criterion for sex determination and the variation<br />

found in the wing length of the sacrum. This presentation will also inform<br />

the attendee of the use of sacral curvature for sex determination. The<br />

participant will be familiarized with the morphological variation of the<br />

sacrum and its value as an element for sex identification in forensic<br />

anthropology.<br />

This presentation will impact the forensic community and/or<br />

humanity by confirming that there is no significant difference in sacral<br />

wing width for both sexes in American Whites and Blacks and that the<br />

significant sex differences found in sacral curvature allows for general sex<br />

determination. However it is clear from this study that the range of<br />

variation in the sacrum is highly influenced by development in the axial<br />

skeleton. This greatly affects its morphology and using the sacrum as the<br />

single element for sex identification should be employed with caution.<br />

The goal of this presentation is to inform the attendee results in the<br />

use of wing index as a criterion for sex determination and the variation<br />

found in the wing length of the sacrum. This presentation will also inform<br />

the attendee of the use of sacral curvature for sex determination. The<br />

participant will be familiarized with the morphological variation of the<br />

sacrum and its value as an element for sex identification in forensic<br />

anthropology.<br />

Physical anthropology literature in the last 100 years has noted<br />

variation and sex differences in the human sacrum. In 1982, Kimura<br />

studied sex differences in the sacrum by the base-wing index using<br />

American Black and White individuals from the Terry Collection<br />

(National Museum of Natural History) and Japanese individuals from the<br />

Department of Anatomy, Yokohama City University School of Medicine.<br />

When measuring the wing of the sacrum, Kimura only measured the right<br />

side in response to the findings by Matsui in 1942 that the sacral wing was<br />

greater on the left side than on the right in Japanese skeletons for both<br />

sexes. However, Kitano (1959) found there was no significant difference<br />

in the right and left wing in Japanese individuals for both sexes. The<br />

present research assesses the variation among sacral wing widths in a<br />

sample of American Black and White individuals in order to gain further<br />

understanding in the utility of the sacral wing index as a sex determinant<br />

and to clarify disparity in previous publications.<br />

Bass has identified sacral curvature as a sex identifier, yet no citations<br />

or references were indicated to studies that assessed the accuracy of this<br />

characteristic of the sacrum being flatter in females and more curved in<br />

males. This present study examines sacral curvature as a criterion for sex<br />

identification.<br />

Three hundred individuals were measured in this present study using<br />

the Terry Collection at the National Museum of Natural History. Subgroups<br />

of the sample were divided equally between the sexes and between<br />

“racial” groups of American Blacks and American Whites based on the<br />

identification of the ethnic affinity assigned to the individual at autopsy.<br />

The wing of the sacrum was measured from the lateral margin of the<br />

articular base to the most lateral border of the wing. The sacral curvature<br />

was measured sagittally (using a coordinate caliper), on the ventral side<br />

from the most anterior superior point of the articular promontory to the<br />

most anterior inferior portion of the coccyx, the depth of the curvature was<br />

derived by measuring at the deepest point of the sacral body.<br />

Overall results from the study for wing length found for the right<br />

wing (in millimeters): Blacks=30.83 ± 3.63; Whites=34.36 ± 3.83;<br />

Males=31.25 ± 4.24; Females=33.95 ± 3.52. For the left wing:<br />

Blacks=30.70 ± 3.68; Whites=34.41 ± 3.74; Males=31.06 ± 4.20;<br />

Females=34.04 ± 3.53. Within the ancestry and sex groups there is no<br />

significant difference between the mean lengths of the right and left sacral<br />

wing. However, there are significant differences (p=0.000) in the mean<br />

wing values between Blacks and Whites and between males and females.<br />

Results from the sacral curvature means (in millimeters) are: Black<br />

Males=15.72 ± 6.34; Black Females=12.88 ± 6.58; White Males=20.06 ±<br />

7.74; White Females=17.17 ± 7.74. Tests of significance found that two<br />

groups do not have significantly different means (Black females and Black<br />

males, p=0.212; and White females and White males, p=0.024), all other<br />

groups are significantly different at the p=0.01 level or greater. Sectioning<br />

points and confidence intervals will be presented for group identification.<br />

This study confirms that there is no significant difference in sacral<br />

wing width for both sexes in American Whites and Blacks, and the<br />

significant sex differences found in sacral curvature allows for general sex<br />

determination. However, it is clear from this study that the range of<br />

variation in the sacrum is highly influenced development in the axial<br />

skeleton. This greatly affects its morphology and using the sacrum as the<br />

single element for sex identification should be employed with caution.<br />

Sex Determination, Sacrum, Sacral Curvature<br />

H63 New Statistical Approaches to Sex<br />

Estimation: Multi-Stage Discriminant<br />

Function Analysis<br />

Stephen D. Ousley, PhD*, Smithsonian Institution, PO Box 37012,<br />

NMNH MRC 138, Washington, DC 20013-7012; and John E. Byrd, PhD,<br />

Joint POW/MIA Accounting, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will understand sex<br />

estimation from skeletal remains is based predominantly on overall size,<br />

significant shape differences between male and female crania, and that<br />

discriminant function analysis (DFA) is a powerful tool for analyzing<br />

skeletal data and accuracy can be enhanced through multiple analyses<br />

utilizing size and shape variation.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a better understanding of sexual dimorphism<br />

expressed by metrics.<br />

Absent the bones of the pelvis, sex estimation from skeletal remains<br />

in forensic anthropology is often based predominantly on overall size, so<br />

small males and large females are more likely to be misclassified. Because<br />

there are different levels of sexual dimorphism and different sizes for the<br />

various populations in the world, an incorrect estimation of sex from<br />

skeletal remains can drastically affect ancestry assessment and vice-versa.<br />

Seriation (e.g., Rogers 2005) is not always an option and will likewise<br />

misclassify small males and large females.<br />

Forensic anthropologists have been employing DFA to determine sex<br />

from crania for decades. The classic papers by Giles and Elliot in the<br />

1960s provided numerous functions that permitted anthropologists to<br />

address questions of sex and ancestry using cranial measurements. More<br />

recently, FORDISC uses reference data from numerous human<br />

populations to calculate custom discriminant functions suited to a specific<br />

case, and some versions included a sex-only function, which combined the<br />

male and female samples of American Whites and Blacks. However, as<br />

Damann and Byrd (2004) demonstrated, DFA using raw measurements<br />

will tend to misclassify small males as female. This is especially true for<br />

groups with relatively small crania such as Hispanic males from the<br />

Southwest U.S. An incorrect sex assessment in the biological profile may<br />

affect the evaluation of ancestry and will hamper a positive identification.<br />

There are various statistical methods for analyzing measurements<br />

from males and females, including using sex-centered means, extracting<br />

principal components and analyzing all but the first principal component,<br />

calculating shape variables (Darroch and Mosimann 1985), and<br />

calculating C-scores (Howells 1995). The latter method was<br />

331 * Presenting Author


ecommended by Damann and Byrd (2004). Fordisc 3.0 (Jantz and Ousley<br />

2005) allows the user to transform measurements into shape variables and<br />

then perform DFA on them. The flavor of DFA used is a linear<br />

discriminant function, though other methods such as quadratic DFA,<br />

nearest neighbor analysis, and kernel discriminant analysis can be<br />

employed as well.<br />

Using 23 measurements from 171 white males and 100 white<br />

females, Fordisc 3.0 was 90% accurate in determining sex, crossvalidated.<br />

When shape variables were analyzed, the accuracy dropped to 83%,<br />

confirming that size differs between males and females, but also that shape<br />

differs significantly between them. More importantly, when the individual<br />

classifications were examined, 7 of the 17 males misclassified in the<br />

analysis using size and shape were correctly classified when using shape<br />

alone; 3 of the 10 females misclassified in the analysis using size and<br />

shape were correctly classified when using shape alone. Therefore, a<br />

Multi-Stage Discriminant Rule (MDR) utilizing both analyses is: If the<br />

size and shape classification of a cranium is male, accept the classification;<br />

if the size and shape classification is female, change the assessment to<br />

male if it classifies as a male using the shape variables. Following this rule<br />

results in classifications that are 94% correct for the white sample. Also,<br />

there were no indications of variance-covariance matrix heterogeneity.<br />

While the use of shape variables clearly provides greater accuracy<br />

within Whites, there appears to be generalized sex differences that are<br />

expressed in relative size and/or shape in all groups: When 274 females<br />

and 465 males from several different recent populations were analyzed sex<br />

functions were obtained with somewhat reduced accuracy compared to<br />

Whites alone. However, results were encouraging using stepwise variable<br />

selection, with as few as 12 variables providing classification accuracies<br />

of at least 90%, though the most valuable shape variables were largely<br />

independent of the most valuable size variables. In looking at how<br />

Hispanic individuals classified using stepwise methods on combined<br />

recent populations, all 11 females were classified correctly using size and<br />

shape; 41 males were classified 90% correctly using size and shape, 83%<br />

using shape, and 95% correctly using the MDR.<br />

Most of the metric variation between males and females has been<br />

thought to be due to size, but shape is also important. Combining multiple<br />

classification tools such as stepwise variable selection, different<br />

classification methods, and multiple steps can optimize sex classification<br />

accuracy. These tools can also be utilized with data from landmark<br />

coordinates and interlandmark distances (nontraditional craniometrics) to<br />

further improve sex classification.<br />

References:<br />

1 Damann F, Byrd J (2004) The Effects of Size in Craniometric<br />

Discriminant Functions. Proceedings of the American Academy of<br />

Forensic Sciences 10: 272-273.<br />

2 Darroch JN, Mosimann JE (1985) Canonical and Principal Components<br />

of Shape. <strong>Bio</strong>metrika 72: 241-252.<br />

3 Howells WW (1995) Who’s Who in Skulls: Ethnic Identification of<br />

Crania from Measurements. Cambridge, MA: Peabody Museum of<br />

Archaeology and Ethnology, Harvard University.<br />

4 Jantz, RL, Ousley SD (2005) FORDISC 3: Computerized Forensic<br />

Discriminant Functions. Version 3.0. The University of Tennessee,<br />

Knoxville.<br />

5 Rogers TL (2005) Determining the sex of human remains through cranial<br />

morphology. Journal of Forensic Sciences 50: 1-8.<br />

Discriminant Function Analysis, Craniometrics, Sex Estimation<br />

* Presenting Author<br />

H64 The Value of Experience, Education,<br />

and Methods in Ancestry Prediction<br />

Joseph T. Hefner, MA*, Forensic Anthropology Center, Department of<br />

Anthropology, University of Tennessee, Knoxville, TN 37996; Paul D.<br />

Emanovsky, MS, and John Byrd, PhD, Joint POW/MIA Accounting<br />

Command, 310 Worchester Avenue, Building 45, Hickam AFB, HI<br />

96853; and Stephen D. Ousley, PhD, National Museum of Natural<br />

History, Smithsonian Institution, PO Box 37012 MRC 138, Washington,<br />

DC 20013<br />

After attending this presentation, attendees will be introduced to the<br />

results from a survey conducted at the 58th Annual Meeting of the<br />

American Academy of Forensic Science in Seattle, WA.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing insight into the value of experience, education, and<br />

methods in ancestry prediction.<br />

At the 58th Annual Meeting of the American Academy of Forensic<br />

Science in 2006, the authors conducted a volunteer survey and exercise to<br />

examine the methodological approaches to sex and ancestry<br />

determination. Exercise participants were asked to rank the techniques<br />

they use and to determine the sex and ancestry of seven specimens. A total<br />

of 76 individuals participated in the survey. Participant education levels<br />

included 15 with Bachelor degrees, one DDS, three MD, 22 Masters, 35<br />

PhD, and one “other.” Additional information from participants included<br />

the number of crania examined, years of professional experience,<br />

preferred methods of sex and ancestry determination, classes taught, etc.<br />

This presentation will focus on the determination of ancestry.<br />

Results support the adage “experience matters,” but only to a point.<br />

Individuals with advanced degrees performed superior to others and, as<br />

would be expected, individuals with an anthropology background<br />

performed better than those outside of the field. Correct estimation of<br />

ancestry for all seven crania by education level is as follows: MDs (19%),<br />

DDS’ (28.6%), BS/BA (31.4%), MS/MA (42.2%), PhD (43.3%). Among<br />

anthropologists, experience levels ranged from 0 years to more than 30. To<br />

determine experience levels for Masters, mean years in school was added<br />

to mean years of professional experience to equal a mean of 8 years of<br />

experience. PhDs had a mean of 13.5 years, indicating a considerable<br />

difference in the experience levels between Masters and PhDs. Despite the<br />

large disparity in years of professional experience, participants with<br />

Masters degrees performed about as well as PhDs.<br />

To determine if the number of correct ancestry estimations is significantly<br />

related to factors such as “level of education,” “number of crania<br />

examined,” and “number of years as a professional,” a Kruskal-Wallis<br />

analysis of variance test was performed. Significant interaction was noted<br />

for several key factors related to experience, but not degree level (e.g.,<br />

Bachelors vs. Masters or Masters vs. Doctoral). For example, the total<br />

number of years as a graduate student was significant (p


than did PhDs, suggesting a generational shift in emphasis to metric<br />

analyses. Those with PhDs present the most surprising results. PhDs are<br />

associated with the following responses: “nasal morphology,” “nonmetric,”<br />

and “none.” These results suggest that PhDs rely on aspects of morphology<br />

not readily defined, perhaps Stewart’s (1979) “indefinable something.”<br />

Taken as a whole, the results imply that White crania may be more<br />

often estimated accurately: 92% of all participants correctly assessed<br />

ancestry for the White female. This result may be due to more frequent<br />

exposure to Whites in reference skeletal collections. The Hispanic<br />

individual was the most difficult for participants to correctly classify: only<br />

11% of the participants answered correctly, a pressing problem which may<br />

be due to a lack of Hispanics in collections as well as their mixed ancestry.<br />

There were also significant indications of ambiguity in assessing ancestry,<br />

which may be due to the presence of discordant traits within individuals.<br />

“Mixed ancestry,” or a similar response was used as a designation 22<br />

times, six times alone for the black male case consisting of a cranium and<br />

femur, which appeared to have nonmetric traits traditionally associated<br />

with both American Whites and Blacks. In several cases, participants<br />

weighted certain traits more heavily than others, despite a declared<br />

preference for other traits. In other words, it appears that the relative<br />

importance of traits in assessing ancestry is adjusted based on the case<br />

under examination, and may reflect post hoc trait selection after a general<br />

impression is formed, as suggested by Hefner and Ousley (2006).<br />

Table 1. Percentage of Masters and PhDs correctly estimating<br />

ancestry.<br />

CASE M.A./M.S. PhD<br />

(n = 22) (n = 35)<br />

% Correct % Correct<br />

East Asian 63.7 60.0<br />

White 91.0 94.3<br />

Hispanic 9.1 14.3<br />

Black 18.2 22.9<br />

East Asian 50.0 62.9<br />

Black 31.8 20.0<br />

American Indian 31.8 31.3<br />

Overall % Correct 42.2 43.3<br />

References:<br />

1 Stewart, TD (1979) Essentials of Forensic Anthropology. Springfield, IL:<br />

Charles C. Thomas.<br />

2 Hefner, JT and SD Ousley (2006) Morphoscopic Traits and the<br />

Statistical Determination of Ancestry II. Proceedings of the Annual<br />

Meeting of the American Academy of Forensic Science, 58th Annual<br />

Meeting, Seattle, WA.<br />

Ancestry, Nonmetrics, Correspondence Analysis<br />

H65 Using Growth Data to Understand<br />

Secular Trends in Femur Diaphyseal<br />

Size and Shape among American Adults<br />

Daniel J Wescott, PhD*, University of Missouri-Columbia, Department<br />

of Anthropology, 107 Swallow Hall, Columbia, MO 65211<br />

The goal of this presentation is to demonstrate the secular changes in<br />

femur size and shape that have occurred among Americans born in the<br />

1840s to the 1980s. The relationship between size and shape variables<br />

during growth will then be used to explain the likely proximate causes for<br />

the observed secular changes. Attendees will learn how stature, body<br />

build, and physical activity interact during life to establish adult femur<br />

morphology, and will also gain an appreciation of the impact that femur<br />

secular changes can have on the interpretation of modern forensic cases.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating demonstrating that femur morphology is<br />

constantly changing and that methods for estimating sex from the femur,<br />

ancestry, and stature, most of which are derived from nineteenth century<br />

skeletal collections, must be constantly reassessed and renewed.<br />

Secular changes in skeletal morphology have the potential to impact<br />

the validity of methods used by forensic anthropologists for developing an<br />

accurate biological profile. From the 1840s to 1980s, the femur has<br />

undergone significant secular changes among American Blacks and<br />

Whites. In general, the femur has increased in length, decreased in<br />

robusticity, and the midshaft diaphyseal shape has changed from relatively<br />

circular to anteroposteriorly (AP) elongated due to a decrease in the<br />

mediolateral (ML) dimension. Interestingly, femur head diameter, midshaft<br />

AP diameter, and subtrochanteric shape have not changed significantly<br />

during this time. Increases in femur length are most likely due to dietary<br />

and healthcare improvements, but secular changes in diaphyseal size and<br />

shape are usually thought to be associated with decreases in physical<br />

activity levels, especially terrestrial mobility, through time. However, the<br />

patterns of change in diaphyseal morphology, especially midshaft shape, do<br />

not correspond to those expected based on a decrease in terrestrial mobility<br />

alone. A biomechanical model would predict that a simple decrease in<br />

activity levels should result in the femur diaphysis becoming smaller<br />

through time but retaining a relatively circular midshaft shape.<br />

Secular changes in femur morphology are demonstrated using<br />

measurements from 962 American adults with birthdates ranging from the<br />

1840s to 1980s. To investigate the proximate causes for the secular change<br />

among American adults, patterns of change in femur diaphyseal shape, AP<br />

and ML diaphyseal dimensions, head diameter, and length during growth<br />

were examined using a sample of 64 subadults (birth to 18 years of age).<br />

No significant sex differences in the patterns of growth were observed, so<br />

subadult males and females were pooled. Regression analysis was used to<br />

examine the correlations and partial correlations between variables during<br />

growth.<br />

The results show that subtrochanteric shape does not change<br />

significantly (r2 = 0.0001, p = 0.9271) after a mature gait pattern is<br />

established at around 5 years of age. Femur midshaft shape, on the other<br />

hand, changes significantly with age throughout the growth process (r2 =<br />

0.3983, p < 0.0001). During growth, both femur midshaft dimensions (AP<br />

and ML) show a significant positive correlation with growth in length and<br />

head diameter. The squared correlation between midshaft AP diameter and<br />

length is 0.8064 (p < 0.0001) and the r2 for midshaft ML diameter and<br />

length is 0.6978 (p < 0.0001). The relationship (r2 ) between femur head<br />

diameter and midshaft AP and ML dimensions is 0.7772 (p < 0.0001) and<br />

0.7687 (p < 0.0001), respectively. However, after controlling for growth in<br />

length, head diameter does not significantly (p = 0.1038) contribute to the<br />

variation in AP diameter. Conversely, growth in length does not make a<br />

unique contribution to the ML diameter (p = 0.6529) above that shared by<br />

head diameter.<br />

These results suggest that changes in the midshaft AP diameter<br />

during growth are primarily associated with changes in femur length (i.e.,<br />

stature) and changes in the ML dimension are mainly related to femur<br />

head diameter, which reflects body build. The non-significant secular<br />

change in the midshaft AP dimension among adults is most likely due to<br />

increases in femur length counteracting the changes expected due to<br />

decreases in activity levels. The significant negative secular change in<br />

midshaft ML diameter, on the other hand, reflects a decrease in activity<br />

combined with the retention of a relatively constant body build over the<br />

past 140 years. Thus, changes in the ML dimension are more indicative of<br />

the level of mechanical loading of the femur in modern Americans. In<br />

general, the femur morphology of modern Americans reflects the<br />

combination of changes in stature, body build, and activity level that have<br />

taken place over the past one and a half centuries. Since most methods for<br />

estimating sex, ancestry, and stature from the femur are based on<br />

nineteenth century skeletal collections, it is crucial that forensic<br />

anthropologists understand how these secular changes may affect the<br />

interpretation of today’s forensic cases.<br />

Forensic Anthropology, Secular Change, Femur<br />

333 * Presenting Author


H66 SIRLI (Sistema de Identificación<br />

de Restos y Localización de Individuos):<br />

A Review of the First Year of Mexico’s<br />

Database for Missing Persons<br />

Lori E. Baker, PhD*, Baylor University, Department of Anthropology,<br />

Forensic Science and Archaeology, One Bear Place #97388, Waco,<br />

TX 76798<br />

After attending this presentation, attendees will be aware of the<br />

formation and progress of a new database established to help identify<br />

undocumented immigrants that perish crossing the U.S./Mexico border.<br />

Attendees will be provided with instructions for submitting cases to the<br />

database for assistance with indentification.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing details of the establishment of an internationally<br />

functional database that will facilitate the identification of deceased<br />

undocumented Mexican immigrants to the U.S.<br />

Each year the Secretaría de Relaciones Exteriores (SRE) of Mexico<br />

receives roughly 5,500 requests from Mexican citizens soliciting support<br />

to locate relatives missing in the U.S. The current Mexican population<br />

residing in the U.S. is estimated between 10 and 11 million which makes<br />

these inquiries difficult resolve. To confound this problem, it is estimated<br />

that more than one million individuals pass undocumented from Mexico<br />

into the U.S. each year. Due to a tightening of border security that began<br />

in the 1990s, undocumented entry into the U.S. is confined to areas of<br />

desolate, inhospitable terrain. As a result, many illegal entrants die along<br />

the 2,000 mile U.S./Mexico border and their remains are often not found<br />

for weeks or months if at all. In 2005, the U.S. Border Patrol recorded<br />

more than 500 deaths along the southern border with Mexico with more<br />

than half of those bodies found in Arizona.<br />

In 2005, the SRE launched an ambitious new database, System for<br />

the Identification of Remains and Localization of Individuals or SIRLI, in<br />

an attempt to facilitate efforts of locating the missing Mexican citizens<br />

both living and deceased. The SIRLI database was created by Image Ware<br />

Systems, a U.S. identity management firm. SIRLI incorporates<br />

information from missing-persons reports that can be filed by families in<br />

SRE offices both in Mexico and the U.S. The next phase of the project will<br />

allow individuals to file reports directly to SIRLI using a web-based<br />

interface. The information reported includes demographic information<br />

such as name, age, sex, known addresses in both Mexico and the United<br />

States, exit point from Mexico into the United States. In addition,<br />

photographs of the missing person as well as of scars or tattoos can be<br />

scanned into the system and viewed by officials at any of the 45 U.S.<br />

consulates or SRE offices in Mexico in order to make comparisons. Image<br />

Ware also incorporates facial recognition software that compares these<br />

images to those taken from deceased individuals. Fingerprint data along<br />

with signature information taken from Mexican voting cards, military and<br />

consular registries are entered into the database. Lastly, the database<br />

includes a section for the storage and comparison genetic data for both<br />

mitochondrial DNA (mtDNA) sequence analysis and STR loci.<br />

Currently mtDNA analysis is being performed at Baylor University<br />

on a subset of unidentified remains believed to be from undocumented<br />

immigrants as well as for individuals that have been tentatively identified<br />

using other means. To date, Baylor has received 158 bone samples and<br />

one hair sample from deceased immigrant remains and 37 blood samples<br />

from living relatives of the missing.<br />

There have been twenty-six mtDNA matches made between bone<br />

samples and maternal relatives of the missing. The combined efforts of<br />

the U.S. medical examiner’s offices, Mexican consular offices, border<br />

patrol and local officials have been facilitated by this new depository of<br />

information focused primarily on individuals migrating from Mexico to<br />

the United States. SIRLI has provided a much needed tool to enhance<br />

communication and availability of information to those entrenched in<br />

identification efforts. In the future, Mexico’s SIRLI database can be used<br />

* Presenting Author<br />

as a template for similar databases that are needed in other countries<br />

around the world.<br />

The Mexican government provides these services free to all Mexican<br />

citizens and immigrants who begin a search by contacting a Mexican<br />

consul office in Mexico or in the U.S. Forensic scientists are encouraged<br />

to contact the nearest Mexican consulate office when faced with a<br />

potential undocumented immigrant so that the case be included in SIRLI.<br />

This paper is dedicated to Dr. Richard L. Jantz who’s philosophy<br />

“…you can never have too much data” has inspired generations.<br />

Database, Migrant Deaths, mtDNA<br />

H67 An Argument for the Increased<br />

Involvement of Forensic Anthropologists<br />

in Mass Fatality Incidents in the United<br />

States, United Kingdom and Europe<br />

Frank A. Ciaccio, MPA*, Kenyon International Emergency Services, Inc.,<br />

15180 Grand Point Drive, Houston, TX 77090; and Nick Haig, BA, Msc*,<br />

Kenyon International Emergency Services, Inc., 1, The Western Centre,<br />

Western Road, Bracknell, RG12 1RW, England, United Kingdom<br />

After attending this presentation, attendees will gain a clearer<br />

understanding of the role of forensic anthropologists in mass fatality<br />

incidents and the importance of having forensic anthropologists on<br />

national DVI teams, federal DMORT teams and private companies<br />

involved in mass disaster management.<br />

This presentation will have an impact on the global community with<br />

regards to the role and use of forensic anthropologists in mass disasters.<br />

This presentation will impact the forensic community and/or humanity by<br />

looking at the comparison and contrasting role of forensic anthropologists<br />

in the U.S., UK, and Europe.<br />

In any disaster, there is always an outpouring of forensic<br />

professionals prepared to go into a disaster to recover the remains, conduct<br />

postmortem examinations and identify the victims to ensure their return to<br />

the families. These ‘standard’ forensic identification teams include the<br />

usual specialties like Forensic Odontology, Forensic Pathology and DNA<br />

specialists. However, forensic anthropologists, depending upon the<br />

geographical location of the disaster, are not always called upon or utilized<br />

to assist in the recovery and identification process of victims.<br />

In the United Kingdom (UK), the role of the forensic anthropologist<br />

in a mass disaster is limited. The UK depends upon its national Disaster<br />

Victim Identification (DVI) teams which are staffed mainly by police<br />

officers. Forensic anthropologists are only called upon when requested but<br />

are not specifically attached to any particular team. In contrast, the federal<br />

Disaster Mortuary Operational Response Team (DMORT) teams or<br />

private companies like Kenyon International Emergency Services, Inc.<br />

retain forensic anthropologists on a contractual basis as part of the forensic<br />

identification teams in the United States.<br />

Globally, disasters like aviation crashes, hurricanes and tsunamis kill<br />

hundreds of people of all ages, races and ethnic backgrounds. A forensic<br />

anthropologist is trained to examine the minutest fragment of bone and<br />

develop a biological profile in order to help in the confirmation of positive<br />

identification. It is essential that a forensic anthropologist be part of the<br />

team in order to process the fragmentation of bones.<br />

The science of forensic anthropology is a proven, essential and<br />

required discipline in a mass fatality incident. In today’s society there is a<br />

moral and ethical responsibility to provide all resources and technology<br />

needed to identify an individual following a disaster no matter how large<br />

or small. Forensic anthropology must be a recognized and required<br />

discipline not only in the U.S. and UK, but in all countries that deploy DVI<br />

teams or forensic identification teams during a mass fatality disaster.<br />

Mass Disaster, Mass Fatality Incident, Forensic Anthropology<br />

334


H68 Introducing Forensic Anthropology<br />

to Albania Using the Problem-Based<br />

Learning Model<br />

Thomas A. Crist, PhD*, and John H. Johnsen, PhD, Utica College, 1600<br />

Burrstone Road, Utica, NY 13304<br />

After attending this presentation, attendees will learn the basic<br />

concepts of the problem-based learning model and appreciate its efficacy<br />

in teaching forensic anthropology, particularly in an international course of<br />

relatively short duration in which proactive and cooperative group<br />

dynamics are critical components for success.<br />

This presentation will impact the forensic community and/or<br />

humanity by raising awareness of the benefits of the problem-based<br />

learning model amongst forensic science educators, particularly<br />

anthropologists.<br />

This presentation describes the use of the problem-based learning<br />

model to teach forensic anthropology in an international field school<br />

setting at Butrint National Park in Albania, a country with no history of<br />

academic programs in physical anthropology.<br />

Attendees of this presentation will learn the basic concepts of the<br />

problem-based learning model and appreciate its efficacy in teaching<br />

forensic anthropology, particularly in an international course of relatively<br />

short duration in which proactive and cooperative group dynamics are<br />

critical components for success.<br />

Problem-based learning (PBL) is a method of teaching that uses<br />

actual and hypothetical cases, individual research, and group discussion to<br />

foster more effective acquisition of skills and knowledge by students than<br />

the traditional lecture format. The typical classroom interaction between<br />

professors and students is generally static and passive; in contrast, PBL<br />

creates a proactive, student-centered learning environment that provides<br />

students with extraordinary analytical and problem-solving skills. In use<br />

since the 1980s at many medical schools including Harvard, Bowman<br />

Gray, McMaster, and Michigan State, PBL is particularly suited for<br />

teaching the forensic sciences with their combination of conceptual,<br />

analytical, and psychomotor elements. Perhaps without realizing it,<br />

forensic anthropologists use the PBL method when they assign their<br />

students a skeleton to analyze as part of their osteology and forensic<br />

anthropology courses. Yet an extensive review of the forensic science<br />

literature reveals few papers that even mention the approach and none<br />

associated with forensic anthropology.<br />

PBL creates a dialogue between the process of learning and the<br />

content that is required of the discipline’s practitioners. Rather than<br />

simply providing answers to student questions, in PBL the professor<br />

identifies the relevant learning issues associated with the case, facilitates<br />

student research using textbooks, online sources, and interviews with<br />

appropriate experts; and guides the student group discussions. Students<br />

actively contribute to and share in their own learning process, initially by<br />

defining additional learning objectives and then by collecting appropriate<br />

information and critically evaluating their own performance and that of<br />

their peers. This collaborative process provides immediate feedback both<br />

within and outside of the group discussions, encouraging and reinforcing<br />

positive behavior and interpersonal communication. Faculty and students<br />

who participate in PBL-based programs report higher levels of satisfaction<br />

with their educational experience and more effective performance in<br />

clinical and other “real-life” settings that require analytical thinking and<br />

problem solving after graduation.<br />

Both PBL and physical anthropology are foreign to Albania, a<br />

country isolated from the rest of the western world from 1946 until its<br />

democratic revolution in 1991. Albania has produced only one physical<br />

anthropologist – Dr. Aleksandër Dhima – who received his graduate<br />

education in China. At present, no Albanian university offers any courses<br />

in physical anthropology.<br />

Since 2004, Utica College has offered a four-week, six-credit<br />

forensic anthropology field school at Butrint National Park in<br />

southwestern Albania. Butrint is a UNESCO World Heritage Site with a<br />

3,000-year history of occupation by numerous peoples, flourishing under<br />

the Greek and Romans and again during the medieval period. Using<br />

human remains excavated at the site, participants in the field school learn<br />

the basics of forensic anthropology while immersed in a culturally<br />

stimulating environment. PBL exercises include sorting commingled<br />

remains, determining demographic profiles for each individual,<br />

identifying evidence of disease, trauma, and activity-related<br />

biomechanical stress, and reporting results in a concise, professional<br />

manner. Over the past three summers, 33 students from eight different<br />

American and Canadian colleges have participated in the course, together<br />

with six Albanians. Dr. Dhima collaborated as a consultant and professor<br />

for the course in 2004 and 2005.<br />

PBL is especially effective for teaching this course, with its emphasis<br />

on group process and case-based discussions. This approach promotes<br />

cooperative interactions among the course’s American and Albanian<br />

students, quickly bridging the language barriers and cultural gaps that<br />

initially exist. While those field school students with some previous<br />

training in osteology and forensic anthropological methods benefit the<br />

most from the PBL exercises used in the course, novices more quickly<br />

grasp the basic content of the field and are prepared for further<br />

independent investigation after the course ends.<br />

Albania, Problem-Based Learning, Forensic Anthropology<br />

H69 The Importance of Archaeological Site<br />

Formation Processes and Flexible<br />

Excavation Strategies to the Development<br />

of Successful Medicolegal Approaches to<br />

Mass Graves Excavation: Al Hatra, Iraq<br />

Joan E. Baker, PhD*, and Eric B Emery, PhD, Joint POW/MIA<br />

Accounting Command Central Identification Laboratory, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will learn to recognize<br />

some of the pitfalls of generic approaches to mass graves work,<br />

particularly with regards to practical issues of site assessment, recovery<br />

methodology, data processing, staffing, and evidence handling. Attendees<br />

will also recognize the importance of considering historical, sociocultural,<br />

political, and environmental aspects of the mass grave(s) and the funding<br />

authorities’ goals prior to devising a scope of work.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a discussion of key considerations when devising<br />

an ethical and efficient investigation/excavation/analysis plan for mass<br />

graves.<br />

A number of authors have presented general guidelines to mass<br />

graves excavation and monitoring techniques, primarily based on<br />

experience in the former Yugoslavia, Rwanda, Guatemala, and Honduras.<br />

While these guidelines provide valuable experience-based approaches to<br />

mass graves excavation, they are quite general in nature. This may have<br />

the unwanted effect of implying that “one size fits all,” leading the less<br />

experienced investigator to ignore crucial aspects of site formation and<br />

data analysis, preventing adequate planning. In this paper, the authors will<br />

point out two vital and sometimes overlooked aspects of successful mass<br />

graves investigation and excavation: (1) the sociocultural and political<br />

history of the region, and (2) the goal of the investigation or excavation.<br />

Examples from a mass graves site near Al Hatra, Iraq, will be provided.<br />

The goal of mass graves excavations varies geographically and<br />

temporally and can be strongly influenced by the entity providing funding.<br />

The object of excavation may range from individual identification and<br />

repatriation of remains to collection of evidence for use in the prosecution<br />

of war crimes. Numerous characteristics specific to the project in question<br />

(including the region’s political and social history, site formation<br />

335 * Presenting Author


processes, and goals of the perpetrators) may be factors in achieving these<br />

goals.<br />

Individual identification requires dedicated funds and staff for<br />

mtDNA sample and family reference sample collection, public records<br />

searches (ID cards, etc.), witness and family interviews, collection of<br />

antemortem dental records and medical/dental x-rays, genealogy, and<br />

short- and/or long-term storage. This aim also requires careful<br />

consideration of cultural practices, such as settlement patterns. While<br />

mtDNA can provide valuable data regarding identity in many situations,<br />

its use in a matrilocal society is complicated by the associated reduction of<br />

mitochondrial lineage variability, particularly in cases where a mass grave<br />

consists entirely of victims from a single village. Furthermore, the<br />

presence of members of the victims’ families as observers or members of<br />

the persecuted population as excavators presents significant risk of<br />

contamination. A primary goal of prosecution requires different planning<br />

strategies for long-term storage, reburial, or memorial design/dedication,<br />

as well as a focus on incident reconstruction and site formation processes.<br />

For example, the presence of multiple graves from several temporally<br />

distinct events, such as those seen in the Al Hatra area, may be important<br />

to prosecution if the aim is to prove deliberate, well-planned episodic<br />

genocide. Cause of death may be an important piece of information for<br />

prosecution, potentially requiring the involvement of forensic<br />

pathologists, ballistics experts, and the like.<br />

The goals of the perpetrators are also important considerations for<br />

investigators, particularly where prosecution is a primary goal. Genocide<br />

patterns may range from torture and a high degree of military force and<br />

coercion (as in the former Yugoslavia) to minimum-effort-maximumefficiency<br />

styles of execution accompanied by deceit (as in the Al Hatra<br />

area), and these patterns will be reflected in trauma patterns and the<br />

disposition of remains. These patterns are influenced by the political,<br />

social, or religious agendas of the regimes and, to some degree, the<br />

personal dispositions of the individuals responsible for carrying out the<br />

executions. Choice of weapons, demography of the victims, and<br />

morphology of the grave may provide important clues about these goals<br />

and agendas and may strongly influence recovery methods.<br />

Mass Graves, Excavation, Iraq<br />

H70 Creating a Standardized Approach to<br />

Capacity Building Programs in Forensic<br />

Anthropology: Human Rights<br />

Investigations in Colombia<br />

Jennifer L. Beatty, JD*, Department of Justice, Criminal Division,<br />

International Criminal Investigative Training Assistance Program, 1331<br />

F Street NW Suite 500, Washington, DC 20530; Andrew Tyrrell, PhD,<br />

Eric Emery, PhD, William R. Belcher, PhD, and Derek C. Benedix, PhD,<br />

Joint POW/MIA Accounting Command, Central Identification<br />

Laboratory, Building 45, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-3350; and Liliana del Amparo Segura Leal, and Manuel A. Torres<br />

Rojas, Prosecutor General’s Office, Technical Investigation Corps (CTI),<br />

Diagonal 22B No. 52-01, Bogota, DC, Colombia<br />

The goal of this presentation is to present a study that focuses on<br />

determining needs for investigative teams in nations that have a history of<br />

large scale human rights violations. The audience will gain an<br />

understanding of four areas:<br />

1. The training needs assessment process conducted by the<br />

trainers and trainees.<br />

2. The construction and content of the training course established<br />

by ICITAP in Colombia.<br />

3. The evaluation of the training program’s success by the<br />

trainers and the trainees.<br />

4. The long term prospects for this type of training and the<br />

implications for Colombia’s changing legal system.<br />

* Presenting Author<br />

This presentation will impact the forensic community and/or<br />

humanity by explaining a new approach to forensic capacity-building<br />

programs in an anthropological context.<br />

The U.S. Department of Justice’s International Criminal<br />

Investigation Training Assistance Program (ICITAP) and the US<br />

Department of Defense’s Central Identification Laboratory (CIL) are<br />

collaborating in the construction and implementation of a training and<br />

capacity building program for forensic anthropology in Colombia that<br />

focuses upon forensic archeology and recovery techniques. The<br />

program’s objectives are to enhance the existing capabilities of the<br />

Colombian government’s human rights teams to effectively identify,<br />

process, and recover evidence from the clandestine disposal sites of<br />

individuals killed by extra-judicial executions. Built into the original<br />

design of this program is an assessment strategy allowing ICITAP and CIL<br />

to evaluate the performance of the trainers, the learning success rate of the<br />

trainees and the long term impact of this capacity building program on the<br />

trainees’ day-to-day investigative practices.<br />

The Colombian government is transitioning from an inquisitorial to<br />

an adversarial legal system and ICITAP is providing technical guidance,<br />

training and supplies to support the transition. Recently, the Colombian<br />

government has established a new initiative, the Justice and Peace<br />

Initiative, which has allowed human rights investigators and lawenforcement<br />

agencies to obtain new information about a series of mass<br />

graves in Colombia. The Colombian government wishes to prosecute the<br />

perpetrators of these crimes. To support this aim ICITAP has formulated a<br />

new training program with technical expertise provided by the CIL.<br />

After an initial assessment of the Colombian human rights team’s<br />

current operating standards for the investigation of clandestine graves,<br />

ICITAP and CIL formulated a comprehensive training program. The<br />

assessment was conducted through a direct visit to laboratory facilities in<br />

May of 2006 and a desktop review of working practices and case<br />

reporting. As a result of this assessment ICITAP and CIL identified the<br />

need for a program of textually and graphically supported, lecture and<br />

practical based training designed to impart the critical skills and<br />

theoretical foundations necessary to conduct forensic recovery of<br />

subterranean crime scenes and surface scatters of human remains. The<br />

primary aim of the training was to teach a structured and team based<br />

methodological framework, incorporating specific recovery skills and<br />

techniques.<br />

The course incorporated field and practical classroom exercises<br />

designed to demonstrate and develop skills in the following critical areas:<br />

• Site formation processes<br />

• Site disturbance processes<br />

• Taphonomy<br />

• Stratigraphic interpretation of a site<br />

• Excavation and recovery methodologies<br />

• Site recording, documentation and survey<br />

• Evidence identification, handling and management<br />

• Chain of custody<br />

• Long term curation and storage of evidence<br />

The course is designed to impart these skills so that they are<br />

implemented by trainees to best support criminal justice and the<br />

identification of victims. Furthermore the course is structured so that, in<br />

the future, trainees can become trainers.<br />

The performance evaluation procedure built into this program is<br />

tri-stage:<br />

Stage 1: Defining desired impacts and outcomes from the training<br />

by both the trainers and the trainees.<br />

Stage 2: Assessment of the training’s initial value by the trainers,<br />

trainees and independent observers (through videotape of the<br />

training sessions) at the time of the training.<br />

Stage 3: Assessment of the training’s actual impact on forensic<br />

anthropology in Colombia.<br />

At the time of the presentation the evaluation will be between Stage<br />

2 and Stage 3. A detailed outline of the training program and the results<br />

of the second stage of the performance evaluation will be presented.<br />

336


Although the ICITAP and CIL training program is initially focused on the<br />

current specific needs of the Colombian government, it is intended to<br />

ultimately be used to support other nations that request technical training<br />

for the investigation of large scale human rights atrocities.<br />

Capacity-building, Human Rights, Forensic Anthropology<br />

H71 The Current and Potential Role of<br />

Forensic Anthropology in Cambodia<br />

Sabrina C. Ta’ala, MA*, and Gregory E. Berg, MA, Joint POW/MIA<br />

Accounting Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853-5530<br />

After attending this presentation, attendees will become familiarized<br />

with the potential role of forensic anthropologists in investigating human<br />

rights violations committed in Cambodia during the period of the Khmer<br />

Rouge regime.<br />

This presentation will impact the forensic community and/or<br />

humanity by highlighting the role that forensic anthropological research<br />

can play in Cambodia, despite a number of challenges that make this area<br />

unique from other geographical locations.<br />

From April 1975 to January 1979, Cambodia was taken over by a<br />

radical faction of communists known as the Khmer Rouge (KR). This<br />

regime sought to transform the entire population of the country into rural<br />

peasant farmers, and to this end, they relocated vast portions of the<br />

country’s urban population into collective farming communities. As part<br />

of the take over, and continuing throughout their rule, the KR regime<br />

particularly targeted certain members of society such as intellectuals,<br />

former government officials, and social elites for harsh treatment and often<br />

execution; however, men, women, and children from all walks of life were<br />

potential targets for persecution. By the time the KR’s rule in Cambodia<br />

ended, approximately 1.5 million Cambodians were dead from execution,<br />

ruthless forced work conditions, disease, and starvation.<br />

In the decades since the dismantling of the KR regime, there has been<br />

much discussion about prosecuting the KR leaders most responsible for<br />

atrocities. Largely because of complicated domestic and international<br />

politics, it was not until the late 1990s that the possibility of trials became<br />

a realistic expectation. International tribunals similar to those established<br />

for Rwanda and the former Yugoslavia have yet to be realized, despite<br />

continuing efforts at negotiation between the United Nations, the<br />

Cambodian government, and other international representatives.<br />

Forensic anthropologists have, to date, conducted limited work<br />

towards investigating human rights violations dating to the mid-to-late<br />

1970s in Cambodia. Research has focused on identifying locations of<br />

mass graves and analyzing patterns of trauma on previously exhumed<br />

skeletal remains. Forensic anthropological research in Cambodia has been<br />

limited for a number of reasons. First, there has been little demand for the<br />

collection of forensic evidence because of the slow-moving negotiations<br />

for criminal tribunals. Second, some exceptionally damning evidence has<br />

come from the KRs own records, which include documents detailing<br />

torture and execution; therefore, evidence collected from skeletal remains<br />

might not be considered as crucial as it would be in the absence of written<br />

sources of data. Finally, for a variety of reasons the goal of individual<br />

identification of skeletal remains is, in most cases, unrealistic.<br />

Nevertheless, forensic anthropologists have the potential to play an<br />

important role in Cambodia. Forensic investigation of mass graves and<br />

previously exhumed skeletal material has added detail to an historical<br />

record that is only partially being filled out by memoirs, witness<br />

testimony, and Khmer Rouge documents. As the flow of foreign tourists<br />

to Cambodia continues to expand, forensic anthropologists can play a<br />

valuable role in improving the education of the international public about<br />

this part of the history of Cambodia. For example, two of the most popular<br />

destinations for visitors in Phnom Penh are the Tuol Sleng museum and<br />

the Choeung Ek memorial stupa. Forensic anthropologists have played a<br />

small role in improving and refining interpretive displays in both<br />

locations, but a great deal more work can be done, particularly, in the case<br />

of Choeung Ek, where poor curation conditions are endangering the<br />

preservation of human remains, and a detailed interpretative display is<br />

sorely needed.<br />

Forensic anthropologists can go a long way in helping to describe<br />

human rights violations that occurred in Cambodia during 1975-1979,<br />

even if there is limited opportunity to identify victims and prosecute<br />

perpetrators. The potential role they can play in the improvement and<br />

refinement of public education should not be overlooked, and the value of<br />

such education should not be underrated.<br />

Forensic Anthropology, Cambodia, Human Rights Violations<br />

H72 Grave Problems in Iraq<br />

Derek R. Congram, BA Honours, MSc, MA*, 393 Pinehurst Drive, RR4<br />

Belle River, Ontario N0R 2A0, Canada; and Ambika Flavel, BA, MSc<br />

Forensic Archaeology, Regime Crimes Liaison Office, RCLO/Mass<br />

Graves, APO, AE 09342<br />

After attending this presentation, attendees will learn about the<br />

seldom talked about forensic work related to mass graves that has been<br />

performed to date in Iraq, about challenges in international forensic work<br />

and what must change for this type of work to be more effective.<br />

This presentation will impact the forensic community and/or<br />

humanity by initiating discussion and cooperation amongst seemingly<br />

competing individuals and organizations towards unified international<br />

forensic assistance. It is also hoped that international protocols and<br />

operating procedures towards mass grave investigations will be<br />

developed.<br />

International forensic work is a growing phenomenon- for<br />

investigations of international law violations and as a response to mass<br />

fatality incidents and mass disasters. The field and practice have continued<br />

to evolve, with anthropology and archaeology often playing a primary<br />

role, but several key problems persist. These have been seen in the ex-<br />

Yugoslavia but now affect work in Iraq. This presentation will be a brief<br />

review of what has been done, what is being done and what can be done<br />

related to forensic investigations of clandestine, largely mass, graves in<br />

Iraq and the examination and potential identification of those exhumed<br />

from them.<br />

A primary problem with work thus far is that there is no<br />

‘international’ infrastructure to support the work. There are no set rules,<br />

regulations, standard operating procedures or protocols. There is mission<br />

overlap between organizations which results in wasted resources,<br />

miscommunication, gaps in authority and confusion over liaison with<br />

families and governments. A good example of this was seen in Kosovo<br />

where the same forensic site was ´processed´ by three different forensic<br />

teams over a period of two years. Many authors have talked about<br />

international standards, but despite all the rhetoric, the source and<br />

substance of such standards is unpublished and subjective at best.<br />

Iraq has mimicked Kosovo to a degree in that many different groups,<br />

(e.g., Coalition Provisional Authority teams, Inforce [a UK-based forensic<br />

charity], Archaeologists for Human Rights, a Kuwaiti forensic team, The<br />

U.S. Armed Forces Institute for Pathology, the US government´s Regime<br />

Crimes Liaison Office [RCLO], International Commission for Missing<br />

Persons [ICMP], Physicians for Human Rights) have all had a hand in<br />

some or all of site surveys/assessments, training of and liaison with Iraqis<br />

and field and laboratory operations. This is not to mention the many Iraqi<br />

non-governmental teams and personnel and Kurdish teams that have been<br />

involved in investigations and excavations of clandestine graves, with or<br />

without the knowledge and coordination of the Iraqi federal government<br />

and/or U.S. authorities in Iraq. The scale of multiple organizational efforts<br />

is unprecedented and given the lack of centralized authority, perhaps<br />

impossible to coordinate.<br />

337 * Presenting Author


Taken further, different organizations are often found to behave as if<br />

they are in competition with one another. This is not unique to Iraq, of<br />

course, and can be seen at local and national levels in many places,<br />

including the United States. However, this results in lack of transparency,<br />

professional disagreements that can develop into lawsuits, and confusion<br />

for the survivors of crimes, all of which negatively affect the primary<br />

objectives of the work: the needs and concerns of the families and<br />

communities of the victims and their interests in a process of justice,<br />

identification, repatriation and the advancement of scientific knowledge<br />

via the experience.<br />

Another problem being seen in international forensic work is that of<br />

paradigm. There is a harmful discussion in the literature of a dichotomy of<br />

‘forensic’ versus ‘humanitarian’ work. Experience of collaboration<br />

between ICTY (the International Criminal Tribunal for the ex-Yugoslavia)<br />

and ICMP, in the ex-Yugoslavia has shown that organizations can work on<br />

sites together to accomplish seemingly independent primary objectives,<br />

despite the obvious overlap in aims of evidence collection (ICTY) and<br />

identification (ICMP). Latin American teams have demonstrated that<br />

serving both the so-called humanitarian interests of families (e.g.,<br />

individual identification and repatriation) and the evidentiary<br />

requirements of courts can be accomplished by a single organization.<br />

The most significant challenge for grave investigations in Iraq is<br />

obviously security and there is little that forensic practitioners can do<br />

about it. Nevertheless, the professional community should be prepared to<br />

assist the Iraqis when the time of safe and wide-scale investigations<br />

comes. International standards and operating procedures should be widely<br />

discussed, developed, published and distributed. Organizations and<br />

professionals must recognize that victims of war crimes or other grave<br />

violations of human rights, which include survivors such as family and<br />

community members of those killed, will only suffer more with a lack of<br />

organized and coordinated efforts.<br />

Osteoarchaeology, Iraq, Mass Graves<br />

H73 Differential Diagnosis of<br />

Torture in Skeletal Remains<br />

Jose P. Baraybar, BA, MS*, and Carmen R. Cardoza, BA, Equipo<br />

Peruano de Antropologia Forense (EPAF), Arnaldo Marquez 2144-D,<br />

Lima, Lima 11, Peru<br />

After attending this presentation, attendees will understand how to<br />

recognize patterns of skeletal injuries consistent with torture as observed<br />

in cases of human rights abuses. Further, participants will learn key<br />

aspects of blunt force injuries to the skeleton and how to differentiate such<br />

injuries from other mechanisms of trauma or postmortem damage.<br />

This presentation will impact the forensic community and/or<br />

humanity by illustrating how forensic anthropology is an important tool in<br />

the enforcement of human rights. This study presents cases of<br />

documented torture and the roles legal-medicine and anthropology play in<br />

documenting these types of cases and presenting patterns of abuse in<br />

international criminal trials.<br />

According to the United Nations General Assembly resolution 39/46<br />

(entered into force 1987), Article 27(1) of the Convention against Torture<br />

and Other Cruel, Inhuman or Degrading Treatment or Punishment: “the<br />

term “torture” means any act by which severe pain or suffering, whether<br />

physical or mental, is intentionally inflicted on a person for such purposes<br />

as obtaining from him or a third person information or a confession...<br />

when such pain or suffering is inflicted by or at the instigation of or with<br />

the consent or acquiescence of a public official or other person acting in<br />

an official capacity...”<br />

During the years 1980-2000, more than 65,000 Peruvians lost their<br />

lives due to the armed conflicts between national security forces and the<br />

two guerrilla organizations, Sendero Luminoso and the Movimiento<br />

Revolucionario Tupac Amaru (MRTA). In 1998, Peruvian Law No. 26926<br />

* Presenting Author<br />

criminalized torture and since then, three cases of torture have resulted in<br />

convictions. Currently, there are 118 reported cases of torture and 56<br />

deaths in military barracks in Peru. Current estimates point to over 11,000<br />

people missing as consequence of the armed conflict in Peru. The<br />

Peruvian Forensic Anthropology Team (EPAF) is currently working to<br />

determine the whereabouts of the Missing, investigate these deaths,<br />

exhume graves, identify and return the remains to their families and collect<br />

forensic evidence to be used in criminal trials.<br />

Since the first conviction of torture by the International Criminal<br />

Tribunal for the former Yugoslavia (November 30 2005) using forensic<br />

evidence (Limaj et.al IT-03-66), four cases of documented torture with<br />

evidence of skeletal injuries have been investigated by EPAF in Peru. A<br />

group of four other cases of suspected torture were also investigated. In<br />

these cases, cruel treatment was suspected; however, there was no witness<br />

testimony available to corroborate the findings. To complete a differential<br />

diagnosis and assess whether the injuries in these latter cases were<br />

consistent with patterns of abuse and torture, it was compared to the four<br />

documented cases involving torture and to another unrelated case, which<br />

resulted in similar injuries but from a different mechanism (blunt force<br />

trauma to the chest due to a traffic accident). All eight cases shared<br />

specific and diffuse traumatic injuries in the thoracic cage characterized by<br />

linear fractures on ribs and/or the sternum located on the anterior, lateral<br />

and posterior aspects.<br />

In the four known cases of torture, survivors provided witness<br />

testimony of the incidents. These witnesses stated that inhumane and cruel<br />

treatment was inflicted prior to the deaths of the victims, including the<br />

victims being stomped, kicked, and hit prior to being killed. The two types<br />

of injuries observed included antero-posterior compression of the chest<br />

characterized by fractures adjacent to the costochondral cartilage, and<br />

isolated and paired fractures in other various regions of the chest, likely<br />

resulting from direct impact.<br />

Differential diagnosis of the injuries sustained in cases of torture<br />

compared to a traffic accident, show that in the latter, injuries were<br />

consistent with an acceleration/deceleration mechanism. Therefore the<br />

pattern of injuries resulting from abuse was markedly different than a<br />

traffic accident. Further, the pattern of injuries observed in the torture<br />

cases was consistent with the witnesses’ testimony in which it is described<br />

how injuries were inflicted.<br />

Medico-legal investigations into human rights abuses must be<br />

focused on the types of trauma that may be inflicted to people prior to<br />

death. A detailed analysis of the wounds includes the locations,<br />

morphology, and frequency of wounds. These variables enable a<br />

differential diagnosis and estimation of the mechanism of injury and are<br />

discussed in this paper. It is concluded that in cases of human rights<br />

violations, thoracic trauma such as fractures to the ribs, sternum and spine,<br />

are good indicators of torture in cases that may or may not have<br />

circumstantial or testimonial evidence. This analysis demonstrates how a<br />

differential diagnosis can accurately estimate injuries caused by torture<br />

from those caused by other mechanisms, even in cases with a different<br />

manner of death.<br />

Torture, Human Rights, Blunt Force Trauma<br />

H74 Blasting Injuries in Human Rights<br />

Cases and Armed Conflicts<br />

Erin H. Kimmerle, PhD*, University of South Florida, Department of<br />

Anthropology, 4202 East Fowler Avenue, SOC 107, Tampa, FL 33620-<br />

8100; and Jose Pablo Baraybar, MSc, Peruvian Forensic Anthropology<br />

Team (EPAF), Toribio Pacheco 216 Lima 18 Peru, Lima, 18, Peru<br />

After attending this presentation, attendees will understand the<br />

prevalence of blasting injuries in cases of human rights abuses and armed<br />

conflicts. Participants will learn how to differentiate blasting injuries from<br />

other mechanisms of injury such as gunfire.<br />

338


This presentation will impact the forensic community and/or<br />

humanity by demonstrating the types of injuries commonly encountered in<br />

human rights investigations and differential diagnosis for blasting injuries.<br />

This will serve as a useful tool for pathologists and anthropologists when<br />

estimating the most probable cause of death.<br />

Anthropologists and pathologists work together to reconstruct<br />

skeletal injuries and establish the most probable cause of death in cases of<br />

human rights violations and armed conflicts. Victims of modern conflicts<br />

often suffer multiple injuries, from conventional weapons including<br />

gunfire and blasting injuries (i.e., landmines, grenades, bombs, and<br />

mortars). Civilian and military targets differ in the prevalence of various<br />

injury mechanisms. When civilians are the intended target of violence, it<br />

is not uncommon for individuals to suffer multiple injuries from various<br />

mechanisms, with wounds prevalent throughout multiple regions of the<br />

body and from a variety of trajectories. Additionally, in attempts to hide<br />

the remains and crimes committed, deceased bodies are commonly blownup,<br />

burned, thrown off bridges or cliffs, and even buried/exhumed and<br />

later re-interred multiple times to hide the location of the grave. Each of<br />

these processes leaves a mark on skeletal remains. Distinguishing injuries,<br />

taphonomic alterations, and post-mortem fractures for each victim is a<br />

routine part of the post-mortem examination and is paramount for<br />

accurately diagnosing each mechanism of alteration.<br />

Characteristically, blasting injuries result in multiple victims from a<br />

single incident and injuries that are widespread throughout the body,<br />

affecting multiple anatomical systems. The factors that affect the wound<br />

morphology include the type of explosive, the range of materials used to<br />

construct blast and shrapnel, the location of the explosions within a<br />

structure or outside of a structure, the total amount of materials used in the<br />

construction of the explosive, location of the victim relative to the blast,<br />

and the presence of an intermediate target between the victim and the<br />

blast. Therefore, there is a wide range of variation observed among<br />

blasting injuries.<br />

Injuries from low-order explosives result from the “blast wind” and<br />

may include wounds from fragmented shrapnel or thermal injuries. In<br />

cases of high-order explosives, injuries result from the over-pressurization<br />

“blast wave” force. The three mechanisms of high-order explosive<br />

injuries that may affect the skeletal system are characterized as Secondary,<br />

Tertiary, or Quaternary injuries. Wounds result from penetrating shrapnel<br />

or fragmented bomb components, blunt force compression or crushing<br />

injuries from flying debris, bone fractures result from the individual being<br />

thrown from the blast or hit by a secondary flying object, or the traumatic<br />

amputation of limbs. High-order explosives tend to be military issued or<br />

“manufactured.” These types of blasts cause injuries that are different<br />

from “impoverished” explosive devices where an object is modified from<br />

its intended function and made into an explosive device. “Impoverished”<br />

devices may include scrap metal or metal objects such as household<br />

utensils that are cut into pieces and used as shrapnel in grenades or bombs.<br />

This study reviews cases of blasting injuries among civilian targets<br />

that resulted during armed conflicts investigated by the United Nations,<br />

International Criminal Tribunal for Former Yugoslavia in Kosovo (1998)<br />

and Bosnia-Herzegovina (1991-1995) and current cases investigated by<br />

the United Nations, Office on Missing Persons and <strong>Forensics</strong> in Kosovo.<br />

This study highlights methodology for differential diagnosis of wounds<br />

produced by shrapnel from high-order explosives from gunfire projectiles.<br />

A differential diagnosis may be possible based on the number, location,<br />

pattern of wounds and wound morphology. This paper presents cases to<br />

demonstrate how the projectile tracks, the number and sequence of<br />

multiple injuries, and the direction/location of the blast may be estimated.<br />

This study investigates variation in wound morphology resulting from<br />

differences between “Manufactured” and “Impoverished” explosive<br />

devices. Finally, important trends in the demographic pattern of victims<br />

who incur these types of injuries, as relevant to criminal cases of violations<br />

to international humanitarian law, are discussed.<br />

Blast Injury, Blunt Force Trauma, Armed Conflicts<br />

H75 Decomposition in a Mass Grave<br />

and the Implications for Post<br />

Mortem Interval Estimates<br />

Rebecca E. White*, 1 Harlestone Court, Harlestone Road, Dallington,<br />

Northampton, Northamptonshire, NN5 7AP, United Kingdom<br />

After attending this presentation, attendees will understand the<br />

processes that create the unique decomposition pattern observed in mass<br />

burials and how they differ from single burials as well as information<br />

regarding the effect that disturbance has on decomposition within burials.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating information that aids in estimating with<br />

greater accuracy post mortem intervals from mass burials.<br />

The identification of human remains and estimation of post mortem<br />

interval (PMI) are very important in any forensic case. In the investigation<br />

of mass graves complications arise, as decomposition within a mass burial<br />

does not follow the same pattern as a single burial. Individuals within a<br />

mass burial have been anecdotally noted to decompose at different rates<br />

depending on where they are positioned within the mass (Haglund 2002).<br />

This introduces error into standard PMI estimation methods. Currently,<br />

the variables involved in this phenomenon and the resulting deviation<br />

from predicted decomposition patterns have not been understood or<br />

researched.<br />

The experimental research was undertaken at Newton Rigg, Penrith,<br />

UK for 70 days. In accordance with DEFRA regulations, rabbit carcasses<br />

obtained from standard pest control measures were buried, and examined<br />

at varying intervals. The study compared decomposition patterns between<br />

and within mass graves as well as between mass and single graves.<br />

Twenty-five rabbit carcasses were buried within two mass burials of nine<br />

each, and seven single burials. Carcass weight, carcass temperature, soil<br />

temperature (at both centre and periphery of the mass graves) and soil pH<br />

data were collected throughout the study and decomposition scores were<br />

assigned to each carcass. Disturbed and undisturbed burials were used to<br />

compare the effects disturbance had on subsequent analyses. One mass<br />

grave was exhumed and observed every 10 days; the other mass grave was<br />

exhumed only on day 70. One single burial was exhumed every 10 days<br />

providing controls.<br />

Results confirm the anecdotal evidence that bodies on the periphery<br />

of a mass grave decompose at a faster rate than those in the central mass.<br />

Preliminary results indicate that these peripheral bodies also decompose at<br />

a somewhat faster rate than singly buried individuals; in contrast, the<br />

decomposition rate of the centrally located bodies compares favorably<br />

with that of singly buried remains. Disturbance does appear to affect the<br />

rate of decomposition, as decomposition was at an earlier stage in the<br />

undisturbed burial and insect activity was notably greater in the disturbed<br />

burial where flies had access to the carcasses every ten days during their<br />

exhumation for data collection purposes. The rise in pH levels for both<br />

single and mass graves closely follows that predicted by Vass et al (1992).<br />

Mass Graves, Taphonomy, Disturbance<br />

H76 The Decomposition of Human Remains<br />

Recovered From the River Clyde,<br />

Scotland: A Comparative Study of<br />

UK Fluvial Systems<br />

Vivienne G. Heaton, MS*, and Tal Simmons, PhD, Department of<br />

Forensic and Investigative Science, University of Central Lancashire,<br />

Preston, Lancashire PR1 2HE, United Kingdom<br />

The goal of this presentation is to aid investigators when faced with<br />

a case that involves human remains recovered from a river system.<br />

Postmortem timetables and equations could be used in cases to estimate<br />

the post-mortem submersion interval more accurately and investigator will<br />

339 * Presenting Author


enhance their understanding of the factors that most affect decomposition<br />

in fluvial environments.<br />

This presentation will impact the forensic community and/or<br />

humanity by enabling the investigating authorities to more accurately<br />

predict the postmortem submersion interval. By looking at drift<br />

trajectories and the timing of resurfacing events, parties involved in search<br />

and recovery may be able to narrow down their search area. The factors<br />

that have the greatest influence on decomposition will also be highlighted<br />

so that members of the forensic community can consider the unique effects<br />

each specific river may have on the rate and sequence of decomposition<br />

and its effects on the investigation.<br />

Each year thousands of bodies are deposited in aquatic environments<br />

for a variety of reasons, yet, despite widespread acceptance that the<br />

process differs from that of terrestrial processes, there is a distinct lack of<br />

systematic research timetabling decomposition in water environments. In<br />

a lotic system, a body can be transported great distances from its point of<br />

entry and this, combined with the effects of decomposition, makes<br />

identification of the individual and the circumstances surrounding their<br />

death hard to determine. The aim of this study is to increase the accuracy<br />

in estimating the post-mortem submersion interval for bodies recovered<br />

from river systems in the UK.<br />

Data was collected through the examination of autopsy reports carried<br />

out at the University of Glasgow on bodies recovered from the Clyde,<br />

Scotland, over a 15 year period (1991-2006). The study sample was<br />

composed of 135 cases (104 males and 31 females) and covered an age<br />

range of 5-84 years. For each case, the body was divided into two areas, the<br />

head and the torso (including the limbs) and each area was scored using a<br />

modification of the Megyesi, et al. (2005) scale. The decomposition score<br />

is dependent on the advancement of progressive post-mortem modifications,<br />

including bloating, marbling, skin slippage and adipocere formation. These<br />

scores make it possible to produce a post-mortem timetable identifying the<br />

various stages of decomposition, the sequence in which they occur and their<br />

duration. Post-mortem timetables can be established by using the postmortem<br />

submersion interval (PMSI) and accumulative degree days (ADD).<br />

It can also be determined which environmental or human variables affect the<br />

rate and sequence of decomposition.<br />

Statistical analyses indicate that certain variables affect the<br />

decomposition process more than others. The scoring systems developed<br />

using data from the Clyde will be compared to similar scoring systems<br />

developed for the Thames (Brewer 2005). The results should not only<br />

allow the authors to more accurately estimate PMSI for bodies recovered<br />

from rivers, but also provide an indication as to whether the process varies<br />

between individual river systems which differ in physical, chemical and<br />

biological properties, or whether a single decompositional timetable can<br />

be applied to all UK Rivers.<br />

Decomposition, Rivers, PMSI<br />

H77 The Boy in the Chimney: A Case<br />

Study in Human Decomposition<br />

Elizabeth A. Miller, PhD*, Cal State Los Angeles and Los Angeles<br />

County Coroner, Department of Anthropology, 5151 State University<br />

Drive, Los Angeles, CA 90032<br />

After attending this presentation, attendees will have a better<br />

understanding of human decomposition patterns in an unusual<br />

environment.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a better understanding of the decomposition<br />

process in a residential chimney which is a somewhat unusual<br />

environment.<br />

Human remains were recovered by the Los Angeles County<br />

Department of Coroner (LACDOC) in March 2005 from a standard<br />

residential chimney in Los Angeles, California. The property was an<br />

abandoned juvenile “halfway house” facility, vacant for a minimum of<br />

* Presenting Author<br />

five years (actual extent of vacancy is unknown). Due to transient activity<br />

on the property a guard is posted at the facility on a 24 hour basis.<br />

On the date prior to recovery of the remains the child of one of the<br />

guards reported to her father that, upon her inspection from the roof, she<br />

saw a human skull within the chimney. The guard did not immediately<br />

believe the child, but upon her insistence inspected the chimney himself<br />

the next day. He saw within the pipe of the chimney what he believed to<br />

be human remains and called 911.<br />

The external aspect of the chimney consists of an outer stone and<br />

cement structure approximately 5 feet long, 3 feet wide and extending 2<br />

feet above the flat roof surface. The top of the stone surface is covered in<br />

concrete. The chimney pipe is clay, extending approximately 6 inches<br />

from the concrete surface, and is an oval approximately 18 inches long and<br />

10 inches wide.<br />

Within the building structure, the hearth is also stone and concrete,<br />

with a metal liner. The hearth measures approximately 4 feet across and<br />

3 feet in height. The depth of the hearth box is unknown. The flue above<br />

the hearth box is also metal, and was closed at the time of discovery.<br />

Anthropological examination of the remains showed almost<br />

complete skeletonization with some slight remaining mummified soft<br />

tissue within the clothing. Both pants and shirt remained, covering the<br />

bones. The remains retained an organic, waxy odor and organic bone<br />

“grease” was visible. The bones not covered by clothing exhibited a light<br />

coating of soot, which was easily brushed away. The clothing was also<br />

covered with soot and ash. The bone showed no evidence of charring or<br />

burning.<br />

The decedent was determined to be male, approximately 13-17 years<br />

of age, and of African or African-American ancestry. Close examination<br />

of the skeleton revealed no evidence for either cause or manner of death.<br />

Based on the experience of the anthropologist of the normal rate of<br />

decomposition in the dry, urban environment of Los Angeles, postmortem<br />

interval was estimated at greater than one year but probably less than five<br />

years.<br />

The Identifications section of LACDOC, along with the Los Angeles<br />

Police Department, searched through the missing person reports in an<br />

attempt to identify the decedent. Additionally, because the decedent had a<br />

distinctive combination of facial features, a two-dimensional facial<br />

reconstruction was done by a forensic artist. Local television stations<br />

featured the reconstruction and a possible identification was made, leading<br />

to a positive identification of the decedent through DNA analysis.<br />

The decedent was identified as a 14-year-old African American male,<br />

found wearing the clothes in which he was reported missing in 1977. The<br />

extended postmortem interval shocked all LACDOC personnel involved<br />

with the case, and initiated a study of the preservation conditions in the<br />

chimney environment. The precise decomposition environment was<br />

impossible to duplicate experimentally. The halfway house was occupied<br />

over most of the almost 30 year period of slow decomposition and it is<br />

unknown how often the flue was left open vs. closed (changing the airflow<br />

patterns in the chimney), how many fires were burned during the<br />

decomposition period, the precise temperatures, amount of rainfall, or<br />

humidity within the chimney, to name only a few of the variables under<br />

consideration. However, using the average annual temperatures, rainfall<br />

and humidity, and incorporating the annual ranges of these variables,<br />

estimating few fires in the chimney (given the fact the facility was a<br />

juvenile halfway house rather than a private residence, and the fact the<br />

facility is in Southern California), considering the flue closed unless a fire<br />

was burning, and considering the time of year the decedent disappeared<br />

(December), a model of the decomposition process was constructed. The<br />

final consensus on the slow decomposition was that this chimney<br />

presented a unique set of environmental characteristics for decomposition,<br />

including low humidity, moderate temperatures, easy air flow, a porous<br />

“ground” surface (the clay chimney pipe), few insects (in December, when<br />

the boy disappeared), and enough fires to create a drying effect but<br />

insufficient dry air for complete mummification, leading to the extended<br />

decomposition period seen in this case.<br />

Decomposition, Skeletal Remains, Chimney<br />

340


H78 Patella Sex Determination by 3D Statistical<br />

Shape Models and Nonlinear Classifiers<br />

Mohamed Mahfouz, PhD, Ahmed M. Badawi, PhD, Brandon C.<br />

Merkl, MS, Emam ElHak Ali Abd ElFatah, MS, Emily Pritchard, BS, and<br />

Katherine R. Kesler, BS, Department of Mechanical, Aerospace and<br />

<strong>Bio</strong>medical Engineering, 301 Perkins Hall, University of Tennessee,<br />

Knoxville, TN 37996; and Megan K. Moore, MS*, Richard L. Jantz,<br />

PhD, and Lee Meadows Jantz, PhD, Department of Anthropology, 250<br />

South Stadium Hall, University of Tennessee, Knoxville, TN 37996<br />

After attending this presentation, attendees will learn about a novel<br />

3D statistical method to automatically sex the patella from CT scan data<br />

with a high degree of accuracy and repeatability.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how the patella is a compact bone that often<br />

survives intact in forensic contexts, yet is greatly underestimated for its<br />

role in sex determination.<br />

Sex determination is one of the major challenges for the forensic<br />

anthropologist within a medical-legal context and is one of the essential<br />

steps in personal identification of an individual from skeletal remains. The<br />

most commonly used statistical method in analyzing this sex<br />

determination problem is discriminant function analysis. Most bones have<br />

been subjected to discriminant function analysis but not much literature<br />

has been found on the usefulness of measurements of the patella in the<br />

determination of sex using this method. This paper proposes a new sex<br />

determination method from patellae using a novel automated feature<br />

extraction technique. A dataset of 228 patellae (95 females and 133 males)<br />

was collected from the William M. Bass Donated Collection of the<br />

Department of Anthropology at the University of Tennessee. High<br />

resolution CT scans were conducted using a GE Lightspeed 16 slice<br />

computed tomography scanner. After the CT data was segmented, a set of<br />

features was automatically extracted, normalized, and ranked. These<br />

features include geometric features, moments, principal axes, and<br />

principal components. A feature vector of 45 dimensions for each subject<br />

was then constructed. A set of statistical and supervised neural network<br />

classification methods, were used to classify the sex patellar vectors.<br />

Nonlinear classifiers such as neural networks have been used to analyze<br />

several medical diagnosis problems. Examples include quantitative liver<br />

tissue characterization, bladder outlet obstruction computerized diagnosis<br />

and automated chromosome classification. In this paper, different<br />

classification methods were compared and a new method for sex<br />

determination is proposed which extracts more categories of features,<br />

other than the geodesic measurements, and analyzes the classification<br />

problem in a nonlinear approach using neural networks. Following the<br />

atlas construction and alignment steps outlined above, all the patellae<br />

models now lie in the same coordinate frame and have homologous points<br />

and faces. In this coordinate frame, six points are found to be the<br />

maximum and minimum values for the coordinates x, y, and z<br />

respectively. This yields three measures of maximum mediolateral (ML)<br />

width, maximum anteroposterior (AP) depth, and superoinferior (SI)<br />

height. Additionally, the six points are used to construct a bounding box<br />

around the patella, which is used to extract three features describing<br />

bounding box width (BBML), bounding box depth (BBAP), and bounding<br />

box height (BBSI). Classification success ranged from 83.77% average<br />

classification rate with labeling using fuzzy C-Means method (FCM), to<br />

90.3% for linear discriminant function (LDF) analysis. The authors<br />

obtained results of 96.02% and 93.51% training and testing classification<br />

rates, respectively using feed-forward backpropagation Neural Networks<br />

(NN). These promising results of the new features and the use of<br />

nonlinear classifiers encourage the usage of this method in forensic<br />

anthropology for identifying the sex from incomplete skeletons retaining<br />

at least one patella.<br />

Patella, Sex Determination, 3D Statistical Shape<br />

H79 The Problem-Based Learning Approach<br />

to Forensic Anthropology at Butrint<br />

National Park, Albania: The International<br />

Student Perspective.<br />

Alyson E. Jaagumagi*, University of Toronto, 100 St. George Street,<br />

Toronto, Ontario M5S 3G3, Canada; Bo Yeon Kim*, Bryn Mawr<br />

College, 101 North Merion Avenue, Bryn Mawr, PA 19010-2899;<br />

Danielle Stollak, Haverford College, 370 Lancaster Avenue, Haverford,<br />

PA 19041-1392; and Meisha Bray*, Grand Valley State University, 1<br />

Campus Drive, Allendale, MI 49401-9401<br />

After attending this presentation, attendees will understand the value<br />

of a problem-based learning approach to teaching forensic anthropology<br />

and how this approach could lead to increased rate and quality of learning<br />

for students studying forensic anthropology.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating from the perspective of four participating<br />

students from four different universities and three nationalities how a<br />

problem-based learning approach can be effectively applied to the study of<br />

forensic anthropology in an international field school setting.<br />

The problem-based learning (PBL) format is finding increasing<br />

acceptance throughout all levels of education and various disciplines,<br />

including the forensic sciences. This presentation illustrates the benefits<br />

gained by four undergraduates who received the majority of their instruction<br />

through this teaching approach while attending the Utica College forensic<br />

anthropology field school in 2006 at Butrint National Park in southwestern<br />

Albania. Located near Albania’s border with Greece, Butrint is a UNESCO<br />

World Heritage Site first inhabited in the 7th century BCE.<br />

The PBL model focuses on encouraging students to use their existing<br />

knowledge and exploring pertinent references to solve a problem through<br />

group discussion and teamwork, facilitated by an instructor. In contrast to<br />

traditional didactic lectures, the approach generally involves presenting<br />

the students with a problem that requires them to use their accumulated<br />

knowledge, acquire new skills and information, and reach consensus to<br />

find the best solution. In forensic anthropology, the problem case usually<br />

involves determining the biological profile and personal identity for an<br />

unknown skeletonized individual as well as documenting the cause of<br />

death and potential postmortem insults.<br />

During the summer of 2006, four undergraduates from four different<br />

universities in the United States and Canada participated together with<br />

nine other students in a forensic anthropology field school offered<br />

annually by Utica College at Butrint National Park. All four students had<br />

previously completed at least one undergraduate course in human<br />

osteology or forensic anthropology at their respective schools. As part of<br />

the field school experience, the four students were presented with the<br />

problem of sorting and assessing commingled human remains excavated<br />

the previous year from a medieval burial vault at Butrint. Dating from ca.<br />

1100-1300 AD, the well-preserved remains comprised at least five adults<br />

– a single primary burial subsequently mixed with at least four others.<br />

Employing the PBL approach, the field school instructors provided<br />

guidance but no specific instructions on how to sort and differentiate the<br />

remains of the commingled individuals. Consequently, the four students<br />

used textbooks and other sources of data to determine the sequence of<br />

procedures that were required to effectively sort the remains and<br />

reassemble the five individuals within the two-week period allowed for the<br />

exercise.<br />

Following the case-based discussion format that underlies PBL, the<br />

instructors were available for consultation and monitored the students’<br />

progress daily. To ensure consistency and accuracy, the instructors<br />

performed all cranial and postcranial measurements that were initially<br />

taken by the students and evaluated their morphological analyses. The<br />

students used the multi-factorial approach to determine the age, sex, and<br />

ancestry of the five individuals from the vault, a task made more difficult<br />

because all five individuals were young women who had died around<br />

341 * Presenting Author


20-35 years. No evidence for specific causes of death was observed. The<br />

student team documented markers of occupational stress including<br />

squatting facets as well as evidence of infection and nutritional deficiency<br />

amongst all of the individuals.<br />

The key benefits of the PBL model for the students enrolled in this<br />

field school were the opportunities to learn and proactively employ the<br />

skills necessary for the practice of forensic anthropology in a setting where<br />

their decisions were a product of their own experiences and discussion.<br />

This approach allowed the students to concentrate in areas of their choice<br />

and to strengthen their expertise in specific aspects of forensic<br />

anthropology by actively sharing their knowledge with the others,<br />

garnering immediate feedback. It also served to foster a sense of<br />

accomplishment among the students and raise their levels of confidence in<br />

their own abilities once the separation and analyses of the remains were<br />

completed.<br />

In summary, the PBL model ensured that the four participating<br />

international students, working together in an international setting,<br />

acquired the practical skills necessary to work effectively in a group<br />

dynamic, solve logistical difficulties quickly, and reach a consensus<br />

resolving the problem of the commingled remains from the medieval<br />

burial vault. These results indicate that use of the PBL model for teaching<br />

forensic anthropology represents an effective approach for students to<br />

learn and value the crucial elements required in mass disaster responses as<br />

well as daily forensic settings. As such, the PBL approach should be<br />

considered for use in a broader range of educational settings within<br />

forensic anthropology.<br />

Albania, Student Perspectives, Problem-Based Learning<br />

H80 Long Bone Ratios for the<br />

Bosnian Male Population<br />

Alexandra M. Klonowski, MS*, and Tal Simmons, PhD, University of<br />

Central Lancashire, Maudland Building, Preston, Lancashire PR1 2HE,<br />

United Kingdom<br />

After attending this presentation, attendees will understand how to<br />

use the long bone ratio method for re-association of commingled human<br />

remains in situations where there is no physical connection between the<br />

upper and lower parts of the skeleton.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating procedures of examination (re-association) of<br />

commingled human remains conducted by forensic anthropologists and<br />

exhumed from primary and secondary mass graves. The method might<br />

possibly lower the cost of DNA matching for identification purposes.<br />

The 1992-1995 war in Bosnia and Herzegovina left the country with<br />

estimated 250,000 dead, and more than 30,000 individuals were<br />

considered missing or unaccounted for as their whereabouts were not<br />

known. The majority of the exhumed individuals in Bosnia and<br />

Herzegovina represent severely commingled or incomplete skeletons,<br />

which causes great problems in the identification process in Bosnia and<br />

Herzegovina.<br />

Human remains can become commingled as the result of natural<br />

taphonomic processes or human postmortem activities. Natural,<br />

taphonomic commingling occurs in primary gravesites, such as caves,<br />

where bones commingle as the soft tissue decomposes. Surface remains or<br />

shallow graves can also undergo commingling due to animal scavenging<br />

and dispersal by humans, vehicles, and gravitation. Man-made<br />

commingling can be the result of poor exhumation procedures, frequently<br />

compounded by the removal and transfer of remains from original graves<br />

into new graves, in an attempt to hide evidence of the crimes committed.<br />

In the latter, heavy equipment was used to remove remains from original<br />

(primary) burial sites and re-deposit them into remote new mass graves,<br />

* Presenting Author<br />

so-called secondary or tertiary graves. Human remains in secondary<br />

graves are severely commingled and dismembered, and body parts are<br />

often missing as bodies have been separated during removal and<br />

transportation. Presumably they could have been left behind in the original<br />

grave or deposited into one or more secondary graves.<br />

Methods used for sorting commingled remains are mainly<br />

morphological, where bones are assembled by visual examination of<br />

morphological similarities such as the size and shape, articulation of<br />

adjacent bones, patterns of muscle attachments, and age-related changes.<br />

This morphological method can be useful for pairing bones or reassociating<br />

them with incomplete skeletons missing bones from either side<br />

of the body. However, such re-association is only possible for remains<br />

recovered from primary graves, where all unassociated bones were<br />

recovered. Since there is no morphological similarity between bones from<br />

the lower and upper extremities, the visual approach fails to be sufficient<br />

when applied to commingled remains where bones are missing and the<br />

connection between the upper and lower parts of the skeleton has been<br />

compromised. Osteometric analysis is another method used for sorting<br />

and re-association of commingled remains. It is based on using bone<br />

measurements for the entire assemblage (Byrd and Adams 2003).<br />

Osteometric methods used in the identification process in Bosnia and<br />

Herzegovina are mostly based on data from the North American<br />

population. Therefore, due to the large quantity of exhumed individuals<br />

and to the severe commingling of remains, it is important to establish<br />

population specific osteometric standards for the Bosnian population.<br />

Long bone measurements used in this study are derived from males<br />

exhumed in Krajina, the north-west part of Bosnia, in the period 1998-<br />

2005. Comparison of lengths of right and left long bones was conducted<br />

on 150 individuals with all twelve long bone measurements, and 719<br />

individuals with measurements for one or more of the long bone pairs.<br />

Results obtained for the upper extremity showed that all bones of the right<br />

arm are significantly longer than bones from the left arm, thus confirming<br />

the majority percentage of right handed individuals in any population. For<br />

bones of the lower extremity, left femur and left fibula were found to be<br />

significantly longer then the respective bones from the right side of the<br />

body, while left tibia is on average longer than the right tibia, although this<br />

difference was not statistically significant.<br />

Long bone ratios were established from a sample of 1217 individuals<br />

with more then two long bones present from the left side of the body, and<br />

878 representing bones from the right side. Additionally, regression<br />

equations were established for all long bones. The ratios for<br />

humerus/femur, humerus/tibia and tibia/femur are presented in the table<br />

below.<br />

Left Right Left Right Left Right<br />

Humerus/ Humerus/ Humerus/ Humerus/ Tibia/ Tibia/<br />

Left Right Left Right Left Right<br />

Femur Femur Tibia Tibia Femur Femur<br />

Mean 0.717 0.721 0.877 0.881 0.817 0.819<br />

Minimum 0.639 0.632 0.766 0.794 0.744 0.747<br />

Maximum 0.818 0.802 0.985 0.997 0.904 0.895<br />

Count 929 606 783 701 963 706<br />

The use of long bone ratios in the identification and re-association<br />

process of incomplete and commingled human remains may lower the cost<br />

of DNA supported re-associations in Bosnia and Herzegovina, by<br />

narrowing down the number of DNA samples required through the process<br />

of elimination of possible matches.<br />

Reference:<br />

1 Byrd, J. and Adams, B.J. 2003. Osteometric sorting of commingled<br />

human remains. Journal of Forensic Sciences. 48: 717-724<br />

Identification, Commingled Remains, Bone Ratios<br />

342


H81 The Mastoid Sinuses and Their<br />

Potential in Comparative Radiology<br />

for Forensic Anthropology<br />

Pamela M Steger, BA, MS*, Travis County <strong>Medical</strong> Examiners<br />

Office, 934 Sycamore Street, San Marcos, TX 78666; and Daniel<br />

Jackson, BA, MA, Travis County <strong>Medical</strong> Examiners Office, 104 B<br />

Ladybird Lane, San Marcos, TX 78666<br />

After attending this presentation, attendees will gain an appreciation<br />

for establishing new and useful quantitative techniques in regards to<br />

human identification; specifically to comparative radiography of the<br />

mastoid sinuses.<br />

This presentation will impact the forensic community and/or<br />

humanity by instilling the idea that mastoid sinuses are a practically<br />

untouched resource in widening the methods utilized for human<br />

identification.<br />

Mastoid sinuses are an untouched resource in forensic anthropology<br />

and comparative radiology. These sinuses are presently used to aid in<br />

making a positive human identification by comparing an ante-mortem xray<br />

and a post-mortem x-ray. This method is trustworthy on a qualitative<br />

level but should be further pursued to enable the forensic community the<br />

ability to quantitatively compare the mastoid sinuses in relation to human<br />

identification.<br />

This project’s purpose was to look at computed tomography scans<br />

(CT) of 25 males and 27 females in the computer system they were<br />

originated from to establish a measuring technique. A quantitative system<br />

was created to measure mastoid sinuses in ante-mortem and post-mortem<br />

CT scans and means of establishing positive identification. This<br />

measuring system would show extreme variability between individuals or<br />

between males and females therein turn creating Mastoid sinuses were<br />

decided upon due to their consistency throughout life after the age of<br />

twenty, they do not alter unless afflicted by disease, their vast complexity<br />

which allows for greater amounts of research and comparison, and the fact<br />

that they are housed within one of the strongest bony areas of the body,<br />

allowing the mastoid sinuses to survive extreme situations during perimortem<br />

events.<br />

The CT scans of fifty-two individuals were first examined to<br />

determine if there was a way using the Seimens Computer program in the<br />

CT scanner to measure mastoid sinuses. After testing five individuals it<br />

was determined that a particular slice of two views (coronal and axial) of<br />

a CT scan would need to be established as the measuring spots for each<br />

individual tested. These views, or slices, were established by looking at a<br />

complete set of scans for the five individuals and determining that there<br />

were anatomical landmarks in each person’s set of scans that were<br />

consistent. These landmarks were chosen enabling consistent slices for<br />

each individual measured in the entire project. Once these landmark slices<br />

were established a measuring system needed to be developed.<br />

The computer program used in this project the user to make the<br />

mouse of the computer a measuring tool for irregular shapes. This enabled<br />

the users to trace with the mouse curser the outline of each mastoid sinus,<br />

giving the area measurement. Then the user measured the length and width<br />

within the area measured around the sinus. Each measurement was taken<br />

three times, twice by the author and once by the associate researcher. Once<br />

these measurements were all gathered, they were entered into a database<br />

that was compatible with the statistics program SPSS. Descriptive<br />

statistics were utilized to demonstrate the range of measurements<br />

obtained, the ages within the sample and the differences between sexes.<br />

Initially, the author wanted to statistically compare each individual to one<br />

another to show the statistical variability between since there were no<br />

previous mastoid measurements or research exactly like this to compare<br />

against the currently gathered measurements this was not accomplished.<br />

The author then took all of the measurements and compared the largest<br />

measurement to the smallest demonstrating that there are statistically<br />

significant differences among the overall range of individuals. This test<br />

only allows the author to show the wide range of measurements and that<br />

each individual has their own area with length and width, but not that they<br />

are significantly different measurements. This project also statistically<br />

compared the male area measurements to the female area measurements<br />

to establish if there were any statistically significant differences in<br />

measurements between sexes. Testing was also done on the correlation<br />

between various measurements. These tests were run to establish what<br />

relationships were likely and how often they may occur, enabling the<br />

researcher to expect certain results in future measurements. Inter-observer<br />

error was tested as was intra-observer error to establish if the measurement<br />

technique used was reliable.<br />

Results indicated that the age range in this project was wide; 20 to 95<br />

years of age. Descriptive statistics indicated that every individual had a<br />

unique area measurement. There was low correlation between age and sex<br />

indicating that age and sex did not affect the area measurement. There was<br />

a high correlation between area measurements of the right and left sides of<br />

the individual, indicating that development rates are similar and do not<br />

vary a great deal after full development of the sinuses. Lastly, length and<br />

width were highly correlated area as would be expected due to anatomical<br />

consistency between the left and right sides. Overall, this project was able<br />

to demonstrate that the recording method established did show the<br />

variability between the mastoid sinuses between individuals, but leaves<br />

room for future research. This project did not establish a consistent and<br />

useable measuring system for use in daily practice but did establish that<br />

there is high correlation between certain measurements and that if a better<br />

measuring tool is utilized, a more consistent and useable measuring<br />

system may be established to aid in making positive identification for<br />

human remains.<br />

Comparative Radiology, Human Identification, Mastoid Sinuses<br />

H82 The Petrous Portion of the Human<br />

Temporal Bone Revisited: A Bayesian<br />

Analysis of its Potential Value in the<br />

Identification of Human Skeletal Remains<br />

Jason M. Wiersema, PhD*, Harris County <strong>Medical</strong> Examiner, 1885 Old<br />

Spanish Trail, Houston, TX<br />

The goal of this presentation is to inform the attendee of the utility of<br />

the petrous portion of the temporal bone, as seen on axial head CT, in the<br />

identification of human remains, and will discuss the results within the<br />

framework of Bayesian theory in light of recent federal court requirements<br />

regarding forensic testimony.<br />

This presentation will impact the forensic community and/or<br />

humanity presenting a novel means for identifying fragmentary human<br />

skeletal remains with a high degree of accuracy; presenting the results of<br />

this research within the framework of Bayesian theory as a means to<br />

satisfy the most recent federal requirement for the admissibility of forensic<br />

testimony.<br />

Recent federal court decisions, most notably including the Daubert<br />

vs. Merrell-Dow ruling (1993) require more demonstrable levels of<br />

repeatability and more substantial statistical support for forensic scientific<br />

testimony including identifications. Currently, the content of forensic<br />

testimony must: (1) be testable by the scientific method, (2) have been<br />

peer reviewed, that is, published in a peer-reviewed journal, (3) be<br />

accompanied by explicit and demonstrable reliability and error rates, and<br />

(4) achieved general acceptance within the relevant scientific community.<br />

For this reason, research in forensic identification has undergone a<br />

transformation that has significantly influenced the development of recent<br />

novel identification methods. Considerable recent attention has been<br />

levied on the statistical basis for positive identifications made specifically<br />

by forensic anthropologists (Steadman et al. 2006). Traditional<br />

anthropological methods of identification have been short on the type of<br />

343 * Presenting Author


information necessary to satisfy the Daubert requirements. However,<br />

some more recent anthropological methods have been designed with these<br />

federal admissibility requirements in mind (Christensen 2003).<br />

Wiersema (2006) presented preliminary results of an evaluation of<br />

the potential of the morphology of the petrous portion of the human<br />

temporal bone as seen on axial CT scans of the head as a means to generate<br />

identifications of fragmentary human skeletal remains. The current poster<br />

presents the final results of that study and considers them within the<br />

context of Bayesian theory in light of the recent rulings regarding the<br />

admissibility of forensic testimony.<br />

The data used in this research were collected from axial CT images<br />

of the cranium. Two sets of images were collected for each of the 115<br />

individuals in the sample so that Euclidean distance comparisons could be<br />

made between images of the same individual and images from different<br />

individuals. Two-dimensional coordinate data were collected from 36<br />

landmarks on each of the CT images and the distances between each of the<br />

coordinate points were calculated to generate the data used in the<br />

statistical analyses. The author pared down this set of measurements using<br />

two different models (referred to as the biological and PCFA models). The<br />

measurement sets of both models were then compared to one another<br />

using nearest neighbor analysis, to test their relative efficiency in matching<br />

replicate images to one another. The results of both models were highly<br />

accurate. Three incorrect nearest neighbor matches resulted from the<br />

biological model and 5 from the PCFA model. The errors appear to have<br />

been the result of variation in the axial plane between the first and second<br />

scans.<br />

The results of the nearest neighbor comparisons were then<br />

considered within the context of Bayes’ Theorem by calculating likelihood<br />

ratios and posterior probabilities. The likelihood ratios and posterior<br />

probabilities were very high for both models, indicating that: 1) there is<br />

significant individual variability in the measurements of the petrous<br />

portion used in this research, and 2) this variation represents a high level<br />

of potential accuracy in the application of this method in the identification<br />

of forensic remains. This poster will illustrate these results and compare<br />

them to the results of other identification methods including DNA.<br />

Forensic Identification, Petrous Portion of the Temporal Bone, Axial<br />

Computed Tomography<br />

H83 Mandibular Morphology as an Indicator<br />

of Human Subadult Age: Interlandmark<br />

and Geometric Morphometric Approaches<br />

Daniel Franklin, PhD*, Centre for Forensic Science, School of Anatomy<br />

and Human <strong>Bio</strong>logy, The University of Western Australia, MBDP 420,<br />

35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia;<br />

and Andrea Cardini, PhD, Functional Morphology and Evolution<br />

Research Unit, The Hull York <strong>Medical</strong> School, Heslington, York Y010<br />

5DD, United Kingdom<br />

The goal of this presentation is to outline how methods utilizing<br />

three-dimensional landmark coordinate data can be applied to problems in<br />

forensic anthropology. It will illustrate how these methods can be used to<br />

further knowledge about morphological differences in the subadult<br />

skeleton, with specific reference to age-related developmental remodeling<br />

of the mandible. This presentation will also show that in this specific<br />

analysis of data containing a strong allometric scaling signal, complex<br />

analytical techniques, compared to simple linear methods, do not<br />

necessarily confer a significant improvement in age prediction.<br />

* Presenting Author<br />

This presentation will impact the forensic community and/or<br />

humanity by providing data capable of predicting age using the subadult<br />

mandible with accuracy closely approaching that of standards based on the<br />

dentition. This technique has the potential to be a highly accurate means of<br />

age prediction in the subadult skeleton, which can be applied in situations<br />

where the mandible is fragmentary and/or the dentition is missing.<br />

Age estimation from human skeletal remains is a well established<br />

practice in forensic anthropology and is one of the four key biological<br />

characteristics important in forensic identification. Age related changes<br />

have been documented for almost every part of the human skeleton, with<br />

the selection of an appropriate technique being inherently dependant upon<br />

skeletal preservation and the efficacy of the available standards. When<br />

developing or applying age estimation standards, due consideration must<br />

also be given to the effects of nutritional deficiencies or other<br />

environmental insults, and the degree of variability among individuals of<br />

a given age, both within and between populations1 .<br />

Dental development and eruption is recognized as the set of<br />

developmental markers that appear to show the least variability against<br />

chronological age1 ; these markers are thus widely used in forensic<br />

investigations involving both living and deceased individuals.<br />

Alternatively, there is an example in the literature of an attempt to<br />

determine whether infants (aged birth to 2 years) can be discriminated<br />

based on mandibular measurements2 . ANOVA statistics demonstrated<br />

that the best discrimination was obtained using ramus height, although no<br />

age prediction standards were formulated. However, this evidence does<br />

suggest that subadult mandibular morphology has a potential application<br />

in forensic age estimation, but four key issues require clarification: 1)<br />

determining the standard error of age estimation using the measurement of<br />

ramus height; 2) determining whether geometric morphometric methods<br />

provide more accurate age estimations; 3) determining whether age<br />

estimations are accurate beyond the first few years of life; 4) determining<br />

whether age estimation using mandibular morphology is sex and/or<br />

population specific.<br />

The authors report here on new morphometric data designed to assess<br />

the potential of mandibular morphology as a developmental marker for<br />

estimating age at death in subadult human skeletal remains. A total of 79<br />

subadult individuals (aged 1 to 17 years) were sourced from two<br />

documented skeletal collections (The Hamann Todd Osteological<br />

Collection and The R.A. Dart Collection of Human Skeletons). Sex and a<br />

statement of age are thus known for each individual. Thirty eight bilateral<br />

three-dimensional landmarks were designed and acquired using a<br />

Microscribe G2X portable digitizer. Linear regression was used to predict<br />

age using both the linear measurement of ramus height and the<br />

multivariate descriptors of mandible size and shape based on<br />

configurations of three dimensional landmarks. The accuracy of the<br />

different predictors was compared in the pooled sample and in subgroups<br />

by age (pre-pubertal individuals; < 10 years and adolescents; > 10 years)<br />

and ethnicity. The best age predictor was then used to derive a simple<br />

linear regression model to predict age of subadults; the validity of the<br />

model was tested by cross-validation using a resampling procedure.<br />

Geometric morphometric analyses were performed using morphologika,<br />

TPSSmall 1.20 and NTSYS-pc 2.2f; statistical analyses were performed<br />

using SPSS 11.5 and NTSYS-pc 2.2f.<br />

References:<br />

1 Konigsberg L, Holman D. Estimation of age at death from dental<br />

emergence and implications for studies of prehistoric somatic growth. In:<br />

Hoppa RD, Fitzgerald CM, editors. Human growth in the past: studies from<br />

bones and teeth. Cambridge: Cambridge University Press, 1999;264-289.<br />

2 Norris SP. Mandibular ramus height as an indicator of human infant age.<br />

J For Sci 2002;47:8-11.<br />

Age Estimation, Subadult, Mandible<br />

344


H84 Assessment of Histomorphological<br />

Features of the Fourth Rib for Age<br />

Estimation in Koreans<br />

Yi-Suk Kim, MD*, Department of Anatomy, Gahon University of<br />

Medicine and Science, 1198, Kuwol-dong, Namdong-gu, Incheon,<br />

405760, South Korea; Dae-Kyoon Park, PhD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University, 366-1,<br />

Ssangyong-dong, Cheonan-si, Chungcheongnam-do 330946, South<br />

Korea; and Deog-Im Kim, Je-Hoon Lee, and Seung-Ho Han, PhD,<br />

Department of Anatomy, College of Medicine, The Catholic<br />

University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 137701,<br />

South Korea<br />

The goal of this study is to assess the histomorphological<br />

features, such as osteon population density, relative cortical area and<br />

average size of osteon and Haversian canal, of the fourth rib and<br />

ascertain the usefulness of histological age estimation method based<br />

upon Koreans.<br />

This presentation will impact the forensic community and/or<br />

humanity by suggesting the possibility for histological age estimation<br />

method based upon Koreans. And this study is a first attempt for<br />

histological age estimation method using the fourth rib in Koreans, so<br />

it will be contribute to growth of concern for forensic anthropology of<br />

forensic sciences in different countries as well as Korea.<br />

Many studies on histological age estimation methods have been<br />

made for different bones and populations. Through these reports, the<br />

authors have a query about histomorphological variations associated with<br />

age in the fourth rib and have need of histological age estimation method<br />

applicable to Koreans. The objective of this study is to assess the<br />

histomorphological features of the fourth rib and ascertain the usefulness<br />

of histological age estimation method based upon Koreans. In this study,<br />

26 rib samples (13 males and 13 females) adjacent to the sternal ends<br />

(about 5 cm lateral to costochondral joint) of cadavers with known age and<br />

sex were used. The age range for the sample is 33 to 89 years with a mean<br />

and standard deviation of 65.0 and 16.5 years, respectively. Two thin<br />

sections (less than 100 um thick) per individual were prepared for<br />

histological analysis by manual grinding method. Osteon population<br />

density was counted using an Olympus BX-51 light microscope with 20x<br />

objective and 10x oculars fitted with 10x10 eyepiece reticule (grid factor<br />

0.25 mm2 ), and relative cortical area and average size of osteon and<br />

Haversian canal were measured using image analysis solutions (Image-pro<br />

Plus 4.5.1, Media Cybernetics, Inc.). Statistical regression analysis was<br />

performed using age at death as dependent variable. In case of combined<br />

sexes, osteon population density showed positive correlation coefficient<br />

(r=0.584) and average osteon size showed negative correlation coefficient<br />

(r=-0.778), while relative cortical area and average Haversian canal size<br />

showed no correlations with age. For simple regression method, average<br />

osteon size was selected as independent variable and its R squared and<br />

standard error of estimation were 0.605 and 10.564, respectively.<br />

Meanwhile an analysis of covariance (ANCOVA) showed significant<br />

difference only in osteon population density between the sexes, so when<br />

the data for males and females were split for simple regression analysis,<br />

each of their R squared was increased from 0.341 in combined sexes to<br />

0.649 in males and 0.378 in females. These results fall within the purview<br />

of preliminary study but show the possibility for histological age<br />

estimation method based upon Koreans.<br />

This work was supported by the Korea Research Foundation Grant<br />

funded by the Korean Government (MOEHRD) (KRF-2006-331-<br />

E00011).<br />

Age, Rib Histomorphometry, Koreans<br />

H85 Age-Related Histomorphometric Changes<br />

in Fetal and Infant Long Bones<br />

Courtney D. Eleazer, BS*, and Murray K. Marks, PhD, Department of<br />

Anthropology, University of Tennessee, Knoxville, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will gain an<br />

understanding of how histological changes in the long bones of fetuses and<br />

infants may be used to estimate age at death of fragmentary skeletal<br />

remains.<br />

This presentation will impact the forensic community and/or<br />

humanity providing a preliminary investigation into the potential of<br />

utilizing histomorphometry in the estimation of age at death of fetal and<br />

infant remains. Microscopic methods may prove invaluable to the task of<br />

aging fragmentary remains that lack the characteristic features necessary<br />

for conventional methods.<br />

The goal of this study is to investigate the age-related changes in<br />

histomorphometry among the femur, tibia, and humerus of fetal and infant<br />

skeletal remains. Histological studies have become increasingly important<br />

in distinguishing fragmentary human remains from non-human<br />

remains 1,2 , as well as estimating age at death in forensic cases 3,4 .<br />

However, little work has been done with subadult material due to its<br />

distinct growth patterns and unique microscopic composition.<br />

This study will impact the forensic community and/or humanity by<br />

providing a preliminary investigation into the potential of utilizing<br />

histomorphometry in the estimation of age at death of fetal and infant<br />

remains. Microscopic methods may prove invaluable to the task of aging<br />

fragmentary remains that lack the characteristic features necessary for<br />

conventional methods.<br />

With permission from the mothers, cadavers were donated to the<br />

anthropology department by the University of Tennessee Regional<br />

<strong>Medical</strong> Center. Only fetuses and infants of known gestational age and<br />

those lacking pathological conditions that affect skeletal maturation were<br />

deemed adequate for study. The sample consisted of fetuses and infants of<br />

ages varying from 20 weeks gestation to 12 postnatal months. The femur,<br />

tibia, and humerus were chosen for study because previous research has<br />

suggested that these elements show more characteristic age-related<br />

changes in the adult than other skeletal elements. Since fragments of long<br />

bone shafts are often comprised of areas other than the midshaft, the entire<br />

diaphysis was utilized for study. Nine thin sections were cut from each<br />

bone (three each from the proximal third, middle third, and distal third of<br />

the diaphysis) using a high-concentration Buehler Isomet 1000 diamond<br />

blade saw. All sections were analyzed with a Leica DMRX light<br />

microscope at 5x, 10x, and 20x power magnification. Histomorphometric<br />

analysis was conducted using a Dell Optiplex GX270 and Image-Pro<br />

Express software. Seven measurements were recorded for each thin<br />

section - diaphyseal diameter, medullary diameter, cortical thickness,<br />

cortical area, osteon population density, osteon cross-sectional area, and<br />

percent non-remodelled bone.<br />

Previous research conducted on changes in urinary excretion of the<br />

N-terminal telopeptide of type I collagen suggests that the rate of bone<br />

turnover in neonates increases up to 37 weeks gestation, slows around the<br />

time of birth, and increases steadily thereafter 5 . These changes are closely<br />

associated with the pattern of growth of the neonate; therefore, researchers<br />

can expect histological changes to follow a similar pattern. Osteon<br />

population density and percent non-remodelled bone seem the more<br />

promising measurements in detecting age-related histomorphometric<br />

changes.<br />

References:<br />

1 Harsanyi L. Differential diagnosis of human and animal bone. In<br />

Histology of Ancient Bone: Methods and Diagnosis. Grupe G. & Garland<br />

AN.,eds. Berlin: Springer, 79-94.<br />

2 Cattaneo C, Dimartino S, Scali S, Craig OE, Grandi M, Sokol RJ.<br />

Determining the human origin of fragments of burnt bone: a comparative<br />

345 * Presenting Author


study of histological, immunological and DNA techniques. For Sci Inter<br />

1999;102; 181-191.<br />

3 Kerley ER and Ubelaker DH. Revisions in the microscopic method of<br />

estimating age at death in human cortical bone. AJPA 1978; 48; 545-546.<br />

4 Stout SD. The use of cortical bone histology to estimate age at death. In<br />

Age Markers in the Human Skeleton. Iscan, ed. Springfield: CC Thomas,<br />

1989, 195-207.<br />

5 Mora S, Prinster C, Bellini A, Weber G, Proverbio MC, Puzzovio M,<br />

Bianchi C, and Chiumello G. Bone turnover in neonates: changes of urinary<br />

excretion rate of collagen type I cross-linked peptides during the first days<br />

of life and influence of gestational age. Bone; 1997; 20.6; 563-566.<br />

Subadult, Histomorphometry, Age Estimation<br />

H86 Utilization of the Iscan Method on<br />

Multi-slice Computed Tomography<br />

Reconstructions for Assessment of<br />

Aging: A Preliminary Study<br />

Fabrice Dedouit, MD*, Stéphanie Bindel, David Gainza, MD, and<br />

Anthony Blanc, MD, Service de Médecine Légale, Hôpital de Rangueil,<br />

1 Avenue du Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9,<br />

31059, France; Francis Joffre, PhD, Service de Radiologie Générale,<br />

Hôpital de Rangueil, 1 Avenue du Professeur Jean Poulhès, TSA 50032,<br />

Toulouse Cedex 9, 31059, France; and Daniel Rouge, PhD, and Norbert<br />

Telmon, PhD, Service de Médecine Légale, Hôpital de Rangueil, 1<br />

Avenue du Professeur Jean Poulhès, TSA 50032, Toulouse Cedex 9,<br />

31059, France<br />

The goal of this presentation is to assess the possibilities of aging on<br />

two (2D) and three dimensional (3D) multi-slice computed tomography<br />

reconstructions of the sternal end of the fourth rib using the Iscan method.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing an example of anthropological application of the<br />

computed multi-slice computed tomography in forensic sciences.<br />

Goal: The goal of this presentation is to assess the possibilities of<br />

aging on two (2D) and three dimensional (3D) multi-slice computed<br />

tomography reconstructions of the sternal end of the fourth rib using the<br />

Iscan method.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing an example of anthropological application of the<br />

computed multi-slice computed tomography in forensic sciences.<br />

Background: Multi-slice computed tomography (MSCT) is<br />

uncommonly used in forensic pathology and anthropology. MSCT allows<br />

two (2D) and three-dimensional (3D) reconstructions, which can be<br />

helpful for osteoscopic analyses and consequently for age estimation.<br />

Purpose: To evaluate the possibilities of aging adults by examination<br />

of MSCT 3D reconstructions the sternal end of the right fourth rib with the<br />

Iscan method.<br />

Technique: Thirty-nine sternal ends of the fourth right rib were taken<br />

during medicolegal autopsies and examined before cleaning with a<br />

sixteen-detector row MSCT (Sensation 16, Siemens). Two filters of<br />

reconstruction were used: one “hard” for bone examination and the other<br />

one “smooth” for soft tissues examinations. The thickness of<br />

reconstruction was 1 millimetre and the collimation 1 millimetre. Two<br />

(with the MPR mode (Multi Planar Reconstructions)) and<br />

three–dimensional post-processing (with the VRT mode (Volume<br />

Rendering Technique)) were made in all cases. MPR reconstructions were<br />

performed in two planes: one along the long axis of the sternal end of the<br />

rib and one along short axis.<br />

* Presenting Author<br />

Using the Iscan technique, the phase of each subject (and<br />

consequently the range of aging) was assessed by three different<br />

observers. One observer was an anthropology student and two were<br />

forensic pathologists with anthropological qualifications.<br />

The ribs were carefully cleaned with alternate baths of hot water and<br />

flesh removal. After a spontaneous drying, the phase of the sternal end of<br />

each rib was assessed by the Iscan technique by the three different<br />

observers.<br />

A first statistical analysis was performed to evaluate intra and interobservers<br />

variabilities on MSCT reconstructions and on dry bones by<br />

calculating the coefficient Gamma and the Krippendorff’s alpha reliability.<br />

A second statistical analysis was performed in order to compare<br />

estimations of phases performed on MSCT reconstructions and on dry<br />

bones by each observer (inter-method evaluation). Because of the little<br />

number of subjects studied, the statistical test used in this case was the<br />

Krippendorff’s alpha reliability.<br />

Results: The sample studied consisted of thirty-eight subject. Two<br />

ribs were excluded because of their partial destruction during their<br />

cleaning.<br />

The intra-observer variabilities on dry bones were excellent with the<br />

coefficient of Gamma equal to 0.87 and confirmed by a value of the<br />

Krippendorff’s alpha reliability equal to 0.79. The intra-observer<br />

variabilities on MSCT reconstructions were excellent with the coefficient<br />

of Gamma equal to 0.86 and confirmed by a value of the Krippendorff’s<br />

alpha reliability equal to 0.79.<br />

The inter-observers variabilities on dry bones were good with the<br />

coefficient of Gamma ranging from 0.73 to 0.91 and confirmed by a value<br />

of the Krippendorff’s alpha reliability ranging from 0.68 to 0.83. The interobservers<br />

variabilities on MSCT reconstructions were excellent with the<br />

coefficient of Gamma ranging from 0.82 to 0.88 and confirmed by a value<br />

of the Krippendorff’s alpha reliability ranging from 0.78 to 0.86.<br />

Concerning the inter-method evaluation for the first observer<br />

(student), the value of the Krippendorff’s alpha reliability ranged from<br />

0.55 to 0.71. The agreement between phase estimation for both methods<br />

was acceptable, even good.<br />

For the second observer, the value of the Krippendorff’s alpha<br />

reliability was equal to 0.69. Consequently the agreement between<br />

estimations of phases for both methods was significant.<br />

For the third observer, the value of the Krippendorff’s alpha<br />

reliability was equal to 0.71. Consequently the agreement between phase<br />

estimations of phases for both methods was significant.<br />

Discussion: Concerning the inter-observers variabilities, results were<br />

better on MSCT reconstructions.<br />

Concerning the intra-observer variabilities, results were equal for<br />

both methods.<br />

The inter-method error varied according to the observer. Evaluations<br />

of phases for both methods were seldom made with a perfect concordance.<br />

Percentage of evaluation with a difference of one phase (more or less)<br />

varied from 64% to 81%, what is correct.<br />

For phases 4 or more analysed on dry bones, observers had tendency<br />

to under estimate the phases on the MSCT reconstructions.<br />

Some explanations about this were made:<br />

- the thickness of the wall of the sternal end of the rib is sometimes<br />

difficult to be evaluated on MSCT reconstructions;<br />

- porosity of the bone is not estimable on MSCT reconstructions;<br />

- but analysis of fragile osteophytes on MSCT reconstructions is<br />

excellent.<br />

Conclusion: Using MSCT reconstructions of the sternal end of the<br />

fourth rib in order to estimate the phase and therefore the age of a person<br />

using the Iscan method is possible and seems to be efficient.<br />

This study is a preliminary study and analysis on a larger population<br />

is necessary to evaluate real possibilities of age estimation on MSCT<br />

images.<br />

Rib, Computed Tomography, Age Assessment<br />

346


H87 Estimating Time Since Death From<br />

Human Skeletal Remains by Radioisotope<br />

and Trace Element Analysis<br />

Sheridan J. Howard, BHS*, Centre for Forensic Science, The University<br />

of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia;<br />

and Jan Meyer, PhD, School of Anatomy & Human <strong>Bio</strong>logy, 35 Stirling<br />

Highway, Crawley, WA 6009, Australia<br />

After attending this presentation, attendees will understand a<br />

potential new technique to estimate time since death.<br />

This presentation will impact the forensic community and/or<br />

humanity by giving forensic anthropologists another way to estimate time<br />

since death. It will also encourage people from different countries to try<br />

this technique on human material from their own country.<br />

One of the first concerns for forensic anthropologists in dealing with<br />

found skeletal remains in the Australian context is the determination of<br />

whether the remains are of anthropological, historical or archaeological<br />

interest. If fewer than 75 years have lapsed since death, remains are<br />

classified as anthropological and of forensic interest. Those from the<br />

historical (75-149 years dead) and archaeological (>150 years dead)<br />

periods are, if aboriginal subject to the Aboriginal and Torres Strait Islander<br />

Heritage Protection Act 1984. However, an accurate and reliable method<br />

for estimating time since death (TSD) from human skeletal remains has<br />

thus far eluded forensic anthropologists. This study investigates the<br />

application in an Australian context of a novel approach recently proposed<br />

to dating skeletal remains from levels of radioisotopes 210Po, 238U and<br />

226Ra and trace elements. Radionuclide activity concentrations were by<br />

determined alpha spectrometry and trace element concentrations by<br />

inductively coupled plasma mass spectrometry (ICP-MS).<br />

Discriminant analysis of the combination of activity concentration<br />

values for 210Po, 238U and 226Ra clearly separated bones derived from<br />

individuals who had died in the three eras of interest, as did the<br />

combinations of trace element concentrations. Bone radionuclide activity<br />

and calcium concentrations were all significantly higher in bones from the<br />

archaeological era than those from more recent eras, while trace lead<br />

concentrations from samples from the historical era were significantly<br />

higher than those from other eras. Barium, lanthanum, rubidium,<br />

strontium, cerium and neodymium concentrations were all significantly<br />

correlated with one another and with radionuclide activity concentrations.<br />

Significant differences were found between the patterns of radionuclide<br />

activity and trace element concentrations in different types of bone.<br />

The results of this study lend support to suggestions that multivariate<br />

consideration of trace element concentrations and radionuclide activity<br />

levels can aid in the estimation of time since death from bony remains in<br />

Australia. This was a very small study, but its results clearly indicated the<br />

need to take into account variations arising from lifetime activities,<br />

diagenesis and bone type in applying the techniques to estimations of time<br />

since death. It highlights the great need for a large scale study which<br />

systematically examines these influences on the estimation of time since<br />

death in bone of known ages ranging from the very recent through to<br />

archaeological times.<br />

Time Since Death, Radionuclides, Forensic Anthropology<br />

H88 Even in Alaska! Missing Person or<br />

Cremains and How to Tell the Difference<br />

Kathleen Day, MS*, State of Alaska <strong>Medical</strong> Examiner’s Office,<br />

4500 South Boniface Parkway, Anchorage, AK 99507; and David<br />

McMahan, MA, Alalska Department of Natural Resources, Office of<br />

History & Archaelogy, 3601 C Street, Suite 1278, Anchorage,<br />

AK 99503<br />

After attending this presentation, attendees will learn about a model<br />

that can be used when unidentified burned bone fragments are found and<br />

that will assist scientists of various disciplines to recognize human<br />

cremains.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a model that can be utilized by investigators when<br />

confronted with unidentified burned osteological fragments and by<br />

demonstrating how microscopic analysis and the cooperation of various<br />

professionals can aid in the analysis of various specimens in order to<br />

identify missing individuals and/or cremains.<br />

New trends in the funeral industry are posing a challenge for forensic<br />

scientists. There is an increased interest in customized and non-traditional<br />

services, as well as a growing number of people choosing cremations over<br />

burials as their preferred form of body disposition. Careful collection and<br />

scene documentation is crucial whenever unidentified remains are found.<br />

The initial step in these cases will always entail attempting to determine<br />

animal vs. human bone. When fragments are very small, this may not be<br />

possible. If the fragments are human or if there are obvious artifacts such<br />

as teeth or clothing associated with the remains, the accepted protocol is<br />

then to attempt to match the remains with missing persons last known to<br />

be in the vicinity. All evidence and remains found at the scene need to be<br />

collected for further analysis. In this case study, the presenters will<br />

document the steps used to analyze small bone fragments, present visual<br />

representations of burning patterns in bones, and help forensic scientists<br />

determine cases involving foul play by burning versus standard cremation<br />

practices. The presentation will also include visual representations of<br />

cremation artifacts and the procedures utilized in the funeral industry<br />

during the cremation process. It will demonstrate how common cremation<br />

artifacts can be misidentified to the untrained eye and will include the<br />

most common type of items found when an individual is cremated and<br />

then their ashes scattered.<br />

Cremains, Physical Anthropology, Forensic Odontology<br />

H89 Forensic Anthropology Investigation of<br />

Human Rights Violations in the Ixil<br />

and Ixcan areas of Guatemala<br />

Lourdes A. Penados, MS*, CAFCA, 2a. calle 6-77 zona 1, Guatemala,<br />

01001, Guatemala; and Tal L. Simmons, PhD, University of Central<br />

Lancashire, Department of Forensic and Investigative Sciences,<br />

Maudland Building 114, Preston, Lancashire PR12HE, United Kingdom<br />

After attending this presentation, attendees will learn about the<br />

results obtained by the Centre for Forensic Analysis and Applied Sciences<br />

(CAFCA) from their investigations during the last five years as well as<br />

patterns of human rights violations during the armed conflict in the two<br />

areas of Guatemala as it relates to perpetrator, sex, and age of victims, and<br />

types of perimortem trauma.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a first effort to organize and analyze the data<br />

that has been collected by one of the Guatemalan teams (CAFCA) and to<br />

give emphasis to the need for further studies as a means to understand the<br />

magnitude of the events that occurred as well as provide elements for<br />

comparative studies in other countries that face a similar context.<br />

347 * Presenting Author


Guatemala lived through one of the most violent armed conflicts in<br />

Latin America (1960-1996). During the 1980s, the strategies created by<br />

the State were aimed to terrorize the civilian population. The result of<br />

these strategies was widely recorded by two historical investigation<br />

projects in 1998 and 1999. Both reports recorded a huge number of<br />

witness and survivor testimonies and documented the human rights<br />

violations with a historical and memory recovery perspective.<br />

Between 1992 and 2005 four forensic anthropology teams carried out<br />

approximately 600 exhumations, recovering and analyzing an average of<br />

4,000 skeletons. 1 The Guatemalan teams have provided a number of<br />

additional findings and have been able to document cases that were not<br />

reported to either of the investigation teams mentioned above.<br />

The analyses of the data that have been collected through the years<br />

offers a tool for understanding the magnitude of the violent events that<br />

occurred in the country and facilitates classification of events for further<br />

research. It might also provide elements for comparative studies since<br />

other nations have experienced or are at the moment going through similar<br />

socio-political situations.<br />

This presentation will show the results of the systematization and<br />

analysis of the data collected by one of the forensic anthropology teams,<br />

the Centre for Forensic Analysis and Applied Sciences (CAFCA). The<br />

focal areas of this research are the forensic investigations carried out in the<br />

Ixil (northwest highlands) and Ixcan (north lowlands) areas of Guatemala.<br />

Patterning in the human rights violations that occurred during the armed<br />

conflict are presented in terms of perpetrator, sex and age of victims, and<br />

types of perimortem traumata. This research is based both on eyewitness<br />

interviews and on the evidence that has been collected by CAFCA’s team<br />

between the years 2000 and 2005.<br />

Reference:<br />

1 Information from FAFG, CAFCA, ODHAG-EAF and Forensic<br />

Anthropology Team of the El Quiche Diocese.<br />

Forensic Anthropology, Human Rights, Guatemala<br />

H90 Most Common Variation and Dental<br />

Anomalies in Skeletons Analyzed in<br />

the Laboratory of the Guatemalan<br />

Forensic Anthropology Foundation<br />

Shirley C. Chacón, BA*, and Leonel E. Paiz, BA, Fundación de<br />

Antropología Forense de Guatemala (FAFG), Avenida Simeón Cañas 10-<br />

64 Zona 2, Guatemala City, 01002, Guatemala<br />

After attending this presentation, attendees will be introduced to data<br />

obtained about morphology, variation, and dental anomalies of the<br />

skeletons analyzed in the FAFG that will demonstrate differences with<br />

other groups or populations.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the importance of odontology in forensic<br />

anthropology in Guatemala for identification of individuals.<br />

In several cases, features were observed in the teeth that are no<br />

common to all dentition, or to all persons. Occasionally, these features<br />

were scored as anomalies until a review revealed that they were in fact<br />

morphological variation. Occasionally, these variations were a difference<br />

of major or minor grade that does not alter the form of the tooth but gives<br />

it a different appearance. Anomalies are simply a deviation of normality.<br />

These deviations can occur as a result of local conditions, as well as<br />

inheritance or, in some cases, systematic alteration.<br />

Dental anomalies not only affect tooth form, size, layout, number or<br />

time of eruption, they are also modifications of histological structure. The<br />

different teeth vary in length, width, thickness, curve of the root, features<br />

of the crown, evolution of the marginal crest, form, and definition of the<br />

cusp.<br />

* Presenting Author<br />

One of the most common questions is: what are the morphological<br />

features of the inhabitants of Guatemala? However, performing an<br />

investigation of this type would involve a population too big, therefore this<br />

study will specifically report on variation and anomalies observed in the<br />

permanent dentition of the skeletons recovered in the regions most<br />

affected by the civil war in Guatemala, which were analyzed in the<br />

laboratory of the Guatemalan Forensic Anthropology Foundation (FAFG).<br />

Due to shortage of studies about dental morphology in the<br />

Guatemalan population, other data (from other groups) were used, because<br />

there are not enough investigations performed that could clearly prove if<br />

the dental morphology of the Guatemalan is the same or different from<br />

what it is commonly described.<br />

Dentition, Morphology, Anomaly<br />

H91 Diverse Stature Estimation Formulae<br />

Applied to a Bosnian Population<br />

Nermin Sarajlic, MD, PhD*, Eva-Elvira Klonowski, PhD, and Senem<br />

Skulj, BSc, ICMP, Alipasina 45A, Sarajevo, 71000, Bosnia and<br />

Herzegovina<br />

The goal of this presentation is to evaluate the application of three<br />

different stature estimation formulae to a Bosnian population. This<br />

research project tests the accuracy of Trotter (1970), Ross and Konigsberg<br />

(2002) and Sarajlic (2002) formulae for stature estimation as applied to a<br />

Bosnian population.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how correct stature calculation could be<br />

crucial to solve the problem of establishing positive identification in mass<br />

fatality situations involving related individuals.<br />

In cases where a deoxyribonucleic acid (DNA) report is generated on<br />

two, three or even four bothers that did not have children and cases with<br />

mixed remains from mass graves, especially secondary mass graves,<br />

accurate biological profiles, including stature estimation are critical to<br />

sorting the remains. Establishing which brother the remains represent, or<br />

(in mass graves) to find that part of the body that does not belong to the<br />

individual, or that only the bone from which the sample was taken belongs<br />

belong to the individual while other bones to somebody else can be<br />

assisted by correct stature estimations.<br />

There are still more than 14.000 missing persons in Bosnia and<br />

Herzegovina from the recent war who are believed to be dead. The<br />

process of recovery and identification of the deceased will inevitably take<br />

the next several years. Besides the estimation of sex and age, stature<br />

estimation is the next most important factor contributing to the<br />

individuation of unidentified persons.<br />

Since 1996, the Trotter (1970) formulae, developed on American<br />

Whites, have been used almost without exception to determine the stature<br />

of the population in Bosnia and Herzegovina. Experience in the recovery,<br />

anthropological examination and identification processes showed that<br />

those formulae have not always produced adequate results. In 2002, Ross<br />

and Konigsberg presented new formulae for stature estimation for<br />

Balkans, using bones from unidentified Bosnian and Croatian males who<br />

were victims of the recent war. Because the actual statures of those<br />

persons were not known, the authors used the mean and standard deviation<br />

of stature for 19-year-old males from the literature. The same year, 2002,<br />

in his master thesis, Sarajlic also presented formulae for stature estimation<br />

of Bosnian population. The research was undertaken on male cadavers.<br />

The cadaver length was measured directly and the length of the long bones<br />

was obtained from radiographs.<br />

An additional problem in Bosnia and Herzegovina is lack of records<br />

for either measured or reported height of the missing. The majority of<br />

military records containing such data were destroyed during the war.<br />

Therefore, in more then 95% of cases data about height of missing persons<br />

were obtained from family members. Since there are still many missing<br />

348


persons in Bosnia and Herzegovina the identification of exhumed skeletal<br />

remains could benefit from using accurate formulae for stature estimation.<br />

Given the absence of antemortem data for height of the missing, estimated<br />

forensic stature (by close relatives) has to be considered as equivalent to<br />

biological stature in this situation.<br />

The sample for this research consists of long bones (humerus, femur,<br />

tibia and fibula) and was obtained from 400 males exhumed in Bosnia and<br />

Herzegovina. The maximum length of the long bones was measured. In<br />

each case, the identity of deceased persons was provided by DNA and<br />

confirmed by the comparison of antemortem with postmortem data. All<br />

individuals in the study were aged from 19 to 58 years. In only 4% of the<br />

cases there were either military or medical records for stature of those<br />

persons. In 2% of the cases family members reported exact stature of the<br />

missing person. In all other cases, data about height was recollected by<br />

family members. In each such case measurements of a surviving male<br />

cousin, who were mature before the war, were taken and the height of the<br />

missing person was estimated according to their height.<br />

Ross and Konigsberg showed in their research that formulae based on<br />

Trotter (1970) systematically underestimate stature in the Balkans. Sarajlic<br />

stated that the Trotter formulae underestimate the stature of tall people in<br />

Bosnia. In his study, the comparison with Trotter’s method was made with<br />

the same sample from which the new formulae were derived. However,<br />

none of these formulae were tested on the bones from exhumed persons.<br />

This study compares all three methods on a large independent sample in<br />

order to determine which formulae provide the most accurate stature<br />

estimation for the male population in Bosnia and Herzegovina.<br />

This research conducted on Bosnian remains from the recent war<br />

(1992-1995) might be helpful not only in the identification of the missing<br />

from the war, but for new forensic cases in Bosnia and Herzegovina as well.<br />

Forensic Anthropology, Human Identification, Stature Estimation<br />

H92 A Simple Technique for Imaging the<br />

Human Skeleton: An Application<br />

Using the Auricular Surface for Aging<br />

Sherry C. Fox, PhD*, Wiener Laboratory, American School of Classical<br />

Studies at Athens, 54 Souidias Street, Athens, Attica GR106-76, Greece;<br />

and Sotiris K. Manolis, PhD, and Constantinos Eliopoulos, PhD,<br />

Department of Animal and Human Physiology, Division of <strong>Bio</strong>logy,<br />

University of Athens, Athens, Attica GR106-76, Greece<br />

After attending this presentation, attendees will learn a simple<br />

technique using a photographic scanner to record images of the human<br />

skeleton without the distortion that can arise from using film and digital<br />

cameras. An example is provided using the auricular surface of the ilium<br />

from a collection of known ages at death for better aging purposes.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating The impact of this presentation on the forensic<br />

community is that there are numerous applications.<br />

A simple imaging technique utilizing a flatbed scanner is employed<br />

for the purpose of recording human skeletal remains without the distortion<br />

that can arise from using film or digital cameras. An application using this<br />

technique is provided in which images of the auricular surfaces of the<br />

pelvic ilium bones are presented in an effort to facilitate aging of the<br />

skeleton. The auricular surface of the ilium is a three-dimensional area that<br />

can be difficult to record photographically. Furthermore, some finer<br />

features such as granulations can be lost using film or digital cameras for<br />

imaging this and other skeletal structures.<br />

Black-and-white photographic images of the auricular surfaces of<br />

ilia, traditionally shown along with descriptions of different ages at death,<br />

demonstrate photographic contrast that can make aging difficult. Several<br />

factors may contribute to photographic distortion, including such variables<br />

as the type of lighting, the angle of the lighting source, the camera type,<br />

and the image resolution, but a flatbed scanner with sufficient resolution<br />

capabilities can provide digital images with clarity that can be readily<br />

shared by researchers. Additionally, image databases can be created with<br />

this technique.<br />

For the purpose of this study the following methodology is espoused<br />

utilizing a relatively new collection of modern human skeletal remains of<br />

known individuals from Europe. Fifty auricular surfaces with known agesat-death<br />

were scanned with a flatbed scanner possessing sufficient<br />

resolution capabilities. The ilia used in this study are from the Modern<br />

Human Skeletal Reference Collection of the University of Athens, Greece.<br />

The University of Athens’ Collection is comprised of approximately 200<br />

known individuals from around Greece with pertinent associated data,<br />

including individual sex, age-at-death, cause of death, and occasionally<br />

specific antemortem medical information. Three different observers used<br />

the scanned images to estimate ages at death using a well-known auricular<br />

surface aging method. The results were then compared to those from<br />

observations of ages at death made both on photographic images of this<br />

subsample as well as observations of these subsamples by direct<br />

examination of the dry bone. The data were then statistically compared<br />

using an analysis of variance test with the SPSS statistical package with<br />

results indicating the utility of this technique. It is suggested that ages at<br />

death from scanned images are similar to those from observations made on<br />

dry bone.<br />

In conclusion, this is a simple technique utilizing a flatbed scanner<br />

with sufficient resolution capabilities that allows for imaging skeletal<br />

features without the distortion that can present itself with digital or film<br />

cameras. Furthermore, this technique allows for readily sharing images<br />

and it can be used for the creation of digital databases as well. Discussion<br />

ensues regarding possible additional applications using this technique,<br />

such as the recording of pathological lesions or pubic symphyses of the<br />

pubic bones of the os coxae, again for aging purposes.<br />

Imaging Technique, Human Skeleton, Aging<br />

H93 Analysis of Commingled Remains Using<br />

Archaeology, Anthropology, and DNA:<br />

A Case Study from North Korea<br />

Alexander F. Christensen, PhD*, and William R. Belcher, PhD*,<br />

Joint POW/MIA Accounting Command, Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI 96853; and<br />

Sarah Bettinger, MSFS, Armed Forces DNA Identification Laboratory,<br />

1413 Research Boulevard, Building 101, Rockville, MD 20850<br />

After attending this presentation attendees will learn how<br />

archaeological context, forensic anthropological analysis, and mtDNA<br />

analysis can be combined to understand the nature of a commingled<br />

skeletal assemblage and identify the individuals represented.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how commingled skeletal assemblages can be<br />

very difficult to interpret. Using multiple lines of evidence helps forensic<br />

anthropologists to understand assemblage formation processes, segregate<br />

the remains of different individuals, and identify the individuals present.<br />

This presentation will provide an example of how to understand a<br />

complex, commingled assemblage such as may result from a mass fatality<br />

event.<br />

Teams from the Joint POW/MIA Accounting Command (JPAC) and<br />

its predecessor organization, the U.S. Army Central Identification<br />

Laboratory, Hawaii (CILHI) have excavated numerous archaeological<br />

sites in the Democratic People’s Republic of Korea (D.P.R.K.) in search of<br />

the remains of U.S. servicemen who died during the Korean War (1950-<br />

1953). Remains recovered by these teams are analyzed at JPAC, and<br />

osseous and dental samples are sent to the Armed Forces DNA<br />

Identification Laboratory (AFDIL) for mitochondrial DNA (mtDNA)<br />

sequence extraction and analysis. Remains have been encountered in<br />

many different depositional circumstances. Some are clearly primary,<br />

349 * Presenting Author


intact burials, whether of a single individual in a foxhole or eleven<br />

individuals in a mass grave. Others are secondary, with the bones of one<br />

or more individuals found out of anatomical position. Some of these<br />

secondary burials appear to be the result of recent activities by the Korean<br />

People’s Army (K.P.A.), with whom JPAC teams collaborate. Others<br />

appear to be the result of battlefield clean-up activities in the 1950s, or<br />

reburial of remains disturbed by farmers at some point in the intervening<br />

decades. The authors report on an unusual secondary burial excavated by<br />

the CILHI in 2002. This recovery scene does not constitute a mass burial<br />

in the strictest sense of the term. None of the remains are articulated and<br />

there is a conspicuous absence of vertebrae, ribs, and hand and foot bones.<br />

The recovery scene is on a break in slope below a slight draw. Although<br />

the assemblage of bones appears similar to those found in obviously<br />

staged burials—primarily long bones, from at least nine individuals, with<br />

no apparent anatomical ordering—the archaeological context indicates<br />

that it is unlikely that the remains had been disturbed in the recent past.<br />

The eroded condition of the remains and the absence of smaller items<br />

suggest that these materials may have been deposited by flowing water.<br />

The apparent random orientation of the long bones suggests that the fluvial<br />

process was not linear. This pattern is consistent with the location of these<br />

remains in a supposed “eddy” against a bedrock depression. The angular<br />

sediment could be responsible for the extreme abrasion and lack of long<br />

bone epiphyses, especially in a fluvial environment. Although the remains<br />

appeared poorly preserved at a macroscopic level, mtDNA was<br />

comparatively well preserved, with sequence data obtained from all<br />

twenty samples initially submitted. This sequence data allows the<br />

calculation of the minimum number of individuals present (nine). Data<br />

has also been compared with that provided by family references for<br />

casualties known to have been lost in the vicinity of the recovery scene,<br />

indicating that the individuals represented are indeed American soldiers<br />

who died nearby in the fall of 1950.<br />

Commingling, Archaeology, mtDNA<br />

H94 Investigating the Spanish Civil<br />

War: Forensic Anthropological<br />

Investigations in Santaella<br />

Dawnie W. Steadman, PhD*, Binghamton University, Department of<br />

Anthropology, PO Box 6000, Binghamton, NY 13902-6000; Elena Sintes<br />

Olives, MA, and Camila Oliart Caravatti, MA, Autonomous University of<br />

Barcelona, Department of Prehistory, Edifici B, Barcelona, 08193,<br />

Spain; and Jennifer M. Bauder, MA, Binghamton University, Department<br />

of Anthropology, PO Box 6000, Binghamton, NY 13902-6000<br />

After attending this presentation, attendees will learn about the<br />

current internationally collaborative forensic efforts in Spain by<br />

highlighting the results of one of the first systematic excavations and<br />

identifications of a Spanish Civil War mass grave. The paper discusses<br />

some of the unique problems of working in Spain, including current<br />

political obstruction of investigations and the nature of antemortem<br />

information.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating The forensic community must continue to<br />

contribute to the training of international colleagues and help apply<br />

political pressure to promote scientific human rights investigations.<br />

The Spanish Civil War officially began in July, 1936, as the military<br />

and right-wing fascists challenged the democratically elected Republican<br />

government. As part of a systematic strategy of terror in southern Spain,<br />

fascists supported local uprisings and the killing of Republicans and<br />

leftists. The relative peace the small village of Santaella had enjoyed that<br />

tumultuous summer was shattered on September 11 of that year. A group<br />

of fascist soldiers and civilians belonging to the Spanish Falange<br />

interrupted a village-wide celebration and kidnapped 18 men. The men<br />

were loaded onto a truck and taken to a neighboring village. One man<br />

* Presenting Author<br />

jumped from the moving truck and escaped but the others were<br />

transported to a cemetery and forced to dig a trench for their own mass<br />

grave. There they were executed. A few months later several more men<br />

disappeared from Santaella and were suspected to be buried in the<br />

Santaella cemetery. All of the victims were civilians. One was a<br />

shoemaker, another a municipal employee and the rest were farmers. For<br />

the next 68 years the families were denied access to their missing and were<br />

purposefully intimidated by those loyal to President Francos’ authoritarian<br />

regime. The social climate of national amnesia related to Fascist atrocities<br />

continued even after Franco’s death in 1975. In 2004 the families of the<br />

victims were finally given some hope of finding their loved ones.<br />

A regional social organization, Foro por la Memoria, enlisted the<br />

assistance of Spanish archaeologists and an American forensic<br />

anthropologist to locate the mass grave(s), recover the remains, and<br />

identify the victims. In June of 2004 a hand dug trench was found inside<br />

the LaGuijarrosa cemetery. Seventeen skeletons were tightly packed<br />

together, side by side, with alternating head direction. Artifacts recovered<br />

included a variety of bullets, some metal personal effects, and leather<br />

clothing remnants, such as sombreros and boot soles. Simultaneously,<br />

another team of archaeologists searched for the other missing men in the<br />

Santaella cemetery. Five skeletons were exhumed from three graves at<br />

this site.<br />

In August 2005, forensic anthropologists from Binghamton<br />

University joined two physical anthropologists from the Universitat<br />

Autónoma de Barcelona (UAB) to conduct a complete analysis of the 22<br />

skeletons recovered from the La Guijarrosa and Santaella cemeteries.<br />

Standard methods of age, sex, and stature estimation were employed and<br />

pathological conditions were recorded. Perimortem and postmortem<br />

trauma were also described and diagrammed.<br />

All of the recovered skeletons were male and most were young.<br />

Skeletal estimates of age indicate seven men were between 18 and 30<br />

years, 14 between 30 and 50 years, and one was estimated to be over 50<br />

years. Sixteen of the 22 individuals (72.7%) displayed clear evidence of<br />

perimortem trauma, 14 from LaGuijarrosa and two from Santaella. All of<br />

these individuals exhibited perimortem gunshot trauma and one also<br />

suffered blunt trauma to the face and head. The majority of the gunshot<br />

wounds are observed in the torso and limbs with only three men suffering<br />

one or more gunshot wounds of the head. This patterning of gunshot<br />

wounds supports a purportedly common scenario during the war in which<br />

the victims stood against the cemetery wall and the assassins fired from<br />

the hip.<br />

Due to the lengthy postmortem period, antemortem information is<br />

derived from photographs and the recollection of family members<br />

concerning dental, physical and health characteristics rather than formal<br />

dental and medical records. Stature was not helpful for identifications<br />

because none of the individuals were particularly short or tall. Only one<br />

individual exhibited any dental treatment and was tentatively identified.<br />

Other presumptive identifications can be made based on antemortem<br />

fractures and the estimated age of the most elderly male but confirmation<br />

must await DNA testing.<br />

Forensic Anthropology, Human Rights Investigations, Trauma<br />

H95 Sifting Through the “Ashes”: Age and Sex<br />

Estimation Based on Cremains Weight<br />

Traci L Van Deest, BA*, California State University, Chico, Department<br />

of Anthropology, 311 Butte Hall, Chico, CA 95929<br />

The goal of this presentation is to: 1) to examine the relationship of<br />

cremains weight and age and sex; and 2) to address the discrepancy in<br />

average weights found in previous studies in comparison to a large sample<br />

from northern California.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the potential use of cremains weight in the<br />

estimation of age and sex from cremated human remains.<br />

350


Cremated human remains have been the focus of numerous studies in<br />

recent years. This research has focused primarily on the use of coloration,<br />

shrinkage and fracture patterns to deduce the duration of heat exposure, as<br />

well as the condition and placement of the remains before contact with<br />

fire. Little research has been conducted into final cremains weight and the<br />

information which may be gleaned from it. Due to the practice of<br />

pulverization of fragments in modern cremations, traditional methods of<br />

sexing and age estimation are lost. Three studies have addressed this issue<br />

using cremains weight, with varying results. Sonek (1992) presented his<br />

findings at the 44th AAFS Annual Meeting, and reported a mean weight<br />

of 2380g for the group and 2824g and 1922g for males and females<br />

respectively. Warren and Maples (1997) showed similar results in their<br />

study of 100 individuals, with a mean weight of 2430g for the group,<br />

2893g for males and 1840g for females. Interestingly, Bass and Jantz<br />

(2004) found that remains from a commercial crematory in Tennessee<br />

weighed approximately 500g more for both males (3379g) and females<br />

(2350g) than the Sonek (1992) and the Warren and Maples (1997) studies.<br />

Bass and Jantz (2004) suggest that these higher weights are due to regional<br />

differences in populations, with people having higher bone density in<br />

Tennessee due to higher obesity rates in comparison with Florida and<br />

California. With so few studies addressing this issue, the examination of<br />

another comparative sample can address discrepancies between previous<br />

studies, in particular whether regional distinctions in populations are the<br />

underlying cause of the difference.<br />

The sample used in this study comes from the Newton-Bracewell<br />

crematory, located in Chico, California. Beginning in December 2003,<br />

crematory staff began weighing the cremains prior to release to the next of<br />

kin in order to combat potential litigation. With an average of twenty<br />

cremations monthly, each cremation was weighed on a postal scale and<br />

measured in pounds. The weight in pounds was converted to grams using<br />

the equation: Lbs x 453.6 = Grams. The cremains were weighed after<br />

placement into an urn, with the weight of the urn previously recorded and<br />

subtracted from the total. The sex, date of birth and death, cremation date<br />

and operator of the cremation were compiled using the operator’s log,<br />

along with the permit for disposition of the body. The decedent’s age was<br />

calculated from the birth and death dates. Unfortunately, the actual body<br />

weight at death was not obtained but the approximate body weight was<br />

noted for each individual by the funeral home staff. Individuals with a<br />

body weight at death higher than 300 lbs for males and 200 lbs for females<br />

are examined in this study to determine if higher body weight results in<br />

higher cremains weight.<br />

Preliminary analysis of a subset (n=272) of the larger Chico sample<br />

produced the following results. The average weight for the group<br />

(X=2683g), males (X=3177g) and females (X=2218g) are similar to the<br />

mean weights reported by Bass and Jantz (2004). The difference between<br />

males and females is significant (t=11.45, df=258, p=.001), confirming the<br />

results found in all previous studies (Bass and Jantz 2004, Sonek 1992,<br />

Warren and Maples 1997). The correlation between cremains weight and<br />

age also confirmed previous findings. Cremains weight was found to<br />

decrease as age increases, with females (r2 =.294, p=.001) decreasing more<br />

rapidly than males (r2 =.178, p=.001). The preliminary sample did not<br />

yield a sufficient subset of males over 300lbs and females over 200lbs for<br />

analysis. Further research is needed to confirm these results for the larger<br />

Chico sample, as well as address the relationship between body weight<br />

and cremains weight. These results are expected to play an important role<br />

in future civil and/or criminal litigation concerning cremated remains, in<br />

both a forensic capacity and for the funeral industry.<br />

References:<br />

1 Bass, William and Richard Jantz, Cremation Weights in East Tennessee.<br />

Journal of Forensic Science. 49(5):901-904<br />

2 Sonek, Alexander, 1992, The Weight(s) of Cremains. Proceedings of the<br />

44th Annual Meeting of the American Academy of Forensic Science. New<br />

Orleans, LA. Feb. 17-22. P169-170<br />

3 Warren, Michael and William Maples, The Anthropometry of Contemporary<br />

Commercial Cremation. Journal of Forensic Science. 42:417-423.<br />

Cremains Weight, Age, Sex<br />

H96 Burned Human Remains:<br />

Myths in Forensic Science<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main,<br />

Anthropology Department, Fayetteville, AR 72701<br />

After attending this presentation, attendees will understand how<br />

observation-based experimental research improves answers to old<br />

questions or problems in the field.<br />

This presentation will impact the forensic community and/or<br />

humanity by re-examining old problems with current techniques and<br />

technologies.<br />

Current developments in forensic anthropology have taken the field<br />

in a new direction by embracing methodologies, technologies, or<br />

techniques from other subdisciplines such as biology, chemistry,<br />

engineering, pathology, and fire investigation, just to name a few.<br />

Integrating these approaches allow the authors to reexamine old problems<br />

through new lenses. Experimental research allows for repeatable<br />

observation-based testing that either supports or provides alternative<br />

explanations to existing phenomenon encountered in forensic casework.<br />

This paper draws from observations of 12 human cadavers and 15<br />

individual limbs utilized in previous burn experiments. The results<br />

presented are responses to current misconceptions that directly influence<br />

recovery and analysis of burned human remains. One goal is to first<br />

improve the ability of scientists to look closer and with fresh eyes at the<br />

evidence. Then it becomes the responsibility to teach each other and other<br />

professionals working within the medicolegal system. In some cases, an<br />

alternative explanation for long-held traditions opens the door to change<br />

and improvement. This paper attempts to provide new ways of looking at<br />

old problems by responding to the comment, “I was taught that…”<br />

“…Blisters indicate the victim was alive or the presence of<br />

accelerants.” Blister production is not necessarily evidence of<br />

antemortem vital reaction, but instead occurs from the effects of heat to<br />

skin moisture in both ante- and postmortem exposure to fire. Blisters result<br />

from fluid (water, blood, lipids) collection at the dermal-epidermal<br />

junction upon initial heat exposure to skin and may precede or accompany<br />

early color changes in the postmortem state and in the absence of<br />

accelerants.<br />

“…Arms and legs burn away.” Contrary to popular belief, smaller<br />

distal bones do not burn away but simply fall below the mass of charred<br />

human remains as supporting soft tissues burn away from fingers, wrists,<br />

toes, and ankles. In most cases these are present and discoverable with<br />

observant excavation and recovery. Bones of extremities do not burn away<br />

but instead may appear absent from extreme fragmentation of weak from<br />

strong bone or lack of recovery. Often the charred bulky torso is assumed<br />

to be all that remains of a burn victim and may be prematurely removed.<br />

Incomplete recovery leaves body parts at the scene and disregards<br />

potential skeletal evidence of defensive cut marks of the hands, callouses<br />

of healed fractures, or any congenital deformations that would aid<br />

personal identification.<br />

“…Broken bone prevents pugilistic posture.” Several traumatized<br />

limbs with known sites of completely fractured bone did not prevent<br />

adjoining distal joints of wrists, fingers, ankles, and toes from flexing.<br />

Also, amputated limbs completely transected at the humeral or femoral<br />

midshafts did not affect flexion of distal joints as movement of these was<br />

influenced by localized tissue contraction. The pugilistic posture is more<br />

the result of contraction of tissues immediately adjacent to the joint and<br />

does not depend upon a ‘fulcrum effect’ involving either an intact or<br />

complete musculoskeletal system intended to move the joint in life. The<br />

fractured sites of long bones were under direct influence of contracting<br />

muscle, causing bone fragments to either slide over one another or split<br />

apart depending on thickness of the surrounding tissues.<br />

“…Bone color indicates temperature of the fire.” Color simply<br />

indicates the stages of pyrolysis of organic bone materials. Color directly<br />

correlates with the progression of soft tissue reduction and organic<br />

pyrolysis of bone rather than as an indicator of temperature levels.<br />

351 * Presenting Author


Identical features of charring and calcination can occur in a body burned<br />

at extremely high temperatures for a short time period or one burned at<br />

lower temperatures for a longer duration. Time and temperature are<br />

independent variables that can produce similar heat effects in burned<br />

human remains. Color can be superficial with an external calcined<br />

appearance, but still retain charring within deeper layers of bone.<br />

“…Bone shatters from heat.” The exterior cortical surfaces of bone<br />

are exposed to heat the earliest and longest compared to deeper layers<br />

insulated within soft tissues (tubular bone or cranial bone). Visible<br />

changes of color and heat-fractures commence externally and progress<br />

inward. Heat causes cortical bone to shrink and split into superficial heat<br />

fractures as it loses its organic constituents. Heat fractures likewise will<br />

shrink and split first at the external cortical surface and can travel through<br />

the bone as a full-thickness fracture. Fractures allow heat to reach lipid<br />

rich tissues of marrow and brain, causing them to leach and burn out, but<br />

not shatter bone.<br />

“…The skull explodes if there’s no injury.” In a fire, cranial bone<br />

experiences color changes and heat-fractures; often as delamination,<br />

crazing, or full-thickness fractures. Also external taphonomic factors<br />

typically present at fire scenes contribute to the ‘exploded’ appearance.<br />

Fragile burned cranial bone also fractures during burning from<br />

environmental disintegration, impacting debris of collapsing walls,<br />

ceiling, floor, and furniture, and from extinguishment methods. If one<br />

accepts the fragmented or ‘exploded-looking’ skull as proof for the<br />

absence of preexisting trauma, it discourages further investigation of<br />

evidence for possible homicides. Additional fragmentation of fragile<br />

burned cranial bone can result from recovery and transport from the fire<br />

scene.<br />

“…All bodies burn the same.” Trying to predict what a body will<br />

look like during search and recovery after an extensive fire requires basic<br />

knowledge of anatomy and osteology. The body is a fuel source and<br />

contributes to the burning process. There are obvious differences among<br />

individuals such as their weight, age, and sex that relate to differential<br />

amounts of soft tissues and body-fat ratios. Likewise, bone density and<br />

mineralization differs among babies, children, adolescents, adults, and the<br />

elderly. Denser mature bone survives heat better than osteoporotic bone of<br />

the elderly and immature bone of epiphyses and diaphyses of subadults.<br />

Prior knowledge of the victim’s information will help anticipate the final<br />

condition of remains during the search process.<br />

Exemplars from observation-based research on burned human will be<br />

presented to illustrate the alternative mechanisms and processes<br />

responsible for creating each problem discussed.<br />

Burned Bone, Fire Death Investigation, Myths<br />

H97 Establishing the Perimortem Interval:<br />

Correlation Between Bone Moisture<br />

Content and Blunt Force Trauma<br />

Characters<br />

Danielle A. Miller Wieberg, MA*, 4107 Meredith Road, Knoxville,<br />

TN 37921<br />

After attending this presentation, attendees will understand some of<br />

the details of skeletal fracture morphology, how it varies throughout the<br />

postmortem interval and how bone moisture content affects that<br />

morphology.<br />

* Presenting Author<br />

This presentation will impact the forensic community and/or<br />

humanity by exploring the uncertainty in determining the timing (relative<br />

to death) of skeletal fractures and the results will impact the way fracture<br />

timing analyses are conducted and reported.<br />

When determining the time of occurrence of skeletal injuries forensic<br />

anthropologists know that antemortem (before death) skeletal injuries are<br />

recognized by evidence of healing. Perimortem (at or near the time of<br />

death) and postmortem (after death) skeletal injuries are more difficult to<br />

distinguish between because neither show evidence of healing.<br />

Furthermore, bone does not immediately react in a postmortem manner as<br />

soon as an organism dies because it retains the moisture and collagen that<br />

gives bone its flexible nature. The perimortem interval is the period<br />

during the postmortem interval when a bone will react to injury in a typical<br />

perimortem manner rather than having the appearance of a postmortem<br />

modification.<br />

Using 60 porcine long bones, the differences between macroscopic<br />

and microscopic blunt force trauma fracture characteristics were<br />

documented as they varied when created every 28 days throughout a 141<br />

day period. It was also determined how those changes correlate with bone<br />

moisture content. The hypotheses tested were (1) there is no difference<br />

between fracture characteristics created during the period immediately<br />

after death (within 24 hours) and characteristics created five months (141<br />

days) after death, and (2) there is no correlation between the moisture<br />

content of the bone and blunt force trauma characteristics.<br />

An initial sample of ten bones was fractured to represent perimortem<br />

injury. The remaining fifty bones were placed in an enclosure to<br />

decompose and every 28 days another sample of ten bones was fractured.<br />

Once each set of ten specimens was fractured, they were photographed<br />

extensively before and after cleaning them in a mild detergent solution.<br />

The fractured bones were examined and the fracture surface appearance,<br />

fracture angle type, fracture outline type, and color differences were<br />

documented. Other observations that were recorded include: fragment<br />

mass, completeness of fractures, degree of bone weathering, and<br />

microscopic features of the fracture planes. Additionally, a small portion<br />

of each specimen was ashed in a muffle furnace to determine the moisture<br />

content of the bone at the time of fracture. Bones were assessed as having<br />

perimortem, intermediate or postmortem fracture morphology using all of<br />

the aforementioned observations.<br />

Statistical results indicated that there was a significant relationship<br />

(1) between postmortem interval and ash percentage, fracture surface, and<br />

fracture angle; (2) between overall assessment and postmortem interval,<br />

ash weight, fracture surface, and fracture angle; and (3) between ash<br />

weight and fracture surface and fracture angle. Results showed that bone<br />

moisture content influences fracture morphology significantly.<br />

Additionally, ten specimens were selected that represented all six<br />

postmortem intervals (0, 28, 57, 85, 113, and 141 days). These specimens<br />

were used in an interobserver study (IRB project #1054957) at the 2006<br />

American Academy of Forensic Sciences Annual Meeting in Seattle, WA.<br />

Participants were asked to rate the fractures of each specimen as either<br />

perimortem or postmortem and list their determining criteria. The average<br />

score for the study was 6.82 and three of the 22 participants correctly<br />

identified the fracture timing of all ten specimens. Compilation of<br />

participants’ answers provided a list of six characteristics used by the<br />

participants: color differences between fracture surface and cortical<br />

surface, completeness of the fracture, presence or absence of plastic<br />

deformation, appearance of fracture margins, shape of the fracture outline,<br />

and fracture surface appearance.<br />

Blunt Force Trauma, Perimortem, Fracture Morphology<br />

352


H98 Bone-Breaking Rules: A Report of<br />

Six Fracture Mechanism-of-Injury<br />

Axioms Developed From Experimental<br />

Impact Testing<br />

Tyler A. Kress, PhD*, BEST Engineering, 2312 Craig Cove Road,<br />

Knoxville, TN 37919; David J. Porta, PhD, Bellarmine University,<br />

Department of <strong>Bio</strong>logy, 2001 Newburg Road, Louisville, KY 40205;<br />

Anne M. Kroman, MA, University of Tennessee, Department of<br />

Anthropology, Knoxville, TN 37996; and Bryce O. Anderson, PhD, BEST<br />

Engineering, 2312 Craig Cove, Knoxville, TN 37919<br />

After attending this presentation, attendees will learn about six<br />

widely applicable bone fracture axioms, useful in a forensic setting<br />

investigation and reconstruction.<br />

This presentation will impact the forensic community and/or<br />

humanity by helping to further the understanding of bone fracture patterns<br />

and mechanisms of injury.<br />

Understanding relationships among engineering inputs (i.e. loading<br />

characteristics) as they relate to anatomical outputs (i.e. fracture) of human<br />

long bones and the human head is very important for biomedical engineers,<br />

physical anthropologists, pathologists, and other forensic professionals.<br />

Developing widely-applicable bone fracture axioms is useful for forensic<br />

analyses. Therefore, a characterization of injury mechanisms of certain<br />

bones (i.e., in the extremities and the skull) in response to impact loading<br />

are delineated in the form of succinctly stated rules.<br />

Real-life pedestrian, motor vehicle collision, and violent impact<br />

trauma scenarios were modeled by dynamically loading 583 human<br />

cadaver specimens, including intact extremities, heads, and bare long<br />

bones (numerous porcine bones were also used). A cart/guide-rail<br />

impacting system and a drop tower apparatus were used for most of the<br />

tests (the ballistic tests were done with a real handgun and a real rifle in<br />

bench rest position). Parametric work was conducted that varied<br />

numerous test variables such as loading direction, impact velocity, and<br />

impactor geometry.<br />

The data support findings that may be reported in the form of<br />

succinct Bone-breaking Rules. Rules 1, 2, 3, and 5 are based on 558 bone<br />

fracture tests using intact legs and bare long bones; Rule 4 is based on 25<br />

human head impact tests; Rule 6 is based on numerous porcine tests.<br />

1) The point of a wedge is opposite of the point of impact. The<br />

wedge fracture pattern can definitively be used as an indicator of the<br />

direction of impact. A common fracture pattern for long bones is the<br />

wedge fracture (also referred to as butterfly or delta fracture). Wedge<br />

fractures of long bones clearly originate at a location directly opposite of<br />

the point of impact and the wedge segment radiates back through the bone.<br />

Long bones fail in tension when they are loaded in a transverse fashion<br />

and a resultant wedge will “point” in the direction of the movement of the<br />

impactor.<br />

2) Comminution does not necessarily mean “high speed” and/or<br />

crushing. This is somewhat of a unique observation because it has been<br />

commonly reported that butterfly wedges result only from high-speed<br />

impacts. Also, comminuted fractures often occur without entrapment<br />

(crushing injury). At approximately 7 m/s the inertial restraint of the tibia<br />

from just the mass of the thigh and foot is sufficient to result in<br />

comminuted fractures.<br />

3) Spiral fractures only appear when bones are subjected to<br />

torsional loads. The spiral fracture is commonly mistaken for an oblique<br />

fracture and often the terms are used interchangeably or combined. The<br />

literature is replete with phrases such as “spiral oblique fracture”. There<br />

is clearly a difference between the spiral and oblique fracture patterns.<br />

The definitive feature for distinguishing a spiral fracture is the vertical<br />

fracture that connects the proximal and distal portions of the helical aspect.<br />

To interpret which direction the bone was twisted, an examiner can note<br />

which direction the spiral runs around the bone; that direction is the same<br />

direction the torque was applied to that end of the bone.<br />

4) Fractures of the skull radiate directly from the point of impact.<br />

In fracture pattern interpretations, some researchers have suggested that<br />

the point of impact is at a location other than the interface between the<br />

impacting object and the skull. This is not correct, i.e. the fracture<br />

epicenter is at the location of contact by the impacting object. Bone is<br />

brittle and the only exception noted with respect to fracture initiation being<br />

somewhere other than the interface of the bone and the impacting object<br />

is that of long bones when tension failure occurs.<br />

5) Impacted fractures indicate relatively pure axial loading.<br />

However, an axial load can also give rise to bending fractures. If a fracture<br />

of a long bone is labeled as an impacted fracture, then the diaphysis of the<br />

bone experienced relatively pure longitudinal compression. If the<br />

compression (or axial load) gets “off-center”, the resulting failure<br />

mechanism can be bending.<br />

6) The degree of plastic deformation relates to the speed of impact.<br />

This is almost a restatement of viscoelasticity. This rule involves a<br />

comparison of ballistic speed versus other speeds (such as<br />

pedestrian/vehicle collisions). What is particularly important about this<br />

rule is that it is not just applicable to mechanical properties of bone but it<br />

is also applicable to fracture behavior. This is easily illustrated through<br />

forensic reconstruction of ballistically-damaged bones (which express<br />

minimal plastic deformation) in comparison to lower-speed blunt trauma<br />

impacts which demonstrate a higher degree of warping and plastic<br />

deformation. Note, too, that bones are not damaged from soft tissue<br />

pressure waves from typical small arms, and that bones will exhibit a<br />

temporary cavity when actually struck by a projectile.<br />

Bone Trauma, Mechanisms of Injury, Impact <strong>Bio</strong>mechanics<br />

H99 Trace Element Analysis of<br />

Human Bone Using Portable XRF<br />

Jennifer J. Prutsman-Pfeiffer, MA*, University of Rochester <strong>Medical</strong><br />

Center, Autopsy and Neuropathology, 601 Elmwood Avenue, Box 626,<br />

Rochester, NY 14642; and Peter J. Bush, BS, South Campus Instrument<br />

Center, School of Dental Medicine, State University of New York at<br />

Buffalo, Buffalo, NY 14214<br />

The goal of this study was to investigate the utility of portable X-Ray<br />

Florescence (XRF) in the determination of trace element concentrations in<br />

human bone. The advent of portable analytical tools for field use presents<br />

new applications for the forensic scientist. However, with the new tools<br />

comes the challenge of sampling and data interpretation. Potential sources<br />

of error in interpretation of analytical results are discussed.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing practical insight into the application of portable<br />

XRF in analysis of human bone.<br />

Portable XRF technology is a relatively recent introduction to the<br />

fields of art conservation, soil science, archaeology, border security and<br />

forensic science. XRF analysis gives a rapid reading of the elemental<br />

composition of any inorganic material with good sensitivity for elements<br />

above phosphorus in the periodic table. The Alpha series XRF from<br />

Innov-X (Woburn, MA) was used in this study. This unit utilizes a<br />

miniaturized X-ray source for excitation instead of a radioactive isotope,<br />

thereby eliminating the need for special permits for transportation and<br />

reducing the potential occupational exposure hazard of operators.<br />

A pilot study of 8 cremated individuals was conducted to test the<br />

applicability of XRF in trace element analysis of human osseous material.<br />

The bone analysis using XRF focused on the trace elements lead (Pb), zinc<br />

(Zn), iron (Fe), and strontium (Sr), and concentrations were reported in<br />

parts per million (ppm). The pilot study revealed differences in elemental<br />

concentration between individuals as well as differences between skeletal<br />

elements analyzed (cranial vault, clavicle, humerus, vertebral body, femur,<br />

and tibia). These anatomical sites were selected because of differences in<br />

bone density. Two physical states of cremated bone were assessed; large<br />

353 * Presenting Author


fragments as retrieved from the cremation retort and the processed,<br />

powdered cremains as prepared for inurnment.<br />

The data show that there is variation in Pb between individuals and<br />

between bones. The range amongst all individuals for bone fragments was<br />

0-203 ppm and 0-53 ppm for processed powdered bone. The high Pb level<br />

of 203 ppm was in a parietal bone of one individual whose other bones<br />

ranged between 0-61 ppm. This high reading was concluded to be surface<br />

segregation or contamination because after powdering this parietal bone<br />

gave a reading of 46 ppm. Powdering in this case had a homogenizing<br />

effect. Of note, the combined powder (all powdered bone together from<br />

each person) amongst all individuals ranged from 0-39 ppm. Similar but<br />

larger effects were noted for the element zinc (range of 0-1177 ppm in<br />

bone pieces and 0-329 ppm in powdered bone; combined powder 0-259<br />

ppm). However, zinc is volatile at the temperatures experienced during<br />

cremation, so the resulting sublimation and evaporation effects may be<br />

expected to result in variations in surface concentrations. The most<br />

consistent data were recorded for the elements of Fe and Sr amongst all<br />

bones of all individuals. Only 1 of the 8 individuals had no reading for Fe<br />

or Sr in both the clavicle and vertebra. Excluding the zero values, Fe<br />

ranged from 199-2286 ppm in bone and 183-866 ppm in powdered bone<br />

amongst all individuals, with the combined powder range between 213-<br />

355 ppm. Graphically, the Fe concentration in the powdered skeletal<br />

elements adhered to a similar pattern for all individuals. There was a<br />

distinct peak for Fe (386-866 ppm) in the vertebral body powder for all 7<br />

individuals, whereas the other powdered skeletal elements did not exceed<br />

471 ppm for any individual or any bone. This finding suggests higher Fe<br />

concentrations in the cancellous bone of vertebral bodies. Sr<br />

concentrations, again excluding the zero values, ranged between 54-155<br />

ppm in bone, 50-128 ppm in powdered bone, and 58-130 ppm in all<br />

combined elements amongst all individuals.<br />

A possible source of error in determination of trace element levels is<br />

preferential surface deposition or segregation. If after homogenization, the<br />

element concentration appears to drop, then surface effects should be<br />

suspected. In addition, if bone of low density is presented to the analyzer,<br />

then the values for trace element concentration would be expected to be<br />

lower than higher density bone, assuming that the element concentration<br />

is the same. This is simply because less material is present in the analysis<br />

volume. Powdering in this case can reduce any effect associated with<br />

differences in bone density, assuming that the particle size in the powder<br />

is relatively homogenous. Furthermore, the hydration state of bone should<br />

be considered. In fresh bone the presence of water will absorb the<br />

characteristic emitted x-rays, thus giving a low concentration as compared<br />

to dry bone. This effect was demonstrated in this study by analyzing a<br />

piece of fresh parietal bone that was subsequently dried at 1000C for 30<br />

minutes, and then re-analyzed.<br />

XRF is a new technology available to the forensic community, not<br />

limited to anthropology, but with widespread uses in the crime scene<br />

laboratory in the enforcement of justice in drug trafficking, or for exposing<br />

the manufacture and disbursement of drugs and potential counterfeit<br />

materials. Also, within the field of anthropology and archaeology,<br />

handheld portable XRF promises to be another tool in the chemical and<br />

physical analysis of human remains, both biological and cultural. As with<br />

any other analytical technique, care must be exercised in sampling<br />

strategy, preparation of samples and data interpretation. The ease of use,<br />

rapidity of analysis and user-friendly interface of portable XRF units are<br />

beguiling. However, it is still a technique that demands knowledge of the<br />

analyst just as would a fully configured laboratory-based system.<br />

X-Ray Florescence (XRF), Trace Elements, Bone<br />

* Presenting Author<br />

H100 Physical Matches of Bone, Tooth, and<br />

Shell Fragments: A Validation Study<br />

Angi M. Christensen, PhD*, Federal Bureau of Investigation<br />

Laboratory, 2501 Investigation Parkway, Quantico, VA 22135; and<br />

Adam D. Sylvester, PhD, The University of Tennessee, Department of<br />

Mechanical, Aerospace and <strong>Bio</strong>medical Engineering, 301 Perkins Hall,<br />

Knoxville, TN 37996<br />

The goal of this presentation is to provide empirical support and<br />

validity for physical matches of bone, shell and tooth fragments. It<br />

provides the first documented error rates for physical matches for this<br />

class of material.<br />

This presentation will impact the forensic community and/or<br />

humanity by meeting Daubert guidelines for a commonly used forensic<br />

technique.<br />

Physical matches are routinely used in forensic investigations as a<br />

way to confirm that two or more pieces of evidentiary material (i.e., glass,<br />

paper, metal, paint, plastic, wood, tape, fabric) were originally one piece<br />

of material. Bone fragments are often physically matched in the<br />

reconstruction of skeletal elements as part of forensic anthropological<br />

examinations, as well as in paleoanthropological and archaeological<br />

contexts. Although routinely performed and widely regarded as intuitively<br />

evident, the reliability and validity of physically matching fragments of<br />

bone, and other mineral-based biological materials, has never been<br />

empirically tested. In academic contexts, this may be of little concern;<br />

however, in the forensic arena a well-designed study would be beneficial<br />

given the Daubert guidelines of scientific testing and documented error<br />

rates. This study examines the reliability and validity of physically<br />

matching bone, shell and tooth fragments. Differences between<br />

individuals with varying levels of experience with physical matching and<br />

osteology are also examined.<br />

The specimens used included human bones (femur, tibia, fibula,<br />

parietal), non-human bones (long bones, vertebrae, mandible, plastron),<br />

non-human teeth, and shells. Specimens were fractured using a<br />

combination of static and dynamic loading until structural failure. Each of<br />

the resulting fragments used in the study were labeled with a randomly<br />

assigned number between one and one-hundred. The assigned numbers of<br />

all pairs of physically matching fragments were recorded.<br />

A matching exercise that consisted of 57 fragments containing a total<br />

of 40 correct matches and six fragments with no possible matches was<br />

devised. The exercise was administered to individuals with varying levels<br />

of education, experience and training in osteology and physical matching,<br />

including forensic scientists and anthropologists. Participants were<br />

instructed to identify, and affix together with tape, all physical matches<br />

they believed to be present among the fragments. In addition, participants<br />

were asked to answer questions pertaining to their area of expertise,<br />

materials with which they have previous experience performing physical<br />

matches, any education or training in osteology, and criteria used to<br />

identify the matches. They were also asked to record the time required to<br />

complete the exercise. Exercises were scored as a function of correctly<br />

identified matches compared to the number of false positive matches<br />

(incorrectly affixing fragments that do not match) and false negative<br />

matches (failing to affix fragments that do match).<br />

Preliminary results suggest that bone, tooth and shell fragments can<br />

be validly and reliably matched. No false positive matches have been<br />

identified by any participant. False negative matches are not uncommon,<br />

but do not appear to be related to the individual’s experience level.<br />

Anthropologists who can draw on their knowledge of osteology to<br />

correctly identify, anatomically orient, and re-fit bone fragments may be at<br />

an advantage in complex cases, but even inexperienced individuals are<br />

able to locate and identify correct matches without incorrectly matching<br />

unassociated fragments.<br />

Forensic Science, Forensic Anthropology, Physical Match<br />

354


H101 Three-Dimensional Variation in Face<br />

Shape in a Large Study Sample<br />

Martin P. Evison, PhD*, University of Toronto at Mississauga, Forensic<br />

Science Program, 3359 Mississauga Road North, Mississauga, ON L5L<br />

1C6, Canada; and Richard W. Vorder<br />

Bruegge, PhD, Federal Bureau of Investigation, Forensic Audio,<br />

Video and Image Analysis Unit, Engineering Research Facility, Building<br />

27958A, Quantico, VA 22135<br />

After attending this presentation, attendees will gain basic<br />

understanding of the nature of face shape variation in 3D as measured<br />

empirically in a large study sample and its implications for forensic facial<br />

comparison from videotape, photographic, and other facial images.<br />

This presentation will impact the forensic community and/or<br />

humanity through this first large empirical study of face shape variation in<br />

3D undertaken using contemporary stereophotographic measuring<br />

techniques.<br />

This paper will provide a summary of a study of face shape variation<br />

measured in three dimensions in a sample of over 3000 individuals<br />

collected in an eighteen month period from December 2003 to May 2005.<br />

A feasibility study will be briefly reviewed, which indicated that an<br />

anthropometric approach to face shape comparison in two- or threedimensions<br />

using traditional craniofacial landmarks was plausible on the<br />

empirical grounds of density and visibility of the landmarks, particularly<br />

in areas of the face that it is commonly believed are variable between<br />

individuals—the shapes of the major facial features and the positional<br />

relationships between them. A student project examining face shape<br />

variation in two dimensions conducted in collaboration with Dr Nick<br />

Fieller of the Department of Probability and Statistics at the University of<br />

Sheffield, offered further confirmation of differences in positional<br />

relationships between landmark datasets in different individuals. A<br />

substantial proof-of-concept project was initiated involving a much larger<br />

sample of three-dimensional landmark data, which will form the core of<br />

this presentation.<br />

The structure the collaborative research, between three University<br />

research groups—Sheffield, Nottingham and Kent at Canterbury, will be<br />

described. The process of ethical review and informed consent for the<br />

collection of 3D photographs of volunteer’s faces for research in crime<br />

prevention and detection will be reviewed. Promotion of the project, with<br />

the support of the Magna Science Adventure Centre, near Rotherham,<br />

United Kingdom, will be described. In general, the museum visiting public<br />

were overwhelmingly well disposed to volunteer to be photographed in<br />

support of research in crime prevention detection. Methods used for<br />

collecting data from three-dimensional landmarks using a Geometrix®<br />

stereophotographic scanner and FaceVision® software will be presented.<br />

A pilot study involving a sub-sample of thirty five faces landmarked at<br />

sixty sites in triplicate by two different observers offered measures of<br />

inter- and intra-observer error, and indications of landmarks that were<br />

relatively distinct in position between individuals, more or less subject to<br />

intra- or inter-observer error, and technically problematic with regard to<br />

establishing consistency in placement via a standard operating procedure.<br />

As a result of the pilot study, an optimal landmark set—based on accuracy<br />

and discriminating power—of thirty landmarks was chosen. This set of<br />

thirty three-dimensional landmarks was placed on a total sample of over<br />

3000 individuals, in duplicate. A small comparative control dataset was<br />

collected manually using calipers and also using a Cyberware® 3030<br />

RGB Head and Face scanner. Age, biological sex and ancestry<br />

distributions—all of which can affect face shape—will be discussed,<br />

especially in relation to the representativeness in an investigative context.<br />

Our key findings with regard to the nature of face shape variation in<br />

3D as assessed by the measurement of 30 landmark positions in duplicate<br />

in the sample of over 3000 individuals will be discussed. The distribution<br />

conformed to that of a multivariate normal model and normal distributions<br />

were indicated in pair-wise distance distributions assessed between paired<br />

landmarks. Landmark distributions between the most and least<br />

discriminating landmark pairs in the set of thirty will be described. The<br />

overall potential for the utility of three-dimensional landmarking in<br />

forensic face shape comparison will be discussed in relation to possible<br />

further research.<br />

Facial, Variation, Comparison<br />

H102 Facial Soft Tissue Depths in Craniofacial<br />

Identification: Properties Gleaned From<br />

a Comparative Bottom-Up Approach<br />

Carl N. Stephan, PhD*, The University of Queensland, Anatomy and<br />

Developmental <strong>Bio</strong>logy, The University of Queensland, Brisbane, QLD<br />

4072, Australia; and Ellie K. Simpson, PhD, Forensic Science South<br />

Australia, 21 Divett Place, Adelaide, SA 5000, Australia<br />

After attending this presentation, attendees will learn some history of<br />

soft tissue depth studies; and learn that traditional classifications of soft<br />

tissue depth data have little emperical statistical justification and are<br />

unnecessarily unwieldy. Attendees will retain or be able to implement<br />

new simplified average soft tissue depth data values for the face which<br />

have increased statistical power and advantages of standardization (one<br />

data table for adults and two for children, as opposed to the 50+ that<br />

currently exist).<br />

This presentation will impact the forensic community and/or<br />

humanity by discussing the current soft tissue depth data available, their<br />

philosophical underpinnings and how they are used in practice by forensic<br />

artists.<br />

Average soft tissue depths hold a central role in the craniofacial<br />

identification techniques of superimposition and approximation. Overall,<br />

many soft tissue depth studies have been published (N>50) and large<br />

amounts of data have been collected (>153,000 individual soft tissue<br />

measurements). The traditional perception, held since the origin of soft<br />

tissue depth investigations in the typological physical anthropology of the<br />

late 1800s and early 1900s, has been that meaningful differences in depths<br />

exist between particular human groups (e.g., by sex, age, and race).<br />

However, some group differences appear to be no larger than<br />

measurement errors (e.g., 1-2mm) indicating that these differences may be<br />

of much less significance than initially thought. An over-arching, large<br />

sampled, multivariate analysis would be the crucial test required to<br />

robustly elucidate group relationships; but in its absence some insight may<br />

be gleaned from a comprehensive comparative review of the vast number<br />

of mean values that have been published.<br />

This study reviews the existing data means using a bottom-up<br />

comparative approach examining variables such as year of study<br />

conduction, method of measurement, age (for children


H103 Examination of Identification<br />

Methods Used by <strong>Medical</strong><br />

Examiners: A Facility Study<br />

Angela Soler, BS*, and Todd W. Fenton, PhD, Michigan State University,<br />

354 Baker Hall, East Lansing, MI 48824; and Joyce L. deJong, DO,<br />

Sparrow Hospital, 1215 East Michigan Avenue, Lansing, MI 48909<br />

After attending this presentation, attendees will learn of the various<br />

categories of identifications made at Sparrow Hospital Forensic Pathology<br />

Section, Lansing, Michigan from a one year period.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing awareness of the difficulties that arise when<br />

differentiating between positive and presumptive identification. The goals<br />

of this presentation are to discuss the necessity for a more solid<br />

understanding of the term “positive identification”, and to introduce the<br />

prospects of another category of identification.<br />

Positive identification is a somewhat loosely defined term that has<br />

been described in a number of different ways by scientists of varying<br />

backgrounds. Most would agree that positive identification is a scientific<br />

classification that compares known antemortem records with postmortem<br />

records of the deceased in order to determine whether or not they represent<br />

one and the same individual. This definition can be quite accurate for<br />

biological means of identification, such as fingerprinting, DNA, and<br />

comparative dental or medical radiography.<br />

Presumptive identification, on the other hand, is defined as a<br />

nonscientific method that would “put either a likely or tentative name on<br />

a decedent, or at least put the decedent into a smaller subgroup” (Baker<br />

2005). Both physical and non-physical characteristics, such as tattoos,<br />

scars, personal effects, location of body, and verbal testimony can be used<br />

to make the case for a tentative identification (Burns 1999). Many<br />

scientists would include in this category those identifications made by<br />

visual recognition.<br />

Although the definitions of positive and presumptive, or biological<br />

and nonscientific, identifications are somewhat clear-cut, the cases that<br />

come into the medical examiner’s office most often are not. Perhaps the<br />

current forensic definitions of ‘positive’ and ‘presumptive’ identifications<br />

are too simplistic to be applicable to the real world. Many factors impact<br />

the necessity for a more thorough investigation, such as whether a<br />

decedent was found within their own home, whether they were recognized<br />

by family members, and whether they exhibit a number of corresponding<br />

features. One question that is often asked is whether a very strong<br />

presumptive identification, with a preponderance of corresponding nonunique<br />

characteristics, can be considered a positive identification. If the<br />

answer is yes, then how many circumstantial points would add up to make<br />

a positive identification? If not, then should another category of<br />

identification be created to hold all classifications that are defined as<br />

neither positive nor presumptive? A third category, introduced in this<br />

paper, will be labeled “identification by multiple corresponding factors”<br />

and will include all identifications made by a multitude of non-scientific<br />

evidence, such as biological profile, location of body, tattoos,<br />

identification papers and others.<br />

This study aimed to quantify the number of positive and presumptive<br />

identifications that were made in a one year period at the Sparrow Hospital<br />

Forensic Pathology Section in Lansing, Michigan. 796 cases from the<br />

year 2005 were reviewed and the type of identification was recorded and<br />

then placed into one of two corresponding categories: positive and<br />

presumptive. <strong>Bio</strong>logical identifications, such as fingerprints, DNA, and<br />

medical and dental radiographic comparisons were placed within the<br />

positive category, whereas identifications made through visual and<br />

multiple corresponding factors were placed within the presumptive<br />

category. Percentages were then calculated to determine what type of<br />

identifications were made the most.<br />

Results indicate that the largest percentage of identifications were<br />

made visually. Of those identifications made visually, the vast majority<br />

* Presenting Author<br />

also included multiple corresponding factors, such as clothing, jewelry,<br />

and personal effects, etc. The second most common identifications were<br />

made through multiple corresponding factors. These identifications varied<br />

in strength depending on the number and quality of factors contributing to<br />

the identification. The next commonly made identifications were through<br />

dental radiographic comparison, followed by fingerprints, medical<br />

radiographic comparison, and finally DNA. This demonstrates that nonscientific<br />

means of identification were the most common and easiest<br />

obtained identifications. Despite the majority of non-scientific<br />

identifications, most would agree that all of these cases were identified,<br />

although the literature would state that they were presumptive.<br />

In conclusion, these results indicate the necessity for a discussion<br />

about positive and presumptive identification. If the cases presented at the<br />

Sparrow Hospital Forensic Pathology Section in Lansing, Michigan are<br />

any indication of the kinds of identifications being made in medical<br />

examiner’s offices across the country, then there is obvious necessity for<br />

more clear-cut definitions of positive and presumptive identifications, as<br />

well as the possibility of the introduction of a new category of<br />

identification.<br />

Human Identification, Forensic Anthropology, Forensic Pathology<br />

H104 The Technique of Sampling Skeletal<br />

Remains for Mitochondrial DNA Testing<br />

Audrey L. Meehan, BGS*, Joint POW/MIA Accounting Command/<br />

Central Identification Laboratory, 310 Worchester Avenue, Building 45,<br />

Hickam AFB, HI 96853<br />

After attending this presentation, attendees will understand the<br />

correct procedure and sampling areas for submitting skeletal remains for<br />

Mitochondrial DNA testing.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how mitochondrial DNA testing has proven to<br />

be a valuable tool in the identification of skeletal remains. Fragmented,<br />

weathered osseous material has been successfully sampled and sequenced<br />

providing a data base for comparison with family reference samples. The<br />

knowledge of how and where to sample the skeletal remains could benefit<br />

the general community to help resolve missing persons cases. It is<br />

proposed that the ME offices get their “skeletons out of the closet” and<br />

submit them for mtDNA testing for comparison with a maternal relative of<br />

the missing persons.<br />

The mission of the Joint POW/MIA Accounting Command-Central<br />

Identification Laboratory (CIL) is to search for, recover and identify<br />

missing U.S. service personnel from past wars. Remains processed<br />

through the CIL include a wide range, from single individuals, such as the<br />

frozen WWII airman recovered from the mountains of California, to the<br />

commingled skeletal remains turned over by the North Koreans from<br />

former POW camps. Mitochondrial DNA testing has proven to be a very<br />

important tool in the identification of individuals represented by complete<br />

or fragmented skeletal remains. The sequence data generated also assists<br />

in the sorting of commingled remains from crash sites and mass burials.<br />

The CIL is currently at a submission rate of 900 osseous and dental<br />

samples per year. Contemporary missing person cases may also benefit<br />

from the data generated from the mtDNA testing of the skeletal remains.<br />

Self actuating samples are not necessary as results are compared to<br />

maternal relatives of the missing persons.<br />

A minimum sample of two to five grams of concentrated cortical<br />

bone is necessary for processing osseous material for mtDNA. Each test<br />

uses two grams of sanded, cleaned bone which is ground to a powder prior<br />

to amplification. When presented with a complete, single set of skeletal<br />

remains, an aggressive sampling strategy is not necessary as a three square<br />

centimeter sample from any part of the femoral diaphysis will yield a<br />

minimum of 10 grams of cortical bone. However, the larger long bones<br />

which are preferred for sampling, are not always recovered, or as in<br />

356


commingled remains, can not be associated with the skull or other<br />

recovered skeletal elements. Such cases require the utilization of optimal<br />

sampling areas. The choice of skeletal element is equally important when<br />

limiting the number of samples per case to be tested.<br />

This presentation will discuss the sampling strategy developed for<br />

submitting osseous samples to the Armed Forces DNA Identification Lab<br />

(AFDIL) for mtDNA sequencing. It will also review sample<br />

contamination precautions and recommended equipment use.<br />

Mitochondrial DNA, Missing Persons, Skeletal Remains<br />

H105 DNA Preservation of Skeletal Elements<br />

From the World Trade Center Disaster:<br />

Some Recommendations for Mass<br />

Disaster Management<br />

Amy Z Mundorff, MA*, Simon Fraser University, Department of<br />

Archaeology, 8888 University Dr, Burnaby, BC V5A 1S6, Canada; and<br />

Eric J Bartelink, PhD, California State University, Chico, Department of<br />

Anthropology, Butte Hall 311, Chico, CA 95929<br />

After attending this presentation, attendees will learn which degraded<br />

skeletal elements recovered from a mass fatality incident are more likely<br />

to yield DNA for identification. Additionally, the authors will discuss<br />

management implications inherent in deciding which elements to sample<br />

for DNA identification.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing sampling protocol recommendations for forensic<br />

scientists/anthropologists who work in mass disaster identification.<br />

When antemortem information is available, fingerprints and dental<br />

radiographs are more efficient than DNA for identifying intact victims.<br />

However, when antemortem information is not available or in cases of<br />

extreme body fragmentation, remains often can only be identified through<br />

DNA. Temperature, humidity, UV light, decomposition, soil microbes,<br />

fire, water, mold and other factors all contribute to the degradation of<br />

DNA in human tissue. Many studies have measured DNA degradation<br />

rates for bone and tissue subjected to heat, fire, water, burial in soil and<br />

time. Previous studies have also concluded that DNA degrades in different<br />

human organs at different rates, with liver and kidney tissue showing rapid<br />

degradation and brain tissue showing slow degradation. Additionally,<br />

research has demonstrated that bone preserves DNA better than soft tissue,<br />

since the structure of bone acts as a physical barrier to the external<br />

influences that can readily degrade soft tissue. Because the World Trade<br />

Center victim identification effort highlighted many of the confounding<br />

taphonomic factors that influence DNA preservation, the differential<br />

recovery rates of DNA between skeletal elements were examined.<br />

DNA has been employed in disaster victim identification (DVI) for<br />

over 15 years. Initially, DNA was used as a last resort, usually when<br />

fingerprints, radiographs and dental records were not available. More<br />

recently, DNA has been used to reassociate larger, anatomically<br />

identifiable body parts, while smaller pieces were grouped as untestable<br />

common tissue. In 2000, DNA was first used as the sole method of<br />

identification for the 155 victims of the Kaprun cable car fire in Austria.<br />

Since then, the use of DNA has increasingly become the primary method<br />

of identification for victims of mass disasters and has become the most<br />

reliable method of reassociating even the smallest fragments. In any mass<br />

disaster, DNA sampling protocols have a ripple effect throughout the<br />

identification process, as small changes in these protocols may result in<br />

substantial savings in time and expense, and may greatly influence DNA<br />

identification rates.<br />

Despite the prevalence of using DNA in DVI, the literature contains<br />

relatively little information regarding the variability in DNA identification<br />

success rates between different skeletal elements. Hence, little research<br />

has been conducted into which elements are most suitable for DNA<br />

testing. Yet, choosing the most effective bone for sampling is crucial in<br />

the identification process. Anecdotal statements have suggested that long<br />

bone fragments, such as femur and tibia, are better for DNA sampling than<br />

cranial or rib fragments. However, these findings remain unconfirmed by<br />

DNA studies and are not supported by the present study. Using a subset<br />

of remains from the World Trade Center dataset, the variability in DNA<br />

identification rates between different skeletal elements were examined.<br />

The subset consists only of recovered bone fragments that were smaller<br />

than 4” and that were submitted in their entirety for nuclear DNA testing.<br />

Due to their size as well as the unique combination of taphonomic insults<br />

they had been subjected to, these remains are among the most challenging<br />

to identify from mass disaster sites.<br />

Due to the unique nature of the World Trade Center disaster, it is<br />

proposed that the results of this examination represent a ‘worst case<br />

scenario’, which could be used to help establish sampling standards and<br />

protocols aimed at maximizing DNA identification rates from fragmented<br />

human remains. These recommendations are used to highlight potential<br />

challenges that undoubtedly arise during mass fatality incidents that<br />

involve severe fragmentation of remains.<br />

Taphonomy, Skeletal Element, Mass Fatality Incident<br />

H106 Considerations in Differentiating<br />

Negligence From Deliberate<br />

Misconduct — Lessons Learned<br />

From Tri-State Crematorium<br />

Hugh E. Berryman, PhD*, Sociology and Anthropology, PO Box 10,<br />

Middle Tennessee State University, Murfreesboro, TN 37132; and Carrie<br />

Anne Berryman, MA, Department of Anthropology, Vanderbilt<br />

University, 2301 Vanderbilt Place, Box 356050, Station B, Nashville,<br />

TN 37235<br />

After attending this presentation, attendees will gain insight into<br />

considerations needed to differentiate negligence from deliberate<br />

misconduct when examining commingled cremains.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing insight into considerations that must be made when<br />

examining possible altered cremains in order to differentiate negligence<br />

from deliberate misconduct. The presentation will provide a better<br />

understanding of the north Georgia, Tri-State Crematorium case where<br />

over 300 remains were recovered in what is the largest, most complex case<br />

of its type in U.S. history. Findings from an excavation of Tri-State<br />

Crematorium’s retort floor, in which archaeological excavation techniques<br />

were used, will be presented.<br />

Forensic specialists are often called upon to verify the identification<br />

of cremated human remains when funeral homes or crematory facilities<br />

are believed to have accidentally released misidentified remains or<br />

intentionally substituted foreign materials. However, the funeral home<br />

industry’s use of increasingly effective mechanical bone pulverizers<br />

following cremation has left physical anthropologists with fewer methods<br />

for determining the physical attributes of the remains. Thus, forensic<br />

specialists often rely on the recovery of unique personal artifacts such as<br />

fragments of medical or dental implements to confirm or refute the<br />

identity of remains.<br />

On February 15, 2002, news began to surface of the many<br />

clandestinely placed bodies being found at the Tri-State Crematorium<br />

located in northern Georgia. A total of 339 bodies were reportedly<br />

recovered from the site in what is the nations largest crematorium related<br />

case. Based on work with the Tri-State Crematorium court case (Goins,<br />

Carpenter, James and Lockett law firm), this paper argues that unique,<br />

foreign inclusions do not always provide an adequate means of<br />

demonstrating deliberate misconduct or fraudulent activity on the part of<br />

a crematorium. Poorly maintained retort surfaces at some facilities may<br />

357 * Presenting Author


esult in negligent contamination through retention of remains and<br />

artifacts from previous occupants. These articles may be raked into future<br />

cremations, potentially resulting in questioned identity and accusations of<br />

misconduct.<br />

Pertinent data related to this problem were gleaned from<br />

photographic documentation of the undisturbed Tri-State retort floor,<br />

archaeological excavation of the retort floor, and analysis and<br />

interpretation of findings. The Tri-State retort chamber measured 27<br />

inches high by 36 inches wide by 96 inches deep, and was in a poor state<br />

of repair when initially examined. The fire bricks that composed the wall<br />

and ceiling were damaged and the floor had a loose sandy surface with a<br />

moist oily composition separated in places by fissures, depressions and<br />

pits. A cursory examination of the floor revealed numerous bones, teeth,<br />

screws, and other articles scattered throughout. Before the retort floor<br />

could be excavated, it was photographed in its undisturbed state.<br />

However, the restrictive 27 by 36 inch retort opening required construction<br />

and placement of a device to facilitate documentation without disturbing<br />

the floor. The device was constructed to support an aluminum beam for<br />

attachment of a camera, and for the later placement of a platform from<br />

which to work. The device would only contact the floor in four areas, each<br />

the size of a small screw head. A 35 mm digital camera was attached to<br />

the beam and overlapping photographs were made of the undisturbed<br />

floor, the walls and the ceiling over the length of the retort. The beam and<br />

camera were run along five paths from front to back of the retort floor with<br />

two photographs taken every 14 inches. These photographs were later<br />

juxtaposed to create a composite view of the retort floor.<br />

After photographic documentation, a platform was then set in place<br />

above the floor to allow entry whereby the retort floor was diagrammed,<br />

and undisturbed articles were identified and collected. The retort floor<br />

was then grid into sixteen 12 by 18 inch units and excavated. The initial,<br />

loose surface was excavated by brush (i.e., all material loose enough to be<br />

removed by a brush) while a subsequent, deeper and more solid surface<br />

was excavated by trowel. Material from each grid unit and each depth was<br />

screened through two U.S.A. Standard Test Sieves, sorted and identified.<br />

A total of 4507.4 grams/3545.0 milliliters of excavated material was<br />

examined from the upper (loose) excavation, and 5952.2 grams/6875.0<br />

milliliters from the lower (more solid) floor.<br />

In support of the negligent contamination hypothesis, excavation of<br />

the crematory chamber yielded human bones and teeth, hair, dental<br />

appliances (e.g., porcelain crowns, gold-colored tooth crowns), possible<br />

surgical wire, snaps/fasteners, staples, wood screws, etc. Duplicate<br />

skeletal elements indicated a minimum number of two individuals<br />

although it is likely that a larger number of individuals was represented<br />

among these bones and teeth. Due to irregularities in the poorly<br />

maintained retort floor, these articles were missed by the flat metal rake<br />

used to remove remains. In addition, a greater concentration of articles<br />

was found near the back wall of the chamber, an area more difficult to<br />

reach with the rake.<br />

Finally, of the crematory operators surveyed, 10 of 13 responded that<br />

minor inclusions from previous cremations were possible, even in modern<br />

facilities. Thus, if John Doe had no teeth yet his urn contains a tooth<br />

fragment, it should not be concluded that the urn does not contain the<br />

remains of John Doe.<br />

Although Tri-State provides an extreme example of facility neglect<br />

and mismanagement, it clearly illustrates the need for forensic scientists<br />

who are asked to testify in such cases to familiarize themselves with the<br />

type of retort used, method used for removal of remains from the vault,<br />

and the history of maintenance for the retort surface. Such knowledge is<br />

critical in differentiating negligence from deliberate misconduct when<br />

examining commingled cremains.<br />

Cremains, Tri-State Crematorium, Forensic Anthropology<br />

* Presenting Author<br />

H107 The Donation Dilemma: Academic Ethics<br />

and Public Participation at the<br />

Anthropological Research Facility<br />

Bridget Algee-Hewitt, MA*, Rebecca J Wilson, MA, and Lee Meadows<br />

Jantz, PhD, University of Tennessee, 250 South Stadium Hall, Knoxville,<br />

TN 37996<br />

After attending this presentation, attendees will have a better<br />

understanding of the unique ethical issues facing the Forensic<br />

Anthropology Center at the University of Tennessee, so that they can<br />

effectively disseminate information about the body donation program and<br />

promote the growth of similar programs.<br />

This presentation will impact the forensic community and/or<br />

humanity by better informing fellow forensic anthropologists of both the<br />

more practical issues facing FAC, as well as, the program specific<br />

obstacles that are challenging but professionally stimulating. It is the hope<br />

that with this knowledge and open forum of information, that the<br />

profession can more effectively propose a resolution, be it in the classroom<br />

or the professional environment.<br />

A panel discussion at the 2006 Seattle, WA AAFS meetings<br />

addressed, for the first time, the personal and professional issues facing<br />

forensic anthropologists in light of greater public participation. It is the<br />

purpose of this paper to address specifically these issues as they affect the<br />

Forensic Anthropology Center at the University of Tennessee, as a unique<br />

program that marries both a personal relationship with living donors and<br />

an academic interest in the skeletal remains.<br />

One need look no farther than popular culture in order to grasp the<br />

recent ubiquity of public exposure to and mainstream interest in the<br />

forensic sciences. Despite drastically oversimplifying the scientific<br />

challenges facing forensic anthropologists, representations of the forensics<br />

sciences in popular culture nevertheless have generated an external<br />

interest in the academic study of human remains. The body donation<br />

program at the University of Tennessee is undoubtedly the best example<br />

of a positive site of interaction between this growing public awareness of<br />

and appreciation for forensic anthropology and the rigorous scientific and<br />

academic understanding of the processes of death, decay and population<br />

variation. While this manifestation of the “CSI effect” is helpful in<br />

increasing interest in the donation process and acceptance of the research<br />

conducted at “The Body Farm”, the work at the Anthropological Research<br />

Facility (ARF), as a scientifically rigorous and academically valid<br />

endeavor is, in consequence, necessarily complicated. The Forensic<br />

Anthropology Center (FAC) and its body donation program, as a unique<br />

institution within the field of forensic anthropology, removes the scientific<br />

issues surrounding death from a laboratory setting and relocates them<br />

within the public context of living donors and grieving families. The<br />

questions that remain to be resolved, in addition to the scientific objects of<br />

investigation, are the practical, personal and ethical dilemmas that<br />

accompany the constructed relationship among the forensic<br />

anthropologists, the medical and legal communities and, most importantly,<br />

the social network that supports the program itself.<br />

The ARF at the University of Tennessee has grown to serve not only<br />

as a temporary repository for unidentified remains, but also as the<br />

intermediary resting place for the individuals donated through the body<br />

donation program. While the donation program ensures the continuing<br />

addition of the human remains necessary for research at the ARF and has<br />

provided an unprecedented diversity of modern skeletal materials for the<br />

William M Bass collection, its combined scholarly and public nature,<br />

particularly when coupled with its recent popularity, requires the<br />

anthropologists working at the FAC to operate outside of the traditional<br />

roles of an academic program. Whereas a typical forensic anthropologist<br />

focuses exclusively on the rigorous scientific investigation of individual<br />

remains in either a law enforcement or academic setting, those working<br />

with the donation program at the University of Tennessee must serve in a<br />

variety of disparate and often non-traditional capacities: as liaisons with<br />

358


the public in order to accurately and effectively educate prospective<br />

donors about the realities of the program; as funerary consultants for those<br />

contemplating donation in their final arrangements; as grief councilors<br />

who must ensure a high level of respect in their treatment of the donor’s<br />

remains and who must also communicate this respect to the grieving<br />

families; and, finally, as scientists and progressive academics whose<br />

responsibility to the donor lies in making full use of his or her remains to<br />

advance the knowledge of the field. To these forensic anthropologists,<br />

therefore, the donor is both a numbered object of scientific study and a<br />

named individual, who, over the course of contact with the program, make<br />

the transition from living to deceased. The tensions between these<br />

irreconcilable positions are not traditionally covered in any scholarly<br />

program within the field; yet maintaining these positions is necessary to<br />

ensure the continuing success of the FAC. The University of Tennessee’s<br />

body donation program therefore provides a unique site of interaction<br />

between the public and academic pressures of the discipline of forensic<br />

anthropology and the ways in which these tensions are changing in the<br />

face of mounting public interest, both positive and negative. It is this<br />

changing face of the discipline as specifically located in the academic,<br />

popular and ethical responsibilities of those anthropologists working with<br />

the body donation program at the University of Tennessee that this paper<br />

proposes to examine.<br />

It is the intention of this discussion to better inform fellow forensic<br />

anthropologists of both the more practical issues facing FAC, as well as,<br />

the program specific obstacles that are challenging but professionally<br />

stimulating. It is the hope that with this knowledge and open forum of<br />

information that the profession can more effectively propose resolution, be<br />

it in the classroom or the professional environment.<br />

Anthropological Research Facility, Body Donation, Ethics<br />

H108 Daubert and Kumho: Implications for<br />

Anthropologists in the Courtroom<br />

Christopher R. Grivas, MS*, and Debra Komar, PhD, University of New<br />

Mexico, Department of Anthropology, MSC01 1040, Office of the<br />

<strong>Medical</strong> Investigator, MSC11 6131, 1 University of New Mexico,<br />

Albuquerque, NM 87131-0001<br />

After attending this presentation, attendees will understand the<br />

Daubert and Kumho Supreme Court decisions regarding expert witness<br />

testimony and their impact on forensic anthropological testimony.<br />

This presentation will impact the forensic community and/or<br />

humanity by raising the issue as to what type of anthropological testimony<br />

falls under the Daubert and Kumho standards, and whether trying to fit<br />

certain anthropological techniques into a strict framework is appropriate.<br />

Within the last fifteen years, the Supreme Court of the United States<br />

has implemented major changes concerning the admittance of expert<br />

testimony in federal cases, which has forced the modification of rule 702<br />

regarding expert testimony in the Federal Rules of Evidence. Two<br />

significant judicial decisions have catalyzed these revisions. Previous to<br />

1993, under the Frye Rule, courts admitted scientific expert testimony if<br />

the technique that formed the basis of the testimony was generally<br />

accepted as reliable by the relevant scientific community. However, in<br />

1993 the Supreme Court of the United States passed down the landmark<br />

decision Daubert v. Merrell Dow Pharmaceuticals, Inc., based on its<br />

interpretation of the Federal Rules of Evidence. This decision superceded<br />

the Frye Rule and stated that judges were the ultimate authority in<br />

questions about the admissibility of expert testimony. It also established<br />

four guidelines for judges in determining the admissibility of expert<br />

testimony: the content of the testimony is testable and has been tested<br />

using the scientific method, the technique or theory used in the testimony<br />

has been subject to peer review, the technique used in the testimony has a<br />

known or potential error rate, and that the technique or theory has<br />

established standards and is generally accepted by the relevant scientific<br />

community. These guidelines became known as the Daubert standard,<br />

and forced a reexamination of scientific testimony. Significantly, in 1999<br />

the Supreme Court passed down a lesser known, but equally important,<br />

decision Kumho Tire Company, Ltd. v. Carmichael in an effort to clear up<br />

some misconceptions from the earlier Daubert ruling. This decision<br />

established that experts may develop theories based on observations and<br />

then apply those theories to the case before the court, as is done in<br />

technical expert testimony. In addition, the Supreme Court also<br />

established that all four Daubert standards are not applicable to every type<br />

of expert testimony, but the same rigor that is applied to scientific<br />

testimony must also be applied to technical testimony. Thus, Kumho does<br />

not supercede but works in tandem with Daubert, and it is the duty of the<br />

judge to determine under which standard the testimony should be held.<br />

Although these decisions refer only to federal cases, many states have<br />

followed suit while others are continuing to move towards applying these<br />

changes.<br />

Questions still remain as to how these decisions have impacted expert<br />

testimony in general, including anthropological testimony. Many recent<br />

forensic publications have stressed the importance of developing<br />

anthropological techniques to meet Daubert standards and have attempted<br />

to do so, but none to date have discussed the significance of the Kumho<br />

ruling. Physical anthropology has never been defined as a pure science,<br />

and nothing is preventing some types of anthropological testimony from<br />

being admitted as technical expert testimony, as many other scientific<br />

disciplines have recognized. While many anthropological techniques, such<br />

as sexing and aging, with definable error rates meet Daubert standards,<br />

other techniques such as taphonomic assessment are more of a technical<br />

skill relying on observation and experience rather than empirical testing.<br />

However, such observations are still admissible under the Kumho<br />

standard. Exactly where other techniques that are commonly used by<br />

forensic anthropologists fall, such as those used in radiological<br />

identifications, is less clear. Recent publications have attempted to modify<br />

these techniques to meet Daubert standards without considering that they<br />

could still be admissible under the Kumho standard, similar to testimony<br />

by forensic pathologists. By trying to force such techniques into the<br />

category of scientific rather than technical testimony, these publications<br />

may be trying to meet inappropriate standards, especially since the<br />

admissibility of these techniques has not yet been questioned in court. In<br />

addition, the rigidity required by Daubert may inadvertently lessen the<br />

power of these methods by imposing unnecessary limits to their use.<br />

Although the admissibility of expert testimony has become stricter, the<br />

Kumho standard allows that technical anthropological techniques properly<br />

performed do not necessarily need to meet stiffer standards.<br />

Forensic Anthropology, Expert Witness Testimony, Daubert and<br />

Kumho Rulings<br />

H109 Bones of Contention - The Investigation<br />

of a Cadaver Dog Handler<br />

Amy L. Michaud, BS*, Bureau of Alcohol, Tobacco, Firearms, and<br />

Explosives, National Laboratory Center, 6000 Ammendale Road,<br />

Ammendale, MD 20705; Douglas H. Ubelaker, PhD, Department of<br />

Anthropology, NMNH-MRC112, Smithsonian Institution, Washington<br />

DC, 20560; and Norman J. Sauer, PhD, Department of Anthropology,<br />

Michigan State University, 354 Baker Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will understand methods<br />

to process and compare large scale cases involving numerous submissions<br />

(over 2700 bones were submitted). They will also learn about a significant<br />

case that affected many in the forensic community.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing the importance of testing and certification for all<br />

dog handlers working for law enforcement organizations. It will also<br />

emphasize the importance of creating formalized training programs which<br />

359 * Presenting Author


will utilize law enforcement personnel from within police agencies as<br />

canine handlers rather than relying on private individuals who cannot be<br />

closely regulated. This case and presentation may impact the way that all<br />

dog handlers interact with the forensic community in the future.<br />

This presentation will discuss the investigation of a well known<br />

cadaver dog handler who was accused of planting bones and other<br />

evidence at various crime scenes. The suspect in the case had provided her<br />

services to state, local, and federal law enforcement organizations all<br />

across the United States and in other countries for many years working on<br />

hundreds of cases. She and her K-9 companion were renowned for finding<br />

skeletal material, blood, and other human materials even when those who<br />

had searched before her had come up empty handed.<br />

Over the years, several individuals from various law enforcement<br />

organizations believed they saw the handler throw down skeletal materials<br />

at crime scenes; however, nothing was ever proven and they themselves<br />

often dismissed it by thinking that they just misunderstood her actions.<br />

Eventually, the handler went out on a crime scene search in Michigan to<br />

look for the body of a missing girl. The search resulted in the handler<br />

finding fourteen human bones, which were eventually submitted to the<br />

FBI Laboratory for mitochondrial DNA analysis. Four of the bones were<br />

selected randomly for examination. All four of the bones were determined<br />

to have different mitochondrial DNA types, and all of them were different<br />

than the type of the victim. At this point, it was still unclear if the handler<br />

was involved in any suspicious activity. Authorities may have stumbled<br />

across the dumping ground of a serial killer, and if this was the case, a<br />

more thorough search of the area needed to take place. A second search<br />

was conducted using the same dog handler; and this time, a forensic<br />

examiner from the crime laboratory witnessed her pulling a bone from her<br />

sock and plunging it into a creek bed. This launched a large-scale<br />

investigation of the handler which involved the cooperation of many<br />

different police and governmental agencies. Everyone that the handler<br />

had conducted searches for in the past was contacted, and items of<br />

evidence that she had recovered at crime scenes were sent in to the FBI<br />

Laboratory for examination and comparison to bones and other human<br />

material found in the handler’s residence and vehicle. The handler had<br />

gotten human materials from many different individuals such as dentists,<br />

medical examiners, anthropologists, and other dog handlers. She had also<br />

given human materials to many other cadaver dog handlers. All of these<br />

people were questioned, and materials associated to the handler being<br />

investigated were obtained for comparison to skeletal material found on<br />

the various searches she conducted. In total, well over 2700 items of<br />

evidence were submitted to the laboratory for examination which required<br />

a joint effort utilizing anthropology, trace evidence, mitochondrial DNA<br />

and nuclear DNA to and analyze and compare the materials.<br />

A detailed discussion of the events leading up to the investigation, the<br />

analysis of the evidence submitted in the case, the laboratory findings, and<br />

the eventual outcome of the investigation will all be presented.<br />

Bones, Dog, Cadaver<br />

* Presenting Author<br />

360


H1 Estimating Time Since Injury From<br />

Healing Stages Observed in Radiographs<br />

Kevin B. Hufnagl, MA*, 601 Lindsay Place, Apartment B14, Knoxville,<br />

TN 37919<br />

After this presentation, attendees will understand some of the ideas<br />

and purposes behind dating fractures and the processes used in this<br />

research. They will understand the contribution that dating of fractures will<br />

bring to the forensic sciences and how this technique can be used to aid in<br />

the identification of unknown remains. This presentation will familiarize<br />

the attendees with some of the difficulties associated with dating of fractures.<br />

Furthermore, the attendees will be made aware of the necessity for<br />

cooperation between researchers from different fields in order to further<br />

explore the process of fracture healing.<br />

This presentation will impact the forensic community and/or<br />

humanity by making the forensic community aware of the study of fracture<br />

healing, the need for cooperation in these studies, and the benefit of this<br />

work in the identification process.<br />

This presentation will illustrate the benefits of being able to assign<br />

ages to partially healed fractures. Information on when a traumatic event<br />

occurred is valuable in the identification process of unknown remains. The<br />

number of possible identity matches can be reduced if the age of a healing<br />

fracture [is] known and [this can] narrow the search of medical records.<br />

The time since injury may also help to differentiate between similar<br />

remains in settings of mass graves, mass disasters, and war. Fractures do<br />

not heal at uniform speeds for all individuals. This project examines the<br />

effects of sex and age on the rate of bone repair after fracture in order to<br />

establish a method to predict the timing of fractures.<br />

Successive x-rays taken during the period of fracture healing were<br />

collected from a private orthopaedic clinic. Based on bony change<br />

observable in these radiographs, six stages of bone healing were defined;<br />

fracture, granulation, mature callus, partial bridging, almost complete<br />

bridging, and complete bridging. Each x-ray was analyzed and identified<br />

as exhibiting characteristics of a particular stage. The date of injury was<br />

determined from the first radiograph. The six stages of fracture healing<br />

were defined as to the time they are expected to occur during healing in<br />

individuals of varying age and sex.<br />

The six stages of fracture healing were shown to be influenced by age<br />

and sex. Females exhibited a slight delay in onset of the various stages in<br />

contrast to males. Age was found to display an inverse relationship with<br />

the rate of fracture healing. Furthermore, these findings indicate that age<br />

and healing may have a linear relationship. Alternatively, age groups may<br />

also be used to separate the rate of bone healing. However, the results of<br />

such a separation did not reveal one age at which healing is significantly<br />

effected. From these differences, a variation in the rate of fracture repair<br />

was inferred based on these factors.<br />

With the ultimate goal of establishing timelines for the healing of fractures<br />

based on different stages, this project illustrates the first steps in this<br />

direction. The author anticipates that this presentation will spark interest in<br />

the establishment of healing timelines, leading to further studies focusing<br />

on individual factors showing influence over the rate of fracture healing.<br />

Fracture, Healing, Radiograph<br />

Physical Anthropology<br />

H2 The Human Petrous Temporal Bone:<br />

Potential for Forensic Individuation<br />

Jason M. Wiersema, MA*, Department of Anthropology, Texas A&M<br />

University, College Station, TX 77843-4352<br />

After attending this presentation, attendees will learn about the<br />

potential utility of the petrous temporal bone, as seen on computed tomography<br />

images, as a means to make individual forensic identifications of<br />

persons from highly fragmentary skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the utility of the petrous temporal bone, as seen<br />

on CT images, as a means to make individual identifications in cases in<br />

which human remains are heavily fragmented as is often the case in mass<br />

disaster investigations. The petrous bone is of particular utility because of<br />

its resistance to taphonomic influence and frequent availability, in the form<br />

of CT images, to investigators.<br />

Personal identification is of primary importance in forensic investigations<br />

involving decomposed human remains. Frequent complications of<br />

the identification process can result from a vast number of taphonomic<br />

influences, particularly in mass disaster and human rights investigations.<br />

Remains are often heavily fragmented and commingled due either to<br />

myriad destructive circumstances in the case of mass disasters, or by intentional<br />

efforts to hinder identification efforts in the case of human rights<br />

related criminal activity.<br />

The forensic scientist has at his/her disposal numerous techniques<br />

which yield more or less definitive identifications, but that are often vulnerable<br />

to taphonomic complications. DNA identification for example,<br />

which is generally preferred for individual identification, is on many occasions<br />

not possible because the DNA has been destroyed by taphonomic<br />

influence, most commonly fire, or because there is not an antemortem<br />

DNA sample to which comparisons can be made. The literature is also<br />

inundated with published attempts to find means of extracting diagnostic<br />

information directly from fragmentary skeletal remains themselves. Most<br />

of these efforts have focused on developing methods from areas of the<br />

skeleton which are of known diagnostic significance. Unfortunately, the<br />

most individually diagnostic portions of the skeleton, such as the midface<br />

are often those that are most susceptible to taphonomic destruction. Even<br />

dental remains are often not complete enough for identification due to<br />

destruction of the surrounding skeletal matrix. Thus, in spite of the efficacy<br />

of these techniques under ideal conditions, they are rarely of practical<br />

utility in mass disaster and human rights investigations. A different tact is<br />

proposed here. Rather than developing further techniques for identification<br />

based on portions of the skeleton that harbor known diagnostic value in<br />

spite of their low representation in mass disaster, human rights, and even<br />

archaeological settings, this investigation will focus on establishing the as<br />

yet undiscovered diagnostic value of a portion of the skeleton which most<br />

frequently survives taphonomic destruction.<br />

The petrous portion of the temporal bone is widely considered to be<br />

the densest bony structure in the human skeleton (Swartz 1990). The consequent<br />

resistance of the petrous bone to taphonomic destruction is broadly<br />

appreciated in the forensic literature. However, little effort has been levied<br />

on extracting information of individually, sexually, or ancestrally diagnostic<br />

value from this portion of the skeleton, although recently some<br />

scholars have begun to explore it superficially.<br />

This poster tests the following hypotheses: 1) as visualized in computed<br />

tomography imaging, the morphology of the petrous portion of the<br />

temporal bone is individually variable; 2) by means of comparing ante-and<br />

postmortem CT images, this variability can be used to make individual pos-<br />

361 * Presenting Author


itive identifications; and/or 3) that the same variability will provide a<br />

reliable means to resolve issues of commingling of individual remains<br />

associated with exposure to the taphonomic processes associated with mass<br />

disasters, and archaeological excavations. More specific is the hypothesis<br />

that an antemortem CT image can be matched to a cranium from which the<br />

image is known to have been taken. Finally, it is hypothesized that an antemortem<br />

CT image can be correctly associated with the skull from which it<br />

was taken in cases in which the identity is not known, and there is more<br />

than one skull for comparison.<br />

The head CT scans of 120 adults (60 males and 60 females) were<br />

assessed statistically in three dimensions. Coordinate data were collected<br />

from 3D reconstructions of the petrous portion of the temporal bone (along<br />

the x, y and z axes) as distance matrices. The landmark locations and the<br />

measurement distances between them were tested for repeatability, and<br />

variability. Coordinate data collected for 18 independent landmarks were<br />

included in this study. The poster will show which landmarks were diagnostic<br />

and in which combinations they were effective in their support of the<br />

above stated hypotheses. It will also discuss the statistical reliability with<br />

which ante and postmortem CT images could be matched using these data.<br />

Mass Disaster, Personal Identification, Petrous Temporal Bone<br />

H3 Results of Forensic Anthropological<br />

Examination in Daegu Subway<br />

Disaster (2003, Korea)<br />

Dae-Kyoon Park, MD, PhD*, Department of Anatomy, College of<br />

Medicine, Soonchunhyang University, 366-1, Ssangyong-dong,<br />

Chungcheongnam-do, Cheonan-si, 330946, Korea; Yi-Suk Kim, MD, and<br />

Nak-Eun Chung, MD, PhD, Division of Forensic Medicine National<br />

Institute of Scientific Investigation, 331-1 Sinwol 7 -dong, Yangcheon-gu,<br />

Seoul, 158707 Korea; and Seung-Ho Han, MD, PhD, Department of<br />

Anatomy, Catholic Institute for Applied Anatomy, College of Medicine,<br />

The Catholic University of Korea, 505 Banpo-dong, Socho-gu, Seoul<br />

137701 Korea<br />

The goal of this presentation is to demonstrate the results of forensic<br />

anthropological examination in the Daegu subway disaster in Korea<br />

(2003).<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting the methodologies and results used to reconstruct<br />

the biological profiles and separate the commingled bone fragments of the<br />

victims by forensic anthropologist in the Daegu subway disaster in Korea<br />

(2003).<br />

Disaster victim identification normally consists of multidisciplinary<br />

procedures: recovery of victims, mortuary center operations, collection of<br />

ante-mortem data and identification methods. During the 1990’s, recovery<br />

of victims of mass disaster in Korea were usually performed by nonmedical<br />

personnel such as firefighters, soldiers, and police-officers. But,<br />

the Daegu subway disaster allowed for [challenged] a meticulous and<br />

careful investigative approach in the recovery and reconstruction of the<br />

victims because carbonized victims were left in situ, piled one over another<br />

within narrow aisles and seats inside the train.<br />

After mapping the disaster area, two recovery teams composed of two<br />

medical examiners and one forensic anthropologist began the recovery of<br />

corpses from the train. At first, the surface debris was cleared from inside<br />

the trains. The area was searched for fragmented body part and scattered<br />

and fragmentary remains were recovered. During the recovery, attempts<br />

were made to locate all parts of one body and associate them. Commingled<br />

bone fragments were separated by anthropological examination considering<br />

typical bony landmarks such as external occipital protuberance,<br />

greater sciatic notch, pre-auricular groove, linea aspera, and so forth. Body<br />

parts without bony marks were separated based on surface color of burnt<br />

bones - gray, yellowish, white, and black, and anatomy-humerus, tibia,<br />

metacarpal. The separated commingled bone fragments were packed in<br />

* Presenting Author<br />

zipper bags and tagged with the area number and comments on the contents,<br />

e.g., male’s upper extremities, female’s hip bone. After the recovery<br />

team determined that one victim’s fragmented body parts and associated<br />

bones were present, the remains moved from the original location to a steeltray<br />

for autopsy, dental investigation, and DNA-sampling.<br />

After the results of DNA recovered from burnt fleshy were obtained,<br />

the recovery team began to reconstruct individuals. Cadavers from the<br />

same area were moved to the reconstruction room and commingled bone<br />

fragments were rearranged according to the DNA-results of associated<br />

body parts. Fragmented body parts and carbonized bones of victims were<br />

individually laid out in anatomical position. During the reconstruction of<br />

victims, the surfaces of body parts and bony fragments were brushed and<br />

the debris from each victim’s body was collected and stored in another<br />

zipper bag. After the careful investigation, less than 30 zipper bags containing<br />

bone fragments remained unassociated with body parts. These were<br />

delivered to the committee of the bereaved and cremated in a joint funeral.<br />

This presentation demonstrates the utility of forensic anthropological<br />

investigation to identify the disaster victim whose body is fragmented and<br />

burned. In the future, guidelines for recovery of bodies in mass disasters<br />

should be made on the basis of these experiences in Korea.<br />

Forensic Anthropology, Body Recovery, Daegu Subway Disaster<br />

(2003, Korea)<br />

H4 Population Variation in the Sacrum<br />

Jaime L. Loichinger, BA*, and Cynthia A. Wilczak, PhD, University of<br />

Maryland, College Park-Dept. of Anthropology, 1111 Woods Hall,<br />

College Park, MD 20742<br />

Upon the conclusion of this presentation, attendees will have a better<br />

understanding of population differences in the sacrum and the feasibility of<br />

using sacral morphology to identify the ancestry of human skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by expanding the available information characterizing population<br />

differences in post-cranial morphology, and also informing the forensic<br />

community on the limitations of using the sacrum in identifying the<br />

ancestry of skeletal remains. This research also serves as a case study on<br />

the effects of sample selection on classification accuracy relevant to all<br />

general research using osteometric determination of ancestry.<br />

This study tested the hypothesis that individuals of African-American<br />

ancestry could be distinguished from other populations based on osteometric<br />

analysis of the sacrum. The study was initially prompted by casual<br />

observations of a distinct “pinching” at the level of the second sacral vertebra<br />

and a narrower overall breadth relative to length among African-<br />

Americans in comparison to Americans of European descent. Using 610<br />

sacra from mature individuals in the skeletal collections of the National<br />

Museum of Natural History, Smithsonian Institution, three standard measurements<br />

were taken as defined by the Buikstra and Ubelaker standards:<br />

anterior length (AL), anterior superior breadth (APB), and the maximum<br />

transverse diameter of the base (TDB). Two additional measurements were<br />

added: the curved length of the sacrum at the midsagittal plane (CL), and<br />

the minimum breadth at the level of the second sacral vertebrae (MS2).<br />

The maximum height of curvature (HC) was obtained by subtracting the<br />

anterior length from the curved length. Two indices were calculated by<br />

dividing MS2 by either AL or APB and multiplying by 100.<br />

Four hundred sacra sampled from the Terry skeletal collection were<br />

evenly distributed by ancestry (African-American, European-American)<br />

and by sex. The Native American sample included 84 males and 83<br />

females from South Dakotan Arikara sites and the New Mexican sites of<br />

Hawikuh and Jemez. A sample of 43 individuals of Chinese ancestry from<br />

California included males only. Statistical procedures for univariate<br />

analysis included descriptive statistics and ANOVA procedures to assess<br />

among group differences with a Bonferroni adjustment applied to pair-wise<br />

comparisons. Direct discriminant function analysis with cross-validation<br />

used the five measured variables (AL, CL, APB, TDB, MS2) to assess the<br />

362


overall effectiveness of multivariate ancestry determination. All statistical<br />

analyses were performed separately for males and females using Systat 11<br />

software.<br />

In males and females, the ANOVA analysis showed significant differences<br />

for all of the variables among African-Americans, European-<br />

Americans, and Native Americans. In pair-wise comparisons of males,<br />

African-American sacra were significantly shorter (AL and CL) narrower<br />

(APB) and more pinched (MS2) than either Native Americans or<br />

European-Americans. European-Americans had significantly greater curvature<br />

(HC), while Native Americans had significantly broader promontories<br />

(TDB) and higher indices. All trends were similar in females, and the<br />

only discrepancies in the results were that AL and CL differences were not<br />

significant between the African American and Native American samples<br />

for females. Discriminant function analysis correctly classified 70% of<br />

males and 74% of females when the three populations were included.<br />

While classificatory accuracy did increase to 79% for males when the categories<br />

were reduced to African American vs. non-African American, the<br />

hypothesis of a distinct morphology in the former population required some<br />

modification. Female accuracy did not change with the reduction to the<br />

two-category classification system. Correct classification was also highest<br />

for Native Americans at 81% for males and 88% for females versus only<br />

66% and 71% respectively for African Americans. When the Chinese<br />

sample was included, correct classification decreased to 66% for males<br />

(63% for African Americans; 70% for Chinese; 70% for Native Americans,<br />

and 64% for European Americans). While the Chinese males did show<br />

some of the expected similarities to Native Americans, they are also similar<br />

to African Americans in the measurements of pinching (MS2) and overall<br />

narrowness (APB). These results suggest that some of the hypothesized<br />

“unique” characteristics of the African Americans initially observed are<br />

contingent on the populations included in the analysis. The phenomenon<br />

of convergence among populations with the addition of larger, more diverse<br />

samples has been noted in other studies, but its critical importance in the<br />

accuracy of ancestry determination can not be overemphasized.<br />

The presentation of this research not only expands the available information<br />

characterizing population differences in post-cranial morphology, it<br />

also informs the forensic community on the limitations of using the sacrum<br />

in identifying the ancestry of skeletal remains. This research also serves as<br />

a case study of the effects of sample selection on classification accuracy relevant<br />

to all research and forensic applications that use osteometric determinations<br />

of ancestry.<br />

Ancestry, Osteometrics, Sacrum<br />

H5 Skull and Photo Superimposition Technique<br />

Used to Aid in the Identification Process<br />

Audrey L. Meehan, BGS*, and Robert W. Mann, PhD, Joint POW/MIA<br />

Accounting Command/Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will learn the use of 3D<br />

cranial/photo superimposition as a useful tool.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating an enhancement method useful for eliminating<br />

possible matches to narrow the search field for missing persons.<br />

The mission of the Joint POW/MIA Accounting Command Central<br />

Identification Laboratory is to search for, recover, and identify missing U.S.<br />

service personnel from past wars. Difficulties present themselves when the<br />

skeletal remains are of like biological profiles, as seen routinely at the CIL,<br />

and when mtDNA testing is not possible due to preservation of the osseous<br />

remains or lack of comparative family reference samples. This poster presentation<br />

shows the Skull/Photo Superimposition procedure currently being<br />

developed as part of an ORISE Fellowship Research Project. In conjunction<br />

with tested identification methods, this procedure may be useful in creating a<br />

short list of possible individuals when used as a means of exclusion.<br />

A line-up of photographs for blind analysis is set up with multiple<br />

views of each possible individual obtained from military records and<br />

families of the MIAs. Using an overlay program, the sagittal plane is<br />

aligned for each using the nasion and the base of the nasal spine as points<br />

of congruity between the photos and cranium. Adjustments are made by<br />

resizing the photo and tilting the skull to coincide with the subject’s angle<br />

in the photo. Alignment criteria scoring is used to rate the congruity of<br />

eight additional features within the superimpositions. Each feature is<br />

scored as a +1 good fit, -1 lack of alignment, or 0 for areas not seen in the<br />

photo or trauma to the skeletal remains. This scoring process results in a<br />

final comparison sum with a maximum of ten points for each photo and<br />

skull comparison. Individuals represented by the photos are considered<br />

eliminated from the possible list when inconsistencies in congruity cannot<br />

be explained. When the photos and skull have no apparent inconsistencies,<br />

this analysis may also be a useful tool for confirmation of identifications<br />

made by anthropological analysis, dental record, and historical record<br />

comparisons.<br />

Missing Persons, Superimposition, Skeletal Remains<br />

H6 Selection of Variables for Discriminant<br />

Analysis of Human Crania for<br />

Determining Ancestry<br />

Adam Kolatorowicz, MS*, 4510 Marcy Lane, # 41, Indianapolis,<br />

IN 46205<br />

The goal of this presentation is to present to the forensic anthropological<br />

community the value of using non-standard instruments in the analysis of<br />

unidentified human crania.<br />

This presentation will impact the forensic community and/or humanity<br />

by suggesting that biological anthropology laboratories purchase radiometers<br />

and coordinate calipers to record data that would be missed with spreading<br />

and sliding calipers. Standard measurements can be combined with nonstandard<br />

measurements to produce more powerful discriminant function formulae<br />

for the prediction of ancestry.<br />

Forensic anthropologists use the computer program FORDISC 2.0<br />

(FD2) as an analytical tool for the determination of ancestry of unknown individuals.<br />

There are an almost endless number of measurements that can be<br />

taken on the human skeleton, yet FORDISC includes only 78 measurements<br />

for its analysis. In particular, the program will only utilize up to 24 measurements<br />

of the cranium. These 24 cranial variables are used because they<br />

require simple, relatively inexpensive instruments that most biological<br />

anthropology laboratories have (spreading and sliding calipers). Also, individuals<br />

with a basic knowledge of the anatomical landmarks can take the<br />

measurements with relative ease. Unconventional measurements of the<br />

cranium require unusual, costly instruments (such as the radiometer and coordinate<br />

caliper) and are more difficult to take. This poster will examine which<br />

measurements of the human cranium provide the greatest classificatory<br />

power when constructing discriminant function formulae for the determination<br />

of ancestry and will answer the question of whether the use of variables<br />

that require more time, training, and equipment are worth the effort.<br />

Sixty seven cranial measurements were taken on 155 adult human<br />

crania from three different ancestral groups: (1) African American (n=50),<br />

(2) European American (n=50), and (3) Coyotero Apache (n=55). The 67<br />

measurements were broken up into four subsets for statistical analysis: (1)<br />

FD2 (1996), (2) Howells (1973), (3) Gill (1984), and (4) All<br />

Measurements. A predictive discriminant analysis with a forward stepwise<br />

methodology of p = 0.05 to enter and p = 0.15 to remove was run using the<br />

computer software package SPSS 13.0. The analysis produced four sets of<br />

363 * Presenting Author


discriminant function formulae. The classificatory power of each set of formulae<br />

was determined by comparing the hit-rate estimation (the percent<br />

correctly classified) of each of the subsets. First, the resubstitution rate was<br />

compared to the leave-one-out (LOO) rate for each subset and then both<br />

rates were compared across all subsets. The FD2 subset had a resubstitution<br />

rate of 91% and LOO rate of 85.8%. The Howells subset had a<br />

resubstitution rate of 96.8% and a LOO rate of 94.2%. The Gill subset had<br />

a resubstitution rate of 64.5% and a LOO rate of 62.6%. Finally, the All<br />

Measurements subset had a resubstitution rate of 94.8% and a LOO rate of<br />

93.5%. The non-standard measurements of the Howells subset performed<br />

the best and the standard FD2 measurements performed third best. Nonstandard<br />

measurements incorporated in the Howells formulae included<br />

frontal subtense, zygoorbitale radius, biasterionic breadth, occipital<br />

fraction, and prosthion radius.<br />

The formulae provided the best separation of the Apache group from<br />

the other two groups. Stepwise analysis showed that the use of more variables<br />

is not necessarily better. Not all of the variables were included in the<br />

final formulae. Only 12 of the 24 FD2 measurements, 18 of the 61 Howells<br />

measurements, 4 of the 6 Gill measurements, and 14 of the 67 All<br />

Measurements were used. Results show that the non-standard measurements<br />

can be useful for determining the ancestry of unknown human<br />

crania. These measurements could be especially useful for incomplete<br />

crania. It is suggested that biological anthropology laboratories purchase<br />

radiometers and coordinate calipers to record data that would be missed<br />

with spreading and sliding calipers. Standard measurements can be combined<br />

with non-standard measurements to produce more powerful discriminant<br />

function formulae for the prediction of ancestry.<br />

Ancestry Determination, Discriminant Analysis, Radiometer and<br />

Coordinate Calipers<br />

H7 Age of Closure of the Spheno-Occipital<br />

Synchondrosis in the Arabian Gulf Region<br />

M. Essam E. El-Sheikh, MD, PhD*, and Salwa Ramadan, MD,<br />

PO Box 1747, Farwaina 1747, Kuwait<br />

After attending this presentation, attendees will be provided with age<br />

standards for fusion of the Spheno-occipital Synchondrosis based on an<br />

Arabian Gulf sample.<br />

This presentation will impact the forensic community and/or<br />

humanity by establishing normative age identification standards for<br />

Arabian Gulf area populations.<br />

The closure of the spheno-occipital synchondrosis may be regarded as<br />

a significant age marker when investigating incomplete human remains.<br />

However, the age at which the Spheno-occipital synchondrosis ossifies is<br />

still a matter of debate. Fusion has been described in individuals aged as<br />

early as ten years and as late as 25 years. The present study investigates the<br />

age of fusion of the spheno-occipital synchondrosis in a sample from the<br />

Arabian Gulf as a trial to establish a reference standard to be used locally.<br />

A total number of 207 subjects with known ages (between 9 and 23 years)<br />

were selected among those who had computed tomography (CT) examination<br />

for visualization of the base of skull. The state of closure of the<br />

spheno-occipital synchondrosis, as seen on high resolution thin-section CT<br />

scans, was recorded as closed or open. Partial closure was categorized as<br />

open. In males, complete closure of the spheno-occipital synchondrosis<br />

was observed as early as 12 years old, and all males past the age of 18 years<br />

exhibited closed synchondroses. In females, the corresponding ages were<br />

11 years for earliest fusion and 16 years for the age in which all females<br />

demonstrated complete closure.<br />

Arabian Gulf, Age of Closure, Spheno-Occipital Synchondrosis<br />

* Presenting Author<br />

H8 Sexual Dimorphism in the Subadult Mandible:<br />

Quantification Using Geometric Morphometrics<br />

Daniel Franklin, PhD, and Charles E. Oxnard, MBChB, PhD, Centre for<br />

Forensic Science, School of Anatomy and Human <strong>Bio</strong>logy, The University of<br />

Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia<br />

6009, Australia; Paul O’Higgins, MBChB, PhD, Functional Morphology<br />

and Evolution Research Group, The University of York, Heslington, York<br />

Y010 5DD, United Kingdom; and Ian Dadour, PhD*, and Robin Napper,<br />

BA, Centre for Forensic Science, The University of Western Australia, 35<br />

Stirling Highway, Crawley, Perth, Western Australia 6009, Australia<br />

The goal of this presentation is to outline how geometric morphometric<br />

methods can be applied to problems in forensic anthropology. It will illustrate<br />

how these methods can further knowledge about morphological differences in<br />

the subadult skeleton with increased sensitivity and objectivity compared to<br />

standard analytical methods.<br />

This presentation will impact the forensic community and/or humanity<br />

by providing data, based on a quantitative, rather than subjective analysis of a<br />

reference skeletal sample, allowing a degree of sex determination in the<br />

subadult mandible. Further, geometric morphometric techniques have special<br />

relevance in forensic anthropology because they are a practical alternative to<br />

biomolecular methods, which are often unavailable due to either economic<br />

and/or biological constraints, and are unable to be readily applied in the field.<br />

The determination of sex from human skeletal material is of fundamental<br />

importance for any forensic investigator. The most favored methods are<br />

selected in the hope of providing a high degree of accuracy, but also for suitability<br />

of assessment of material that is often damaged or fragmentary. Though<br />

these methods are suitable when the recovered material is adult, when applied<br />

to the subadult skeleton, the accuracy of sex determination falls markedly.<br />

Thus, the inability to reliably assign sex in the subadult age range is a significant<br />

problem facing even the most experienced forensic anthropologist.<br />

There have been numerous attempts to differentiate males from females<br />

on the basis of the immature skeleton. Loth and Henneberg (2001) claimed<br />

that shape differences in the mandible can predict sex with an accuracy of<br />

81%. Subsequent research, however, using different population samples did<br />

not achieve such high classification accuracy. Though sexual dimorphism<br />

exists in the subadult mandible, two key issues require further clarification: 1)<br />

whether this bone can discriminate immature individuals; 2) whether such differences,<br />

if they exist, characterize the sample population examined, rather<br />

than reflecting universal morphological differences. To investigate these<br />

issues, techniques derived from the growing discipline of geometric morphometrics<br />

are applied. Geometric morphometric methods utilize landmark data<br />

to visualize and quantify shape changes, allowing detailed assessment of differences<br />

among specimens.<br />

The authors report here on new morphometric data examining sexual<br />

dimorphism in the subadult human mandible. The material was sourced primarily<br />

from dissection hall subjects of European and indigenous southern<br />

African origin, consequently the sex and a statement of age are known for each<br />

individual. Thirty eight bilateral three-dimensional landmarks were designed<br />

and acquired using a Microscribe G2X portable digitizer. Measurement error<br />

in landmark acquisition was assessed by digitizing six different specimens on<br />

six different occasions; the test demonstrated that errors of precision are small<br />

with respect to sample variability. The shape analysis software morphologika<br />

(www.york.ac.uk/res/fme) was used to analyze the three-dimensional coordinates<br />

of the landmarks. A principal components analysis (PCA) explored the<br />

relationships between samples of male and female mandibles. The shape differences<br />

were then visualized and explored using three-dimensional wireframe<br />

and rendered models, and further interpreted using thin plate splines.<br />

This presentation will illustrate and reinforce the concept that population<br />

specific differences in sexual dimorphism must be considered in order to<br />

achieve optimal sex discrimination. This presentation will benefit the forensic<br />

community by providing data, based on a quantitative, rather than subjective<br />

analysis of a reference skeletal sample, allowing a degree of sex determination<br />

in the subadult mandible.<br />

Sex Determination, Subadult, Mandible<br />

364


H9 Forensic GPR: Using Ground-Penetrating<br />

Radar to Search for Buried Bodies<br />

Johh J. Schultz, PhD*, University of Central Florida, Department of<br />

Sociology and Anthropology, Orlando, FL 32816-1360<br />

After attending this presentation, attendees will learn how GPR is used to<br />

search for buried bodies in a forensic context and how to find a GPR consultant.<br />

This presentation will impact the forensic community and/or humanity<br />

by providing a better understanding of how GPR can be used to search for<br />

buried bodies.<br />

The use of ground-penetrating radar (GPR) as a search tool for buried<br />

bodies and evidence has become a valuable search option for forensic investigators.<br />

This equipment is not only important to locate forensic targets, but it<br />

is just as important to clear suspected areas where a body is thought to have<br />

been buried so investigations can be directed elsewhere. Ground-penetrating<br />

radar is a non-invasive or non-destructive search method that preserves the site<br />

during a survey. The equipment is used prior to excavating to identify target<br />

areas for invasive testing. Ground-penetrating radar is now routinely used in<br />

conjunction with other forensic search methods because the cost of the<br />

equipment has decreased and the equipment has become easier to operate.<br />

The purpose of this paper is to discuss GPR methodology while emphasizing<br />

how this equipment can be used to search for buried bodies by drawing from<br />

forensic case examples and research by the author.<br />

Standard GPR systems consist of a control unit, an antenna containing a<br />

transmitter and a receiver, and a display monitor that can also be a laptop.<br />

Antenna frequencies ranging from 400- to 500-MHz are appropriate for most<br />

forensic and archeological applications because they provide an excellent<br />

compromise between depth of penetration and resolution of subsurface features.<br />

The equipment can be configured a number of ways such as hand<br />

pulling the antenna with the monitor secured to the body via a harness, or the<br />

monitor can be placed at a fixed location while the antenna is hand pulled. In<br />

addition, the newest option integrates all of the components into a cart that can<br />

be pushed while performing a survey.<br />

When the equipment is used during a survey, the antenna is emitting electromagnetic<br />

waves into the ground as it is being pulled or pushed. As the waves<br />

encounter areas of contrasting properties, such as a grave or metallic object, the<br />

imagery is captured by the equipment as an anomaly; this is not an exact picture<br />

of the buried object in the ground but an indication that something is buried.<br />

Depending on the soil type and the burial scenario (e.g., wrapping the body and<br />

adding non-biologic items to the grave) an anomaly for a grave or buried body<br />

may appear as a distinct and localized hyperbolic shape or a localized soil disturbance.<br />

Once target areas are identified, invasive testing will be required to<br />

determine the identity of most features that produce anomalies.<br />

The two most limiting factors of GPR surveys that are conducted for<br />

forensic contexts are site conditions and operator experience. The best conditions<br />

for GPR surveys include open areas that are comprised of dry and sandy<br />

soils that are relatively free of large pieces of debris and stone cobbles. False<br />

anomalies can be a problem in soil containing debris and stone cobbles and in<br />

areas that contain trees or brush. The roots and stumps can be detected as<br />

anomalies that are similar in size to anomalies produced by buried bodies.<br />

Before, a GPR operator is consulted for a forensic survey, it is important to<br />

inquire about their experience. They should have experience searching in<br />

forensic and archaeological contexts so they would be familiar with detecting<br />

and interpreting anomalies produced by small features such as a buried body or<br />

grave and not large geologic features. In addition, GPR can be the most<br />

valuable search option in a forensic context when a survey for a body needs to<br />

be conducted over a hard-packed surface such as cement or blacktop. For<br />

example, if the search for a body needed to be conducted over the cement slab<br />

of a residential home, the GPR survey could first be performed to identify the<br />

location of target areas that required further testing. There would then be<br />

limited damage to the concrete because invasive testing would only be limited<br />

to target areas.<br />

Ground-Penetrating Radar (GPR), Search Methods, Forensic<br />

Anthropology<br />

H10 A Case of Historical Homicide<br />

in Northern Nevada<br />

Ryan W. Schmidt, BS*, 1424 Santa Anita Drive, Apartment B, Las Vegas,<br />

NV 89119; and Jennifer L. Thompson, PhD, University of Nevada, Las<br />

Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154<br />

The goal of this presentation is to provide the attendee with an introduction<br />

to aspects of cranial reconstruction, the difficulties of distinguishing<br />

traumatic from taphonomic effects on bone, and to provide a brief<br />

history of the Chinese population in northern Nevada in the latter part of the<br />

19th century. In addition, this presentation will open a dialogue about the<br />

geo-political climate resonating among ethnic groups in the western United<br />

States at the turn of the 20th century, and the violence directed toward one<br />

of those groups, Chinese immigrants.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating through its application of forensic techniques<br />

within a broader historical framework, by confirming attitudes of hostility<br />

directed against particular ethnic groups during the nation’s diverse history.<br />

On 10 April 2002, construction workers were operating a backhoe to<br />

expose an irrigation line on the east side of the events center in Winnemucca,<br />

Nevada and noticed several bones sticking out of the dirt that appeared to be<br />

human. The local police were notified and a case report issued (no. 02-0351).<br />

Photographs were taken of the immediate area and the exposed remains,<br />

which were then processed by the Washoe county crime lab. The bones<br />

appeared to have been deposited for some time and were determined to be of<br />

historic, rather than immediate forensic, relevance. They were then transported<br />

to the University of Nevada, Reno where Dr. S. Livingston verified the<br />

remains to be human, most likely male, and corroborated the historical nature<br />

of burial by identifying a porcelain button of a style manufactured between<br />

the years 1850 and 1880. Dr. Livingston also noted distinctive shoveling on<br />

the maxillary central incisors, a variable, yet quantifiable non-metric trait<br />

found among Sino-American populations (East and North Asia, Americas).<br />

The skeletal remains were transported to the Nevada State Museum, and then<br />

were subsequently turned over to the University of Nevada, Las Vegas for<br />

additional analyses.<br />

Historical accounts of northern Nevada during the years 1860-1880<br />

indicate a steady influx of Chinese immigrants to meet the labor-intensive<br />

needs of the trans-continental railroad (Chung et al. 1999). In the year<br />

1868, the United States signed an agreement with China, called the<br />

Burlingame Treaty, to allow for free, unrestricted immigration and trade<br />

between the two nations. This brought numerous Chinese males seeking<br />

employment with the railroads or in various other occupations in many<br />

small towns across the west. This caused severe agitation among the local<br />

settlers who viewed the Chinese as competitors for jobs and as cheaplaborers<br />

brought in purposefully by the railroad companies and politicians<br />

to undercut their wages. A number of anti-Chinese acts were passed by<br />

Congress in the late 1800’s, with particular impact upon the remaining<br />

Chinese found in towns such as Winnemucca. Newspaper articles and<br />

death records document many incidents of violence directed toward the<br />

Chinese workers, often resulting in death. The human remains from<br />

Winnemucca attest to this turbulent time.<br />

This study presents a biological profile of an unknown individual of<br />

Chinese origin. Restoration of the skull allowed metric traits to be measured<br />

and used, along with non-metric traits, to assess ancestry. Cranial<br />

reconstruction was achieved using a mix of polyvinyl acetate and acetone,<br />

common substances often used to aid restoration of fragmentary remains.<br />

Adequate cranial elements were preserved to allow comparable anatomical<br />

restitution. Importantly, the cranial vault exhibits radiating fractures emanating<br />

from the right parietal and occipital. Restoration allowed a more<br />

accurate assessment of whether these fractures were due to blunt-force<br />

trauma perimortem or to taphonomic factors that occurred after internment.<br />

The results indicate that the ectocranial beveling was the result of trauma.<br />

This work supports a case of historical homicide and substantiates accounts<br />

of violence directed toward the Chinese during the late 19th Century.<br />

365 * Presenting Author


A case study where forensic techniques were applied to human<br />

remains buried in an historical context is presented. Using forensic<br />

methods in such cases can help to chronicle and substantiate a lamentable<br />

time in history that should, nonetheless, not be forgotten.<br />

<strong>Bio</strong>logical Profile, Trauma, History<br />

H11 What Matters - Size or Shape?<br />

Three-Dimensional Analysis of<br />

Craniofacial Sexual Variation<br />

Among American Populations<br />

Ann H. Ross, PhD*, North Carolina State University, Department of<br />

Sociology and Anthropology, Campus Box 8107, Raleigh, NC 27695-<br />

8107; Erin H. Kimmerle, PhD, University of South Florida, Department<br />

of Anthropology, 4202 East Fowler Avenue, SOC 107, Tampa, FL 33620-<br />

8100; Dennis E. Slice, PhD, Institute for Anthropology, University of<br />

Vienna, Vienna, Austria; and Anthony B. Falsetti, PhD, University of<br />

Florida, CA Pound Human ID Laboratory, Department of Anthropology,<br />

Gainesville, FL 32611<br />

After attending this presentation, attendees will understand the sexual<br />

dimorphic variation among different American populations, the various<br />

effects of allometry in assessing sexual dimorphism, and the impact of<br />

allometry on sex estimation from skeletal cranio-facial remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that shape is as an important factor as size in<br />

the assessment of sex estimation. It is further demonstrated that 3D<br />

analysis of the cranio-facial region, through the use of Generalized<br />

Procrustes Analysis, may be an important tool in sex estimation. Finally, it<br />

is shown that population specific standards are needed for size and shape<br />

assessment in the estimation of sex.<br />

One of the four pillars of the anthropological protocol is the estimation<br />

of biological sex. The estimation of sex along with the estimation of<br />

ancestry are critical first steps in a biological profile, as other elements in<br />

the analysis of human skeletal remains, such as age and stature, are sex and<br />

ancestry specific and cannot be adequately determined without this very<br />

basic assessment. The standard protocol used consists of visually assessing<br />

individual skeletal morphological features of the cranium and mandible and<br />

the Os coxae based on a scale of 1-5, ranging from “Male” to<br />

“Indeterminate” to “Female.” These morphological traits are then interpolated<br />

or “averaged” by the investigator to estimate sex. However, visual<br />

assessments of these traits are subjective and the weight given to any particular<br />

trait varies among observers based on training and experience.<br />

Further problems may arise when applying these methods to different populations,<br />

who may innately differ in stature, physique, or general<br />

robustness. Consequently, a skeletally robust female may appear to be<br />

“male,” particularly in light of cross-population comparisons.<br />

A study presented by Rosas and Bastir (2002, Thin-Plate Spline of<br />

Allometry and Sexual Dimorphism in the Human Cranio-Facial Complex,<br />

AJPA 117(3): 236-245) investigating allometry and sexual dimorphism<br />

among a Portuguese population, demonstrated that size and sex had a significant<br />

influence on the shape of the cranio-facial complex. They found<br />

that both size and sex independently influenced shape, demonstrating that<br />

there is a greater amount of information to be obtained than from the visual<br />

methods used to assess cranio-facial morphology.<br />

The purpose of this study is to further examine the effect of size and<br />

sex on cranio-facial shape in Americans to better understand the allometric<br />

foundation of the skeletal traits currently used for sex estimation from the<br />

skeleton and to investigate possible cross-population differences.<br />

For this project, 3D coordinates of 17 standard craniofacial landmarks<br />

were collected using a Microscribe-3DX digitizer. Data were collected for<br />

118 White and Black males and females from the W.M. Bass Donated<br />

Collection and the Forensic Data Bank, University of Tennessee -<br />

Knoxville.<br />

* Presenting Author<br />

Raw coordinate data are not directly comparable as shape variables to<br />

compare specimens since each set is collected in its own coordinate system.<br />

The data must be translated and rotated to a common coordinate system and<br />

scaled to a common size. To undertake these transformations a generalized<br />

Procrustes analysis (GPA) was used that minimizes the sum of squared distances<br />

between landmarks of each skull and those of an iteratively-computed<br />

mean. The resulting shape variables and Centroid Size were then<br />

used in the subsequent multivariate analyses. A principal component<br />

analysis (PCA) of the covariance matrix was conducted on the GPA transformed<br />

variables to reduce the dimensionality of the data to meet the<br />

requirements of the parametric test. A multivariate analysis of covariance<br />

(MANCOVA) was performed using the PCA scores to test whether size<br />

and sex have significant effects on the average shape of males and females.<br />

Concurring with Rosas and Bastir’s study, no difference in the<br />

influence of size on shape between males and females (no significant<br />

size*sex interaction) is found. Thus, the shape differences observed<br />

between males and females are not solely dependent on their respective<br />

sizes. In this study, sex, controlling for size, had a significant influence on<br />

shape in both American Whites (F=2.90; df=39; Pr > F= 0.0024) and<br />

Blacks (F=2.81; df=37; Pr>F=0.0035). Interestingly, the size effect did not<br />

have a significant influence on shape in either Whites (F=1.69; df =39;<br />

Pr>F=0.08) or Blacks (F=1.09; df=37; Pr>F=0.40). These results show<br />

that sexual dimorphism is based on underlying unique sex differences not<br />

simply a matter of size.<br />

Geometric Morphometry, Sexual Dimorphism, Americans<br />

H12 Estimation of Living Stature From<br />

Selected Anthropometric (Soft Tissue)<br />

Measurements: How do These Compare<br />

With Osteometric (Skeletal) Measurements?<br />

Bradley J. Adams, PhD*, Office of Chief <strong>Medical</strong> Examiner, City of<br />

New York, 520 First Avenue, New York, NY 10016; and Nicholas P.<br />

Herrmann, PhD, University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37996<br />

The goal of this presentation is to provide research results pertaining<br />

to the estimation of living stature from anthropometric measurements. The<br />

research compares the accuracy of models using soft tissue measurements<br />

to models using skeletal measurements. The use of soft tissue measurements<br />

would be of particular utility when working with dismembered<br />

bodies, but the results indicate that it is worth the added time and effort to<br />

use skeletal measurements when feasible.<br />

This presentation will impact the forensic community and/or<br />

humanity by assisting forensic anthropologists working in mass fatality<br />

incidents and dismemberment cases.<br />

Forensic anthropologists play an integral part in mass fatality resolution,<br />

especially in the triage and analysis of fragmentary human remains.<br />

Body dismemberment is a common occurrence in traumatic events such as<br />

aircraft crashes. Critical anthropological information will include body part<br />

identification (perhaps even determining human vs. non-human), recognition<br />

of commingling, documentation of trauma, and assessment of the<br />

biological profile (age, race/ancestry, sex, and stature).<br />

Estimation of living stature has obvious utility in the identification<br />

process, especially when individuals are observed to be particularly tall or<br />

short in comparison to their associated population. Typically, anthropologists<br />

estimate stature from the measurement of long bone length. As emergency<br />

response to a mass fatality is generally immediate, the presence of<br />

soft tissue on the human remains necessitates dissection to expose skeletal<br />

landmarks for measurement. As part of this research, a test was performed<br />

to observe the accuracy of regression formulae derived from standard<br />

anthropometric (i.e., soft tissue) data compared to osteometric (i.e.,<br />

skeletal) data. The goal was to determine whether anthropometric mea-<br />

366


surements could be used in place of osteometric measurements, which<br />

would remove the added time and effort associated with dissection when<br />

working with dismembered remains.<br />

<strong>Medical</strong> personnel have used anthropometric measurements to<br />

estimate stature of the living (particularly the elderly and disabled) who are<br />

not able to stand erect. High correlations are cited (e.g., Cheng et al 2001)<br />

but most regression equations use age as a variable in the formulae. Since<br />

one of the goals of a forensic analysis during a mass fatality is identification,<br />

age is unknown and most of the published equations from the health<br />

literature are not appropriate.<br />

Using National Health and Nutrition Examination Survey (NHANES)<br />

data from 1998-2002 it was possible to construct anthropometric regression<br />

equations from a large sample of individuals. Regression formulae were<br />

derived from the NHANES data based on age, race/ancestry, and sex. The<br />

available anthropometric variables included Standing Height, Upper Arm<br />

Length, and Upper Leg Length. Values for the limb portions were recorded<br />

to the nearest 0.1 centimeter using a measuring tape. From this data set, a<br />

sample of White and Black males between the ages of 18 and 50 were<br />

selected (n=3353). The strength of correlation between these variables was<br />

compared with those presented by Trotter and Gleser (1958) for skeletal<br />

measurements of White and Black males using the Maximum Length of the<br />

Humerus and the Maximum Length of the Femur.<br />

It was found that the correlation between stature and the selected<br />

skeletal measurements is higher than the correlation seen for the soft tissue<br />

measurements (Tables 1-3). It was hypothesized that the lower correlation<br />

between the anthropometric data and stature may be related to measurement<br />

bias. For example, there is certain to be individual variation of<br />

soft tissue thickness (e.g., excessive fat) that would not be related to height<br />

and may skew measurement accuracy. In order to test this assumption,<br />

Body Mass Index (BMI) was factored into the anthropometric equations.<br />

BMI proved to be a significant contributor to the regression equations.<br />

Individuals with a BMI value over 25 were removed from the sample and<br />

the correlations were re-calculated. The reduced BMI samples show<br />

slightly higher correlations as compared to the full samples (Tables 1 and<br />

2). Correlations with standing height improved with the removal of individuals<br />

with high BMI scores (>25).<br />

Table 1: Correlation of Upper Arm Length with Standing<br />

Height in 18-50 Year Old Males (NHANES data)<br />

White Black<br />

All (n=1076) BMI


method is locating alpha. The Gill definition involves drawing a line from<br />

zygoorbitale to nasale inferius and eyeballing the deepest part of the<br />

concave contour. For this analysis, the digitizer pointer was traced from<br />

zygoorbitale to nasale inferius and the alpha point on each side was calculated<br />

directly as the point of maximum departure from the straight line from<br />

zygoorbitale to nasale inferius. Other challenging landmarks are the<br />

‘deepest point on the nasal bridge,” the points used to calculate subtenses,<br />

which are also apparently eyeballed. The digitizer pointer was traced from<br />

nasion inferiorly along the midline and the smallest distance to each paired<br />

alpha, maxillofrontale, and zygoorbitale determined the subtense points.<br />

Statistics were performed using SAS and SYSTAT. Reported classification<br />

accuracies are cross-validated.<br />

Results were somewhat in agreement with Gill et al. (1988) with some<br />

important differences. While 103 of 117 (88%) American Indians and 88 out<br />

of 95 (93%) Blacks classified as non-White, only 59 of 95 (62%) Whites<br />

classified correctly. A sample of 20 Eskimos was classified 100% correctly.<br />

An analysis of the Gill measurements revealed that there are sex differences<br />

in the alpha index (p < .001) and the zygoorbital index (p < .05). In looking<br />

at measurement and index distributions, it was also clear that certain measurements<br />

(even when standardized by sex) showed greater differences<br />

between American Indians and Whites than the indices in which they were<br />

used. Further, DFA uses different weights according to the contribution of<br />

each variable to separating groups and their correlations to the other variables.<br />

In the Gill method, each index receives equal weight. Analyzing the<br />

three Gill indices in DFA, 79% of the Indians and 74% of the Whites were<br />

correctly classified, but the alpha index did not significantly contribute to the<br />

discriminant function. Analyzing the six Gill measurements used to calculate<br />

the indices classified the American Indians and Whites 90% correctly, and the<br />

alpha cord was especially valuable. A three-way DFA of American Indians,<br />

Blacks, and Whites classified 72% correctly.<br />

The advantages of more extensive data collection became apparent<br />

when the interlandmark distances from 20 landmarks were calculated. In<br />

the two-way DFA, American Indians and Whites were correctly classified<br />

95% of the time using up to 25 ILDs including alpha landmarks, and 92%<br />

without the alpha landmarks. In a three-way DFA, American Indians,<br />

Blacks, and Whites were classified 85% correctly using 19 interlandmark<br />

distances, including alpha landmarks, and 82% correctly without them.<br />

Gill et al. (1988) discovered important measurements that differ<br />

between American Indians and Whites and outlined specific measurements<br />

for discriminating between them. However, greater differences were found<br />

through collecting better-defined landmarks, and employing multivariate<br />

methods such as DFA. DFA also provides posterior probabilities and other<br />

statistics so one can know how strongly an individual classifies into a particular<br />

group. Also, a more comprehensive data collection routine captured<br />

more differences, some clearly less perceptible, between groups. As a<br />

result, the original problem of misclassification of Blacks as American<br />

Indians was greatly reduced.<br />

Cranial Landmarks, Interlandmark Distances, Discriminant<br />

Function Analysis<br />

H14 An Assessment of Non-Metric<br />

Traits of the Mandible Used in<br />

the Determination of Ancestry<br />

Nicolette M. Parr, MS*, Department of Anthropology, University of<br />

Florida, Gainesville, FL 32611<br />

The goal of the current study is to present results of the analysis of<br />

non-metric traits of the mandible used in the determination of ancestry and<br />

to demonstrate the utility of ordinal regression in the examination of<br />

discrete skeletal characteristics.<br />

This study is the first multivariate study conducted on discrete<br />

mandibular traits used for the determination of ancestry. Employing<br />

ordinal regression on a large sample of identified individuals, this study<br />

determines whether sex and age affect the incidence of each trait indepen-<br />

* Presenting Author<br />

dently of ancestry. Additionally individuals from two separate continents<br />

are examined; therefore, the findings are applicable for worldwide use.<br />

While ancestry determination from the cranium has been established as<br />

reliable in the literature, a suite of characteristics derived from multiple<br />

bones is preferred. This presentation will impact the forensic community<br />

and/or humanity by demonstrating how the inclusion of mandibular traits<br />

builds on previous non-metric studies and helps to increase the reliability<br />

of ancestral determination from the skeleton.<br />

In the field of forensic anthropology, the construction of a biological<br />

profile is of utmost importance in the identification of a decedent. The biological<br />

profile includes the age, sex, stature, and ancestry of the individual.<br />

Of these, ancestry is considered the most difficult and least precise.<br />

The purpose of this study is to build on previous non-metric studies of<br />

the mandible to determine whether it may be used to differentiate between<br />

individuals of European and African ancestry. Several studies have shown<br />

that ancestry can be determined by looking at non-metric characteristics of<br />

the cranium. Unfortunately, few of these studies have included the<br />

mandible. Many relevant studies suffer from small sample sizes, did not<br />

control for age or sex, or were derived from collections whose ancestry was<br />

anatomically determined rather than known. Many of the traits commonly<br />

used for the determination of ancestry are found on the face. However,<br />

these facial bones are rather thin, are the most fragile part of the skull, and<br />

are usually the first to be destroyed by taphonomic forces. The mandible,<br />

however, is quite dense and is better able to survive in an archeological or<br />

forensic setting. This study looked at skeletal remains from the Hamann-<br />

Todd Collection, the Terry Collection, a forensic collection at the<br />

University of Florida, and the Pretoria Bone Collection in South Africa. A<br />

large sample of modern individuals (n = 921) from two continents is used,<br />

all having documented age, sex, and ancestry. Twelve non-metric traits<br />

were examined: ramus inversion, location of inversion, gonial eversion,<br />

mandibular border form, mandibular tori, robusticity of muscle attachment<br />

sites, mylohyoid bridging, accessory mandibular foramen, chin prominence,<br />

chin shape, number of mental foramina, and the position of the<br />

mental foramen. Europeans and Africans were analyzed to determine how<br />

traits differed from one broad ancestral group to the other. Additionally, the<br />

smaller subgroups were compared (e.g. European American vs. European<br />

African) to see if there was any difference in trait expression between the<br />

more closely related groups.<br />

Wilcoxon Signed Ranks Test was used to determine if there was a<br />

relationship between trait frequency and side. This test was also used to see<br />

if there was a significant amount of intra-observer error between the first<br />

and second scorings of the Florida sample. Ordinal regression was utilized<br />

to determine the effect, if any, that age, sex, ancestry, and the interaction<br />

between sex and ancestry have on any given non-metric trait.<br />

Six traits differed significantly between the left and right sides. Intraobserver<br />

error was relatively low, with two traits showing a significant difference<br />

between the first and second observations. Nine out of 12 traits<br />

were significantly affected by ancestry. However, due to the effects of sex,<br />

age, and the sensitivity of ordinal regression, some of these traits may be<br />

less useful than others in determining ancestry in unknown cases. Ramus<br />

inversion, gonial inversion, muscle attachment sites, chin shape, number of<br />

mental foramina, and position of the mental foramen are the most effective<br />

traits to use when determining ancestry. However, caution must be taken<br />

because all of them except the number of mental foramen are significantly<br />

affected by sex. The number of mental foramina may be the most reliable<br />

trait because it is statistically and practically significant and it is not affected<br />

by sex, age, or the interaction between sex and ancestry. However, multiple<br />

foramina are very rare in each population studied.<br />

European individuals were found to most likely posses little to no<br />

ramus inversion, no gonial eversion (straight gonia), gracile muscle<br />

attachment sites, a round or square chin, one mental foramen, and a more<br />

anteriorly placed mental foramen. Individuals of African descent were<br />

more likely to display moderate to extreme ramus inversion, gonial<br />

inversion, a round chin, and multiple mental foramina.<br />

Ancestry, Non-Metric Traits, Mandible<br />

368


H15 Discriminant Function Analysis as<br />

Applied to Mandibular Morphology<br />

to Assess Population Affinity<br />

Gregory E. Berg, MA*, Joint POW/MIA Accounting Command,<br />

310 Worchester Avenue, Hickam AFB, HI 96853-5530<br />

After attending this presentation, attendees will be able to use<br />

mandibular morphological data as a tool to potentially diagnosis the biological<br />

affinity of an unknown individual.<br />

This presentation will impact the forensic community and/or humanity<br />

by informing the forensic community of another potential tool for use in the<br />

identification process.<br />

Determination of population affinity using the mandible has been<br />

gaining attention. Researchers have commonly used mandibular metric data<br />

to classify American Whites and Blacks, but analyses using three or more<br />

populations (either mandibular metrics or morphology) are rarely undertaken.<br />

While mandibular morphological state frequencies can be found for<br />

three (or more) groups in the same study, complex statistical modeling of<br />

these frequencies is rarely encountered. This paper examines the ability to<br />

correctly classify an unknown individual using mandibular morphology<br />

through discriminant function analysis.<br />

Seven morphological traits of the mandible are utilized. They include<br />

the lower border shape, chin shape, ascending ramus shape, ascending ramus<br />

profile, gonial angle flare, mandibular torus, and posterior ramus edge<br />

eversion. Categorical scoring of these traits has been previously described,<br />

though in the present study, a modification to the scoring of the lower border<br />

was made. Here, the border has been scored as either straight, undulating,<br />

partial rocker, or rocker. Categorical assessments were converted to an<br />

ordinal score for each trait. The ordinal scores were assigned in step-wise<br />

fashion based on a perceived complexity of each trait. For example, the<br />

mandibular border was scored as a one for straight to a four for rocker,<br />

assuming that a curved form is more complex than a straight form.<br />

Some statisticians have argued that ordinal or binary variables can be<br />

used in linear discriminant functions instead of metric variables. Recently,<br />

several researchers have applied this type of analysis to cranial non-metric<br />

traits. Using linear discriminant functions, 90% classification rates were<br />

achieved between populations from just a few variables. In depth statistical<br />

analysis of their data did not yield substantial objections concerning the application<br />

of the generated discriminant functions.<br />

The presented analysis concentrates on male individuals from approximately<br />

ten different populations that include American Whites and Blacks,<br />

Cambodians, Vietnamese, Central American Hispanics, and Native<br />

Americans. The sample size is in excess of 1000 individuals; all individuals<br />

are assumed to have from late 19th to 20th century birth years. Linear discriminant<br />

function analysis was undertaken not only using two group comparisons,<br />

but also three, four, and five group comparisons. Each analysis was<br />

cross-validated using a leave-one-out method for accuracy assessment. The<br />

only variable to continuously fall out of the analyses was the ascending ramus<br />

profile shape.<br />

Five population comparisons yielded a 54% cross-validated accuracy<br />

rate, approximately three times better than the expected accuracy if based on<br />

chance alone. Two group comparisons fared better, some in excess of 83%,<br />

while three group comparisons approached 70% accuracy rates. Further, two<br />

group comparisons of closely related populations (Cambodian, Vietnamese)<br />

also appeared to function well, with a 74% accuracy rate. As a means of comparison,<br />

FORDISC 2.0 was used to determine classification rates for six or<br />

seven craniofacial/vault measurements, using three populations. In these<br />

analyses, classification rates of 62-87% were generated, depending on the<br />

populations and measurements selected. Vault measurements faired better<br />

than craniofacial measurements in these comparisons. Based on these results,<br />

the use of discriminant functions to assess population affinity via mandibular<br />

morphology is argued to be a valuable tool for the forensic anthropologist.<br />

Mandibular Morphology, Population Affinity, Statistics<br />

H16 Morphoscopic Traits and the Statistical<br />

Determination of Ancestry II<br />

Joseph T. Hefner, BA, MA*, Department of Anthropology, University of<br />

Florida, Gainesville, FL 32611; and Stephen D. Ousley, PhD,<br />

Department of Anthropology, Smithsonian Institution, Washington,<br />

DC 20560<br />

The primary goal of the presentation is to provide the audience with a<br />

new statistical method for utilizing nonmetric traits in the determination of<br />

ancestry in unidentified human crania.<br />

This presentation will impact the forensic community and/or humanity<br />

by enhancing both the process of identifying the ancestry of human remains<br />

and the courtroom presentation by attaching probabilities to the analysis.<br />

Ancestry determination is generally regarded as the most difficult aspect<br />

of the biological profile, primarily because of the traditionally subjective,<br />

experienced-based emphasis that has been taught in the past. In addition to<br />

subjectivity, another weakness of the classic nonmetric approach is that it<br />

does not provide any posterior probabilities, which indicate how likely the<br />

individual comes from one group as opposed to the other groups. Nonmetric<br />

(categorical) trait analysis is often devoid of all but the most simplified statistical<br />

analysis (e.g., frequency distributions and chi-square tests).<br />

Nonetheless, Ousley and Hefner (2005) demonstrated that morphoscopic<br />

traits could be analyzed statistically with classification accuracy as high as<br />

90% using kernel probability densities. In addition, several other methods<br />

(including logistic regression and linear discriminant functions), confirm the<br />

value of using various statistical methods in nonmetric trait analysis. The statistical<br />

techniques that utilize metric data provide posterior probabilities,<br />

usually because the data are normally distributed, but nonmetric data are not<br />

normally distributed, and quantifying nonmetric traits is not practical and<br />

may not provide additional significant information. A new multivariate statistical<br />

method recently introduced for use with categorical data is presented<br />

that not only addresses these concerns, but also addresses the Daubert issue<br />

using posterior probabilities, graphs, and cross-validated results.<br />

In the present contribution, a total of thirteen separate distance measures<br />

were applied to 12 nonmetric variables recorded for American Whites (n =<br />

89) and American Blacks (n = 105). The data were analyzed using a constrained<br />

ordination procedure (CAP) proposed by Anderson and Willis<br />

(2003) which relies on a canonical discriminant analysis (CDA) on the principal<br />

coordinates (PCO) of the dataset. The analysis can be performed using<br />

any calculated inter-individual distance matrix, and the distances need not<br />

follow any particular distribution or even be Euclidean. Numerous distance<br />

calculations can be used, so distance calculations can be fine tuned (i.e., each<br />

method highlights various aspects of the multivariate data), and judged by<br />

their classification accuracy. A “leave-one-out” resampling post hoc test of<br />

the CDA is then used to (1) calculate classification accuracy and (2) test the<br />

significance of additional PCO axes (m). This method is more applicable to<br />

ancestry determination than frequency distributions, as it accounts for correlation<br />

among variables, provides classification error rates, and allows for<br />

classification of a new observation. In these regards it is more consistent with<br />

traditional multivariate discriminant function analysis (DFA). An additional<br />

benefit of this method is that while conventional DFA can be applied to<br />

macromorphoscopic data (Ousley and Hefner 2005), the CAP approach is<br />

more appropriate for this type of data.<br />

Several CAP analyses offered interesting results, demonstrating the<br />

flexibility of the technique. Multiple distance measures (e.g., chi-square,<br />

Euclidian), were selected for the analysis in order to determine the<br />

weaknesses and strengths of each one of them. Among these, chi-square<br />

distances appear to be the most appropriate measure for categorical,<br />

macromorphoscopic data. For example, the chi-square distance measure<br />

with m = 10 produced the lowest mis-classification error, and the first three<br />

PCOs alone explained over half of the total observed variation. In fact, a<br />

CAP analysis using the five best variables (INA, NBS, ANS, IOBW) and<br />

the chi-square distance measure with m = 3 has cross-validated accuracies<br />

of 86%.<br />

369 * Presenting Author


These results indicate that the analysis of nonmetric traits through<br />

robust statistical models, particularly constrained ordination procedures like<br />

CAP, greatly enhances the process of identifying the ancestry of human<br />

remains. This method also addresses issues related to the Daubert decision<br />

by calculating classification accuracy and posterior probabilities of the classification,<br />

and enhances courtroom presentation through the obtained<br />

bivariate plot, an easily understood graphical representation.<br />

Nonmetric Traits, Canonical Discriminant Analysis, Ancestry<br />

Determination<br />

H17 Ontogeny of Femur Subtrochanteric<br />

Shape: Implications for Determining<br />

Ancestry Using the Platymeric Index<br />

Daniel J. Wescott, PhD*, University of Missouri-Columbia, Department<br />

of Anthropology, 107 Swallow Hall, Columbia, MO 65211<br />

The objectives of this study are to examine changes in proximal femur<br />

diaphyseal shape during growth and development, determine the proximate<br />

causes for the patterns of change, and evaluate the usefulness of proximal<br />

femur shape in discriminating between Native American and American<br />

Black/White subadult femora. Attendees will learn about changes in femur<br />

subtrochanteric shape during growth and development and the validity of<br />

the platymeric index in the estimation of ancestry from human subadult and<br />

adult skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how femur subtrochanteric shape develops and<br />

that the platymeric index can be successfully used to distinguish between<br />

Native Americans and American Blacks/Whites in subadult skeletal<br />

remains greater than six years of age.<br />

Gill and colleagues have suggested that subtrochanteric shape may be<br />

established early in life, and therefore the platymeric index (PI) may be<br />

useful for assessing ancestry in subadults. In this paper, the author<br />

examines changes in proximal femur diaphyseal shape and size during<br />

growth and development, and discusses the implications of the results to<br />

the validity of estimating ancestry in subadult (immature) skeletal remains.<br />

Femur subtrochanteric anteroposterior (AP) and mediolateral (ML)<br />

diameters and diaphyseal length were obtained for 74 Native American, 17<br />

American Black, and 50 American White subadult femora. Individuals<br />

used in the study range in age from birth to 18 years. Left femora were<br />

preferentially used, but the right femur was used if the left was absent or<br />

damaged. Since sex is difficult to estimate from subadult skeletal remains,<br />

males and females were pooled. Previous studies have shown no significant<br />

differences in subtrochanteric shape between adult American Blacks<br />

and American Whites, so they were pooled as a single group.<br />

Changes in femur subtrochanteric shape (PI) and diameters (AP and<br />

ML) were examined by age for each of the samples. The results show that<br />

the PI decreases or becomes more platymeric from birth to about five years<br />

of age and then generally levels off in both groups. Therefore, the author<br />

examined subadults less than five years old and subadults six years old and<br />

greater separately. This second analysis shows a significant negative correlation<br />

between PI and age in subadults five years and under in both<br />

groups, but the changes in the PI are more noticeable in Native Americans<br />

(slope = -0.03, r2 = 0.33) than in American Blacks/Whites (slope = -0.02,<br />

r2 = 0.10). The more noticeable change in Native Americans is expected<br />

since they are generally more platymeric as adults. After the age of five<br />

years there is little change in the PI, except for a possible increase associated<br />

with the adolescent growth spurt (slope = 0.001 and r2 = 0.005 for<br />

Native Americans; slope = 0.002 and r2 = 0.009 for American<br />

Blacks/Whites).<br />

An examination of the subtrochanteric dimensions reveals the proximate<br />

causes for the differences between younger and older subadults and<br />

between Native Americans and American Blacks/Whites in proximal<br />

* Presenting Author<br />

femur diaphyseal shape. Between birth and five years of age the ML<br />

dimension increases more rapidly than the AP dimension in both groups.<br />

However, the difference is again more dramatic in Native Americans. That<br />

is, differences in the rate of growth between AP and ML dimensions is<br />

greater in Native Americans (AP slope = 1.60, r2 = 0.74; ML slope = 2.32,<br />

r2 = 0.81) than in American Blacks/Whites (AP slope = 1.92, r2 = 0.88; ML<br />

slope = 2.24, r2 = 0.81). This same pattern continues after the age of five<br />

but at a greatly reduced rate. In individuals over five years of age, the AP<br />

and ML dimensions increase in size with age at approximately the same<br />

rate in Native Americans (AP slope = 0.72, r2 = 0.63; ML slope = 0.59, r2 = 0.53) and American Blacks and Whites (AP slope = 0.69, r2 = 0.46; ML<br />

slope = 0.66, r2 = 0.44).<br />

The results of this study demonstrate that the adult shape of the<br />

proximal femur is established relatively early in life – probably shortly after<br />

the achievement of a mature gait pattern. The proximate cause for this<br />

early establishment of adult shape is that between birth and five years of<br />

age the proximal femur diaphysis grows more rapidly along the ML plane<br />

compared to the AP plane, especially in Native Americans. However, after<br />

the age of five, growth occurs more equally in the two planes. The results<br />

of this study also make evident that the PI can be used to distinguish<br />

between platymeric Native American femora and more eurymeric<br />

American Black/White femora in subadults over the age of six years.<br />

However, the results also show that subadults, like adults, exhibit great<br />

variation within groups, probably due to environmentally induced biomechanical<br />

stress placed on the femur. This variation should be considered<br />

when using only the PI to determine ancestry in medicolegal investigations.<br />

Forensic Anthropology, Platymeric Index, Ancestry<br />

H18 A New Method for Estimating<br />

Age-at-Death From the First Rib<br />

Elizabeth A. DiGangi, MA*, and Jonathan D. Bethard, MA, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37916; Erin H. Kimmerle, PhD, University of South<br />

Florida, Department of Anthropology, 4202 East Fowler Avenue, SOC<br />

107, Tampa, FL 33620-8100; and Lyle W. Konigsberg, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

After attending this presentation, attendees will understand that the<br />

first rib can be used as an effective age-at-death indicator. In addition,<br />

attendees will learn that a Bayesian approach utilizing transition analysis<br />

can be used for developing robust aging methodologies.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that forensic anthropologists working in<br />

numerous contexts can improve their efforts by refining methods used to<br />

estimate age-at-death. Results from this research indicate that the first rib<br />

can be used to estimate age-at-death as an isolated element or as a component<br />

in a multifactorial approach.<br />

Forensic anthropologists working both internationally and domestically<br />

are often faced with the problem of developing a biological profile<br />

from incomplete skeletal remains. Elements commonly used for establishing<br />

age-at-death are sometimes absent and frequently damaged. Such<br />

occurrences are unfortunate; however, they underscore the importance of<br />

developing aging methodologies from a broader range of skeletal elements.<br />

The purpose of this study was to determine whether a modification of the<br />

Kunos et al. (1999) method for estimating age-at-death from the first rib<br />

could be developed. While the fourth rib has been used for some time in<br />

age-at-death estimation, Kunos and coworkers (1999) indicate several limitations<br />

with the element. Oftentimes, the fourth rib is misidentified in<br />

unarticulated skeletons or damage to the sternal aspect precludes its use as<br />

an age indicator. Moreover, Kunos et al. indicate methods that rely solely<br />

on morphological changes of the costal face do not utilize other aspects of<br />

370


the rib that change throughout life, particularly the head and tubercle.<br />

These authors argue that the first rib is unambiguously identifiable in<br />

addition to its prolonged span of remodeling into the eighth decade.<br />

The purpose of this study was to determine whether the method<br />

devised by Kunos and co-workers can be reproduced and successfully<br />

applied as a workable model for the estimation of age-at-death. Data were<br />

collected on three aspects of the first rib (rib head, tubercle facet, and costal<br />

facet) for 549 known-aged males and for 74 known-aged females. The data<br />

come from Balkan materials collected as evidence during the investigation<br />

of violations to international humanitarian law conducted by the ICTY. The<br />

ages-at-death for this sample range from 15-90 years for males (with a<br />

mean age of 48.2 years) and 15-96 for females (with a mean age of 51.1).<br />

First, a list of variables was extracted from the original study utilizing<br />

all three skeletal aspects of the first rib. This list was subsequently modified<br />

as preliminary tests based on serrations of the samples occurred during<br />

this investigation and resulted in a total of eleven possible variables.<br />

Morphological changes of costal face, rib head, and tubercle facet were<br />

coded with regard to numerous features that include shape, surface topography<br />

and texture, and marginal morphology. These variables were each<br />

scored using a coding system ranging from 1-4 to 1-7 depending on the<br />

variable in question. Second, two observers independently scored the three<br />

rib components using all eleven variables. The eleven variables were first<br />

analyzed separately. To calculate the mean, standard deviation, log-likelihood,<br />

and standard error of the ages-of-transition for each component, the<br />

unrestrictive cumulative probit model is performed. These statistics are<br />

further used to calculate the highest posterior density regions for estimating<br />

individual ages-at-death. Additionally, a multivariate analysis of the three<br />

components is performed. A principal component analysis (PCA) of the<br />

covariance matrix is conducted for the regions of the first rib to reduce variables<br />

with a high degree of correlation. The correlation matrix demonstrates<br />

that the inter-correlations of the eleven variables are low (0.496-<br />

0.768 for the costal facet, 0.181-0.444 for the rib head, and 0.146-0.521 for<br />

the tubercle facet). Findings are consistent with those of Kunos and coworkers,<br />

in that the morphological changes of all three components of the<br />

first rib are useful indicators of age-at-death.<br />

Age-at-Death, First Rib, Transition Analysis<br />

H19 Stature Estimation Based on Dimensions<br />

of the Bony Pelvis and Proximal Femur<br />

Carolyn L. Giroux, BA*, 6200 East Richland Road, Columbia, MO<br />

65201; and Daniel J. Wescott, PhD, University of Missouri-Columbia,<br />

Department of Anthropology, 107 Swallow Hall, Columbia, MO 65211<br />

After attending this presentation, attendees will gain an awareness and<br />

appreciation for the advantages and limitations of using measurements of<br />

the pelvic region to estimate stature in mass disaster and burned remains<br />

cases where more commonly used bones are not preserved.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing ancestry and sex specific stature estimation formulae<br />

based on standardized dimensions of the pelvic region that can be<br />

applied to mass disaster and burned remains cases.<br />

Inspired by a study that examined the use of sacral and coccygeal<br />

dimensions recorded from radiographs to predict living stature, this paper<br />

evaluates the validity of using sacral height (SH) measured on dry bone for<br />

estimating stature in mass disaster and burned remains cases. The authors<br />

also extend this examination to include hip height (HH) and femur head<br />

diameter (FHD) because these components are often preserved in mass disaster<br />

and burn cases. The affect of sex and ancestry on stature estimation<br />

using these dimensions are investigated and group specific regression equations<br />

for estimating living stature are provided.<br />

Stature, SH, HH, and FHD were obtained from the Forensic Data<br />

Bank on over 260 Black and White males and females of known forensic<br />

or cadaver stature. All measures show a significant positive correlation<br />

with stature, except SH in White females. There were significant sex and<br />

ancestry differences in the variables, but no significant sex and stature or<br />

race and stature interactions exist for any of the variables. However, in<br />

general, pelvic region dimensions correlate better with stature in American<br />

Blacks than they do in Whites. The validity of the regression functions was<br />

evaluated using the squared correlation (r2 ) and mean squared error (MSE).<br />

For males, HH is the best single variable for predicting stature (Blacks: r2 = 0.47, MSE = 31.72; Whites: r2 = 0.26, MSE = 46.99) and SH the worst<br />

(Blacks: r2 = 0.19, MSE = 48.07; Whites r2 = 0.15; MSE = 51.64). Among<br />

females, FHD is the best single variable (Blacks: r2 = 0.32, MSE = 45.83;<br />

Whites: r2 = 0.18, MSE = 45.18) followed by HH (Blacks: r2 = 0.35, MSE<br />

= 31.72; Whites: r2 = 0.09, MSE = 54.00) and then SH (Blacks: r2 = 0.16,<br />

MSE = 50.58; Whites: r2 = -0.003, MSE = 56.87).<br />

In this study, multivariate equations out-preformed univariate models<br />

for all groups. A MAXR procedure was used to find the best two- and<br />

three-variable equations. The best two-variable models include HH and<br />

FHD for all groups, except White males. The best two-variable functions<br />

are 84.23 + 0.338*HH + 0.432*FHD (r2 = 0.53, MSE = 29.42) for Black<br />

males, 99.46 + 0.166*SH + 0.267*HH (r2 = 0.28, MSE = 43.95) for White<br />

males, 45.73 + 0.206*HH + 1.89*FHD (r2 = 0.58, MSE = 27.44) for Black<br />

females, and 95.94 + 0.069*HH + 1.266*FHD (r2 = 0.17, MSE = 50.88)<br />

for White females. The addition of the third variable does not increase the<br />

correlation except in Black females. The best three-variable equations for<br />

predicting stature for Black females is 44. 40 + 0.106*SH + 0.178*HH +<br />

1.792*FHD (r = 0.60, MSE = 26.77).<br />

The results demonstrate that dimensions of the pelvic region can be<br />

used to estimate stature with moderate accuracy. Dimensions of the pelvic<br />

region are a poorer predictor of stature than long bone lengths, but they<br />

perform as well as ankle bone, metacarpal, skull, or bone fragment dimensions<br />

previously examined for use in mass disasters. This study also shows<br />

that there are considerable differences in the accuracy based on ancestry,<br />

with HH, SH, and FHD predicting stature more reliably in American<br />

Blacks than for American Whites. Stature estimation in White females<br />

based on pelvic dimensions should be avoided due to the low correlation<br />

and high MSE. Sacral height alone is a fairly poor predictor of stature,<br />

especially in American Whites, with the error ranging from about 7.0 to 7.5<br />

cm. However, the precision of using SH measured from dry bone to<br />

estimate stature in males is nearly equivalent to that using SH determined<br />

from radiographs.<br />

Forensic Anthropology, Stature, Mass Disaster<br />

H20 Evaluation of Three Methods of Age<br />

Estimation From Human Skeletal<br />

Remains (Suchey-Brooks, Lamendin,<br />

and Two-Step Strategy)<br />

Rika Prodhan, BS*, 547 Cedar Branch Road, League City, TX 77573;<br />

Douglas H. Ubelaker, PhD, Department of Anthropology, MRC 112,<br />

National Museum of Natural History, Smithsonian Institution,<br />

Washington, DC 20560; and Debra A. Prince, PhD, Joint POW/MIA<br />

Accounting Command Central Identification Laboratory, 310 Worchester<br />

Avenue, Building 45, Hickam AFB, HI 96853<br />

The goal of this presentation is to evaluate the application of a<br />

comprehensive (combined) method of age estimation compared with two<br />

isolated, individual methods. The methods considered are the Two Step<br />

Strategy (comprehensive method), and Lamendin and Suchey-Brooks<br />

(individual methods).<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating appropriate times of use of comprehensive<br />

methods versus individual, isolated methods of age estimation.<br />

371 * Presenting Author


Previous research suggests that a method which utilizes more than one<br />

anatomical part of the body will have higher accuracy in age estimation than<br />

a method which considers only one anatomical part. The Two Step Strategy<br />

(TSS) utilizes ages generated from the Suchey-Brooks (SB) method of evaluation<br />

of the pubic symphysis for younger adults and those generated by the<br />

Lamendin (L) method based on single rooted teeth for older adults. This presentation<br />

offers forensic anthropologists an assessment of the usefulness of<br />

these three methods of age determination when applied to the same individuals<br />

from the Terry Collection housed at the Smithsonian Institution’s<br />

National Museum of Natural History.<br />

This study compares the measure of reliability (how close a result<br />

comes to the true value) of those three methods when applied to the Terry collection.<br />

The sample consisted of 312 individuals (age 25 to 99 years, with a<br />

mean age of 52.97 years and a standard deviation of 14.87years): 78 black<br />

females (age 25 to 99 years, mean 52.75, SD 16.57), 63 white females (age<br />

27 to 90 years, mean 58.63, SD 14.16), 90 black males (age 26 to 76 years,<br />

mean 47.66, SD 13.00), 81 white males (age 27 to 85 years, mean 54.58, SD<br />

13.67). To ensure unbiased results the real ages were hidden from the<br />

observer, and each method was applied with complete independence.<br />

The smaller the value of the mean error (ME) is the higher the method’s<br />

reliability. The ME of the TSS method was 7.7 years while the ME for the<br />

SB and L methods were 8.6 years and 8.1 years respectively. Overall, all<br />

three methods underestimated ages.<br />

Samples were sub-grouped according to sex and ethnicity, and interestingly<br />

within some groups TSS was less accurate than the individual methods<br />

(L and SB). For example, accuracy was equal for the TSS and L methods (8.7<br />

years) in White females (which had the highest mean error values) where as<br />

the ME was 9.4 years for the SB method. The estimations obtained from the<br />

SB method were inaccurate enough to substantially decrease TSS’s accuracy,<br />

since TSS takes SB method’s estimates into account. Similarly in White<br />

males, the mean error values of the TSS and L methods were almost equal (8.1<br />

years and 8.0 years respectively, and 9.1 years for SB). In Black males, which<br />

had the lowest mean error values (SB: 7.2 years, L: 7.1 years, TSS: 6.8) TSS<br />

had much higher accuracy than the other two methods. Estimates generated<br />

by all the methods for males were more accurate than those for females, and<br />

more accurate for Black samples than for White samples.<br />

Overall, the comprehensive TSS method was more accurate than the<br />

other two individual, isolated methods (L and SB). This trend of the Two-<br />

Step Strategy having the most accuracy at estimating age supports previous<br />

research that strongly suggests comprehensive approaches, such as TSS, are<br />

superior to isolated ones, such as L and SBS methods (Prince and Ubelaker,<br />

2002; Lamendin et al., 1992; Brooks and Suchey, 1990; Helena et al., 2003;<br />

Baccino et al., 2003).<br />

However, when different subgroups were taken into account, the notion<br />

that combined methods have more accuracy in age estimation than individual<br />

methods was not well supported. This study suggests that the L method can<br />

be used alone for White samples, but a more comprehensive approach is recommended<br />

for other groups if the relevant skeletal parts are available. The<br />

greater accuracy of the L method when applied to White samples can prove<br />

advantageous since teeth offer superior preservation over pubic bones. All<br />

parts of the skeleton should be considered if they are available.<br />

MEAN ERROR VALUES (in years)<br />

Sub-groups SBS Lamendin TSS<br />

WFemale 9.4 8.7 8.7<br />

BFemale 9.27 8.8 7.7<br />

Wmale 9.1 8.0 8.1<br />

BMale 7.1 7.1 6.8<br />

Black (F & M) 8.2 7.9 7.2<br />

White (F & M) 9.3 8.4 8.4<br />

Male (B & W) 8.1 7.6 7.4<br />

Female (B & W) 9.3 8.8 8.2<br />

Overall 8.6 8.1 7.7<br />

Age Estimation, Lamendin, Suchey Brooks<br />

* Presenting Author<br />

H21 Evaluation of Purkait’s Triangle Method<br />

for Determining Sexual Dimorphism<br />

Robert P. Brown, MFS*, 22nd Military Police Battalion (CID),<br />

USACIDC, PO Box 331009, Mailstop #84, Fort Lewis, WA 98433;<br />

Douglas H. Ubelaker, PhD, Smithsonian Institution’s National Museum<br />

of Natural History, Department of Anthropology, 10th and Constitution<br />

Avenue NW, MRC 112, PO Box 37012, Washington, DC 20013; and<br />

Moses S. Schanfield, PhD, The George Washington University,<br />

Department of Forensic Sciences, 2036 H Street NW, 102 Samson Hall,<br />

Washington, DC 20052<br />

After attending this presentation, attendees will be briefed on a<br />

method for determining sexual dimorphism using measurements from the<br />

proximal end of the femur and its comparison and combination with more<br />

traditional methods.<br />

This presentation will impact the forensic community and/or<br />

humanity by evaluating a relatively new method for determining sexual<br />

dimorphism and its application to the Terry collection.<br />

The ability to determine sex from isolated bones and bone fragments<br />

is a necessity in medicolegal investigations. Sexual dimorphism in the<br />

skeleton is generally based on two factors, size difference with males being<br />

generally larger than females, and function related differences, particularly<br />

in the pelvis. Differences between the sexes involve varying levels of stress<br />

and strain on the bones during development that lead to differences in size<br />

and morphology. Traditionally, when the proximal end of the femur is the<br />

only portion of bone available for analysis, the maximum vertical diameter<br />

of the head is utilized for determining sex. Purkait’s (2005) triangle method<br />

includes the use of points of muscle insertion that develop and change<br />

based on muscle strain.<br />

This study compares the accuracy of Purkait’s method in comparison<br />

and combination with the maximum vertical diameter of the head when<br />

applied to the Terry collection housed at the Smithsonian Institution’s<br />

National Museum of Natural History. The sample consists of 200 individuals<br />

with a balanced number of males and females, and black and white adult subjects.<br />

Additionally, another sample of 40 individuals equally balanced was<br />

measured. Purkait’s method involves measuring a triangle that is projected<br />

on the posterior side of the proximal end of the femur. The point projecting<br />

most medially on the greater trochanter and the highest point on the lesser<br />

trochanter were labeled points ‘B’ and ‘C’, respectively. The point on the<br />

articular margin of the head dipping most laterally was labeled point ‘A’.<br />

Measurements of the sides of this triangle (AB, AC, and BC) along with the<br />

vertical diameter of the head were taken from each femur.<br />

The data were subjected to discriminant function analysis. The accuracies<br />

for determining sex using the single variables of AB and AC (69% and<br />

70.5%, respectively) were much lower than those found in Purkait’s study<br />

which is reflected in the higher standard deviations found in the Terry collection<br />

data. BC was shown to be the best indicator using Purkait’s triangle<br />

method with an accuracy of 85.5%. The accuracy using the diameter alone<br />

was 89%. Combining the diameter and BC raised the accuracy to 90%.<br />

Additionally, a jackknife procedure was conducted on the data that reflected<br />

nearly identical results for accuracy. The threshold value for separating the<br />

larger male values from the smaller female values were 53.0 mm for BC and<br />

45.7 mm for the diameter of the head. When individuals where BC and<br />

diameter measurements produced conflicting results using the threshold<br />

approach were excluded, the prediction accuracy increased to 94.5%. The 40<br />

additional femora not included in the determination of the threshold values<br />

were tested against these threshold values. The accuracy using BC was 80%,<br />

diameter was 95%, and the two factors in combination (with exclusion of<br />

individuals with conflicting results) were 97.5%. There was no significant<br />

difference between the Terry collection white and black samples.<br />

The value of the study is the evaluation of a relatively new sexual<br />

dimorphism method in order to determine the population variability<br />

between the Terry collection and Purkait’s sample, which consisted of<br />

middle class Central Indian males. BC was determined to be a valuable<br />

372


measurement in estimating sex using the proximal end of the femur, particularly<br />

in combination with the maximum vertical diameter of the head.<br />

The measured values in the Terry Collection taken in this study were found<br />

to be smaller than those from Purkait’s study. More studies should be conducted<br />

on different populations using contemporary samples in order to<br />

determine proper threshold values based on population variability and to<br />

further document human variation in this aspect of the anatomy.<br />

Forensic Anthropology, Sex Determination, Femur<br />

H22 Sex Determination From the Hyoid Body<br />

Jered B. Cornelison, MS*, Michigan State University, Department of<br />

Anthropology, 204 Olds Hall, East Lansing, MI 48824; Wendy L. Lackey-<br />

Cornelison, MA, Michigan State University, Department of Anthropology,<br />

426 East Fee Hall, East Lansing, MI 28824; and Brian C. Hunter, PhD,<br />

1215 East Michigan Avenue, Lansing, MI 48912<br />

The goal of this presentation is to elucidate the utility of using measurements<br />

of the hyoid body to estimate sex.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how the hyoid bone can be used to estimate sex<br />

in situations where critical skeletal elements for estimating sex are not<br />

available or as additional data for sex estimation.<br />

Previous studies have shown that the hyoid bone is sexually<br />

dimorphic and can be utilized for sex determination of unknown skeletal<br />

remains. These studies are based on numerous measurements taken from<br />

x-rays or digital photographs. The current study illustrates that sex can be<br />

readily determined from three measurements, which can be obtained from<br />

the hyoid body directly. The method presented here will offer a relatively<br />

simple and reliable procedure for sex determination, particularly in<br />

instances of fragmentary, commingled, and/ or sparse remains.<br />

Skeletonized hyoid bodies of 203 individuals (N= 132 males and 71<br />

females) from an autopsy sample were measured in this study. Twentynine<br />

individuals under the age of 20, however, were eliminated due to confounding<br />

issues associated with growth and developmental processes. Age<br />

ranged from birth to 92 years with a mean age of 43.5 years. After individuals<br />

under the age of 20 years were eliminated the sample was composed<br />

of 114 males and 60 females. Three measurements were obtained to<br />

the nearest tenth of a millimeter using sliding calipers including, midbody<br />

height, maximum body height, and maximum body breadth. While each<br />

measurement was analyzed separately to understand the strength of discrimination<br />

between the sexes, it was determined that composite measurements<br />

may better discriminate between the sexes. The measurements were<br />

analyzed using SPSS 12.0.<br />

Using an Independent Samples T-test the significance (p


eginning union and not just the sequence of complete union. This is an<br />

important distinction as consistent commencement of union in one epiphysis<br />

does not ensure that it also completes union first. Establishing dual<br />

spectra patterns provides optimal application for use in the sorting and reassociation<br />

of commingled remains by maximizing the variables available<br />

for assessment.<br />

In conclusion, sequence of union should not be oversimplified if epiphyseal<br />

patterns are to be used in a forensic context. Full documentation<br />

of sequential variation must be examined for both the commencement and<br />

the completion of union if this information is to help with the re-association<br />

and identification of misplaced skeletal elements.<br />

Epiphyseal Union, Commingled Remains, Bosnia<br />

H24 Research Trends During the History<br />

of the Physical Anthropology Section<br />

at the AAFS Annual Meetings<br />

Derek C. Benedix, PhD*, JPAC-CIL, 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853-5530; and William R. Belcher, PhD, JPAC-<br />

CIL, 310 Worchester Avenue, Building 45, Hickam AFB, HI 96853-5530<br />

The goals of this presentation are to discuss the research trends that<br />

have occurred during the more than 30-year history of the Physical<br />

Anthropology Section at the annual meetings of American Academy of<br />

Forensic Sciences as well as physical anthropological contributions to the<br />

Journal of Forensic Sciences (JFS) during the same time period.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting trends in physical anthropological research seen<br />

through the American Academy of Forensic Sciences (AAFS) and JFS<br />

during the more than 30-year history of the Physical Anthropology Section.<br />

This poster will provide forensic and physical anthropologists with<br />

essential information for the interpretation of research importance and popularity<br />

of scientific research.<br />

In 1972, a new section was established at the annual American<br />

Academy of Forensic Sciences (AAFS). Dr. Ellis Kerley was pivotal in the<br />

development of the Physical Anthropology Section at the AAFS meetings<br />

(Snow 1982; Stewart 1979; Ubelaker 2001). Since its inception, physical<br />

anthropologists and, specifically, forensic anthropologists have had a<br />

medium in which to share their research with others. This new section<br />

allowed forensic anthropologists a national meeting in which to communicate<br />

research and discuss problems and unique case situations.<br />

In the past 33 years, both professional physical anthropologists and<br />

archaeologists as well as student participants have presented their research<br />

in both oral and written formats at various AAFS meetings; during the last<br />

decade, poster presentations have become a more important and integral<br />

alternative for presentation at the Meetings. In addition to presenting<br />

research at the national meeting, the JFS provides an important publication<br />

outlet for physical/forensic anthropologists and archaeologists.<br />

Research trends, like anything else, wax and wane with popularity.<br />

This is particularly true in forensic sciences, because of the relationships<br />

with funding and grants for “new and unique research.” Additionally, since<br />

most physical anthropologists are academically-based, research that is oriented<br />

along new trends has a higher likelihood of being chosen for presentation<br />

at the meetings and publications in the JFS. This poster examines the<br />

main trends, including case studies; major categories of study (osteometrics,<br />

biological profile determinations, various forms of trauma interpretation,<br />

taphonomy, forensic archaeology), and historical treatises of<br />

importance to forensic anthropologists.<br />

The methodology categorizes abstracts and keywords from both<br />

Proceedings of the American Academy of Forensic Sciences Annual<br />

Meeting and the JFS since 1973 to 2004. These categories are then<br />

presented in graphic form in order to illustrate the major research trends in<br />

the field.<br />

Trends in Physical Anthropology, Research, History<br />

* Presenting Author<br />

H25 Estimating the Postmortem Interval<br />

in Freshwater Environments<br />

Billie L. Seet, MA*, 16 Arcola Street #2, Jamaica Plain, MA, 02130<br />

After attending this presentation, attendees will understand the difficulty<br />

with which an estimation of the postmortem interval is in freshwater<br />

environments.<br />

This presentation will impact the forensic community and/or<br />

humanity by attempting to gather and share more data on the process of<br />

decomposition in freshwater environments. This data is important because<br />

it is under-represented in the literature.<br />

Forensic investigators often deal with human remains recovered from<br />

water. Estimating the time since death for bodies that have been submerged<br />

in water, however, can be quite difficult due to the lack of data on the<br />

subject and the vast number of different variables possible in watery environments.<br />

This preliminary study is intended to provide additional data<br />

concerning the estimation of time since death of submerged bodies through<br />

the use of record research. Seventy autopsy reports containing cases in<br />

which human remains were recovered from bodies of freshwater were<br />

used. Thirty-one variables were collected from each report in a<br />

present/absent context. Nine of the variables were then used in logistic<br />

regression analyses in order to measure their relationship to time in water.<br />

Some of the other variables that were collected, but not used in the analyses<br />

were body temperature, water temperature, ambient temperature, and<br />

invertebrate scavengers. These variables, although important, were omitted<br />

due to the inconsistency with which they were recorded in the police and<br />

autopsy reports.<br />

The variables used were the postmortem interval, collected in hours,<br />

which ranged from two hours to 2,880 hours, or four months, and the<br />

presence or absence of the following: Clothing, cutis anserina, washerwoman<br />

skin, discoloration, marbling, skin slippage, hair slippage, and sub-cutaneous<br />

gas. Through the use of logistic analyses it was shown that clothing did not<br />

effect the postmortem changes collected for this analysis. This led to more<br />

statistical analyses using 70 cases total as one group rather than two smaller<br />

groups defined by the presence or absence of clothing. Two backward<br />

stepwise logistic regression analyses were then performed, splitting the postmortem<br />

time interval into two categories: (1) less than or equal to 24 hours<br />

and greater than 24 hours and (2) less than or equal to 48 hours and greater<br />

than 48 hours. These analyses aimed to predict the presence or absence of<br />

the postmortem changes based on the postmortem interval.<br />

Results indicate that only three of the nine variables used in logistic<br />

regression analysis were significant. The time since death estimate can<br />

only be made in large time intervals. Purge can be used to predict a time<br />

since death of less than 48 hours while marbling and sub-cutaneous gas can<br />

be used to predict a time since death of greater than 48 hours. When estimating<br />

the postmortem interval as less than or equal to 24 hours and greater<br />

than 24 hours, purge was the only significant variable. This can be used to<br />

predict a time since death of less than 24 hours.<br />

These preliminary results suggest that through the use of logistic<br />

regression and the presence and absence of these postmortem changes, a<br />

time since death can be estimated in large time intervals only, i.e. less than<br />

or equal to 48 hours or greater than 48 hours.<br />

Postmortem Interval, Freshwater, Decomposition<br />

H26 Missing, Present, and Left Behind<br />

Julie M. Saul, BA*, and Frank P. Saul, PhD, Lucas County (Toledo)<br />

Coroners Office and Wayne County (Detroit) <strong>Medical</strong> Examiners Office,<br />

3518 East Lincolnshire Blvd, Toledo, OH 43606<br />

After attending this presentation, attendees should better understand<br />

the taphonomy (including origins and dispersal patterns) and investigative<br />

value of isolated bones and fragments often unexpectedly encountered by<br />

law enforcement.<br />

374


This presentation will impact the forensic community and/or<br />

humanity by reminding the forensic community of the significance and<br />

probative potential of isolated (or missing) human bones or fragments.<br />

Forensic anthropologists are well aware that there are bits and pieces<br />

of human skeletons to be found in all sorts of places. Law enforcement<br />

should be mindful of this possibility, and the bone or fragment brought to<br />

them by a conscientious citizen should be examined by a forensic anthropologist<br />

and not dismissed as “animal” – as occasionally happens.<br />

Sometimes these remains are from the past - Native American, or forgotten<br />

cemeteries - and therefore not of forensic interest. The abundance<br />

of ancient and historic remains may also confuse investigators who, while<br />

searching for a specific missing individual, locate Native American/historic<br />

remains instead.<br />

A knowledge of taphonomy (what happens to bodies after death)<br />

helps explain unexpected body parts. In addition to animal activity, water,<br />

wind and other natural forces, human activity may be involved – especially<br />

agriculture and construction. Remains may even be unknowingly transported<br />

by trains and other vehicles after an accident. Clandestine removal<br />

of murdered victims’ remains may result in small bones and fragments in<br />

unexpected places. <strong>Medical</strong> specimens, ritual and fraternal activities also<br />

provide us with “abandoned” human parts. Anthropologists frequently<br />

receive remains that lack varying numbers of small bones or fragments.<br />

The explanation may be failure to recognize small bones (or fragments) as<br />

being human, or even as being bone at all. However, hungry scavengers do<br />

make off with hands, feet, or other bones that “protrude” from shallow<br />

graves or surface deposits.<br />

The authors’ proximity to several rivers, and especially Lake Erie, has<br />

made clear the importance of wind, currents, and aquatic scavengers in disappearing<br />

and dispersing body parts from both intact and dismembered<br />

bodies.<br />

Occasionally, parts of bodies are apparently retained by the perpetrator,<br />

as was the case when a former husband severed his former wife’s<br />

lower legs and feet to fit her into a too short homemade box in eastern Ohio<br />

in 1974. Body parts may also be deliberately dispersed to avoid identification.<br />

The presence of bones can yield important information. The incomplete<br />

skeletonized remains of a young man were found on a Maumee River<br />

flood plain. He had disappeared three years earlier, some 30 miles<br />

upstream. Bones were scattered under leaves, tangled in weeds, with some<br />

partially buried by repeated flooding. Several bones were never recovered,<br />

but recovery of small bones of the hands and feet, as well as a few finger<br />

and toe nails, demonstrated that although he had traveled many miles and<br />

over a dam, his body had been relatively intact upon reaching the floodplain.<br />

Occasionally the refers is seen - situations where bones or fragments<br />

ranging from femoral heads to carpals, tarsals, phalanges and even partial<br />

maxillas and crania have been recovered as isolated finds.<br />

The explanation for isolated finds may be more complicated,<br />

involving such aspects of taphonomy as the human and animal activity discussed<br />

above, erosion, agricultural or construction projects that involve<br />

removal and dispersal of soil. These processes are a frequent source of<br />

Native American and historic remains in many parts of the country,<br />

including Ohio and Michigan. It has also been noted in relation to the<br />

shallow burial of massacred Guatemalan peasants in recent times, whose<br />

remains were then dispersed by agricultural activity.<br />

A variation on the non-recognition of small elements during recovery<br />

that actually serves the cause of justice involves attempts by perpetrators to<br />

cover up individual or mass clandestine deaths by returning to the original<br />

deposition site some time afterwards and “disappearing” remains by<br />

moving them elsewhere to avoid discovery and/or confound identification.<br />

During such procedures, the easily seen and recognized bones are more<br />

likely to be collected, while less easily located and recognized small bones,<br />

fragments and individual teeth may be left behind. In some cases, this “collection”<br />

seems to have been followed by disposal of remains in several different<br />

and widely separated locations. Fortunately, these small initially<br />

unrecognized bones and fragments are sometimes left behind to bear<br />

witness to the original crime. Such instances of exhumation, reburial, and<br />

dispersal of victims of genocide have been documented in several countries,<br />

including Bosnia-Herzegovina.<br />

Forensic Anthropology, Taphonomy, Small Bones<br />

H27 Gooney Birds and Rocky Clouds:<br />

Perimortem Trauma in World War II<br />

C-47 Crashes From Papua New Guinea<br />

Alexander F. Christensen, PhD*, Joint POW/MIA Accounting Command,<br />

Central Identification Laboratory, 310 Worchester Ave., Hickam AFB,<br />

HI 96853<br />

After attending this presentation, attendees will observe multiple cases<br />

of extreme perimortem skeletal trauma and understand possible explanations<br />

of why different individuals may suffer different patterns of trauma<br />

from the same type of aircraft crash.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating detailed description of trauma patterns from<br />

one particular class of aircraft crashes which will allow a better<br />

understanding of the variability observed in current and historic aircraft<br />

incidents.<br />

This paper will present several cases of extreme perimortem trauma<br />

observed in aircraft crashes. By focusing on one type of aircraft, the C-47<br />

Dakota (also known as the Gooney Bird), and one type of crash, collisions<br />

with terrain in Papua New Guinea (P.N.G.) it will control for some of the<br />

variability that may underlie the different trauma patterns observed in different<br />

aircraft crashes. The primary incident considered occurred in P.N.G.<br />

in 1944. The aircraft involved was carrying four crewmembers and one<br />

passenger. One wing was torn off upon impact with a mountain peak, and<br />

the remainder of the airplane fell several hundred feet down slope. All five<br />

individuals were recovered by the Central Identification Laboratory-<br />

Hawaii (CILHI) and Joint POW/MIA Accounting Command (JPAC) over<br />

the course of three missions, in 1981, 1982, and 2004. The extensive perimortem<br />

trauma observed in these individuals was compared to the patterns<br />

seen in two other C-47 recoveries from P.N.G. Traumas were recorded by<br />

region; because of the fragmentary condition of many of the remains, midshaft<br />

fractures of the lower legs and arms were recorded by limb, rather<br />

than bone, treating the radius and ulna as one unit and the tibia and fibula<br />

as another. Most notable was the high incidence of complete, generally<br />

comminuted, fractures of the femoral shaft. As the largest and strongest<br />

long bone, the femur is also the most resistant to fracture, and femoral fractures<br />

generally result from high energy events, such as motor vehicle<br />

crashes. Of thirteen individuals with at least one observable femur, seven<br />

exhibited a perimortem midshaft fracture, and of 20 observable femora, 14<br />

were fractured. The humerus exhibited a similar incidence of complete<br />

midshaft fractures, with seven of 13 individuals exhibiting such trauma,<br />

and nine of 18 bones fractured. Forearms and lower legs were also frequently<br />

broken. Eight of ten individuals exhibited complete forearm fractures,<br />

and four of ten complete lower leg fractures. Victims were divided<br />

into two groups by seating position, comparing pilots and copilots to all<br />

others. Although sample sizes were small, there was one statistically significant<br />

difference: Seven of ten humeri from pilots were fractured, while<br />

only two of eight from passengers and other crew were. Pilots also<br />

exhibited a slightly higher incidence of broken forearms, although this was<br />

not statistically significant. One possibility is that the higher incidence of<br />

arm fractures in pilots is a result of impact with the dashboard. Leg fractures<br />

occur at a similar frequency in both groups, as their legs were not subjected<br />

to different forces at impact.<br />

Perimortem Trauma, Skeletal Pathology, Aircraft Crashes<br />

375 * Presenting Author


H28 Of Butterflies and Spirals:<br />

Interpretation of Fractures in<br />

Motor Vehicle vs. Pedestrian Accidents<br />

Laura C. Fulginiti, PhD*, Kristen M. Hartnett, MA, Kevin D. Horn, MD,<br />

and Ruth E. Kohlmeier, MD, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007<br />

After attending this presentation, attendees will gain an appreciation<br />

for improving the diagnostic process of fracture interpretation in pedestrian<br />

victims of motor vehicle accidents. The role of the forensic anthropologist<br />

in these cases will be discussed. Comminuted fractures and analysis of<br />

direction of force will be addressed.<br />

This presentation will impact the forensic community and/or<br />

humanity by exposing the forensic community to the advantages of a multidisciplinary<br />

approach during the reconstruction of events around a pedestrian<br />

vs. motor vehicle accident. Fracture patterns can provide a more complete<br />

understanding of the dynamics of the blunt force and the interpretation<br />

of these fractures on bare bone can help to illuminate the direction of<br />

force and may assist in the resolution of cases where charges are pending.<br />

At the Maricopa County Forensic Science Center in Phoenix, Arizona,<br />

a multidisciplinary approach to accident reconstruction is employed. The<br />

investigating officer, pathologist, and anthropologist each bring a unique<br />

perspective to the positive outcome of these cases. An area of particular<br />

interest in recent years is the interpretation of fracture patterns in order to<br />

determine direction of force to the bones of pedestrians impacted by motor<br />

vehicles. These fractures often involve the pelvis, lower vertebral column,<br />

and lower extremities. Maceration and reconstruction can aid in the interpretation<br />

of these fractures and in the evaluation of the sequence of events<br />

surrounding the fatal accident.<br />

In the cases presented, three victims, all pedestrians, were impacted by<br />

a motor vehicle. The pathologist obtained full body radiographs, performed<br />

complete autopsies, and removed the lower limb bones for maceration<br />

by the anthropologist. The anthropologist was asked to reconstruct<br />

the fractured bones for analysis.<br />

In the first case, a 16-year-old girl was struck while crossing the road<br />

in a rural setting. The driver of the vehicle was impaired and charges were<br />

brought. The pathologist removed portions of the left distal tibia and fibula<br />

which were macerated and reconstructed. Analysis revealed that the victim<br />

had been struck from the right side as the left foot was bearing weight.<br />

In the second case, a male was found on the side of the roadway in a<br />

rural setting. There were no witnesses to suggest the sequence of events<br />

causing his death. Autopsy revealed a skull fracture and badly shattered<br />

right lower leg. Radiographic analysis by the anthropologist demonstrated<br />

a Duverny’s fracture of the right ilium. Based on the autopsy and lack of<br />

avulsion pockets, the pathologist surmised that the victim had been thrown<br />

from, or jumped from a vehicle, striking his head. There was concern,<br />

however, because the fractures of the tibia and fibula did not appear to<br />

support this reconstruction. The pathologist removed the shaft of the right<br />

tibia and fibula and requested maceration to enhance the diagnosis.<br />

Anthropological analysis revealed that the victim was likely struck from the<br />

right by a vehicle.<br />

In the final case, a male was struck by a moving vehicle as he<br />

attempted to cross a busy street. The vehicle did not stop and the accident<br />

was investigated as a hit and run. Witnesses claimed that the individual was<br />

struck as he was crossing by the vehicle in the curb lane after the cars in the<br />

left and middle lanes had stopped for him. The pathologist removed the<br />

shafts of the right and left tibia and right fibula which were macerated and<br />

reconstructed to facilitate interpretation of the accident. Anthropological<br />

analysis revealed that the victim’s right leg was struck from an anterior and<br />

lateral direction while the left leg was struck from a medial and slightly<br />

posterior direction.<br />

In each of the above described cases, the leg bones of the victims’<br />

exhibited combinations of complete, spiral and comminuted “butterfly”<br />

fractures. In all cases, some reconstruction was necessary to determine the<br />

* Presenting Author<br />

direction of force. Butterfly fractures are wedge-shaped, produced by a<br />

combination of complete transverse forces, and typically occur when the<br />

limb is weight-bearing. Since bone fails first under tension, the point of<br />

impact in a butterfly fracture is at the bottom of the wedge opposite the<br />

apex of the triangle. In one of the cases, a spiral fracture was observed on<br />

the left fibula. Spiral fractures of the distal fibula are typically caused by<br />

pronation/external rotation of the ankle joint. This individual (#3) also<br />

exhibits “boot top” fractures which are typically caused by direct or rotational<br />

forces.<br />

The direction of force in each of these cases was discerned based on<br />

interpretation of the types and locations of the limb fractures. Careful dissection,<br />

removal, maceration, and reconstruction allow for a more intensive<br />

analysis of the direction of force and the relative position of the pedestrians<br />

legs to the vehicle. The multidisciplinary approach results in a more complete<br />

and detailed accident reconstruction in these types of cases.<br />

Fracture Interpretation, Forensic Anthropology, Accident<br />

Reconstruction<br />

H29 Orthopedic Devices and the William M. Bass<br />

Donated Skeletal Collection: Implications<br />

for Forensic Anthropological Identification<br />

Rebecca J. Wilson, MA*, Jonathan D. Bethard, MA, and Elizabeth A.<br />

DiGangi, MA, The University of Tennessee, Department of Anthropology,<br />

250 South Stadium Hall, Knoxville, TN 37996<br />

The goal of this presentation is to demonstrate a chronology of orthopedic<br />

devices used in hip, knee, and shoulder arthroscopic surgeries in relationship<br />

to the osseous healing process. In doing so, it will provide<br />

summary statistics on the demographic profile of those exhibiting orthopedic<br />

devices within the William M. Bass Donated Collection compared to<br />

National Inpatient Survey (NIS) data.<br />

This presentation will impact the forensic community and/or<br />

humanity by augmenting attendees’ existing knowledge of the varieties of<br />

orthopedic devices and their manufacturers, the demographic profile of<br />

those receiving these orthopedic devices, and to examine the degree to<br />

which healing can be used in the forensic investigation.<br />

This paper stands to demonstrate a chronology of orthopedic devices<br />

used in hip, knee, and shoulder arthroscopic surgeries in relationship to the<br />

osseous healing process. In doing so, it will provide summary statistics on<br />

the demographic profile of those exhibiting orthopedic devices within the<br />

William M. Bass Donated Collection compared to National Inpatient<br />

Survey (NIS) data.<br />

Hemiathroplastic or total arthroplastic surgery involves prostheses<br />

used to replace arthritic damage and relieve pain in a joint complex.<br />

Prostheses are typically manufactured from stainless steel, titanium, or a<br />

cobalt/chromium alloy and contain wear-resistant polyethylene plastics<br />

anchored by bone cement. The design of prostheses are usually trademarked<br />

by a particular manufacturer, such as the Gunston knee or the<br />

Exeter Hip. Ubelaker and Jacobs (1995) provided information on the<br />

identification of orthopedic device manufacturers enabling identification<br />

using company logos. However, manufacturers were not required to place<br />

logos on their products prior to 1993 (Ubelaker and Jacobs 1995).<br />

Prosthetics manufactured before1993 may not have these identifying logos<br />

and if present the logo may be obscured by new bone growth. Therefore,<br />

understanding the chronology of particular designs could help identify possible<br />

manufacturers, as well as indicate the timing of the surgery.<br />

Furthermore, understanding the osseous response to orthopedic devices in<br />

conjunction with the timing of implantation will provide a better time of<br />

insult estimation for the forensic investigator.<br />

According the National Impatient Survey (NIS) more than 557,000<br />

total hip or knee replacement surgeries occurred in 2002. Knee replacements<br />

have become the leading arthroscopic surgery performed in the<br />

United States followed by total hip replacements. According to the NIS,<br />

376


381,000 knee replacements occurred in 2002 with those 65 or older<br />

accounting for 241,000 of these replacements. NIS also noted that females<br />

(235,000) out numbered males (146,000) on a 2 to 1 margin. However,<br />

NIS did acknowledge a growing trend for total knee replacements within<br />

the 45-65 age group (131,000 individuals) which is a 6 percent increase<br />

from the previous survey.<br />

Hip replacements are not as common as knee replacements with<br />

193,000 total and 114,000 of these going to those 65 years or older. Like<br />

knee replacements, hip replacements are more common in females<br />

(112,000) than males (81,000). Data for partial replacements and shoulder<br />

replacements are yet to be available.<br />

The William M. Bass Donated Collection (N=436) was surveyed for<br />

individuals demonstrating partial or total hip, knee, and shoulder joint<br />

replacements. Demographic information for individuals displaying evidence<br />

of arthroscopic surgery were obtained and compared to the NIS statistics.<br />

Each device was observed for the presence of a logo, the location<br />

of a logo, and specific design characteristics. This information was compared<br />

to manufacturer data to determine the specific manufacturer of the<br />

appliance and the years for which that appliance was made. Also, the<br />

amount of osseous healing was noted. The results from these were compared<br />

to a chronology of specific device designs established using reference<br />

samples from the major orthopedic device manufacturers.<br />

Very few individuals demonstrated early varieties of hip or knee<br />

replacements and few individuals demonstrated a shoulder replacement<br />

(N=2). Knee replacements are more common than hip replacements in the<br />

collection, but not to the predicted NIS amounts. Females (N=107) demonstrated<br />

a higher percentage of replacements, particularly knee replacements,<br />

compared to males (N=329), which corresponded to that which was<br />

predicted. Appliance designs varied greatly between individuals.<br />

However, far fewer logos could be found on the appliances suggesting that<br />

these cannot be solely relied upon to identify the manufacturer of an orthopedic<br />

device.<br />

It was estimated that most individuals displaying orthopedic devices<br />

at a joint complex had these devices implanted within 10 years of death if<br />

not sooner than 5. This is supported by the minimal amount of osseous<br />

response on affected bones. Conclusions are limited by the degree of<br />

healing observed on the individual bones. More studies must be completed<br />

to fully appreciate the use of the osseous response in the timing of an insult.<br />

It is necessary to continually update references, especially those<br />

involving manufacturing companies, for use by the forensic anthropologist.<br />

Human Identification, Orthopedic Devices, Osteoarthritis<br />

H30 The Effects of Household Corrosive<br />

Substances on Human Bone and Teeth<br />

Darcy J. Cope*, and Tosha L. Dupras, PhD, University of Central<br />

Florida, Department of Sociology and Anthropology, Orlando, FL 32816<br />

After attending this presentation, attendees will gain an understanding<br />

of how various household corrosive products, chiefly those products used<br />

in masking the identity of a victim, effect human bone, and teeth.<br />

Application of this information can assist in the analysis of human remains<br />

and possibly provide an identification of the chemical.<br />

At present, the forensic literature does not provide the needed information<br />

to determine how these household chemicals can affect the bone<br />

and teeth of the victim and how the identification process is hindered by the<br />

use of such chemicals. In an effort to provide such information, this presentation<br />

will impact the forensic community and/or humanity by assisting<br />

investigators in determining the affects of common household corrosive<br />

agents on bone and teeth.<br />

Often times a murderer will attempt to destroy the body of their victim<br />

with the prospect of deterring the investigative process of determining the<br />

identity of the victim’s remains. Forensic literature does address body disposal<br />

with the purpose of annihilating a victim’s identification such as<br />

incineration or dismemberment of the limbs and head, but surprisingly<br />

there is a gap in the literature concerning the chemical effects that<br />

household products may produce on human bone and teeth. These highly<br />

corrosive household products are easily attainable by the general public and<br />

include such products like drain cleaners, toilet bowl cleaners, and muriatic<br />

(hydrochloric) acid.<br />

A total of eight chemicals were utilized for this experiment. Of these<br />

chemicals, seven products were purchased at general stores and one<br />

chemical was prepared by dissolving sodium hydroxide pellets. Each<br />

product is categorized according to the pertinent amount of corrosive<br />

chemical found within the product. The corrosive acid/base categories<br />

include hydrochloric acid, sulfuric acid, phosphoric acid, and sodium<br />

hydroxide. Two products from each acid/base category were used to represent<br />

a higher and lower concentration of the corrosive acid/base found<br />

within the products.<br />

Two human teeth, an incisor and molar, were allocated for experimentation<br />

in each chemical. To simulate the position of the teeth in the<br />

mandible/maxilla, a hole was drilled through the root of each tooth and a<br />

wire was fed through this hole. A wooden dowel was used to suspend the<br />

tooth, which allowed concentration of the chemical reaction to occur only<br />

on the occlusal surface of the molars and the incisal surface of the incisors.<br />

The teeth were suspended over a beaker holding 40ml of a chemical. Each<br />

sample was emerged in the chemical for 24 hours with documentation of<br />

changes after 1, 2, 3, 4, 5, 6, 12, and 24 hours.<br />

For experimentation on human bone, a fresh human humerus was cut<br />

into eight segments, originating from the shaft of the bone. Only one<br />

segment was used for each chemical. The bone samples were submerged<br />

in a beaker holding 200ml of a chemical for a total duration of 24 hours.<br />

Documentation of changes was recorded after 1, 2, 3, 4, 5, 6, 12, and<br />

24 hours.<br />

Documentation of the chemical effects on the teeth and bone comprised<br />

of gathering quantitative and qualitative data. A fifteen minute<br />

interval was allotted for each measurement period. A spreading caliper was<br />

used to take measurements of the crown width and length of the tooth as<br />

well as the length and diameter of the bone segments. Weight measurements<br />

were taken with a digital scale. With the use of a digital camera<br />

microscope, pictures were shot of the teeth and bone during every measurement<br />

interval period.<br />

The results of this experiment showed destruction of the teeth and<br />

bone with certain chemicals like hydrochloric acid, while other chemicals<br />

demonstrated an insignificant effect. In certain cases, within one hour the<br />

enamel portion of the teeth was completely obliterated while the bone segments<br />

demonstrated almost complete loss of tissue and afterwards a<br />

decrease in inorganic matter. Continuing changes of both the teeth and<br />

bone was witnessed in their basic morphology and quantitative aspects.<br />

The longer undisturbed exposure the samples had with the chemical, the<br />

greater the destructive effects.<br />

Corrosive Agents, Human Bone, Human Teeth<br />

H31 Artists Contribution to Facial<br />

Reconstruction<br />

Gloria L. Nusse, BFA*, Clay and Bones, 129 Stanford Avenue, Mill<br />

Valley, CA 94941; and Alison Galloway, PhD*, University of California,<br />

Santa Cruz, Anthropolgy Department, Social Science One FS, Santa<br />

Cruz, CA 95064<br />

The goal of this presentation is to understand whether the artists incorporate<br />

their own anatomy into their work and how this tendency may be<br />

counteracted.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing an aspect of facial reconstruction that has previously<br />

only received anecdotal attention. Artists may incorporate their own<br />

features into reconstructions by referring to their own faces for guidance.<br />

However, attention to instruction in facial anatomy appears to provide a<br />

way of avoiding this situation.<br />

377 * Presenting Author


Facial reconstruction or approximation is a delicate balance between<br />

scientific analysis and artistic interpretation. If either exists without the<br />

other, the reconstruction appears both lifeless and vague or is a poor match<br />

to the individual. The question of accuracy in facial reconstruction is<br />

debated with claims of 10-60%. One fundamental aspect of these tests has<br />

been neglected, however, and this is the experience and talent of the artist.<br />

In the present study, the authors assess whether or not beginning facial<br />

reconstruction artists unconsciously put their own facial anatomy in their<br />

work. The study attempts to find out if observers can identify which artist<br />

did which facial reconstruction when all the artists used the same skull and<br />

technique. Human subjects’ approval from SFSU and UCSC was obtained<br />

for all participants.<br />

Students enrolled in a scientific illustration course were asked to complete<br />

a half reconstruction based on identical model skulls as part of their<br />

regular assignment. Instruction in the technique was provided by an experienced<br />

reconstruction artist (GN). Photographs were taken of the reconstructions<br />

and the artists. Images were constructed of a “full face” by<br />

flipping the half reconstruction using Adobe® Photoshop® 6.0 and<br />

cropped to limit the image to the facial region. Photographs of the artists<br />

were similarly cropped to the facial region.<br />

Groups of individuals with varying levels of skill were then asked to<br />

compare a selection of four skull reconstructions and six artist faces. Some<br />

were experienced anthropologists or graduate students; others work in<br />

identification of remains while others are undergraduate students with no<br />

exposure to forensic identification.<br />

The four reconstructions selected showed differences in morphology,<br />

particularly in the midface. The associated artists also showed a range of<br />

facial features although all were young adult females. Preliminary results<br />

of the matching exercise show that there are clear preferences to associate<br />

particular facial reconstructions with artist faces. However, there is no clear<br />

pattern in which the correct match is made.<br />

This study suggests that, with proper training, the tendency to rely on<br />

the artist’s own anatomy may be minimized. Such training should include<br />

information on facial anatomy and the principles by which the soft tissue<br />

can be interpreted and individualized from the skeletal data.<br />

Facial Reconstruction, Facial Approximation, Facial Anatomy<br />

H32 Superficial Ancestral<br />

Characteristics of the Nose<br />

Stephanie M. Crider, BA*, 4525 North Leata Lane, La Canada, CA 91011<br />

After attending this presentation, attendees will learn, retain, and<br />

implement the newest additions to Olivier and Thomas nasal characteristics.<br />

Attendees will also find a new understanding of the nose and root<br />

superficial characteristics, as well as the characteristics that are common<br />

among different ancestral groups.<br />

This presentation will impact the forensic community and/or<br />

humanity by being a catalyst for further research into the genetic work on<br />

the varying aspects of what composes the superficial ancestral characteristics<br />

of the nose. Also, this presentation serves as the beginning of a catalogue<br />

of varying nose and root types, including images and text explaining<br />

in detail the differences between nose and root types. All of these would be<br />

extremely crucial for Forensic Facial Reconstruction.<br />

Facial reconstruction or approximation depends on the ability of the<br />

artist to utilize the landmarks on the skull to build a replica of the soft tissue.<br />

The primary features of the face (the eyes, nose, and mouth) useful for<br />

facial recognition are the areas most concern for the artist. A closer understanding<br />

of the relationship of bone to soft tissue and of the variation<br />

present in contemporary human populations is essential.<br />

Classification systems for the nose are relatively limited and are often<br />

based on broad divisions of ancestral groups into 3-4 main clusters. These<br />

categories do not recognize the diversity represented in the contemporary<br />

American population nor do they recognize the amount of admixture of<br />

* Presenting Author<br />

ancestral lineages. This study explores the variation of nose proportions,<br />

nasal bridge and root shapes, and nasal angles.<br />

Sixty-seven individuals from five ancestral backgrounds (Mongoloid,<br />

Hispanic, African, Caucasoid, and Mixed Ancestry) were selected. Frontal<br />

and lateral photographs were taken of the nasal area with scales.<br />

Measurements of the features were then taken using NIH’s ImageJ. The<br />

data are compared and analyzed for their superficial nose characteristics.<br />

Specific measurements include Angle from glabella to the bridge<br />

(nasofrontal angle); angle from the tip of the nose to the philtrum of the<br />

nose (nasolabial angle); length of nose; and width of nose. In addition the<br />

types of nose and root are assessed according to the Olivier and Thomas<br />

chart. As not all individuals could be assigned to these categories, new categories<br />

were created to accommodate for these trends. The new categories<br />

for nose type include Slight Curve and Deep Curve; for nose root, the new<br />

categories are Slight Point, Flat Point, and High Elevated Point.<br />

The data were analyzed using Microsoft Excel and ImageJ. Linear<br />

measurements were converted to proportions. ANOVA was used to assess<br />

the difference between ancestral groups while Chi Squares was utilized for<br />

the categorical date.<br />

Results show that the most common nose type across all five ancestral<br />

groups is Elevated Point with a Slight Curve. It is only the secondary traits<br />

of the nose and root that differentiate the various ancestral groups. Also,<br />

individuals of Mongoloid ancestry have the lowest nasal measurements<br />

altogether, while individuals of Caucasoid ancestry have the highest nasal<br />

measurements altogether. And finally, the author has noticed that the<br />

frontal views of the noses are quite different, while the lateral views of each<br />

of the noses tends to be extremely similar.<br />

Ancestral, Nasal, Characteristics<br />

H33 Morphometrics Using Radiographic<br />

Study of Thyroid Cartilage for<br />

Age-Estimation in Korean Males<br />

Dae-Kyoon Park, MD, PhD*, and Jeong-Sik Ko, PhD, Department of<br />

Anatomy, College of Medicine, Soonchunhyang University, 366-1,<br />

Ssangyong-dong, Chungcheongnam-do, Cheonan-si, 330946, Korea; and<br />

Deog-Im Kim, MA, U-Young Lee, MD, and Seung-Ho Han, MD, PhD,<br />

Department of Anatomy, Catholic Institute for Applied Anatomy, College<br />

of Medicine, The Catholic University of Korea, 505 Banpo-dong, Sochogu,<br />

Seoul, 137701, Korea<br />

The goal of this presentation is to show the results of a study on the<br />

analysis of the thyroid cartilage of unknown Koreans by morphometrics<br />

using radiography for age estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the usefulness of thyroid cartilage for age estimation<br />

in Korean males and another method for age estimation using radiographic<br />

analysis of thyroid cartilage.<br />

The need for accurate methods for age estimation has increased in the<br />

last decade. One reason is the increasing number of unidentified cadavers<br />

and human remains, and the other is a rise in cases requiring age estimation<br />

in living individuals with no proof of date of birth (Ritz-Timme et al.,<br />

2000). Most of earlier studies of age estimation are focused on the hard<br />

tissue such as teeth and bones. However, studies about the soft tissue such<br />

as cartilage are fewer. The thyroid cartilage, the biggest among the<br />

laryngeal cartilages, undergoes endochondral ossification with age. There<br />

are several references on the patterns of ossification of the thyroid cartilage,<br />

but reports on quantitative analysis of ossification are lacking. The purpose<br />

of this study is to estimate the age of the Koreans whose age is unknown,<br />

based on radiographic analysis of the thyroid cartilage.<br />

The thyroid cartilages were separated from the larynx and dissected<br />

from the surrounding connective tissue. Dedicated mammography was<br />

carried out in 124 specimens of the thyroid cartilages including 76 males<br />

and 48 females. Radiographed films were scanned and 17 quantitative<br />

378


measurements were carried out with Adobe® Photoshop® CS (version<br />

8.0). Using this program, the scanned radiographs were converted into<br />

gray scales, with the command “Histogram,” and it was possible to distinguish<br />

the pixels for ossification or calcification of thyroid cartilages. These<br />

measurements were analyzed using SPSS (version 11.0) statistical software<br />

package.<br />

The radio-opacity increased with advancing age in both sexes, but the<br />

pattern of ossification was different. The data were divided into four age<br />

groups as follows: G0: age below 14 years, G1: age between 15 ~ 30 years,<br />

G2: age between 31 ~ 45 years, G3: age above 46 years. The discriminant<br />

functions for the age group and multiple regression functions for each age<br />

group were obtained for age-estimation of male subjects, but the application<br />

for female subjects was still limited due to the small sample size for<br />

each age. In male subjects, the ossification appeared first at the posterior<br />

border and spread along the inferior border, the anterior angle (anterior<br />

border) and the notch, and finally resulted in the formation of the window<br />

with advancing age. In female subjects, the ossification appeared first at<br />

the posterior border and spread into the middle and the upper part of the<br />

laminae, but the front parts of the lamina and midline remained cartilaginous.<br />

This research indicates the thyroid cartilage is useful in estimating the<br />

age for Korean male subjects whose age is unknown. Further investigations<br />

must be conducted to verify its utility and the application in for female<br />

subject.<br />

Thyroid Cartilage, Age Estimation, Koreans<br />

H34 Isotopic Determination of Region of<br />

Origin in Modern Peoples: Applications<br />

for Identification of U.S. War-Dead<br />

From the Vietnam Conflict<br />

Laura A. Regan, MS*, and Anthony B. Falsetti, PhD, C.A. Pound Human<br />

Identification Lab, Department of Anthropology, University of Florida,<br />

PO Box 112545, Building 114, Gainesville, FL 32611; and Andrew<br />

Tyrrell, PhD, Joint POW/MIA Accounting Command-CIL, 310<br />

Worchester Avenue, Hickam Air Force Base, HI 96853<br />

After attending this presentation, attendees will understand the benefits<br />

and limitations of undertaking a multi-element approach when utilizing<br />

stable isotopes for determining region of origin of dental remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by facilitating identification efforts in a variety of contexts.<br />

When compared to isotopic signatures developed for geographic areas of<br />

Southeast Asia, the information in this study will assist in identifying the<br />

origin of unknown dental remains unilaterally turned over to, or recovered<br />

by, the Joint POW/MIA Accounting Command Central Identification<br />

Laboratory. Additionally, this information may be applied to identification<br />

efforts of fallen servicemen and women in conflicts outside of Southeast<br />

Asia, the identification of decedents resulting from mass fatality incidents<br />

and in the identification efforts of undocumented aliens or otherwise<br />

unprovenienced human remains.<br />

To facilitate the construction of identification shortlists, especially<br />

from large open ended decedent populations, a highly effective means of<br />

excluding possible candidates for identification would be the establishment<br />

of the geo-political region of origin for a set of remains. However, ascertaining<br />

the national origin of unidentified human skeletal remains whose<br />

provenance is either unknown or suspect is particularly problematic.<br />

Factors that can encumber this process include long postmortem intervals,<br />

highly fragmented friable remains, and diagenesis.<br />

The goal of this study is to create a geographic “fingerprint” utilizing<br />

carbon, oxygen, strontium, and lead isotope ratios sampled from the teeth<br />

of modern people. This fingerprint will enable identification of region of<br />

origin for unidentified skeletal material without an established or well-documented<br />

provenance. The initial efforts of this project have focused on the<br />

approximately 1,800 service members who remain unaccounted for from<br />

the Vietnam conflict. The authors have utilized a two-pronged approach<br />

based on the operating hypotheses that: 1) discernable differences exist<br />

between the isotope ratios incorporated into North American and South<br />

East Asian tooth enamel and that these differences can be used to determine<br />

region of origin; and 2) regional differences in natal isotopic signatures are<br />

also discernable within populations raised within the United States (and<br />

hence, by implication, other global regions as well).<br />

Stable isotope analyses, long used in paleontological and archaeological<br />

studies, are emerging as a powerful tool in the forensic realm as<br />

well. Forensic pilot studies have hinted at the utility stable isotopes may<br />

provide to forensic anthropology. This study is unique in that it employs a<br />

multi-element approach in combination with a large sample size. The<br />

standard deviations of isotope ratio values often overlap in single-element<br />

studies making discrimination between regional signatures virtually impossible.<br />

This tendency is reduced through the introduction of multi-element<br />

analyses to forensic work. A multivariate, multi-element approach should<br />

allow finer resolution, especially since deposition of different elements<br />

within dental enamel depends upon very different factors. Carbon isotope<br />

ratios reflect the photosynthetic pathways of ingested plants and echo cultural<br />

food preferences. It is expected that individuals who have subsisted<br />

on a rice-based (C3 plant) South East Asian diet will differ significantly in<br />

their carbon isotope signature from individuals who have subsisted on a<br />

heavier corn and sugar-reliant (C4 plants) American diet. Oxygen isotope<br />

signatures rely on the variation of oxygen isotope ratios in meteoric water<br />

according to variations in temperature, altitude, and distance from major<br />

bodies of water. Variations in strontium and lead isotopes reflect underlying<br />

bedrock and soil as well as exposure to pollutants.<br />

Tooth enamel is ideally suited for isotope studies. Teeth are much<br />

more robust than bone, exhibiting preferential preservation and reduced<br />

susceptibility to diagenetic processes. Dental enamel does not remodel and<br />

hence the in- and outflow of materials ceases once amelogenesis is complete.<br />

This means that examining the permanent dentition provides a<br />

snapshot of the “nutritional ecology” of that individual during the period of<br />

crown mineralization for a specific tooth.<br />

A Southeast Asian reference population of 61 individuals was<br />

sampled from the Joint POW/MIA Accounting Command (JPAC) Central<br />

Identification Laboratory’s “Mongoloid hold” collection. Remains originating<br />

from South East Asia are unilaterally turned over to the Central<br />

Identification Laboratory. Despite best efforts, the Governments of South<br />

East Asia are often reluctant to repatriate those remains thus obtained by the<br />

Central Identification Laboratory that are identified as Asian in origin. This<br />

reference sample was compared against stable light isotope ratio data<br />

obtained from living subjects at two separate dental facilities, the U.S. Air<br />

Force Academy, Colorado Springs, Colorado and the Malcolm Randall<br />

Veterans Affairs <strong>Medical</strong> Center, Gainesville, Florida. At each clinic,<br />

patients already identified for tooth extraction were asked to donate their<br />

extracted teeth and participate in a brief survey listing their childhood residency<br />

and biological and cultural factors that might potentially affect isotopic<br />

deposition in enamel. Military members and their dependents were<br />

chosen as subjects due to their varied geographic backgrounds. Spatial<br />

analyses were layered with temporal analyses by comparing cadets (ages<br />

18-25) to veterans. The results to date are presented as well as the distinct<br />

advantages and limitations to undertaking a mosaic approach to stable<br />

isotope analyses of dental tissues.<br />

Stable Isotopes, Region of Origin, Vietnam Conflict<br />

379 * Presenting Author


H35 Non-Destructive Microscopic Differentiation<br />

of Human From Non-Human Fragmentary<br />

Burned Bone<br />

Elayne J. Pope, MA, Trey Batey, MA*, and Jerome C. Rose, PhD,<br />

University of Arkansas, 330 Old Main, Fayetteville, AR 72701<br />

After attending this presentation, attendees will learn the Nondestructive<br />

methods for differentiating human from non-human bone in<br />

cases of fragmentation and burning encountered in mass disasters and<br />

forensic cases.<br />

This presentation will impact the forensic community and/or<br />

humanity by improving field analysis of fragmentary and burned bone for<br />

differentiating human from non-human bone.<br />

Fragmentary burned bone presents challenges to field investigators<br />

questioning the fundamental probability of skeletal remains being of<br />

human or animal origin. This affects the development or termination of<br />

criminal investigations, recovery techniques, and methods of identification.<br />

These issues are important when human remains are suspected in addition<br />

to animal remains or encountered among debris of mass disasters (aircraft<br />

and mass transit accidents, wild fires, or explosions) involving fragmentation<br />

and burning. Normally this problem is resolved by identifying morphological<br />

variations in anatomical landmarks present on suspect fragments.<br />

However, fragmentation of brittle burned bone reduces diagnostic<br />

features producing small pieces of compact cortical and trabecular bone as<br />

primary specimens for analysis. In these cases, examining microscopic<br />

structures of bone is necessary for differentiating human from non-human<br />

fragments.<br />

Routine forensic cases encounter this issue when unknown skeletonized<br />

remains are discovered by the public and relinquished to law<br />

enforcement for identification. To the untrained observer, this question is<br />

resolved by consulting a biological anthropologist, zooarchaeologist, or<br />

medical professional trained in osteology. Morphological variants of size<br />

and shape in skeletal anatomy distinguish extreme cases of small (cat,<br />

opossum, or chicken) and extremely large (horse or cow) animals as obviously<br />

differing in size from humans. However, postcranial skeletal remains<br />

of medium-sized animals such as pig, deer, sheep, or large canine may<br />

resemble human bone in relative dimensions of cortical thickness for<br />

extremely fragmented remains and require definitive identification.<br />

Burning increases the difficulty of this task and the degree of fragmentation<br />

of bone, especially if larger diagnostic remains are purposely crushed or<br />

removed to a secondary location for disposal to conceal criminal acts and<br />

destroy evidence of identity.<br />

Compounding the identification problem is the variable degradation<br />

of bone’s structure through stages of unburned, initial burning, charring,<br />

and calcination. Pyrolosis of organic constituents through progressive<br />

stages of cremation gradually leaves bone structurally deficient as a dry and<br />

brittle material. In calcined bone this reduction produces shrinkage, deformation,<br />

embrittlement, and heat fractures from prolonged burning. Partial<br />

fragmentation of skeletal material is expected from the dynamic fire environment<br />

from heat, movement, or impact. Changes in microstructure of<br />

human burned bone have been previously documented by Bratmiller and<br />

Buikstra (1981) and Nelson (1992). The presenter’s intention is not to<br />

redefine their research but instead expand it into the general identification<br />

of animals similar in human size or cortical thickness called into question<br />

as potential forensic specimens.<br />

A sample of southeastern American domestic and wild animal species<br />

were selected as household food refuse and common animal types suspected<br />

as human remains; Sus scrofa (pig), Odecolius virginanis (white<br />

tailed deer), Canis familiaris (medium-large dog), Bos tarus (cow), Ovis<br />

aries (domestic sheep), and Terrapene carolina (box turtle carapace).<br />

Specimens were burned and sampled for cranial and postcranial exemplars<br />

of unburned, charred, and calcined bone for each species. Identical burn<br />

stages of human cranial and postcranial bones were obtained for comparative<br />

analysis.<br />

* Presenting Author<br />

Due to the fragmentary nature of burned bone, traditional destructive<br />

and expensive techniques were not necessary since fracture margins were<br />

exposed and amenable to microscopic analysis. Specimen margin surfaces<br />

were visually examined under a basic stereoscopic laboratory scope with<br />

low power magnification (10-40X) and angled lighting. Specimens were<br />

placed on a variable height platform, often secured with clay under the lens,<br />

analyzed, photographed, and morphologically documented first for progressive<br />

degradation from burning within each species and then later comparatively<br />

to identify differences among species.<br />

Characteristics of human microstructure were first established in dry<br />

bone for cranial and postcranial fragments, noting differential size, shape,<br />

and distribution of osteons ranging from endosteal to periosteal lamellar<br />

bone and texture of external cortical surfaces. The identical protocol was<br />

applied to each non-human species. Fragmentary surfaces of non-human<br />

bone yielded unique patterns of osteon size, distribution, shape, banding,<br />

and external cortical surface morphology different from human.<br />

Microscopic analysis of fleshed bone fracture surfaces presented difficulties<br />

under low power magnification as grease and organic materials<br />

were still present in Haversian canals and skeletal matrix. Charred bone<br />

with its uniform blackened structures was also challenging to visually differentiate<br />

unique microstructural patterns for each species. Calcined and<br />

dry bone surfaces yielded the best conditions from loss of their organic constituents<br />

for accurately analyzing microscopic characteristics. Descriptions<br />

of techniques and a comparative visual atlas of microstructural differences<br />

among human and non-human specimens will be presented for use in problematic<br />

cases involving fragmentary and burned bone.<br />

Burned Bone, Fragmentary Bone, Mass Disasters<br />

H36 The Detection of Microscopic Markers<br />

of Haemorrhaging and Wound Age<br />

on Dry Bone: Beating the Barriers<br />

Between Forensic Anthropology and<br />

Forensic Pathology<br />

Cristina Cattaneo, PhD, MD*, and Eloisa Marinelli, MD, Istituto di<br />

Medicina Legale, via Mangiagalli 37, Milano, 20133, Italy; Salvatore<br />

Andreola, MD, Istituto Nazionale per la Cura Dei Tumori, via venezian 1,<br />

Milano, 20133, Italy; and Pasquale Poppa, BSc, and Marco Grandi, MD,<br />

Istituto di Medicina Legale, via Mangiagalli 37, Milano, 20133, Italy<br />

After attending this presentation, attendees will learn that it is worth<br />

trying to apply immunohistochemical techniques on dry bone in order to<br />

verify the antemortem nature of a fracture.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that the application of histopathology techniques<br />

for detection of survival may be useful also on dry bone and<br />

therefore in forensic anthropology.<br />

An example of the barriers and conceptual differences between<br />

forensic anthropology and pathology can be seen in determining the vitality<br />

of a wound. Pathology can make use of skin color and microscopic techniques,<br />

anthropology needs different criteria. The diagnosis of the vitality<br />

of a wound (whether it is produced ante-mortem or postmortem) as well as<br />

determination of the time elapsed between the production of the wound and<br />

death is a crucial issue in forensic pathology. In fresh skin, the red-purplish<br />

coloration of a cut or bruise will reveal its vitality whereas the change in<br />

coloration, from a macroscopic perspective, will reveal the time of survival.<br />

In more difficult cases, microscopic analyses can be performed. A plethora<br />

of data from classical histological techniques and newer immunohistochemical<br />

techniques provides more accurate statements of survival time,<br />

although this depends on the stain used, time from death, etc. One however<br />

must keep in mind that unless there has been at least a four hour survival<br />

time, histological distinction between ante-mortem and postmortem skin<br />

wounds is not possible, regardless of sporadic studies which declare better<br />

380


esults for short survival times with immunohistochemistry. Similar statements<br />

can be said concerning bone trauma, in particular fractures. Bone<br />

follows similar “laws” with regards to the progression of histological<br />

changes during healing. Even if the beginning of the healing process<br />

(periosteal bone production and callus formation) can be detected macroscopically<br />

and radiologically, these processes require a long time.<br />

The scope of this pilot study was therefore to collect bone fractures<br />

from cadavers with a known time of survival, have them undergo a simulated<br />

putrefaction procedure until they became “dry bone” and perform<br />

macroscopic and microscopic analysis to verify the potential of histology<br />

in identifying “vital” processes in putrefied soft-tissue-free bone. This<br />

would allow one to verify if histopathological techniques can be useful in<br />

determining the antemortem nature of fractures in dry bone.<br />

Six samples of fractured bone (cranium, rib, tibia) were taken from<br />

cadavers with known time of survival between trauma and death. Time<br />

intervals ranged from a few seconds after the bone fracture had been<br />

inflicted, to several hours, days, and weeks. A negative control was<br />

included (postmortem fracture). At the time of sampling, before starting<br />

the decalcifying process (using the following solution: distilled water 80%,<br />

HCl 10%, formic acid 10%), ink was painted onto the fracture surface to be<br />

studied. Fractured edges were observed macroscopically and then macerated<br />

in water in order to clear the bone of residual soft tissue and “simulate”<br />

dry bone. The bone was then decalcified and stained with H&E,<br />

PERLS (for the demonstration of hemosiderin deposits), and PAS, PTAH<br />

and Weigert (for the demonstration of fibrin). Immunohistochemistry was<br />

performed using a monoclonal antibody anti-human Glycophorin A. Two<br />

staining methods were used for antigen detection, the first with boiling of<br />

the sections and the second with incubation at room temperature.<br />

Preliminary results indicate that not only do the PTAH and glycophorin<br />

tests show the presence of thrombi and red blood cells residues,<br />

respectively, on the fractured margin, but also within Haversian canals.<br />

This study, though certainly not conclusive, shows that it may be worth pursuing<br />

the study of bone fractures from a histopathological point of view<br />

even on “dry bone.”<br />

Bone Fractures, Microscopy, Haemorrhaging<br />

H37 Differential Diagnosis of<br />

Gout in Skeletal Remains<br />

Christopher R. Grivas, MS*, University of New Mexico, Department of<br />

Anthropology, 1 University of New Mexico, Albuquerque, NM 87131<br />

The goal of this study is to describe the lesions created from gout that<br />

can be identified through osteological and radiological examination.<br />

This presentation will impact the forensic community and/or<br />

humanity by defining characteristic skeletal lesions from gout that can be<br />

used in creating a more specific osteological profile.<br />

Characterized by the deposition of monosodium urate monohydride<br />

crystals, gout is the most common form of degenerative arthritis in males<br />

over 40, affecting approximately 1% of males in Westernized regions. It is<br />

predominately a male disorder, with rates ranging from 7:1 – 9:1 incidence<br />

of males to females. Typically first attacks of gout occur in males 30-50<br />

years of age and in females after menopause. The prevalence of gout is<br />

rising worldwide, especially in the elderly, often in association with drug<br />

therapies such as loop diuretics and with organ transplants.<br />

Without treatment, gout typically progresses through stages of acute<br />

inflammation known as acute gouty arthritis, followed by periods of no<br />

symptoms known as intercritical gout. As gout progresses, the intercritical<br />

periods become shorter and eventually nonexistent as the attacks become<br />

chronic. The development of urate crystal masses, called tophi, characterizes<br />

this stage. On average, chronic tophaceous gout develops twelve<br />

years after the initial attack but with a wide range; gout associated with a<br />

known cause tends to progress more rapidly than idiopathic gout. Osseous<br />

lesions typically develop when the tophi dissolve the underlying cortical<br />

bone. Roughly 50-70% of untreated gout cases progress to chronic tophaceous<br />

gout, but with treatment less than 5% of cases progress to tophaceous<br />

gout. Most individuals who develop tophaceous gout will develop skeletal<br />

lesions.<br />

Gout shows a predilection for smaller joints and lower limbs, especially<br />

the 1st metarso-phalanygeal joint and can be monoarticular, oligoarticular,<br />

or polyarticular. The lesions can be located on the intra-articular<br />

surface, periarticular surface, or the diaphysis near the joint surface and<br />

tend to be asymmetrical in occurrence and/or severity. Clinically, the<br />

presence of urate crystals is considered to be diagnostic, but they are not<br />

always present at the time of diagnosis so a combination of other characteristics<br />

such as hyperuricemia, asymmetric joint swelling, and multiple<br />

attacks can also define gout. However, these characteristics are all associated<br />

with soft tissue and/or patient history and will be obscured and/or<br />

absent in decomposed and skeletal remains. Urate crystals are watersoluble<br />

and most likely will not be present in skeletal remains.<br />

Radiological studies have identified unique features of skeletal gout<br />

lesions. These lesions are characterized as being round or oval, eroded and<br />

scooped-out with well-defined, sclerotic margins, and little to no bone<br />

density loss.<br />

A gross osteological examination of gout lesions has never been made<br />

from clinically diagnosed gout. Recently, an individual with a documented<br />

case of gout donated his body to the Maxwell Museum at the University of<br />

New Mexico. Gross skeletal examination of this case confirms the radiologic<br />

description of gout lesions as the scooped-out circular erosive lesions<br />

that remain in the subchondral surface and do not invade the marrow cavity.<br />

The well-defined overhanging margins are more obvious than in radiographs,<br />

are sclerotic to varying degrees, and can have a slightly different<br />

texture than the surrounding bone. Some cortical expansion may be<br />

present, but with subchondral destruction.<br />

Gout lesions can be differentiated from similar conditions by combining<br />

osteological and radiological observations. Rheumatoid arthritis<br />

produces erosive symmetrical lesions with osteopenia and nonsclerotic,<br />

less defined margins that are limited to the joint surface. Early skeletal<br />

lesions can have a slight overhanging edge, but more developed lesions do<br />

not. Chondrocalcinosis, a form of calcium phosphate deposition disease,<br />

produces erosive, irregular symmetrical lesions with nonsclerotic, poorly<br />

defined margins that are limited to the joint surface. Psoriatic arthritis produces<br />

erosive symmetrical and asymmetrical lesions with little to no<br />

osteopenia but with poorly defined margins limited to the joint surface.<br />

Septic arthritis can produce erosive asymmetrical lesions not limited to the<br />

joint surface, but typically the lesions invade the marrow cavity with a less<br />

organized underlying bone structure. Furthermore, radiological analysis<br />

shows less defined margins and a lace-like periosteal reaction.<br />

Amyloidosis resulting in carpal tunnel syndrome, which is rare, can create<br />

erosive lesions with sclerotic margins which are not limited to the joint<br />

surface, but are often accompanied by a loss of bone density. No gross<br />

osteological description has been made for this condition.<br />

As gout skeletal lesions are relatively rare, identifying gout lesions can<br />

be an important step in creating an osteobiography from skeletal remains.<br />

The severity of the disease required to produce a lesion should be an identifiable<br />

characteristic of an individual in life.<br />

Gout, Differential Diagnosis, Osteological Profile<br />

381 * Presenting Author


H38 Bevel, Bevel in my Bone, Be it Bullet<br />

or Be it Stone? Misidentification of<br />

Blunt Force Trauma as Ballistic Entrance<br />

Wounds in Burned Cranial Bone<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main, Fayetteville,<br />

AR 72701; O’Brian C. Smith, MD, 381 Cherry Hollow, Cordova, TN<br />

38018; and Kate M. Spradley, MA, University of Tennessee, 250 South<br />

Stadium Drive, Knoxville, TN 37996<br />

After attending this presentation, attendees will come away with an<br />

understanding how heat affects preexisting injury. During the postmortem<br />

examination, it is possible to mistake blunt force trauma for ballistic if one<br />

is simply looking for an internal bevel to evidence injury type. Awareness<br />

of bone’s plastic deformation from blunt insults, the telltale tags of bone<br />

driven into the calvarium and detached by heat, and metric analysis, can<br />

overcome misidentification of traumatic injury.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing awareness to the possibility of blunt force traumatic<br />

injury in crania being mistaken as ballistic injury in burned human remains.<br />

Analysis of gunshot wounds in cranial bone utilizes characteristic signatures<br />

of entrance wounds and its associated internal beveling. These<br />

defects are produced by a high energy projectile penetrating the external<br />

table, punching out and beveling the diploe, and finally creating a defect on<br />

the internal table of a diameter greater than the external defect. Focally<br />

delivered blunt force trauma is similar in mechanism but is of lower energy<br />

and forces create depression fractures with crushing, plastic deformation,<br />

and incomplete beveling of the opposite impacted surface in viscoelastic<br />

bone. Fresh blunt force skeletal wounds typically appear as internally<br />

levered bone or a punched in plug partially attached or driven into the<br />

cranial vault. Burning of the body after these events can produce confusing<br />

appearances if the thermal effects are not taken into account.<br />

With burned human remains, heat degrades organic components,<br />

leaving bone brittle, and subject to fragmentation. The internally levered<br />

fragments or bone plugs from blunt impacts become highly fragile and may<br />

detach from the original wound defect. The absence of levered bone or<br />

bone plug leaves an internal bevel for postmortem analysis identical to ballistic<br />

beveling. Misidentification of this wound type as ballistic injury<br />

instead of blunt force trauma allows erroneous estimation of death determination,<br />

a misguided search for weapons, and contradictory autopsy<br />

findings against testimony.<br />

In order to investigate morphological differences among blunt force<br />

and ballistic wounds in burned cranial bone, twelve cadaver heads were<br />

subjected to mechanical focal blunt impacts with known weapons and<br />

injury sites. Specimens were burned in environments simulating forensic<br />

fires. Wound morphology, internal beveling of focally traumatized crania<br />

and radiographs were compared to fifteen crania with ballistic injury,<br />

burned under similar conditions, and evaluated for morphological differences<br />

between traumatic injury types.<br />

Visual inspection revealed blunt injuries ranging from patterned<br />

external depressions, crushing with plastic deformation and partial or full<br />

penetration of external and internal tables. Focal injuries produced by<br />

hammer faces, blunt angled instruments, and edged weapons created circular,<br />

angular, or rounded injuries with corresponding internally levered<br />

bone or detached plugs in the neurocranium. The embrittlement typified in<br />

charred to calcined cranial bone left internally beveled fractures easily<br />

mimicking gunshot wounds. The wound morphologies for thirteen blunt<br />

force injuries penetrating layers of cranial bone were found to have an<br />

internal bevel similar to ballistic entrance wounds. At times portions of<br />

bone remain attached in unburned blunt force trauma, but the effects of heat<br />

causes structural embrittlement and fragmentation; therefore leading to the<br />

detachment of this delicate bone evidence during burning or following<br />

recovery. Evidence of this fragile fragment remained attached in only one<br />

of the experimental specimens. Blunt injuries were distinguishable from<br />

gunshot wounds only when small tags of internally levered bone remained<br />

* Presenting Author<br />

around the external surface of the impact site, reflecting slow deformation<br />

and shape of instrument.<br />

Diameters of entrance wounds and their corresponding internal bevel<br />

dimensions from blunt force trauma and ballistic injury were subjected to a<br />

MANOVA. Results demonstrate the two trauma groups are statistically<br />

different (p


Churchill County, a few miles further East of the supermarket. Sheriff’s<br />

deputies investigated the call and soon found the remains of a partially<br />

mummified, buried, and burned body. Blunt force trauma to the head was<br />

suspected as the cause of death and over the next few weeks DNA positively<br />

identified the remains as the mother. On September 28 the Washoe<br />

County Coroner’s Office of Reno, NV delivered the remains to the Physical<br />

Anthropology Human Identification Laboratory (PAHIL) at California<br />

State University, Chico. The authorities were particularly interested in confirming<br />

the cause of death, but more specifically the nature of the bludgeoning<br />

instrument.<br />

While the DNA analysis was performed a typical<br />

morphological/forensic anthropological examination of the remains<br />

revealed a classic appearing female who had died between the ages of<br />

approximately 30 and 40 years. The decedent’s age was assessed from the<br />

degree of dental development and ware, the recent closure of the sternal<br />

ends of both clavicles, and the lack of vertebral osteophytes. While both<br />

morphologically and discriminant function analyses suggested the victim<br />

was of White ancestry, slightly shovel shaped incisors were notice on teeth<br />

numbers 7, 8, and 9. Furthermore, the decedent’s stature was estimated at<br />

60.5 + 2.3 inches. In addition to extensive evidence of blunt force trauma<br />

to the head and thorax a unique cut-mark was encountered on the upper left<br />

humerus, just proximal to a burned area and proximate spiral fracture. A<br />

microscopic analysis of the cut revealed various small associated fractures<br />

as well as a laterally directed hairline fracture. The combination of these<br />

features as well as what was deemed an appropriately wide kerf was used<br />

to suggest that a heavy dull-bladed instrument, perhaps a shovel, had been<br />

used in striking the bone. The possible use of a shovel to create all of the<br />

trauma was then reported to the Nevada authorities. At that time the investigating<br />

officer reported that the then identified victim’s three-year-old son,<br />

who did not speak English, had said that his mother had been beaten with<br />

a “pala”. However, due to both the witness’ age and confusion in the term’s<br />

translation the authorities were not certain if a shovel or “pala” had been the<br />

bludgeoning instrument, or a club, or “Palo.”<br />

The skeletal analysis suggesting the use of a shovel was accepted as<br />

affirmation that the young boy had used the Spanish word “pala.” When the<br />

suspect was confronted by investigators with the evidence he began to<br />

express remorse and on December 9, 2004 he was found dead in a jail cell<br />

in Salt Lake City after having hung himself with his bed sheets.<br />

Blunt Force Trauma, Cut-Marks, Taphonomy<br />

H40 Scanning Electron Microscopy of Saw<br />

Marks in Bone: Assessment of Wear-<br />

Related Features of the Kerf Wall<br />

Laurel Freas, MA*, Department of Anthropology, CA Pound Human ID<br />

Laboratory, University of Florida, PO Box 112545, Gainesville, FL 32611<br />

After attending this presentation, attendees will learn the results of<br />

qualitative and quantitative analysis of wear-related patterns of change in<br />

cut mark morphology, as visualized in scanning electron microscope<br />

images of kerf walls from saw marks in bone.<br />

This presentation will impact the forensic community and/or<br />

humanity by addressing the utility of scanning electron microscopy for the<br />

analysis of saw marks in bone, and will refine the understanding of the<br />

impact of increasing tool wear on cut mark morphology and the forensic<br />

interpretations thereof.<br />

The use of scanning electron microscopy in the analysis of patterns of<br />

bone modification, including cut marks, is favored because of a number of<br />

features and capabilities of the scanning electron microscope, including<br />

greater image resolution and depth-of-field; a broad range of continuous<br />

magnification (sometimes up to 3000X); and improved visualization of<br />

surface contour profiles and bone microstructure, relative to normal light<br />

microscopy. In recent years, the SEM’s enhanced image-capture capabilities<br />

have been used frequently and to great advantage by archaeologists<br />

and paleoanthropologists in their analyses of bone modification patterns<br />

from their respective contexts. Such studies have yielded important<br />

insights on many facets of cut mark analysis, including differentiation of<br />

true cut marks from “mimics” produced by scavenging animals, sedimentary<br />

abrasion, and other taphonomic processes; determination of the<br />

directionality and sequence of individual cut marks; and distinguishing<br />

among cut marks produced by different materials (e.g., stone versus metal<br />

tools). Yet in spite of the potential gains to be derived from the application<br />

of electron microscopy to the analysis of tool marks in bone from forensic<br />

contexts, only a few such studies exist. This limited use is owed to several<br />

factors, including the restrictions on sample size imposed by the dimensions<br />

of the SEM vacuum chamber; the need to cast and/or sputter-coat the<br />

sample to be imaged; the difficulties of imaging a material so structurally<br />

complex as bone; and the considerable cost of SEM imaging. It is easy to<br />

see why forensic anthropologists would be reluctant to submit irreplaceable<br />

forensic specimens to such analyses. However, recent advances in<br />

scanning electron microscope technology have gone a long way towards<br />

ameliorating many of these concerns, such that SEM imaging is drawing<br />

nearer to the realm of practicality for use in forensic anthropology, particularly<br />

with regards to cut mark analysis.<br />

A poster by the author at the 56th Annual Meeting of the American<br />

Academy of Forensic Sciences presented the results of a preliminary study<br />

investigating the impact of increasing saw blade wear on the appearance of<br />

the kerf wall. Under light microscopy, it was observed that the patterns of<br />

coarse and fine striations visible on the kerf walls became progressively<br />

more shallow and indistinct with increasing saw blade wear. The purposes<br />

of the present study then, are two-fold: 1) to further consider these patterns<br />

of change—and their impact on the interpretation of saw marks in bone—<br />

by reexamining these sequences of cut marks under a scanning electron<br />

microscope; and, 2) to evaluate the utility of SEM imaging for the analysis<br />

of saw marks in bone.<br />

Qualitative analysis of the SEM images of the kerf walls confirmed<br />

the prior observations of progressive loss of fine detail over the course of<br />

the cut mark sequences, and supports the interpretation that such changes<br />

are due to the blunting of sharp edges on the saw teeth. Nevertheless, other<br />

diagnostic features of the kerf wall persist in spite of these wear-related<br />

changes, indicating that even well-worn saw blades will still leave behind<br />

clues as to their class characteristics. In recognition of the growing drive<br />

within the forensic science community to develop quantitative analytical<br />

methods, it had also been hoped that the greater detail observable in the<br />

SEM images would permit accurate quantification of the features of the<br />

kerf walls, thereby facilitating statistical analysis of the observed patterns<br />

of wear-related changes. However, two separate approaches to quantification<br />

of these patterns were met with a number of difficulties, and ultimately<br />

proved to be unworkable, suggesting that such cut marks are<br />

perhaps not suited to a statistical analysis.<br />

These results suggest that, although forensic investigators should consider<br />

wear-related features of the kerf wall during their analyses of saw<br />

marks, such features do not necessarily undermine the validity of the established<br />

methods for determining the class characteristics of the saw in<br />

question. Furthermore, the difficulties encountered in the analysis of the<br />

SEM images suggest that this imaging modality may not be of significant<br />

advantage to the forensic analysis of saw marks in bone.<br />

Cut Mark Analysis, Scanning Electron Microscopy, Forensic<br />

Anthropology<br />

383 * Presenting Author


H41 Seasonal Variation of Scavenging and<br />

Associated Faunal Activity on Pig<br />

Carcasses in South Western Australia<br />

R. Christopher O’Brien, BA, MFS*, University of Western Australia,<br />

Centre for Forensic Science, 35 Stirling Highway, Mail Bag M420,<br />

Crawley, WA 6009, Australia; Shari L. Forbes, PhD, University of<br />

Ontario Institute of Technology, Faculty of Science, 2000 Simcoe Street,<br />

North, Oshawa, ON L1H 7K4, Canada; Jan Meyer, PhD, University of<br />

Western Australia, School of Anatomy and Human <strong>Bio</strong>logy, 35 Stirling<br />

Highway, Mail Bag M360, Crawley, WA 6009, Australia; and Ian<br />

Dadour, University of Western Australia, Centre for Forensic Science,<br />

35 Stirling Highway, Mail Bag M420, Crawley, WA 6009, Australia<br />

After attending this presentation, attendees will have some understanding<br />

of the pattern of scavenging of carcasses by animals in south<br />

Western Australia and how this varies with seasonal climactic factors.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that seasonal faunal scavenging variation does<br />

occur in south Western Australia. Such information is useful to the forensic<br />

community when examining a body that has animal modifications associated<br />

with it. These modifications can influence the rate of decomposition,<br />

removal of bones and soft tissue, and artifacts created on the tissues by the<br />

act of scavenging.<br />

Scavenging after death is inevitable for bodies which remain exposed<br />

for any length of time. Previous research on the effects of scavenging on<br />

the body focused mainly on the activities of carnivores and rodents which<br />

are indigenous to North America and Europe including coyotes, wolves,<br />

bears, dogs, cats, and rats. There has been little direct observation of scavenging<br />

in the wild, however, and no research on scavenging in Western<br />

Australia (surrounding the capital city, Perth).<br />

This project was designed to discover which animals scavenge<br />

remains and how this varies with seasonal climate changes. Female pig<br />

carcasses, weighing approximately 40 kg, were placed outdoors in different<br />

seasons and allowed to decompose to roughly the same state, partial skeletonization<br />

with mummification of the remaining skin in environments<br />

which would allow access by scavengers. Decomposition of the pigs was<br />

filmed using an infrared camera and recorded on a time lapse VCR. The<br />

resulting videos were viewed and records made of the state of the carcass<br />

(in terms of decomposition), each feeding animal, time of scavenging, and<br />

length of feeding session. The type of feeding was also noted, either direct<br />

feeding on the animal or indirect feeding (feeding on the animals and<br />

insects associated with the body). Weather data (temperature, rainfall, and<br />

hours of sunshine) were collected from the Australian government’s Bureau<br />

of Meteorology which has weather stations situated throughout the area.<br />

Animals which were observed feeding on and around the body<br />

included bandicoots, varanid lizards, possums, skinks, honeyeaters, Willie<br />

wagtails, frogs, and rats. The predominant animal which scavenged on the<br />

bodies was the Australian raven (Corvus coronoides) which fed throughout<br />

the year both directly on the body and the associated insects. Birds were<br />

more active in scavenging during the winter months when other food<br />

resources were unavailable, while in summer, when food resources were<br />

scarce, reptiles fed on the body and the associated insects. Mammalian<br />

scavenging by possums, bandicoots, rats, and mice occurred almost exclusively<br />

at night in all seasons.<br />

This study has demonstrated that seasonal faunal scavenging variation<br />

does occur in south Western Australia. Such information is useful to the<br />

forensic community when examining a body that has associated animal<br />

modifications. These modifications can influence the rate of decomposition,<br />

removal of bones and soft tissue, and artifacts created on the tissues<br />

by the act of scavenging. This preliminary research suggests that further<br />

studies of this type should be conducted throughout Australia.<br />

Scavenging, Seasonal Variation, Western Australia<br />

* Presenting Author<br />

H42 A Preliminary Investigation of<br />

Decomposition in Cold Climate<br />

Ann W. Bunch, PhD*, State University of New York at Oswego,<br />

310 Mahar Hall, Department of Anthropology, Oswego, NY 13126<br />

After attending this presentation, attendees will how cold climate<br />

generally affects the decomposition process. Such information will be<br />

useful to medico-legal practitioners for the estimation of postmortem<br />

interval (PMI) of decedents recovered from comparable environments.<br />

The research findings presented will be useful for forensic scientists<br />

practicing in cold climate environments in the United States and internationally.<br />

This is a much-needed data set, as to date; no systematic cold<br />

climate assessment of decomposition has been conducted and widelyreported.<br />

This presentation will impact the forensic community and/or<br />

humanity by assisting Medico-legal professionals in utilizing these data for<br />

general comparative purposes in estimation of postmortem interval (PMI)<br />

for decedents recovered from similar environmental and climatic contexts.<br />

Actualistic studies of environmental factors affecting PMI have been<br />

ongoing in particular regions of the United States for years (Anderson and<br />

VanLaerhoven 1996; Baldridge et al. 2004; Cornelison 1999; Dupras and<br />

Williams 2001; Haefner et al. 2004; Haskell 1996; Latham et al. 2004;<br />

Lopes de Carvalho and Linhares 2001; MacGregor 1999; Shean et al.<br />

1998; Walsh-Haney and Warren 1999). At the most recent meeting of the<br />

American Academy of Forensic Sciences (AAFS), 18 separate studies<br />

directly addressing decomposition were featured (e.g., Wallace and<br />

Zimmerman 2005, Forbe et al. 2005, Gremillion 2005, Srnka 2005,<br />

Synstelien 2005, Schoenly et al. 2005, Russo 2005, Wacker et al. 2005,<br />

Bullard 2005, Tibbett and Carter 2005, and Carter et al. 2005).<br />

None of the above-referenced studies and publications addresses the<br />

issue of decomposition in cold climate. A systematic study of decomposition<br />

in this type of environment represents a large gap in the scientific literature.<br />

The most relevant study is that of Komar (1998), which reviewed<br />

past cases of the Edmonton, Alberta <strong>Medical</strong> Examiner’s Office. Here<br />

Komar presents preliminary data regarding the impact of cold climate on<br />

skeletonization and decomposition, since, in her words “studies in cold<br />

weather climates typical of the northern United States and Canada have not<br />

been widely reported” (1998).<br />

Small grant funding was obtained from the State University of New<br />

York at Oswego’s Rice Creek Field Station in 2004 to begin a preliminary<br />

study of this problem (Bunch 2005). The initial 2004-2005 project, which<br />

is still ongoing, used three child-sized (approximately 35-40 lbs) pigs (Sus<br />

scrofa) as surrogates for human remains. Numerous current and prior<br />

studies use/have used pigs in this capacity (Baldridge et al. 2004;<br />

Cornelison 1999; Dupras and Williams 2001; Gremillion et al. 2005;<br />

Haefner et al. 2004; Haskell 1996; Latham et al. 2004; Lopes de Carvalho<br />

and Linhares 2001; MacGregor 1999; Shean et al. 1998; Wacker et al.<br />

2005; Walsh-Haney and Warren 1999). The pigs were placed in three distinct<br />

microenvironments (sparse hardwood forest near water source, dense<br />

hardwood forest, and spruce forest) soon after they were killed in late<br />

October 2004. Enclosures were set up to protect the pigs from larger scavengers<br />

so that stations could be easily monitored until skeletonization had<br />

occurred.<br />

Preliminary results indicate that, as in other types of well-studied environments,<br />

decomposition rates vary greatly from one microenvironment to<br />

another: while the spruce forest specimen is in an extremely advanced state<br />

of decomposition as of Day 224, the two hardwood forest specimens are<br />

still completely fleshed and could be described as moderately decomposed.<br />

Possible reasons for this discrepancy will be discussed. In addition, the<br />

activity of insects and scavengers varied greatly. Spruce forest insect<br />

activity was relatively minimal yet mammal scavenging did occur at this<br />

station; hardwood specimens attracted numerous insects until mid-<br />

December and again in spring months, yet scavenger activity was notably<br />

absent.<br />

384


The results of this study will be useful as comparative data for forensic<br />

science practitioners. It is important to note that not only local law<br />

enforcement and medical examiners/forensic anthropologists will find this<br />

information useful, but those located in similar climates in the US, Canada,<br />

and abroad would undoubtedly be able to utilize these results for their own<br />

general comparative purposes.<br />

PMI, Microenvironment, Decomposition<br />

H43 Assessing the Effect of Repeated<br />

Physical Disturbance Associated With<br />

Data Collection in Experimental<br />

Decomposition Studies<br />

Rachel E. Adlam, MSc*, and Tal L. Simmons, PhD, University of Central<br />

Lancashire, Department of Forensic and Investigative Science, Maudland<br />

Building, Preston, PR1 2HE, United Kingdom<br />

After attending this presentation, attendees will learn whether the type<br />

of physical disturbance associated with data collection affects the progress<br />

of decomposition. They will learn how the decomposition process is<br />

reflected in a number of variables such as weight loss, soil pH, and temperature;<br />

and how these variables relate to each other. In addition they will<br />

have received information about the legislation governing decomposition<br />

studies in the UK.<br />

This presentation will impact the forensic community and/or<br />

humanity by identifying how the act of data collection may alter variables<br />

under study in decomposition experiments. It identifies the need for adequate<br />

controls, an understanding of the varying ways in which decomposition<br />

can be measured, and how these measured variables interact.<br />

Postmortem interval can be estimated using a variety of methods.<br />

One of those is the assessment of the stage of decomposition of the remains<br />

in question. The stages of decomposition have been well documented and<br />

many studies have been made of the relationship between decomposition<br />

and the elapsed time interval since death.<br />

Few of these studies, however, make any reference to the effects of<br />

physical disturbance that may have occurred as a result of data collection.<br />

How accurately do existing published studies actually reflect the process of<br />

decomposition as it occurs naturally? This study compares physically disturbed<br />

rabbit carcasses with a series of undisturbed carcasses in order to<br />

assess the presence and magnitude of any effects.<br />

The carcasses were placed on scrub-free level ground at the edge of a<br />

wheat field in Dickleburgh, Norfolk, UK, for a period of three weeks during<br />

July 2004. Environmental data was obtained from a computer-controlled<br />

weather station that took readings every 30 minutes. Experimental data<br />

collected included carcass weight (taken by suspending the carcass from a<br />

spring balance), internal temperature, soil temperature (at a depth of 5cm),<br />

and interface temperature (surface soil temperature from directly beneath<br />

the carcass). In addition, soil samples were taken from beneath the carcass<br />

for pH analysis. Visual observations of the state of the carcass and insect<br />

activity associated with the carcass were also recorded. Three replicates of<br />

eight carcasses were used, and the experiment was concluded once skeletonisation<br />

had been reached.<br />

Synchronous placement of all carcasses minimized environmental differences<br />

between the groups. Decomposition was scored using a visually<br />

based scoring system based on that used by Megyesi (2001, 2005), where<br />

individual anatomical regions are scored independently, and the scores<br />

summed to give an overall indication of decomposition. Some carcasses<br />

were repeatedly picked up and replaced in order to take measurements of<br />

weight loss, temperature, soil samples, etc. The remainders were left undisturbed<br />

and once data had been taken from them they were not disturbed<br />

again until the end of the experiment. This enabled a time series of data for<br />

undisturbed carcasses to be constructed from the composite data that was<br />

acquired. The effect of disturbance on weight loss, carcass temperature,<br />

soil pH and overall decomposition was studied.<br />

Predictions of the time taken for the carcasses to skeletonise were<br />

made using data from Vass et al., (1992). Time to skeletonisation was calculated<br />

in accumulated degree-days (ADD) and converted to days using<br />

average daily temperature data for the area. This was necessary to allow<br />

the correct number of carcasses to be obtained depending on how long the<br />

experiment would take. These predictions were shown to be accurate to<br />

within just a few hours.<br />

Analysis of the results showed disturbance to have a significant negative<br />

effect on both weight loss and carcass temperature, i.e. both weight<br />

loss and internal temperatures were reduced compared to the undisturbed<br />

carcasses. No significant differences could be found, however, between the<br />

disturbance groups in terms of soil pH change or overall decomposition<br />

stage. It was not clear whether disturbance had any effect on time to skeletonisation<br />

of the carcasses. An insect-mediated mechanism for the disturbance<br />

effect in weight loss and carcass temperature is suggested, along with<br />

indications as to why this effect may be lost in overall decomposition.<br />

Studies comparing the effects of disturbance in the presence or absence of<br />

insects could confirm or refute this assertion.<br />

Conclusions drawn from this work indicate that further research is<br />

needed in order to understand the effects that repeated disturbance has on<br />

individual decomposition parameters. In particular, study of the time to<br />

skeletonisation and the relationship between carcass temperature and<br />

weight loss merit further attention.<br />

Decomposition, Accumulated Degree-Days, Disturbance<br />

H44 Beetle Poop: Interpret With<br />

Caution in Southeast Texas<br />

Dwayne A. Wolf, MD, PhD*, Harris County <strong>Medical</strong> Examiner Office,<br />

1885 Old Spanish Trail, Houston, TX 77054; Harrell Gill-King, PhD,<br />

University of North Texas, PO Box 305220, Denton, TX 76203; Lee M.<br />

Goff, PhD, Chaminade University of Honolulu, 3140 Waialae Avenue,<br />

Honolulu, HI 96816<br />

The goal of this presentation is to present new data on Coleoptera peritrophic<br />

membrane. The observed postmortem interval (documented by<br />

investigational evidence and independent entomologic data) is significantly<br />

shorter than has been previously described, specifically as little as one<br />

month. The results suggest that use of peritrophic membrane as a temporal<br />

marker should be only cautiously made when correct species/variety can be<br />

established and when detailed environmental information is available.<br />

Through novel data, this paper extends the usefulness of coleopterids, and,<br />

in particular, the peritrophic membrane, as forensically useful time markers<br />

in the estimation of death interval.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting new data documenting the presence of Dermestes<br />

maculatus peritrophic membrane associated with a recent, well-documented<br />

recovery, autopsy and subsequent entomological evaluation in a<br />

case with a postmortem interval of approximately one month. Independent<br />

documentation of the minimum period of time since death, including developmental<br />

data for a species of Phoridae (Diptera), Megaselia scalaris, is<br />

presented. This case suggests that presence of peritrophic membrane may<br />

be associated with significantly shorter postmortem intervals than previously<br />

reported.<br />

Numerous species of Coleoptera (beetles) are associated with insect<br />

mediated decomposition of human remains. These different species have<br />

different relationships to the remains and, typically, arrive in a predictable<br />

successional pattern. This pattern has been used to provide an estimate of<br />

the minimum period of time since death. Typically, those Coleoptera<br />

species feeding directly on the remains tend to arrive during the mid to late<br />

stages of decomposition (postdecay to skeletal). Insect species produce a<br />

peritrophic membrane to protect their gut from mechanical trauma after<br />

ingestion of hard food particles. In late arriving species, particularly those<br />

in the family Dermestidae (skin beetles), this peritrophic membrane is quite<br />

durable; its appearance on remains provides a temporal landmark for esti-<br />

385 * Presenting Author


mation of minimum time since death. At present, most documented cases<br />

involve remains with a postmortem interval of at least three months.<br />

The decedent was a 67-year-old man with a medical history of atherosclerotic<br />

disease, including coronary artery stenosis, cerebrovascular atherosclerosis<br />

(with prior ischemic cerebral strokes and resultant hemiparesis),<br />

depression and shortness of breath. He was also a heavy alcohol<br />

user. His prescription medications were common drugs for cardiovascular<br />

disease, with consistent pill counts. A neighbor reported having not seen<br />

the decedent in one month. A survey of the man’s house confirmed the<br />

neighbor’s recollection in that the oldest dated mail was from one month<br />

prior to discovery of his body. Independent entomological confirmation of<br />

the minimum postmortem interval in this case was provided by developmental<br />

data for a species of Phoridae (Diptera), Megaselia scalaris, also<br />

present at the scene. The setting was in southeast Texas (Houston), during<br />

late June – early July. The month in question was quite warm with<br />

unusually low humidity and precipitation; the average high temperature<br />

was 95.2° F (range 82 – 101° F), the average low 74.1 °F (range 69 -80°<br />

F), and the total precipitation measured 4.19 inches. The decedent was in<br />

a locked and secure residence, with all windows and doors closed and<br />

secured, and all curtains and blinds drawn. An air conditioner unit was<br />

available but was not on. The decedent was inside the residence, supine on<br />

the floor of the living room. The anterior aspect of the body was mummified,<br />

while the posterior aspect was moist, with skin slippage. Abundant<br />

adult and larvae of Dermestes maculatus beetles were on the body surfaces,<br />

and crawling through the orifices. Abundant tangled masses of peritrophic<br />

membrane were packed on various parts of the body. The decedent’s genitalia<br />

were essentially replaced by a mass of the stringy residue, with<br />

admixed beetle larva and exuviae.<br />

Our observations present new data on Coleoptera peritrophic membrane.<br />

The observed postmortem interval (documented by investigational<br />

evidence and independent entomologic data) is significantly shorter than<br />

has been previously described, specifically as little as one month. The<br />

results suggest that use of peritrophic membrane as a temporal marker<br />

should be only cautiously made when correct species/variety can be established<br />

and when detailed environmental information is available. Through<br />

novel data, this paper extends the usefulness of coleopterids, and, in particular,<br />

the peritrophic membrane, as forensically useful time markers in the<br />

estimation of death interval.<br />

Coleoptera, Peritrophic Membrane, Postmortem Interval<br />

H45 Temperature Variability<br />

in the Burial Environment<br />

Misty A. Weitzel, PhD*, Oregon State University, Waldo 212, Corvallis,<br />

OR 97333<br />

After attending this presentation, attendees will gain a better<br />

knowledge of the relationship between body temperatures during decomposition<br />

and the ambient and sediment temperatures of the burial environment.<br />

This presentation will impact the forensic community and/or<br />

humanity by helping in establishing time since death estimations when<br />

temperature data is used in relation to decomposition and/or insect data.<br />

The aim of this study is to demonstrate the relationship between<br />

external body temperatures throughout decomposition and corresponding<br />

sediment and ambient temperatures of the burial context. Rates of decomposition<br />

are temperature and thus insect dependent making them useful for<br />

time since death estimations. Therefore, ambient temperature data is often<br />

used in forensic investigations in relation to rates of decomposition and/or<br />

insect evidence. Temperature data are usually collected from the nearest<br />

weather station or weather station records, which are corrected using site<br />

temperature data, but the potential variability between temperatures of the<br />

body, surrounding sediment, and air has not been well established. A better<br />

understanding of the relationship between all relevant temperatures of the<br />

burial environment will help in estimations of time since death.<br />

* Presenting Author<br />

In this investigation two pigs (Sus scrofa) were buried using two<br />

burial types, one under stone and one under sediment, in Edmonton,<br />

Alberta. A datalogger was installed next to the burials with thermisters<br />

attached to the top and bottom of the thoracic regions of each pig as well as<br />

in the sediment adjacent to one of the pigs. Ambient temperature data were<br />

collected from an on-site weather station. Temperatures were recorded for<br />

four months from July 7 to October 6, 2002. Unobtrusive observations<br />

regarding insect activity and collapse of burial provide insight as to the<br />

associated stages of decomposition.<br />

Temperatures varied between each probe and between the probes and<br />

ambient temperature throughout the study. In no cases did the temperatures<br />

of each of the probes and ambient air exhibit the same temperature results.<br />

However, as ambient and sediment temperatures of the burial environment<br />

changed, similar changes occurred in exterior body temperatures of both<br />

anterior and posterior thoracic regions. These changes depended on factors<br />

such as burial type. Patterns are seen throughout each day and throughout<br />

the four-month time span of the study. Daily patterns tend to follow an sshaped<br />

curve in which temperature increased throughout the day and<br />

decreased at night with some notable exceptions. Temperatures throughout<br />

the day fluctuated more among stone-covered than sediment-filled burials<br />

and more at the top of the burial than at the bottom. Body temperatures<br />

showed less fluctuation than those of both the surrounding matrix and<br />

ambient air during the four months. Temperatures on the anterior thoracic<br />

region (top of pig) were consistently warmer than the posterior (bottom of<br />

pig). Temperatures of both the top and bottom of sediment-filled burials<br />

were generally warmer than stone-covered. All temperatures followed the<br />

same general pattern of fluctuations throughout the study period.<br />

Ambient Temperature, Decomposition, Body Temperature<br />

H46 The Shallow Grave as an Option for<br />

Disposing of the Recently Deceased:<br />

Goals and Consequences<br />

Dennis C. Dirkmaat, PhD*, and Luis L. Cabo, MS, Mercyhurst College,<br />

Department Applied Forensic Sciences, Zurn 119A, 501 East 38th Street,<br />

Erie, PA 16546<br />

The goal of this presentation is to show that processing a clandestine<br />

grave following a classic approach will result in the destruction of contextual<br />

evidence, as this type of evidence can only be accessed and registered<br />

sequentially. Consequently, scene processing must be planned with<br />

consideration of the multi-layered structure of the evidence, and ultimately,<br />

can only be properly processed by employing contemporary archaeological<br />

methods.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing the awareness about the risk of information-loss<br />

derived from improper shallow grave recovery.<br />

Edmond Locard’s astute observations (Locard’s Exchange Principle)<br />

regarding the correlation of evidence, suspects and place have served as a<br />

central tenet in the discipline of forensic science and forensic investigation<br />

since the turn of the 20th century. As a guiding principle during the location<br />

and collection of evidence at the indoor crime scene, the resultant precise<br />

documentation of the minutest of details has served the discipline well.<br />

Unfortunately, the application of these principles at outdoor scenes has<br />

lagged very far behind.<br />

In the present contribution a perpetrator is followed who has chosen<br />

to hide a body through emplacement in a shallow grave. The different<br />

alternatives presented to her during the process will be examined, from the<br />

time of acquisition of the body, through transport to the grave location, and<br />

finally, through the act of digging the grave. For example, early in the<br />

grave digging process, the perpetrator faces an important decision<br />

involving a trade-off between time employed in the entire process (from<br />

killing, to transport, to digging of the grave) and likelihood of body<br />

detection. The longer the time and greater the effort spent in hiding the<br />

386


ody, the less likely the remains will be discovered and the case investigated.<br />

On the other hand, a protracted effort to hide the body will increase<br />

”exposure” time (time involved in transporting the body and digging the<br />

grave) and increase the probability of the perpetrator being discovered<br />

while doing so.<br />

Aside from the transference of physical evidence, depending on the<br />

option chosen at each step of the process, different types of contextual evidence<br />

will be produced and imprinted on the scene in a sequential way.<br />

Therefore, the sequential nature of the decision-making and inhumation<br />

processes translates into a layered ordination of the contextual evidence,<br />

similar to the deposition of geological and archaeological materials at larger<br />

time scales, so that the relevant contextual information can only be<br />

retrieved through a similarly ordered and sequential process. Classical<br />

scene processing methodologies, however, focus almost exclusively on the<br />

amount of physical evidence present at the scene (which is believed to be<br />

primarily a function of the area, number of victims and physical objects,<br />

and cause and manner of death). This mindset results in scene recovery<br />

protocols in which the recovery of discrete and isolated types of evidence<br />

(fingerprints, body parts, blood stains, etc) is tantamount. This approach,<br />

however, does not take into account the order in which that evidence was<br />

deposited on the scene. For example, parameters related to the shape of the<br />

grave or the shape and number of tools employed in its digging will be<br />

altered or completely destroyed if not identified at the moment when they<br />

are revealed in the recovery process. The same applies to relative position<br />

of items of evidence in different stratigraphic layers. Therefore, the<br />

advantage gained from the larger amount of information imprinted on the<br />

scene by more complex efforts to hide the evidence on the side of the perpetrator<br />

will be lost if stratigraphic and archaeological principles are not<br />

applied during the processing of the shallow grave.<br />

This presentation will show that processing a clandestine grave following<br />

this approach will result in the destruction of contextual evidence,<br />

as this type of evidence can only be accessed and registered sequentially.<br />

Consequently, scene processing must be planned with consideration of this<br />

multi-layered structure of the evidence, and ultimately, can only be<br />

properly processed by employing contemporary archaeological methods.<br />

Shallow Grave, Recovery Methods, Trade-Offs<br />

H47 How to Look a Gift Corpse in the Mouth:<br />

Season at Death Determined by Cementum<br />

Increment Analysis<br />

Vicki L. Wedel, MA*, Department of Anthropology, University of<br />

California, 1156 High Street, SS1 Faculty Services, Santa Cruz, CA<br />

95064-1077; Shannon Bowman, BA, Texas A&M University, Department<br />

of Anthropology, College Station, TX 77483<br />

After attending this presentation, attendees will learn how dental<br />

cementum increment analysis can help forensic anthropologists narrow<br />

their estimates of postmortem interval.<br />

This presentation will impact the forensic community and/or<br />

humanity by helping forensic anthropologists using this technique to be<br />

able to better assist law enforcement in determining time since death.<br />

Forensic anthropologists are often called upon to estimate time since<br />

death in the analyses of decomposing and skeletonized human remains.<br />

Estimates are based on the overall condition of the remains, the presence of<br />

insect activity, and the decomposition microenvironment. Postmortem<br />

interval estimates are usually expressed as broad ranges of months or years,<br />

especially when forensic anthropologists are not present at the time of<br />

recovery. Dental cementum increment analysis could help us make much<br />

more specific determinations.<br />

Dental cementum anchors teeth into their sockets via the periodontal<br />

ligament. Increments are identified in the cementum deposits on the roots<br />

of human teeth, and under microscopic examination appear as alternating<br />

dark and light bands, analogous to tree rings. Research with comparative<br />

samples of known-age and known date-of-death individuals has demonstrated<br />

a consistent relationship between annual seasons and the formation<br />

of distinct increment types. In general, the winter or arrested cementum<br />

increment appears as an opaque band while the summer or growth<br />

increment appears as a translucent band. Together these represent one year<br />

of an individual’s life, providing an annual record of that person’s life<br />

history. The total number of increments provides a means of determining<br />

the individual’s age at death (Wittwer-Backofen 2004).<br />

Zooarchaeologists have long used dental cementum increment analysis<br />

to estimate season at death in mammals (Pike-Tay 1991; Lubinski and<br />

O’Brien 2001), yet the authors are aware of no study to date that has tested<br />

this method in humans. The current project seeks to identify the timing of<br />

increment formation in humans and thus provide a means by which seasonof-death<br />

could be determined in forensic cases. Once the transition periods<br />

are identified, they can be correlated to seasons of the year.<br />

A pilot study for which extracted teeth were donated by the patients of<br />

Santa Cruz oral surgeon Dr. Erick Eklund was conducted. Each tooth was<br />

cleaned and embedded in Buehler Epoxide. Embedded teeth were sectioned<br />

to a thickness of 400 microns, mounted to glass slides, and ground<br />

and polished. The polished sections were viewed under 125X magnification<br />

and transmitted polarized light using an Olympus BX40 light microscope.<br />

Digital photographs were taken using a Nikon D70 SLR camera<br />

mounted directly to the microscope. Once the outer (nascent) band was<br />

identified, the widths of like bands were measured and averaged in Adobe<br />

Photoshop. The thickness of the outer band was divided by this average<br />

thickness to determine the percent growth. For example, if the outer band<br />

was translucent, its width was divided by the average thickness of the other<br />

translucent bands present in the section.<br />

An outer increment 75-100% complete marked the end of the growth<br />

cycle. An increment 50-75% complete indicated growth three-quarters<br />

completed, 25-50% complete half completed, and 0-25% just beginning.<br />

The pilot study results indicate that dental increments are visible on cross<br />

sections of human teeth, and they appear to vacillate between opaque and<br />

translucent in regular cycles. Preliminary data suggest that the transition<br />

between the growth (translucent) and dormant (opaque) seasons occurs<br />

between August and October. Teeth extracted during these months have<br />

nearly complete outer translucent increments. Teeth extracted between<br />

November and January has newly visible opaque outer increments. It<br />

appears that the translucent increment is completely formed by late<br />

September or early October, with the opaque increment beginning to form<br />

immediately following and visible under magnification by the second week<br />

of October.<br />

Dental cementum increment analysis for estimations of season at<br />

death shows great potential for use in forensic anthropology. Teeth are very<br />

durable and are commonly recovered, even at death scenes where bone<br />

tissue quality is poor, advanced mummification or fragmentation is present,<br />

or cremation has occurred. As such, one full calendar year’s worth of<br />

samples needs to be examined, and the sample size needs to be expanded.<br />

At present, the method appears most effective in middle to older aged<br />

adults, as the increments are more clearly identified than in adolescents and<br />

early adulthood when some of the dentition has only recently erupted.<br />

Postmortem Interval, Dental Cementum, Season at Death<br />

387 * Presenting Author


H48 Anthropological Saw Mark Analysis<br />

on Bone: What is the Potential of<br />

Dismemberment Interpretation?<br />

Steven A. Symes, PhD*, Department of Applied Forensic Sciences,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546; Anne M.<br />

Kroman, MA, Department of Anthropology, University of Tennessee,<br />

250 South Stadium Hall, Knoxville, TN 37996; Susan M.T. Myster, PhD,<br />

Hamline University, Department of Anthropology, St. Paul, MN 55104;<br />

and Christopher W. Rainwater, BA, and John J. Matia, MS, Mercyhurst<br />

College, Department of Forensic/<strong>Bio</strong>logical Anthropology, Erie,<br />

PA 16546<br />

After attending this presentation, attendees will gain a better understanding<br />

of the utility of saw mark analysis on bone, and the five features<br />

that can be used to correctly identify the class of tool used in<br />

dismemberment.<br />

This presentation will impact the forensic community and/or<br />

humanity by enhancing the utility of saw mark analysis, and purposes a<br />

standard methodology for the recognition of saw mark features and characteristics<br />

in bone.<br />

Tool mark analysis is a highly specialized area of forensic science<br />

with new techniques for the refinement of weapon analysis and comparison.<br />

Despite recent advancements, saw mark analyses have received<br />

little research attention and currently have few standards for analysis.<br />

Regardless of the lack of standardization and Daubert criteria, forensic<br />

practitioners, including anthropologists and pathologists, continue to<br />

conduct saw and knife mark analysis and testify on the results. The high<br />

number of these “unusual” cases and the investigative and judiciary benefit<br />

of the testimony, coupled with the lack of a standard methodology, demonstrate<br />

a growing need in the forensic community.<br />

Even though a majority of this research was done over a decade ago<br />

by the first author (Symes 1992), forensic anthropological tool mark<br />

analysis appears stagnant, while at the same time, criminalists seldom work<br />

with saw marks in human bone. Even more alarming is the continued lack<br />

of communication between criminalists and anthropologists, despite the<br />

fact that each is attempting tool mark analyses with similar goals in mind.<br />

The authors propose a tool mark recognition system that approaches<br />

analysis of cut marks from five recognizable class features. Within these<br />

class features, there are multiple characteristics, ranging from simple to<br />

complex. This presentation will illustrate the utility of how even the simplest<br />

characteristics of a saw mark can contribute to systematically narrowing<br />

the potential class of tool used in a criminal act. By examining saw<br />

mark trauma for each of these recognizable class features, it is possible to<br />

detect many of these characteristics without extensive training and sophisticated<br />

equipment. The recognizable class features presented by this<br />

research include:<br />

1. Saw Cut Direction—After documentation and retrieval of all contextual<br />

evidence, bones can be examined for saw kerfs, useful in determining<br />

orientation and direction of cut. This information is dependent<br />

upon an understanding of osteology and saw cut action. Direction of saw<br />

progress is indicated by false starts and entrance cuts progressing to break<br />

away spurs and notches. Direction of power stroke is essentially parallel to<br />

wall striations with exit chipping occurring in the power direction.<br />

2. Saw Power—Since mechanically powered saws cut with more<br />

force and speed, their blades are manufactured to withstand more pressures<br />

(unless the blade is supported in a frame like a band saw, or the blade has<br />

little movement like a cast/autopsy saw). The simple fact that power saws<br />

generally have wider blades means that a simple measurement of minimum<br />

kerf width quickly seriates the saw class potentially used. If you add the<br />

features of energy expression and polish, differences between hands versus<br />

mechanical saws are recognizable.<br />

3. Saw Design (Shape)—Saws are generally classified into rip versus<br />

crosscut. This simply indicates whether a saw has filed teeth or not.<br />

Because filed teeth essentially taper more to a point than non-filed teeth,<br />

* Presenting Author<br />

filed teeth form a ‘W’ shaped kerf floor as opposed to non-filed teeth that<br />

form a flat, squared-off floor. Curved versus straight blades also fit into this<br />

category.<br />

4. Saw Tooth Size—Erratic sawing behavior can leave solid evidence<br />

behind. If a saw is stopped in mid-stroke and removed, measurable features<br />

may exist. Close examination with low powered magnification may<br />

indicate tooth imprints on kerf floors, pull out striae may indicate the saw<br />

tooth frequency, or simply the introduction of succeeding teeth to a cutting<br />

stroke may create a wavy striation that indicates distance between teeth.<br />

Each of these features provides the potential for a measurement between<br />

teeth that can result in Teeth per Inch (TPI) assessments.<br />

5. Saw Tooth Set—Saws designed to cut hard materials usually have<br />

tooth set. Set is simply lateral bending to the teeth so that the combination<br />

of bent teeth creates kerfs wider than the actual blade cutting the bone.<br />

Tooth set is usually in the form of alternating, but can be a wavy or raker<br />

set. Tooth set influences blade drift. Where raker set doesn’t appear to let<br />

the blade drift, alternating set does put the blade in motion with the introduction<br />

of every tooth, and this motion is predictable and measurable.<br />

Wavy set is like alternating, but on a larger scale.<br />

This research attempts to confront existing misconceptions, communication<br />

gaps, relieve anthropologist ‘microscope anxiety,’ and ignore individual<br />

characteristics mindset (as opposed to class characteristics), while<br />

giving a hierarchy of recognizable characteristics among cut mark features,<br />

many of which can be scored without expensive equipment or SEM<br />

confusion. Finally, it is important to realize that every aspect of the proposed<br />

research will communicate the potential of highly ignored types of<br />

evidence found in every case of dismemberment and mutilation—tool<br />

marks in bone.<br />

Saw Marks, Bone, Class Characteristics<br />

H49 Working With Family Members of<br />

Decedents: A Discussion of Techniques<br />

for Forensic Scientists<br />

Paul S. Sledzik, MS*, National Transportation Safety Board, Office of<br />

Transportation Disaster Assistance, 490 L’Enfant Plaza East, SW,<br />

Washington, DC 20594; Lee Meadows Jantz, PhD*, Forensic<br />

Anthropology Center, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720; Amy Z. Mundorff, MA*, Simon Fraser<br />

University, 611-1485 West 6th Avenue, Vancouver, BC V6H 4G1, Canada;<br />

Giovanna M. Vidoli, MSc*, Office of Chief <strong>Medical</strong> Examiner, 520 First<br />

Avenue, New York, NY 10016; Thomas D. Holland, PhD*, Joint<br />

POW/MIA Accounting Command, Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853; Darinka X. Mileusnic-<br />

Polchan, MD, PhD*, University of Tennessee <strong>Medical</strong> Center,<br />

Department of Pathology/Knox County Office of the <strong>Medical</strong> Examiner,<br />

1924 Alcoa Highway, Knoxville, TN 37920; and Mercedes Doretti*, and<br />

Luis Fondebrider*, Equipo Argentino de Antropologia Forense, Av.<br />

Rivadavia 2443, Piso 2 Dep. 4, Buenos Aires, 1034, Argentina<br />

This session features short presentations and a discussion by forensic<br />

scientists who have worked with family members of decedents in a range<br />

of events and a variety of ways. The goal of these presentations is to elucidate<br />

techniques to help forensic scientists interact more effectively with<br />

family members. The areas of disasters, human rights, body donation, and<br />

the medical examiner office are represented on the panel.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how forensic scientists possess important information<br />

for the family of the murdered, missing, or killed. Sharing this<br />

information allows families to understand the circumstances of death and<br />

may help them move through the grief process. The techniques used by<br />

forensic scientist to provide this information to family members are<br />

important in the humanitarian efforts of the field.<br />

388


For the family and friends of the murdered, missing, or killed, an<br />

important measure of dignity afforded them is the professionalism<br />

employed by forensic scientists when analyzing and identifying the<br />

remains of the deceased. Despite differences in the process of grief<br />

throughout the world, families typically want information about the death<br />

of the deceased. Obtaining information about the circumstances of death<br />

(whether through intentional violence, natural disaster, accident, or suicide)<br />

helps family members move through the grief process, despite the fact that<br />

the particulars of the death may be difficult to hear. When families seek out<br />

this information, they often turn to forensic scientists, whose knowledge,<br />

experience, and work product become the sources for answers to their<br />

questions.<br />

This session features short presentations and a discussion by forensic<br />

scientists who have worked with family members of decedents in a range<br />

of events and a variety of ways. The presenters will elucidate techniques<br />

to help forensic scientists interact more effectively with family members.<br />

The areas of disasters, human rights, body donation, and the medical<br />

examiner office are represented on the panel.<br />

Interacting with family members of the deceased presents the forensic<br />

scientist a challenge. Forensic scientists engage with family members in a<br />

variety of situations, from individual cases to group settings, in person and<br />

via email or telephone, but most have little or no training in working with<br />

the bereaved, despite knowing that forensic information is vital for family<br />

members. Families expect compassion, directness, and honesty from<br />

forensic scientists. However, forensic scientists may not be able to reveal<br />

all aspects of their analysis for legal reasons. The counterpoise to family<br />

needs is the sometime conflicting demands of science. Data collection,<br />

sampling, and storage ensure that scientific methods are created and<br />

refined. Forensic scientists are often the lone representatives of science to<br />

families, and they must reflect the importance of science and the nature the<br />

remains play in the scientific process.<br />

The Aviation Disaster Family Assistance Act of 1996 tasks the<br />

National Transportation Safety Board (NTSB) with managing family needs<br />

following aviation disasters. To provide this support, the NTSB establishes<br />

and manages a multi-agency family assistance center. Among other types<br />

of information, the center provides updates about the search for and<br />

recovery of remains and the identification process. Families who visit the<br />

accident site often have questions of a forensic nature. After departing the<br />

center, NTSB staff members keep families updated as the investigation proceeds,<br />

and often answer forensic questions that were not asked at the center.<br />

Their desire for information may often extend for months or years following<br />

the accident. Family concerns encompass questions of suffering of<br />

the deceased just prior to their death, information related to condition of<br />

remains, and methods used to identify remains.<br />

The experience of the body donation program at the University of<br />

Tennessee Forensic Anthropology Center (FAC) reveals that families want<br />

their experience to benefit others who may go through similar experiences<br />

in the future. Body donations originate by self-donation, family donation<br />

or, as in Tennessee, as unclaimed remains donated by the state medical<br />

examiner. For FAC staff, interaction with the family is very important.<br />

When a person donates their own body as an expressed desire, the next of<br />

kin must agree to the donation, or the donation will not occur. Because<br />

donation to the FAC is different than traditional anatomical school donations,<br />

families may not understand the process of donation and what<br />

happens to the remains. Many are concerned about what remains, if any,<br />

will be returned to them. FAC staff realize that once families understand<br />

the process and grasp the importance of the science that will result from the<br />

donation, the donation takes on greater meaning, and families become more<br />

comfortable with the process.<br />

The primary function of medical examiners is to document the condition<br />

of remains and the presence of illness and injuries. Sometimes overlooked<br />

is the importance of providing family members with information to<br />

understand the circumstances of death. Based on the experience of one<br />

medical examiner’s office, several actions appear to be appreciated by families.<br />

These actions, sometimes overlooked by medical examiners, include<br />

initiating contact with the family, facilitating access to other appropriate<br />

services and agencies, and making provisions for adequate viewing and/or<br />

meeting facilities.<br />

At the World Trade Center disaster, family members relied on anthropologists<br />

for clear and honest descriptions of the remains recovered. The<br />

questions from family members extended beyond description of remains to<br />

include explaining decomposition, fragmentation, and the process of preserving<br />

remains, of which the anthropologists were a part. Anthropologists<br />

went beyond their expertise in analyzing human remains to help family<br />

members understand the forces involved in the disaster and why the<br />

decedent was not completely recovered.<br />

The Argentine Forensic Anthropology Team (EAAF) supports<br />

improved direct contact between families of victims and forensic teams.<br />

EAAF believes that forensic scientists should assist victims’ families in<br />

gaining access to investigative sites. Families are provided basic information<br />

before, during, and after forensic examinations, and the potential<br />

outcomes of a mission are explained to them. EAAF anthropologists<br />

address families’ concerns, doubts, questions, and objections and they<br />

promote tools to provide families with the results of forensic investigations<br />

(following international recommendations and forensic protocols.) EAAF<br />

also supports respect for cultural differences in religious and funeral rites,<br />

with the goal of assisting families with dealing with grief. The group<br />

believes that failure to consider these issues may lead to a secondary assault<br />

for family members—that forensic scientists may cause additional suffering<br />

to those they are assisting. Cultural and religious practices of death<br />

and reburial should be respected during the investigation.<br />

The experience of the Joint POW/MIA Accounting Command/Central<br />

Identification Laboratory with family members is unique. The visibility<br />

and political nature of the POW/MIA issue in the United States complicates<br />

their interactions with families.<br />

Family Members, Death Information, Grief Process<br />

H50 Anthropologist Directed Triage Teams<br />

From Three Distinct Mass Fatality<br />

Events Involving Human Fragmentation<br />

Amy Z. Mundorff, MA*, Simon Fraser University, 611-1485 West 6th<br />

Avenue, Vancouver, BC V6H4G1, Canada<br />

After attending this presentation the attendee will learn the various<br />

functions that can be performed by anthropologist directed triage teams at<br />

mass fatality events involving human fragmentation.<br />

Due to the increasing number of incidents involving human fragmentation,<br />

this presentation will impact the forensic community and/or<br />

humanity by helping the forensic community learn about the skills and contributions<br />

of forensic anthropologists during these types of events.<br />

This presentation will describe the process of triage as the first stage<br />

in identifying fragmented human remains from mass fatality incidents.<br />

Specifically, it will discuss the role of forensic anthropologist directed<br />

triage teams in three distinct mass disaster events.<br />

Triage is defined by the Oxford English Dictionary as, “the actions of<br />

sorting according to quality” “to pick or cull” and, “… the assignment of<br />

degrees of urgency…in order to decide the order or suitability of<br />

treatment…” It was commonly used in the early 1700’s when describing<br />

the sorting of wool in degrees of fineness and quality. Triage has also been<br />

used in the military to describe the sorting of injured in accordance to the<br />

seriousness of their injuries, to ensure that the most critical are medically<br />

treated first.<br />

In mass disasters, the first stage in the identification of human remains<br />

is often the triage station. Traditionally, an anthropologist or pathologist,<br />

depending on the disaster type and the condition of the remains, directs<br />

triage. This paper will discuss anthropologist-directed triage stations in<br />

three very different mass fatality scenarios, involving significant variation<br />

389 * Presenting Author


in the number of human remains as well as their condition and degree of<br />

fragmentation. Significantly, the process of recovery was also quite different<br />

in all three incidents, which affected the composition and duties of<br />

the triage teams. The World Trade Center disaster, with 2749 victims,<br />

involved nearly 20,000 fragments of human remains, recovered predominantly<br />

by fire personnel, over a period of eight months. The crash of<br />

American Airlines Flight 587, with 256 victims, involved just over 2000<br />

fragments of human remains, recovered within a few days by police personnel,<br />

with the assistance of the medical examiner’s staff. Finally, the<br />

Staten Island Ferry crash will be discussed, with 10 victims, involving the<br />

recovery of approximately 35 fragments of human remains. These were<br />

recovered within a few hours, again with the assistance of the medical<br />

examiner’s staff. In each of the three disasters mentioned above, the human<br />

remains had first been collected at the scene of the disaster and later transported<br />

to the Office of Chief <strong>Medical</strong> Examiner for processing and identification.<br />

Upon reaching the <strong>Medical</strong> Examiner’s office the remains were<br />

examined at the Triage Station, which was directed by a forensic anthropologist.<br />

This was an important first step in the lengthy process of identification.<br />

The triage team was empowered to sort human from non-human<br />

remains, separate out commingled remains and multiple remains in one<br />

recovery bag, as well as to re-articulate or re-associate disparate pieces<br />

within a body bag. This team also labeled anatomical elements and<br />

recorded recovery locations, which were later documented at the medical<br />

examiner’s table. Importantly, the differential manifestation of fragmentation<br />

in each of these incidents dictated that the anthropologist’s role at<br />

triage be tailored to that incident.<br />

In addition to detailing the differences and similarities between the<br />

role of triage at these three distinct mass disaster events, this paper will<br />

present lessons learned, including proposals for actions to be undertaken by<br />

anthropologists at triage stations, depending on the type of disaster.<br />

Triage, Commingling, Human Fragmentation<br />

H51 The Accuracy of Ante-Mortem Data<br />

and Presumptive Identification:<br />

Appropriate Procedures, Applications<br />

and Ethics<br />

Tal Simmons, PhD*, Department of Forensic and Investigative Science,<br />

University of Central Lancashire, Preston PR1 2HE, United Kingdom;<br />

and Mark Skinner, PhD, International Commission on Missing Persons,<br />

Alipašina 45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

After attending this presentation, attendees will have gained an<br />

awareness of ante-mortem data collection procedures in mass fatality situations,<br />

mass disasters, and mass disappearances relating to violations of<br />

human rights. Methods for tailoring the ante-mortem data questionnaire to<br />

individual circumstances will be discussed. The presentation will<br />

emphasize transparency and the need to provide a realistic understanding<br />

of expected identification outcomes to both relatives of the missing and<br />

other concerned parties.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing awareness of problems with presumptive identification,<br />

particularly in relation to mass disasters, mass fatality incidents, and<br />

mass disappearances related to human rights violations. It is hoped that<br />

after attending the presentation, participants will be able to make more<br />

* Presenting Author<br />

informed and ethical choices regarding both employing standardized<br />

methods of presumptive identification and presenting identifications to<br />

victims’ families in a transparent manner.<br />

Increasingly during the last ten years, forensic anthropologists have<br />

been members of teams of forensic scientists working to identify victims of<br />

mass disasters, mass fatality incidents, and mass violations of human rights.<br />

Traditional forms of ante-mortem data (including the individual’s biological<br />

profile as well as details of their clothing and personal effects) have been considered<br />

useful in the identification process. Presumptive identification is not<br />

usually conducted in a particularly systematic manner. Codifying the procedure<br />

for matching ante-mortem and postmortem data has rarely been<br />

attempted and “identifying” an individual via this method, particularly in<br />

post-conflict situations, has seldom come under close scrutiny. It is even rarer<br />

that quality assurance procedures are employed to assess the outcomes and<br />

provide feedback as to the advisability of the process. Yet, presumptive identification<br />

for repatriation of remains has been utilized extensively as “identification”<br />

in post-conflict situations throughout Latin America, in the Balkans,<br />

and in East Timor (e.g., Gruspier 2001).<br />

Recently however, significant questions have arisen concerning<br />

reliance on traditional antemortem data for identification and the advisability<br />

of conducting presumptive identification at all. Figures for regions<br />

from the former Yugoslavia, including Kosovo, obtained by the<br />

International Commission on Missing Persons (ICMP) indicate that 30-<br />

38% of those individuals exhumed by various agencies, or government<br />

authorities involved in the exhumation and identification of victims from<br />

the conflicts between 1992 and 1999 have proved incorrect subsequent to<br />

comparative analysis with the DNA of purported relatives. These presumptive<br />

identifications were often based on clothing identifications made<br />

by families supplemented by consistent postmortem observations. The<br />

DNA-based system of identification, fully implemented by ICMP at the<br />

end of 2001 provides exclusion reports and prevents misidentifications<br />

based on ‘presumptive’ markers. Prior to this system, bodies exhumed in<br />

the former Yugoslavia were identified using presumptive markers and<br />

returned to authorities and families for burial. As is now known, a significant<br />

proportion of these may have been misidentified which presents a<br />

technical problem and an ethical dilemma to those involved with identification<br />

procedures, both then and now.<br />

In 2000, the Organization for Security and Cooperation in Europe<br />

(OSCE) began an undertaking to presumptively identify those individuals<br />

in Kosovo exhumed by the International Criminal Tribunal for the Former<br />

Yugoslavia (ICTY) via a standardized and systematic approach of<br />

weighting variables and assigning agreement scores. This system operated<br />

in parallel with ICTY’s data on presumptive identifications attested to by<br />

surviving relatives. It is unfortunate that, given the high failure rate of presumptive<br />

identification in regions of the former Yugoslavia as shown by the<br />

DNA, data are unavailable concerning which presumptive method was<br />

used to identify the victims in both the correctly and incorrectly identified<br />

cases. It would be important to know if a more standardized means of comparison<br />

improved the correct identification rate. If not, then the usefulness<br />

of conducting any presumptive identification might well be questioned.<br />

Without universally applicable antemortem and postmortem databases<br />

(designed to allow the inclusion or exclusion of relevant and<br />

available data) and a rigorous and standardized system of comparison, presumptive<br />

identification should be approached with caution. If presumptive<br />

identification is to be employed, then all the stakeholders need to aware of<br />

the potential for misidentification. It is imperative that the use of the word<br />

“identification” be qualified when identification is not done through<br />

accepted means of positive identification.<br />

Presumptive Identification, Ante-Mortem Data, Ethics<br />

390


H52 Anthropological Aspect of Mass Disasters<br />

Laurent Martrille, MD*, Service de Medecine Legale, Chu Lapeyronie,<br />

191 Avenue du doyen Gaston Giraud, Montpellier, 34295, France;<br />

Cristina Cattaneo, MD, PhD, Istituto di Medicina Legale, Università<br />

degli Studi di Milano, via Mangiagali 37, Milano, 20133, Italy; Yves<br />

Schuliar, MD, IRCGN, 1 Boulevard Théophile Sueur, Rosny Sous Bois,<br />

93111, France; and Eric Baccino, MD, Service de Medecine Legale,<br />

Chu Lapeyronie, 191 Avenue du doyen Gaston Giraud, Montpellier,<br />

34295, France<br />

After attending this presentation, attendees will learn the usefulness of<br />

forensic anthropology in the context of a mass disaster. The role of anthropologists<br />

varies from one mass disaster to another. Three examples will illustrate<br />

the subject.<br />

This presentation will impact the forensic community and/or humanity<br />

by facilitating the discussion of the anthropological aspects of three examples<br />

which confronts the experiences of other specialists in the field.<br />

Forensic anthropology can make a vast difference in providing important<br />

information for describing the biological profile of victims by determining<br />

age, sex, ancestry, and height. Nevertheless, the usefulness of this discipline<br />

depends on the kind of disaster. An accident concerning a well known group<br />

of non-decomposed airplane passengers requires a different approach with<br />

respect to a traffic accident with no list of victims. The authors therefore illustrate<br />

three concrete and very different mass disaster situations: the tsunami<br />

incident of December 2004 (Phuket, Thailand), a tunnel traffic accident<br />

(Mont-Blanc, France, 1999), and an airplane crash (Linate, Italy, 2001).<br />

During the tsunami event of December 2004 in south-east Asia, about<br />

270 000 people were killed. Approximately 5400 people died in Thailand<br />

with an equal number of Thai and foreign victims. Within a few days, all of<br />

the countries who had citizens listed as possible victims sent disaster victim<br />

identification (DVI) teams. Recovery of the bodies and separation between<br />

presumed Thai and foreigner bodies was organized by the Thai authorities.<br />

Each body was put in a separate container (containers for foreigners and containers<br />

for Thai people). This selection was possible and relevant for the first<br />

two or three days, but soon became almost impossible because of decomposition,<br />

even though body recovery went on for days. Thus, it was clear that<br />

containers marked “foreigners” contained Thai people, and containers<br />

marked “Thai” contained foreigners. During the first month no global protocols<br />

were used by all the teams in the field (fingerprint, pathology, anthropology,<br />

odontology, DNA sampling). After the opening of Site 2, a global<br />

approach was applied with standardised protocols inspired by Interpol procedures.<br />

The first two months, the DVI teams were supposed to collect postmortem<br />

data on foreigners only, so Thai authorities allowed access only to the<br />

containers marked “foreigners”. In this context, the quality control team<br />

decided not to estimate the anthropological features, though the Interpol protocol<br />

entails it, in order to avoid wrongly excluding individuals. Two other<br />

reasons were the small number of skeletonized bodies and the lack of forensic<br />

anthropologists on the site. Most of the bodies were decomposed but not<br />

skeletonized, so anthropological features could not be used without sampling,<br />

which brings up questions of conservation, preparation, and restitution of the<br />

samples. Positive identification was to be performed with DNA, odontological<br />

data or fingerprints.<br />

In the case of the Linate mass disaster, with 118 victims, it was clear<br />

from the ante-mortem data available that most carbonized victims would be<br />

identified by odontological or genetic methods. However the applied protocol<br />

took into account the possible application of anthropological methods.<br />

Therefore sampling of pubic symphysis, fourth ribs, and monoradicular teeth<br />

was performed. Aging turned out to be useful in quick exclusion of possible<br />

decedents and in creating possible ante-mortem and postmortem matches to<br />

be confirmed by dental and DNA methods.<br />

In the case of the Mont-Blanc mass disaster, 39 victims died in the<br />

tunnel. Because of the effects of the intense heat, DNA analysis could not be<br />

performed. In this context, anthropological methods had an essential importance<br />

in the identification procedure.<br />

Mass Disaster, Anthropology, Identification<br />

H53 Traumatic Modifications of Human<br />

Remains of Victims of Mass Disasters<br />

and Long-Term Abuse<br />

Kenneth A.R. Kennedy, PhD*, Cornell University, Department of Ecology<br />

and Evolutionary <strong>Bio</strong>logy, 231 Corson Hall, Ithaca, NY 14853<br />

After attending this presentation, attendees will learn how conditions<br />

of preservation of decomposed bodies and skeletons of human victims of<br />

natural and man-made fatalities are compared with markers of long-term<br />

abuse, as with prisoners and kidnapped individuals held under harsh circumstances.<br />

Three forensic anthropological case histories are examined by<br />

this investigator in defining distinctive markers of trauma of victims of<br />

mass disasters and long-term physical abuse. Absence of skeletal and<br />

dental markers of tortured individuals may indicate non-invasive practices<br />

of interrogation.<br />

This presentation will impact the forensic community and/or<br />

humanity by acquainting forensic anthropologists with military and civil<br />

law practices of interrogation of political and criminal prisoners, some<br />

methods revealing markers of abuse on bone tissues. These are more easily<br />

recognizable among inmates imprisoned after civil court sentencing than<br />

among prisoners under military jurisdiction, as at Guantanamo and Abu<br />

Ghraib where psychological stressors are inflicted with less involvement of<br />

the cranial and postcranial skeleton. The author’s examination of the<br />

skeletal series of prisoners from a civil prison in a foreign country is<br />

described in order to alert forensic anthropologists to recognize markers of<br />

interrogation or punishment. Humanity benefits from this and related<br />

prison studies in questioning the ethical practice of physical and psychological<br />

torture.<br />

How may forensic anthropologists distinguish traumatic modifications<br />

of human body parts resulting from mass disasters from skeletal evidence<br />

of long-term abuse, as among prisoners held under harsh conditions?<br />

Victims of suicide bombers, airplane and train crashes or of natural<br />

agencies (earthquakes, floods, mud-slides, fires, etc.) are often represented<br />

by fragmentary body parts, thereby making positive personal identification<br />

a challenge for forensic scientists associated with Disaster Mortuary<br />

Operational Response Teams, the Joint POW/MIA Accounting Command<br />

Central Identification Laboratory, and other recovery teams. However, for<br />

incarcerated individuals personal identity is usually known. The problem<br />

posed in this investigation is the determination of methods used by prison<br />

staff for interrogation, punishment, neglect, or withholding of medical<br />

treatment. Markers of these traumatic conditions may be documented as<br />

skeletal evidence of abuse.<br />

Stress markers are not uncommon on skeletal remains of prisoners<br />

who were incarcerated by civil law. The author has investigated a series of<br />

skeletons of twentieth century prisoners, all males, from prisons in a<br />

Eurasian nation. Trauma is frequently encountered in cases of unset fractures<br />

of long bones inflicted by wooden or metal rods (fellow prisoners<br />

would not have the skill to reset bones), facial damage resulting in loss of<br />

anterior teeth, and injuries of the cranial vault. In cases where dental reconstruction<br />

was attempted (following traumatic force to the face), the crudest<br />

and cheapest materials were used. <strong>Medical</strong> records are not available for<br />

this prison series, but sex, age and time of death, pathological conditions,<br />

and estimates of time passed since the infliction of injuries can be assessed.<br />

Illustrations of skeletal modifications induced in this series of civil<br />

law prisoners who were victims of abuse in order that forensic anthropologists<br />

may more clearly recognize bone modifications under stressful penal<br />

conditions, features less often encountered in victims of mass fatalities or<br />

in psychological methods of interrogations, will be presented.<br />

Forensic Anthropology, Mass Fatalities, Prisoners<br />

391 * Presenting Author


H54 Anthropology Responds<br />

to Hurricane Katrina<br />

Laura C. Fulginiti, PhD*, 15015 South 14th Place, Phoenix, AZ 85048;<br />

Michael W. Warren, PhD, and Joseph T. Hefner, MA, Department of<br />

Anthropology, University of Florida, PO Box 117305, Gainesville, FL<br />

32611; Larry R. Bedore, MS, District 8 Office of the <strong>Medical</strong> Examiner,<br />

Gainesville, FL 32601; Jason H. Byrd, PhD, Department of Criminology,<br />

Law & Society, University of Florida, PO Box 115950, Gainesville, FL<br />

32611; Vincent Stefan, PhD, Department of Anthropology, Lehman<br />

College, CUNY, Bronx, NY 10468; and Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Department Applied Forensic Sciences, Zurn 119A,<br />

501 E 38th Street, Erie, PA 16546<br />

After attending this presentation, attendees will learn about the unique<br />

challenges of victim identification presented by Hurricane Katrina and the<br />

subsequent failure of the levies surrounding New Orleans.<br />

This presentation will impact the forensic community and/or humanity<br />

by conducting a review of the forensic response to the Hurricane Katrina<br />

disaster and offering a positive after-action critique of the way in which<br />

several new challenges were met. The forensic effort following Hurricane<br />

Katrina serves as a way-point in further developing an efficient model for<br />

victim identification following a major natural or man-made disaster.<br />

When Hurricane Katrina slammed into the coastal towns in Louisiana,<br />

Mississippi, and Alabama, and breached the levies surrounding New<br />

Orleans, it created some extraordinary obstacles for the disaster aid workers<br />

responsible for recovering and identifying the victims. Among the many<br />

challenges were a recovery effort that spanned a broad geographic area;<br />

poor preservation of the bodies from prolonged exposure in a warm, wet<br />

environment; and contamination of the bodies by water-borne bacteria,<br />

chemicals and toxins. The storm surge also damaged coastal cemeteries<br />

and mausoleums, resulting in previously interred and entombed bodies<br />

being scattered among the debris. Two other unique factors posed significant<br />

problems for victim identification. The evacuation of hundreds of<br />

thousands of people who lived in the path of the approaching storm – as<br />

well as evacuations during the aftermath – hampered the ability of federal<br />

personnel to set up a single, physical location to serve as a family assistance<br />

center where antemortem data could be collected to facilitate identification.<br />

Additionally, the loss of antemortem medical and dental records destroyed<br />

by winds and flooding, combined with the relatively low socio-economic<br />

status of many of the victims, made acquisition of the required medical and<br />

dental information difficult, and in some cases, impossible. The widespread<br />

flooding and subsequent loss of housing also prevents collection of<br />

nuclear DNA exemplars from the homes of victims, resulting in decreased<br />

effectiveness of the best identification tool.<br />

Hurricanes Katrina marked the first time that the Disaster Mortuary<br />

Operational Response Team (DMORT) deployed two Disaster Portable<br />

Morgue Units (DPMUs) to one event. Having both morgues operational<br />

required an extraordinary effort to insure adequate numbers of qualified<br />

personnel, supplies and provisioning, physical plant, and the many other<br />

considerations that make such a response successful. The subsequent<br />

passing of Hurricane Rita forced a shutdown of all disaster victim identification<br />

efforts for several days, creating a severe test for those involved in<br />

logistics and planning.<br />

In this presentation, the authors hope to address many of these issues<br />

and provide several different perspectives on the response by DMORT<br />

members and others in the forensic community, as well as answer questions<br />

by attendees.<br />

Mass Disaster, Hurricane Katrina, Forensic Science<br />

* Presenting Author<br />

H55 To Measure or Not to Measure: An Analysis<br />

of Maximum Length of the Tibia<br />

Erin B. Waxenbaum, MA*, C.A. Pound Human Identification Laboratory,<br />

Department of Anthropology, University of Florida, PO Box 112545,<br />

Building 114, Gainesville, FL 32611; David R. Hunt, PhD, Department of<br />

Anthropology, National Museum of Natural History, Smithsonian<br />

Institution, Washington, DC 20560; and Anthony B. Falsetti, PhD, C.A.<br />

Pound Human Identification Lab, Department of Anthropology,<br />

University of Florida, PO Box 112545, Building 114, Gainesville,<br />

FL 32611<br />

The goal of this presentation is to inform the reader of the history of<br />

metric analyses of the tibia and present the possible adjustments necessary<br />

dependent upon the metric technique applied.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting correction factors necessary for alternate methods<br />

of metric analysis for the maximum length measure of the tibia for stature<br />

estimation.<br />

The goal of this presentation is to inform the reader of the history of<br />

metric analyses of the tibia and the implication of these estimates on<br />

stature. The attendee will learn the possible adjustments to be applied,<br />

dependent upon the metric technique utilized.<br />

Techniques of metric analysis for post cranial human remains have<br />

been developed in physical anthropology to quantify the morphological<br />

features of these elements. However, in recent years some of these methods<br />

have been modified and re-formulated to suit the changing direction of<br />

morphological analysis or in the case where the original definitions have<br />

been forgotten, lost, or misinterpreted. This presentation offers a re-evaluation<br />

of the maximum length measure of the tibia including and excluding<br />

the intercondylar eminences, and tests the accuracy and validity of these<br />

metric methods experimentally across population, age, and sex.<br />

Trotter and Gleser (1952) analyzed the remains of WWII war dead<br />

and a sample from the Terry Collection, in order to develop living stature<br />

estimation formulae. These authors later (1958) re-evaluated their stature<br />

assessment by including a sample of Korean War casualties. Upon reexamination<br />

of Trotter and Gleser’s original sample data by Jantz et al.<br />

(1994) it was discovered that, contrary to Trotter’s own definition, her<br />

maximum length measurements of the tibia for the WWII and Terry collection<br />

excluded the malleolus from assessment. Measurements of the<br />

Korean War casualties were also unusually shorter than expected, however<br />

those measurements were taken by technicians utilizing Trotter’s definitions<br />

and the original human remains were not available for re-analysis by<br />

Jantz et al.<br />

Other authors, such as McHenry’s (1974:330) analysis of stature in<br />

Australopithecines, describe the maximum or “total length” measurement<br />

for the tibia as the maximum distance between the “most proximal and<br />

most distal points” on the tibia. This definition leads the reader to believe<br />

that the intercondylar eminences are to be included by McHenry’s<br />

description of the measurement, as these eminences are truly the tibia’s<br />

“most proximal point.”<br />

This presentation explores three main points: (1) Why were intercondylar<br />

eminences originally excluded from the maximum length measurement<br />

of the tibia? (2) If these eminences do bias the maximum length<br />

measurement as age progresses, is this a universal effect or is it population<br />

or sex dependent? (3) If there are no significant differences produced by<br />

including the intercondylar eminences in the maximum tibia measurement<br />

by sex, age and ancestry, is there a common adjustment that can be applied<br />

for measurements including/excluding the intercondylar eminences to<br />

determine maximum length of the tibia?<br />

Results show that the inclusion of the intercondylar eminences has no<br />

significant effect on age or sex estimates. However, the significant differences<br />

between the means of the two measurements (inclusion or exclusion<br />

of the intercondylar eminence) were noted when considering ancestry<br />

(Terry White N=94, Terry Black N=100, and South Dakota Arikara N=138<br />

– all housed at the National Museum of Natural History, Smithsonian<br />

392


Institution)(P < 0.0001). Standard correction factors (sums of the differences)<br />

were calculated for each population and an overall correction factor<br />

was included in cases when ancestry is unknown.<br />

Terry White Terry Black Arikara Overall<br />

Correction Factor 3.27 mm 2.46 mm 1.86 mm 2.44 mm<br />

Possible reasons for excluding the intercondylar eminences from<br />

maximum length analysis for the tibia include age-related arthritic<br />

changes or the high frequency of eminence fracture in archaeological and<br />

modern assemblages.<br />

Tibia, Metric Analysis, Intercondylar Eminence<br />

H56 Extensive Rat Modification of a<br />

Human Skeleton From Central Indiana<br />

Sarah A. Kiley, BA*, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227; Nicolette M. Parr, MS, University of<br />

Florida, PO Box 117305, Gainesville, FL 32611; and Stephen P.<br />

Nawrocki, PhD, University of Indianapolis, 1400 East Hanna Avenue,<br />

Indianapolis, IN 46227<br />

After attending this presentation, attendees will be provided with a<br />

discussion of the pattern of rat modification on a nearly complete human<br />

skeleton with hypertrophic bone formation due to diffuse idiopathic<br />

skeletal hyperostosis (DISH).<br />

This presentation will impact the forensic community and/or humanity<br />

by illustrating the ability of hypertrophic bone growths to withstand rodent<br />

modification due to the density of the bony growths. Future studies on the<br />

density of remodeled bone may provide insight into similar cases.<br />

In September of 2004, partially skeletonized human remains with<br />

apparent degenerative joint disease were found on a couch inside an abandoned<br />

house. The presumed decedent had been missing since January of<br />

2004. The remains were transported to the University of Indianapolis<br />

Archeology and <strong>Forensics</strong> Laboratory for processing and analysis. Initial<br />

examination revealed mold growth on the remains and clothing.<br />

Additionally, the individual was wearing several layers of clothing that contained<br />

rodent feces. The remains were simmered in a water, borax, and<br />

bleach solution for four to six hours and then air dried for 48 hours. The<br />

individual had already been positively identified from dental records;<br />

therefore, the analysis focused on three primary issues: making sure that<br />

only one individual was represented in the assemblage that all bones were<br />

consistent with those of the presumed decedent, and checking for any evidence<br />

of perimortem trauma. A full battery of measurements and analysis<br />

of morphological characteristics was conducted. The analysis determined<br />

that the remains were consistent with those of an African American male<br />

between the ages of 60 to 80 years. Stature could not be determined<br />

because all of the long bones had extensive rodent damage to the proximal<br />

and distal ends. No perimortem trauma was observed on the skeleton.<br />

This individual exhibited bony abnormalities on the spine and os<br />

coxae. Osteophytic lipping was present on the vertebral bodies, and calcification<br />

of the anterior longitudinal ligament was observed on the right side<br />

of the lower cervical vertebrae, thoracic vertebra, and lumbar vertebrae.<br />

Osteophytes with a ‘candle wax’ appearance connected several vertebral<br />

bodies; however, there was no fusion between the elements.<br />

Enthesopathies were present on the ischial tuberosities and iliac crests.<br />

There was also extensive calcification of the costal cartilage. However, the<br />

sacroiliac joint was not involved and the intervertebral spaces were maintained.<br />

This overall pattern of bone formation is consistent with DISH.<br />

Extensive rodent modification was present on all skeletal elements,<br />

especially on the proximal and distal ends of the long bones and the vertebral<br />

bodies. Bony eminences and areas with only thin cortical bone were<br />

heavily modified, including the eye orbits, mandibular condyles, coracoid,<br />

and acromion processes. The ‘pedestal phenomenon’ (isolated arches of<br />

bone) was found on the ends of the long bones due to chewing and tunneling<br />

into the spongy bone in the rodents’ attempt to retrieve trapped fats.<br />

Striae arranged in parallel bands or fan-shaped arrangements were found in<br />

many areas of the shafts of long bones. The narrow striae were consistent<br />

with the chisel-like incisors of the rat rather than those of larger rodents<br />

(such as squirrels), and the destructive pattern of tunneling is also more<br />

consistent with scavenging rather than with field rodents opportunistically<br />

chewing dried bones.<br />

There was little modification to the hypertrophic, sclerotic bone<br />

growth associated with DISH. This phenomenon may be due to small<br />

rodent tooth size relative to the density of the osteophytes. Despite<br />

extensive rodent modification of much of the skeleton, important pathological<br />

indicators remained.<br />

Rodent Modification, Diffuse Idiopathic Skeletal Hyperostosis,<br />

Taphonomy<br />

H57 Mass Disasters and Non-Human Remains<br />

Deborah W. Gray, MA*, Riverside County Sheriff-Coroner, 800 South<br />

Redlands Avenue, Perris, CA 92571; and Judy M. Suchey, PhD,<br />

Department of Coroner, Los Angeles County, 1104 North Mission Road,<br />

Los Angeles, CA 90033<br />

The goal of this presentation is to stress identification of non-human<br />

remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how identification of non-human remains can<br />

dramatically alter an investigation and why proper identification can save<br />

investigation time and expenses.<br />

When disaster struck on 9-11 anthropologists from across the United<br />

States responded to lend their expertise. As in any disaster, large or small,<br />

anthropologists are often called upon to perform the same or similar tasks<br />

that they face in their own forensic setting at home. Often the importance<br />

of human verses non-human determination is underplayed in the mass disaster<br />

arena. During the 9-11 response 30% of the remains the first author<br />

examined in a three-day period were non-human and did not need further<br />

identification processing. The frequency and type of animal remains<br />

recovered or found in a mass disaster certainly depends on the setting.<br />

Airplane crashes in the ocean usually result in a variety of sea mammal<br />

remains; those in an urban setting often include processed domesticated<br />

animals, such as pig, cow, bird, sheep, or pets such as cats and dogs. This<br />

poster focuses on a problem in identification which is not stressed in the literature.<br />

In a review of bone specimens submitted over a ten-year period to<br />

Southern California Coroner offices in Los Angeles, Orange, Riverside,<br />

and San Bernardino counties, the authors of found the “pig knee” to be the<br />

most problematic. Variability in “pig knees” is shown using photographs<br />

and line drawings and comparisons are made with the adult human<br />

skeleton. Graphs are also presented to show the frequency of animal types<br />

from 9-11 and from a year (2004) at the Riverside County Sheriff-Coroner.<br />

While the fully cleaned “pig knee” or ham bone does not necessarily offer<br />

a challenge to the trained anthropologist, partially fleshed ham bones pulled<br />

from garbage cans by the neighborhood dog have proven to be the most<br />

often misidentified element by specialists with some degree of knowledge.<br />

In the cases presented the “pig knee” was misidentified as being human by<br />

emergency room doctors, chiropractors, radiologists, and an orthopedic<br />

surgeon.<br />

Mass Disaster, Human/Non-Human Identification, Faunal Analysis<br />

393 * Presenting Author


H58 Antemortem vs. Perimortem Infant Rib<br />

Fracture: The Histological Evidence<br />

Murray K. Marks, PhD*, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996; Mariateresa A. Tersigni, PhD, Joint<br />

POW/MIA Accounting Command Central Identification Laboratory, 310<br />

Worchester Avenue, Building 45, Hickam AFB, HI 96853; and Darinka<br />

Mileusnic, MD, PhD, Knox County <strong>Medical</strong> Examiner’s Office, 1924<br />

Alcoa Highway, U-71, Knoxville, TN 37920<br />

After attending this presentation, attendees will understand healing (or<br />

chronic) infant rib fractures compared to acute (or perimortem) and the histological<br />

appearance of these fractures. This knowledge will better enable<br />

them to specifically identify these lesions in both fresh and dried specimens,<br />

i.e., at autopsy or in the field, respectively.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how the diagnosis of antemortem and perimortem<br />

rib fractures in infants and children has major significance to the<br />

forensic investigation. Being able to sequence these wounds enables the<br />

investigator the ability to provide a history of abuse which allows the<br />

pathologist discernment of the cause and manner of death and the investigator<br />

a time line to possibly place a perpetrator with a victim.<br />

Even though malleable, infant ribs are vulnerable to fracture when the<br />

torso is impacted during abuse. Besides numeric, sequencing and<br />

mechano-functional interpretation, a temporal understanding of rib fractures<br />

is critical to the forensic investigation, especially in diagnosis of antemortem<br />

from perimortem breakage. Interpretation is more difficult than<br />

seemingly simple visual ascertainment of a fresh fracture versus callus formation.<br />

Decipherment of the antemortem insult becomes complex when<br />

the woven bone callus disintegrates under a later perimortem stress to<br />

reveal a macroscopic fresh break. How are such events interpreted and<br />

what effect may this have on the admissibility of evidence on a temporal<br />

assignment of antemortem fracture? For instance, a suspect is charged on<br />

a specific date with perimortem assault and the anthropologist may or may<br />

not be prevented from testimony that demonstrates a history of abuse.<br />

What can the anthropologist contribute to the interpretation of “time since<br />

trauma” when it comes to rib fractures? Sauer (1998) advanced the initial<br />

understanding of these phenomena by explaining precise criteria for diagnosis<br />

of these events. Can accuracy be achieved macroscopically or is histology<br />

a necessity to diagnose?<br />

Six antemortem and perimortem fractured ribs from two abused infant<br />

victims and the distal humerus from one of them were transversely sectioned<br />

for light microscopy following the methods of Tersigni (2005).<br />

These wounds were inflicted four to eight weeks prior to death. All<br />

damaged bone was past the inflammatory and in the reparative phase of<br />

healing as defined by Martin et al, (1998). From the midline of the fracture<br />

callus posterior to the non-traumatized bone cortex, half of each rib was<br />

embedded in epoxy resin and sectioned using a Buehler Isomet 1000 with<br />

a diamond blade. The sections were glass slide mounted with Permount<br />

and reviewed using a Leica DMRX research light microscope at 15x, 50 xs,<br />

and 100x magnification. Digital images were taken using a Sony video<br />

uplink and captured using Image Pro Express 4.0. The anterior half of the<br />

rib was reviewed using SEM using a LEO 1525 Field Emission. This rib<br />

portion from the other side was examined to identify the extent of active<br />

bone remodeling following the segments anterior to the fracture.<br />

Not surprisingly, under LM and SEM the fracture callus appears as a<br />

disorganized, amorphous mass of woven bone similar in many ways to a<br />

periosteal inflammatory response or the response involving cartilage. The<br />

latticework within the callus is poorly organized and minimally and marginally<br />

attached to the underlying periosteal surface of the rib through small<br />

bony spicules/projections. The callus structure functions specifically as an<br />

immobilizer for the compromised bone so that healing may take place at<br />

the fracture site. The resulting osseo-cartilagenous structure is congruent<br />

with the typical blastic events characteristic of the ossification processes of<br />

the hematoma. However, the quality of bone making up the callus proper<br />

* Presenting Author<br />

is not the quality of uncompromised bone given the lack of true lamellar<br />

and Haversian organization. In the heart of the callus there is evidence of<br />

a specific endosteal/ medullary callus forming between the originally<br />

severed ends.<br />

In the non-traumatized bone adjacent to the fracture site there is a<br />

gradual level of involvement typical of the inflammatory tissue response of<br />

the periosteum. However, this may be difficult to decipher. The adjacent<br />

periosteal layer demonstrates a gradual thickening from the fracture site to<br />

normal thickness further away from the fracture. The cortical bone<br />

appearance within the fracture proper and immediately adjacent demonstrates<br />

remodeling given a higher rate of blastic activity. The SEM examination<br />

of the rib surfaces moving away from the callus reveals a three<br />

dimensional cone-shaped zone of healing that gets narrower as the<br />

examiner moves toward uncompromised bone along with a decrease in cortical<br />

thickness.<br />

Given the time frame of one to two months post-trauma, all wounds<br />

examined were beyond the inflammatory phase and the reparative phase is<br />

active and near completion. In fact, within one month, Martin et al’s (1998)<br />

inflammatory response, i.e., the reason for the callus and the reparative<br />

phase of callus formation has been achieved and is moving toward the<br />

remodeling phase. Here, diminution of the woven bone callus with new<br />

bone contoured and molded as the re-instated functional demands are<br />

placed on the structure is seen.<br />

Like any newly formed woven bone, the quality of bone in the fracture<br />

callus is poor and unsuited to withstand subsequent rigors of compression<br />

trauma/loading. Therefore, it is not uncommon, in cases of episodic child<br />

abuse, to find seemingly fresh breaks contained within the antemortem<br />

callus since no remodeling of the original fractured parts are macroscopically<br />

visible until the bone initializes Martin et al’s “remodeling phase.” If<br />

the portions of the callus are lost at autopsy or during skeletal processing,<br />

care must be taken not to interpret a perimortem fracture site from an antemortem<br />

event<br />

Histology, Child Abuse, Infant Bone Fractures<br />

H59 Evaluation of the Relationship Between<br />

Fifth Metatarsal Length and Foot Length/<br />

Shoe Size: A Possible Aid in Human<br />

Identification<br />

Robert F. Pastor, PhD*, University of Bradford, <strong>Bio</strong>logical Anthropology<br />

Research Centre, Department of Archaeological Sciences, Bradford, West<br />

Yorkshire BD7 1DP, United Kingdom; and Angela J. Reynard, MSc*,<br />

Bureau of Forensic Science, Ltd, Temple Chambers, 3-7 Temple Avenue,<br />

London, EC4Y OHP, United Kingdom<br />

The goal of this presentation is to demonstrate new methods for<br />

assisting in the identification of human remains utilizing bones of the foot,<br />

specifically the length of the fifth metatarsal. This particular element is<br />

useful because it can be manually palpated and measured in test subjects,<br />

thus avoiding invasive procedures or ionizing radiation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that the metatarsal bones of the foot, specifically<br />

the fifth metatarsal, can provide information useful to forensic anthropology<br />

research and casework, contributing information potentially useful<br />

for personal identification. This seemingly inconsequential bone has an<br />

unprecedented body of data to share and this study demonstrates the strong<br />

association between the length of the fifth metatarsal and weight-bearing<br />

foot length and also in the estimation of potential shoe size worn by an<br />

unidentified individual. In general, the findings of this study may prove<br />

useful as an additional resource when faced with the difficulty of attributing<br />

individual characteristics to unidentified isolated osteological material.<br />

The results also warrant consideration by the footwear industry with regard<br />

to the standardization of shoe sizes.<br />

394


Significant data exists with regard to the information gleaned from the<br />

metatarsal bones. This has been well documented by a number of<br />

researchers, in particular with regard to the estimation of sex, stature, and<br />

race. However, there is potentially additional valuable information to be<br />

obtained from this unique collection of bones, which are easily identifiable<br />

and often survive due to there size and robusticity. This research explores<br />

the relationship between the length of the fifth metatarsal and overall length<br />

of the human foot. This data is of potential relevance to a multitude of disciplines<br />

including forensic podiatry and the footwear industry. In an effort<br />

to raise the issue of utilizing feet and footwear evidence to assist with the<br />

identification process, the research also considered the relationship<br />

between the fifth metatarsal size and an individual’s correct (recommended)<br />

shoe size, as a possible unique supporting aid in the identification<br />

process. This could potentially provide supplemental information to well<br />

established techniques when more conventional means of anthropological<br />

identification, such as examination of skeletal anomalies or sinus configurations,<br />

are not possible.<br />

This research was conducted with the intention of testing two alternative<br />

hypotheses: First, that a strong positive relationship exits between<br />

the length of the fifth metatarsal of the foot and the overall foot length and<br />

second, that a similar relationship also exists between the length of the fifth<br />

metatarsal of the foot and shoe size worn by test subjects.<br />

<strong>Bio</strong>logical and metric data, including the fifth metatarsal length, foot<br />

length, weight, shoe size worn and correct shoe size, were collected from<br />

120 British subjects (50 males and 70 females, of primarily European<br />

ancestry) with ages ranging from 18–94 years old. The fifth metatarsal<br />

length, defined as ‘the measured distance between the most laterally-protruding<br />

aspect of the styloid process (approximating the proximal end), and<br />

the distal head of the bone’, was measured to the nearest millimetre using<br />

digital sliding calipers. The individual extremities were located by manually<br />

palpating the lateral side of the foot. Foot length and ‘correct’ (best<br />

fit) shoe size were determined using a modified ‘Brannock’ device, with the<br />

subjects standing in a weight-bearing position. Interestingly, slightly more<br />

than half the subjects were found to be wearing an incorrect shoe size (i.e.<br />

0.5 to 1 size too large), a result which was greater for women, due to factors<br />

such as personal choice and variation in manufacturing practices. Linear<br />

regression equations were constructed from the data using least squares formulae<br />

to determine the degree of relationship between the pairs of data. A<br />

blind test was subsequently undertaken using a small sub-sample of data<br />

collected independently, but consistent with the population from which the<br />

main sample of individuals were taken, to assess the reliability and<br />

accuracy of the calculated regression equations.<br />

The construction of the linear regression equations revealed that the<br />

fifth metatarsal length displays a significant correlation with foot length<br />

(left foot: r = 0.764; right foot: r = 0.778, p< 0.0005). For the right foot, the<br />

calculated regression equation is Y1 = 149.102 + 1.531 x MT (where: Y1<br />

= right foot length, MT = fifth metatarsal length; r 2 = 0.605). In addition,<br />

a significant relationship was shown to exist between the fifth metatarsal<br />

size and the determined correct shoe size, with strong positive correlations<br />

identified between left and right metatarsal lengths and ‘correct’ shoe size<br />

(r = 0.741 and 0.782, respectively; p < 0.0005). The calculated regression<br />

equation for right-foot shoe size is Y2 = -5.344 + 0.188 x MT (where: Y2<br />

= correct shoe size, MT = fifth metatarsal length; r 2 = 0.612). The blind test<br />

results indicated that foot length can be predicted to within ± 7.3 mm of the<br />

actual values, within a 95% confidence interval, using known fifth<br />

metatarsal lengths of either side. The regression models correctly assigned<br />

85% of individuals to within ±0.5 (one-half shoe size) of their correct shoe<br />

size and the remaining 15% correct to within ±1 whole shoe size. These<br />

small inaccuracies are consistent with the errors calculated in the subjects<br />

wearing the incorrect shoe size for their foot.<br />

The results of this study demonstrate that the metatarsal bones of the<br />

foot, specifically the fifth metatarsal, can provide information useful to<br />

forensic anthropology research and casework. This seemingly inconsequential<br />

bone has an unprecedented body of data to share and has in this<br />

instance been shown to have a strong association to foot length and also in<br />

the estimation of potential shoe size worn by an unidentified individual. In<br />

general, the findings of this study may prove useful as an additional<br />

resource when faced with the difficulty of attributing individual characteristics<br />

to unidentified isolated osteological material. The results also warrant<br />

consideration by the footwear industry with regard to the standardization of<br />

shoe sizes.<br />

Foot Length, Fifth Metatarsal Length, Shoe Size<br />

H60 Nail or Bullet? A Comparison of Typical<br />

Cranial Gunshot Wounds to a Defect<br />

Resulting From a Nail Gun<br />

Wendy E. Potter, BA, MS*, Department of Anthropology, MSC01-1040, 1<br />

University of New Mexico, Albuquerque, NM 87131-0001; and Russell T.<br />

Alexander, MD, Office of the <strong>Medical</strong> Investigator, MSC11-6030, 1<br />

University of New Mexico, Albuquerque, NM 87131-0001<br />

After attending this presentation, attendees will be able to distinguish<br />

between typical gunshot wound entrances and a defect resulting from a nail<br />

gun utilizing the morphology of the cranial defect and patterns of secondary<br />

fractures. This can assist investigators and anthropologists in assessing the<br />

type of projectile producing circular cranial vault defects in rare cases when<br />

the projectile is not recovered, contextual evidence is missing, or only<br />

skeletonized remains are present.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting both the bony morphological characteristics for a<br />

nail and typical bullet wounds, aiding in the identification of the projectile<br />

used, and by elucidating factors contributing to the difference in mortality<br />

between contact wounds involving nails versus bullets.<br />

The medical literature on nail guns revealed numerous construction<br />

site accidents but relatively few incidences of their use in suicides or homicides.<br />

The preponderance of on-the-job cranio-cerebral injuries occurred<br />

as a result of accidental discharge or ricochet; fatalities from these injuries<br />

were uncommon. The intentional use of a nail gun to commit suicide is<br />

rare. Based on published cases of cranial nail gun injuries, most wounds<br />

were survivable with prompt medical attention. Deaths resulting from accidental<br />

and suicidal nail gun wounds were typically prolonged and<br />

attributed to sequelae.<br />

A male, who had committed suicide by shooting himself in the head<br />

with a nail gun, was drawn from the Maxwell Museum of Anthropology<br />

documented collection to illustrate the bony morphology of a nail entrance<br />

wound. This defect was directly compared to .22 caliber bullet entrance<br />

wounds in the crania of four individuals drawn from the Museum’s various<br />

skeletal collections. This caliber was specifically chosen to ensure comparability,<br />

as .22 caliber bullets are nearly equal in diameter to the nail’s head<br />

(1/4 inch) and are likely to produce defects similar in size to the nail gun<br />

wound.<br />

An examination of the cranial defect in the suicide victim revealed an<br />

entrance wound located roughly 8 millimeters posterior to the coronal<br />

suture, just superior to the frontal angle of the right parietal and inferior to<br />

the temporal line. The nail removed a plug of bone as it entered the<br />

cranium, leaving a sharp-margined circular defect approximately 8 millimeters<br />

(1/3 inches) in diameter. Spalling produced irregular beveled<br />

edges internally, with a wider beveled area along the anterior and superior<br />

aspects. No exit wound or radiating fractures were present, and no secondary<br />

fractures of the orbital plates resulted.<br />

The typical .22 caliber bullet entrance wounds were round or oval in<br />

shape, with sharp edges and internal bevelling. Uniform bevelling was<br />

typical for right angle gunshots, whereas irregular bevelling indicated<br />

oblique strikes. Orbital fractures were often present; these thin plates of<br />

bone were particularly susceptible to fracture because of the sudden<br />

increase in intracranial pressure produced when the bullet entered the<br />

cranium. Differences in gunshot wound morphology were noted between<br />

395 * Presenting Author


short and long cartridges, as well as among various ranges of fire. With the<br />

exception of the orbital plates, short cartridges rarely produced secondary<br />

fractures in the cranium. In contrast, long cartridges usually produced<br />

orbital plate fractures as well as linear fractures of the cranial vault. These<br />

fractures resulted from temporary cavity formation and, in the case of<br />

contact wounds, the additional pressure produced by the expansion of gases<br />

entering the neurocranium. Distant .22 caliber gunshot wounds often<br />

lacked sufficient energy to produce exit defects, whereas contact wounds<br />

resulted in perforating injuries.<br />

Although they share some similarities, the nail gun wound described<br />

is distinct from .22 caliber bullet wounds. Differences in the defect morphology<br />

and variation in secondary fracturing serve to distinguish between<br />

nail and bullet wounds. Perhaps more interesting is the dramatic difference<br />

in lethality recorded in the literature between contact gunshot and nail gun<br />

wounds, even when comparing roughly equivalent projectile diameters.<br />

Factors influencing the survivability of intracranial injuries following<br />

gunshot and nail gun contact wounds will be discussed.<br />

Nail Gun, Penetrating Cranial Defect, Lethality<br />

H61 Observations of Decomposition in<br />

Southern Coastal North Carolina<br />

Midori Albert, PhD*, Department of Anthropology, University of North<br />

Carolina Wilmington, 601 South College Road, Wilmington, NC 28403-<br />

5907; Jeffery K. Tomberlin, PhD, Department of Entomology, Texas A&M<br />

University, 1229 North U.S. Highway 281, Stephenville, TX 76401; and<br />

Christina Johnson, BA, Department of Sociology and Criminal Justice,<br />

University of North Carolina Wilmington, 601 S College Road,<br />

Wilmington, NC 28403-5978<br />

The goal of this presentation is to allow attendees to gain information<br />

on decomposition rates and patterns during early spring in a southeastern<br />

coastal U.S. region. These findings can be used to more accurately assess<br />

the postmortem interval specifically in this type of geographical location.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing knowledge of rates and patterns of decomposition<br />

in a southeastern U.S. subtropical microclimate allowing for more accurate<br />

assessments of time since death.<br />

The authors hypothesized that in a coastal microclimate; there would<br />

be similarities in the overall pattern of decomposition, but differences with<br />

regard to rates of decomposition and entomological findings due to variations<br />

in temperature, humidity, and or rainfall when compared to other<br />

locales.<br />

Inasmuch as pig carrion is an acceptable substitute for human<br />

cadavers, eight pigs ranging from 18-50 pounds were used in this study.<br />

For protection from possible scavenging, five of the pig carcasses were<br />

placed on the surface of the ground inside a chain link fenced area open at<br />

the top. Three pig carcasses were placed on the surface of the ground just<br />

outside the fenced area. All eight pigs were within ten feet of a saltwater<br />

marsh with no shade. The study lasted from March 28, 2005, when the pigs<br />

were initially laid out, until April 20, 2005, when full skeletonization was<br />

reached. During the course of the study, observations of decomposition,<br />

weather, temperature, humidity, wind speed, insect activity, and plant<br />

growth were recorded daily.<br />

Patterns of decomposition—such as bloating, discoloration, skin<br />

slippage, and breakdown of tissues—were found to be similar to what<br />

would be expected in most other regions. However, it was interesting to<br />

note that in early spring, when the average temperature approached 70<br />

degrees Fahrenheit with 55.37% humidity and significant rainfall, full<br />

skeletonization was attained in three weeks. Sun bleaching was evident on<br />

many of the bones. All three of the unprotected pig carcasses exposed on<br />

the surface were lost to scavenging, but not until much decomposition had<br />

already occurred. Details of insect activity on the five remaining pig carcasses<br />

will be discussed, along with features of peculiar and rapid plant<br />

* Presenting Author<br />

growth. These findings, compared to findings from other similar studies,<br />

will also be discussed. Results of this study will provide descriptive data<br />

useful in assessing the postmortem interval in a southeastern coastal subtropical<br />

region.<br />

Postmortem Interval, Decomposition, Forensic Entomology<br />

H62 The Differential Diagnosis of Skullbase<br />

Osteomyelitis Secondary to Necrotizing<br />

Otitis Externa<br />

Stephanie L. Child, MA*, The University of Missouri-Columbia, 701<br />

Swallow Hall, Columbia, Missouri 65211; and Dana E. Austin, PhD,<br />

Tarrant County <strong>Medical</strong> Examiner’s Office, 200 Felix Gwozdz Place,<br />

Forth Worth, Texas 76104<br />

After attending this presentation, attendees will understand the importance<br />

of microscopic examination in the diagnosis of pathological conditions<br />

and the necessity of cooperative efforts in the resolution of cold cases.<br />

This presentation will impact the forensic community and/or humanity<br />

by calling attention to the occurrence of skullbase osteomyelitis secondary<br />

to necrotizing otitis externa and illuminating the potential usefulness of a<br />

differential diagnosis in the evaluation of pathological conditions.<br />

A case study in which the skeletal remains of a man recovered in 1963<br />

were recently identified through the cooperative efforts of forensic specialists<br />

will be presented. Initially described as a woman in 1963, the<br />

remains were stored as evidence at the Fort Worth Police Department for<br />

40 years. In 2004, the remains were turned over to the Tarrant County<br />

<strong>Medical</strong> Examiner’s Anthropology Laboratory for reevaluation. Metric<br />

and non-metric evaluation indicated that the remains were those of a white<br />

male, age 33-45 years. A facial reconstruction was produced and recognized<br />

in a local newspaper by friends of the decedent. Identification was<br />

confirmed through mitochondrial DNA comparison with a maternal first<br />

cousin. No antemortem medical records were located. The decedent’s military<br />

records had been destroyed in a fire in 1973.<br />

Differential diagnosis began with gross and radiological evaluation of<br />

the skull. Multiple osteolytic lesions affecting the endocranial lamina and<br />

diploë of the cranium were noted. The lesions bilaterally affected the<br />

petrous bones, the sphenoid, and the frontal bone at the terminations of the<br />

middle meningeal arteries. Two lesions were removed from the cranium<br />

and retained for microscopic analysis before the remains were released to<br />

the family.<br />

The lytic samples were embedded in epoxy resin and thin ground sections<br />

were prepared for microscopic examination. Microscopic examination<br />

revealed the presence of abnormal bone resorption due to osteoclastic<br />

hyperactivity and reactive new bone growth at the lytic foci. This<br />

resorptive and formative bone behavior is a diagnostic characteristic of<br />

skullbase osteomyelitis.<br />

Skullbase osteomyelitis (SBO) secondary to necrotizing otitis externa,<br />

first described by Meltzer and Kelemen in 1959, is an inflammatory pyogenic<br />

infection affecting the temporal and sphenoid bones. It is an<br />

uncommon complication that arises from chronic ear infections. The<br />

infection begins in the soft tissues within the external auditory canal and<br />

extends into the retromandibular fossa through the Santorini fissure. The<br />

infection continues its extension into the parotid space and throughout the<br />

petrous apex and sphenoid. Pus is produced within the bone, causing<br />

abscesses. These abscesses deprive the bone of its blood supply, causing<br />

necrosis of the bone tissue. If left untreated, the progressive infection will<br />

continue its extension posteriorly and medially, resulting in cranial nerve<br />

palsy, sigmoid sinus thrombosis, intracranial extension, and death (Schultz,<br />

2001). If prompt and aggressive antibiotic treatment is administered, the<br />

infection may be arrested. This particular individual shows progressive<br />

skullbase osteomyelitis, an anticipated finding in a case associated with the<br />

pre-antibiotic era.<br />

396


This poster presents the differential diagnosis of skullbase<br />

osteomyelitis secondary to necrotizing otitis externa. Anecdotal information<br />

obtained from the family members supports this hypothesis as this<br />

individual suffered from chronic ear pain.<br />

Osteomyelitis, Necrotizing Otitis Externa, Differential Diagnosis<br />

H63 Sexual Dimorphism in the Vertebral Column<br />

Amanda S. Allbright, BA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

The goal of this presentation is to demonstrate the extent of sexual<br />

variability existing throughout the vertebral column.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating sexual dimorphism in the vertebral column and<br />

the usefulness of various vertebrae as sex indicators.<br />

This poster will demonstrate the potential ability of the vertebral<br />

column to assist in sex estimation. Sex determination is a key characteristic<br />

in developing a biological profile of an individual. Sexual dimorphism<br />

has been demonstrated in various skeletal elements, including the pelvis<br />

and cranium. Previous studies have also demonstrated that elements of the<br />

axial skeleton are useful in determining sex. The atlas, axis, twelfth thoracic,<br />

first lumbar, and sacrum have all demonstrated usefulness as sex indicators.<br />

Since forensic and archaeological remains are often fragmentary,<br />

the ability to determine sex from as many skeletal elements as possible is<br />

important. The ability to determine sex from any specific vertebra would<br />

prove very useful.<br />

A series of measurements were taken on a small sample of males and<br />

females from the William M. Bass Donated Collection at the University of<br />

Tennessee. This collection was utilized because it represents a sample of a<br />

modern population of known age, sex, and ancestry. Though studies have<br />

already demonstrated that the axis, atlas, twelfth thoracic, and first lumbar<br />

are sexually dimorphic, measurements from these vertebrae were included<br />

in this study in order to obtain a better picture of the variability of the entire<br />

vertebral column and to consider the variability of these vertebrae in a different<br />

population from the ones in which they were originally tested.<br />

Measurements used in this study were based on measurements defined by<br />

previous studies on vertebrae. Measurements taken on all vertebrae include<br />

the anterior-posterior length of the vertebral foramen (LVF), length and<br />

width of left superior and inferior facets (LSF, WSF, LIF, and WIF, respectively),<br />

maximum breadth between superior/inferior facets (SFB/IFB),<br />

maximum height from superior to inferior facets (MHF), maximum length<br />

of the vertebra from posterior point of spinous process to most anterior<br />

point of the vertebra (XSL). Width of the fovea (WFV) was taken on first<br />

cervical vertebrae and the maximum height and diameter of the dens<br />

(MHD/MWD) was taken on second cervical vertebrae. Measurements<br />

taken on all but the first two cervical vertebrae include the maximum<br />

sagittal and transverse length of the vertebral body (SLVB, TLVB) as well<br />

as the anterior and posterior heights of the vertebral body (MHVA,<br />

MHVP). All measurements were taken to the nearest millimeter using a<br />

Mitutoyo digital sliding caliper.<br />

Preliminary analyses of results in this study indicate several features<br />

may exhibit sexual dimorphism throughout the vertebral column. The<br />

maximum length of the vertebrae appears to exhibit strong variability<br />

between the sexes, while the length of the vertebral foramen does not. The<br />

differences in the lengths and widths of the superior and inferior facets also<br />

suggest sexual dimorphism. Breadth between facets, height of superior to<br />

inferior facets, and dimensions of the vertebral body also appear to demonstrate<br />

differences between the sexes. Though differences are noted between<br />

the heights of the vertebral bodies of males and females, this pattern may<br />

be due more to age than to sex. These preliminary results suggest that<br />

sexual dimorphism exists throughout the vertebral column and that vertebrae<br />

can be used in estimating sex. Further investigation using a larger<br />

sample of individuals from the Bass Donated Collection will be conducted<br />

to determine the extent of sexual dimorphism in the vertebral column and<br />

the level of accuracy and reliability obtainable when using vertebrae to<br />

determine sex. This research could demonstrate that any vertebra can be<br />

used for estimating sex, possibly even if fragmented and/or specific vertebra<br />

number is unidentifiable, which could prove useful in forensic and<br />

archaeological situations, especially where skeletal material is fragmented<br />

or commingled.<br />

Sex Determination, Vertebrae, Physical Anthropology<br />

H64 Heat Intensity Versus Exposure<br />

Duration Part I: Macroscopic<br />

Influence on Burned Bone<br />

Joanne B. Delvin, PhD*, and Anne Kroman, MA*, University of<br />

Tennessee, Department of Anthropology, 252 South Stadium Hall,<br />

Knoxville, TN 37996; Steve Symes, PhD, Mercyhurst College, Mercyhurst<br />

Archaeological Institute, Department of Applied Forensic Sciences , Erie,<br />

PA 16546; and Nicholas P. Herrmann, PhD, University of Tennessee, 252<br />

South Stadium Hall, Department of Anthropology, Knoxville, TN 37996<br />

The goal of this presentation is to provide attendees with information<br />

regarding the impact of duration of exposure compared to intensity of<br />

heating upon bone.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing an understanding of the contribution and interaction<br />

of intensity of heating and duration of exposure to the state of burned<br />

remains.<br />

Throughout the last several decades burned bone has received copious<br />

attention in the anthropological literature, as the focal point of numerous<br />

forensic and archaeological examinations. Specifically, investigations,<br />

both laboratory and replicative, have focused upon developing criteria for<br />

identifying and assessing the degree of heat alteration through classification<br />

of color variation. Research has also focused upon change in surface morphology<br />

towards determination of pre-incineration condition. In addition,<br />

examinations have sought to recognize the micromorphological impact of<br />

heating.<br />

At the most basic level, the condition and appearance of burned bone<br />

is due to exposure to heat, specifically the combined factors of duration and<br />

the intensity of heating. As noted in the literature, these two variables<br />

undoubtedly have a profound impact upon the condition of the remains,<br />

color changes, and fracture patterns. Nonetheless, the degree to which<br />

these variables influence the modification or destruction of the organic<br />

component of bone has not been systematically assessed. To potentially<br />

illuminate this situation, and understand the contribution and interaction of<br />

the intensity of heating and the duration of exposure to the state of burned<br />

remains, bone was heated using two exposure scenarios. One model represents<br />

a residential structure fire in which temperatures grow gradually<br />

and reach a maximum of approximately 1000 degrees Fahrenheit (F). The<br />

second model mimics an automobile fire in which temperatures build<br />

rapidly, exceeding 1400 F after less than two minutes. These models<br />

provide an opportunity to compare the varied effects of duration and<br />

intensity of heating on specimens and the resultant impact upon bone.<br />

Our sample (15 specimens in total) was divided into two groups to<br />

represent each of the scenarios. Samples were heated in an electric kiln.<br />

Thermocouple devices positioned inside the kiln continuously monitor<br />

temperatures which are then relayed to a laptop computer running<br />

DaqView 5.0. For each model, seven samples of fresh bone, complete with<br />

soft tissue, were loaded into the kiln, prior to heating. One specimen was<br />

retained as a control. For model one, temperatures were raised in increments<br />

of 150 degrees every 3 minutes, resulting in a maximum temperature<br />

of 1050 degrees F over an interval of 21 minutes. For model two, the temperature<br />

was raised in increments of 250 degrees every 2 minutes resulting<br />

in a maximum temperature of 1750 degrees F over a period of 14 minutes.<br />

Prior to each temperature increase interval, one specimen was removed for<br />

analysis.<br />

397 * Presenting Author


All extracted specimens were evaluated macroscopically. Surface<br />

color was assessed using a photospectrometer. Resultant analysis showed<br />

the differing effects of the two variables, specifically their impacts upon<br />

surface colors and fracture patterns. Specimens from scenario one, a lower<br />

temperature, longer duration fire displayed a range of color changes and<br />

fracture patterning. Specimens from burn scenario two, characterized by a<br />

high intensity shorter duration fire experienced a rapid loss of the organic<br />

component generating warping and characteristic fracture patterns. The<br />

differences seen in surface color changes, as well as fracture patterns<br />

between the two scenarios offer criteria to the forensic anthropologist<br />

tasked with interpreting and examining burned remains.<br />

Burned Bone, Heat Fractures, Fire Models<br />

H65 Odd Man Out: Separation and<br />

Identification of Terrorist Remains<br />

in Suicidal Bombings<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, 16465 Old Frederick Road, Building 102, Rockville, MD<br />

20850<br />

After attending this presentation, attendees will be familiar with basic<br />

methods and techniques useful in separating commingled remains of terrorist<br />

in suicidal bombings. In addition the attendees will be provided<br />

information concerning injuries sustained by suicidal bombers in relationship<br />

to the type of explosive device detonated.<br />

This presentation will impact the forensic community and/or<br />

humanity by assisting the forensic community in conducting investigations<br />

dealing with terrorist bombings and helping to determine remains which<br />

may be those of the bomber.<br />

One of the biggest threats facing the world at large today is terrorism.<br />

In many countries such as Iraq, Afghanistan, Pakistan, and Israel there are<br />

constant attacks by terrorists on both military and local civilians. The<br />

attacks commonly employed are those committed by suicidal bombers,<br />

who strap themselves with explosives and detonate them in strategic areas<br />

of commerce or other areas where crowds coalesce. Detonation of these<br />

explosive devices has caused tremendous causalities in addition to<br />

destruction of property. The greatest perpetrators of these suicidal<br />

bombings are fanatical Islamic fundamentalists who believe that by killing<br />

themselves, they will become martyrs and will be richly rewarded in<br />

heaven.<br />

Forensic examination of evidence recovered after a bombing includes<br />

the identification of fatalities including the bomber, and associated<br />

explosive injuries. In most cases there will be commingling of both the<br />

remains of the bomber as well as the innocent personnel. Separation of the<br />

bombers remains from those who were killed is important for two reasons.<br />

One it is important to identify the remains of the innocent by-standers and<br />

return them to their families to help provide some degree of closure.<br />

Secondly it is important to identify the remains of the bomber as they<br />

provide important clues as to the identity of the bomber, and the type of<br />

explosive device utilized.<br />

In many bombing cases separation of the commingled remains<br />

requires forensic anthropological examination of the remains in order to<br />

determine the anatomical portions represented and the minimum number of<br />

individuals present. Once the minimum number of individuals is established<br />

the anthropologist can undertake developing a biological profile for<br />

each set of remains identified in reference to sex, age, and race. In addition<br />

to anthropological separation based on morphological characteristics, the<br />

anthropologist can collect tissues specimens for DNA analysis.<br />

Anthropological separation of the bomber’s remains can also be<br />

accomplished by identifying the personal characteristics of the bomber.<br />

Characteristics utilized in identifying middle-eastern bombers includes<br />

evidence of dark or olive skin tone, abundant body hair, dark head and body<br />

hair which is thick or coarse, presence of a beard, dry and worn feet<br />

* Presenting Author<br />

(evidence of everyday sandal wear in a desert environment), absence of<br />

U.S. or European dental work, and the presence of embedded electrical<br />

components such as wires in various body portions. Although these traits<br />

are not necessarily exclusive they have been found to be extremely useful<br />

in separating those of Middle Eastern decent from Europeans. Age estimation<br />

can also be of use, as the great majority of suicide bombers encountered<br />

are between seventeen and thirty years of age.<br />

Examination of injuries involving belt type explosive devices worn by<br />

the bombers leads one to expect to see separation of the body into two to<br />

four major portions (being the upper torso from above the lower rib cage in<br />

addition to one or both arms out to the elbows, and the inferior pelvic<br />

border which may be attached to one or both upper legs). The lower arms<br />

and lower legs tend to be separated from their respective torso area and may<br />

be also further separated from the hands at the wrist and feet at the ankle.<br />

Injuries involving larger explosives such as those carried in a large<br />

backpack or transported as a car bomb produce greater fragmentation of the<br />

body with upper limbs separated into the hands, the lower arms and wrist<br />

complex, the elbow complex, the upper arm and shoulder complex, the<br />

lower limbs separated into the feet, lower leg and ankle, middle femoral<br />

shaft, the left and right innominate and their respective proximal femur<br />

head and neck, the lumbar vertebrae column, the lower thoracic vertebral<br />

column and inferior rib cage, the upper thoracic vertebral column and upper<br />

rib cage, the cervical vertebrae column with a portion of the inferior base<br />

of the skull and mandible portions, and the upper cranium divided into four<br />

sections, the maxillary and temporal portions, the occipital bone, and the<br />

parietal portions.<br />

The use of nuclear DNA extracted from soft tissues or bone can<br />

provide evidence of an unknown profile or “odd-man-out.” Additional<br />

DNA studies, in particular mitochondrial profiling can be used to denote a<br />

possible suicide bomber based on sequence comparison to reported world<br />

databases indicating that an individual is likely of Middle–Eastern origin.<br />

Multiple case examples of suicide bombings will be presented, highlighting<br />

anthropological methods for sorting the human remains involved.<br />

Anthropology, Bombs, Explosive Injuries<br />

H66 Evidence vs. Identification: The Role<br />

of Humanitarian Organizations in<br />

the Balkans 1992-2002<br />

Abbie K. Cuff, MSc*, and Tal Simmons, PhD, University of Central<br />

Lancashire, Department of Forensic & Investigative Science, Preston,<br />

PR1 2HE, United Kingdom<br />

After attending this presentation, attendees will appreciate the need<br />

for a co-ordinated approach to victim identification and the determination<br />

of cause and manner of death in situations of mass violations of human<br />

rights, to prevent duplication of effort between organisations and re-traumatisation<br />

of victims’ families.<br />

This presentation will impact the forensic community and/or<br />

humanity by contributing to the ongoing discussions regarding the development<br />

of best practice methodology for dealing with ‘missing person’ and<br />

identification issues following a mass disaster (natural or man-made) or<br />

mass violation of human rights.<br />

Following the ethnic cleansing and genocide in the Balkans in the<br />

1990s, over 30,000 individuals were thought to be missing. There were<br />

many humanitarian organisations active in the region investigating these<br />

disappearances, each with a different mandate. There was ample scope for<br />

duplication of efforts if a coordinated approach was not taken to the issue<br />

of missing persons and the identification of recovered remains.<br />

The humanitarian organisations performed a variety of roles, mainly<br />

exhumation, determination of cause and manner of death, victim identification,<br />

and psycho-social support. No one organisation had a complete<br />

portfolio of services at that time, and depending on their mandate, different<br />

emphasis was placed on the importance of identifying remains. It is<br />

398


inferred that initially, identification was of secondary concern to evidence<br />

collection (Nowak, 1998). The artificial separation of responsibilities<br />

between organisations, specifically victim identification, and the determination<br />

of cause and manner of death created inefficiencies in the identification<br />

process. Postmortems had to be repeated, families re-interviewed<br />

and in some instances remains re-exhumed. This not only lengthened the<br />

process, but also re-traumatised families, as they had to go back over details<br />

for a second or even third time (Keough, et al., 2004).<br />

A cross-sectional survey (41% response rate) was carried out on individuals<br />

who worked for international humanitarian organisations in the<br />

region (ICTY, ICRC, PHR, ICMP, TPO, OSCE) to examine the interaction<br />

amongst organisations. The results showed that in a majority of cases the<br />

various entities cooperated and collaborated well together, however, it was<br />

clear that some organisations had territorial issues, an issue also discussed<br />

by Skinner & Sterenberg (2005) in their paper of turf wars, and this influenced<br />

working relationships both in the field and the laboratory, and in turn<br />

impacted the frequency and usefulness of information exchanged. The<br />

survey suggested that in the absence of formalised lines of communication<br />

and information flow, the information exchanged among organisations was<br />

on an ad-hoc basis with variable impact on the task of identification. The<br />

emergency intervention programme run in Kosovo by PHR with ICTY is<br />

an example of how organisations can collaborate to meet the needs of both<br />

the forensic experts and the families. PHR acted as family liaison between<br />

the ICTY’s forensic teams and families (Keough et al., 2004). The programme<br />

was successful because each entity had a defined role and they<br />

work closely together with each other and local organisations to achieve<br />

their aims.<br />

Providing a complete portfolio of forensic and community services,<br />

managed by either one organisation or by a working group depending on<br />

the size of the project is the best approach to dealing with missing person<br />

and identification issues. If the situation does not allow for this then internationally<br />

agreed standards and protocols should be adopted to ensure there<br />

is no disconnect between organisations and to avoid duplication of effort.<br />

The ICRC conference “The Missing” in 2003 began the task of<br />

bringing together experts to formally discuss missing person issues (ICRC,<br />

2003). They ran a panel session on the collection, exhumation, and identification<br />

of human remains whose aim was to show the necessity of a<br />

standard framework of action. The participants came from both national<br />

and international organisations, many of whom had carried out work in the<br />

former Yugoslavia, Latin America, and Rwanda. One outcome of the<br />

session was a set of recommendations for a framework, incorporating the<br />

needs of all parties concerned – evidence, identification (anthropological<br />

and DNA) and psycho-social support. The framework would cover such<br />

things as terms of reference, resources, equipment, logistics, and legal considerations.<br />

Importance was also placed on the need for standard guidelines<br />

and protocols relating to exhumation, postmortem, and identification.<br />

Unfortunately, there is no information in the public domain concerning any<br />

further work resulting from these recommendations.<br />

The recent tsunami in Southeast Asia and the mass graves in Iraq have<br />

raised the issue of managing large scale recovery and identification initiatives<br />

effectively and with due care given to the victims’ relatives. Isn’t it<br />

about time the forensic community became more proactive than reactive?<br />

Identification, Organisational Dynamics, the Balkans<br />

H67 Children’s Traumas Caused During<br />

the Civil War in Guatemala<br />

Shirley C. Chacon, BA*, Avenida Simeon Canas 10-64 zona 2, 2 Avenida<br />

8-28 zona 18 Residenciales Atlantida, Guatemala, 01002, Guatemala;<br />

and Leonel E. Paiz, BA, Avenida Simeon Canas 10-64 zona 2,<br />

Guatemala, 01002, Guatemala<br />

After attending this presentation, attendees will learn about the<br />

different perimortem traumas in subadult skeletons.<br />

This presentation will impact the forensic community and/or<br />

humanity by revealing to the international community the violations<br />

against children during the civil war in Guatemala.<br />

During the civil war in Guatemala, children suffered in a cruel way the<br />

violation of their essential human rights. Their right to live was affected by<br />

arbitrary executions, death of the unborn, neonates, and death as a result of<br />

forced displacement and forced disappearance. The right to physical and<br />

psychological integrity was violated by acts of torture and sexual violation.<br />

Their right to individual liberty was affected through the illegal privation of<br />

liberty and forced servitude.<br />

According to data registered by the Guatemalan Historical<br />

Clarification Commission (CEH) “18% of the total of violations to human<br />

rights (against victims of known age) was performed against children“<br />

(4,249 out of 23, 313). This means that at least one out of five victims is<br />

under age. Of the total of victims with known age, children comprise 20%<br />

of the people killed by arbitrary execution; 14% of victims of torture or otherwise<br />

cruel, inhumane, and denigrating treatment; 11% of victims of<br />

forced disappearance; 16% of the deprived of their liberty; and 27% of the<br />

sexually violated.<br />

Even though these cold numbers and the horror of civil war in<br />

Guatemala are known, there still exists unresolved issues that are products<br />

of war such as: children separated from their families after witnessing acts<br />

of extreme cruelty against their loved ones; children found alive after massacres<br />

or confrontations; children lost during forced displacement or left in<br />

the custody of people or institutions; and children deprived of their fundamental<br />

human rights, including the right to have an identity, a name and to<br />

have a family free from illicit interference.<br />

The forced movement of juveniles from their ethnic group to others,<br />

especially after massacres to indigenous communities, causes a loss of<br />

identity and affects the children’s cultural rights. At the same time, it<br />

affects the collective rights of the ethnic group by impeding biological and<br />

cultural reproduction of the group.<br />

During more than 13 years the Guatemalan Forensic Anthropological<br />

Foundation (FAFG) has performed more than 500 forensic anthropological<br />

investigations. In each one of them testimonies are collected and bone evidence<br />

that unveil the cruel violations of fundamental and specific human<br />

rights that children have suffered. In this report, the authors will show violations<br />

to human rights of children using specific cases as well as general<br />

data that FAFG obtained through forensic anthropological investigations.<br />

Finally, it will be stated how, after the peace accords signature, the<br />

culture of violence borne of the civil war, still affects this most vulnerable<br />

group of children.<br />

Children, Massacre, Trauma<br />

399 * Presenting Author


H68 Burial Patterns of Korean War Casualties<br />

as an Indicator of the Social Relationships<br />

Between the Dead and the Living<br />

William R. Belcher, PhD*, and Derek C. Benedix, PhD, JPAC-CIL,<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI 96853-5530<br />

The goal of this presentation is to present two case studies of battlefield<br />

casualty burial pattern as examples of the social relationship between<br />

the decedent and the burial party. This paper will provide forensic investigators<br />

in both modern and ancient recovery/crime scenes with essential<br />

information for the reconstruction of events and relationships to the<br />

decedent.<br />

This presentation will impact the forensic community and/or<br />

humanity by discussing critical elements of the social relationships<br />

between the living and the dead concerning burial practices encountered in<br />

several post-battlefield bio-archaeological settings in North Korea. These<br />

observations can be applied to war time casualties as well as modern crime<br />

scene investigations. (Needs to cite Holland 2001)<br />

The position of a body in a burial has long been important in the<br />

understanding of the reconstruction of past events, whether this occurred<br />

several years ago or in a recent crime scene. Additionally, body position in<br />

a burial is often seen as an indicator of the relationship between the<br />

decedent and the burial party. Examination of burial practices at two sites<br />

associated with the Korean War (1950-1953) sheds light on this relationship<br />

and its importance in scene reconstruction. The primary social<br />

relationships that will be examined are whether the decedent held friendly<br />

or enemy status.<br />

Two recovery scenes are examined below, both are associated with the<br />

Battle of Ch’ongch’on. In late November 1950, the 25th and 2nd Infantry<br />

Divisions had advanced up the Ch’ongch’on River basin to the town of<br />

Kujang-Dong. The Chinese forces launched a major attack along both divisions’<br />

line of defense. Due to overwhelming odds, the divisions were<br />

forced to withdraw to the town of Kunu-ri for consolidation.<br />

In September 2000, a scene was located on the southwestern slope and<br />

ridge line of Hill 219. Scattered over the area were numerous “foxholes,”<br />

one of which contained a burial of three individuals. The positions of the<br />

bodies ranged between extended to semi-flexed. The position of limbs and<br />

orientation of bodies suggest rapid placement with little or no concern for<br />

any ritual position. The burial feature consisted of the expedient use of an<br />

already dug pit (i.e., “fox hole”). The presence of a fragment of looped<br />

wire suggests that the bodies were dragged to this pit from some other<br />

locale. The bodies were oriented west, east and roughly south.<br />

In 2004, three separate individuals were excavated from a drainage<br />

ditch that functioned as a makeshift cemetery located near a known<br />

Prisoner of War holding area in Pyongan Putko, North Korea. The bodies<br />

were separated by approximately 12 meters, with one individual buried<br />

alone and two individuals buried in close proximity to another. The body<br />

positions of all three burials were extended. Particularly interesting is that<br />

in two of the burials, an arm was placed across the chest. One burial (minus<br />

skull) had both hands crossed in front of chest. Care was obviously taken<br />

in the placement of these bodies. The bodies were oriented such that two<br />

were oriented to the south and one was oriented to the north. According to<br />

witness testimony, these individuals had died during captivity and their<br />

fellow internees buried them under guard by members of the Chinese<br />

Volunteer Army.<br />

From these two examples, two situations representing the opposite<br />

ends of a continuum are presented. One represents a series of burials that<br />

appear to have been done in haste as well as suggesting a social relationship<br />

of antagonism. The second scene represents three burials in which care was<br />

taken to lay the individuals out in a standard Western (re: Christian) pattern,<br />

save for the body orientations. However, these burial patterns are more<br />

common when the social relationship is amicable.<br />

Forensic Archaeology, Burial Pattern, Battlefield Casualty<br />

* Presenting Author<br />

H69 Characterizing Primary and Secondary<br />

Mass Graves and Their Impact on<br />

Identification Methodology: The Experience<br />

in Bosnia and Herzegovina<br />

Ana Boza Arlotti, PhD*, International Commission for Missing Persons,<br />

Alipasina 45a, Sarajevo 71000, Bosnia and Herzegovina<br />

After attending this presentation, attendees will learn new ways of<br />

approaching the methodology of exhumation, recognizing it as the first<br />

stage in the identification process. Furthermore, the attendee will learn of<br />

the different types of mass graves and its influence on the identification<br />

process.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing that a more detailed analysis of the archaeological<br />

context of the recovery and a customized exhumation strategy is an<br />

important first step in the identification process.<br />

This presentation evaluates the procedure of body identification in<br />

remains obtained from primary and secondary mass graves. It is maintained<br />

that the process of identification starts with a sound methodology for<br />

collecting the body parts in the field using a procedure which acknowledges<br />

the characteristics of the mass grave. The material evidence that indicates<br />

a primary grave is reviewed to show how it differs from the more common<br />

cases found in the Bosnian, secondary mass graves. The author also<br />

describes a third situation: the robbed mass grave. The characterization of<br />

a mass grave is dictated, to start with, by the archaeological data<br />

encountered during excavation. However, in many cases, human physical<br />

remains often provide evidence that runs contrary to the archaeological<br />

interpretations.<br />

This small-scale study is based on data recovered in the excavation of<br />

mortal remains from the mass graves of Tomašica and Stari Kevljani, two<br />

of the many graves produced during the 1992-95 war in Bosnia and<br />

Herzegovina. The excavation was a joint task between the International<br />

Commission on Missing Persons (ICMP) and the local National<br />

Commission for the Disappeared. This joint task force for identification of<br />

victims of the war has been working over the past five years to identify as<br />

many remains as possible, including isolated body parts. Currently, the<br />

identification is made with the use of DNA testing, which has replaced traditional<br />

methods as the primary means of identification.<br />

The objective of the excavations of mass graves by ICMP and the<br />

National Commission in Bosnia is to identify the bodies recovered. As<br />

such, the process of identification begins in the field, where it is imperative<br />

to collect parts of a single body together. Furthermore, it is paramount to<br />

have a clear understanding of the conditions of the grave: Is it primary<br />

grave? Is it a secondary grave? Or is it a grave used during a period of time<br />

that only resembles a secondary mass grave, where body parts of a single<br />

individual might be spread over a small area? The author uses archaeological<br />

as well as anthropological evidence to define the various possibilities<br />

of graves: primary, secondary, combination of primary and secondary<br />

graves, as well as robbed graves. Evidence is presented that is used to link<br />

remains obtained from robbed graves with remains, from the same body,<br />

and from secondary graves. There have been several cases of a body reassociated<br />

from body parts from several sites.<br />

It is concluded that an exhumation strategy subordinated to the<br />

assessment of the kind of mass grave being excavated will greatly facilitate<br />

the re-association work at the morgue, as it will help in keeping parts of the<br />

body intact. This more detailed work in the field will save time and money<br />

in the process of identification, even in the context of a DNA-based identification,<br />

where re-association is important to produce the more complete<br />

bodies for their return to families and final reburial.<br />

Exhumation, Mass Graves, Re-Association<br />

400


H70 Forensic Anthropology and the Current<br />

Politics of the US- Mexico Border<br />

Chelsey A. Juarez, MA*, University of California, Santa Cruz, 1156 High<br />

Street, Santa Cruz, CA 95064<br />

The goal of this study is to identify the current and forthcoming U.S.<br />

immigration policies that have an influence on border deaths and to discuss<br />

the potential impact of these policies on the forensic anthropology<br />

community. This research highlights the capability of forthcoming policies<br />

to prevent deaths along the U.S. Mexico border and the political sway that<br />

forensic anthropologists can exert to stop border deaths and continue<br />

repatriations<br />

This presentation will impact the forensic community and/or<br />

humanity by pinpointing current and upcoming policies that may heavily<br />

impact the numbers of border deaths, providing up to date information on<br />

what these effects might be, and clarifying pathways to action for forensic<br />

anthropologists working on the border.<br />

Immigrant deaths on the U.S.-Mexico border pose a tremendous<br />

problem to U.S. death investigators. Third-world nations like Mexico lack<br />

the appropriate databases for missing persons to which U.S. investigators<br />

are accustomed. The U.S.-Mexico border has long been a popular gateway<br />

of entry for immigrants attempting to enter the U.S. economic system and<br />

has consequently been the site of a number of crossing-related deaths.<br />

Motivated by a Mexico-U.S economic discrepancy of more than 8: 1,<br />

undocumented immigrant workers from Mexico are a cheap, readily<br />

available labor pool. As non-citizens, immigrant workers have been historically<br />

considered a docile community existing beyond the law. It is<br />

under this pretense that these individuals have been systematically incorporated<br />

into the economic fabric of this nation for the cheap, often unregulated<br />

labor they provide. Revolutions of economic instability and threats of<br />

terrorism in the U.S. have encouraged the formation of regulatory national<br />

and state policies targeted at keeping undocumented immigrants from<br />

crossing the border. Unfortunately these polices have often increased both<br />

the dangers and numbers of deaths associated with the border. With border<br />

deaths on the rise, the forensic anthropological community must familiarize<br />

itself with the effects of enforcement policies, the ever changing demographics<br />

of undocumented border crossers, and proactive measures the<br />

forensic community can take to help stop border deaths.<br />

In conjunction with an up to date assessment on border crossing<br />

demographics this analysis focuses on several key policies including<br />

IRCA, IIRIRA, the PATRIOT act, the Gatekeeper Complex, the Secure<br />

America Act, and AG jobs. Results from this policy analysis suggest that<br />

the current waves of immigration policy may have a highly negative impact<br />

on border deaths. The majority of current polices equate long time flows<br />

of immigrants from Mexico as a terrorist threat and systematically work to<br />

criminalize both legal and illegal immigrants, which effectively increases<br />

the numbers of border deaths. Only a few policies such as AG jobs and the<br />

Secure America Act demonstrate the potential to reduce the numbers of<br />

border deaths; unfortunately, these bills currently lack the support needed<br />

to pass.<br />

A review of the literature demonstrates a dire lack of communication<br />

concerning the affect of current immigration policies on border areas.<br />

Statistics on county and state costs and numbers of deaths per area are<br />

highly variable in the literature. Forensic anthropologists working in<br />

border regions are in the ideal situation to bring the numbers and case<br />

accounts to policy makers and demonstrate the anthropological side of<br />

policy failure. While politics and policy has traditionally been out of the<br />

realm of forensic anthropology the current status of border deaths demonstrates<br />

the need for anthropologist to be up to date on immigration policy<br />

and active in policy change.<br />

Immigration, Policy, Border Death<br />

H71 Identification of the Living From Video<br />

Tape and Photographs: The Dynamic<br />

Orientation Technique<br />

Todd W. Fenton, PhD*, and Norman J. Sauer, PhD, Michigan State<br />

University, Department of Anthropology, 354 Baker Hall, East Lansing,<br />

MI 48824<br />

The goal of this presentation is to introduce the Dynamic Orientation<br />

Technique (DOT), an image capturing and analytical improvement for the<br />

identification of the living from video tape and photographs. This new<br />

technique is an enhancement of the conventional image comparison and<br />

superimposition methods that the authors previously employed in identification<br />

cases involving the living. The DOT has a variety of applications,<br />

including images of the face, parts of faces, the hands, and other body parts.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a useful identification tool for a variety of forensic<br />

cases, including: crimes recorded on surveillance video tape; internet<br />

crimes depicted on digital photographs (such as criminal sexual conduct<br />

involving children); and the publication of photographic images without<br />

the subject’s permission. Case examples will be used to demonstrate the<br />

utility of the technique.<br />

Photographic image analysis and superimposition have been used for<br />

human identification for many decades. Dating back to the famous 1930s<br />

Van Ess/Ruxton case, forensic scientists have been comparing antemortem<br />

photographs with skulls for the purpose of positive identification and<br />

exclusion. A number of improvements have been added to the process,<br />

such as the employment of a dual camera and mixer system to facilitate orientation<br />

and the addition of landmark indicators to facilitate alignment.<br />

Possibly because of the relative lack of antemortem X-rays, skull/photo,<br />

and photo/photo superimposition is more advanced in some countries in<br />

Asia and Europe. For example, Yoshino and colleagues have developed a<br />

“3-D physiognomic range finder” and computer assisted identification<br />

system.<br />

At the Michigan State University Forensic Anthropology Lab, the<br />

authors have recently consulted on a variety of identification of the living<br />

cases in which the Dynamic Orientation Technique has been employed.<br />

These cases have included the identification of perpetrators in bank and<br />

store robberies, ATM violations, internet crimes (criminal sexual conduct<br />

involving children), and the publication of images without a subject’s permission.<br />

In addition, it is believed that the Dynamic Orientation Technique<br />

can enhance the ability to identify perpetrators of terrorist activities in<br />

public places, such as mass transit systems, where images have been captured<br />

on surveillance video tape.<br />

One of the most significant problems with identification from video<br />

tape or photographs involves orientation. The known and unknown images<br />

must be sufficiently similar in orientation that the investigator is confident<br />

that an exclusion (or failure to identify) is due to actual proportional differences,<br />

not because images were not oriented properly. In the past, the<br />

authors’ method for increasing the likelihood of proper orientation was to<br />

take multiple photographs of a suspect (or known individual) in hopes of<br />

capturing images that sufficiently match the image of the unknown individual.<br />

The method is cumbersome, time consuming and necessarily “hit<br />

and miss.” On several occasions the authors have asked investigators to<br />

take multiple images of a suspect only to have to ask for more when none<br />

have lined up properly with the unknown images. The authors now call<br />

that the “get lucky” method.<br />

In response to this problem, the authors have recently developed, and<br />

routinely incorporate, the Dynamic Orientation Technique to capture<br />

images of suspects, or other known individuals, for comparison. The<br />

process involves the use of a high definition digital video camera, a suitable<br />

401 * Presenting Author


playback machine, a mixer, and a quality monitor. A digital video camera<br />

is essential in this process because each image is complete and clear and<br />

there is no possibility of an image being caught between frames. Ideally,<br />

all of this equipment, and studio lights if needed, must be portable so that<br />

images may be captured in a prison or other security facility. The technique<br />

is relatively quick (rarely more than an hour with a suspect is needed), the<br />

equipment is readily available, and the likelihood of success is much higher<br />

than the still image method.<br />

With the equipment set up, either in or away from a lab, the following<br />

steps are taken:<br />

1. A selected unknown still image is projected and held on a video<br />

monitor.<br />

2. The suspect, or known individual, is seated and positioned in such<br />

a way that the face (or other body part) is oriented similarly to the held<br />

image.<br />

3. Using a digital video camera and mixer, a live image is received<br />

through the camera and superimposed onto the held image on the monitor.<br />

Careful attention is paid to orienting the live image exactly onto the held<br />

image. By moving the camera up and down, side to side, and in circular<br />

patterns, the likelihood of capturing images with matching orientation in<br />

increased. From the video footage produced during this Dynamic<br />

Orientation Technique, the best images are selected in the lab.<br />

4. Carry out side-by-side comparison and superimposition analysis.<br />

A short 3-5 minute video will be played to illustrate the process and<br />

the expected results to the audience.<br />

Facial Identification, Video Image Analysis, Photographic<br />

Comparison<br />

H72 Trace Element Analysis of <strong>Medical</strong><br />

School Cadaver Cremains<br />

Tom E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner Office, 3202<br />

Amnicola Highway, Chattanooga, TN 37406; Timothy Brooks, and<br />

Gretchen E. Potts, PhD, University of Tennessee at Chattanooga,<br />

Department of Chemistry, 615 McCallie Avenue, Grote Hall, 4th Floor,<br />

Chattanooga, TN 37403; and Stephanie Smullen, PhD, University of<br />

Tennessee at Chattanooga, Department of Computing Sciences, 615<br />

McCallie Avenue, Department 2302, Chattanooga, TN 37403<br />

After attending this presentation, attendees will learn how the identification<br />

and concentration (mg/kg) of trace elements in human cremains<br />

can determine whether the cremains are legitimate or have been contaminated<br />

with non-human “filler.” This technique is being developed to<br />

provide a new scientific methodology to assist in crematory/funeral home<br />

litigation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the utility of trace elemental analysis in the<br />

examination of cremated remains.<br />

Complete powderization of cremated bone fragments is becoming the<br />

standard among professional crematories, leaving no identifiable bone fragments<br />

for the forensic anthropologist to analyze. At present, the current<br />

methodology used in forensic anthropology to analyze human cremated<br />

remains (cremains) lacks the ability to identify scientifically the powderized<br />

portion of the cremains set. A critical question in the Tri-State<br />

Crematory Incident, Noble, GA, USA, revolved around the powderized<br />

portion of cremains. Was it human ash or non-human “filler?” Because of<br />

this past incident, and so forensic scientists are prepared for future litigation,<br />

an empirical method to determine if the powderized ashes are<br />

human or not must be developed Attendees will independently test this<br />

technique to verify or refute the findings.<br />

Cremains, Trace Elements, Forensic Anthropology<br />

* Presenting Author<br />

H73 Bone Fracture Mechanics: In Vitro<br />

Strain Gauge Analysis of the Ribs<br />

and Mandible During Failure<br />

David J. Daegling, PhD*, Jennifer Hotzman, MA, Casey J. Self, MA, and<br />

Michael W. Warren, PhD, Department of Anthropology, University of<br />

Florida, PO Box 117305, 1112 Turlington Hall, Gainesville, FL 32611<br />

The goal of this project is to employ in vitro strain gauge analysis to<br />

better understand the mechanism of two types of fractures which are commonly<br />

seen in forensic cases: (1) rib fractures secondary to thoracic compression<br />

and/or blunt force, and (2) indirect mandibular fractures secondary<br />

to high velocity gunshot wounds of the cranial vault.<br />

This presentation will impact the forensic community and/or<br />

humanity by helping to understand how bone responds to particular loading<br />

conditions. This information will allow investigators to more accurately<br />

reconstruct how rib and mandibular fractures occur, thus better understand<br />

their forensic importance.<br />

Understanding the mechanism of trauma to the skeleton is vital if<br />

forensic anthropologists are to address issues of cause and manner of death.<br />

In this paper, the authors utilize in vitro strain gauge analysis, a technique<br />

used by biomechanists and anthropologists to examine the relationship<br />

between morphology and function of bone, to explore two different types<br />

of fractures for which the mechanism is unclear. Strain gauges measure the<br />

amount of bone deformation, i.e. strain, at the specific sites to which the<br />

gauges are bonded. The skeletal material for this project consists of<br />

teaching specimens that were re-hydrated in a saline solution. For both projects,<br />

the specimens were secured beneath the transducer of an MTS<br />

mechanical testing system so that they could be placed under a load along<br />

an axis simulating the direction of force under investigation (i.e., for the<br />

ribs, an anterior-posterior compression of the thorax, and for the mandible,<br />

lateral expansion of the condyles). The strain gauges were bonded along<br />

several locations where the greatest loads were anticipated, based on<br />

common fracture locations.<br />

The first research problem is a buckling fracture of the ribs as noted<br />

by Symes et al. (2005). Long bones fail initially on the side experiencing<br />

tension, but Symes and colleagues have provided evidence that curved<br />

structures such as ribs can fail in compression. This has been noted during<br />

autopsy and is contrary to currently understood biomechanical beam<br />

theory. Initial experiments confirmed the findings of Symes and colleagues,<br />

that is, the authors were able to load a rib and reproduce a buckling<br />

fracture with the side in compression failing before the side in tension. This<br />

phenomenon was further explored experimentally by attaching strain<br />

gauges to several ribs along various locations (inner angle, outer angle,<br />

inner shaft, and outer shaft). The strain gauges allow the local bone deformation,<br />

i.e. strain, to be measured quantitatively. Each rib was loaded individually<br />

until failure. Both load cell forces and types of fractures are<br />

reported.<br />

The second problem is a type of lesion best described as a secondary<br />

fracture of the mandible, often produced by a single gunshot wound to the<br />

cranial vault. This fracture is particularly well-documented among victims<br />

of genocide killed with 7.62 mm. projectiles, as well as in domestic<br />

homicide cases in which a relatively high velocity and/or high energy projectile<br />

is the cause of death. The fracture is known as a Kolusayen fracture<br />

among Turkish human rights investigators. In many of these cases, blunt<br />

trauma to the face and mandible can be ruled out on the basis of lack of<br />

associated fractures to the fragile bones of the face, alveolar bone, and dentition.<br />

These mandibular fractures can occur in the corpus at the canine<br />

alveolus, the gonial angle, the mental foramen, or the mental symphysis<br />

and they are often unilateral. The fractures are rarely found in the ramus or<br />

neck of the condyle where many blunt force fractures occur. Because the<br />

fracture is associated with uniformly fatal gunshot lesions of the cranial<br />

base and vault, it has been of little clinical interest and is therefore not referenced<br />

in the clinical literature. Since the mandibular fracture is sec-<br />

402


ondary to the primary cause of death, this lesion is most likely underreported<br />

in autopsy protocols and is only discovered during examination of<br />

remains that have become skeletonized. Reconstruction of the events surrounding<br />

the death of the victim would be erroneous should these<br />

mandibular fractures be interpreted as being the result of direct blunt force<br />

trauma.<br />

These experiments sought to record the amount of force needed to<br />

cause a mandibular fracture via lateral displacement of the condyles and<br />

test whether rapid glenoid expansion secondary to basilar fracture or temporary<br />

cavitation of a passing projectile can generate sufficient strain forces<br />

to produce a Kolusayen fracture. The condyles and superior rami were<br />

embedded in a resin compound and then one condyle was restrained. The<br />

contralateral condyle was then pulled away from the restrained condyle,<br />

simulating a spread of the glenoid fossae and the temporo-mandibular joint<br />

capsules. Initially a manual load was applied to gain a better understanding<br />

of how much strain the mandible experienced. After the manual application<br />

of load the mandibles were positioned beneath the transducer and the<br />

mandible was pulled until the bone failed. Preliminary data confirm that<br />

when the mandibular condyles are distracted, the corpus fails in tension and<br />

a fracture occurs in the most vulnerable part of the mandible. Again, both<br />

load force and fracture type is reported.<br />

Forensic Science, Functional Morphology, Trauma Analysis<br />

H74 Evaluation of Date of Death Through<br />

Analysis of Artificial Radiocarbon in<br />

Distinct Human Skeletal and Dental Tissues<br />

Douglas H. Ubelaker, PhD*, Department of Anthropology, MRC 112,<br />

National Museum of Natural History, Smithsonian Institution,<br />

Washington, DC 20560; Bruce A. Buchholz, PhD, Center for Accelerator<br />

Mass Spectrometry, Mail Stop L-397, Lawrence Livermore National<br />

Laboratory, PO Box 808, Livermore, CA 94551; and John Stewart, PhD,<br />

Federal Bureau of Investigation, DNA Analysis Unit II, 2501<br />

Investigation Parkway, Quantico, VA 22135<br />

After attending this presentation, attendees will understand how radiocarbon<br />

analysis of different human tissues within an individual can be used<br />

to clarify the approximate date of death<br />

This presentation will impact the forensic community and/or<br />

humanity by allowing forensic scientists to determine the date of death of<br />

skeletonized human remains with greater precision.<br />

Estimation of the date of death from human remains recovered from<br />

forensic contexts represents an important but frequently elusive aspect of<br />

anthropological analysis. Such interpretation can be augmented through<br />

analysis of artificial radiocarbon, especially in consideration of the type of<br />

tissue sampled and the age at death of the individual.<br />

Atmospheric testing of thermonuclear devices between about 1950<br />

and 1963 produced artificially elevated levels of carbon-14 which are<br />

reflected in tissues of humans and other terrestrial organisms. Atmospheric<br />

levels of carbon-14 increased dramatically between 1950 and 1963 and<br />

subsequently declined following cessation of such testing. Interpretation of<br />

carbon-14 values in human remains recognizes that different tissues are<br />

formed at varying periods in the human lifespan and have distinct rates of<br />

turnover. Dental enamel forms during the childhood years and does not<br />

remodel. Many areas of cortical and cancellous bone not only have distinct<br />

times of formation but also different rates of turnover. Radiocarbon values<br />

derived from dental enamel and selected areas of cortical and cancellous<br />

bone from the same individual provide opportunities to determine if death<br />

occurred before or during the bomb-curve period. If radiocarbon analysis<br />

suggests that death occurred after 1950, the values for the different tissues<br />

assist correct placement on the curve and thus more precise estimation of<br />

the date of death. Most cancellous or trabecular bone, especially that<br />

located in areas of red or hematopoietic marrow has more rapid bone<br />

turnover than most cortical bone. Thus radiocarbon values of the former<br />

would more closely approximate atmospheric levels at the time of death<br />

than those derived from the latter. If bone formation occurred between<br />

1950 and 1963 (the ascending range of the bomb-curve) radiocarbon<br />

analysis should reveal greater fraction values for cancellous bone than for<br />

cortical bone. If bone formation occurred more recently than 1963 (during<br />

the descending age range of the bomb curve) cancellous bone values should<br />

be less than those of cortical bone.<br />

Samples were collected from two human female skeletons of known<br />

birth and death dates. These samples consisted of permanent teeth, cortical<br />

bone from the femoral diaphyses, and cancellous bone from vertebral<br />

bodies. One individual was born in 1925 and died in 1995 at the age of 70<br />

years. The other individual was born in 1926 and died in 1959 at the age<br />

of 33 years. Radiocarbon analysis was conducted at Lawrence Livermore<br />

National Laboratory using standard techniques.<br />

As expected, analysis of the dental tissues revealed carbon-14 fractions<br />

below 1.0 suggesting that formation of those tissues predated the<br />

bomb-curve. The dental tissues studied in these two individuals formed<br />

between the dates of 1925 and 1933.<br />

Three of the four bone samples yielded modern fractions which fell<br />

above 1.0 and thus within the bomb-curve. The exception was a cortical bone<br />

sample from the 33-year-old. In consideration of the ages at death of the individuals<br />

and the shape of the bomb-curve, the radiocarbon analysis suggests<br />

more recent formation of the trabecular bone than the cortical bone, as<br />

expected, although in the older individual the difference was only about one<br />

year. The formation date for the cancellous bone (calculated from radiocarbon<br />

analysis) preceded death by about five years in the younger individual.<br />

In the older individual, analysis suggested death was preceded about<br />

39 years in the average formation of cortical bone and about 38 years in cancellous<br />

bone. This nearly four decade differential between average bone formation<br />

and death reflects the slower bone turnover in older adults.<br />

Radiocarbon values derived from dental structures, especially enamel<br />

provide information about the dates of formation during the childhood<br />

years. Such data can be used to suggest a pre-bomb curve childhood date<br />

or help establish the birth date if the dental radiocarbon values fall within<br />

the bomb-curve.<br />

Variation of the values derived from bone reflects variation in the<br />

timing of both bone formation and remodeling. If these values fall within<br />

the bomb-curve they provide the information needed for proper placement<br />

on either the earlier ascending or later descending aspect of the curve.<br />

Once values are correctly placed on the curve, the date of death can be estimated,<br />

in consideration of the age of the individual and other factors.<br />

Although radiocarbon analysis provides unique and valuable information<br />

attention must be given to both the age of the individual and the<br />

sampling site. Dental enamel provides the ideal source of information to<br />

estimate the birth date, particularly if that date falls after 1950. In the<br />

absence of soft tissue, cancellous bone from the central skeleton provides<br />

radiocarbon values ideal to evaluate the death date and in comparison with<br />

values from cortical bone and the age at death can help determine if death<br />

occurred on the ascending or descending sides of the bomb curve.<br />

Artificial Radiocarbon, Date of Death, Tissue Analysis<br />

H75 The Impact of High Speed-High<br />

Resolution Three Dimensional CT<br />

Scans on Forensic Anthropology<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102, Rockville, MD 20850<br />

After attending this presentation, attendees become aware of scientific<br />

advancements involving the examination of human remains utilizing high<br />

speed/high resolution CT scans. In addition attendees will be informed on<br />

the various applications this new technology will have in forensic<br />

anthropology.<br />

This presentation will impact the forensic community, forensic<br />

Anthropology, and forensic pathology by demonstrating new imaging technology<br />

which will allow for non-evasive anatomical examination.<br />

403 * Presenting Author


In the past few years tremendous scientific advancements have been<br />

made in the field of three dimensional medical imaging. One of the greatest<br />

advancements has involved the development of Computerized<br />

Tomography scanners which can produce high resolution – three dimensional<br />

images of the human body within a matter of minutes. The new generation<br />

CT scanners utilized in hospitals and medical clinics have had an<br />

unparalleled impact on the diagnosis and treatment of living patients.<br />

Recent research by scientists at the Institute of Forensic Medicine,<br />

University of Bern, Switzerland, have pioneered a new use for the CT<br />

scanners, that being in the field of forensic pathology. Unlike in living individuals,<br />

the postmortem examination of bodies by high speed CT is not<br />

limited to regulated radiation safety levels, and therefore greater resolution<br />

can be obtained during CT scans by increasing the power/radiation levels.<br />

In 2005 the U.S. military acquired an advanced CT unit, a GE Light<br />

Speed 16, for postmortem examinations at the Dover Port Mortuary located at<br />

Dover Air Force Base, Dover Delaware. The mortuary is a large state of the<br />

art morgue facility utilized by the Armed Forces <strong>Medical</strong> Examiner. Presently<br />

the CT unit is being utilized routinely to scan the bodies of military fatalities<br />

from around the world. Use of the CT scanner in the postmortem examination<br />

of fatalities, has provided a wealth of new information not obtainable by the<br />

two dimensional views provided by standard film or digital radiography.<br />

One of the primary focal points of postmortem examinations is the<br />

presence of skeletal injuries. Cases involving skeletal trauma may require<br />

removal of the particular skeletal element/s in order to conduct a detailed<br />

examination. Removal of the skeletal elements and associated soft tissues<br />

may not be practical or acceptable, and therefore a limited amount of information<br />

may be obtained. Extensive fragmentation of skeletal elements can<br />

also pose many problems, as it may be very difficult to access the pattern<br />

of damage due to disruption of anatomical position. Similar problems are<br />

encountered when dealing with badly decomposed remains. In cases<br />

requiring anthropological evaluation, the skeletal element/s must be rendered<br />

free of soft tissues and decompositional debris, which requires<br />

expertise and time. The use of new generation CT scanners virtually eliminates<br />

problems associated with removal of skeletal elements and soft<br />

tissues, and provides a new level of assessment of skeletal trauma and<br />

anthropological attributes which is non-invasive.<br />

Key attributes of the new generation CT scanner utilized at the Dover<br />

Port Mortuary, include its rapid scan speed, high resolution, three – dimensional<br />

capability, and the ability to target in on differential densities so as to<br />

provide specific imaging of various anatomical features such as skin,<br />

muscles, internal organs, the skeleton, or injury sites. The resolution<br />

obtained by the Dover CT unit is .26 mm and the average full body scan<br />

can be accomplished in as little as two minutes. Images created by the scan<br />

can be viewed in as fixed two dimensional images represented by single or<br />

multiple sectional views, two dimensional overall views, or animated threedimensional<br />

views. Highly accurate measurements can be made from two<br />

or three dimensional views of virtually any anatomical location.<br />

Measurements include linear, area, and density.<br />

The impact of the new CT technology will have profound effects in<br />

forensic anthropology. For example in the case of a fresh body with<br />

extensive blunt force trauma to the skull, examination of the cranial fragmentation<br />

pattern may be difficult to determine as a portion of fragments<br />

may be displaced into the cranial vault, covered by soft tissues and fluids,<br />

or possibly missing. Also manual manipulation of the skull to examine a<br />

fracture site may result in collapse of the cranial fracture site thus requiring<br />

cranial reconstruction. Utilizing the new CT technology one would be able<br />

to see the actual positional state of fragmentation in a three dimensional<br />

view, and each fragment can be isolated for detailed examination of the<br />

fracture lines and edges along the fractured bone.<br />

Anthropometric analysis of various aspects of the human body will<br />

greatly be enhanced, as the CT scans are non-invasive and will allow for<br />

detailed measurements of body parameters, and areas of the skeleton such<br />

as the cranial vault or sinuses, which are not readily accessible by calipers<br />

or other measuring tools. Osteometric data collection will be brought to<br />

such a high level that biological traits such as racial classification will<br />

become more highly refined allowing differentiation between geographical<br />

* Presenting Author<br />

populations. Osteological changes relating to skeletal age, for the first<br />

time, can be accurately quantified, rather than relying on subjective<br />

assessment of bony changes. All of the images produced by the scanner<br />

can be easily stored and transmitted as they are in a digital format supported<br />

by most computer systems.<br />

Although the CT units are very expensive at this time, the price will<br />

decrease over time and the units will become available for use by universities<br />

and colleges. The use of the new CT imaging technology will be a<br />

major new stepping stone for forensic anthropology, answering old questions<br />

and creating new ones.<br />

Anthropology, Digital Imaging, Radiology<br />

H76 Identification of the Living on Video<br />

Surveillance Systems: A Novel Approach<br />

Danilo De Angelis, DDS*, and Pasquale Poppa, BSc, Istituto di Medicina<br />

Legale, via Mangiagalli 37, Milano, 20133, Italy; Remo Sala, PhDc,<br />

Politecnico di Milano Facolta di Ingegneria Industriale Dipartimento di<br />

Meccanica Sezione di Misure e Tecniche Sperimentali, via Magiagalli 37,<br />

Milano, 20133, Italy; and Cristina Cattaneo, PhD, MD, Istituto di<br />

Medicina Legale, via Mangiagalli 37, Milano, 20133, Italy<br />

After attending this presentation, attendees will learn that the use of a<br />

total station may ameliorate the quality of identification of the living from<br />

images taken from video surveillance systems.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the comparison of height and facial physiognomy<br />

of images of criminals taken from video surveillance systems<br />

with those of suspects the use of a total station may provide a more accurate<br />

means of identification.<br />

More and more often the identification of criminals whose facial or<br />

body image has been taped on videos and photographs (thefts, pedopornographic<br />

material, etc.) is performed by comparing such bidimensional<br />

images and photographs with bidimensional images of suspects. However<br />

visual identification is frequently difficult or impossible due to several<br />

problems: the low resolution of images, distortion, inclination of the face or<br />

the presence of glasses, hats, and other artifacts used to hide physiognomy.<br />

These are cases in which experts are called in to determine whether it is<br />

possible to identify the criminal as the suspect, or, indeed, to exclude him<br />

or her. Commonly used methods include height estimation, the comparison<br />

of facial morphological traits, facial anthropological indices and in the<br />

superimposition of the two images (pertaining to the criminal and suspect).<br />

A novel method which consists in using a total station, which gives<br />

tridimensional coordinates of set points via a laser beam, and which has<br />

been used in three actual judicial identification cases will be described. The<br />

total station was used to obtain topographical information of the environment<br />

in which the crime took place and from this information a virtual<br />

reconstruction of that environment was performed. This virtual environment<br />

was then superimposed onto images of the environment on video;<br />

in order to correct any distortion caused by the optics of the video surveillance<br />

systems. This method also allowed the authors to calculate the height<br />

of the subjects represented on the videos.<br />

The total station was also used to pinpoint on the suspect standard<br />

cephalometric points and a series of other points between these. This data<br />

allowed for the subsequent tridimensional reproduction of the cephalometric<br />

points (anthropological landmarks) and of the facial profile of the<br />

suspect (who must give his or her consent) which was reconstructed on the<br />

computer. This reconstructed face of the suspect was then superimposed<br />

onto the face of the criminal (or rather, the facial images of the criminal<br />

extrapolated from the video surveillance system) and matching of anthropological<br />

landmarks was then assessed. The use of the total station resulted<br />

in a useful and accurate comparison of height and facial morphology in<br />

order to exclude or confirm identity of a criminal.<br />

Identification, Living, Total Station<br />

404


H77 Lumbosacral Transitional Vertebrae,<br />

Spondylolysis and Spondylolisthesis:<br />

Prevalence in a Modern Forensic<br />

Skeletal Population<br />

Anthony B. Falsetti, PhD*, and Laurel E. Freas, MA, University of<br />

Florida, C.A. Pound Human Identification Laboratory, PO Box 112545,<br />

Southwest Radio Road, Gainesville, FL 32611<br />

Attendees will be introduced to the prevalence of the varying<br />

presentations of transitional vertebrae in clinical populations and a modern<br />

forensic sample. Implications for their usage as unique identifying features<br />

will be discussed.<br />

Sacralization of the fifth lumbar vertebra (L5) (i.e., fusion to S1) is generally<br />

thought to be an abnormal morphological expression of the anatomical<br />

transition between the lumbar and sacral spine. Information in the clinical literature<br />

indicates that the majority of all cases of anomalous transitional vertebrae<br />

occurs low on the lumbar spine and typically involve the sacrum. The<br />

specific cause of sacralization is not well understood, but is usually considered<br />

to be of developmental, rather than activity-related, origin. The<br />

timing of this fusion has been noted as early as birth, but most instances seem<br />

to manifest during early childhood development. In adults, sacralization of<br />

L5 is often accompanied by degenerative spondylolisthesis (translation or<br />

movement) of L4 relative to L5. In this instance, the degeneration of the<br />

L4/L5 articulation is due to intersegmental instability and facet arthropathy.<br />

Many forms of non-traumatic transitional vertebrae exist; their morphological<br />

expression is highly variable, and they (transitional forms) have<br />

been associated with different demographic profiles. For example, isthmic<br />

(anterior translation) spondylolytic lesions are less prominent in young<br />

females, while adult females appear to be more prone to progressive displacement<br />

and may need surgical intervention more often than males. The<br />

congenital forms of spondylolisthesis (e.g., dysplastic type) comprise 14-<br />

21% of all cases of spondylolisthesis and occur in a 2:1 female-to-male<br />

ratio, with symptoms beginning around the adolescent growth spurt.<br />

Congenital/dysplastic spondylolisthesis has been documented in children<br />

as young as 3.5 months; more commonly, however, they go undiagnosed<br />

until later in life, after an individual has been ambulating for some time.<br />

Degenerative spondylolisthesis also occurs more commonly in females,<br />

with a 5:1 female-to-male ratio and the incidence increases after age 40.<br />

In addition to varying by sex, the frequencies of transitional vertebral<br />

and lumbosacral vertebral defects also appear to vary by<br />

population/ancestry group. A review of the literature finds that sacralization<br />

has been observed in 18% of Australian aboriginals (Mitchell), 16%<br />

of Indians (Bustami), 10% of Arabs (Bustami), 8.1% of natives of Britain<br />

(Brailsford), and 5.8% of Japanese (Toyoda). Bustami studied 340 sacra of<br />

two population groups (Arab and Indian). Of these 340 sacra, 46 instances<br />

(13.5%) of sacralization were observed, with 32 (9.4%) showing unilateral<br />

sacralization and 14 (4.1%) showing bilateral sacralization. Lumbarization<br />

was not found in that sample. The incidence of total sacralization was 10%<br />

in Arab and was 16% in Indian population groups, with Arab males and<br />

Indian females having higher incidences of all stages of sacralization within<br />

their respective population groups. Isthmic spondylolytic defects have<br />

been found to affect roughly 6.4% of white males and 1.1% of black<br />

females. Degenerative spondylolisthesis also affects black females more<br />

commonly than white females (and females are more commonly affected<br />

than men. Additionally, Eskimo (Inuit) populations are observed to have a<br />

very high incidence of spondylolytic defects due to a combination of<br />

genetic and environmental factors.<br />

Over the past several years, the authors noted what seemed to be a<br />

rather high incidence of abnormal transitional vertebrae and spondylolysis<br />

in human skeletal remains under examination at the C.A. Pound Human<br />

Identification Laboratory at the University of Florida. These instances<br />

were noted on the individuals’ biological profile and presented to the<br />

medical examiner or submitting agency as unique, individuating characteristics<br />

with the associated caveats.<br />

Since 1996, 27 instances total of transitional vertebrae were noted in<br />

the total sample of approximately 800 human cases (3.375%). Of these, 16<br />

were males, 11 were females; 22 were European or white (12 M/ 10F) and<br />

included two possibly Hispanic males and one possible Hispanic female.<br />

Further breakdown reveals one (1) Asian female, one (1) Black male, one<br />

(1) male of mixed or admixed ancestry, and two (2) unknown or unspecified<br />

males. Of these, there were 15 instances (to varying degrees) of<br />

sacralized L5’s, including two cases of ankylosing spondylitis (7M/8F;<br />

13W/1B/1Asian); two instances of spondylolisthesis of L5 (both White<br />

males) and six (6) cases of spondylolysis of L5 (5M/1F; 3W/1 “mixed”/two<br />

unspecified). Of these 27 two cases presented with cervical ribs that were<br />

both White females and two cases with “lumbarized” S1; both White<br />

males.<br />

Comparisons show that the frequency of anomalous lumbosacral transitional<br />

vertebrae in this modern forensic sample percentage-wise compares,<br />

albeit on the low end, favorably with clinical findings of such anomalies in<br />

4 to 8 percent of the clinical population. Thus, the frequency of these defects<br />

in the forensic population is not an idiosyncratic characteristic of this population.<br />

Despite their frequency within the general population, the presence<br />

of and unique morphological configuration of these anomalous vertebrae in<br />

a given individual should still be of considerable value to the forensic<br />

anthropologist in antemortem versus postmortem identifications.<br />

Sacralization, Individuating Traits, Forensic Anthropology<br />

H78 “The (Almost) Exhumation of Billy the Kid:<br />

Why We Aren’t Digging Him up<br />

(and Why You Shouldn’t Either)”<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator, MSC11 6030,<br />

1 University of New Mexico, Albuquerque, NM 87131-0001<br />

After attending this presentation, attendees will understand how to<br />

conduct “biohistorical” forensic investigations, specifically how to identify<br />

a well-known historical figure using modern forensic methods<br />

This presentation will impact the forensic community and/or<br />

humanity by serving as a cautionary tale, describing the dangers inherent in<br />

participating in “criminal” investigations driven by politicians and the<br />

media.<br />

“Sometimes biohistorical analysis is undertaken for commercial consideration<br />

or mere sensationalism” (Andrews et al., 2004).<br />

On June 10, 2003, New Mexico Governor Bill Richardson held a<br />

press conference to announce his support for the reopening of the investigation<br />

into the events surrounding the death of Billy the Kid (BTK). The<br />

focus of the investigation was to determine whether the remains of the legendary<br />

outlaw were buried in a well-known tourist attraction in New<br />

Mexico or, as had been previously claimed, interred in either Texas or<br />

Arizona. Leading the BTK investigation was a team comprised of the<br />

sheriffs of Lincoln and De Baca counties, the Mayor of Capitan, a county<br />

attorney and a University of New Mexico History professor.<br />

Conspicuously absent were the forensic scientists necessary to achieve the<br />

goal of the investigation as stated in the press release: “to put modern<br />

forensic science to the test to answer the questions surrounding those days<br />

in New Mexico history.”<br />

Following the press conference, the senior management of the New<br />

Mexico Office of the <strong>Medical</strong> Investigator (OMI) felt that the high-profile<br />

nature of the case warranted greater involvement by the OMI, as New<br />

Mexico statutes (1978 NMSA 24-14-23D) outlines the involvement of the<br />

OMI in exhumations. To lend credibility to the pursuit, and to clarify jurisdictional<br />

issues, the BTK investigators declared the case a criminal investigation,<br />

going so far as to open an official homicide file three days before<br />

the press conference (case no. 03-06-136-01, Lincoln County Sheriff’s<br />

Office). Despite repeated requests by the OMI for a copy of the file during<br />

the early stages of the investigation (and through the legal battles that ultimately<br />

ensued); no official documentation was ever provided.<br />

405 * Presenting Author


“At the very least, investigators should disclose to the group the investigative<br />

question posed” (Andrews et al., 2004).<br />

During preliminary meetings, the BTK investigators outlined the<br />

primary goals of the criminal investigation: 1) to determine if Sheriff Pat<br />

Garrett did, in fact, shoot William Bonney (aka Billy the Kid) at the<br />

Maxwell House in Fort Sumner, NM on July 14, 1881; 2) in order to<br />

determine this, the investigators proposed to exhume the remains of<br />

William Bonney for the purposes of DNA testing; 3) the investigators also<br />

proposed exhuming the remains of William Bonney’s mother, Catherine<br />

Antrim, to serve as the comparative standard for mitochondrial DNA tests<br />

with William Bonney’s remains. With this information, the author began<br />

research into the determining the exact location of the graves of both Billy<br />

the Kid and his mother, as well any information that could assist in establishing<br />

identity. Following data collection at seven major archives in New<br />

Mexico and Arizona, as well as Fort Sumner and Silver City (the reported<br />

location of the grave of BTK’s mother), it was the opinion of the author that<br />

the exact location of the remains of Billy were not known and that the<br />

exhumation of Catharine Antrim may result in the disturbance of adjoining<br />

graves. Upon informing the investigators of these findings, it became clear<br />

that the focus of the investigation would be the exhumation of Catharine<br />

Antrim, as the general location of her grave was at least known.<br />

“Often, investigators fail to pose an investigative question capable of<br />

resolution by genetic testing” (Andrews et al., 2004).<br />

When asked what purpose Antrim’s exhumation would serve to the<br />

criminal investigation, absent the exhumation of BTK, the investigators<br />

indicated that a direct male heir of William Bonney had stepped forward<br />

and that they proposed testing his DNA against that of Catharine Antrim.<br />

Despite the author’s best attempts to explain how mitochondrial DNA<br />

worked and how such a test was scientifically invalid (not to mention<br />

pointless within the context of the criminal investigation), the investigators<br />

remained resolved. They also indicated their intent to test Antrim’s DNA<br />

against “Brushy” Bill Roberts, a well-known character in the southwest<br />

who claimed to be Billy the Kid and John Miller, an individual from<br />

Arizona also claiming to be BTK. As both these men were deceased, this<br />

line of inquiry would necessitate their exhumations as well. At this stage,<br />

the medical examiner’s office declined to issue a permit for any<br />

exhumation and stated that the office would require either a letter from<br />

Governor Richardson or a court order before proceeding.<br />

This presentation will detail the court battle that then ensued and the<br />

research findings that indicate the remains of Billy the Kid are unlikely to<br />

ever be found. It also serves as a cautionary tale regarding participating in<br />

“criminal” investigations involving private funding and documentary film<br />

companies, and how media or politically driven biohistorical investigations<br />

can rapidly spiral out of control.<br />

<strong>Bio</strong>historical Investigations, Personal Identification, DNA<br />

H79 Reducing Observer Error Through Choice<br />

of Histological Evaluation Technique<br />

Christian M. Crowder, PhD*, Joint POW/MIA Accounting Command<br />

Central ID Laboratory, 310 Worchester Avenue, Hickam AFB,<br />

HI 96853-5530<br />

After attending this presentation, attendees will understand the importance<br />

of scrutinizing techniques used in methods of skeletal analysis in<br />

order to limit the amount of observer error.<br />

This presentation will impact the forensic community and/or<br />

humanity by underlining the importance of identifying and differentiating<br />

method error from biological variability. Addressing the issue of method<br />

repeatability is essential for selecting current, as well as developing new,<br />

macroscopic, and microscopic methods of skeletal analysis in the field of<br />

forensic anthropology.<br />

The traditional approach to the estimation of adult age at death has<br />

been a macroscopic, morphological evaluation. Another approach utilizes<br />

* Presenting Author<br />

a microscopic, histomorphological evaluation, which is often presented as<br />

less subjective and more accurate than gross morphological methods.<br />

Compared to morphological methods histological methods of age estimation<br />

have been tested haphazardly, leading to a literature that is confusing,<br />

inconsistent, sometimes conflicting in terms of recommended<br />

methodology, and reported rates of precision and accuracy. The application<br />

of histological methods has been criticized from a number of different perspectives<br />

ranging from problems with intra- and inter-population variation<br />

caused by environmental and hormonal influences on skeletal physiology<br />

to the influence that skeletal preservation holds over effectively using such<br />

methods. Furthermore, research demonstrates that there will be a spatial<br />

and temporal variance in remodeling dynamics in response to mechanical<br />

loading. These concerns may all be deemed secondary to the concerns<br />

inherent in the methods themselves. This paper focuses on an aspect of<br />

observer error related to the histological technique in order to determine the<br />

best technique needed to develop more precise histological methods of age<br />

estimation. Differentiating method error from biological variability will<br />

provide a baseline interpretation of histological methods as useful age predictors<br />

for skeletal analysis. Furthermore, a more solid methodological<br />

foundation for future histological methods will be established.<br />

The Singh and Gunberg (1970), Thompson (1979), and Ericksen<br />

(1991) techniques for collecting histomorphometric data were compared in<br />

this research allowing for the comparison of precision amongst three different<br />

data collection techniques. The Singh and Gunberg method uses<br />

osteon counts per open circular microscopic field. The Thompson method<br />

requires a 100-square grid to perform the point count method. The<br />

Ericksen method uses a combination of microstructure counts per rectangular<br />

photographic field and predominant microstructure type per square in<br />

a 100-squared grid. To evaluate intra- and inter-observer error, 30 femur<br />

thin-sections were randomly selected from a larger sample of 187 femoral<br />

sections. A true test of inter-observer error would require individuals with<br />

a certain level of familiarity with the methods or histological analysis in<br />

general. Instead, three individuals (1 per method) with little to no histological<br />

experience were used, thus testing the ability for novices to learn the<br />

methods. The author refers to this error as the novice application error.<br />

Each observer was given an extensive tutorial at the microscope, the article<br />

associated with the method that they were selected to perform, and Chapter<br />

7 from <strong>Bio</strong>logical Anthropology of the Human Skeleton (Robling and Stout,<br />

2000). This chapter provides a comprehensive discussion on the application<br />

of cortical bone histomorphometry for the estimation of age at death.<br />

Two statistical methods of observer error analysis were employed. The<br />

first analysis followed the procedure outlined by Bland and Altman<br />

(1986, 1995) for testing the repeatability of methods. The second followed<br />

the procedure outlined by Nichol and Turner (1986), which is a<br />

commonly used method for error analysis in anthropology. Observer<br />

error was evaluated for the microstructure counts and age estimates<br />

between the two trials.<br />

The intra-observer results indicate that only the Thompson method<br />

passed repeatability standards. This method uses a predictive variable that<br />

consists of two variables. Evaluating the constituent variables individually<br />

produced some repeatability failures, indicating that the combined variable<br />

will reduce the amount of potential error in determining the microstructure<br />

type. Therefore, it is not surprising that the other methods, which use single<br />

and not combined microstructure counts, failed repeatability standards.<br />

The largest variable intra-observer error occurred using the Ericksen<br />

method. Higher error levels can be expected in the Ericksen method using<br />

the subjective determination of the predominant microstructure per square<br />

in a 100-squared grid.<br />

The novice application error demonstrates that, for the most part, the<br />

novice observers were unable to repeat the results of the primary<br />

investigator, thus indicating that more experience is necessary to perform<br />

histological analyses. The Singh and Gunberg method produced the<br />

highest percentage of novice application error (43% for the variable and<br />

25% for the age estimates) suggesting that open microscopic field methods<br />

have potential to produce higher levels of observer error.<br />

406


Histological methods of age estimation have been presented in the literature<br />

as being more objective than the traditional gross morphological<br />

methods. This analysis shows that the histological evaluation technique<br />

chosen is an important factor in the amount of objectivity, accuracy, and<br />

observer error that is expected or introduced. Open microscopic field evaluations,<br />

such as that of the Singh and Gunberg method, provide no reference<br />

points for counting structures. In older individuals, with large<br />

numbers of intact and fragmentary osteons, one can easily loose their place<br />

in the microscopic field. Using a grid in the microscope provides points of<br />

reference and reduces observer error. The Thompson method demonstrated<br />

the lowest intra-observer error, which may be due to a combination of the<br />

point count grid method and simple variable definitions. Furthermore,<br />

methods that employ the principles of stereology, such as the point-count<br />

method, allow for changes in grid size, and are less subjective compared to<br />

methods that are based on assessing the percentage of a microstructure in a<br />

gridded area.<br />

Precision, Histology, Histomorphometry<br />

H80 Resolving Extremely Commingled Skeletal<br />

Remains From the Korean War Through<br />

Mitochondrial DNA (mtDNA) Testing<br />

Jennifer O’Callaghan, MFS*, and Jacqueline Raskin-Burns, MS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850; Alexander F. Christensen, PhD,<br />

Central Identification Laboratory, Joint POW/MIA Accounting<br />

Command, Hickam AFB, HI 96853; Audrey Meehan, BGS, and Mark<br />

Leney, PhD, Central Identification Laboratory, Joint POW/MIA<br />

Accounting Command, 310 Worchester Avenue, Hickam Air Force Base,<br />

HI 96853; and Suzanne M. Barritt, MS, and Brion C. Smith, DDS, Armed<br />

Forces DNA Identification Laboratory, 1413 Research Boulevard,<br />

Building 101, Rockville, MD 20850<br />

After attending this presentation, attendees will learn how to<br />

implement bioinformatic strategies into their standard practices for separating<br />

out extremely commingled sets of remains.<br />

One of the primary missions of the Armed Forces Identification<br />

Laboratory (AFDIL) mtDNA section is to aid the Joint POW/MIA<br />

Command, Central Identification Laboratory (JPAC-CIL) in the identification<br />

of missing service members from past U.S. military conflicts,<br />

including World War II, the Korean War and the conflict in Southeast Asia.<br />

While all of the conflicts have large numbers of commingled remains, the<br />

Korean War has presented sets of remains that are particularly difficult to<br />

resolve into individuals.<br />

The Korean War, often (1950-1953) and resulted in over 30,000<br />

American casualties of which, over 8,100 service members are still considered<br />

missing. More than 800 of these missing are buried as unknowns<br />

in the National Memorial Cemetery of the Pacific, known as the<br />

“Punchbowl.” Two hundred eight caskets of skeletal remains were unilaterally<br />

returned by North Korea to the United States between 1990 and<br />

1994. The remains of approximately 200 other individuals have been<br />

recovered through Joint Recovery Operations (JRO) undertaken by JPAC-<br />

CIL inside North Korea since 1994.<br />

Over the past five years, AFDIL has processed a total of 1472 skeletal<br />

elements from the 208 unilaterally repatriated remains stored at JPAC.<br />

MtDNA has confirmed what anthropologists had already discovered: that<br />

most unilateral turnovers purported to represent one individual actually represents<br />

numerous individuals. After the anthropologists have sorted each<br />

set of remains into hypothetical individuals, the next step in determining the<br />

extent of the commingling is to test samples from each set to generate a<br />

mtDNA profile. Concurrently, a massive outreach to the public has been<br />

underway in order to collect maternal DNA references. The Defense<br />

POW/MIA Personnel Office holds a meeting every month in different parts<br />

of the United States in order to update family members on the progress of<br />

the identification process as well as collect any references that may not yet<br />

be in the database. To date, there are references for over 3,000 of those<br />

missing in the Korean War in the AFDIL mtDNA database. This represents<br />

over 42% of the missing, all of which have been processed either in both<br />

Hypervariable Regions One and Two or the entire Control Region of the<br />

mtDNA genome. While the ultimate goal is to build a database consisting<br />

of references for 100% of the missing individuals, this current system of<br />

testing the control region of the mtDNA genome has its limitations, not the<br />

least of which is that many individuals with the most common mtDNA<br />

types cannot be individualized. New technologies are currently in validation<br />

at AFDIL that have the potential to overcome many of these issues.<br />

As any laboratory that has processed a mass disaster is aware, interpreting<br />

the data from over a thousand evidence specimens and thousands of<br />

references specimens is a daunting task; one that cannot be achieved manually,<br />

at least in any desirable time frame. By building a database of representing<br />

42% of the missing individuals of the Korean War, bioinformatics<br />

techniques for database searching have provided numerous leads for JPAC-<br />

CIL and AFDIL to follow in the search to bring even more missing soldiers<br />

home. Other scientists can take these techniques for use in their own laboratories<br />

and perhaps expand upon them for more efficient database<br />

searching protocols.<br />

The views expressed herein are those of the authors and not The<br />

Armed Forces Institute of Pathology, the U.S. Army Surgeon General, nor<br />

the U.S. Department of Defense.<br />

<strong>Bio</strong>informatics, mtDNA, Commingled Remains<br />

H81 Reducing Problems With Osteological<br />

and Dental Samples Submitted to<br />

Missing Person DNA Databases<br />

John E.B. Stewart, PhD*, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, DNA Analysis Unit I, Quantico, VA 22135;<br />

Patricia J. Aagaard, BS, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, DNA Analysis Unit II, Quantico, VA 22135;<br />

Deborah Polanskey, BS, Federal Bureau of Investigation Laboratory,<br />

2501 Investigation Parkway, DNA Analysis Unit II, Quantico, VA 22135;<br />

Eric G. Pokorak, BA, Federal Bureau of Investigation Laboratory, 2501<br />

Investigation Parkway, DNA Analysis Unit I, Quantico, VA 22135; and<br />

Mark R. Ingraham, MS, and H. Gill-King, PhD, Laboratory of Forensic<br />

Anthropology and Human Identification, Department of <strong>Bio</strong>logical<br />

Sciences, University of North Texas, Denton, TX 76203<br />

After attending this presentation, attendees will be better informed<br />

about the Federal Bureau of Investigation’s National Missing Persons DNA<br />

Database (NMPDD) Program and how it may better assist forensic anthropologists,<br />

odontologists, medical examiners, coroners, law enforcement<br />

officials and those they serve in identifying human remains.<br />

Using case examples, this presentation will impact the forensic community<br />

and/or humanity by 1) illustrate how samples of various types are<br />

submitted and entered into NMPDD; and 2) through case examples, share<br />

information and suggestions concerning storage, handling, and sample<br />

preparation methods which will insure increased success in using the<br />

database. This presentation will impact the forensic science community by<br />

providing a more thorough understanding of the types of samples which<br />

will yield useable DNA for identification purposes.<br />

Over the past five years, tissue samples from unidentified human<br />

remains have been submitted to the NMPDD by anthropologists, odontologists,<br />

medico-legal authorities, and law enforcement agencies. Most of<br />

the unknown specimens are osteological materials. These samples are<br />

typed for mitochondrial DNA and nuclear DNA (STRs). Genetic profiles<br />

from the unidentified remains are compared to genetic profiles of missing<br />

persons and appropriate biological relatives of missing persons entered into<br />

the database. Osteological samples that cannot be associated with a<br />

missing person are uploaded into the National DNA Index System, (NDIS),<br />

of the Combined DNA Index System, (CODIS).<br />

407 * Presenting Author


Osteological specimens represent some of the most challenging<br />

samples that DNA analysts process. Challenges to successful genetic<br />

typing of osteological specimens will likely arise when the useable DNA<br />

content of specimens have been degraded or lost by improper sampling,<br />

cleaning techniques or other environmental insult. Experience shows that<br />

successful DNA extraction and comparison correlate with the initial condition<br />

of samples received. Improved methods of DNA extraction and the<br />

sensitivity of DNA typing techniques also means increased sensitivity to<br />

degradation and contamination. Thus, successful genetic typing and the<br />

identification process are hindered from the outset by factors which can be<br />

controlled by fairly simple means. Problem areas may be reduced to issues<br />

of 1) recovery, handling, and long-term curation; 2) maceration and<br />

cleaning; and 3) sampling.<br />

As remains are collected or exhumed, all operators should attempt to<br />

reduce contamination by gloving, using clean containers and instruments,<br />

and reducing the number of individuals handling the remains. Those<br />

charged with maceration, cleaning, and sample selection should avoid<br />

using chemicals that damage DNA, (especially oxidizing agents), and high<br />

temperatures. This is particularly important when samples are small and<br />

already highly degraded, particularly when additional samples cannot be<br />

obtained for re-extraction. Instruments used for cutting samples should be<br />

used only once to avoid cross-contamination when multiple samples are<br />

involved, (single-use fiber Dremel blades should be used once and discarded).<br />

Some laboratories prefer to cross-link DNA on contaminated<br />

sample surfaces before sanding or cutting.<br />

Case examples will demonstrate model working relations between<br />

various forensic agencies and laboratories already in operation. Clearer<br />

mutual understanding of various functions and responsibilities will<br />

improve sample processing and lead to an increase in the numbers of<br />

missing person identifications.<br />

Missing Person DNA Database, Osteological and Dental Samples,<br />

CODIS<br />

H82 Is This Bone Human or What? In Pursuit<br />

of Human vs. Non Human Determinations<br />

in Small Osseous Fragments<br />

Mark D. Leney, PhD*, Central Identification Laboratory, Joint POW/MIA<br />

Accounting Command, 310 Worchester Avenue, Hickam AFB, HI 96853<br />

After attending this presentation, attendees will learn the advantages<br />

and disadvantages of applying osteological, histological, and immunological<br />

and DNA based analyses to determining human versus non-human<br />

from small and degraded osseous fragments.<br />

Protein radio-immunoassay, osteohistology, and cytochrome-B testing<br />

have been around for years but have not been applied much to forensic<br />

casework. This study examines and compares the techniques on a series of<br />

known samples, closely simulating actual casework with tiny and degraded<br />

osseous fragments. This presentation will impact the forensic community<br />

and/or humanity by providing scientists a better place to make good choices<br />

in their own casework in this area after examining the lessons learned in<br />

these trials.<br />

Forensic anthropologists are sometimes faced with osseous fragments<br />

obtained from a recovery scene that are either too small or too degraded to<br />

make a definite determination of human versus non-human origin on the<br />

basis of traditional comparative osteological methods. Determining what<br />

is and is not human can assist in defining the scope of further investigation<br />

in the field. In the event that only morphologically uninformative bone<br />

fragments are recovered from a particular location, species determination<br />

(or minimally human/non human determination) for such items could be a<br />

critical evidentiary finding. A number of technologies for approaching this<br />

problem have been available for some time. This study reports preliminary<br />

comparative results for a set of test samples. Each test sample was derived<br />

from known human or faunal remains obtained from a variety of highly<br />

* Presenting Author<br />

challenging recovery environments. The relative merits of four techniques<br />

are compared: traditional comparative osteology, histological osteology<br />

from thin section, protein radio-immunoassay (pRIA), and sequencing of<br />

species-specific mitochondrial DNA (cytochrome-B). The advantages and<br />

limitations of these methods will be evaluated in the context of the test<br />

sample set.<br />

Histology, Immunology, DNA, Osteology<br />

H83 Applications of DNA Identification to<br />

Human Rights: Additional Informative<br />

Sites in the mtDNA Genome<br />

Karen P. Mooder, PhD*, and Mary-Claire King, PhD, Division of<br />

<strong>Medical</strong> Genetics, University of Washington, Box 357720, Seattle,<br />

WA 98195-7720<br />

After attending this presentation, attendees will gain a broader understanding<br />

of the variability found in the mtDNA genome and how this<br />

knowledge can be applied to better discriminate individuals sharing<br />

common mtDNA sequence motifs.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the value of mtDNA analysis as a principal<br />

identification strategy in human rights and mass-disaster investigations.<br />

Over the last decade, the use of the mtDNA genome in forensic identification<br />

has increased due both to its suitability for identification of<br />

degraded human remains and for its capacity to be used in a highthroughput,<br />

cost-efficient manner. High throughput and low cost are particularly<br />

important when developing strategies to identify those killed in<br />

extrajudicial executions, a situation where sheer numbers can overwhelm<br />

available resources. For over two decades, the authors have been working<br />

with human rights organizations and families of disappeared persons to<br />

identify human remains. The initial analysis compares HVI and HVII<br />

sequences retrieved from human remains with those from maternal families.<br />

Consistent with current forensic standards, remains are considered<br />

excluded from membership in a family if they differ at two or more sites in<br />

HVI and HVII. Those who cannot be excluded are analysed for nuclear<br />

markers to further resolve the probability of family membership.<br />

There are, however, situations where human remains are found to<br />

differ from multiple families by only zero, or one sites in HVI and HVII and<br />

thus cannot be excluded from family membership. This study considers<br />

whether sufficient mtDNA variation exists outside HVI and HVII to be<br />

informative in these situations. To address this question, anthropologists<br />

considered a single test family and 28 unrelated individuals who all share the<br />

same HVI and HVII motif of 16223 16298 16325 16327 and 73 249D 263<br />

290D and 291D respectively. Outside of this combined HVI and HVII<br />

motif, the 28 unrelated individuals each differ by only zero or one substitutions<br />

from the test family. Three regions outside of HVI and HVII were<br />

selected for sequencing. These included HVIII (nt 438 to 574) and portions<br />

of the MTATP8/MTATP6 (nt 8366-8900), and MTCYB (nt 14750-15887)<br />

genes. Sequence data produced from these regions revealed three common<br />

single nucleotide polymorphisms (SNPs); these were found in HVIII at nt<br />

493, nt 8772 in MTATP6 and nt 15740 in MTCYTB. The HVIII nt 493 A/G<br />

substitution was particularly informative in this comparison. Of the 23 unrelated<br />

individuals with one difference from the test family in HVI and HVII,<br />

18 were also found to differ from the test family at 493 and could thus be<br />

excluded from membership. Additional private polymorphisms were<br />

detected in MTATP at nt 8790 and MTCYTB at positions 15462, 15644 and<br />

15700. When all of the SNPs detected in these three regions were included<br />

in the analysis, 24 of the 28 unrelated individuals (86%) were found to differ<br />

from the test family at two or more sites. These results suggest that there is<br />

value sequencing additional mtDNA loci outside of HVI and HVII in order<br />

to discriminate individuals with shared mtDNA motifs.<br />

mtDNA, Coding-Region SNPs, Human Rights<br />

408


H84 MtDNA From Degraded Human<br />

Skeletal Remains: Is Quality Affected<br />

by Storage Conditions?<br />

Suni M. Edson, MS*, and Suzanne M. Barritt, MS, Armed Forces DNA<br />

Identification Laboratory, 1413 Research Boulevard, Building 101,<br />

Rockville, MD 20850; Mark D. Leney, PhD, Central Identification Lab,<br />

Joint POW/MIA Accounting Command, 310 Worchester Avenue, Hickam<br />

Air Force Base, HI 96853; and Brion C. Smith, DDS, Armed Forces DNA<br />

Identification Laboratory, 1413 Research Boulevard, Building 101,<br />

Rockville, MD 20850<br />

After attending this presentation, attendees will learn the effects of storage<br />

practices on degraded skeletal remains as demonstrated by a case study<br />

involving remains of missing U.S. service members from the Korean War.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing the forensic community with a case study<br />

describing the impacts of storage conditions upon the quality and quantity<br />

of mtDNA from degraded skeletal remains. Forensic laboratories facing<br />

similar situations can take some guidance from the results of this study;<br />

potentially implementing the suggestions for their own labs. Osseous<br />

samples need to be stored in a manner in which DNA will be preserved.<br />

Failure to do so could lead to an inability to identify a missing individual in<br />

the future.<br />

In the missing persons program for the United States military, skeletal<br />

remains are recovered from a variety of environments. Anthropologists<br />

from the Central Identification Laboratory of the Joint POW/MIA<br />

Accounting Command (JPAC-CIL) go into the field to recover the remains<br />

and any other archaeological information that may lead to the identification<br />

of the individuals. Frequently, samples taken from the osseous remains are<br />

sent to the Armed Forces DNA Identification Laboratory (AFDIL) for generation<br />

of a mitochondrial DNA (mtDNA) profile for comparison to profiles<br />

garnered from maternal reference materials.<br />

Examination of remains submitted to AFDIL for testing over the past<br />

ten years has shown that there is a marked difference between osseous elements<br />

and the mtDNA sequence information that they yield, a result possibly<br />

dependent not only on the structure of the bones themselves, but on<br />

environmental conditions (Edson, et al., 2005; Leney, 2006). Hence, there<br />

is also a difference in ability to generate full mtDNA profiles between the<br />

different conflicts. The environments in which remains are located vary in<br />

the extreme, depending on the conflict in which the individuals were lost.<br />

Incidents from World War II tend to have the most varied recovery sites,<br />

from salt marshes in Tunisia to mountainous regions in China, while<br />

remains from the conflict in Southeast Asia are found across sites that are<br />

more environmentally homogeneous.<br />

Remains from the Korean War have been recovered in two specific<br />

manners. First, remains from this conflict are not always recovered in situ<br />

from the incident site. Between 1990 and 1994, the Democratic People’s<br />

Republic of Korea (DPRK) repatriated 208 caskets of osseous samples to<br />

the U.S. government. These sets of remains were supposedly comprised of<br />

single individuals. However, upon anthropological examination by JPAC-<br />

CIL and mtDNA testing by AFDIL, multiple individuals were found to be<br />

present in each group of samples. These remains were stored for an indeterminate<br />

period of time since death, presumably at room temperature.<br />

Secondly, anthropologists from JPAC-CIL have been allowed into the<br />

DPRK under extremely regulated conditions to recover remains from<br />

burial sites in what are called Joint Recovery Operations (JRO).<br />

The quality of the mtDNA obtained from skeletal elements submitted<br />

from both JRO and the unilateral turnovers will be presented. In this<br />

instance, quality is determined by the number of bases of mtDNA<br />

sequenced from each skeletal element in each group of remains. Success<br />

rate is presented as having a reportable sequence of 100 or more base pairs.<br />

In order to report sequence information for a sample, AFDIL requires two<br />

separate amplifications from a single extract or one amplification from two<br />

extracts of that sample. Success rate is standardized by extending the same<br />

reporting criteria across all samples. The goal is to determine if the random<br />

storage conditions of the unilateral turnovers had a detrimental effect on the<br />

mtDNA of the remains versus those of samples recovered in a JRO.<br />

Skeletal elements that have remained in situ since the time of the fatal<br />

incident are subjected to the ambient regional temperatures and conditions<br />

irrespective of whether they are left on the surface or interred by local residents.<br />

Internment in these instances typically does not include any type of<br />

preservation of the remains, but rather simply the placement of the body in<br />

the ground. Soil pH, water levels, temperature, and other environmental<br />

conditions are thus free to act upon the remains, potentially damaging or<br />

preserving them. These effects will also be discussed.<br />

By examining the effects of storage on samples that have a similar<br />

time of origin, guidance can be given to other laboratories that specialize in<br />

the handling and treatment of skeletonized human remains. Appropriate<br />

measures should be taken to preserve osseous remains even if mtDNA<br />

testing is not currently being considered as a means of identification.<br />

Anticipation of this future need is a conservative step to be taken as failure<br />

to sufficiently preserve remains in the present may lead to an inability to<br />

identify and return the remains to the families of the missing.<br />

The views expressed herein are those of the authors and not necessarily<br />

those of the Armed Forces Institute of Pathology, the U.S. Army<br />

Surgeon General, nor the U.S. Department of Defense.<br />

mtDNA, Degraded Skeletal Remains, Storage Conditions<br />

409 * Presenting Author


H1 Rodent Modification of Human Skeletal<br />

Remains: Brown Rat (Rattus norvegicus)<br />

vs. Gray Squirrel (Sciurus carolinensis)<br />

Walter E. Klippel, PhD*, and Jennifer A. Synstelien, MA, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996<br />

The goal of this presentation is to demonstrate that members of the<br />

taxonomic order Rodentia have different incentives for gnawing bone, and<br />

that tooth marks on bones reflect species-specific motivations.<br />

Postmortem scavenging by brown rats and gray squirrels appear to<br />

vary in time sequence due to different motivations for modifying bone.<br />

These observations will impact the forensic community and/or humanity<br />

by allowing for more informed estimates of time-since-death when accompanied<br />

by species-specific modifications to bone.<br />

The most frequently reported scavengers of human skeletal remains<br />

are carnivores and rodents. Research detailing carnivore modification has<br />

established the scavenging sequence, sites of bone destruction, and the<br />

tooth marks most characteristic of this taxon. Canid behavior, in particular,<br />

has been well illustrated and sufficient evidence exists to show that modifications<br />

to long bone ends occur secondary to extracting grease and<br />

marrow from spongy portions of the bone. Attributes of rodent gnawing<br />

are often described as paired, broad, flat-bottomed grooves: a reflection of<br />

their chisel-shaped incisors. ‘Rodents’ are stated to modify the densest<br />

parts of the skeleton as they attempt to sharpen their teeth or extract calcium<br />

and other minerals from bone. The apparent motivations and gnawing<br />

attributes for any one species of this order has been presumed diagnostic of<br />

all members based on shared taxon and similar dental morphology. It is not<br />

uncommon, however, to read seemingly contradictory reports that claim<br />

rodents prefer fresh, spongy bone. In addition, published illustrations can<br />

be found that cite textbook motivations yet display rodent gnawing along<br />

regions deficit in compact bone.<br />

Extended observations at the University of Tennessee’s<br />

Anthropological Research Facility - a 2 ½ acre plot of land set aside for<br />

human decomposition research - demonstrates multiple case studies of<br />

rodent modification across the spectra of fresh (‘greasy’) bone to weathered<br />

(‘dry’) bone. Two cohabitants of the research facility will be used to illustrate<br />

this point: the brown rat (Rattus norvegicus) - a species responsible for<br />

bone modification that bares slight resemblance to conventional descriptions<br />

and illustrations of rodent damage to bone, and the gray squirrel<br />

(Sciurus carolinensis) - a species that manifests ‘typical’ rodent<br />

modification.<br />

The brown rat is a commensal rodent that is heavily dependent on<br />

humans for food and protection; it feeds predominantly on cereal grains,<br />

but has developed a taste for nearly anything consumed by humans -<br />

including meat and fat. Cohabitation and dependency on humans has<br />

resulted in commensal species developing food preferences unlike most<br />

other rodents: yet even among ‘commensal rodents’ food preferences<br />

appear to vary - a fact well recognized by the food science industry.<br />

To demonstrate the relationship between food predilection and site<br />

and type of bone modification, a singular experiment was conducted. Two<br />

unprovenienced human clavicles were obtained from the UTK Forensic<br />

Anthropology Center. The first clavicle was ivory in appearance and<br />

texture and had been previously snatched by ‘rodents’ during a bone scatter<br />

training simulation at the facility. This bone was later discovered wedged<br />

in the side of a tree stump with multiple, parallel flat-bottomed grooves traversing<br />

the compact bone at midshaft. The second clavicle was selected<br />

from an autopsy collection known to have been processed by hand-dipping<br />

in household chlorine bleach but was still sticky to the touch, manifested a<br />

dark golden-orange hue, and considered representative of a ‘grease’-laden,<br />

or fresh clavicle. The two clavicles were individually secured to the top of<br />

* Presenting Author<br />

Physical Anthropology<br />

a fallen tree trunk with approximately four feet separating the two specimens.<br />

This site was selected due to gray squirrels having been spotted in<br />

the area and its distant location from any known brown rat territories. It<br />

was hypothesized that gray squirrels would only show interest in the ‘dry’<br />

bone. The clavicles were monitored periodically over several months for<br />

signs of disturbance. In conjunction, donated individuals placed at the<br />

facility near brown rat burrows and nesting locations were monitored for<br />

bone modification.<br />

Photographic documentation of scavenging activity was obtained<br />

using passive infrared receivers to trigger camcorders and wildlife cameras.<br />

Tooth marks were documented by field notes and digital images acquired<br />

during site visits. To date, gray squirrels have only been photographed<br />

gnawing on the ‘dry’ clavicle and brown rats have only been captured modifying<br />

‘greasy’ bone.<br />

Rodents, Bone Modification, Postmortem Scavenging<br />

H2 Postmortem Interval Field Research<br />

at Three High Elevation <strong>Bio</strong>geoclimatic<br />

Zones in Southwest Colorado<br />

Maria T. Allaire, MA*, 16 Pinedale Lane, Durango, CO 81303<br />

The goal of this presentation is to present the result for each decomposition<br />

stage and the arthropod taxa associated with pig carrion from three<br />

high elevation biogeoclimatic zones in southwest Colorado.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting research, which describes an interdisciplinary<br />

animal model, involving the fields of anthropology and entomology, from<br />

high elevation sites in the southwest Colorado region.<br />

This project is a result of master’s thesis research while working<br />

toward an MA in anthropology at Louisiana State University. Postmortem<br />

interval field research was conducted during the summer of 2002 from June<br />

through August, in La Plata County and San Juan County, Colorado. Prior<br />

to this initial research, no previous postmortem interval research had been<br />

conducted in southwest Colorado. Subadult pig (Sus scrofa) carcasses<br />

were placed on the ground (within a specifically designed bottomless cage)<br />

in three biogeoclimatic zones and sun exposure scenarios. Daily collection<br />

and recording of carrion associated arthropods; decomposition stage, and<br />

meteorological data were conducted through fly emergence. After<br />

emergence, site monitoring occurred every other day until the designated<br />

research end date.<br />

Results of the research are: 1) as elevation increased, the rate of<br />

decomposition lengthened due to a prolongation of the bloat stage; 2) of the<br />

63 taxa collected, an overlapping of 30 species occurred in two of the biogeoclimatic<br />

zones; 3) there is a strong indication of elevational preference<br />

for the Sarcophagidae species due to no overlapping; and 4) a previously<br />

undescribed hybrid cross of Boettcheria was collected.<br />

The three biogeoclimatic zones, sun exposure scenarios, and research<br />

lengths are as follows: 1) pinyon-juniper, mesa top at 6,700 feet, full sun<br />

for 40 days; 2) aspen grove, east facing slope at 8,700 feet, shade for 40<br />

days, and 3) timberline pine, west facing slope at 11,100 feet, partial<br />

sun/shade for 30 days.<br />

At the 6,700 feet sun exposed scenario, the lengths of decomposition<br />

were: less than 24 hours for the fresh stage; two days in the bloat stage; two<br />

days in the active decomposition stage, and one day in the advanced<br />

decomposition stage. Dry remains stage was reached on the seventh day<br />

since time of death. Emergence occurred during the 12th - 14th days since<br />

time of death. The maximum temperatures ranged from 94ºF to 106ºF with<br />

a mean temperature of 100ºF. The minimum temperatures ranged from<br />

48ºF to 61ºF with a mean temperature of 55ºF. Relative humidity levels<br />

410


anged from 8 to 45 percent with a mean of 20 percent. No measurable<br />

precipitation occurred during this 14 day period.<br />

At the 8,700 feet shaded scenario, the lengths of decomposition were:<br />

three days for the fresh stage; five days in the bloat stage; two days in the<br />

active decomposition stage, and two days in the advanced decomposition<br />

stage. Dry remains stage was reached on the 13th day since time of death.<br />

Emergence occurred for seven days between the 20th and 28th days since<br />

time of death. The maximum temperatures ranged from 69ºF to 89ºF with<br />

a mean temperature of 82ºF. The minimum temperatures ranged from 50ºF<br />

to 60ºF with a mean temperature of 54ºF. Relative humidity levels ranged<br />

from 6 to 65 percent with a mean of 23 percent. Precipitation of 15mm was<br />

recorded during this 28 day period.<br />

At the 11,100 feet partial sun/shade scenario, the lengths of decomposition<br />

were: five days for the fresh stage; 14 days for the bloat stage, and<br />

11 days in the active decomposition stage. The maximum temperatures<br />

ranged from 43ºF to 73ºF with a mean temperature of 63ºF. The minimum<br />

temperatures ranged from 32ºF to 48ºF with a mean temperature of 42ºF.<br />

Relative humidity levels ranged from 10 to 93 percent with a mean of 38<br />

percent. Precipitation of 72mm was recorded during this 30 day period.<br />

Of the 28 Diptera taxa collected, Phormia regina was the sole<br />

Calliphorid that overlapped all three biogeoclimatic zones. Cochliomyia<br />

macellaria, P. sericata, B. plinthopyga, and T. sulculata were collected only<br />

at the 6700 feet site. Sarcophaga nearctica and T. montanensis were collected<br />

only at the 8,700 feet site. Calliphora alaskensis, C. cadaverina and<br />

a previously undescribed hybrid cross of Boettcheria latisterna and<br />

Boettcheria litorosa were collected solely at the 11,100 feet site.<br />

Of the 28 Coleoptera taxa collected, Thanatophilus lapponicus overlapped<br />

all three biogeoclimatic zones. Dermestes marmoratus,<br />

Nicrophorus marginatus, Nitidula ziczac, Cynaeus angustus, and Trox<br />

sonorae were collected only at the 6,700 feet site. Dermestes lardarius,<br />

Ontholestes cingulatus, and Omosita discoidea were collected solely at the<br />

8,700 feet site. Aphodius fimetarius was collected only at the 11,100 feet<br />

site.<br />

Southwest Colorado consists of multiple biogeoclimatic zones;<br />

therefore, additional research has been ongoing in order to determine the<br />

decomposition rates and carrion associated arthropods in the various<br />

ogeoclimatic zones and elevations.<br />

Postmortem Interval, High Elevation <strong>Bio</strong>geoclimatic Zones,<br />

Hybrid Boettcheria<br />

H3 Decomposition in the Santa Monica<br />

Mountains: A Seasonal Taphonomic<br />

Analysis of Buried and Exposed Remains<br />

Diana A. Dupuis, BA*, 2610 110th Avenue, NE, Bellevue, WA 98004<br />

This poster represents many of the taphonomic processes at work in<br />

the Santa Monica Mountains. This ecosystem is representative of a specific<br />

type of climatological area found in Los Angeles County as well as<br />

southern Africa, southwestern Chile, southwestern Australia, and the<br />

Mediterranean. Aattendees will gain insight into the seasonal differences<br />

in decay rates of both buried and exposed remains.<br />

As the first study of its kind in the greater Los Angeles area, this<br />

presentation will impact the forensic community and/or humanity by<br />

providing much needed data to law enforcement and coroner agencies in<br />

Los Angeles. Inaccurate assessment of the postmortem interval is counterproductive<br />

to the expeditious manner in which these agencies attempt to<br />

identify decedents who are found in Los Angeles County, particularly in the<br />

mountainous environment of the Santa Monica region.<br />

Taphonomic studies allow scientists to more accurately estimate postmortem<br />

interval, making identification and investigation proceed more<br />

smoothly. The process of decomposition may be categorized into five<br />

stages: fresh, early decomposition, advanced decomposition, skele-<br />

tonization, and extreme decomposition 2 . The duration of each stage is<br />

greatly influenced by many factors including: temperature, humidity,<br />

burial, soil type, trauma, and clothing 4 .<br />

Several studies have been done on postmortem interval in specific<br />

areas of North America including Galloway 1997; Galloway et al. 1989;<br />

Komar 1999; Mann et al. 1990; Rhine and Dawson 1998; Rodriguez and<br />

Bass 1983; Schoenly et al. 1991; Shalaby et al., 2000; Shean et al., 1993.<br />

However, due to the variation in local rates of decay, these studies are of<br />

limited utility outside the local geographic and climatic regions in which<br />

they are conducted. This study involved collection of data of decomposition<br />

rates in one climatic and geographic region of Los Angeles County,<br />

in order to more accurately determine postmortem interval in this area.<br />

A 16-month field study was conducted on decomposition and<br />

scavenging rates in the Santa Monica Mountains (located in Los Angeles<br />

County, California). This area has a Mediterranean microclimate, involving<br />

relatively high daily temperatures, little rainfall, and both large and small<br />

scavenging animals. This microclimate is found only in the Santa Monica<br />

Mountains, southern Africa, southwestern Chile, and southwestern<br />

Australia. Due to their approximate human body size, their skin texture,<br />

and relative hairlessness, domestic pigs (Sus scrofa) were used as human<br />

models in this decomposition study. A total of eight pigs were used, two<br />

placed during each season; one pig was left on the surface, secured inside<br />

a chain link cage to prevent removal from the site by animal scavengers.<br />

The second pig was buried in a shallow grave 2 feet below the surface.<br />

This was done to document decomposition differences between seasons as<br />

well as between buried and exposed remains.<br />

Significant differences were noted in decomposition rates between the<br />

spring and summer surface pigs. The two sets of pigs took approximately<br />

the same time to reach the advanced decomposition stage, but the spring<br />

pig reached skeletonization far more quickly than the summer pig despite<br />

the greater heat during the summer. The fall pig remained in the early stages<br />

of decomposition four times longer than either the spring or summer pig,<br />

and carnivores ended this experiment when they extracted the pig from the<br />

cage and removed it from the site.<br />

The buried pigs fell victim to carnivore activity as well, although the<br />

timing of their excavations varied significantly. The spring pig spent 10<br />

weeks underground, the summer pig a mere four days, and the fall pig two<br />

weeks. Differences in extraction times are possibly due to the soil porosity<br />

during the time of interment, with the pigs buried in moister, and hence<br />

denser, soil, remaining buried for longer periods of time. These specimens<br />

experienced adipocere formation as well, although it is unclear whether the<br />

adipocere development was due to moisture content or duration of<br />

interment. Data collection for the winter pigs is still underway, although<br />

winter decomposition rates appear similar to those of spring and summer<br />

(possibly due to a lack of rainfall this year).<br />

The unexpected tenacity of the coyote population proved problematic,<br />

although the placement of the pigs does not appear to have attracted additional<br />

scavengers into the area, as the fall pig remained in the ground for<br />

two weeks, and the winter pig showed no signs of carnivore activity for<br />

more than five months.<br />

As well as providing pertinent data to Los Angeles County decomposition<br />

rates and how they compare with rates documented in other areas of<br />

North America, this study also demonstrate the significant differences in<br />

decomposition rates seasonally within one microclimate. Additional<br />

studies are suggested to address this issue.<br />

References:<br />

1. Galloway A, Birkby WH, Jones AM, Henry TE, Parks BO. Decay rates<br />

of human remains in an arid environment. J Forensic Sci 1989;<br />

(34):607-16.<br />

2. Galloway A. The process of decomposition: a model from the Arizona-<br />

Sonoran desert. In: Haglund WD and Sorg MH, editors. Forensic<br />

taphonomy: the postmortem fate of human remains. Boston: CRC Press,<br />

139-50, 1997.<br />

3. Komar D. Forensic taphonomy in a cold climate region: a field study in<br />

central Alberta and a potential new method of determining time since death<br />

[dissertation]. Calgary, Alberta: University of Alberta, 1999.<br />

411 * Presenting Author


4. Mann RW, Bass WM, Meadows L. Time since death and decomposition<br />

of the human body: variables and observations in case and experimental<br />

field studies. J Forensic Sciences 1990; (35):103-11.<br />

5. Rhine S, Dawson JE. Estimation of time since death in the southwestern<br />

United States. In: Reichs K, editor. Forensic Osteology: advances in the<br />

identification of human remains. Springfield: CC Thomas, 145-60, 1998.<br />

6. Rodriguez WC, Bass WM. Decomposition of buried bodies and<br />

methods that may aid in their location. J Forensic Sci 1985; (30): 836-52.<br />

7. Schoenly K, Griest K, Rhine S. An experimental field protocol for investigating<br />

the postmortem interval using multidisciplinary indicators. J<br />

Forensic Sci 1991 (36):1395-1415.<br />

8. Shalaby OA, deCarvalho LML, Goff ML. Comparison of patterns of<br />

decomposition in a hanging carcass and a carcass in contact with soil in a<br />

xerophytic habitat on the island of Oahu, Hawaii. J Forensic Sci 2000;<br />

(45):1267-73.<br />

9. Shean BS, Messinger L, Papworth M. Observations of differential<br />

decomposition on sun exposed v. shaded pig carrion in coastal Washington<br />

State. J Forensic Sci 1993; (38):938-49.<br />

Forensic Anthropology, Taphonomy, Decomposition<br />

H4 Escaping Tennessee: Regions for Taphonomy<br />

Research Beyond Eastern Tennessee<br />

Tracey A. Tichnell, BS*, Michigan State University, Department of<br />

Anthropology, East Lansing, MI 48824<br />

After attending this presentation, attendees will understand where<br />

taphonomically relevant regions are located in the continental United States<br />

and the possibilities for furthering the work begun at the Anthropology<br />

Research Facility in Tennessee.<br />

By providing locations of taphonomically relevant regions,<br />

researchers can investigate climatic variables affecting the rate of decomposition<br />

further than is possible in eastern Tennessee, allowing for more<br />

accurate time since death estimates.<br />

Since 1981, groundbreaking research on the processes, the results, and<br />

the factors affecting decomposition has come out of the Anthropology<br />

Research Facility at the University of Tennessee. The results of this<br />

research have revealed several factors affecting the speed of decomposition<br />

and thus the time-since-death estimate. These factors can be lumped into<br />

two groups: intrinsic variables specific to the body, like clothing and<br />

trauma, and extrinsic variables, such as climate and environment. Though<br />

extrinsic variables are known to affect intrinsic variables, the magnitude of<br />

that effect is unknown. Many researchers examining any of these variables<br />

express the need for further work to be done, in different climates and environments.<br />

Even the investigators at the ARF, however inventive, are constrained<br />

by climate. Though they recognize their findings may be<br />

applicable only to one specific region, what defines different taphonomically-relevant<br />

climate zones is not known. By using variables known to<br />

have a large affect on decomposition rates, regions can be mapped defining<br />

where these variables differ.<br />

Several things need to be thought out when undertaking this kind of<br />

mapping. The distribution of cases, what variables, and the length of time<br />

they are being studied all need to be taken into consideration. The cases<br />

should cover the whole area being mapped and should be as evenly spaced<br />

as possible. When mapping, it is important to keep in mind three very<br />

influential climatic variables which can divide a region into taphonomically-relevant<br />

climates: temperature, humidity, and precipitation. Beyond<br />

the regions created by these factors, microclimates can further subdivide<br />

regions to account for the unique features of a particular area. As all the<br />

climate factors that affect taphonomy are unknown and the full effects of<br />

the known ones are uncertain, these microclimates hold a great deal of<br />

potential. Analyzing any of these variables for only a month or a season is<br />

unlikely to provide an accurate assessment of a region’s climatic variability.<br />

A year’s worth of data is required to account for the differences between<br />

* Presenting Author<br />

seasons; more than one year is better to allow for anomalous weather conditions.<br />

By considering time, variation, and distribution, accurate regions<br />

can be mapped displaying the differences in climate.<br />

In this study, 129 cities across the United States were used. For each<br />

of these cities, data for three variables were downloaded from the National<br />

Climatic Data Center’s website run by the National Oceanic and<br />

Atmospheric Administration. For average temperature, daily data were<br />

downloaded for five years (1999-2003). Daily precipitation data only for<br />

2003 were downloaded. Only one year was used due to extensive missing<br />

data for the previous four years and only those cases with 95% of the data<br />

available were used to map regions. All daily data were converted to<br />

monthly averages for more efficient analysis. The available humidity data<br />

came as monthly averages. All the data were analyzed by variable using a<br />

hierarchical analysis in SPSS 12.0. The resulting groups were plotted on a<br />

map of the U.S. and regions drawn. Each of the three variables was<br />

mapped independently, producing three maps. The maps were then<br />

overlaid on top of each other and composite regions drawn, creating a<br />

fourth map of overall climatic differences.<br />

Temperature divided the country into five regions. Most of the<br />

country split into rows becoming progressively warmer with lower latitudes.<br />

Along the west coast is a band of a more moderate climate without<br />

the large difference between highs and lows seen in the rest of the country.<br />

Humidity creates five regions as well. The most humidity is seen in<br />

the northwest corner with a thin band of humidity down the west coast. The<br />

remainder of the country splits into a checkerboard. First, a line through<br />

the central plains divides the rest of the country into an arid region in the<br />

west and a humid one in the east. These are further subdivided into a<br />

northern more humid area and a southern more arid one.<br />

Similar to humidity, precipitation splits the majority of the U.S. into<br />

two regions with a line down the central plains. To the west of this line are<br />

three drier regions with two wet regions to the east. The exception to this<br />

pattern is a small area of extremely wet weather along Oregon’s pacific<br />

coast. The southern regions tend to have higher precipitation levels than<br />

the northern ones.<br />

Using temperature, humidity, and precipitation maps, a composite<br />

map was drawn showing 11 regions. These regions do not follow state<br />

lines, though most states fit decidedly in one region. The North East is<br />

characterized as cold, humid, and wet and involves Maine, New<br />

Hampshire, Vermont, Massachusetts, New York, Michigan, and Wisconsin.<br />

Just to the south is the Central East, a temperate, humid, and wet section<br />

including Rhode Island, Connecticut, New Jersey, Pennsylvania, Delaware,<br />

Maryland, Virginia, Kentucky, eastern Tennessee, Ohio, Indiana, Illinois,<br />

Missouri, and Iowa. The hot, humid, and wet zone of the South East contains<br />

North Carolina, South Carolina, Georgia, Florida, Alabama,<br />

Mississippi, Arkansas, Louisiana, and western Tennessee. The North<br />

Central is characterized as cold, humid, and dry includes Minnesota, North<br />

Dakota, and South Dakota. The temperate, humid, and dry region of the<br />

Central Plains contains Nebraska and Kansas. To the south is the South<br />

Central area, a hot, humid, and dry area involving most of Oklahoma and<br />

Texas. The cold, arid, and dry territory of the North West contains<br />

Montana, Wyoming, and Colorado. The Central West is characterized as<br />

temperate, arid, and dry and involves Idaho, eastern Oregon, Utah, and<br />

Nevada. To the south is the South West region of New Mexico and Arizona<br />

characterized as hot, arid, and dry. The west coast is divided into two<br />

regions with Washington and western Oregon in the moderate, humid, and<br />

wet north area and California in the moderate, humid, and dry south.<br />

In a country that goes from the Atlantic to the Pacific and encompasses<br />

nearly every possible climate from the Arctic Circle to the Tropics,<br />

the potential for extensive and groundbreaking forensic taphonomic<br />

research is astounding. By using the three known influential climate variables,<br />

eleven regions in the U.S. were created. Each differs from its<br />

neighbor by temperature, humidity, or precipitation. Climate is the result<br />

of the interaction between these factors. In order to study how this interaction<br />

affects decomposition rates, at least one facility should be created in<br />

each region with the same goals as the ARF at UT. Though ideal, this is<br />

412


not likely to be feasible. However, each region is home to at least one<br />

forensic science program. Studies done through these programs could offer<br />

the same necessary information required to validate and fine-tune existing<br />

theories and methods and discover new ones that could not be found in the<br />

temperate, wet region of eastern Tennessee. Dr. Bill Bass and the faculty<br />

and staff at the Anthropology Research Facility have taken the first steps<br />

with sporadic efforts across the country to take the next ones. There is<br />

justification for further studies and facilities outside of Tennessee, both<br />

climatic and environmental. New facilities need to be created to contend<br />

with all the possibilities offered by the many different climates available in<br />

the U.S.<br />

Taphonomy, Decomposition, Body Farm<br />

H5 Insect Colonization of Child-Sized Remains:<br />

Behavioral Analysis of Pig Carcasses via<br />

24 Hour, High Resolution Video Surveillance<br />

Abigail Gremillian, BA*, 17862 East General Forrest, Baton Rouge, LA<br />

70817; and Robert J. Morton, MS, and Wayne D. Lord, PhD, FBI<br />

NCAVC, FBI Academy, Quantico, VA 22135<br />

The goal of this presentation is to document the behavioral patterns<br />

and activities of arthropods colonizing child-sized remains as observed via<br />

24-hour high-resolution video surveillance.<br />

This presentation will impact the forensic community and/or<br />

humanity by reinforcing the need for careful review of all factors when<br />

considering postmortem interval estimations.<br />

The purpose of this research was to test the relationship between<br />

delays in arthropod colonization of child-sized remains and climatic<br />

conditions. The effects of weather conditions, particularly temperature, on<br />

insect colonization are well documented in the research literature. Most<br />

studies relied upon on-site observations, conducted several times a day.<br />

The traditional sampling methodology provides a limited view of arthropod<br />

colonization by framing the number of field observations in snippets of<br />

time. The restrictions of limited observations fail to account for<br />

unobserved arthropod species and activity, as well as the affect of the<br />

micro-climate.<br />

The FBI’s National Center for the Analysis of Violent Crime<br />

(NCAVC) is routinely consulted by federal, state, and local authorities in a<br />

variety of cases of bizarre and repetitive violent crimes, including child<br />

homicides. The NCAVC has previously conducted research on the<br />

taphonomy of child-sized remains. This study provided observations on a<br />

24-hour basis, via high-resolution video camera, and collected weather data<br />

from the microenvironment at the disposal sites, as well as macroenvironment<br />

data from a national weather collection site located nearby.<br />

During the time period March 2004 through June 2004, the remains of<br />

two child-sized pigs (approximately 25 pounds) were deposited in an<br />

isolated wooded area in a suburban area of Virginia. The sites were<br />

secluded, approximately 250 feet from any dwellings. The pigs were placed<br />

on the surface, one was clothed, the other nude. Wire cages were placed<br />

over the two specimens to prevent larger scavengers from consuming the<br />

corpses. Pig carcasses were initially placed at study sites on days<br />

characterized by inclement weather conditions to assess the effects of such<br />

climatic conditions on arthropod colonization and succession. Two highresolution<br />

video cameras were set up utilizing an infrared light source for<br />

night viewing. The cameras were set up to record on a 24-hour basis.<br />

Taping was conducted every day throughout the period. Remains were also<br />

physically monitored twice a day, arthropods collected, observations noted<br />

and temperature and humidity readings taken with a psychrometer. Data<br />

for the microenvironment was collected from the U.S. Marine Corps<br />

Meteorology and Oceanographic Division, which provided hourly data on<br />

wind speed and direction, temperature, humidity, sky cover, and weather<br />

observations. Two replicates of the study were conducted. Tapes were<br />

reviewed to document the number of arthropods visiting the sites, as well<br />

as genus and activity. Inter-rater reliability was performed to ensure genus<br />

documentation was accurate.<br />

The results of this study demonstrate the relationship between weather<br />

and delays in arthropod colonization. For both replicates, rainy, overcast<br />

weather conditions delayed colonization even though temperatures were<br />

above established thresholds for activity. During initial spring replicate,<br />

such conditions contributed to a 17-day delay in carcass colonization by<br />

carrion frequenting insects. Similarly, a 3-day delay was observed in the<br />

late spring replicate. This study also showed the effect of seasonality on the<br />

succession of various arthropods and reinforced arthropod temporal<br />

predilections. Calliphorid activity was largely diurnal, beginning during<br />

midmorning and peaking in afternoon. Carrion beetle activity, however,<br />

was characterized by both diurnal and nocturnal activity patterns. Carrion<br />

beetle activity was not as dependent on temperature as fly activity. The<br />

study further highlighted the interspecific and intraspecific competition<br />

among insects for viable food sources and demonstrated exclusion and<br />

succession. Vertebrate scavenging was also a factor for decomposition,<br />

even though study carcasses were secured in wire mesh cages. The scavenging<br />

activities of small mammals and vultures clearly illustrated competitive<br />

interactions inherent between vertebrates and invertebrates competing<br />

for patchy carrion resources. Results of this study reinforce the need<br />

for careful review of all factors when considering postmortem interval<br />

estimations.<br />

Postmortem Interval, Arthropod Colonization, Child-Sized Remains<br />

H6 Human Decomposition in the Detroit River<br />

Paula A. Perry, BA*, Bournemouth University, Talbot Campus, Poole,<br />

Dorset BH12 5BF, United Kingdom<br />

After attending this presentation, attendees will understand how<br />

taphonomic variables specifically associated with the Detroit River affect<br />

decomposition. A decomposition model for this unique riverine<br />

environment will be established for the future application to similar<br />

environments.<br />

This presentation will impact the forensic community and/or<br />

humanity by assisting in the understanding of decomposition rates in a<br />

unique riverine environment and identify factors that affect tissue<br />

breakdown in order to develop a model that will aid forensic personnel in<br />

establishing the postmortem interval.<br />

The Detroit River is an international channel that links Lake St. Clair<br />

and the Upper Great Lakes to Lake Erie and is often the site of fatal<br />

accidents and suicides. The Detroit River contains dangerous levels of<br />

pollutants and organic waste products and as a result of industry, very little<br />

natural shore bank remains, preventing: fish spawning; vegetation growth;<br />

wildlife feeding, and natural sediment transfer. Because the environment<br />

surrounding the Detroit River and the waters themselves are extremely<br />

unique, it is necessary to identify the variables that influence decomposition<br />

rates in the Detroit River and study their affects on tissue breakdown in<br />

order to develop a model that will aid medical examiners in establishing the<br />

postmortem interval.<br />

Sixty-nine case files of human remains recovered from the Detroit<br />

River from over the past nineteen years were studied. Cases included 55<br />

males and 14 females ranging from aged six to eighty-five years.<br />

Submersion intervals were known in all cases and ranged from two hours<br />

to one hundred and twenty-nine days. Decomposition was recorded for<br />

each case in order to determine a progression of soft tissue loss in a freshwater,<br />

riverine environment.<br />

Of the sixty-nine cases examined; 30.4% (n= 21) were classified as<br />

stage 1 decay, 11.6% (n= 8) as stage 2 decay, 31.9% (n= 22) as stage 3<br />

decay, 23.2% (n= 16) as stage 4 decay and 2.9% (n= 2) as stage 5 decay.<br />

In the Detroit River, stage 1 remains lack discoloration or bloating,<br />

rigor or livor mortis may be present and are recovered between zero to two<br />

days. Stage 2 decomposition is observed between two to nine days and<br />

413 * Presenting Author


consists of early discoloration, bloating and marbling, with minimal skin<br />

slippage. Stage 3 remains show advanced skin slippage and significant<br />

discoloration and bloating, and are found between nine to twenty-four days.<br />

Stage 4 is observed between twenty-four to fifty-eight days and displays<br />

tissue erosion and the purging of fluids. Stage 5 is characterized by the<br />

exposure of skeletal elements and is seen in remains that have been in the<br />

Detroit River for over fifty-eight days.<br />

When compared to models of tissue decay developed by previous<br />

research, it was found that decomposition in the Detroit River follows a<br />

similar sequence, but the rate of decay is slower. Contributing factors are<br />

low water temperatures and the absence of postmortem feeding by aquatic<br />

organisms.<br />

Further analysis showed that within the Detroit River, body weight<br />

and pollution affect decomposition with heavier individuals and higher<br />

levels of pollution in the water speed the rate of decay.<br />

Detroit River, Decomposition, Postmortem Interval<br />

H7 Observed Taphonomic Changes and Drift<br />

Trajectory of Bodies Recovered From<br />

the Tidal Thames, London England:<br />

A 15-Year Retrospective Study<br />

Victoria L. Brewer, BSc*, Bournemouth University, School of<br />

Conservational Sciences, Talbot Campus, Poole, Doreset BH12 5BB,<br />

United Kingdom<br />

Attendees will gain a general understanding of the processes involved<br />

in marine/aquatic taphonomy and its application for the determination of<br />

postmortem submersion interval. It is hoped that after gaining an understanding<br />

of the basic principles of fluvial transportation, attendees can<br />

apply these in future casework within their own spheres to determine<br />

cadaver location and enhance recovery from aquatic environments.<br />

With the discovery of human remains, one of the most important<br />

issues to be considered is the postmortem interval (PMI), as it is used to<br />

examine missing persons files in search for a likely match. It is imperative<br />

that accurate PMI determinations can be established as it can mean the<br />

difference between the positive identification of an individual or that<br />

individual remaining unidentified in the morgue. In forensic settings there<br />

is a growing need to understand aquatic decomposition in order to interpret<br />

decompostional changes as an aid to the determination of perimortem<br />

interval. The environmental context in rivers, lakes or oceans is different<br />

to that on land. Therefore, separate decomposition and preservation models<br />

need to be developed. This presentation will impact the forensic<br />

community and/or humanity by providing insight into the principles and<br />

forces that act upon a human cadaver in an aquatic environment. This data<br />

can potentially be applied to fluvial drift models that aid in not only the<br />

determination of search strategies for locating human remains, but to also<br />

the calculation of location at which they entered the river.<br />

In 2002, River Thames lifeboat crews responded to approximately<br />

400 cases of attempted suicides and suicide victim recovery. Many of their<br />

cases were recovered from the 62.14 km stretch of the tidal Thames, which<br />

runs through the Boroughs of Central and Greater London, particularly<br />

between Eel Pie Island and Barking Point. Bodies deposited in this area of<br />

the Thames are subject to diverse and ever changing conditions, as the river<br />

alters from fresh water to a marine environment; both of these settings have<br />

a unique and specific effect on the movement and decomposition of these<br />

bodies.<br />

A retrospective study was carried out on 103 closed case files from the<br />

Marine Support Unit, Thames division of the Metropolitan Police. Each<br />

body used in the study had been positively identified; information such as<br />

demographic data, date last seen, and date recovered were present. The<br />

remains (84 males and 19 females) were recovered between December<br />

1988 to June 2004 between Richmond and Barking Point. The aim of this<br />

* Presenting Author<br />

study was to form a decompositonal table based on taphonomic changes<br />

related to the Postmortem Submersion Interval (PMSI), thereby creating a<br />

more accurate form of assessing PMSI to aid the process of identification.<br />

Another objective of the study was to evaluate the drift trajectory of the<br />

remains recovered in order to assess the viability of a predictive drift<br />

model. Such a model would provide insight into the fluvial transportation<br />

of human remains and, therefore, could be used to predict recovery<br />

locations as well as point of entry into the tidal Thames. The preliminary<br />

results are presented here.<br />

PMSI was calculated from dates taken from missing person’s reports<br />

or witness statements of sightings of the individual either in or entering the<br />

Thames. The PMSI ranged from 0 to 333 days, with a mean of<br />

20.2787±4.74911 days and a mode of 3 days.<br />

Using data from the 103 individuals recovered, taphonomic tables<br />

were developed focusing on a total of 13 variables for decomposition.<br />

Photographs exhibiting a minimum of 50% of the body, along with postmortem<br />

examination and police reports, were used to assess decompositional<br />

changes. As a result of a multivariance analysis test (MANOVA),<br />

which indicated a statistically significant relationship (Λ= 0.048, sig’.<br />

0.000) between the decompositional variables and the season in which the<br />

remains were removed from the Thames, the taphonomic tables were<br />

further divided into two seasons, winter (November-April) and summer<br />

(May-October). Further analysis of variables that may account for the<br />

observed decomposition is presently underway.<br />

Of the 103 cases, 47 had known points of entry into the Thames<br />

provided by witness statements and emergency calls. Drift distance both<br />

nautical miles and kilometers was analyzed in order to determine if a drift<br />

trajectory model could be developed for this stretch of the Thames, and also<br />

to determine if set variables could aid in determining the location of where<br />

a body may have either entered the river or would be expected to be<br />

recovered. Drift was calculated by using standard distances developed by<br />

the Port of London Authority, with London Bridge as the point of reference.<br />

Negative drift, moving upstream from the point of entry, was observed in 4<br />

cases. The mean drift was 3689.8511 meters ±1000.389 meters (1.9836 ±<br />

0.54119 nautical miles), with the PMSI ranging from 0 to 270 days.<br />

Preliminary analysis of variables affecting drift through the use of Pearson<br />

correlation (P


The forensic anthropologist’s examination of skeletal material usually<br />

includes determination of the biological profile (age at death, sex, ancestry,<br />

and stature), estimation of postmortem interval, and detection of any<br />

trauma/pathology and its timing relative to the death. At present, estimates<br />

of postmortem interval, the amount of time that lapsed between death and<br />

discovery, are based on state of decomposition of the remains and their<br />

associated ecological conditions, and are generally given in broad ranges of<br />

months to years. Cementum increment analysis in humans has the potential<br />

to help narrow the estimate of postmortem interval to the actual calendar<br />

year and season during which the individual died. This project applies<br />

proven methods for determining season-of-death among mammals to the<br />

analysis of human teeth. Although age at death studies have been<br />

conducted, no known study has attempted to apply these methods to season<br />

of death. The theoretical underpinnings that make it possible to determine<br />

the time of year that an animal died simply from the microstructures in its<br />

teeth are the same for animals and human beings, and therefore a successful<br />

outcome is anticipated.<br />

Dental increments are identified in the cementum deposits on the roots<br />

of human teeth and under microscopic examination appear as alternating<br />

dark and light bands, analogous to tree rings. Research with comparative<br />

samples of known-age and known date-of-death individuals has demonstrated<br />

a consistent relationship between annual seasons and the formation<br />

of distinct increment types. In general, the winter or arrested cementum<br />

increment appears as an opaque band while the summer or growth<br />

increment appears as a translucent band. Together these represent one year<br />

of an individual’s life, providing an annual record of that person’s life<br />

history. The total number of increments provides a means of determining<br />

the individual’s age at death (Wittwer-Backofen 2004, Kagerer and Grupe<br />

2001, Jankauskas et al. 2001, Geuser et al. 1999).<br />

Methods of increment analysis are broadly similar. Increments are<br />

exposed by sectioning teeth and grinding or polishing the cut surfaces,<br />

which are then viewed under magnification. Research into the biology of<br />

cementum formation (Lieberman et al. 1992; Lieberman 1993) suggests<br />

that the petrographic method of sectioning is most appropriate for both<br />

archaeological samples and comparative samples because it takes<br />

advantage of changes in polarized light diffraction resulting from biological<br />

variation in the structure of cementum increments. With the petrographic<br />

method, teeth are embedded in either an epoxy or plastic matrix to help<br />

maintain the structural integrity of the tooth, thin sections are cut with a low<br />

speed saw fitted with a diamond blade, mounted on glass slides, and then<br />

ground and polished. Thin sections are viewed under 125X magnification<br />

with a transmitted, polarized light source. Cementum increments are<br />

counted and measured for thickness.<br />

For this investigation, the authors have acquired extracted teeth, the<br />

individual’s date of birth, and date of extraction from local dentists. Recent<br />

studies involving human teeth (Wittwer-Backofen 2004, Kagerer and<br />

Grupe 2001, Jankauskas et al. 2001, Geuser et al. 1999) have indicated that<br />

no statistical difference exists in cementum accumulation of different teeth<br />

within a single individual. For this reason a specific tooth was not required.<br />

Precise interpretation of dental increments is predicated upon<br />

establishing seasonal formation times in the particular taxon under analysis.<br />

In the case of humans, no comparative study has recorded the specific<br />

timing of increment formation. The current project seeks to identify the<br />

timing of increment formation in humans and thus provide a means by<br />

which season-of-death could be determined in forensic cases. Results of<br />

the pilot study will be presented in this report.<br />

Cementum Increment Analysis, Dental Anthropology,<br />

Season at Death<br />

H9 The Meeting of Old and New: Luminol<br />

Application to a Suspected Ritualistic<br />

Heathen Stone From Viking Times<br />

Thora S. Steffensen, MD*, University Hospital of Iceland, Department<br />

of Pathology, Rannsoknastofa H.I. vid Baronsstig, Reykjavik, IS 108,<br />

Iceland; and Omar Palmason, Reykjavik Police Department, Hverfisgata<br />

115, Reykjavik, IS 108, Iceland<br />

The goal of this presentation is to introduce the audience to heathen<br />

worshipping ceremonies in Iceland in the Viking times as they relate to a<br />

recently discovered special stone that was, upon examination with<br />

Luminol, found to be focally positive.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the potential for Luminol to contribute to<br />

knowledge of this an ancient ceremonial stone in Iceland.<br />

During the last year, the expansion of a summer home in the northwestern<br />

part of Iceland called Strandir, uncovered an unusually shaped<br />

stone, which some locals recognized to coincide with old descriptions of<br />

artifacts used during heathen worship. The stone had and external triangular<br />

shape with smooth and straight sides and on the base of the triangle<br />

was a deep cup-shaped depression in the surface. According to the stories<br />

blood was contained in this depressed area during the ceremonies. The<br />

local authorities in Strandir approached the forensic community and asked<br />

for possible aid in determining if blood had ever been contained in the cupshaped<br />

part of the stone. Luminol application to the stone showed a very<br />

weak positive luminescence localized to the cup shaped area of the stone,<br />

with other areas of the stone being negative.<br />

Luminol is known to detect old blood; however, it cannot determine<br />

when this presumptive blood was deposited. Geographical evaluation will<br />

be obtained to try to determine possible age of the chiseling of the stone.<br />

Anthropology, Luminol, Heathen Ceremonies<br />

H10 Lifestyles of the Unidentified:<br />

Challenges in Positive Identification<br />

Heather C. Backo, MA*, and John Verano, PhD, Tulane University<br />

Anthropology Department, 1021 Audubon Street, New Orleans, LA 70118<br />

The goal of this presentation is to illustrate skeletal features that may<br />

provide insight into an individual’s lifestyle as well as aid in positive<br />

identification if antemortem records can be found.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that certain skeletal profiles can be linked to<br />

lifestyles such as homelessness. It is proposed that, despite the presence of<br />

distinguishing characteristics, many of these individuals remain<br />

unidentified due to their lifestyle.<br />

The human skeleton exhibits many characteristics unique to an<br />

individual that can aid in positive identification. These include congenital<br />

and developmental variants as well as traits acquired during life, such as<br />

healed trauma, medical appliances, and dental restorations. The presence<br />

of rare or unique traits, however, is no guarantee of identification in cases<br />

of skeletal remains of unknown decedents. Certain lifestyles can, in fact,<br />

lead to a greater likelihood that a positive identification will not be<br />

achieved.<br />

This poster will present skeletal profiles indicative of certain lifestyles<br />

that can impede the identification of an individual, leading to an increased<br />

probability of a case remaining unsolved. This will be illustrated by two<br />

cases of human remains recovered in 1996 and 1998 from Jefferson and St.<br />

Tammany Parishes in Louisiana. The first individual, a white male adult,<br />

is a partially skeletonized body recovered from an enclosed space in<br />

December 1998. The cause of death was determined to be compression<br />

asphyxia, due to a failed attempt to enter a building through an exhaust<br />

415 * Presenting Author


shaft. Skeletal features indicated an age of 30-35 years, and a height of<br />

approximately 5’8”. Also present was an amalgam on the upper molar,<br />

indicating dental work had been completed at some time in the past.<br />

Another feature that could aid in identification is a healed fracture of the<br />

left maxillary bone, as well as clothing and personal items recovered at the<br />

scene. Radiographs produced good visualization of the frontal sinuses,<br />

another trait unique to an individual that can aid in identification.<br />

The second individual, found in an outdoor setting, was completely<br />

skeletonized, with the exception of the left hand and the feet. The left hand<br />

had preserved mummified tissue, while the feet were located within intact<br />

socks. However, no other clothing was found at the scene. Skeletal<br />

features were that of a black male, age 30-40 years, and a height of approximately<br />

5’7”. Although there was extensive tooth decay at time of death,<br />

the presence of multiple amalgams and an upper denture with a single false<br />

tooth (upper left lateral incisor), indicates that dental work with potential<br />

for x-rays had been completed at some time in the past. Also present are<br />

several developmental anomalies that would also appear in radiographs,<br />

including asymmetry at the distal end of the sternum, incomplete fusion of<br />

sacral units 4 and 5, and ossification defects of the patellae. Antemortem<br />

trauma includes a healed fracture of the right ulna, and a fracture of the<br />

proximal phalanx of the left great toe, both of which may have required<br />

medical attention in the past.<br />

Despite the fact that both skeletons showed antemortem pathologies<br />

and unusual skeletal features that could lead to a positive identification, no<br />

potential matches with missing persons were made, and the two individuals<br />

remain unidentified. In the second case, facial reconstruction was also<br />

attempted. In both of the above cases, there were also indications of certain<br />

lifestyles that could hinder identification from being reached. Both individuals<br />

showed antemortem fractures that could be indicative of a violent<br />

lifestyle. The first individual suffered from a facial fracture that could have<br />

been sustained by a blow to the face below the left eye. The second individual<br />

suffered from a possible parry fracture of the lower right arm.<br />

Secondly, although both individuals had received professional dental<br />

care sometime in the past, at the time of death tooth decay, extensive<br />

enough to cause antemortem loss and significant discomfort was present<br />

indicating that medical care had not been sought for some time. Finally,<br />

personal effects and circumstances of discovery are also indicative of<br />

certain lifestyles. The first individual was found to have hypodermic<br />

needles within the pockets of his clothing. Although no personal effects<br />

and very little clothing were recovered for the second individual, the<br />

location of discovery was a parking area used by a traveling carnival, indicating<br />

that the individual could have lacked a permanent address. Taken as<br />

a whole, the above evidence can be used to develop a profile of individuals<br />

who, despite possessing multiple skeletal and dental traits that could aid in<br />

identification, follow a lifestyle that in effect hinders such attempts, leading<br />

to greater likelihood of a “cold case.”<br />

Identification, Skeletal Remains, Cold Case<br />

H11 Internal Cranial Fractures<br />

Alison Galloway, PhD, Department of Anthropology, Social Science One<br />

FS, University of California, Santa Cruz, CA 95064; and Lauren Zephro,<br />

MA, Monterey County Sheriff’s Office, 1414 Natividad Road, Salinas,<br />

CA 95006<br />

The goal of this presentation is to present the forensic anthropological<br />

community with examples of internal cranial fracturing and to emphasize<br />

the need to include internal examinations of the cranial bones in the<br />

protocol for forensic analysis of perimortem trauma.<br />

This presentation will impact the forensic community and/or<br />

humanity by emphasizing the importance of examination of the internal<br />

cranial vault in assessing skeletal trauma.<br />

The literature on cranial injuries focuses primarily on those visible on<br />

the external surface such as depressed fractures or those that transgress both<br />

* Presenting Author<br />

inner and outer tables such as linear fractures. Experience with recent cases<br />

has highlighted the importance of internal examinations even in the<br />

absence of external indications of damage.<br />

The anatomy of the skull is that of a sphere with a number of areas of<br />

weakness produced by foramina and areas of increased strength produced<br />

by buttresses. The outer table of dense bone provides a protective coat that,<br />

in many places of the cranial vault, covers a layer of trabecular bone known<br />

as diploe. The inner table provides direct protection for the brain and major<br />

blood drainage systems associated with the central nervous system.<br />

Bone fracturing occurs when the abilities of bone tissue to withstand<br />

exceeds the bone’s resilience. Being a combination of organic and<br />

inorganic materials, bone is capable of both elastic and plastic deformation<br />

prior to failure. Once bone is broken, however, the fracture will be<br />

transmitted through the bone until the energy is dissipated. Cranial<br />

fractures are usually depicted in the forensic literature as affecting primarily<br />

the outer table with secondary ramification on the inner table. In the two<br />

cases presented here, the outer table damage was minimal or absent while<br />

inner table or internal damage suggested more serious insults.<br />

In the first case, the decomposed remains of an adult male were found<br />

in a field. Skeletal analysis for trauma was requested. The remains were<br />

cleaned and found to retain evidence of extensive sharp force trauma<br />

including multiple stab wounds to the back and lower side and cuts on the<br />

cervical vertebrae. External examination of the skull showed little<br />

evidence of damage however, internally, two points of impact were evident<br />

with extensive incomplete fracturing radiating from these points.<br />

Examination under low power magnification showed fine fracturing on the<br />

outer table but insufficient to give the impact points as clearly. Information<br />

gleaned about the crime suggested the victim was hit twice over the head<br />

with a flashlight, and was tortured with a knife before having his throat cut.<br />

Similarly, in a case presented previously, compression fractures in the<br />

posterior portion of the supraorbital plates in the remains of an adult female<br />

in her mid-fifties suggested compression fracturing. External damage was<br />

limited to minor incomplete fracturing in the left lateral portion of the<br />

anterior vault and some in the orbits.<br />

These cases suggest that internal examination either by craniotomy or<br />

illumination and visual examination are critical for a complete anthropological<br />

evaluation. The energy exerted on the outer table may be<br />

transmitted through these bones with little damage but passed through to<br />

the inner table in such a manner that fracture point is reached. Cranial vault<br />

injuries are more complex than is often appreciated and require more<br />

detailed analysis.<br />

Trauma Analysis, Cranial Fractures, Protocol<br />

H12 Perimortem Bone Fracture Distinguished<br />

From Postmortem Fire Trauma: A Case<br />

Study With Mixed Signals<br />

Steven A. Symes, PhD*, Mercyhurst College, Department of<br />

Forensic/<strong>Bio</strong>logical Anthropology, 501 East 38th Street, Erie, PA 16546;<br />

James J. Woytash, DDS, MD, Erie County <strong>Medical</strong> Examiner’s Office,<br />

462 Grider Street, Buffalo, NY 14214; Anne M. Kroman, MA, Department<br />

of Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and Andrew C. Wilson, BS, Department of<br />

Forensic/<strong>Bio</strong>logical Anthropology, Mercyhurst College, Erie, PA 16509<br />

The goal of this presentation is to illustrate the use of burned bone biomechanics<br />

to distinguish perimortem trauma from postmortem trauma.<br />

This presentation will impact the forensic community and/or<br />

humanity by using a case study to demonstrate the potential of burned bone<br />

examination.<br />

Burned bone fractures have been a curiosity to anthropologists for<br />

decades. Thermal destruction to bone has a recent renewed interest with<br />

increased popularity of forensic science analyses of taphonomic influences<br />

and also because of human rights issues.<br />

416


A recent case in the Buffalo, NY, area illustrates a situation where a<br />

body was discovered when a blaze was extinguished in an abandoned<br />

building. It was soon determined that the fire was act of arson used in an<br />

attempt to conceal a death. While the heat and flames damaged the remains<br />

of this adult female, the third author (JJW) discovered head trauma in<br />

autopsy, thus a homicide was officially identified.<br />

Past research in the area of thermal destruction of bone by the first<br />

author and others (1) has shown predictable patterns of destruction of<br />

human remains when observing and assessing body position, soft tissue<br />

influence, alteration of bone color, and burn fracture patterns, where<br />

charted normal patterns enable researchers to recognize abnormal patterns.<br />

Examination of the burned victim’s right hand and wrist presented an<br />

unusual pattern of destruction. At and above the wrist, severe burning<br />

occurred where there was complete separation of the radius and ulna.<br />

While wrist destruction is common for early fire destruction1 , the hand<br />

demonstrated atypical damage. The fingers were not in pugilistic posture,<br />

and distal phalanges are heat damaged or missing. Since atypical postcranium<br />

burning was diagnosed along with perimortem head trauma ruled<br />

as a homicide, the medical examiner (JJW) decided that all bones should be<br />

removed and examined in a dry state by anthropologists.<br />

Re-examination of the right radius indicated heat damage and traumatic<br />

perimortem fracture at the distal end of the shaft. The radius indicates<br />

bending blunt force trauma of the shaft with the forearm shaft bending<br />

anterior (compression) to posterior (tension), the opposite direction of a<br />

typical Colles fracture that occurs when a person falls, and catches their<br />

weight on their wrist and hand.<br />

Indications of pre-fire forearm trauma are confirmed by fracture and<br />

burn patters. There is a fracture pattern that is continuous and uniform<br />

through burned and unburned bone. The fact that the fracture did not alter<br />

in direction or form in the unburned and burned portions of the bone indicates<br />

that the bone fractured in a green state, unburned. A second feature<br />

indicating fresh bone fracture is an incomplete butterfly fracture. While<br />

only visible under microscopic examination, this fracture illustrates a<br />

typical green bone butterfly fracture. The fractures described above appear<br />

to be the product of perimortem trauma. This trauma likely compromised<br />

the forearm and restricted pugilistic posture formation in the right hand<br />

since the fulcrum for the powerful forearm wrist flexors is absent. The<br />

distal ulna burned beyond analytical capabilities.<br />

When the hand of a fire victim was viewed as atypical after burning,<br />

close examination indicated fracture characteristics that could have<br />

occurred only before the fire. This case illustrates that knowledge of<br />

normal burn patterns assists in the examination of perimortem trauma in<br />

human remains. This combined with knowledge of biomechanical properties<br />

of green bone fracture aided in the diagnosis and interpretation of a<br />

homicide, even in an incident when criminal behavior has attempted to alter<br />

evidence with arson.<br />

References:<br />

1. Symes SA, Smith OC, Berryman HE, and Pope EJ. Patterned Thermal<br />

Destruction of Human Remains. Paper presented to the 30th Anniversary<br />

Edition of the T. D. Stewart Personal Identification in Mass Disasters.<br />

1999. Sponsored by the Central Identification Laboratory, Hawaii, and the<br />

Smithsonian Institution.<br />

Burned Bone, Pugilistic Pose, Bone Fracture<br />

H13 Mandible and Cranial Base Fractures<br />

in Adults: Experimental Testing<br />

Anne M. Kroman, MA*, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; Tyler Kress, PhD, University of Tennessee, 250<br />

South Stadium Hall, Knoxville, TN 37996; Steven A. Symes, PhD,<br />

Mercyhurst Archaeological Institute, 501 East 38th Street, Erie, PA 16546<br />

This goal of this presentation is to outline results from a recent study<br />

on fracture production and propagation in the human skull, and<br />

demonstrate the biomechanical forces behind blunt force trauma, cranial<br />

base fractures, and mandible fractures.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing the biomechanics behind the creation and propagation<br />

of cranial base and mandible fractures using experimental testing.<br />

Fracture biomechanics can contribute a great deal to the field of<br />

physical anthropology, with trauma analysis aiding in determining cause<br />

and manner of death (1). Postmortem trauma assessment is an essential<br />

tool for identifying the type of trauma location of impact sites, sequencing<br />

blows, and establishing the characteristics of the object responsible for<br />

injury (1). In anthropological trauma analysis, one of the most complicated<br />

and confusing areas is blunt force trauma. Within the realm of blunt force<br />

trauma, cranial base fractures and mandible fractures are two areas that are<br />

extremely hard to interpret and have confused anthropologists for years.<br />

Fractures that travel through the cranial base have been designated a<br />

wide range of terminology, and an even wider range of biomechanical<br />

explanations for their creation. They have been attributed to falls, blows to<br />

the top of the skull, and hinge fractures (1). However, the exact mechanisms<br />

behind the creation and propagation of cranial base fractures remain<br />

unclear. Mandible fractures are similarly confusing, due to the unique<br />

shape and biomechanical properties of the mandible which can produce<br />

abnormal fracture patterns. The curved shape of the mandible causes it to<br />

react to forces in a different manner than do more regular bones, such as the<br />

long bones leading to difficulty identifying point of impact.<br />

To illuminate the creation and propagation of cranial base fractures<br />

and mandible fractures, a study design was developed that would utilize the<br />

cutting edge technology in the fields of industrial and biomedical<br />

engineering, while keeping with the needs of anthropology. Because of the<br />

unique biomechanical properties of the human skull, it was decided that a<br />

non-human substitute was not an option. Fifteen fully fleshed, unembalmed<br />

cadaver heads were used. A small portion of the cranial vault<br />

was removed from each head, as well as the brain to allow viewing of the<br />

creation of the cranial base fractures by high-speed film. An engineering<br />

drop tower system was constructed to delivered calibrated, fully monitored<br />

blows to each specimen.<br />

Each specimen was impacted in several designated areas in a<br />

controlled experiment to produce cranial base fractures. In addition, each<br />

head was impacted in the mandible, with five heads impacted at the apex<br />

of the chin, five at the midline of the horizontal ramus, and five at the gonial<br />

angle. Five data acquisition load cells monitored the biomechanical<br />

response of the skulls for compressive and shear stress in the X, Y, and Z<br />

moments in millisecond intervals. With the data from the load cells, the<br />

forces throughout the impact and fracture propagation were charted and<br />

analyzed. After testing, each of the specimens was examined, with<br />

fractures charted and photographed. Each head was then processed and<br />

reconstructed to analyze the fracture patterns that resulted from each impact<br />

location. The experimental design allowed for complete monitoring<br />

throughout the impact event, and provided extensive data on how the<br />

cranium responds to blunt force trauma and how fractures occur.<br />

Results from the testing showed that cranial base fractures can be<br />

created by a strong blow to the lower parietal region, and fracture propagation<br />

travels through the areas of least support with in the base. Radiating<br />

fractures were also observed around the external auditory meatus. The<br />

mandible was shown to have characteristic fracture patterns correlating to<br />

the location of impact and resulting stress. Each of the three test areas<br />

displayed different patterns, and characteristic areas of tension and<br />

compression. Results from testing may help forensic anthropologists to<br />

understand confusing fracture patterns in the cranial base and mandible,<br />

and provide better trauma analysis.<br />

References:<br />

1. Berryman HE, Symes SA. Recognizing gunshot and blunt cranial trauma<br />

through fracture interpretation. In: Reichs KJ, editor. Forensic Osteology:<br />

Advances in the identification of human remains. Illinois: Charles C.<br />

Thomas, 1998.<br />

2. Galloway A. Fracture patterns and skeletal morphology: introduction<br />

and the skull. In: Galloway A, editor. Broken<br />

417 * Presenting Author


Bones. Springfeild, IL: Charles C. Thomas, 1998.<br />

3. Symes SA, Berrryman HE, Smith OC. The changing role of the forensic<br />

anthropologist: pattern and mechanism of fracture production. Lecture presented<br />

at Mountain, Swamp, and Beach meeting of practicing forensic<br />

anthropologists. Gatlinburg, TN, 1989.<br />

Cranial Base Fractures, Mandible Fractures, Impact <strong>Bio</strong>mechanics<br />

H14 Unusual Cranial Base Trauma in<br />

Victims of the Khmer Rouge<br />

Sabrina C. Ta’ala, MA*, and Gregory E. Berg, MA, Joint POW/MIA<br />

Accounting Command Central ID Lab (JPAC/CIL), 310 Worchester<br />

Avenue, Hickam AFB, HI 96853-5530<br />

After attending this presentation, attendees will be familiarized with<br />

an unusual pattern of cranial trauma observed in skeletal remains of Khmer<br />

Rouge victims.<br />

This presentation will impact the forensic community and/or<br />

humanity by disseminating information to the forensic community<br />

regarding a pattern of trauma stemming from extreme interpersonal<br />

violence. Hypothetical scenarios will be proposed concerning the specific<br />

origin of this trauma.<br />

The skeletal remains described in this study represent victims of the<br />

Khmer Rouge; the remains are currently housed in a memorial stupa at<br />

Choeung Ek, near Phnom Penh, Cambodia. Between 1975 and 1979,<br />

approximately 15,000 men, women, and children were executed and buried<br />

in mass graves at Choeung Ek. It is likely that most of these individuals<br />

were originally detainees in Phnom Penh’s Tuol Sleng prison. In the early<br />

1980s, Vietnamese officials excavated roughly half of the mass graves at<br />

Choeung Ek. When the remains were disinterred, they were disarticulated,<br />

sorted by bone type, and later stored in a stupa built on the site. The<br />

Cambodian government now administers the site as a museum and it is<br />

popularly referred to as “the Killing Fields,” although numerous such sites<br />

are scattered throughout Cambodia.<br />

Witness accounts suggest that members of the Khmer Rouge<br />

generally avoided using up scarce ammunition on executions – gunshot<br />

was not necessarily the standard method of execution. Alternate means<br />

such as stabbing, strangulation, suffocation, and bludgeoning were often<br />

employed instead.<br />

A random sample of 85 crania housed in the stupa was examined for<br />

morphological variation and trauma. Subadult crania were excluded and a<br />

sex estimate was recorded for each individual. Sex estimates were based<br />

solely on cranial morphology, as all crania were disassociated from their<br />

respective post-cranial portions. Since sex and age estimates were fairly<br />

generalized, patterns of differential execution treatment were difficult to<br />

assess.<br />

Out of the 85 crania examined at Choeung Ek, ten individuals (12%)<br />

display blunt force trauma to the occipital. The trauma typically presents<br />

as a sizeable loss of the occipital bone from the middle of the foramen<br />

magnum to the external occipital protuberance (roughly between opisthion<br />

and opisthocranion). Half of the fractures are focused centrally on the<br />

squamous portion of the occipital, the other are oriented to the left or right.<br />

In several cases, the foramen magnum is fractured posterior to the occipital<br />

condyles; in many cases the entire occipital base is absent. The breakage<br />

pattern includes fractures that migrate across the spheno-occipito sutures<br />

and into the lesser wings of the sphenoid. Often, fractures run from the<br />

margins of the missing bone toward lambda and the mastoid processes.<br />

Some of these fractures even split large external occipital protuberances.<br />

Multiple blows are apparent on several crania. Radiating fractures are<br />

visible on nearly all crania; concentric fractures are associated with some<br />

as well. Beveling is present on the margins of the affected bones, typically<br />

on the inner table, though a few instances of external beveling occur, suggesting<br />

that differential forces were applied to the cranial base.<br />

* Presenting Author<br />

The cranial trauma appears to represent a unique and deliberate<br />

pattern of execution. While most interpersonal violence is directed at the<br />

face, forehead, and sides of the head, here it is directed at the cranial base.<br />

Two possible methods of producing the observed trauma are proposed.<br />

One hypothesis is that the individuals were struck while in a crouched<br />

“execution-style” position, much the same as would be appropriate for a<br />

beheading. A second possibility is that the executed individuals were struck<br />

with an upswing directed at the skull base, while standing. In either case,<br />

this trauma demonstrates an effort to maximize the effectiveness of the<br />

blow - this area of the skull is strongly supported, but potentially sensitive<br />

because of its connection with the spinal column.<br />

Forensic Anthropology, Cranial Trauma, Execution<br />

H15 Microscopic and Cross Section Analysis<br />

of Occult Intraosseous Fracture<br />

(Bone Bruise) of the Skull<br />

Emily A. Craig, PhD*, and Cristin Rolf, MD, State <strong>Medical</strong> Examiner’s<br />

Office, 100 Sower Boulevard, Suite 202, Frankfort, KY 40601; and<br />

Warren Mitchell, Kentucky State Police Laboratory, 100 Sower<br />

Boulevard, Suite 202, Frankfort, KY 40601<br />

The goal of this presentation is to present a case report in which crosssection<br />

analysis of a so-called “bone bruise” of the skull revealed extensive<br />

microfracture of the bone.<br />

This presentation will impact the forensic community and/or<br />

humanity by raising awareness of the forensic importance of bone crosssection<br />

analysis for occult intraosseous fracture, and show the possibility of<br />

using this pattern of microfracture in comparative tool mark analysis.<br />

Occult intraosseous fracture of bone, otherwise known as a “bone<br />

bruise,” is usually the result of compressive and/or impaction forces -<br />

including falls, car accidents, sports injuries, and other injuries including<br />

deliberate blows received at the hands of others. In the clinical setting, a<br />

bone bruise is often considered an area of trabecular bone microfracture<br />

with bony alterations similar to those seen in stress fractures, and there is<br />

little or no limitation of motion or function. In these clinical settings, bone<br />

bruises are poorly defined, and are not visible on plain film radiographs.<br />

Magnetic Resonance Imaging (MRI) often reveals subtle variations in<br />

signal intensity of the medullary bone, but this MRI modality is not readily<br />

available in most forensic autopsy settings. Gross examination of the bone<br />

at autopsy often demonstrates discoloration of the bone due to hemorrhage,<br />

but with a bone bruise there are no visible cracks in the bone, nor variation<br />

in the contour of the bone’s surface. However, gross and microscopic<br />

cross-section examination of these areas can reveal evidence of impaction<br />

or compression forces sufficient to break the bone. This cross-section<br />

analysis of the bone can also be valuable for determining the precise area<br />

of bone which sustained the blow. Measuring the extent of discrete areas<br />

of microfracture has the potential to prove useful for tool mark comparison<br />

studies.<br />

In this case study, the decomposing body of an adult female was found<br />

outdoors partially covered by forest debris. The skull was essentially skeletonized,<br />

although there was a considerable amount of soft tissue remaining<br />

on the lower trunk and extremities. The cause of death was determined to<br />

be sharp force trauma. The only area of apparent injury to the skull was a<br />

1 X 3 inch teardrop - shaped area of discoloration in the frontal bone at the<br />

midline.<br />

Gross examination of both the ectocranial and endocranial surfaces of<br />

the bone revealed no break in the contour of the bone. Plain film radiographs<br />

of the bone did not reveal the presence of any fractures. Within the<br />

darkened hemorrhagic area, however, there was a small semicircular line of<br />

darker discoloration on the ectocranial surface. A wedge-shaped section of<br />

frontal bone, including this line, was harvested with an oscillating bone<br />

saw. On cross-section, the gross appearance of the entire wedge of bone<br />

418


evealed the hemorrhagic discoloration had seeped through the outer cortex<br />

to the diploë, and portions of the diploë were filled with blood. The bone<br />

exhibited fractures parallel to the ectocranial surface. Cross section examination<br />

also revealed other numerous tiny fractures, which extended into the<br />

diploë. These fractures could be seen by the naked eye. The fractures were<br />

essentially parallel, with separation of their margins being wider at the<br />

ectocranial surface of the bone, and becoming progressively narrower as<br />

they approached the diploë. None of the fractures crossed the diploë. The<br />

microfractures stopped abruptly at the outline of the semicircular line on<br />

the ectocranial surface of the bone.<br />

Analysis of the semicircular line was done by the side-by-side<br />

comparative microscope technique usually reserved for ballistic<br />

comparative analysis.<br />

Bone Bruise, Trauma, Tool Marks<br />

H16 Disappearance, Torture, and Murder<br />

of Nine Individuals in a Community<br />

of Guatemala<br />

Shirley C. Chacon, BA*, Leonel E. Paiz, BA, and Renaldo Acevedo, BA,<br />

Fundacion de Anthropology Forense de Guatemala, Avenida Simeon<br />

Cañas 10-64 Zona 2, Guatemala, 01002, Guatemala<br />

The goal of this presentation is to discuss a case in which fifteen individuals<br />

disappeared from the Ixil region of Guatemala between 1980 and<br />

1982, and suggest the role that the Guatemalan Army played in the case.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that nine of these individuals were victims of<br />

systematic torture and murder during the Guatemalan Civil War.<br />

The committee for Historical clarification of Guatemala (CEH)<br />

registers 32 massacres which took place between 1980 and 1982 in the Ixil<br />

ethnic region of Guatemala. Also occurring during this time was the total<br />

or partial destruction of 90 villages in the area, and the displacement of a<br />

major part of the rural population from its territory. The case presented here<br />

involving the nine recovered individuals is from one of these 32 massacres.<br />

The purpose of this investigation is to give this case exposure and provide<br />

scientific evidence to the justice system in order to start a trial.<br />

The investigations carried out by the CEH revealed the existence of a<br />

clandestine cemetery in the hamlet ¨Batzcorral.” This case appears twice<br />

in the report, with different dates. The first version relates that during<br />

February 1982 the bodies of five persons displaying signs of torture were<br />

found in the above-mentioned hamlet. The second version mentions that<br />

during the year 1985 a battle between the army and the guerillas occurred.<br />

This was the reason why army members, as revenge, tortured, and executed<br />

fifteen persons, whose bodies where dismembered.<br />

The testimonies gathered by the Fundacion de Antropologia Forense<br />

de Guatemala, through interviews with members of the families of the<br />

disappeared, indicate that after a battle between the guerillas and the army<br />

of Guatemala, the soldiers started to search the outskirts of Nebaj for<br />

individuals who were allegedly involved in the conflict. On July 10, 1982,<br />

five men where captured. Five weeks later 10 more were reported missing.<br />

According to the testimonies, some of them were at their places of business.<br />

Neighbors say that they saw army members taking the missing persons to<br />

the military base. The wife of one of the missing related that she went to<br />

the base and asked for her husband. She was told that he was not there and<br />

that he might have gone to another place.<br />

On September 15 of the same year, the owner of a nearby field<br />

informed family members that he found bodies being bitten by dogs, and<br />

that they presented signs of torture. Therefore, family members and<br />

neighbors decided to dig a grave to bury the bodies.<br />

In the results obtained by the FAFG, two clandestine graves were<br />

found. In total, nine incomplete skeletons and eighteen limb bones (twelve<br />

arms and six legs) were recovered.<br />

During the analysis of the bones, it was found that the nine skeletons<br />

were male (eight adults and one subadult). Each case presented trauma<br />

caused by sharp and blunt forces to the arms and legs, as well as blunt force<br />

trauma to the ribs. Cuts to the clothing were also observed. Seven bodies<br />

were mutilated, which was, according to the CEH, typical during the civil<br />

war in Guatemala. The trauma to these individuals is evidence of<br />

systematic torture. Therefore, according to the International right, the<br />

crimes of torture and murder were committed in these cases.<br />

Torture, Mutilation, Massacre<br />

H17 Morphoscopic Traits and the Statistical<br />

Determination of Ancestry<br />

Stephen D. Ousley, MA, PhD*, Smithsonian Institution, Department of<br />

Anthropology, PO Box 7012, NMNH MRC 138, Washington, DC 20013-<br />

7012; and Joseph T. Hefner, MA, Department of Anthropology, CA Pound<br />

Human Identification Laboratory, University of Florida, Gainesville,<br />

FL 32605<br />

This presentation will impact the forensic community and/or<br />

humanity by showing how they can utilize non-metric traits in a statistical<br />

approach and immediately start using these techniques to assess ancestry.<br />

Their opinions will be more reliable because they can state a probability of<br />

group membership and will know the samples and sample sizes their results<br />

and conclusions are based on.<br />

The primary goal of the presentation is to provide statistical guidelines<br />

and results for using nonmetric traits in the determination of ancestry. It<br />

will be made clear that several statistical methods provide enhanced<br />

utilization of non-metric traits in the classification of unidentified human<br />

crania.<br />

Hefner (1, 2) has shown empirically that the “typical” nonmetric traits<br />

of African-, Asian-, and European-derived groups are not found at<br />

frequencies suggested by forensic anthropologists such as Bass, Byers,<br />

Gill, and Rhine. These traits were highly valued by Earnest Hooton, and<br />

come predominantly from his “Harvard List” of traits. Hooton prepared<br />

illustrations of the “Harvard List” but apparently, neither he nor any of his<br />

students published group trait frequencies. While the extreme trait<br />

expressions are not as frequent as suggested and thus, not as reliable for<br />

estimating ancestry, the traits were nonetheless demonstrated to have value<br />

in discriminating between American Blacks and Whites. Hefner et al. (3)<br />

introduced a Binary Optimized Aggregate Score (BOAS) statistic that classified<br />

a sample of 165 American Blacks and 160 American Whites into<br />

ancestry 80% correctly. BOAS weighed each variable equally: it was<br />

simply the sum of binary trait scores (0 or 1) heuristically derived from the<br />

ordinal trait scores.<br />

Discriminant functions (DF) optimize the weights of each variable to<br />

maximize group separation. However, Linear Discriminant Functions<br />

(LDFs) usually require multivariate normality and approximately the same<br />

level of variation in order to produce reliable results. LDFs are aided by<br />

the central limit theorum, which tends to increase the normality of data as<br />

more and more individuals are added. Some statisticians (4) have suggested<br />

that dichotomous or ordinal variables could be used in a LDF as if they<br />

were metric with certain caveats. One criterion of a valid two-way DF is<br />

that the DF scores of each group should be approximately normally distributed.<br />

This way, the sectioning point is guaranteed to be the optimum<br />

and should be valid for future samples, and posterior and typicality probabilities<br />

will represent the correct values. However, sectioning points can<br />

still be derived whether or not the DF scores are normally distributed. For<br />

example, if a measurement or function completely separated groups, it<br />

could be used no matter what the distribution was. One caveat is that the<br />

posterior and typicality probabilities may be misleading.<br />

Logistic regression (LR) has been used to discriminate among groups<br />

and does not require assumptions of group variation and multivariate<br />

419 * Presenting Author


normality. LR can incorporate categorical data as well as continuous data,<br />

and can utilize both in analyses. LR calculates a probability of group<br />

membership directly, rather than first calculating a composite score, then<br />

comparing group scores, and only then calculating a probability, as in<br />

LDFs. Similarly, two non-parametric DFs, Kernel DFs (KDFs) and Nearest<br />

Neighbor DFs (NNDFs), calculate probabilities directly, independent of<br />

group distributions.<br />

For this study, the same ordinal data from Whites and Blacks were<br />

analyzed using LDF and a curious pattern emerged. The DF scores and<br />

probabilities for each group were skewed but in opposite directions in<br />

nearly every analysis, including LDF, KDF, NNDF, and LR of the original<br />

variables, as well as LDF of the principal components of the conventional<br />

and polychoric correlation matrices of scores. The principal component<br />

loadings of the polychoric and Pearson correlation matrices of the traits<br />

were remarkably similar (rho = 0.92). Transformations of scores did not<br />

appreciably affect the distributions. Cross-validated accuracies up to 90%<br />

were achieved using as few as three traits.<br />

LR was the best method overall, in three-group analyses as well, but<br />

LR does not produce typicality probabilities. To substitute for typicality<br />

probabilities, nonparametric methods such as ranked probabilities and<br />

ranked interindividual similarity measures can be employed.<br />

Analyses using KDFs and NNDFs also produced very good results,<br />

with crossvalidated accuracies approximately 88%. These results were<br />

better than using a basic Bayesian approach, which assumes independence<br />

of traits and weighs each trait equally. Problems with a simple Bayesian<br />

approach were illustrated by using a trait such as postbregmatic depression,<br />

which was present in 44% of the Blacks and 17% of the Whites.<br />

Postbregmatic depression was attenuated in LDF and LR through much<br />

lower function coefficients.<br />

Our results show that the nonmetric traits examined can be analyzed<br />

in ordinal or binary scales (minimizing interobserver error) using DFs. LR<br />

produced slightly better results and provides a more robust and reliable<br />

prediction of ancestry using nonmetric traits. The results also empirically<br />

confirm the value of using nonmetric traits in a statistical framework, as<br />

Hooton had hoped. Daubert concerns can be addressed through using<br />

appropriate and large samples, recorded group frequencies and probabilities,<br />

graphs, and cross-validated results, rather than relying solely on the<br />

experience and intuition of the observer.<br />

References:<br />

1. Hefner JT. An Assessment of Craniofacial Nonmetric Traits Currently<br />

Used in the Forensic Determination of Ancestry. Paper presented at the<br />

54th Annual Meeting of the American Academy of Forensic Sciences,<br />

Atlanta, Georgia, 2002.<br />

2. Hefner JT. The Utility of Nonmetric Cranial Traits in Ancestry<br />

Determination - Part II. Paper presented at the 55th Annual Meeting of the<br />

American Academy of Forensic Sciences, Chicago, IL, 2003.<br />

3. Hefner JT, Ousley SD, and Warren MW. An Historical Perspective of<br />

Nonmetric Traits: Hooton and the Harvard List” Paper presented at the 56th<br />

Annual meeting of the American Academy of Forensic Sciences, Dallas,<br />

TX, 2004.<br />

4. Krzanowski WJ. Principles of Multivariate Analysis. Oxford University<br />

Press, Oxford, 2000.<br />

Non-Metric Traits, Logistic Regression, Determination of Ancestry<br />

* Presenting Author<br />

H18 Forensic Identifications and the<br />

Complexity of Determining <strong>Bio</strong>logical<br />

Affinities of “Hispanic” Crania<br />

Ann H. Ross, PhD*, North Carolina State University, Department of<br />

Sociology and Anthropology, Campus Box 8107, Raleigh, NC 27695-<br />

8107; Dennis E. Slice, PhD, Wake Forest University, School of Medicine,<br />

Department of <strong>Bio</strong>medical Engineering, Division of Radiologic Sciences,<br />

Winston-Salem, NC 27157; and José V. Pachar, MD, Morgue Judicial,<br />

Instituto de Medicina Legal, Panama-Ancon, Panama<br />

The attendees will be presented with results of a three-dimensional,<br />

geometric morphometric analysis of cranial shape illustrating variability in<br />

modern Latin American populations likely associated with differing<br />

migrational histories.<br />

This presentation will impact the forensic community and/or<br />

humanity by raising appreciation of the biological diversity of “Hispanic”<br />

populations.<br />

The use of “Hispanic” as a classification or category does not provide<br />

an adequate biological profile because it groups together populations of<br />

varied genetic backgrounds. In the U.S., the term “Hispanic” includes all<br />

persons of Spanish speaking countries. However, in the forensic setting the<br />

use of such an umbrella term is problematic because it ignores the distinct<br />

ethnohistories and migration patterns of each geographical region.<br />

According to the 2002 U.S. Census, more than one in eight people in the<br />

United States are of Hispanic origin and are more geographically<br />

concentrated in specific regions of the U.S. than non-Hispanic Whites.<br />

These statistics could have major implications in the medicolegal setting<br />

for the identification of unknown skeletal remains.<br />

In recent studies, the authors demonstrated that modern Cubans show<br />

a strong African affinity followed by a Spanish component and lack an<br />

indigenous Amerindian biological affinity suggesting a complete<br />

replacement of the indigenous Cuban population. Contra, Mexicans show<br />

a different biological pattern entirely, lacking both the African and Spanish<br />

components, while having a strong indigenous Amerindian affinity.<br />

This study presents ongoing research documenting the diversity of<br />

“Hispanic” populations. In order to further investigate the regional and<br />

geographic variation of Hispanic populations, the authors present the<br />

among-sample morphological variation of modern Panamanians (n=9),<br />

Afro-Antillean or West Indian Panamanians (n=6), modern Cubans (n=23),<br />

prehistoric Cubans (n=6), Prehistoric Ecuadorians (n=13), Spanish (n=30),<br />

Mexicans (n=31), American Whites (n=52), and Terry Blacks (n=18) using<br />

landmark-based Procrustes superimposition from the geometric<br />

morphometry. Twenty-three standard craniometric landmarks were used to<br />

reflect the among-group variation. A Microscribe G2X® digitizer was used<br />

to collect the coordinates using the software Three Skull, developed by<br />

Stephen D. Ousley.<br />

A nonparametric MANOVA comparing the sum-of-squares accounted<br />

by group membership to that of 999 random permutations of group<br />

membership detected significant group differences. In addition, an<br />

Unweighted Pair Group Method with Arithmatic Mean (UPGMA)<br />

clustering analysis was performed from the generalized squared distance<br />

matrix to characterize relative shape similarities between the groups. Terry<br />

blacks, modern Cubans, Spanish, and American whites form a cluster<br />

distinct from the Ecuadorian, Mexican, Panamanian, and West Indian<br />

Panamanians samples. Interestingly, the West Indian Panamanians are<br />

more closely related to groups with strong Amerindian affinities rather than<br />

African affinities.<br />

The majority of the Panamanian population is mestizo or admixed<br />

(Amerindian and Spanish or Amerindian, Spanish, West Indian, and<br />

Chinese). Panama’s history has been shaped by its unique geography. First<br />

exploited by the Spanish as the crossroads and point of transfer for the gold,<br />

making its way from South America to Spain and, more recently, by the<br />

building of the Panama Canal. During the construction of the canal,<br />

420


Panama saw a large influx of West Indians and Chinese immigrants brought<br />

as laborers, which had a lasting impact on the country’s genetic make-up.<br />

Notably, these results further support that populations broadly<br />

grouped together as “Hispanics” are not all the same and emphasize the<br />

importance of investigating regional or geographic morphological<br />

variations while taking into account the unique ethnohistorical origins of<br />

Hispanic populations. Incorporating these unique patterns of variation<br />

along with census/demographic data into forensic practice could<br />

substantially aid in the identification of unknown skeletal remains.<br />

Forensic Anthropology, Hispanic Populations, Geometric<br />

Morphometrics<br />

H19 <strong>Bio</strong>logical Variation Among Hispanic<br />

(Spanish-Speaking) Peoples of the Americas<br />

Martha K. Spradley, MA*, and Richard L. Jantz, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; David M. Glassmann, PhD, University of Southern<br />

Indiana, School of Liberal Arts, 8600 University Boulevard, Evansville,<br />

IN 47712-3596; and Alan G. Robinson, MSc, Fundacion de Antropologia<br />

Forense de Guatemala, Avenida Simon Canas 10-64 Zona 2, Ciudad de<br />

Guatemala, Guatemala City, 01002, Guatemala<br />

The goal of this presentation is to present the biological variation that<br />

exists among Hispanic (Spanish-speaking) peoples of the Americas and<br />

how this variation allows for the development of better standards in<br />

ancestry identification.<br />

The purpose of this paper is to demonstrate the biological variation<br />

that exists among Hispanic (Spanish-speaking) peoples of the Americas.<br />

This paper will also attempt to show that craniometric data from different<br />

geographic areas in Latin America and Mexico could aid in the determination<br />

of the geographic origin of unknown individuals identified as<br />

Hispanic. Additionally, this paper will explore postcranial variation of<br />

Hispanic groups when compared to American Blacks and Whites. The<br />

impact of this research can aid in the development of better craniometric<br />

standards for use in ancestry identification on an international level. For<br />

example, FORDISC 3.0 will have more appropriate samples for use in<br />

Latin America and other parts of the world.<br />

The determination of ancestry or group affiliation is one of the<br />

primary factors in a forensic anthropological analysis. Craniometric data is<br />

commonly used as a means of ancestry determination. However, sample<br />

specific standards may not always be readily available for a particular<br />

group. In the United States, “Hispanic” refers to individuals originating<br />

from Mexico, Puerto Rico, Cuba, South or Central America, or other<br />

Hispanic/Latino origin (U.S. Census Bureau 2003) and therefore does not<br />

have precise genetic meaning. In general, Hispanics are hybrid populations<br />

composed of various African, Native American and European genetic backgrounds.<br />

Caribbean Hispanics may have large African components, while<br />

Mexican Hispanics may have large Native American components. For<br />

example, Ross et al. 2004, using geometric morphometric methods, found<br />

Cuban Americans nearer to American Blacks, indicating the term Hispanic<br />

as too broad.<br />

When analyzing biological variation from skeletal metrics, a<br />

commonly used method is biological distance or Mahalanobis D2 , a<br />

measure of population divergence based on polygenic traits (Buikstra et al.<br />

1990). Samples used in this analysis are Guatemalans, Argentineans,<br />

American Hispanics and American Whites. All samples are modern and<br />

forensic in nature. The D2 distances among all groups are all significant at<br />

the .001 level, indicating that group centroids are significantly different.<br />

The D2 distance matrix indicates that the smallest distances, therefore the<br />

most similarities are found between American White and American<br />

Hispanic females, followed by males from the same groups. Argentinean<br />

males are more similar to American Hispanic males and furthest from<br />

Guatemalan males. Overall, Guatemalans are most differentiated from all<br />

other groups. When the first two canonical means are plotted they show,<br />

again, that Guatemalan males are furthest from the centroids and therefore<br />

more differentiated from the other groups. CAN 1 separates the sexes and<br />

indicates that American White males have taller, wider and longer cranial<br />

vaults. CAN 2 indicates that Guatemalan males have more facial forwardness,<br />

a wider face with wide nasal aperture, a wide palate and a wide<br />

interorbital breadth.<br />

While all groups exhibit differences, Guatemalans appear to be most<br />

differentiated from all other groups. The most likely explanation for these<br />

results is that the Guatemalan sample is comprised of Indigenous individuals,<br />

i.e. more or less pure Native Americans, while Argentinean and<br />

American Hispanics have more European admixture. Additionally, craniometric<br />

data of known individuals from different groups could potentially<br />

aid in identifying more specific geographic origins of individuals who die<br />

in U.S. border crossings.<br />

<strong>Bio</strong>logical Variation, Hispanic, Craniometric<br />

H20 Classification and Evaluation of<br />

Unusual Individuals Using FORDISC<br />

Donna Freid, MA*, University of Tennessee, Knoxville, 250 South<br />

Stadium Hall, Knoxville, TN 37996; Richard L. Jantz, PhD, University<br />

of Tennessee, Knoxville, 250 South Stadium Hall, Knoxville, TN 3799<br />

After attending this presentation, attendees will have a greater appreciation<br />

of how to interpret FORDISC output, especially when using it with<br />

crania originating from populations different from FORDISC’s reference<br />

samples. The importance of the use of an appropriate reference sample will<br />

be emphasized.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing the forensic investigator’s knowledge of the utility<br />

of the FORDISC program and other discriminant function analyses in<br />

identifying unknown remains.<br />

FORDISC is an interactive computer program designed to classify an<br />

unknown adult cranium based on known samples from the Forensic<br />

Anthropology Data Bank and the Howells (1989) world sample.<br />

FORDISC uses discriminant functions to construct a classification matrix<br />

and assign group membership of the unknown cranium into one of the<br />

selected reference groups.<br />

The utility of FORDISC for use in classifying worldwide populations<br />

has been criticized in the past for its “attempts to constrain worldwide<br />

human cranial variability into discrete biological groupings, or races” (1)<br />

and for classifying sex based on size (robust vs. gracile) rather than shape.<br />

These analyses are misleading for two reasons and demonstrate the two<br />

most common misapplications of FORDISC: use of inappropriate<br />

reference samples and failure to properly evaluate the typicality and<br />

posterior probabilities provided by the program.<br />

FORDISC is designed to classify unknown crania based on the<br />

reference samples in its database. The researcher guides the analysis by<br />

choosing the populations against which to classify the unknown, choosing<br />

from eleven population samples from the Forensic Anthropology Data Bank<br />

or 28 population samples from Howells’ worldwide database. Reference<br />

samples chosen for comparison should be those most likely to be the source<br />

population of the unknown cranium. The posterior and typicality probabilities<br />

together indicate the strength of the classification. The posterior probability<br />

evaluates the probability of group membership under the assumption<br />

that the unknown belongs to one of the groups in the function (3) . Under the<br />

assumptions of the discriminant function analysis, the unknown cranium<br />

must be assigned to one of the groups chosen. The typicality probability,<br />

however, represents how likely the unknown belongs to any particular<br />

group, and includes the probability that the unknown may belong to several<br />

421 * Presenting Author


or none of the groups selected. This value indicates how atypical the<br />

unknown skull would be in the populations chosen for comparison.<br />

In this paper, classifications will be evaluated using data from the<br />

Forensic Anthropology Data Bank and Howells’ worldwide data, using<br />

crania from populations known not to belong to any of the reference<br />

samples. Posterior and typicality probabilities usually indicate that a<br />

cranium is not similar to any reference sample. In order for FORDISC to<br />

perform effectively, it must be applied in regions or contexts where<br />

reference samples adequately represent cranial variation.<br />

References:<br />

1. Belcher R, Williams F, Armelagos GJ. (2002) Misidentification of<br />

Meroitic Nubians using FORDISC 2.0. Am J Phys Anth: 42-42 Suppl. 34<br />

2. Ousley SD, and Jantz RL. (1996) FORDISC 2.0: Personal computer<br />

forensic discriminant functions. The University of Tennessee, Knoxville.<br />

3. Tatsuoka MM. (1971) Multivariate analysis. New York: John Wiley and<br />

Sons.<br />

FORDISC, Classification, Unusual Crania<br />

H21 Ur-FORDISC, or Early Statistical<br />

Methods in Forensic Anthropology<br />

Eugene Giles, PhD*, Department of Anthropology, University of Illinois,<br />

607 South Mathews Avenue, Urbana, IL 61801<br />

The goal of this presentation is to review the early extension of quantitative<br />

statistical methods in forensic anthropology that provided the<br />

impetus for the development of FORDISC for use in research and<br />

casework.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing help to forensic anthropologists and other forensic<br />

scientists in understanding the origins of the multivariate statistical<br />

techniques used in their field.<br />

A statistical approach to skeletal identification and description<br />

developed in the nineteenth century with the use of indices to quantify<br />

observational characteristics of features such as skull shape, nose shape,<br />

relative long bone lengths, and the like. An index so used had the<br />

advantage of ostensibly removing size from consideration, and allowed its<br />

adherents to claim a quantitative group characterization of shape. The<br />

French anthropologist Paul Topinard wrote in 1894 that a cephalic index<br />

(100 X head breadth - head length) of 75 and under was “universally<br />

adopted” (but there were exceptions) as defining long-headedness or<br />

dolichocephaly. Topinard also combined several sets of skeletal measurements<br />

to form a database for determining stature by average long<br />

bone/stature ratios. For example, he found stature to be seven times<br />

maximum radius length, so stature (cm) = 7(radius length [cm]) plus 3.5 cm<br />

(a constant he employed only to move from skeletal to living stature).<br />

Topinard’s ratio approach seriously misrepresented both ends of the<br />

stature range. His remedy was to divide the sample into tall, short and<br />

medium sized people. A more adequate solution, which underpins today’s<br />

FORDISC, was first used by the British biometrician Karl Pearson at the<br />

turn of the century. Pearson applied regression, said to be the most used<br />

and least understood type of statistical methodology, in its most elementary<br />

form, linear regression, to the calculation of stature. As Pearson (1899) put<br />

it, “The theory of regression shows that the most probable value of B [for<br />

example, stature] is expressible, so long as the correlation is normal, as a<br />

linear function of A [for example, femur length].”<br />

A step of significance in the application of statistics to forensic anthropology<br />

came in the middle 1930s. Sometimes called the Fisherian stage of<br />

discriminatory analysis after its principal originator, R.A. Fisher, the linear<br />

discriminant function was initially applied by colleagues of Fisher’s to<br />

problems familiar to forensic anthropologists. E.S. Martin in 1935 used<br />

Fisher’s linear discriminant function to sex a collection of Egyptian<br />

* Presenting Author<br />

mandibles, and M.M. Barnard in 1936 used discriminant function analysis<br />

to determine the secular variation in Egyptian skulls. Barnard used seven<br />

very familiar cranial measurements: maximum breadth and length, nasal<br />

width, and height, and the bregma-nasion-basion triangle. He stressed the<br />

applicability of the technique to supplement visual sexing of crania,<br />

particularly “to investigate further the minority of cases where the sex<br />

cannot be determined, without doubt, anatomically.”<br />

The next important mileposts, theoretically at least, on the road to<br />

FORDISC appeared in the Cambridge PhD thesis of the Indian statistician<br />

C.R. Rao in 1948. Fisher’s discriminant function dealt with two categories;<br />

no doubt one reason that early applications involved human crania was that<br />

sexing conveniently offers two such categories. Rao, however, provided<br />

the theoretical basis for expanding discriminant function analysis to many<br />

categories, and, if that wasn’t enough for one thesis, developed a test which<br />

answered his own question on the need to establish how many characters<br />

to use, “All right, given a set of measurements, is there further information<br />

in an additional set of measurements?”<br />

Of the two preeminent physical anthropologists of the first half of the<br />

twentieth century, one, Ales Hrdlicka, suffered, as Alice Brues put it, from<br />

“math anxiety” and detested statistics. Fortunately the other, Earnest<br />

Hooton, did not, nor did his students, many of whom, well-placed academically,<br />

contributed to modern forensic anthropology such as Harry Shapiro,<br />

Bill Howells, Fred Hulse, Charles Snow, Alice Brues, and Larry Angel. In<br />

the late 1950s to early 1960s publications utilizing discriminant functions<br />

by Fred Thieme, Kazuo Hanihara, Jose Pons, Eugene Giles and Orville<br />

Elliot, and others began to appear. Giles and Elliot’s papers in particular<br />

focused on forensic applications and their work was referenced in the first<br />

forensic anthropology text, W.M. Krogman’s The Human Skeleton in<br />

Forensic Medicine (1962). Forensic anthropology statistics, although<br />

regarded suspiciously by some and grudgingly accepted by some others in<br />

the 1960s and later, and facilitated by the replacement of calculators by<br />

computers, led by the end of the twentieth century to the spectrum of aids<br />

to forensic anthropology incorporated in such now indispensable tools as<br />

FORDISC.<br />

Discriminant Functions, History of Forensic Anthropology Statistics,<br />

Fordisc<br />

H22 The Next FORDISC: FORDISC 3<br />

Stephen D. Ousley, PhD*, Smithsonian Institution, NMNH, MRC 138,<br />

Washington, DC 20013; and Richard L. Jantz, MA, PhD, University of<br />

Tennessee, Department of Anthropology, 252 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will appreciate the power<br />

and utility of the next generation of FORDISC, and have a heightened<br />

awareness of modern American population variation. They will also use<br />

statistical procedures more critically.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing enhancements to the program and some lessons the<br />

authors have learned about multivariate analysis and American skeletal<br />

variation.<br />

The goal of this presentation is to describe changes, additions, and<br />

improvements to FORDISC 2.0, the popular interactive computer program<br />

that uses Discriminant Function Analysis to classify unknown skeletal<br />

remains based on known samples using cranial or postcranial measurements.<br />

The presentation will introduce the power and utility of the next<br />

generation of FORDISC, and heighten awareness of modern American<br />

population variation. FORDISC 2.0 has been used extensively to aid in<br />

ascertaining the biolgical profile of skeletal remains. To date over 400<br />

copies have been sold. The impetus to develop FORDISC came from<br />

increasingly frequent requests from forensic anthropologists to calculate<br />

“madetoorder” discriminant functions (DFs) using data from the Forensic<br />

422


First, the reference group sample sizes have been increased, especially<br />

for Hispanics from the Southwest U.S. There are approximately twice as<br />

many Hispanic males available for analysis, as well as a substantial<br />

Hispanic female sample. Additionally, samples of 19th century whites and<br />

black males and females have been added, making FORDISC more useful<br />

in archaeological, as well as forensic, contexts. Despite warnings, many<br />

users have been using FORDISC to analyze non-20th century remains<br />

anyway.<br />

Second, FORDISC 3 incorporates more measurements in the reference<br />

databases, namely the full Howells (2) Data Base (FDB). The power of DFs lies in the fact that DFs maximize the<br />

differences in bone size and shape among groups. Such custom DFs are<br />

necessary when measurements required by published DFs, for example<br />

Giles and Elliot (1), are impossible to obtain. DFs are also desirable when<br />

one wishes to compare the unknown to different reference groups.<br />

FORDISC 2 allows anthropologists to construct DFs using two to eleven<br />

modern groups, some including males and females, using up to 34 craniometrics,<br />

or two to four groups using up to 39 postcranial measurements.<br />

Additionally, FORDISC 2 enabled the easy estimation of stature from long<br />

bone lengths. FORDISC 3 expands on the utility of FORDISC 2 in several<br />

areas and addresses many of the caveats of using discriminant functions (7)<br />

that have been derived from theoretical and empirical results.<br />

set of measurements. More<br />

useful measurements are now available to help discriminate among groups.<br />

Additionally, the basic FDB measurements have been expanded to include<br />

biasterion breadth, zygomaxillary breadth, and mid-orbital width. These<br />

three measurements vary among groups and the landmarks are easy to<br />

locate.<br />

Third, FORDISC 3 will analyze and incorporate other data sets. This<br />

will allow different reference samples to be used for comparisons.<br />

Samples, for example, of Plains Indian tribes, can be analyzed against each<br />

other or against Howells or FDB groups. It will also analyze any set of<br />

variables, including cranial interlandmark distances (ILDs), which have<br />

been shown to be quite useful in discriminating among a variety of groups<br />

(3, 4, 5, 6) .<br />

Statistical enhancements are numerous. Stepwise selection (forward,<br />

backward, and exhaustive) of variables using multivariate criteria and classification<br />

accuracy is incorporated. DFs are sensitive to outliers, and a<br />

robust DF option will be available. Transformations of measurements into<br />

natural logs and shape variables can be easily selected. Logistic regression<br />

and non-parametric analyses are planned as well, including K-nearest<br />

neighbor classification and kernel DFs. Stature estimation will be possible<br />

through Model I and Model II Regression.<br />

Enhancements to the program itself are numerous and will be<br />

ongoing. Graphic output will include kernel densities or adjustable histogram<br />

widths for 2-group analyses, and 2- and 3-D scatter plots of more<br />

groups. As program changes and enhancements or database updates<br />

become available, Fordisc 3 can be updated on the user’s PC through an<br />

internet connection. With feedback from users, incorporate further<br />

enhancements will be incorporated.<br />

In short, FORDISC 3 is a quantum leap in the power and utility of<br />

FORDISC 2.0.<br />

References:<br />

1. Giles E, and Elliot O. Race Identification from Cranial Measurements.<br />

J Forensic Sci 1962; 7:147-157.<br />

2. Howells WW. Cranial Variation in Man. Papers of the Peabody Museum<br />

of Archaeology and Ethnology 1973; 67. Harvard University, Cambridge,<br />

MA.<br />

3. Mann MM, and Ousley SD. Using Nontraditional Craniometrics to<br />

address Museum, Repatriation, and other Forensic Questions. Presented at<br />

the 53rd Annual Meeting of the American Academy of Forensic Sciences,<br />

Seattle, WA, February 19-24, 2001.<br />

4. Ousley SD. New Approaches to Human Variation and Forensic<br />

Anthropology (including Repatriation). Paper presented at the 52nd Annual<br />

Meeting of the American Academy of Forensic Sciences, Reno, NV,<br />

February 20-26, 2000.<br />

5. Ousley SD, and Billeck WT. Assessing Tribal Identity in the Plains using<br />

Nontraditional Craniometrics (Interlandmark Distances). Poster presented<br />

at the 70th Annual Meeting of the American Association of Physical<br />

Anthropologists, Kansas City, MO, March 28-31, 2001.<br />

6. Ousley SD, Seebauer JL, and Jones EB. Forensic Anthropology,<br />

Repatriation, and the “Mongoloid” Problem. Presented at the 55th Annual<br />

Meeting of the American Academy of Forensic Sciences, Chicago, IL,<br />

February 17-22, 2003.<br />

7. Ousley SD, and McKeown A. A Comparison of Morphometric Data and<br />

Methods in Classification. Poster presented at the 73rd Annual meeting of<br />

the American Association of Physical Anthropologists, Phoenix, AZ, April<br />

23-26, 2003.<br />

Discriminant Functions, <strong>Bio</strong>logical Profile, Multivariate Statistics<br />

H23 Anatomy of a Cauldron: Sociocultural<br />

Contributions to Understanding a<br />

Forensic Case<br />

Kerriann Marden, MA, ABD*, and John W. Verano, PhD, Tulane<br />

University, Department of Anthropology, 1021 Audubon Street, New<br />

Orleans, LA 70118<br />

The goal of this presentation is to offer a sociocultural perspective to<br />

the medicolegal investigation of ritual objects.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the use of ethnographic data in deconstructing<br />

the elements comprised in a nganga, or ritual cauldron, found in a suburban<br />

New Orleans setting. This research will aid investigators and anthropologists<br />

in understanding the purpose and meaning of these increasingly<br />

commonly discovered religious objects and origins of the human bones<br />

contained therein.<br />

Santeria, a widespread religious practice originating in the Yoruba<br />

culture of Northern West Africa and Palo Mayombe (also called Palo<br />

Monte), which derives from Central African Congo, are often misinterpreted<br />

as constituting the same beliefs and practices, along with other<br />

religious traditions of Afro-Caribbean origin such as Haitian Voodoo,<br />

Obeah, and Brazilian Candomble. Each is a syncretism of indigenous<br />

African beliefs and the Catholicism of the Spanish colonial cultures, and<br />

although they share a similar symbolic structure, the belief systems are<br />

distinct. However, since Palo Mayombe is traditionally associated with<br />

“black work,” a practitioner of Santeria (santero/a) may also be<br />

indoctrinated into Palo Mayombe to perform more nefarious purposes for<br />

which Santeria offers little option (4) . Palo Mayombe rituals, then, can be<br />

adopted by the devotees of other religious traditions when harmful deeds<br />

are required.<br />

The ritual life of Palo Mayombe is focused on an nganga, or cauldron,<br />

which serves as a receptacle for a spirit that will carry out supernatural<br />

work as bidden by the practitioner, or palero. The nganga typically<br />

contains sacred soil, iron implements, botanical specimens, animal bones<br />

and horn, feathers, stones, sticks, and other ritually significant items,<br />

arranged around a small collection of human bones, usually the skull and<br />

long bones (4) . Once the bones are introduced into the nganga, the spirit is<br />

propitiated with sacrifices and kept in the service of the palero by heavy<br />

iron chains and other iron objects to weight it from escape.<br />

Cauldrons associated with Palo Mayombe religious practices have<br />

become increasingly common in forensic cases, reported first in the Florida<br />

and New York, and now in other areas of the nation as well (1, 2) . Police<br />

began discovering these cauldrons with some frequency after the 1980<br />

Mariel boat lift, when 150,000 Cubans migrated to South Florida. With<br />

them came their culture, including their belief systems and the associated<br />

use of human bones (3) . The presence of human skeletal elements in the<br />

nganga, of course, brings their discovery under the purview of medicolegal<br />

death investigators and forensic anthropologists charged with analyzing the<br />

human remains and determining whether a crime has been committed.<br />

423 * Presenting Author


The forensic significance of the nganga cannot be ignored. Police<br />

officers have encountered ceremonial sites in homes while conducting<br />

searches, serving warrants or other unrelated investigations, raising<br />

questions concerning the origins of the bones. Aside from possible grave<br />

desecration to obtain the necessary body parts, other criminal activities may<br />

be associated with Palo Mayombe as well. The religion has been associated<br />

with drug smugglers and other criminals who attempt to exploit its powers<br />

in the commission of criminal activity (3) . Furthermore, as the nganga must<br />

be ritually dismantled upon the death of the practitioner, it is also possible<br />

that skeletal components so utilized will be recovered outside of their overt<br />

ritual context (2) .<br />

Because of the upsurge in cauldron recoveries in a forensic context, it<br />

is important to better understand the components of the material artifacts<br />

associated with these religious practices. The essentials of Santeria and<br />

Palo Mayombe have been well explicated in previous research contextualizing<br />

the religious practices within the greater cultural system (2) . This<br />

research will expand upon previous studies by examining the cauldrons and<br />

their component parts specifically, in order to be able to ‘read’ the motives<br />

of the practitioners, which in turn will allow a better understanding of the<br />

motives of the practitioners and the most likely origins of the bones. The<br />

number of cauldrons in the home, the type of bones contained within the<br />

nganga (bones of a child, of a murder victim, of a politician, etc), the kinds<br />

of faunal and botanical remains employed, and the other associated<br />

materials that comprise the cauldron can all convey useful information if<br />

interpreted correctly.<br />

Incorporating forensic sources, sociocultural literature, and interviews<br />

with local practitioners, this research serves as a starting point for understanding<br />

the ritual significance of each component of a recovered cauldron,<br />

thereby discerning its purpose. This analysis may aid the forensic<br />

community in interpreting ngangas: to identify the source of the bones used<br />

therein, and reveal potentially valuable details that may indicate the motive,<br />

as expressed in the desired ‘work’ being performed, or the identity of the<br />

practitioner.<br />

References:<br />

1 Godoy A. and Martinez R. Synopsis of the Santeria Religion. C.I.B.<br />

Yearly Report, 1995, Miami-Dade County Florida Police Department<br />

C.I.B. Intelligence Review.<br />

2 Pacenti J. Cop of the Occult: Miami detective specializes in religious-oriented<br />

crimes” Sun Coast Times, 15 Feb 1998.<br />

3 Wetli CV and Martinez R (1981) “Forensic Sciences Aspects of Santeria,<br />

a Religious Cult of African Origin” J Forensic Sci 1981; 26(3):506-514.<br />

4 Wetli CV and Martinez R. Brujeria: Manifestations of Palo Mayombe in<br />

South Florida” The Journal of the Florida <strong>Medical</strong> Association, Aug. 1983.<br />

Santeria, Sociocultural, Ritual<br />

H24 Not for the Passive: The Active Application<br />

of Electronic Resistivity in the Excavation<br />

of a Mass Grave<br />

Hugh Tuller, MA*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; and Jon Sterenberg, MS, International Commission on<br />

Missing Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and<br />

Herzegovina<br />

The goal of this presentation is to demonstrate the use of geophysical<br />

examination, in this case electrical resistivity, as an active element in the<br />

excavation strategy of a mass grave located near Belgrade, Serbia, and<br />

Montenegro.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the comparison between the survey data and<br />

the use of the electrical resistivity results in excavation of this mass grave.<br />

This demonstrates that active use of geophysics can be a positive element<br />

in excavation strategy.<br />

* Presenting Author<br />

In the past geophysical examination has been used in the search for<br />

mass and individual graves but to the presenter’s knowledge never in the<br />

planning of the actual excavation of the feature. This presentation will<br />

demonstrate the use of geophysical examination - in this case, electrical<br />

resistivity - as an active element in the excavation strategy of a mass grave<br />

located near Belgrade, Serbia/Montenegro.<br />

An unreasonably short deadline, based on political propriety, was<br />

given to complete the full excavation, recording, and removal of all human<br />

remains and related evidence from the mass grave. While the general size<br />

of the grave feature was known through prior archaeological delimitation<br />

of the surface feature, the excavation planners could only speculate as to the<br />

contents based on other graves already excavated within the same area.<br />

The time it took to excavate all the previous mass graves exceeded the short<br />

deadline the excavation team now faced. To complicate matters, as the end<br />

of the year was approaching most team members including the principle<br />

archaeologists were scheduled to leave for winter holiday vacation. It was<br />

feared that the excavation would not be completed within the allotted time<br />

frame and no ‘Plan B’ was forthcoming from the political authorities in<br />

charge of the site; postponement until spring was impossible and the<br />

excavation was to be completed in the time allotted.<br />

To assist in organizing a strategy aimed at accelerating the excavation<br />

time, geophysical testing using electrical resistivity was conducted over the<br />

targeted mass grave. Results allowed planners a glimpse at the general size<br />

and shape of the grave’s forensically significant deposits. This understanding<br />

of the body mass shape in the context of the grave feature allowed<br />

for a more rapid and safe removal of forensically sterile overburden by a<br />

construction machine. It is estimated that the use of the construction<br />

machine saved at least a week of time and resulted in the safer removal of<br />

sterile overburden from the bodies than would have occurred if the planners<br />

attempted the remove of overburden without advance knowledge of the<br />

body mass shape and size.<br />

During the excavation of the grave, electronic survey data was<br />

gathered to represent all recovered human remains, artifacts, and features<br />

in two and three-dimensional maps. This survey data was then compared<br />

to the electrical resistivity results to judge the reliability of the results and<br />

attempt to understand what type of items in the grave produced the greatest<br />

resistivity results. Unfortunately, comparison of the evidence types to the<br />

resistivity results is mixed and cannot be narrowed down to a particular<br />

type(s). However, in general, it was found that the results were very<br />

consistent with the survey data when the data was filtered to show the<br />

forensically significant deposits as a whole. The comparison with the<br />

survey data and the use of the electrical resistivity results in excavation of<br />

this mass grave demonstrates that active use of geophysics can be a positive<br />

element in excavation strategy. An understanding of soil types and<br />

geophysical equipment type limitations are of course necessary. It is<br />

suggested that survey data from future excavations where geophysics are<br />

used be investigated to gain a clearer understanding of exactly what<br />

elements in a grave give the best readings.<br />

Geophysics, Forensic Archaeology, Excavation Strategy<br />

H25 When Experts Disagree: There May<br />

be a Rodent Involved – Part I:<br />

The Request for a New Trial<br />

Julie M. Saul, BA*, and Frank P. Saul, PhD, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue, Toledo, OH 43614-2674; Steven A.<br />

Symes, PhD, Departments of Anthropology and Applied Forensic Science,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546-0001; and Carl<br />

J. Schmidt, MD, Wayne County <strong>Medical</strong> Examiner’s Office, 1300 East<br />

Warren Avenue, Detroit, MI 48207<br />

After attending this presentation, attendees should be alerted to the need<br />

to assess qualifications and experience of “experts,” and to evaluate their<br />

findings using a comprehensive examination of the actual remains in question.<br />

In cold cases this also requires a review of all previous documentation.<br />

424


The forensic anthropology component of this case began in 1981 when<br />

Dr. WM Krogman was asked to examine remains found in a sleeping bag in<br />

Chautauqua County, NY. Krogman’s analysis indicated the individual was<br />

male, 35-40, and “Caucasoid (white) with an ethnic origin (nationality)<br />

probably from Central/West Europe.” He was approximately 5’ 7 ¼ “of<br />

moderately slender body build, weight 145-155 pounds. Time elapsed since<br />

death c 1-2 years. Additional comments included “an unhealed (recent)<br />

injury which exposes the cancellous composition of the upper orbital margin<br />

and the frontal bone above it. At first it was thought to be caused by a knifeslash,<br />

but it may have been caused by the glancing impact of a bullet.”<br />

NOTE: the latter statement will be revisited inasmuch as it relates to a “new<br />

theory of the crime.”<br />

In 1992 the skeleton was positively identified dentally as Frank Carroll.<br />

The remains were shipped to Ohio because of a tip that he had been murdered<br />

in Lake County Ohio in 1980. Eyewitness testimony in a 1993 trial alleged<br />

that Carroll’s death resulted from gunshot wounds fired from a 22-caliber<br />

pistol by Larry Schlee, who was convicted. Later, Schlee, with a good lawyer,<br />

found the loophole of evidence not submitted at trial. A quest for a new trial<br />

began, using affidavits from a forensic pathologist, a “forensic” anthropologist<br />

(still not Board Certified nor a member of the AAFS) best known for<br />

his work in paleoanthropology, another physical anthropologist who does<br />

“not usually use the term ‘Forensic Anthropologist’ as a formal title,” and a<br />

“<strong>Bio</strong>mechanical Consultant specializing in Forensic <strong>Bio</strong>mechanics.”<br />

In 2002, at the request of Vincent Culotta, Chief Assistant Prosecuting<br />

Attorney of Lake County Ohio, the Sauls examined the skeletal remains of<br />

Frank Carroll. They looked for the presence of antemortem, perimortem, and<br />

postmortem trauma, as well as any taphonomic modifications, and attempted<br />

to evaluate and reconcile differences of opinion present in the various earlier<br />

reports. The Sauls found that the only perimortem trauma were gunshot<br />

injuries. They noted postmortem trauma/defects that included rodent damage<br />

to the supraorbital ridges (see Krogman’s comment) and other bones, carnivore<br />

damage and defects due to postmortem removal of bone for analysis<br />

as well as handling.<br />

Upon reading the expert’s affidavits, they were startled to learn that a<br />

new trial was being requested based on a new “theory of the crime” - death<br />

by sharp force. This was the other experts’ interpretation of the postmortem<br />

damage noted above. A linear groove in the superior surface of the 7th<br />

cervical vertebra body, noted by one expert as being “consistent with application<br />

of an edged instrumentality,” was present only in a 1993 photograph<br />

as an impression in what the Sauls suspected was clay used to position<br />

vertebrae for photography.<br />

Several of the experts stated that gunshot injuries could not have been<br />

responsible for Carroll’s death for various reasons, including failure of the<br />

bullets to pass through vital structures. Although the Sauls do not consider<br />

themselves gunshot experts, Frank P. Saul is Professor Emeritus of Anatomy<br />

at the <strong>Medical</strong> College of Ohio, and felt that the experts’ anatomical reasoning<br />

was deficient. Furthermore, the <strong>Bio</strong>mechanical Consultant’s detailed<br />

analysis of the eyewitness account of the shooting and the expected angle and<br />

direction of fire based on relative heights and handedness would not apply to<br />

all the gunshots fired (“Frank fell to the ground. Larry shot all the rounds<br />

from his automatic in Frank’s head and neck”) - a fact apparently never considered<br />

by the expert.<br />

With Mr. Culotta’s permission, questions concerning the gunshot<br />

injuries and survivability of the victim were reviewed by Carl J Schmidt,<br />

MD, D-ABP-FP, Chief <strong>Medical</strong> Examiner of Wayne County Michigan<br />

(Detroit), who is very familiar with gunshot wounds. Dr. Schmidt stated that<br />

aside from the life threatening damage caused by the gunshot wound in the<br />

right maxilla that exited through the right alveolus and hard palate, the<br />

gunshot wound in the right mandible was a probable “contact GSW and the<br />

blast effect would have killed him.”<br />

The Sauls received permission to forward the remains to Dr. Steve<br />

Symes, then at the Memphis Regional Forensic Center, for further analysis.<br />

Although Symes’ analysis essentially agreed with and amplified the Sauls’<br />

analysis, Schlee was granted a new trial. Symes’ analysis and trial testimony<br />

is continued in Part II: The New Trial.<br />

Cold Cases, Skeletal Trauma, Rodent/Carnivore Damage<br />

H26 An Assessment of Tissue Depth<br />

Measurement Tables Used for<br />

Facial Reconstruction/Reproduction<br />

Keri Reeves, MS*, and Jill Haslasm, MS, University of New Haven, 300<br />

Orange Avenue, West Haven, CT 06516; Shannon Butler-Williams, BS,<br />

University of California, Davis, Department of Anthropology, 1 Shields<br />

Avenue, Davis, CA 95616; and Brandi J. Schmitt, BS, MS*, University of<br />

California, Davis, School of Medicine, Anatomical Services Division,<br />

Davis, CA 95616<br />

After attending this presentation, attendees will see that tissue depth<br />

tables require further research and data set collection in order to produce the<br />

most accurate facial reproduction renderings.<br />

Basic research for tissue depth measurements is limited and this<br />

presentation will impact the forensic community and/or humanity by<br />

showing how further collection of data is necessary to lend any validation<br />

to techniques in facial reproduction.<br />

An assessment of standard tissue depth measurement tables used for<br />

forensic facial reconstruction, versus recorded postmortem tissue depth<br />

measurements, was performed. The purpose of this study is to examine<br />

current facial reconstruction standards for their accuracy related to age, sex,<br />

and ethnicity of the cranial specimen for which facial reconstruction(s) was<br />

performed. In addition, areas of future facial reconstruction research were<br />

evaluated.Previous studies and research have documented the various<br />

techniques including, computerized tomography, ultrasound, and needle<br />

insertion, for acquiring tissue depth measurements. However there is not<br />

one uniform method for acquiring these measurements.<br />

There is debate in the field regarding the acquisition of measurements<br />

from live versus deceased individuals as well as the distortion of accurate<br />

measurements that may occur in some of the previously mentioned<br />

methods. Both experts and artists, who perform reconstruction techniques,<br />

use a variety of the tables depending on accessibility, knowledge or<br />

preference. Some of the tissue depth tables that are used were created over<br />

one hundred years ago. Additionally, a summary of previous studies,<br />

research, and tables is not available, which ultimately limits the accessibility<br />

of data necessary to accurate facial reconstruction/reproduction.<br />

This study contributes additional data sets and elaborates on a previous<br />

preliminary tissue depth study. Cranio-facial measurements were<br />

submitted to facial reconstruction experts for a blind study examination.<br />

Tissue depth measurements were taken from a whole body donor and will<br />

be compared to the measurements used to create the facial reconstruction/reproduction<br />

model(s). Data will also be reported on accuracy of<br />

the various rendering techniques the experts chose to perform.<br />

Tissue depth measurements were taken at twenty-one established<br />

anthropological and forensic measurement sites on the facial surface of a<br />

whole body donor. Eight other facial soft tissue measurements were taken<br />

for comparison with the facial reconstruction renderings. The cranial measurements<br />

were acquired following natural entomological decomposition<br />

techniques rendering the entire skull free of soft tissue and exposing the<br />

cranial surfaces and structures. Prior and subsequent to decomposition,<br />

photographs were taken of the donor.<br />

The collected craniofacial measurements and photographs, as well as<br />

a questionnaire, were submitted to rendering participants. The experts were<br />

asked to create two and/or three-dimensional renderings, which will be<br />

compared to the documented tissue depths and craniofacial measurements<br />

taken from the donor. Additionally, experts were asked to report their<br />

choice of technique and/or table. Their chosen measurements will also be<br />

compared with the collected tissue depth measurements. Discrepancies<br />

between the donor measurements and the tissue depth tables will be<br />

reported as the study is concluded.<br />

During this study, further research needs have been identified. A comparison<br />

study of tissue depth measurements performed prior to death via a<br />

computerized tomogram and another computerized tomogram after death<br />

on the same individual would answer one of the questions about the effect<br />

of dehydration on the tissue depth measurements. Potentially, this added<br />

425 * Presenting Author


esearch data would assist those performing facial reproduction/reconstruction(s)<br />

in producing a more accurate representation of the aesthetic<br />

identity of an individual.<br />

Tissue Depth Measurements, Facial Reproduction,<br />

Craniofacial Measurements<br />

H27 Blasting Caps: An Alternate Source<br />

of High Velocity Trauma in Human<br />

Skeletal Remains<br />

Maria T. Allaire, MA*, 16 Pinedale Lane, Durango, CO 81303; and<br />

Mary H. Manhein, MA, and Ginesse A. Listi, MA, Louisiana State<br />

University, Department of Geography and Anthropology, 227 Howe-<br />

Russell Building, Baton Rouge, LA 70803<br />

The goal of this presentation is to present to the forensic community<br />

an unusual case of high velocity trauma that mimics bullet wounds to the<br />

skull.<br />

This presentation will impact the forensic community and/or<br />

humanity by illustrating the advantage of interdisciplinary cooperation in<br />

unusual injury cases, and to document the hard tissue impact of high<br />

velocity trauma that does not involve guns.<br />

On August 31, 2003, investigators with the La Plata County Sheriff’s<br />

Office in Colorado were notified of an unattended, suspicious death of a<br />

white male in a travel trailer located at an elevation of 7000 feet.<br />

Investigators contacted Allaire, requesting assistance in estimating time<br />

since death based on the stage of decomposition and the arthropods present<br />

at the death scene.<br />

The travel trailer was 23-feet long by 8-feet wide. No lights, air<br />

conditioning or heating source were on inside. All of the trailer’s glass<br />

windows were closed and screened, except for one, which was shattered,<br />

though the screen remained intact. The decedent was lying on his back on<br />

the bed in the rear portion of the trailer. The shattered window was directly<br />

above his head. Bed linens were present beneath his lower body, while his<br />

head rested on top of two feathered pillows. He was wearing a shortsleeved<br />

pattern shirt and canvas-type shorts with a belt.<br />

The decedent’s head appeared to have extensive, “high-velocity type”<br />

damage. It was misshapen and multiple fractures were evident. Desiccated<br />

tissue held the bones together. Post cranially, the body showed skin<br />

slippage in some regions and desiccation in others.<br />

Evidence of blood and soft tissue were found on the wall at the head<br />

of the bed, on the window screen, and on the ceiling, extending the entire<br />

length of the bed. An electrical power strip with an on-off switch was<br />

positioned between the decedent’s left forearm and waist. The ends of two<br />

sets of electrical wires, which had presumably been connected to the power<br />

strip at one time, were located next to the decedent’s right shoulder. The<br />

other end of each set of wires ran to what remained of a blasting cap on<br />

either side of the decedent’s head. Vertical tears and burn-scorched areas<br />

were present on the pillow where both of the blasting cap ends were found.<br />

Insect evidence collected at the scene included the Diptera species<br />

Phormia regina, in stages ranging from larvae to adults. Also present were<br />

yellow jackets, and various types of beetles, including Hister beetles, C.<br />

maxillosus and N. rufipes. All insect evidence present was collected for<br />

preservation, rearing and analysis. Insect evidence suggested an estimated<br />

time since death of six to eight days prior to discovery.<br />

At autopsy, the chest cavity and abdominal regions were found to be<br />

devoid of all internal organs. Because the trauma to the skull was<br />

extensive, the coroner shipped it to Louisiana State University Forensic<br />

Anthropology and Computer Enhancement Services (FACES) Laboratory<br />

for further analysis. Once the skull was cleaned and partially reconstructed,<br />

the overall fracture pattern was evident. As expected, the damage was most<br />

significant in the temporal and parietal regions, resulting in many small<br />

fragments of bone. The blasting caps produced localized injuries on both<br />

sides of the skull similar to gun shot entry wounds and exhibiting internal<br />

* Presenting Author<br />

beveling. In contrast, the face and mandible remained relatively<br />

undamaged and the teeth in both the maxilla and mandible were intact. By<br />

cleaning and reconstructing the skull, the damage to hard tissue caused by<br />

the blasting caps can be clearly documented.<br />

This case provides an example of interdisciplinary cooperation<br />

involving the fields of entomology, anthropology, pathology, and law<br />

enforcement. Though the death scene appeared relatively straightforward,<br />

further analysis of the remains by forensic anthropologists helped to<br />

document the extensive nature of the trauma. This documentation provided<br />

evidence that blasting caps produce damage that may mimic bullet wounds<br />

and, thus, should be considered an alternate source of injury in cases where<br />

high velocity trauma is apparent.<br />

Forensic Anthropology, Blasting Cap Trauma, Fracture Patterns<br />

H28 Modern Day Cranial Trepanation:<br />

The Ventriculosotomy<br />

Bruce E. Anderson, PhD*, University of Arizona, Department of<br />

Anthropology, Tucson, AZ 85721; and Thomas P. Gilson, MD, Office of<br />

the Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY 10016<br />

Attendees will become familiar with the recognition of a cranial<br />

surgical procedure that may be unfamiliar to the forensic anthropologist.<br />

This presentation will impact the forensic community and/or<br />

humanity by better informing forensic anthropologists of the variety of<br />

surgical procedures that may affect the human skeleton.<br />

This case study involves a 32-year-old Mexican man whose remains<br />

were recovered in a remote desert location in southwestern Arizona. The<br />

remains were discovered by law enforcement personnel who were<br />

patrolling an area known for illegal immigration into the United States. A<br />

presumptive identification was obtained via personal effects recovered with<br />

the decedent. The remains were partially skeletonized with extensive areas<br />

of mummification of the skin and desiccation of the tissues within the thoracoabdominal<br />

and cranial cavities. Of concern to the forensic pathologist<br />

was an apparent fracture of the left ala of the thyroid cartilage. A forensic<br />

anthropology consultation was requested to address the possible traumata<br />

and issues relating to identification.<br />

Results of the forensic anthropology examination revealed that the<br />

decedent was likely a Hispanic male who was 28 to 38 years old. One tooth<br />

had residual restorative material present, but lacked the complete<br />

restoration. The remains were estimated to have a postmortem interval of<br />

between one and six months. Healed fractures were present to the left<br />

maxilla, the mental eminence of the mandible, and the thyroid cartilage.<br />

All of these fractures could have been produced by a single traumatic event.<br />

The most remarkable characteristic revealed during the forensic<br />

anthropology examination was a circular defect to the right aspect of frontal<br />

squamous. This defect had been transected by an autopsy saw during the<br />

craniotomy. The external beveling of this defect suggests that the cranium<br />

had been trephined. Present within the external bevel was fibrous and fatty<br />

tissue. This defect was discussed with the forensic pathologist who opined<br />

that it was likely the result of the surgical placement of a subarachnoid<br />

screw for the monitoring of intracranial pressure.<br />

Further history was obtained and revealed that the decedent had been<br />

involved in a motor-vehicle accident ten years earlier. The decedent had<br />

been the operator of a motor vehicle that struck a utility pole at a high rate<br />

of speed. He sustained facial fractures as well as a significant closed-head<br />

injury that required emergent ventriculostomy for intracranial pressure<br />

monitoring. No neck injuries were documented but evaluation was only<br />

clinical beyond radiographs of the cervical spine to rule out fracture. After<br />

ten days the ventriculostomy catheter was discontinued and the decedent<br />

was transferred to a rehabilitation facility from which he was eventually<br />

discharged.<br />

Closed head injury frequently produces elevations in intracranial<br />

pressure (ICP) which requires treatment to prevent deleterious, possibly<br />

fatal, sequelae. As clinical examination is unreliable in assessment of ICP,<br />

426


various invasive methods for direct measurement have been developed. In<br />

general, these invasive methods employ a burr-hole drilled into the<br />

posterior right frontal bone (assuming right hand dominance) for access to<br />

the cranial cavity for pressure transducing monitors. This site corresponds<br />

to the location where the defect was located in the decedent’s cranium.<br />

Duration of monitoring is usually on the order of days and no further<br />

treatment follows the removal of the monitor except closure of the scalp<br />

defect and local wound care.<br />

Ventriculostomy, Intracranial Screw, Trepanation<br />

H29 SEM Analysis of Mummified Skin:<br />

A Preliminary Study of Obsidian<br />

and Chert Induced Trauma<br />

Alaina K. Goff, BA*, and Debra Komar, PhD, Department of<br />

Anthropology, MSC01-1040, 1 University of New Mexico,<br />

Albuquerque, NM 87131<br />

The goal of this study is to identify the potential for mummified<br />

tissues to retain information involving soft tissue trauma to identify classes<br />

of stone tools based on kerf wall morphology. This research highlights the<br />

capability of mummified tissues to retain wound morphology, and the value<br />

of using Scanning Electron Microscopic (SEM) analysis for identifying<br />

class characteristics of weapons in soft tissue trauma.<br />

This presentation will impact the forensic community and/or<br />

humanity by studying the microscopic analyses of stone tool trauma from<br />

mummified skin which provides two important contributions. First, this<br />

study shows that mummified tissues are capable of retaining information<br />

pertaining to soft tissue trauma. Thus, mummified tissues may represent an<br />

alternative source for analysis of trauma and for weapon identification.<br />

Second, the results have shown consistent class characteristics that can aide<br />

in the identification of stone tool-induced trauma. These class characteristics<br />

may be identified in soft tissue trauma from both pre-historic and<br />

modern forensic contexts. Future studies should examine the mummified<br />

kerf morphology produced by other weapon types, and the effects of<br />

distortion on kerf morphology.<br />

While osteologists typically assess biological attributes from skeletal<br />

remains – such as age, sex, and population affininity - there is growing<br />

interest in biological anthropology to identify and interpret trauma.<br />

Differentiating perimortem trauma from postmortem artifacts provides<br />

information on scavenging, cannibalism, and episodes of homicidal<br />

violence. Recently, SEM has been used to identify key features of cut bone<br />

surfaces (1, 2) . These have provided an advantage over traditional analyses<br />

using light microscopy because the SEM offers the ability to capture the<br />

third dimension in trauma. The SEM combines high-resolution and<br />

increased depth of field to produce a three-dimensional image that<br />

enhances the topographical morphology. Thus, features invisible to the<br />

naked eye become observable, discernable, and available for analysis.<br />

Previous SEM analyses of trauma have demonstrated that the<br />

morphology of kerf surfaces can indicate the class of implements that<br />

produced the kerf (2) . Thus, SEM analysis of skin trauma from pre-historic<br />

mummies or modern homicides should reflect the class of implements that<br />

produced the trauma. Although trauma can be caused by innumerable<br />

weapons, the present study will be limited to the analysis of mummified cut<br />

marks inflicted by chert and obsidian stone tools on fresh human skin.<br />

The tissue media used for this study were skin samples harvested from<br />

fresh bodies donated to the Maxwell Museum of Anthropology at the<br />

University of New Mexico. To simulate trauma, obsidian and chert stones<br />

were knapped and used to induce trauma by striking the stone onto the<br />

intact and in situ skin. One-inch sections of the kerf were then harvested<br />

and prepared for SEM analysis.<br />

Tissues were harvested from three different body donors, for a total of<br />

9 samples. The obsidian-induced trauma samples consist of two naturally<br />

mummified samples and three silica-induced mummified samples. The<br />

chert-induced trauma samples consist of two natural and two silica<br />

mummified skin samples. Mummified skin samples were taken to the<br />

Department of Earth and Planetary Sciences at the University of New<br />

Mexico to obtain SEM images of the kerf walls.<br />

Results from the SEM analysis show that of the skin samples retain<br />

information on trauma, although the naturally mummified tissues are less<br />

detailed when compared to the silica skin samples. Nevertheless, all of the<br />

obsidian-induced traumas have flat kerf surfaces and striations that are<br />

wide and smooth, while the chert-induced traumas are characterized by<br />

rugged kerf topography, deep and thin striations, and distinctive scratches<br />

that were produced when the stone was withdrawn from the tissues.<br />

The results from this preliminary study suggest that 1) there are<br />

distinct morphological differences between tissues that are mummified<br />

naturally versus artificially; 2) the kerf morphology in mummified tissues<br />

is typically retained and class characteristics remain discernable; and<br />

3) SEM analyses could allow for chert-induced trauma to be differentiated<br />

from trauma produced by obsidian. Class characteristics and SEM<br />

comparisons of the mummified tissues will be presented in detail.<br />

Studying the microscopic analyses of stone tool trauma from mummified<br />

skin provides two important contributions. First, this study shows<br />

that mummified tissues are capable of retaining information pertaining to<br />

soft tissue trauma. Thus, mummified tissues may represent an alternative<br />

source for analysis of trauma and for weapon identification. Second, the<br />

results have shown consistent class characteristics that can aide in the<br />

identification of stone tool-induced trauma. These class characteristics may<br />

be identified in soft tissue trauma from both pre-historic and modern<br />

forensic contexts.<br />

Future studies should examine the mummified kerf morphology<br />

produced by other weapon types, and the effects of distortion on kerf<br />

morphology.<br />

References:<br />

1. Bartelink EJ, Wiersema JM, Demaree RS. Quantitative analysis of sharpforce<br />

trauma: an application of scanning electron microscopy in forensic<br />

anthropology. J Forensic Sci 2001; 46(6):1288-1293<br />

2. Tucker BK, Hutchingson DL, Gilliand MFG, Charles TM, Daniel HJ,<br />

Wolfe LD. Microscopic characteristics of hacking trauma. J Forensic Sci<br />

2001; 46(2):234-240.<br />

Scanning Electron Microscopy, Kerf Wall Morphology, Mummified<br />

Soft Tissue Trauma<br />

H30 Juvenile Idiopathic Arthritis,<br />

Pharmacological Treatments,<br />

and the Potential for Individuation<br />

in Forensic Anthropology<br />

Meghan M. Cotter, MSc*, Burial Sites Preservation Program, Wisconsin<br />

Historical Society, 816 State Street, Madison, WI 53706<br />

After attending this presentation, attendees will be able to identify<br />

common growth abnormalities and degenerative changes associated with<br />

juvenile idiopathic arthritis and some of the pharmacological treatments<br />

used to treat the disease. The attendee will also have an appreciation for the<br />

changing face of skeletal pathology in light of advancing pharmacological<br />

treatments.<br />

This presentation will impact the forensic community and/or<br />

humanity by shedding light on not only the importance of the study of<br />

skeletal pathologies such as juvenile idiopathic arthritis, but also encourage<br />

the investigation of modern pharmacology and its effect on the skeleton and<br />

forensic anthropology.<br />

The goal of this presentation is to present the forensic community with<br />

an evaluation of the classic osseous changes seen in juvenile idiopathic<br />

arthritis, the osseous changes caused by the medications used in treatment,<br />

and to present the need for re-evaluation of skeletal pathologies and effects<br />

of modern medications on the growing skeleton.<br />

427 * Presenting Author


This work will present the results of a thesis written for a Master of<br />

Science degree in Forensic and <strong>Bio</strong>logical Anthropology at Bournemouth<br />

University. This thesis is an evaluation of the past literature of representative<br />

skeletal lesions and current literature on common pharmacological<br />

treatments and outcomes of juvenile idiopathic arthritis.<br />

One in one thousand children are affected by some form of arthritis.<br />

One of these forms, juvenile idiopathic arthritis, develops before the age of<br />

sixteen, involves inflammation of the joints, and has no known cause.<br />

Unlike arthritis in adults, juvenile idiopathic arthritis affects the skeletal<br />

system differently than adult forms of arthritis because the skeleton is still<br />

growing and developing. Not only do degenerative changes such as<br />

erosions and ankylosis occur in juvenile idiopathic arthritis, but stunted<br />

growth of the bones also occurs. Chronic inflammation may be the cause<br />

of growth disturbances in the mandible, long bone epiphyses, and<br />

phalangeal epiphyses.<br />

The pharmacological therapies used to treat the inflammatory and<br />

autoimmune manifestations of this disease also have effects on the<br />

skeleton. The purpose of the pharmacological treatments is to reduce<br />

inflammation in affected area, and in some cases halt the progression of the<br />

disease. Corticosteroids, such as prednisone, have potent anti-inflammatory<br />

effects, but also halt growth, and promote the development of osteoporosis.<br />

Methotrexate and etanercept slow the radiographic progression of<br />

bone erosion in studies on adult arthritis, and may also have the same effect<br />

in juvenile idiopathic arthritis. Recombinant human growth hormone is<br />

often used to combat the effects of the growth cessation due to the disease<br />

and its treatments.<br />

Pathological conditions, like juvenile idiopathic arthritis, sometimes<br />

leave specific patterns of lesions on the skeleton. Forensic anthropologists<br />

can augment their analysis and identification of an individual by looking<br />

for these patterns of lesions. Juvenile idiopathic arthritis has the potential<br />

of being this kind of individuator. There are no growth abnormalities or<br />

skeletal manifestations that are pathognomonic of juvenile idiopathic<br />

arthritis, but severe cases of the disease may be able to be identified by a<br />

forensic anthropologist. The pharmacological treatments of this disease,<br />

however, may hamper the diagnosis by the forensic anthropologist.<br />

Currently, the knowledge of and treatment of juvenile idiopathic arthritis is<br />

evolving, and this will affect the appearance of the lesions on the bones.<br />

Consequently, the usefulness of juvenile idiopathic arthritis as an individuator<br />

will change as treatment regimens progress.<br />

The changing faces of juvenile idiopathic arthritis and adult<br />

rheumatoid arthritis in response to rapidly improving pharmacological<br />

treatments serve as examples of the changes that paleopathologists and<br />

forensic anthropologists will need to make to identify classical signs of<br />

disease. Additionally, the future of anthropological analysis will be<br />

affected by not only the treated conditions, but by the treatments themselves.<br />

The forensic community should be aware of the evolution of pharmacological<br />

treatments and their beneficial and deleterious effects for<br />

future casework.<br />

Juvenile Idiopathic Arthritis, Pharmacological Treatments,<br />

Forensic Anthropology<br />

H31 The Lady in the Box<br />

Frank P. Saul, PhD*, and Julie M. Saul, BA, Lucas County Coroner’s<br />

Office, 2595 Arlington Avenue, Toledo, OH 43614-2674; and Steven A.<br />

Symes, PhD, Departments of Anthropology and Applied Forensic Science,<br />

Mercyhurst College, 501 East 38th Street, Erie, PA 16546-0001<br />

After attending this presentation, attendees will realize the importance<br />

of perseverance and interagency cooperation in the resolution of cold cases.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how cooperation of law enforcement agencies<br />

and forensic specialists is especially important in cold cases.<br />

* Presenting Author<br />

In 1974, five days after her divorce from John David Smith, Janice<br />

Hartman “disappeared” from Doylestown, OH. Police investigated, but the<br />

investigation went cold until 1992. In 1991 Smith’s second wife, Betty<br />

Fran Gladden, also went missing in West Windsor, NJ. Her “departure”<br />

was especially suspicious because she had a broken hip. Her sister, Sherrie<br />

Gladden-Davis, learned of the 1974 disappearance of Smith’s first wife.<br />

Attempts to locate the missing women in 1992 were unsuccessful.<br />

Robert Hilland, a former West Windsor policeman now with the FBI<br />

in 1998, working with Detective Sergeant Brian Potts, Wayne County Ohio<br />

Sheriff’s Department (who had pursued Hartman’s case) was able to<br />

establish rapport with Smith’s younger brother, who revealed John had<br />

constructed a plywood box (58” x 18”) for “storing his estranged wife’s<br />

clothing.” In 1979 he looked inside and saw his sister-in-law wearing a<br />

strange multi-colored rainbow wig. He telephoned John, in Indiana, to ask<br />

him about the box. His brother quickly returned, put the box into his<br />

Corvette, and drove off.<br />

In 1999, following a lead from the brother, the Wayne County<br />

Sheriff’s Office and Cleveland FBI ERT brought in GPR specialists and the<br />

Sauls (ERT consultants) to search under the floors of garages in Seville,<br />

OH, that were under construction by Smith’s stepfather’s company when<br />

the box disappeared. Nothing of consequence was found. Later, Potts<br />

helped by Sherrie Gladden-Davis, contacted coroners and law enforcement<br />

agencies along the route (80) that Smith would have taken back to Indiana,<br />

asking about human remains discovered subsequent to Smith’s departure<br />

with the box. Amazingly, these inquiries produced a response in March<br />

2000 from Morroco, Indiana, where a box with decomposed remains and<br />

clothing was found in 1980 near Route 80.<br />

A 1980 “autopsy” and skeletal analysis indicated the remains were a<br />

“Hispanic” female, 20-35. The skull and mandible were retained in the<br />

coroner’s office, while both proximal tibiae and left fibula (the remainder<br />

had been cut off below the knee), the intact right femur and both patellae<br />

were stored in the Indiana State Police evidence locker. The rest of the<br />

skeleton and clothing were interred in the local cemetery.<br />

In March 2000 a court order was obtained based on the probability<br />

that the remains found in 1980 were those of Janice Hartman. Following<br />

exhumation the Sauls received three separate sets of skeletonized remains<br />

at the Lucas County Coroner’s Office. Although the three sets of remains<br />

were presumed to belong to the individual found in a box in 1980, their<br />

original continuity had been disrupted. All sets were considered to be from<br />

the same individual based on direct articulation. The <strong>Bio</strong>graphic Profile of<br />

each set matched, and there was no duplication of elements. The skeletal<br />

remains were those of a 20-30-year-old white female who was about 5’3”–<br />

5’6” tall. In the absence of antemortem radiographs, the FBI DNA laboratory<br />

used bone samples for positive identification. No cause of death<br />

could be determined.<br />

Both tibiae and the left fibula in Set 2 and the right fibula in Set 3 were<br />

severed below the knees. The Sauls forwarded the cut bone to Dr. Steven<br />

Symes, Memphis Regional Forensic Center to obtain information on the<br />

tool(s) used for dismemberment as well as the dismemberment process<br />

itself. Symes determined the cutting instrument was a serrated knife, not a<br />

saw as previously believed. He also determined that the right tibia was cut<br />

from front to back while the left tibia was cut from back to front. Since the<br />

striated side of the blade was applied to the proximal surface of each bone,<br />

it was likely that one leg was removed and the body rolled over before the<br />

second leg was removed. The instrument used was never located.<br />

Why were the lower legs removed? Was the box too short? Why<br />

were the missing portions not in the box into which he put her clothing? FP<br />

Saul and SA Symes testified at the trial. Prosecutor Jocelyn Stefancin’s<br />

final remarks revealed the meaningful secret of the “rainbow hair” seen by<br />

Smith’s brother in 1979 – “The Shroud of Janice.” Smith was sentenced to<br />

15 years to life.<br />

Cold Cases, Forensic Anthropology, Tool Mark Analysis<br />

428


H32 Forensic Anthropologist and Forensic<br />

Pathologist: Why Work Together?<br />

Some Illustrative Cases of Homicide<br />

Joao Pinheiro, MD, MS*, Instituto Nacional de Medicina Legal, Largo<br />

da Sé Nova, Coimbra, 3000-213, Portugal; Eugénia Cunha, PhD,<br />

Departamento De Antropologia, Universidade de Coimbra, Coimbra,<br />

3000-056, Portugal; Cristina Cattaneo, PhD, Università degli Studi di<br />

Milano, Laboratorio di Antropologia e Odontologia, Università degli<br />

Studi di Milano, Milano, 3330, Italy; and Francisco Corte Real, PhD,<br />

Instituto Nacional de Medicina Legal, Largo da Sé Nova, Coimbra,<br />

3000-213, Portugal<br />

After attending this presentation, attendees will understand the importance<br />

of interdisciplinary cooperation for the resolution of current forensic<br />

cases involving bodies in various states of preservation.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing the experience of two European countries in this<br />

field.<br />

It is well known that while the forensic pathologist mainly deals with<br />

fresh cadavers, the forensic anthropologist “prefers” skeletonized remains.<br />

Yet, very often, bodies present an array of preservational states which fall<br />

in between these two extremes. In all such situations, from putrefied to<br />

skeletonized remains, the presence of both experts should be mandatory. In<br />

order to construct accurate biological profiles and, particularly, to interpret<br />

traumatic injuries to the skeleton, both anthropological and pathological<br />

expertise are crucial from the crime scene, where retrieval of every bone<br />

and tooth is significant, to the actual autopsy.<br />

Four homicide cases are discussed, two performed at the Portuguese<br />

National Institute of Forensic Medicine and two cases from the Institute of<br />

Legal Medicine in Milano, which emphasize the need for interdisciplinarity<br />

to increase the frequency of successful cases.<br />

In one case, a routine autopsy of a partially skeletonized body found<br />

at a residence revealed apparent perimortem blunt force trauma to the skull.<br />

It was concluded that this injury was the cause of death. This led to the conviction<br />

of a suspect. A second case involved a suspected gunshot wound to<br />

the head. In this case, an examination of the nearly skeletonized remains<br />

was conducted five years after the initial incident and revealed concentric<br />

and radiating fractures involving the parietal and temporal bones. Although<br />

a gunshot wound could not be excluded as the cause of death, the injuries<br />

were more consistent with blunt force trauma. The third case, involving<br />

skeletal remains found in a cellar, illustrates the necessity of the anthropologist<br />

in distinguishing between very recent antemortem trauma and periostitis.<br />

Finally, the fourth case, involving a badly decomposing body, demonstrates<br />

the importance of osteological expertise in the recovery of skeletal<br />

elements at the scene.<br />

Skeletonized, Homicide, Interdisciplinarity<br />

H33 Reducing Intra- and Inter-Observer<br />

Error Through Histomorphometric<br />

Variable Selection<br />

Christian M. Crowder, MA, and Zoe H. Morris, BSc*, University of<br />

Toronto, Department of Anthropology, 100 St. George Street, Toronto,<br />

ON M5S3G3, Canada<br />

After attending this presentation, attendees will understand how the<br />

selection of variables can affect the precision and, in turn, the accuracy of<br />

histological age estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the importance of exploring the precision of<br />

histological variables before they are entered into prediction equations<br />

where the output may mask precision issues. This will ultimately lead to<br />

better selection and definitions of variables for future methods. This<br />

research also provides an indication of the experience needed to perform<br />

certain histological analyses, concern for which may be the cause of nonintegration<br />

of quantitative bone histology in forensic examinations.<br />

Associated with histological methods of age estimation are the<br />

numerous ways to count and define histological structures. For most<br />

methods, intact and fragmentary osteons are the core variables that carry<br />

the most statistical weight with known age at death. These variables are<br />

often entered separately into regression equations. The inability to correctly<br />

identify osteon types directly affects age estimations. Using osteon<br />

population density (OPD), which combines the intact and fragmentary<br />

osteon counts and divides them by the amount of cortical area evaluated<br />

within a cross-section of bone, is a technique designed to reduce the<br />

counting error if an intact osteon is misidentified as a fragment or vice<br />

versa. The goal of this project is to determine the precision of osteon population<br />

densities versus separated intact and fragmentary densities ( I OPDs<br />

and F OPDs) within and between observers. Intra-observer analysis, performed<br />

by a researcher with histological experience, and inter-observer<br />

analysis, incorporating observations by a researcher with no histological<br />

experience, will determine how well the OPD variable corrects for inconsistency<br />

and inexperience in identifying osteonal structures.<br />

Rib cross-sections from 234 individuals of known age and sex from<br />

the cemetery site of Spitalfields, London, were evaluated. An independent<br />

researcher randomly selected 30 individuals for the analysis of intraobserver<br />

error (14 male, 16 females; aged 27-79 yrs.) and another sample<br />

of 30 individuals were selected for the analysis of inter-observer error (18<br />

females, 12 males; aged 23-80 yrs). The independent researcher was<br />

instructed to select non-diagenetically modified samples for the interobserver<br />

sample. Data was collected using osteon definitions from Cho<br />

and colleagues (1) and the grid counting method from Stout (2) . Plotting the<br />

difference between observations against the mean of the first and the<br />

second observation was utilized for OPDs, I OPDs and F OPDs. Absolute<br />

mean percent differences were calculated to quantify the magnitude in variability<br />

between measurements with the 10% error level as the cutoff for<br />

acceptance.<br />

The results for the intra-observer analysis show that absolute mean<br />

percent difference in OPD values is 8.5%. The mean difference is not significantly<br />

different from zero, further indicating that repeatability was<br />

achieved. Considering the OPD variables separately increases the absolute<br />

mean percent difference to 11% ( I OPD) and 22% ( F OPD). The mean difference<br />

for I OPD is significantly different from zero indicating a lack of<br />

variable agreement. The F OPD mean difference is not significantly different<br />

from zero, but less than 95% of the differences are within the limits<br />

of agreement, indicating a lack of agreement.<br />

The results for the interobserver analysis show that absolute mean<br />

percent difference in OPD values is 11.4%. A plot of the mean differences<br />

indicated a magnitude bias in measurements requiring the data to be logged<br />

transformed to provide a clearer picture of agreement. The overall mean<br />

difference of the transformed data is significantly different from zero and<br />

less than 95% of the values are within the limits of agreement, thus indicating<br />

lack of inter-observer agreement. Considering the OPD variables<br />

separately produces larger error levels ( I OPD=20%, F OPD=27%). The<br />

I OPD mean difference is significantly different from zero and the F OPDs<br />

mean difference is not significantly different from zero; however, less than<br />

95% of the F OPDs values are within the limits of agreement. Both I OPD<br />

and F OPD demonstrate a lack of inter-observer agreement.<br />

Analysis of the OPD variable indicates that the combination of intact<br />

and fragmentary osteon densities reduces overall intra- and inter-observer<br />

error compensating for some identification inconsistencies. Individually<br />

the measurements exceed the 10% error level, indicating difficulty in differentiating<br />

or identifying osteons. The larger differences in F OPD compared<br />

to I OPD indicates a bias in identification and/or counting possibly<br />

due to the subjectivity in determining if more than 10% of the Haversian<br />

429 * Presenting Author


canal is remodeled or differentiating a fragment without any remnant of a<br />

Haversian canal from crowded interstitial lamellar bone. Observer 2<br />

demonstrated more difficulty in differentiating intact osteons from<br />

fragments. Despite the higher individual variable error levels, observer 2’s<br />

combined OPD error level was just above the 10% cutoff. While this<br />

indicates that some histological training/experience is needed, it also<br />

demonstrates the ability of the consolidated OPD variable to compensate<br />

for identification inconsistencies. Fragments consistently produce higher<br />

intra- and inter-error levels, indicating that better definitions may be<br />

needed. For example, it may improve accuracy to define intact osteons as<br />

having a complete Haversian canal removing the subjectivity in deciding<br />

what percentage is unremodeled. This research has shown that more error<br />

is associated with individual intact and fragmentary osteon counts.<br />

Histological methods of age estimation that do not consolidate counts are<br />

subject to significantly higher levels of precision error.<br />

References:<br />

1. Cho H, Stout SD, Madsen RW, and Streeter MA. Population-specific<br />

histological age-estimating method: a model for known African-American<br />

and European-American skeletal remains. J Forensic Sci, 2002;<br />

47(1):12–18.<br />

2. Stout SD. The use of bone histomorphology in skeletal identification:<br />

The case of Francisco Pizarro. J Forensic Sci, 1986; 31(1):296–300.<br />

Observer Error, Histomorphometry, Osteon Population<br />

Density (OPD)<br />

H34 Dental Enamel Thickness as a Method<br />

of Subadult Sex Determination<br />

Leilani E. Beltran, MFS, Forensic Sciences Program, National<br />

University, 11355 North Torrey Pines Road, La Jolla, CA 92037; and<br />

A. Midori Albert, PhD*, Anthropology Program, University of North<br />

Carolina at Wilmington, 601 South College Road, Wilmington, NC 28403<br />

After attending this presentation, attendees will learn about efforts to<br />

further explore dental enamel thickness as a possible subadult sex determination<br />

method from the dentition.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing awareness of a new potential subadult sex determination<br />

method for unknown human remains.<br />

There is a paucity of sex determination methods for subadults. The<br />

methods that do exist can be highly subjective and/or variable in accuracy.<br />

The purpose of this study was to determine if dental enamel thickness could<br />

be used to determine sex in subadults. Past studies have shown that females<br />

with two X chromosomes generally have thicker enamel than males with<br />

one X chromosome and one Y chromosome. In order to test if females<br />

have thicker dental enamel than males, data were collected from bitewing<br />

radiographs from an ethnically diverse group of 89 children between the<br />

ages of two to 13 years. Dental enamel thickness measures were recorded<br />

from up to as many as eight separate teeth: right and left mandibular first<br />

and second molars, and right and left maxillary first and second molars<br />

(i.e., two teeth in each of the four quadrants). For each tooth, two measures<br />

were recorded: mesial enamel thickness and distal enamel thickness. Data<br />

for as many as 16 variables were recorded for each of the 89 children in the<br />

sample.<br />

Results indicate statistically significant sex differences in the enamel<br />

thickness for the left maxillary first molar distal (p


associated with population differences was also investigated. An expanded<br />

suite of metric characters consisting of twelve diameters and dimensions<br />

were examined, including the height of the anterior centrum at midline<br />

(CENAN), antero-posterior and medio-lateral diameters of the centrum<br />

(CENAP and CENLAT, respectively) and vertebral foramen, maximum<br />

medial-lateral width across the transverse processes (TRANPRO),<br />

maximum spinous process length (SPINPRO), maximum distance between<br />

the inferior articular facets (INTFAC), and the maximum height and width<br />

of the articular facets (ARFACVER, ARFACWID, respectively). The first<br />

phase of this study was conducted on the 18th/19th century Spitalfields<br />

documented collection comprising a White immigrant population (French<br />

Huguenots) housed at the British Museum of Natural History, London. A<br />

total of 53 vertebral pairs from a split-sex sample consisting of 23 males<br />

and 30 females were analyzed. The ages of this group ranged from 18-89<br />

years. Significant sex differences were determined for 7 of 12 traits and 8<br />

of 12 traits for the T12 and L1 vertebrae, respectively (Student’s t-tests, p<br />

< 0.05 to 0.001).<br />

Subsequently, a larger study was conducted to investigate the degree<br />

of sexual dimorphism and potential population variation for these traits in<br />

a second documented sample, the Smithsonian’s Terry Collection<br />

(Washington, DC), with the aim of developing discriminant functions<br />

useful for sex determination. The Terry sample consisted of T12/L1 vertebral<br />

pairs (n=124) from 27 White males, 26 White females, 41 Black<br />

males, and 30 Black females with ages ranging from 19-63 years. Two<br />

additional variables (n=14) were added to the suite of metric traits: the<br />

maximum diameter in the sagittal and transverse (medio-lateral) planes<br />

between the limits of the superior annular epiphyses (rings) of the centra<br />

(CENAPA and CENLATA, respectively).<br />

Separate discriminant function analyses were conducted on the<br />

datasets to control for differences by skeletal element and race. The results<br />

showed significant sex differences for both vertebrae in the Spitalfields and<br />

Terry samples. Using T12, White males and females in the Terry Collection<br />

were correctly sexed on average 88.9% of the time using two of the<br />

fourteen measurements (CENAP, SPINPRO). Using L1, Terry White<br />

males and females were correctly sexed on average 91.8% of the time with<br />

the variables CENAPA and INTFAC. For Terry Black males and females,<br />

two variables (CENAP, CENLAT) yielded an average correct sexing of<br />

86.6% for T12 and 85.1% for L1. Discriminant function analyses of the<br />

Spitalfields male and female sample yielded widely different results for the<br />

two vertebral elements. For T12, the highest average correct sexing was<br />

76.7% using the single measurement CENLAT, but for L1 a high of 100%<br />

average correct sexing was provided predominantly by the variable<br />

TRANPRO, with smaller contributions from the variables ARFACWID,<br />

CENAP, and CENAN. The more disparate results for the Spitalfields<br />

sample may be due to greater occupational or other sex differences, to<br />

secular differences between this and the more contemporary Terry sample,<br />

or as a result of the overall younger age range in the Terry sample.<br />

The results of this study demonstrate that the lower thoracic and upper<br />

lumbar vertebrae are highly dimorphic. Of the 12-14 metric variables<br />

examined, a small subset of measurements for centrum diameters, length of<br />

the spinous and transverse processes, and articular facet width were found<br />

to provide reasonably accurate sex classification in the range of, or higher<br />

than, other postcranial elements such as the lower limbs or pelvis. This is<br />

especially true for the first lumbar vertebra of the two White samples. Both<br />

vertebrae should be considered for metric sex determination with complete<br />

skeletons and especially in fragmentary forensic assemblages from aircraft<br />

and other mass disasters.<br />

Sex Determination, Thoracic-Lumbar Vertebrae, Discriminant<br />

Functions<br />

H36 Race as a Variable in Dental Health<br />

of Korean War Military Personnel<br />

Joan E. Baker, PhD*, and Helen D. Wols, PhD, Joint POW/MIA<br />

Accounting Command Central Identification Laboratory (JPAC CIL),<br />

310 Worchester Avenue, Building 45, Hickam AFB, HI 96853-5530<br />

The goal of this presentation is to educate the forensic anthropological<br />

community on the impact of dental health and dental treatment of Korean<br />

War military personnel as it relates to race and sociocultural and historical<br />

events.<br />

This presentation will impact the forensic community and/or<br />

humanity by de-emphasizing the importance of acknowledging the<br />

potential influence of pre-conceived notions concerning dental care as<br />

related to race, ethnicity, and national origin. In this case, data analysis<br />

provided objective statistical support for subjective experience-based<br />

assessments. The potential effect of historical events and psychosocial<br />

factors on characteristics of dental and skeletal remains should not be<br />

ignored during forensic analysis.<br />

This paper will present data concerning the influence of race on dental<br />

treatment and health of soldiers, sailors, airmen, and marines serving<br />

during the Korean War. This research was spurred by a realization that preconceived<br />

notions regarding dental health as it varies by race, ethnicity, and<br />

national origin (and as reflected in forensic analyses of human remains) can<br />

affect the analyst’s perception of racial classification. Specifically, in the<br />

case of a Korean War-era individual with mixed skeletal indicators of race,<br />

extremely poor dental health led one analyst to surmise that the individual<br />

was of Korean descent, while another analyst noted that similar degrees of<br />

dental disease were frequently seen in African Americans of the same era.<br />

This paper is an effort to quantify and/or verify these subjective observations<br />

using a sample of individuals from a temporally and occupationally<br />

similar background.<br />

The sample for this research was drawn from a database of unresolved<br />

Korean War casualties and consists of individuals whose racial classifications<br />

were recorded by military officials as “W” (White) or “C” (Colored).<br />

All data were taken from original military dental records and represent the<br />

most recent documentation available for each person. The age of the White<br />

individuals in this sample ranged from 17 to 36 years (average age = 22.7),<br />

while the age of the non-White individuals ranged from 17 to 33 years<br />

(average age = 21.3). Data coded by the researchers included untreated<br />

carious lesions, restoration locations and materials, extractions, degree of<br />

calculus buildup, presence or absence of periodontoclasia, dental<br />

prostheses, and other oral diseases or anomalies. Class of dental health (a<br />

military designation between I and IV that ranks a service member’s need<br />

for dental treatment) was also recorded.<br />

Preliminary analyses indicate that degree of calculus differed slightly<br />

between groups, with non-Whites being more likely to have heavier<br />

buildup. Periodontoclasia was uncommon in both groups. The number of<br />

non-White individuals whose records showed unfilled/untreated carious<br />

lesions was more than double the number of untreated White service<br />

members (p < 0.01, Fisher’s exact test). The number of extracted teeth in<br />

the White group was nearly double that recorded for the non-White group<br />

(p < 0.01, Fisher’s exact test), and White individuals were far more likely<br />

to have dental prostheses, including fixed bridges and dentures, than their<br />

non-White counterparts (p < 0.01, Fisher’s exact test). More than three<br />

times as many restorations were recorded for White individuals when<br />

compared to non-White service members (p < 0.01, Fisher’s exact test),<br />

although the material used (i.e., silicate versus amalgam) did not vary significantly<br />

between the two groups on an individual basis (p > 0.10, Fisher’s<br />

exact test). Somewhat surprisingly given these figures, dental class (I<br />

through IV) did not vary significantly by race (p > 0.10, Fisher’s exact test).<br />

These findings seem to indicate that the two groups experienced differential<br />

dental treatment, with White service members being more likely<br />

to have sought and received dental care than non-White individuals.<br />

Previous research on modern military samples indicates that non-White<br />

431 * Presenting Author


military recruits are less likely to have sought dental care prior to entering<br />

the military 1 , a phenomenon that seems to be reflected in this Korean War<br />

sample. Furthermore, some research indicates that race influences the perceived<br />

need for dental care in modern military personnel2 . Pre-recruitment<br />

socioeconomic status of military personnel and ethnic/cultural perceptions<br />

of dental care may have played a role in this disparity. Two other events,<br />

namely integration of troops and a dramatic increase in the number of<br />

military dentists, may have influenced access to dental care for Korean<br />

War-era service members.<br />

References:<br />

1. Chisick MC, Poindexter FR, York AK. Factors influencing dental<br />

utilization by U.S. military recruits. Mil Med 1996; 161:743-745.<br />

2. Chisick MC, Poindexter FR, York AK. Factors influencing perceived<br />

need for dental care by active duty U.S. military personnel. Mil Med 1997;<br />

162: 586-589.<br />

Race, Dental Health, Military<br />

H37 Stable Strontium and Geolocation:<br />

The Pathway to Identification of<br />

Unidentified Mexican Aliens<br />

Chelsey A. Juarez, BA*, UC Santa Cruz, Department of Anthropology,<br />

1156 High Street, Santa Cruz, CA 95064<br />

After attending this presentation, attendees will understand the<br />

incorporation of stable strontium into human teeth and bone, and how<br />

inductively coupled mass spectrometry analysis of this material can assist<br />

the process of identification.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing the assessment of a new technique to the troubling<br />

and complex issue of cross boundary forensic identification.<br />

The goal of this presentation is to present the progress on the development<br />

of a mass spectrometry-based method for the identification of an<br />

individual’s region of origin through analysis of strontium in the permanent<br />

first molar. The application of stable strontium to the identification of<br />

deceased Mexican undocumented aliens is a new frontier for this type of<br />

research.<br />

Background: Strontium isotope ratios and strontium concentrations<br />

collected in teeth and bones have been analyzed by archaeologists to investigate<br />

patterns of residential mobility and migration among prehistoric<br />

peoples. In this study a similar methodology is applied to forensic material<br />

to determine the region of origin for Mexican individuals who died while<br />

crossing the border into the United States. Strontium, absorbed through the<br />

small intestine, commonly substitutes for calcium and becomes fixed in the<br />

crystalline lattice of bones and teeth. Unlike oxygen or nitrogen, the<br />

isotopes of strontium are geologically specific, and through mass spectroscopy<br />

analysis can be traced to their original source. Strontium levels in<br />

bone vary depending on bone structure. Cancellous bone has higher rates<br />

than cortical bone, but is also subject to higher rates of diagenesis<br />

(fractionation as a result of burial or leaching). The strontium present in<br />

cortical bone reflects a fifteen year history of incorporation, a change that<br />

is a result of the remodeling behavior of compact bone1 . Conversely,<br />

strontium levels in the roots of permanent teeth reflect the geochemistry of<br />

childhood residence and, unlike bone, do not go through significant diagenesis<br />

or remodeling. Tooth enamel incorporates strontium only during<br />

amelogenesis (process of enamel formation), which for most teeth takes<br />

place in early childhood. This strontium signal would provide the region<br />

of the individual’s origin and potentially narrow down the search area.<br />

Methodology: The teeth for this project came from several bay area<br />

clinics that donated the extracted teeth of their Mexican- born patients.<br />

This preliminary investigation utilized the permanent first molars of 25<br />

individuals originating from four different Mexican states. These tooth<br />

samples were accompanied by information on the individuals’ regions of<br />

* Presenting Author<br />

origin within Mexico, their ages, and sex. Each tooth was washed with<br />

diluted acetic acid to ensure the removal of any depositional contamination<br />

and processed. The tooth strontium was then analyzed using Inductively<br />

Coupled Plasma Mass Spectrometry (ICPMS). The delta units obtained<br />

through this analysis were compared to known geological ratios for the<br />

provided areas.<br />

Results and Discussion: The goal of this project is to provide the<br />

most accurate pathway to identification possible. In order to achieve this<br />

goal, region of origin information has been broken down into the two-tiered<br />

analyses of state identification and region identification (within the state).<br />

The Strontium database initial results reveal four specific ranges for each<br />

of the four states involved in the analysis. The presence of these complex<br />

but clear ranges demonstrates the possibility to identify individuals at a<br />

state level. At this point in the study, within-state regional identification is<br />

highly complex because the strontium signatures demonstrate a significant<br />

amount of overlap. While providing a glimmer of hope, this information<br />

suggests the need for study expansion and the incorporation of other lines<br />

of evidence.<br />

Stable Strontium, ICPMS, Mexican Aliens<br />

H38 Stature Estimation of Hispanics:<br />

The Most Appropriate Stature<br />

Regression Equations<br />

Vincent H. Stefan, PhD*, Lehman College - CUNY, Department of<br />

Anthropology, 250 Bedford Park Boulevard, West, Bronx, NY 10468<br />

After attending this presentation, attendees will be aware of the most<br />

appropriate stature regression equations for the prediction of stature for<br />

individuals of Hispanic biological affinity. This presentation will illustrate<br />

various methods, and their results, which can be utilized to estimate the<br />

stature of Hispanic individuals. Discussion of the most appropriate stature<br />

regression equations for stature estimates of individuals of Hispanic<br />

biological affinity will provide invaluable knowledge to forensic<br />

anthropologists and pathologists who wish to provide more accurate stature<br />

estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating, discussing, and illustrating the various stature<br />

regression equations available for individuals of Hispanic biological<br />

affinity and identify the most appropriate equations.<br />

Background: The debate as to the “biological reality” of “race” is<br />

still ongoing and heavily contested even within the field of forensic anthropology.<br />

Yet, even among the more generally accepted racial groups of<br />

Caucasian (White), African American (Black), Native American Indian,<br />

Asian, etc., there is debate as to whether “Hispanics” (Mexicans, Puerto<br />

Ricans, Cubans, etc.) should be considered a “biological race” or a “social<br />

race.” As noted by Ross et al. (2004:1), “the term ‘Hispanic’ includes all<br />

persons of Spanish speaking countries. However, in the forensic setting,<br />

the use of such an umbrella term is problematic because it ignores the<br />

distinct ethnohistories and migration patterns of each geographical region.<br />

The use of ‘Hispanic’ as a classification or category does not provide an<br />

adequate biological profile.” Despite the ambiguities in the classification<br />

and/or identification of Hispanic individuals, forensic anthropologists are<br />

still required to develop a comprehensive biological profile of an individual<br />

who may be of an Hispanic biological affinity. Outside of the racial<br />

assessment itself, stature estimation is potentially among the most<br />

problematic aspects of the biological profile.<br />

Depending on the geographic region, an Hispanic individual may be<br />

a genetic and morphological mosaic of European (Spanish), Native<br />

Amerindian and/or African biological elements. Hispanics from Mexico<br />

and the Southwest United States have varying degrees of European and<br />

Amerindian biological affinity, while Hispanics from the Caribbean (Puerto<br />

Rico, Cuba, etc.) have varying degrees of European biological affinity, and<br />

may have a stronger African biological affinity with minimal Amerindian<br />

432


iological affinity. Traditionally, when it came to estimating the stature of<br />

an Hispanic individual, forensic anthropologists have relied on the stature<br />

regression equations developed by Genoves (1967), which were built on<br />

data from Central Mexican (Mesoamerican) males. As result of the reference<br />

data set Genoves utilized to build those stature regression equations,<br />

they may not be appropriate for Caribbean Hispanics. What may have been<br />

overlooked by some or many forensic anthropologist is a recommendation<br />

made by Trotter and Gleser (1958), which may resolve this problem. In<br />

their classic study of Caucasian (White) and African American (Black)<br />

male and female stature estimations, and Native American Indian<br />

(Mongoloid) male stature estimations, a small sample of Puerto Rican individuals<br />

were also included. Ultimately stature regression equations were<br />

not developed for the Puerto Rican sample, however, Trotter and Gleser<br />

recommended utilizing the Negro (Black) stature regression equations due<br />

to the similarities in limb proportions and relationships of long bone lengths<br />

to stature seen in both the Puerto Rican and Negro (Black) samples (Trotter,<br />

1970:82; Trotter and Gleser, 1958: 113-114). This preliminary study will<br />

test the various stature regression equations for the estimation of stature of<br />

known “Caribbean” Hispanics.<br />

Anthropological Examples: In order to evaluate the various stature<br />

regression equations available and traditionally utilized to estimate the<br />

stature of Hispanic individuals, and to identify the most appropriate stature<br />

regression methods, long bone measurements of two positively identified<br />

“Caribbean” Hispanic individuals were taken to calculate estimated<br />

statures via these various stature regression equations.<br />

The first individual, Case No.WCME02-1574, was from the<br />

Dominican Republic; and the second individual, Case No. SCME03-3734,<br />

was from Puerto Rico. The table below displays the results obtained from<br />

the various stature regression equations. As is evident from the table, for<br />

the “Caribbean” Hispanic individuals the old Negro male stature regression<br />

equations from Trotter and Gleser (1958) provided the closest stature estimations<br />

to the actual recorded stature for those individuals.<br />

Case Measurement White* Negro-New* Negro-Old† Mexican* Genoves‡<br />

“Caribbean” Hispanics<br />

WCME02-1574 – Reported Stature: 70,” ~177.8cm<br />

Femur 49.9 180.172 175.639 177.01 180.426 179.153<br />

Difference 2.372 -2.161 -0.79 2.626 1.353<br />

SCME03-3734 – Reported Stature: 66,” ~167.64cm<br />

Humerus 33.1 172.398 170.006 170.808 170.592<br />

Radius 24.4 171.242 165.008 166.438 167.33<br />

Ulna 26.7 172.84 166.332 168.21 169.612<br />

Femur 45.5 169.7 166.355 167.77 169.69 169.209<br />

Tibia 37.5 173.12 168.145 167.485 169.12 167.252<br />

Fibula 37.2 171.476 167.118 167.118 168.44<br />

Fem + Tib 171.19 166.49 167.2<br />

Average 171.71 167.06 167.86 169.13 168.23<br />

Difference 4.07 -0.58 0.22 1.49 0.59<br />

*Trotter, 1970<br />

† Trotter and Gleser, 1958<br />

‡ Genoves, 1967<br />

Conclusions: The estimation of stature for “Hispanic” individuals is<br />

not a simple and straight forward process. The morphological assessment<br />

and biological affinity determination of Hispanic individuals is complicated<br />

and difficult on its own; now the geographic origin of a Hispanic individual<br />

needs to be considered in order to ensure the most accurate and thorough<br />

assessment of not only race but stature as well. Because of the differing<br />

genetic and morphological composition of “Caribbean” and<br />

“Mexican/Southwest” Hispanic individuals, the forensic anthropologist<br />

needs to consider the potential geographic origin of the individual when<br />

selecting the appropriate stature regression equation. These preliminary<br />

results indicate that the old Negro (Black) stature regression equations of<br />

Trotter and Gleser (1958) may be the most appropriate equations for estimating<br />

the statures of “Caribbean” Hispanic individuals. Additional data<br />

from “Caribbean” Hispanic individuals will be obtained to further test and<br />

confirm the results seen in this preliminary investigation. Additionally, data<br />

from “Mexican/Southwest” Hispanic individuals will be obtained to<br />

compare the results obtained through application of the Genoves, as well as<br />

the Trotter and Gleser stature regression equations.<br />

Stature Estimation, Stature Regression Equations, Hispanics<br />

H39 Anatomical Stature Estimation:<br />

Why Not Fully Accurate?<br />

Donna M. McCarthy, MA*, and Richard L. Jantz, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will understand the possible<br />

problems associated with the anatomical method of stature estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by helping to more accurately estimate statures of unknown individuals<br />

in a forensic context.<br />

The purpose of this paper is to introduce and discuss a possible bias in<br />

the estimation of statures using the Fully Anatomical Method.<br />

Traditional regression equations require knowledge of an individual’s<br />

sex and ethnicity (and often age) in order to be applied correctly. The<br />

anatomical method proposes that an individual’s stature may be determined<br />

- if the skeleton is sufficiently complete - without regard to these variables<br />

by determining an individual’s skeletal height and adding a soft tissue correction<br />

of 10 to 11.5 centimeters. This correction factor, purportedly<br />

applicable to all individuals regardless of ethnicity, sex, and age, will be<br />

tested in this paper using regression analysis.<br />

Skeletal heights of 129 individuals from the Terry Collection were<br />

obtained using the anatomical method. This included measurements of the<br />

head height (basion-bregma), anterior vertebral heights from<br />

C2 to S1, the bicondylar length of the femur, maximum<br />

length of the tibia, and the height of the articulated calcaneus<br />

and talus (ankle height). To these skeletal heights, the correction<br />

factor (based on overall skeletal height) was added to<br />

each individual. All of the individuals used in this study had<br />

cadaver lengths on file. These were converted to an estimate<br />

of living stature by subtracting 25 mm, an adjustment which<br />

had been determined by previous researchers. Each<br />

anatomical stature was then compared to the adjusted<br />

cadaver length to determine the accuracy of the estimation.<br />

The differences between the “living statures” and the<br />

anatomical statures ranged from -9.00 to +7.10 centimeters<br />

with an average difference of -1.36 and a Pearson correlation<br />

of 0.935. While these results were an improvement over<br />

long bone regressions, such as those of Trotter and Gleser,<br />

the fact that error still remained required further explanation.<br />

Mean soft tissue correction values were calculated for each<br />

group; with both black and white females having an average adjustment of<br />

101 mm and black and white males an average of 104 mm. Lowess regressions<br />

on the data set, however, suggested that the original soft tissue correction<br />

factor may be too low, and in most cases in this study the differences<br />

between skeletal height and cadaver length were between 110 and 115 mm.<br />

Typically, errors resulting from long bone regressions are due to differences<br />

in body proportions such that statures of individuals with long<br />

trunks and short legs are generally underestimated and vice versa. The<br />

original soft tissue correction factors calculated by Fully were based on<br />

French citizens in an Austrian concentration camp, and while Fully’s data<br />

set has never been published, it is possible to conclude that the French may<br />

have had shorter trunks, either due to shorter vertebral heights, thinner<br />

intervertebral discs, or both. More research is needed to determine whether<br />

the soft tissue corrections calculated by Fully may truly be applied to other<br />

populations and both males and females.<br />

Stature, Fully, Regression<br />

433 * Presenting Author


H40 The Effects of Skeletal Preparation<br />

Techniques on DNA From Human<br />

and Nonhuman Bone<br />

Stephanie L. Rennick, BS*, Michigan State University, Forensic Science<br />

Program, School of Criminal Justice, 560 Baker Hall, East Lansing, MI<br />

48824; Todd W. Fenton, PhD, Michigan State University, Department of<br />

Anthropology and Forensic Science Program, Baker Hall, East Lansing,<br />

MI 48824; David R. Foran, PhD, Michigan State University, Forensic<br />

Science Program, School of Criminal Justice and Department of Zoology,<br />

560 Baker Hall, East Lansing, MI 48824<br />

After attending this presentation, attendees will understand the<br />

negative and positive effects that standard and alternative methods for<br />

cleaning skeletal material have on the DNA found within human and nonhuman<br />

bone.<br />

This presentation will impact the forensic community and/or<br />

humanity by encouraging anthropologists and others who analyze skeletal<br />

remains to refrain from using bleach cleaning techniques on bone, and<br />

instead adopt alternative methods such as the powdered detergent/sodium<br />

carbonate technique tested here. Subsequent DNA analysis of cleaned<br />

skeletal material will not be negatively impacted, and in fact may even be<br />

improved.<br />

The goal of this presentation is to inform the forensic community<br />

about the effects bone cleaning techniques have on subsequent DNA<br />

analysis.<br />

A common technique used by anthropologists and others who work<br />

with skeletal remains is to clean bone with adherent soft tissue by boiling<br />

it in a bleach solution. This method, while effective, causes damage to the<br />

exposed surfaces of the bone, which may have detrimental consequences in<br />

a forensic investigation. Furthermore, bleach, owing to its strong oxidative<br />

properties, is known to damage DNA, although the extent of which, if any,<br />

in a boiled bone sample, is not clear. In response to bleach’s known detrimental<br />

effect on bone, alternative cleaning techniques have been proposed.<br />

A skeletal cleaning method is considered successful if it is as fast and<br />

effective as commonly used techniques, while being less destructive to the<br />

sample. The impact these procedures have on the DNA within bone is,<br />

however, more difficult to discern.<br />

In the study presented here, an alternate tissue removal technique that<br />

consists of boiling bones in powdered detergent and sodium carbonate1 , a<br />

standard bleach boiling protocol, and a control of boiling bones in water,<br />

were examined. Animal bones with adhering tissue, as well as human<br />

bones from a forensic case, were cleaned using all three techniques. DNA<br />

was then isolated from each of the samples using a standard organic<br />

extraction, and DNA yields quantified using UV spectrophotometry or Real<br />

Time PCR. Gel electrophoresis or PCR amplification of progressively<br />

larger pieces of mitochondrial DNA were then used to determine how<br />

degraded mtDNAs were following each cleaning.<br />

These experiments demonstrate that significantly less DNA is<br />

recovered from bone samples cleaned in bleach than from water cleaned<br />

controls. Further, bleach cleaning was shown to cause DNA degradation.<br />

In contrast, the powdered detergent/sodium carbonate cleaning method1 produced DNA for which quantity and quality were similar to or even<br />

exceeded the water control. The results from these experiments indicate<br />

that not only does bleach cause damage to the bone in addition to having a<br />

notable negative effect on DNA when compared to the water control, but<br />

the powdered detergent/sodium carbonate technique may protect DNA<br />

during bone cleaning procedures.<br />

The results presented should encourage anthropologists and others<br />

who analyze skeletal remains to refrain from using bleach cleaning techniques<br />

on bone, and instead adopt alternative methods such as the powdered<br />

detergent/sodium carbonate technique tested here. Subsequent DNA<br />

testing of cleaned skeletal material will not be negatively impacted, and in<br />

fact may even be improved.<br />

* Presenting Author<br />

References:<br />

1. Fenton TW, Birkby WH, J Cornelison. A Fast and Safe Non-Bleaching<br />

Method for Forensic Skeletal Preparation. J Forensic Sci 2003;<br />

48(1):274-276.<br />

Skeletal Remains, DNA Degradation, Bone Cleaning Procedures<br />

H41 An Assessment of DNA Degeneration<br />

Due to Air-Drying Preservation for the<br />

Remains of the World Trade Center<br />

Benjamin J. Figura, MA*, PO Box 538, Empire, MI 49630<br />

The goal of this presentation is to detail the results of genetic tests<br />

performed on the human remains from the World Trade Center from before<br />

and after preservation through air-drying. These results help to assess the<br />

drying process as a viable option for preservation in future mass fatality<br />

incidents. The details of the drying process itself were presented in a paper<br />

at the 2003 meetings in Dallas, TX.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting an assessment of possible DNA degradation due to<br />

a preservation process that has not been used previously in a forensic<br />

context before. This information will allow forensic professionals to judge<br />

the viability of air-drying as an option for the preservation of human<br />

remains from future mass disasters.<br />

This paper will present a statistical analysis of DNA tests performed<br />

on the human remains from the World Trade Center before and after their<br />

preservation through air-drying. The results of this statistical analysis illustrate<br />

the effect the air-drying preservation method has on the genetic<br />

material held within the remains.<br />

The remains recovered from the World Trade Center site in the<br />

months following September 11th, 2001 were preserved using a method of<br />

air-drying. The air-drying method was utilized as an attempt to preserve the<br />

remains without significantly degrading the genetic material contained<br />

within, allowing for future DNA testing if warranted.<br />

To assess the impact of the drying process on the genetic material in the<br />

remains, two different experiment designs were used. For the first experiment,<br />

soft tissue samples were extracted from a random sample of the<br />

remains during their preparation for the drying process. A second sample<br />

was extracted from the remains after the drying process was completed.<br />

The second experiment was designed to control for sample location,<br />

length of time spent drying, and size of sample. In this test, strips of muscle<br />

of approximately 50ml were taken from 30 sets of remains. Each sample<br />

strip was divided in half; with one half sent directly for DNA testing. The<br />

second half of each sample was subjected to the drying process, then, upon<br />

completion, sent for DNA analysis.<br />

All tissue samples were taken following a strict sampling process.<br />

Samples were taken from portions of remains featuring large muscle<br />

groups enclosed under unbroken skin to ensure both ample size and no contamination.<br />

New, sterile disposable scalpels were used for each sample. At<br />

least one scalpel was used to make the initial incision through the outer skin<br />

layers, while another was used to cut out the tissue to be taken. The muscle<br />

strips were extracted using reusable forceps thoroughly cleaned with 10%<br />

bleach water.<br />

The samples were tested using both DNA IQ and Organic DNA techniques,<br />

with the results ranging from 0 - 16 loci. For both experiments, a<br />

paired samples t test was performed using the corresponding pre-dried and<br />

dried variables. The t tests will show if there is a significant increase or<br />

decrease in the average number of loci recovered from the dried samples<br />

when compared to the pre-dried samples.<br />

Statistical analysis of the test results from both experiments shows that<br />

a significant decrease in loci yields did occur between the pre-dried and<br />

dried samples. After a number of other possible factors were ruled out, it<br />

was concluded that the drying process itself was the cause of the decrease<br />

in loci through the combination of temperature shock, the high temperature<br />

434


itself, and the already fragile state of the DNA. However, while the experiments<br />

showed that the drying process did significantly degrade the DNA<br />

of the remains, they also show it was still possible to retrieve DNA. The<br />

DNA was not completely degraded in every sample, as other preservation<br />

options would have done.<br />

Because the remains were preserved and DNA can still be retrieved,<br />

drying may be a viable option for preservation in the future should the<br />

needs of a particular disaster warrant its use and available resources allow<br />

for it. In addition, until now, research on DNA stability in a forensic<br />

context has been limited to the effects of various environmental factors<br />

occurring in common situations and do not reflect those that occur at the<br />

extremes. Information may be drawn from this research regarding the<br />

stability of DNA in extremes of both high temperature and low humidity.<br />

Mass Disasters, Preservation, DNA Degradation<br />

H42 Elemental Analysis of Human Cremains<br />

Using Inductively-Coupled Plasma Optical<br />

Emission Spectroscopy (ICP-OES) to<br />

Distinguish Between Legitimate and<br />

Contaminated Cremains<br />

Thomas E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner Office,<br />

3202 Amnicola Highway, Chattanooga, TN 37406; and Gretchen E.<br />

Potts, PhD, Kira Shurtz, and Timothy Brooks, University of Tennessee at<br />

Chattanooga, Department of Chemistry, 404 Grote Hall, Chattanooga,<br />

TN 37403<br />

After attending this presentation, the forensic anthropology<br />

community will be exposed to new technology that can aid in the analysis<br />

of human cremains. The purpose of this project is to develop an objective<br />

and more definitive means of identifying whether human cremains are<br />

legitimate or contaminated.<br />

Following recent crematory controversies, many families question<br />

whether the cremains returned to them are human or not. This presentation<br />

will impact the forensic community and/or humanity by offering an<br />

objective method to distinguish between legitimate and contaminated<br />

human cremains.<br />

The purpose of this project is to develop an objective and more definitive<br />

means of identifying whether human cremains are legitimate or contaminated.<br />

The need for this information has arisen from dissatisfaction and<br />

limitations in the current methods of cremains analysis available to forensic<br />

scientists. The most common methods of cremains analysis employed by<br />

forensic anthropologists are visual inspection, x-ray analysis, and microscopic<br />

analysis. Visual inspection is useful to determine whether or not the<br />

cremains contain identifiable bone fragments. X-ray analysis is helpful to<br />

detect radiopaque objects that may be helpful to the examination.<br />

Microscopic analysis is useful to examine not only small bone fragments,<br />

but also other non-bone items such as contaminate inclusions. Contaminate<br />

inclusions are burned or non-burned items including, but not limited to,<br />

small rocks, textiles, sand, staples, screws, or durable clothing items like<br />

metal buttons. These items provide even more clues as to the history of the<br />

cremains. Unfortunately, the laboratory hours needed to completely<br />

examine a set of cremains by microscopic means could take weeks or<br />

months. Some contaminate inclusions should be expected due to the construction<br />

of cremation boxes, how retorts are built and swept out, and how<br />

ashes are processed. Only in rare instances has any examiner made a positive<br />

identification of cremains. This project does not purport to be able to<br />

identify a person from the ashes, only whether or not the cremains given to<br />

a family are legitimately human or not. Nor does this project intend to supplant<br />

existing analytical techniques, but rather enhance the analysis with<br />

advanced technology. The goal is to develop a technique to analyze human<br />

cremains that is relatively affordable in forensic investigations and<br />

available at many different laboratories and universities, instead of relying<br />

on exotic and expensive machinery.<br />

To determine what survives the cremation process, this project has<br />

tested the technologies of Gas Chromatography–Mass Spectrometry<br />

(GC/MS), Total Attenuated Reflectance Infrared Spectroscopy (IR), and<br />

Inductively-Coupled Plasma Optical Emission Spectroscopy (ICP-OES).<br />

Organic extractions of the cremains were analyzed by GC/MS, but no<br />

organic compounds were detected. Additionally, the cremains analyzed by<br />

IR only exhibited absorption due to the phosphorous/oxygen bond found in<br />

phosphate. Due to the elevated temperatures of the cremation process<br />

(1625ºF, or 885ºC), organic residues were not expected. Therefore, an indepth<br />

elemental analysis was undertaken using ICP-OES.<br />

Five sets of cremains were tested using ICP-OES: two human<br />

cremations (one embalmed, the other not embalmed) performed by the<br />

author (TEB) and a professional crematory; a cremated dog as a<br />

mammalian comparison; a set determined to be questionable by current<br />

analytical methods; and a set known to be questionable by its medicolegal<br />

context. Results show the elemental profiles (inorganic metals) of the two<br />

known human cremains were consistent with one another, indicating that it<br />

is possible to develop expected concentration ranges and mean values using<br />

this technology. There was no apparent difference between the embalmed<br />

cremains and non-embalmed cremains, which was expected because<br />

modern embalming fluid is a hydrocarbon molecule that completely<br />

combusts at cremation temperatures. Problems to be addressed in this<br />

study include calibration issues with the ICP-OES instrument, sample<br />

preparation and variation, and sociocultural obstacles in obtaining known<br />

human samples (to increase sample size). Following recent crematory<br />

controversies, many families question whether the cremains returned to<br />

them are human or not, and this project hopes to offer an objective method<br />

to distinguish between legitimate and contaminated human cremains.<br />

Cremains Analysis, Cremation, Forensic Anthropology<br />

H43 Elemental Characterization of Skeletal<br />

Remains Using Laser-Induced Breakdown<br />

Spectroscopy (LIBS)<br />

Arpad A. Vass, PhD*, and Madhavi Martin, PhD, Oak Ridge National<br />

Laboratory, 1 Bethel Valley Road, 1505, MS 6038, Oak Ridge, TN 37831-<br />

6038; Jennifer Synstelien, MA, University of Tennessee, 250 South<br />

Stadium Hall, Knoxville, TN 37996-0720; and Kimberly Collins, BS,<br />

Maryville College, College Avenue, Maryville, TN 37804<br />

The goal of this presentation is to discuss unique elemental profiles<br />

differentiating human and animal bone which could accelerate skeletal<br />

element identification in the field through the use of laser-induced<br />

breakdown spectroscopy (LIBS).<br />

This presentation will impact the forensic community and/or humanity<br />

by allowing the forensic community to become aware of an extremely useful<br />

forensic tool with many applications and advantages, which could be used<br />

in the field for evidence analysis with real time results. It is expected that<br />

this presentation will make the forensic community, criminal investigators,<br />

and the legal community aware of the potential value of LIBS and hopefully,<br />

they will adopt this technology for future use in their organizations.<br />

The first question asked of the forensic anthropologist and/or medical<br />

examiner when presented with skeletal remains is, “Are they human?”<br />

Identification as human initiates legal investigation whilst animal does not.<br />

An individual experienced in mammalian osteology can readily make the<br />

distinction when presented with as little as a single fragmentary bone. More<br />

difficult is the separation of remains by less experienced osteologists or in<br />

cases of unidentifiable, or extremely fragmented, remains. Traditional<br />

methods of differentiating human from animal bone rely on macroscopic<br />

and microscopic evaluation; however, the margin of error associated with<br />

these methods is dependent upon experience and some fragments are<br />

indistinguishable to even skilled osteologists. Additionally, microscopic<br />

evaluation is time consuming and destructive to the specimen. Given the<br />

legal ramifications involved in accurate identification of skeletal remains, a<br />

435 * Presenting Author


more reliable means by which to distinguish human from animal bone is<br />

desirable. This research utilized Laser-induced breakdown spectroscopy<br />

(LIBS) for nondestructive characterization and separation of elemental bone<br />

composition profiles from several commonly recovered mammalian<br />

species.<br />

LIBS is an established, versatile method of determining elemental<br />

compositions. Laser pulses are delivered to the sample from a laser spark,<br />

or plasma, for vaporization and atomization of the target material.<br />

Spectroscopic detection of the light released from the plasma contains the<br />

emission spectra which permits identification of the elements through their<br />

unique spectral signatures. Advantages of LIBS compared to conventional<br />

methods of elemental analysis include:<br />

• Rapid (seconds) sampling<br />

• Minimally destructive (1.0 - 0.1 mm diameter)<br />

• Simultaneous multi-element detection<br />

• Low detection limits<br />

• Little or no sample preparation<br />

• Ability to remove surface contaminants and provide depth-profile<br />

Eight adult human femora (two of each: male, female, African<br />

American, European American) and a tibia or femur from 14 skeletally<br />

mature animals - pig, gray fox, raccoon, dogs, bear, pig, rabbit, cows, deer,<br />

and sheep - were selected from the William M. Bass Forensic Skeletal<br />

Collection for LIBS analysis. Mammals selected represent a continuum of<br />

dietary trophic levels and commonly recovered species in forensic cases<br />

involving skeletal remains. The outer cortical shaft of bone was targeted by<br />

the Nd-YAG laser and multiple shots were delivered over a representative<br />

area to ensure adequate sampling. Adult cortical bone contains less intraindividual<br />

variation than cancellous and is more stable having a slower<br />

turnover rate (3-5% turnover rate per year) ensuring greater representation<br />

of an individual’s lifetime. Preliminary comparison of spectral data showed<br />

sufficiently significant elemental differences among humans and between<br />

humans and animal bone. It was specifically noted that there was a significant<br />

amount of titanium present in white male and female bones but not in<br />

black female bones. The amount of barium was also quite substantial in the<br />

white female, present in small amounts in the black female but noticeably<br />

absent in the white male bones. These differences could be attributed to the<br />

uptake capacities of the different elements based on their respective bone<br />

densities and porosities. This would lead to the identification of the bones<br />

based on gender, sex, and race in the case of human bones.<br />

Identification of compositional differences between human and animal<br />

remains may provide an elemental fingerprint by which to distinguish<br />

human from animal bone for more efficient and rapid identification of fragmentary<br />

remains. As a minimally destructive method of elemental analysis,<br />

LIBS provides many benefits for use in a variety of trace evidence analyses.<br />

Bone, LIBS, Elemental Analysis<br />

H44 An Experimental Test of the Accuracy<br />

of Human Forensic Identification<br />

Techniques for Analysis of Burn-<br />

Damaged Bone and Tissue<br />

Michelle Kaye, MA*, University of Alaska, Fairbanks, Department of<br />

Anthropology, 310 Eielson Building, PO Box 757720, Fairbanks, AK<br />

99775-7720; Elayne J. Pope, MA, University of Arkansas, Department of<br />

Anthropology, 330 Old Main, Fayetteville, AR 72701; Frank Cipriano,<br />

PhD, San Francisco State University, Conservation Genetics Laboratory,<br />

Hensill Hall 745, 1600 Holloway Avenue, San Francisco, CA 94132; and<br />

O’Brian C. Smith, MD, UT <strong>Medical</strong> Group, Inc, Regional Forensic<br />

Center, 1060 Madison, Memphis, TN 38104<br />

The goal of this presentation is to provide the forensic community<br />

with information about the potential for errors in DNA-based forensic identification<br />

of hard and soft tissues with increasing burn damage.<br />

* Presenting Author<br />

While technical methods continue to improve the potential for the<br />

analysis of degraded DNA samples, forensic analysts should be cautioned<br />

that, especially in cases involving highly degraded skeletal material where<br />

the amount of DNA extracted is very small, the potential for problems may<br />

be of concern. Further study and improved coordination between DNA<br />

analysts and forensic scientists will impact the forensic community and/or<br />

humanity by becoming useful in the development of guidelines for forensic<br />

identification of different types of highly degraded human remains.<br />

Forensic scientists have been challenged by recent events, such as the<br />

tragedies of 9/11 and genocide incidents abroad, which have highlighted<br />

the difficulties of DNA analysis from fragmented and thermally degraded<br />

remains. Previous studies have investigated the effectiveness of alternate<br />

methods for extraction of highly degraded DNA. Here, the authors use an<br />

experimental framework to investigate the accuracy, relative to results from<br />

unburned tissue, of the commonly used molecular forensic identification<br />

methods. Specifically, the authors address how results vary with increasing<br />

temperature and duration of the thermal event, document the consequences<br />

for identification methods as human DNA is exposed to heat of varying<br />

intensity, and discuss the limitations of current technologies in cases<br />

involving burned tissue and bone.<br />

Microsatellite (STR) loci, mitochondrial and nuclear DNA have been<br />

amplified with varying degrees of success from burn-damaged tissues.<br />

Thermally induced deamination with increasing DNA chain fragmentation<br />

in burned samples has been implicated as the mechanism of DNA damage<br />

that has made molecular analysis difficult in some cases. This study tested<br />

samples from fleshed, human remains, not embalmed, without burning, and<br />

with increasing levels of burn damage. Prior to burning, unburned control<br />

samples for muscle, skin, bone, and teeth were collected from seven individuals,<br />

then the remains were burned in simulated forensic fire environments<br />

fueled by wood without accelerants. Scorch-damaged soft tissue and<br />

tooth samples were collected following charring of the muscle and skin<br />

(after 42-45 minutes of burning at a fire temperature of 600-700oF). With<br />

increasing time and temperature, superficial soft tissues retract and burn<br />

away, leaving charred bone from carbonization of organic materials, and<br />

prolonged heat exposure results in brittle grayish calcined bone (samples<br />

taken after 90-100 minutes of burning at a fire temperature of 600-800oF). DNA was extracted from hard and soft tissues with increasing burn<br />

damage using three extraction methods: CTAB/QIAquick, DNeasy, and<br />

CTAB/phenol-chloroform/QIAquick. Amplification of three types of<br />

genetic markers (mitochondrial control region HV1, microsatellite and a<br />

sex chromosome marker) was attempted for each tissue type and burn<br />

damage level. For testing potential variability in the effect of burn-induced<br />

DNA degradation, five microsatellite loci representing small to large<br />

amplicons were analyzed in this experiment. A series of control region<br />

primers covering the HV1 region were used to determine the maximum<br />

amplicon size associated with different tissue types and burn damage<br />

levels. Amelogenin primers flanking a sex-specific indel were used to<br />

assess variability in the effectiveness of sex determination.<br />

All extraction methods were successful; however the CTAB/phenolchloroform<br />

/QIAquick combination produced the highest DNA yield (consistent<br />

with results reported by Ye et al., 2004). As expected, amplification<br />

of larger control regions segments was more difficult with higher levels of<br />

burn damage. Potential difficulties associated with increasing burn damage<br />

include: (1) DNA so highly fragmented that amplification of some loci<br />

(especially larger amplicons) is difficult or impossible; (2) inhibition of<br />

amplification by chemical byproducts that persist despite purification procedures<br />

during extraction; (3) PCR artifacts resulting in altered control<br />

region sequences and microsatellite allele sizes, resulting from chemical<br />

byproducts in burned tissues; and (4) bias in microsatellite amplifications<br />

due to fragmentation damage leading to a higher percentage of null alleles.<br />

While technical methods continue to improve the potential for the analysis<br />

of degraded DNA samples, forensic analysts should be cautioned that,<br />

especially in cases involving highly degraded skeletal material where the<br />

amount of DNA extracted is very small, the potential for problems as listed<br />

above may be high.<br />

436


Experimental verification of which molecular markers and analysis<br />

methods are robust to progressive stages of thermal degradation in various<br />

tissue types, and when such methods may be inaccurate, biased, or misleading,<br />

is needed to produce guidelines for effective and appropriate<br />

analysis of burn-damaged human remains. The preliminary results suggest<br />

that further study and improved coordination between DNA analysts and<br />

forensic scientists are needed to clarify if and when DNA analysis techniques<br />

can effectively be used in forensic identification.<br />

Forensic Identification, Burned Bone, DNA Degradation<br />

H45 Semi-Automated Ultrasound Facial<br />

Soft Tissue Depth Registration:<br />

Method and Preliminary Results<br />

Sven De Greef, DDS*, Katholieke Universiteit Leuven Faculty of<br />

Medicine, School of Dentistry, Oral Pathology and Maxillofacial Surgery,<br />

Forensic Odontology, Kapucijnenvoer 7, Leuven, B-3000, Belgium;<br />

Peter Claes, MEng, Wouter Mollemans, MEng, Dirk Vandermeulen, PhD,<br />

and Paul Suetens, PhD, Katholieke Universiteit Leuven, ESAT, <strong>Medical</strong><br />

Image Computing, Herestraat 49, Leuven, B-3000, Belgium; and Guy<br />

Willems, DDS, PhD, Katholieke Universiteit Leuven, Faculty of Medicine,<br />

School of Dentistry, Oral Pathology and Maxillofacial Surgery, Forensic<br />

Odontology, Kapucijnenvorer 7, Leuven, B-3000, Belgium<br />

The goal of this presentation is to provide an update of facial soft<br />

tissue depth data for the European Caucasoid based on a scientifically<br />

sound registration method.<br />

The database of facial soft tissue depths for the European Caucasoid<br />

based on in vivo measurement of a large population will impact the forensic<br />

community and/or humanity by leading to more accurate manual, as well<br />

as computer-aided, facial reconstructions.<br />

Introduction: Trying to recreate the face of a deceased individual<br />

based on his or her remains, with the hope that recognition would be<br />

triggered, researchers developed different two- and three-dimensional<br />

facial reconstruction techniques. Several of these techniques use soft tissue<br />

depth tables.<br />

Aim: A mobile semi-automated ultrasound echographic system is<br />

presented, the validation procedure, and preliminary results for the<br />

European Caucasoid.<br />

Materials and method: As a part of an ongoing project on computeraided<br />

3-D craniofacial reconstruction approximately 1,000 White Belgian<br />

volunteers subdivided following gender, age, body mass index, and facial<br />

profile had to be scanned on 52 different facial landmarks. For this purpose<br />

a mobile and user-friendly ultrasound scanning system was conceived<br />

enabling in vivo, fast, non-destructive soft tissue depth measurements.<br />

The system is composed of a compact and lightweight mobile digital<br />

ultrasound “A-mode” scanner (Epoch 4B with a 10MHz 0.6mm∅ transducer,<br />

Panametrics Inc., Waltham, USA), a database (MySQL), and a selfdesigned<br />

interface program. The interface program controls the bi-directional<br />

data transfer between the database and the scanner, which allows<br />

automatic depth calculation to avoid interpretation errors of the scanner<br />

signal, automatic storage of the result and automatic adaptation of the<br />

scanner settings for every specific landmark.<br />

The next step in the project consisted in defining an exact measurement<br />

protocol. Reviewing the literature the researchers decided to<br />

measure three times the tissue depths of 52 facial landmarks (10 midline +<br />

21 bilateral).<br />

Results: A repeatability test was performed with an interval period<br />

varying between 2 and 57 days on a test group of 33 volunteers. Intraobserver<br />

agreement was statistically analyzed using a paired t-test. Eightyeight<br />

% (n=46) of the landmarks showed no significant difference (p>0.05)<br />

between the first and second measurement. For 5.7% (n=3) of the landmarks<br />

no significant difference was found at the p>0.01 level. Only 5.7%<br />

(n=3) of the landmarks showed a significant difference (p


were 43 left femora and 36 right femora, of which 31 femur pairs could be<br />

found. The MLNI estimate based solely on these femora is 49 individuals,<br />

with an approximate 95% confidence interval (“highest density region”) of<br />

48-54 individuals. A combined estimate using the pair-matching results for<br />

the tibia, os coxa, humerus, and femur is an MLNI value of 50, with an<br />

approximate 95% confidence interval of 48-52 individuals. The MNI for<br />

this example is only 43.<br />

The MLNI technique could be easily applied to modern forensic<br />

contexts and these figures will provide number estimates that are of much<br />

greater interpretive value than the MNI counts.<br />

Lincoln Index, Commingling, Statistics<br />

H47 Osteometric Sorting of<br />

Commingled Human Remains<br />

John E. Byrd, PhD*, JPAC Central Identification Laboratory, 310<br />

Worchester Avenue, Hickam AFB, HI 96853; and Bradley J. Adams, PhD,<br />

Office of Chief <strong>Medical</strong> Examiner, 520 First Avenue, New York, NY 10016<br />

After attending this presentation, attendees will gain knowledge of<br />

osteometric sorting methods that can be used to sort commingled remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing and describing methods that can be used to sort<br />

commingled human remains. Commingled human remains frequently<br />

result from mass disasters such as warfare, aircraft crashes, and terrorist<br />

attacks.<br />

Assemblages of commingled human remains present special<br />

problems in the identification process. <strong>Bio</strong>logical profiles of individuals<br />

cannot be developed until the remains have been segregated into individuals.<br />

Though the presence of soft tissue can, in some cases, usefully<br />

inform the process (i.e., hair color and texture, skin tone, etc.), most of the<br />

information used to resolve commingling is obtained from the skeleton.<br />

The primary categories of information used to sort commingled remains are<br />

age, articulation, visual pair matching, size, build, taphonomy, and DNA<br />

sequence data. No one of these categories is sufficient as a sole basis for<br />

sorting most assemblages. The authors advocate the systematic use of<br />

these methods to sort commingled remains, so that each step in the sorting<br />

process is documented and can be replicated by other anthropologists (2, 4) .<br />

There are strong correlations among the sizes of the bones of the<br />

skeleton. Thus, a large humerus is associated with a large femur and a large<br />

metatarsal. This allometric reality can be exploited in the sorting process<br />

by formally comparing the sizes of two bones. Byrd and Adams (4) propose<br />

that a test of the null hypothesis that the two specimens are of a size to have<br />

originated in the same individual with the use of statistical tests. This<br />

approach requires the calculation of statistical models from a large reference<br />

data set appropriate to the population of interest. This method can<br />

be effectively applied to comparison of right with left paired bones, but has<br />

the advantage of being applicable to comparison between virtually any two<br />

elements in the skeleton. Naturally, some elements exhibit greater correlations<br />

in size with one another than with others. Recommend are three basic<br />

approaches to osteometric sorting: 1) comparison of left and right bones<br />

with models that key on shape, 2) comparison of adjoining bones with<br />

models recognizing that corresponding areas tightly covary (3) , and<br />

3) comparison of the sizes of bones with the use of regression models.<br />

Each approach is described below following a brief description of the<br />

reference data.<br />

The reference data used in this study (hereafter referred to simply as<br />

“the reference data”) was developed at the JPAC CIL for broad applications<br />

in research and casework. The data is comprised primarily of postcranial<br />

measurements. The measurements include the standard measurements<br />

found in the Forensic Databank at the University of Tennessee, Knoxville (5)<br />

as well as new measurements designed by the authors to be taken on<br />

fragmented bones. The measurement numbering scheme was designed to<br />

* Presenting Author<br />

integrate with the forensic databank. A considerable portion of the<br />

reference data consists of Forensic Databank data generously given to the<br />

authors by Dr. Richard Jantz. The individuals in the reference data set are<br />

as listed in Table 1.<br />

TABLE 2- Reference sample broken down by collection, race, and sex.<br />

COLLECTION SEX BLACK WHITE ASIAN TOTAL<br />

CIL F 0 1 0 1<br />

M 5 42 4 51<br />

CMNH-HT F 2 2 0 4<br />

M 7 7 0 14<br />

SI-TERRY F 14 10 0 24<br />

M 14 2 0 16<br />

UT-BASS F 3 9 0 12<br />

M 4 7 0 11<br />

FDB F 12 46 0 58<br />

M 17 108 0 125<br />

ICMP F 0 0 0 0<br />

M 0 41 0 41<br />

TOTAL 78 234 4 316<br />

CIL, JPAC Central Identification Laboratory<br />

CMNH-HT, Cleveland Museum of Natural History Hamann-Todd<br />

collection<br />

SI-TERRY, Smithsonian Institution Terry collection<br />

UT-BASS, University of Tennessee Bass collection<br />

FDB, University of Tennessee Forensic Data Bank<br />

ICMP, International Commission on Missing Persons<br />

Models for comparison of right and left paired bones were developed<br />

that emphasize shape. These models respond to many of the same attributes<br />

that make visual pair matching (2) possible and in some cases perform<br />

equally well. Measurements of length and of girth at numerous positions<br />

along each bone are utilized. Where length measurements are not available<br />

(due to fragmentation), models utilizing only girth measurements are<br />

calculated. These models take the general form,<br />

D = Σ (ai – bi ) (1)<br />

where a is the right side bone measurement, i and b is the left side bone<br />

measurement, i for each of the measurements included in the comparison.<br />

The null hypothesis of no difference is tested by way of a t test comparing<br />

the value of D against “0” (no difference) and using the reference data<br />

standard deviation for D. The authors recommend the 0.05 significance<br />

level for this test. This method has performed well in test applications, but<br />

would benefit from a larger reference sample.<br />

Models for comparison of adjoining bones are calculated using the<br />

difference in size of adjoining areas as their basis. See Buikstra et.al., 1984,<br />

for an example of this approach. For example, the innominate and femur<br />

are compared by subtracting the maximum diameter of the femur head<br />

(measurement #63 in Moore-Jansen et.al. 1994) from the maximum<br />

diameter of the acetabulum (1) . The model takes the general form,<br />

D = ci –dj (2)<br />

where measurement i of bone c is subtracted from measurement j of bone<br />

d. The null hypothesis that the two specimens are of an appropriate size to<br />

have originated in one individual is evaluated with a t test comparing the D<br />

value obtained from the case specimens to the mean D value calculated<br />

from the reference data. The 0.05 significance level is recommended.<br />

Models for comparison of different bone sizes are generally more<br />

complex in their derivation. After experimenting with numerous<br />

approaches, Byrd and Adams (4) settled on the following linear combination<br />

as an acceptable index for bone size. The available measurements on a<br />

bone are simply summed and the natural logarithm of this sum is the value<br />

438


used in regression models. Since length measurements typically show the<br />

highest correlations with one another, models including length measurements<br />

perform best. The addition of breadths and girth measurements into<br />

the indices offers a slight, but noticeable improvement in the statistical<br />

models. A surprising finding is that models utilizing several breadth and<br />

girth measurements, with no length measurements, perform nearly as well<br />

in some cases as those including length (4) . This fact has great significance<br />

when working with highly fragmented assemblages. Error rate for the<br />

method as a whole, using the 90% prediction interval, has been found in<br />

one study to be approximately 5%. See Byrd and Adams (4) for a full<br />

account of this method.<br />

The application of osteometric sorting in case work at the JPAC CIL<br />

is currently done in an ad hoc manner, where the appropriate statistical<br />

models (utilizing measurements available in the case specimens) are calculated<br />

from the reference data as the need arises. Osteometric comparisons<br />

of paired bones and adjoining bones are most advantageous when sorting<br />

large assemblages where it is impractical to make visual comparisons of<br />

every possible match. Further, this method is superbly suited to computer<br />

automation. The authors hope to develop an approach whereby all available<br />

measurement values for the case specimens are entered in advance, and all<br />

relevant comparison results can be produced as the analysis proceeds,<br />

without having to generate the statistical models for each comparison as<br />

separate steps for the anthropologist. As specimens are sorted apart by the<br />

various methods described in this report, they can be eliminated from consideration<br />

within the software application.<br />

References:<br />

1. Adams BJ, Byrd JE. Interobserver variation of selected postcranial measurements.<br />

J Forensic Sci 2002; 47(6):1193-1202.<br />

2. Adams, BJ, Byrd, JE, Resolution of Small-Scale Commingling: A Case<br />

Report from the Vietnam War. Forensic Sci Int, in press.<br />

3. Buikstra JE, Gordon CC, and St. Hoyme L. The case of the severed<br />

skull: individuation in forensic anthropology, in T. A. Rathbun and J. E.<br />

Buikstra (Eds.). Human Identification: Case Studies in Forensic<br />

Anthropology, C.C. Thomas, Springfield, 1984.<br />

4. Byrd JE and Adams BJ. Osteometric sorting of commingled human<br />

remains. J Forensic Sci 48 (2003) 717-24.<br />

5. Moore-Jansen PM, Ousley SD, Jantz RL. Data Collection Procedures for<br />

Forensic Skeletal Material. Report of Investigations no.48. Knoxville:<br />

University of Tennessee, Department of Anthropology; 1994.<br />

Osteometric Sorting, Commingled Remains, Forensic Identification<br />

H48 Resolving Commingling Issues In<br />

Mass Fatality Incident Investigations<br />

Paul S. Sledzik, MS*, National Transportation Safety Board, 490<br />

L’Enfant Plaza, SW, Washington, DC 20594; and Elias J. Kontanis, BS,<br />

Oak Ridge Institute for Science and Education, Joint POW MIA<br />

Accounting Command-Central Identification Laboratory, 310 Worchester<br />

Avenue, Hickam AFB, HI 96853<br />

Attendees will gain an understanding of the forensic and ethical issues<br />

pertaining to commingled remains from mass fatality incidents. The<br />

concept of a triage station in the disaster morgue operation will be presented.<br />

Additional concerns, such as the decision to identify all remains or<br />

all victims and the impact of commingling on the notification of identification<br />

and release of remains to family members, are examined.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing the forensic community an understanding of the<br />

role of the triage process in managing mass fatality incidents.<br />

Mass fatality incidents often expose human remains to a variety of<br />

factors causing fragmentation, thermal modification, and commingling.<br />

Resolving the complexities of identification and re-association of highly<br />

fragmented remains recovered from disasters requires not only the use of<br />

DNA technology but the application of certain management principles in<br />

morgue operations. Establishing a triage station to sort remains before processing<br />

by forensic specialists is an effective way to categorize remains<br />

based on their potential for identification and re-association. This paper<br />

examines the use of triage in resolving issues of commingling, identification,<br />

and remains re-association, and explores some issues related to<br />

next-of-kin considerations.<br />

Identifying fragmented and commingled human remains from mass<br />

disasters involves both scientific methods and ethical considerations. The<br />

role of DNA technology gives forensic scientists powerful tools to identify<br />

and re-associate remains that would have been previously considered<br />

unidentifiable. However, the existence of these tools does not argue for<br />

their exhaustive application. Before the processing of remains, thought<br />

should be given to whether the focus will be on identifying all the victims<br />

or on identification of all remains. This decision is based on the degree of<br />

fragmentation, the family and public expectations, the quality and quantity<br />

of antemortem information, and the resources available. Complete or<br />

nearly complete remains (where the ratio of remains to victims is near 1:1)<br />

demand the identification of all remains because, in this case, it refers effectively<br />

to all victims. Typically, dental and fingerprint methods are used to<br />

identify whole remains and the process is completed fairly quickly and at<br />

relatively low cost.<br />

In the case of high fragmentation, the number of remains per victim<br />

increases which influences decisions about the use of the limited resources<br />

of personnel, time, and funds. At the disaster site, fragmented remains are<br />

by definition commingled. Only remains connected by anatomical tissues<br />

are considered a single specimen. Proximity of remains cannot be used as<br />

a method of re-association; each remain must be examined on their own for<br />

identification.<br />

In the morgue operation, developing and applying a probative index<br />

system allows triage personnel to systematically classify human remains<br />

according to their identification potential or investigative value. A categorization<br />

system relates the number of positive and presumptive identifying<br />

features to the potential for a DNA, dental, fingerprint, or medical identification.<br />

The probative index needs to be incident-specific, as factors such<br />

as availability and accuracy of antemortem information can impact the<br />

value of data.<br />

Triage brings an additional benefit for understanding taphonomic<br />

processes related to the disaster. Because it is the only morgue section<br />

staffed by a multidisciplinary team, the triage station can be used to observe<br />

patterns in the types of remains as they relate to search areas. These patterns<br />

could suggest improper recovery techniques and thus assist in guiding<br />

search and recovery efforts. Effective triage serves as a communications<br />

link between search and recovery and the morgue, one that can minimize<br />

the potential for recovery-induced commingling. In addition, patterns may<br />

also help elucidate some aspects of incident causation.<br />

Resolving the biological issues addresses only one part of the overall<br />

problem commingling represents. Commingling also impacts the family<br />

members of the victims, particularly in the areas of notification of identification<br />

and return of remains. Current practice dictates that family members<br />

of the deceased are allowed to choose when and how often they are<br />

contacted about the identification of remains. Because the DNA identification<br />

(and thus the re-association) often takes weeks or months, families<br />

often choose to be notified of the initial identification and then once again<br />

at the completion of the identification and re-association process. Families<br />

rarely choose to be notified each time a specimen is identified.<br />

In nearly all recent aircraft accidents involving fragmented remains<br />

there have been remains that are unidentifiable, despite the liberal<br />

application of DNA technology. Often referred to as common tissue or<br />

group remains, they represent tissues potentially from all victims. Current<br />

practice dictates that the family members, as a group, decide upon the final<br />

disposition of these remains.<br />

Mass Fatality Incident, Commingling, Human Remains<br />

439 * Presenting Author


H49 Methods and Techniques for Sorting<br />

Commingled Remains: Anthropological<br />

and Physical Attributes<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, 1413 Research Boulevard, Building 102, Rockville, MD 21771<br />

After attending this presentation, attendees will have a basic understanding<br />

of the methods and techniques commonly utilized by the federal<br />

government for sorting of commingled remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by assisting forensic scientists with the sorting and re-association<br />

of commingled remains. Methods will be discussed which have been<br />

utilized for a number of years in a federal capacity which have greatly<br />

improved the processing of human remains in mass fatalities.<br />

With reference to personal identification, one of the most difficult<br />

tasks facing forensic scientists is the sorting of commingled human<br />

remains. Incidents commonly resulting in commingling of remains include<br />

explosions, fires, and genocide involving mass burials. Four major factors<br />

that determine the degree of difficulty in sorting commingled remains<br />

include 1) the number of deceased involved, 2) the degree of body fragmentation,<br />

3) the degree of biological diversity among the deceased, and<br />

4) the survivability of skeletal structures. The difficulty of sorting remains<br />

increases exponentially with the increase of the number of deceased, and<br />

the same is true with the increase of body fragmentation. In retrospect the<br />

greater the biological diversity among the deceased, and increase in the survivability<br />

of skeletal structures can lessen the complexity of sorting commingled<br />

remains.<br />

Separation of commingled remains can be accomplished utilizing a<br />

combination of anthropological and serological methods. Anthropological<br />

methods can be broken down to osteological comparisons based on gross<br />

and metrical osteological analysis, and also by physical comparisons which<br />

include biological attributes such as hair and epidermal characteristics, evidence<br />

of scars, tattoos, pathological conditions or prior surgical intervention.<br />

Serological methods can include ABO blood typing and DNA<br />

comparisons.<br />

The first step in dealing with commingled remains is the initial triage<br />

of the remains. Each body portion/fragment should be carefully examined<br />

to insure that it represents a single specimen. In many cases, the remains<br />

examined may initially appear as a single anatomical specimen – however,<br />

detailed examination can reveal the specimen to be actually composed of<br />

two or more anatomical structures that are not physically bound to one<br />

another. One cannot assume that the multiple anatomical specimens are<br />

from the same individual even though they may have been recovered<br />

together, or in close proximity to one another. Once a single specimen is<br />

identified it should be x-rayed as well as photographed. Radiographic<br />

examination provides a detailed record of what skeletal structures are<br />

present and can greatly assist in the anthropological assessment of the<br />

specimen/s. Additionally, radiological examination can help limit the<br />

amount of soft tissue dissection required for determining what skeletal<br />

structures are present. If a question about a certain specimen occurs later<br />

in time, it is much easier to access and examine the radiographic record vs.<br />

locating and examining the actual specimen.<br />

Although soft tissue structures are important, it is the skeletal<br />

structures, which, in many cases, will provide the most meaningful answers<br />

relating to human identification. Upon documenting the skeletal and soft<br />

tissue structures present, including size and weight of the specimen an<br />

anthropological assessment based on gross morphology and/or<br />

osteometrics should be conducted. <strong>Bio</strong>logical assessment should include if<br />

possible sex, age, race, and stature in the case of intact long bones. Age<br />

estimates do not necessarily have to be specific, as a specimen can be<br />

assigned to a general age group such as infant, child, teen, young adult,<br />

middle age or senior. Other techniques, which can be useful in sorting<br />

remains, are alternate light sources such as UV lamps. Alternate light<br />

sources are particularly useful in the sorting of skeletonized remains.<br />

* Presenting Author<br />

Skeletal elements, which share commonalities of physical make-up,<br />

environmental exposure will also share patterns of florescence. Similarity<br />

in the physical coloration of a skeletal specimen, such as in the case of<br />

tetracycline labeling which results in a yellow discoloration of the bone is<br />

also another comparative technique for separating remains. Other physical<br />

methods of sorting/re-associating skeletal elements include similarity of<br />

size, muscle marking and foramina patterning, articular surface<br />

morphology, matching of fracture sites, and articular fit.<br />

Not only is the task of sorting commingled remains difficult but so are<br />

the issues concerning the final disposition of remains which cannot be separated<br />

or identified. Issues involving cultural or religious burial practices,<br />

family objections to common/group burials, and objections to common<br />

burial when commingled remains may contain anatomical portions<br />

belonging to a terrorist/s are problematic. The purpose of this presentation<br />

is to review the primary methods and techniques utilized by the federal<br />

government in sorting commingled remains in a number of different<br />

scenarios.<br />

Commingling, Identification, Physical Anthropology<br />

H50 The Importance of Using Traditional<br />

Anthropological Methods in a DNA-Led<br />

Identification System<br />

Laura N. Yazedjian, MSc*, Rifat Kesetovic, MD, Ana Boza-Arlotti, PhD,<br />

and Zeljko Karan, MD, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, 71000, Bosnia-Herzegovina<br />

The goal of this presentation is to demonstrate, using several case<br />

studies, that even with the use of advanced DNA technology for the<br />

identification of large numbers of missing persons, traditional methods of<br />

anthropological analysis are still necessary.<br />

This presentation will impact the forensic community and/or<br />

humanity because it is an illustration that commingling, from whatever<br />

source, cannot be totally resolved using DNA. Traditional anthropological<br />

methods are not only more cost-effective, but they allow more complete<br />

resolution of commingled case, as it is not possible to produce a DNA<br />

profile for every bone and bone fragment. It is important for the forensic<br />

community as well as for non-forensic scientists and laypersons to dispel<br />

the myth that using DNA for identification of individuals is the only step in<br />

identification.<br />

In Bosnia-Herzegovina, the International Commission on Missing<br />

Persons (ICMP) is using a large-scale DNA-led system to identify approximately<br />

30,000 individuals who went missing as a result of the conflict in<br />

the 1990’s. This has led to a misconception, especially among laypersons,<br />

that a positive DNA match between a set of remains and his or her family<br />

members constitutes a positive identification of that individual.<br />

Unfortunately, due to various taphonomic factors, such as scavenging,<br />

deliberate attempts to hide evidence and poor excavation methods, many of<br />

these remains are highly commingled.<br />

Cases that have positive DNA matching reports are examined by<br />

anthropologists; during anthropological analysis, a complete biological<br />

profile of the individual is created in a specially designed database. The<br />

methods commonly used for age determination are the Suchey-Brooks and<br />

Todd methods for pubic symphysis development, the Iscan-Loth method<br />

for the sternal rib end, the Lovejoy method for the auricular surface, the<br />

Lamendin dental method and sternal clavicle, vertebral ring and S1-S2<br />

unions. The Trotter and Gleser formulae are used for stature determination.<br />

The pathologist then uses this report during antemortem-postmortem comparison,<br />

in association with other information such as clothing and personal<br />

effects, to reach an identification.<br />

Case 1: A partially complete body from a secondary mass grave near<br />

Srebrenica, missing the lower left arm, lower left leg and right femur, and<br />

a few other fragments. The age-at-death estimation was 45-55 years;<br />

however, the chronological age of the individual represented by the DNA<br />

440


was 23. The femur, which had been sampled, appeared consistent with the<br />

rest of the skeleton, and the articulation of the femoral head with the<br />

acetabulum was not inconsistent. A second DNA sample was taken, from<br />

the left humerus, confirming that two individuals were present.<br />

Case 2: A virtually complete body from the same secondary mass<br />

grave, missing several fragments, including most of the right os coxae. The<br />

DNA report on the right femur was for an individual in his early 20s;<br />

however, most of the remains belonged to an individual over 60 years old.<br />

The results of the second DNA test are pending.<br />

Case 3: A DNA report for a male individual was issued for a partially<br />

complete female body. Only the femur which had been sampled belonged<br />

to the identified individual with the rest of the skeleton representing a very<br />

robust female.<br />

Case 4: Two virtually complete individuals were collected from the<br />

field in one body bag. Both were almost the same stature, but one was<br />

slightly more robust and one individual was in his early 20s and the other<br />

in his mid-30s. Using pair-matching and articulations to separate the<br />

uppers and lowers into two individuals, and using the ages to distinguish<br />

the skulls, vertebrae and ribs meant only two DNA samples had to be taken<br />

from each, one from a femur and one from a humerus, to ensure they were<br />

correctly separated.<br />

Examination of the remains and the creation of a biological profile<br />

ensure that the remains present belong to only one individual and that the<br />

remains are consistent with the individual represented by the DNA<br />

matching report. This not only helps to return the correct and most complete<br />

remains to family members, it also reduces the number of bone<br />

samples that need to be cut to test for DNA.<br />

Forensic Anthropology, DNA Identification, Bosnia-Herzegovina<br />

H51 The Importance of Body Deposition<br />

Recording in Event Reconstruction<br />

and the Re-Association and Identification<br />

of Commingled Remains<br />

Hugh H. Tuller, MA*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Ute Hofmeister, MA, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, 71000, Bosnia and Herzegovina; and<br />

Sharna Daley, MSc, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

After attending this presentation, attendees will understand how<br />

proper mass grave excavation and recording techniques can assist in the<br />

re-association and identification of remains.<br />

Proper mass grave excavation techniques are not ideas that should be<br />

lightly tossed aside when time and money constraints are considered. This<br />

presentation will impact the forensic community and/or humanity by<br />

demonstrating how such techniques have direct influences on mortuary<br />

analysis and the identification process and so should be considered just as<br />

an important part of the process as laboratory work.<br />

Dumping of bodies in a mass grave usually happens in stages where<br />

several loads of bodies are deposited one after the other. Careful excavation<br />

and recording of these separate deposits and their contents can assist<br />

in the understanding of the grave formation process. The past activity that<br />

created the grave is thus better understood. Physical evidence recovered<br />

and recorded from the grave can then be used to corroborate witness statements.<br />

In addition to assisting criminal investigations, recording of body<br />

deposits can directly help in the re-association of disarticulated body parts<br />

to their bodies and in identification process as a whole.<br />

Bodies buried within mass graves have usually been subjected to<br />

massive trauma both from the wounds that lead to the death and often from<br />

the burial activity usually carried out by heavy machinery. Trauma caused<br />

by the digging activities of heavy machinery is especially noted in<br />

secondary graves where remains have been dug up from their first resting<br />

place and reburied with the intention of concealing them in a better or more<br />

secure location. In addition, the regular taphonomic conditions within the<br />

grave, particularly older ones where the remains have had longer exposure,<br />

will have taken their toll on the remains. As a result remains are often<br />

recovered with parts missing.<br />

The re-association of hundreds of disarticulated body parts from a<br />

large mass grave is a complex and time-consuming process. However, the<br />

identification and recording of deposits within the grave and the human<br />

remains within a particular deposit can help lessen the burden of the anthropologist<br />

in the mortuary by first limiting search parameters. Instead of<br />

trying to match a particular body part to all the bodies missing that part<br />

within the entire grave, the search can first be limited to just those elements<br />

within the same deposit. The assumption here is that those disarticulated<br />

remains within a deposit are most likely to belong to bodies or other body<br />

parts within the same deposit. Searching elements by deposit instead of<br />

grave could be particularly helpful in mortuaries with limited space to<br />

layout all the body parts and bodies missing parts from the whole grave.<br />

Recording of deposits may also assist in identifying bodies that have<br />

resisted DNA analysis and traditional mortuary identification methods. It<br />

can be assumed that vehicles used to transport the bodies were loaded at or<br />

near the location where the people were killed and/or buried. If a number<br />

of bodies from a specific deposit are positively identified then, through<br />

those identifications, it may be learned where those bodies generally originated.<br />

Often this origin will often be the location near where the people<br />

lived or were last seen. It is very probable that the unidentified bodies<br />

within that same deposit originated from the same area; that those unidentified<br />

bodies were loaded up on the vehicles at the same time and place as<br />

those that have been identified. Thus, it would be prudent to inquire as to<br />

who may still be missing from that point of origin. Additional blood and<br />

antemortem data could be collected from the surviving family members,<br />

friends and neighbors in that location. In essence this gives a direction<br />

from where next to search for information (or collect blood) regarding the<br />

remaining unidentified.<br />

This presentation will outline the process of identification of deposits<br />

within mass graves and demonstrate some examples of re-association of<br />

body parts within deposits, and the potential of locating the area of origin<br />

of unidentified bodies from mass graves containing the remains of Kosovar<br />

Albanians killed in 1999.<br />

Mass Grave, Forensic Archaeology, Commingling<br />

H52 Commingled Skeletonized Remains in<br />

Forensic Cases: Considerations for<br />

Methodological Treatment<br />

Sofia Egaña*, Silvana Turner, Patricia Bernardi, Mercedes Doretti, and<br />

Miguel Nieva, Argentine Forensic Anthropology Team (EAAF), Avenue<br />

Rivadavia 2443, 2nd Floor, Office 3-4, Buenos Aires, C1034ACD,<br />

Argentina<br />

After attending this presentation, attendees will understand some of<br />

the considerations on the application of standard forensic anthropology<br />

procedures to investigations of human rights violations involving the<br />

commingling issues of skeletonized remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by contributing to the discussion, development, and dissemination<br />

of the best forensic anthropological practices for the treatment of<br />

commingled skeletonized remains in the investigation of human rights<br />

violations.<br />

Based on the Argentine Forensic Anthropology Team’s (EAAF)<br />

experience in forensic investigation, the scope and limitations related to<br />

recovery procedures, osteological analysis, and use of historical documentation<br />

with skeletonized commingled remains will be addressed.<br />

In forensic cases, the methodological treatment of commingled<br />

skeletonized remains presents specific challenges that need to be discussed<br />

441 * Presenting Author


in order to reach a consensus on the best guidelines for their anthropological<br />

treatment. These guidelines should fall within the framework of<br />

general forensic principles. The cases evaluated were carried out in the<br />

context of forensic investigation of human rights violations in Argentina<br />

and El Salvador which presented different conditions for the burial and<br />

recovery of human remains. The cases in which the remains were<br />

recovered by personnel without training in forensic techniques are<br />

differentiated from those in which the EAAF participated in the<br />

exhumation and analysis.<br />

In both cases, the impact of the recovery procedure is considered to be<br />

particularly relevant. In addition, the burial context in both cases was<br />

different: in one case from Argentina there were mostly single burials in<br />

cemeteries; in the second case from El Salvador, there were partially or<br />

completely disarticulated remains which were buried after having been<br />

exposed on the surface for several weeks.<br />

In the case from Argentina, several exhumations were ordered by the<br />

Federal Tribunals at the beginning of 1984 after the return to a democratic<br />

government. Because the exhumations and analyses were conducted by<br />

personnel without training in forensic anthropological and archaeological<br />

techniques in the early cases, there was minimal possibility of identifying<br />

the remains and contributing substantive information to the judicial<br />

investigation. The majority of these exhumations took place in the<br />

Province of Buenos Aires, and most of the remains were sent to the <strong>Medical</strong><br />

Legal Institute of the La Plata Department of Justice (Asesoría Pericial). In<br />

addition, inadequate storage conditions led to the loss of reference labels,<br />

the jumbling of remains, and the damage and loss of bones, thus making<br />

their analysis even more difficult.<br />

At the same time, the historical background research that EAAF<br />

carried out in Argentina led to the presumption of the identity of missing<br />

persons whose remains could be found among the Asesoría Pericial cases,<br />

making their analysis an increasingly pressing issue. Finally, at the end of<br />

2002, a judicial order enabled EAAF to retrieve 91 containers with skeletal<br />

material, clothing, ballistic evidence, documents, and labels with partially<br />

legible references for analysis. Because they were exhumed in an unscientific<br />

manner, these skeletal remains and the associated evidence, which<br />

originally came from single graves of articulated individual found in<br />

cemeteries, were commingled when EAAF retrieved them twenty years<br />

later.<br />

In the case from El Salvador, commingled skeletal remains in different<br />

degrees of articulation were exhumed from graves after having been<br />

exposed to natural elements on the surface during different periods of time.<br />

This case reflects the EAAF’s experience in the investigation at El Mozote,<br />

the largest massacre in El Salvador’s 12-year civil war. In December 1981<br />

the Salvadorian armed forces conducted a large-scale operation in the<br />

northeastern region of the country, during which they allegedly massacred<br />

approximately 800 civilians in six neighboring villages. Over 40% of the<br />

victims were children under ten years of age. Most of the victims’ bodies<br />

were buried in clandestine graves or left where they had been killed.<br />

Because the troops returned to their temporary camp each night, the<br />

surviving residents of the other villages were able to sneak into the<br />

massacre sites after dark to inter as many of the victims as they could in<br />

common graves. For a variety of reasons, however, they could not bury<br />

many of the victims, whose bodies remained where they had been killed.<br />

After remaining on the surface for more than three weeks, these remains<br />

were eventually interred by the villagers.<br />

Based on the experiences in these two cases, the goal of this<br />

presentation is to present the scope and limitations related to the recovery<br />

procedures, osteological analysis, and use of historical documental sources<br />

with skeletonized commingled remains.<br />

Forensic Anthropology, Commingled Remains, Methodological<br />

Procedures<br />

* Presenting Author<br />

H53 Exhumation and Identification of a<br />

Particular Individual in a Mass Grave<br />

Eugénia Cunha, PhD*, Maria Cristina Mendonça, PhD, and Duarte<br />

Nuno Vieira, PhD, Universidade de Coimbra, Departamento<br />

Antropologia, Instituto Nacional de Medicina Legal, Largo da Sé-Nova,<br />

Coimbra, 3000-056, Portugal<br />

After attending this presentation, attendees will understand the<br />

importance of the recovery of remains and the collection of antemortem<br />

data on victims for the purpose of individualizing commingled remains for<br />

identification.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing knowledge of the forensic anthropology work<br />

performed in Portugal and the need for interdisciplinary teams to deal with<br />

the type of mass graves found there.<br />

In June 2003, the authors were sent to East Timor to exhume the<br />

remains of a former member of the Portuguese military force who was<br />

executed along with 25 other prisoners during the invasion of the territory<br />

by Indonesia, in 1975. Portuguese authorities sponsored a mission to<br />

recover the remains of the military individual in order to deliver them to his<br />

family in Portugal. The bodies had been buried in a mass grave in<br />

Asirimou, a location in the mountains, about 45 Km from Dili. The excavation<br />

took place over three days. This presentation will discuss some of<br />

the major difficulties involved in the complex field work, including: 1) the<br />

individualization of the target individual from among the remains of at least<br />

16 other individuals, 2) a hostile taphonomic environment, and 3) disarticulated<br />

and commingled skeletonized remains with a majority of the clothes<br />

preserved.<br />

The relative position of the individual in the pit was a major contributor<br />

to the poor preservation of the remains. It is also possible that the<br />

grave may have been disturbed at some point. During the extraction of the<br />

individual involved, it was necessary to manipulate several of the adjacent<br />

sets of human remains. The process of identification was carried out<br />

mainly on the basis of sociocultural affiliation, individualizing traits, and<br />

personal belongings. Contextual information and associated artifacts were<br />

crucial to the identification. The previously collected antemortem data on<br />

the victim was paramount to the resolution of this difficult case, as a<br />

reliable assignment of the disarticulated, commingled and fragmented<br />

bones to the victim was particularly challenging.<br />

Personal Identification, Mass Graves, Exhumation<br />

H54 Separating Commingled Remains<br />

Using Ancient DNA Analysis<br />

Franklin E. Damann, MA*, and Mark D. Leney, PhD, JPAC Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; and Suni M. Edson, MS, Armed Forces DNA Identification<br />

Laboratory, 1413 Research Boulevard, Building 101, Rockville,<br />

MD 20850<br />

Attendees will learn strategies and capabilities of using DNA testing<br />

in conjunction with other lines of evidence to resolve commingled skeletal<br />

remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing an understanding of the advantages and disadvantages<br />

of mtDNA analysis, and its benefits to forensic anthropology. When<br />

used in conjunction with other lines of evidence, mtDNA sequencing<br />

strengthens a case for postmortem identification and facilitates the<br />

segregation of commingled remains.<br />

This presentation combines the analysis of ancient DNA with other<br />

lines of evidence to achieve segregation of commingled skeletal remains.<br />

The authors examine strategies and capabilities of using DNA testing to<br />

resolve commingling, including advantages and shortcomings of<br />

442


conventional mitochondrial (mtDNA) analysis, recent advances in mtDNA<br />

technology mitigating the common-sequence problem, prospects for other<br />

types of DNA testing, and summarize expectations of likely success or<br />

failure in testing ancient remains. These issues are addressed through a<br />

case study from the Joint POW/MIA Accounting Command Central<br />

Identification Laboratory (JPAC CIL) where mtDNA was used to augment<br />

and test osteological and osteometric techniques for the segregation of<br />

commingled remains.<br />

During a 1942 combat mission over Kiska Island, a United States<br />

Navy PBY-5 aircraft was lost. In August 1943 the U.S. regained control of<br />

Kiska; the remains of the seven crewmembers were recovered and buried<br />

in a common plot near the crash site. In 2001 a wildlife biologist on Kiska<br />

discovered aircraft wreckage, including a data plate inscribed with the<br />

number 04511 and a bone. The number correlated to the lost PBY-5.<br />

Armed with this new information, a JPAC CIL Search and Recovery team<br />

located and recovered human remains.<br />

Laboratory analysis of the remains indicated a skeletal MNI of seven.<br />

An initial sorting hypothesis utilizing pair matching, osteometric analysis,<br />

articulation, and taphonomic indicators identified seven clusters of partial<br />

upper and lower bodies, leaving several duplicated elements not associable<br />

to an individual.<br />

Elements from each skeletal cluster and the unassociated elements<br />

were sampled for mtDNA analysis. Sample selection was guided by MNI<br />

and preservation. Twenty-nine samples were taken from skeletal and<br />

dental elements. DNA test results were used to associate and segregate<br />

remains, confirming and challenging initial sorting hypotheses, and<br />

ultimately strengthening postmortem identification by adding an additional<br />

line of evidence.<br />

DNA analyses confirmed the presence of seven individuals by identifying<br />

seven different mtDNA sequences. However, formal differentiation<br />

of sequences requires a minimum of two polymorphic differences. In this<br />

case, two sequences could not be excluded from one another because of<br />

sequence similarities and additional sequencing outside the standard hypervariable<br />

region was required. Recently developed mtDNA SNP assays<br />

offer additional means to discriminate individuals with shared haplotypes.<br />

Any sequence consistency between evidence samples and staff<br />

requires added procedures to identify potential contamination. Sequences<br />

derived from skeletal elements in this case were consistent with the<br />

mtDNA sequence of a JPAC CIL external consultant. A review of evidence<br />

management records showed the evidence had not been exposed to the<br />

consultant, thus excluding him as a potential contaminator. Multiple<br />

evidence samples consistent with a staff sequence typically indicate a<br />

shared type, not contamination.<br />

Locating reference samples for casualties can be a lengthy process.<br />

Genealogists are frequently contracted to locate a maternal relative. In this<br />

case, no references were available; however, a unique resolution to this<br />

problem is proposed. Six of seven individuals are linked to dental<br />

elements. DNA samples from these teeth serve as internal references,<br />

associating postcranial remains. Using internal references works here only<br />

because the individuals form a closed population. Through exclusion, the<br />

seventh sequence must represent the seventh individual.<br />

MtDNA is not unique to an individual, which can complicate<br />

segregation of commingled remains; however, new techniques are<br />

increasing individuation power. Points to consider when applying mtDNA<br />

analysis to commingled remains include population parameters (i.e., case<br />

background), skeletal MNI, and efficient sampling strategy. Understanding<br />

advantages and disadvantages of mtDNA analysis adds value to forensic<br />

anthropology. When used in conjunction with other lines of evidence,<br />

mtDNA sequencing strengthens a case for postmortem identification and<br />

facilitates the segregation of commingled remains.<br />

Commingled Remains, Ancient DNA, Forensic Anthropology<br />

H55 Marrying of Anthropology and DNA:<br />

Essential for Solving Complex Commingling<br />

Problems in Cases of Extreme Fragmentation<br />

Amy Z. Mundorff, MA*, Robert Shaler, PhD, Erik T. Bieschke, MS, and<br />

Elaine Mar, MS, Office of Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New<br />

York, NY 10016<br />

The goal of this presentation is to describe how a combined effort of<br />

anthropologists and DNA scientists is essential to sorting out undetected<br />

commingling in cases of extreme fragmentation from mass disasters.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing useful tools to be used in large-scale identification<br />

efforts from mass disaster situations. This has been one of the largest<br />

identification efforts, and many lessons have been learned. It is important<br />

to disseminate this information for future use.<br />

On September 11th 2001, American Airlines Flight 11 and United<br />

Airlines Flight 173 crashed into the twin World Trade Center towers and<br />

initiated a sequence of events that eventually felled both towers and five<br />

other commercial buildings, murdering 2749 individuals, of which 1565<br />

have been identified to date. The rescue and the subsequent recovery lasted<br />

until May 2002, but the identification of the almost 20,000 fragments of<br />

human remains is on going with no end in sight. The World Trade Center<br />

work is the largest forensic identification effort in U.S. history and the<br />

problems have been magnified by the extreme fragmentation and commingling<br />

of the human remains.<br />

Massive fragmentation of the victims and extensive commingling of<br />

the bodies characterized the World Trade Center disaster. The commingling<br />

had several contributing factors: two airplane crashes causing<br />

multiple building collapses where people died together, long recovery time,<br />

extensive watering from fire management, decomposition, the recovery<br />

techniques requiring large mechanical equipment, and attempted<br />

reconstruction of remains at the site by untrained personnel.<br />

The DNA scientists did not initially believe commingling was a<br />

problem as long as it could be identified and the appropriate pieces could<br />

be separated. However, the DNA scientists were not in a position to see<br />

when duplicate pieces, such as two right feet, had identical DNA profiles.<br />

This is a problem that can have many origins: poor sampling techniques<br />

during the autopsy, tissue commingling within the remains, DNA contamination<br />

in the laboratory, and simple transcription errors.<br />

This made commingling one of the most confounding problems<br />

encountered during the identification process. Initially, this was thought to<br />

be easily identified when tissue and bone samples ostensibly from the same<br />

case were giving different DNA profiles in the laboratory. However, in one<br />

case, a requested review of the remains uncovered the top and bottom<br />

portions of a torso did not actually articulate with each other indicating<br />

possibly two different individuals. The imminent release of the torso identified<br />

by DNA, to a single family, created concern about the accuracy of the<br />

identification. DNA typing of only one of the torso pieces tested identified<br />

the appropriate family. The other torso fragment, however, did not have a<br />

DNA test. Subsequent DNA testing after re-sampling confirmed the<br />

anthropologist’s suspicions. This case initiated a new protocol where a<br />

‘final anthropological review’ of all remains was necessary before the<br />

confirmation of every identification and subsequent release to the families.<br />

After any identification is made, regardless of the scientific modality,<br />

an anthropologist does a visual inspection of the remains to confirm the<br />

level of detail recorded in its file as well as its congruity to the previously<br />

identified fragments of that individual. Often times, many fragments have<br />

been identified to one person. To date, the most fragments identified to one<br />

person are 209. Information such as the sex and age of the identified victim<br />

is considered, as well as a detailed review of all of the other fragments<br />

previously identified to that victim. Because the identification efforts have<br />

lasted so long, multiple fragments of remains have been identified to a<br />

single person years apart. These previously identified remains often have<br />

already been released to funeral homes. It has been through this final<br />

443 * Presenting Author


eview process, that the majority of commingling and contamination<br />

mistakes have been identified and corrected. This paper will describe in<br />

detail how this task was accomplished.<br />

Marrying both sciences, the authors discovered that the synergy of the<br />

two disciplines was necessary to ensure that commingling was found.<br />

Using World Trade Center examples of each of the different mechanisms<br />

of commingling, this paper will demonstrate how to identify that a problem<br />

exists and trace back to its root and from this information, solve the<br />

problem and put procedures in place so they can be recognized or avoided<br />

in the future.<br />

Commingling, Identification, Mass Disaster<br />

H56 Mass Graves, Human Rights and<br />

Commingled Remains: Considering<br />

the Benefits of Forensic Archaeology<br />

Dennis C. Dirkmaat, PhD*, Luis M. Cabo, MS, and James M.<br />

Adovasio, PhD, Mercyhurst College, 501 East 38th Street, Erie, PA<br />

16546; Vicente C. Rozas, PhD, Centro de Investigaciones Forestales y<br />

Ambientales de Lourizán, Departamento de Ecología, Aptdo. 127,<br />

Pontevedra, Galicia 36080, Spain<br />

The goal of this presentation is to consider the primary role of archaeological<br />

recovery methods in the excavation of mass graves and eventual<br />

prosecutorial efforts.<br />

This presentation will impact the forensic community and/or<br />

humanity by reevaluating the immediate and long range goals of mass<br />

grave recovery in human rights cases, and the implementation of comprehensive<br />

forensic archaeological methodologies<br />

The widespread investigation of human rights violations and abuse in<br />

many areas of the world during the past few decades has attracted a<br />

renewed interest to the recovery and investigation of human remains from<br />

multiple victim burial features (i.e. “mass graves”). Understandably, focus<br />

has been placed on personal identification issues and efforts to return the<br />

remains of victims to their families as soon as possible. However, as noted<br />

by Rothenberg (2002), the number of perpetrators that have faced<br />

prosecution is far below the number of episodes of gross human rights violations<br />

and abuses documented during this period, even when just considering<br />

the cases of extraordinary brutality. This situation stands in stark contrast<br />

with the strict juridical definition of the human rights concept,<br />

including the right to an effective remedy by the competent national tribunals<br />

for acts violating the fundamental rights of any individual (Article<br />

8 of the Universal Declaration of Human Rights, UN General Assembly<br />

resolution 217 A (III) of 10 December 1948).<br />

The corollary of these considerations is that any investigation of<br />

human rights violations or abuses must be conducted in such a way as to<br />

allow for effective presentation of the case in a court of law. Failure to do<br />

so, or any destruction or negligent recovery of significant evidence will, in<br />

fact, result in a new violation of basic human rights.<br />

With respect to the recovery of multiple-victim burial features (“mass<br />

graves”) in human rights cases and eventual successful prosecutorial<br />

efforts, the proper documentation of contextual data through formal<br />

forensic archaeological protocols, standardized to allow for inter-site comparison,<br />

is especially critical in attempts to sort out specific depositional<br />

episodes, sequences of body deposition, and understanding associations<br />

between physical evidence, including human remains, even in complex<br />

commingling situations.<br />

Mass grave features may appear, at first glance, to represent very<br />

unique and recent scientific situations, requiring special techniques and<br />

methodologies; however, professional archaeologists have been excavating<br />

and analyzing these rather complex features for many years. Precedent in<br />

recovery techniques and methodologies can be found, therefore, in the field<br />

of contemporary archaeology.<br />

* Presenting Author<br />

In this presentation, a prehistoric Native American ossuary feature,<br />

containing the remains of over 160 individuals, will serve as a conceptual<br />

model of how the implementation of appropriate contemporary archaeological<br />

methods, especially, comprehensive mapping protocols, can address<br />

multiple issues related to the commingling of human remains and<br />

depositional events within the burial feature itself; methods and analyses<br />

that are directly applicable to modern forensic settings, including mass<br />

graves in human rights cases.<br />

As a result of the rigorous, comprehensive and standardized collection<br />

of contextual data, it is possible to identify and interpret the effects of a<br />

broader range of taphonomic agents and depositional sequences, leading to<br />

a much better reconstruction of past events (especially, with respect to<br />

human behavior), including, possibly, determinations of individual body<br />

placement sequences and the ability to more precisely define associations<br />

between artifacts/physical evidence. In addition, with the embellishment of<br />

contextual data, more sophisticated statistical analyses can be brought to<br />

bear on relevant issues such as commingling patterns.<br />

Regarding the Orton Quarry ossuary site, the marked commingling of<br />

remains within the burial feature led to preliminary observations that the<br />

cranial elements were clustered in one area of the ossuary, while the postcranial<br />

elements exhibited no recognizable pattern of spatial distribution<br />

(with respect to original anatomical articulation). Indications were that<br />

very few skeletal elements, if any, were articulated (i.e., no tissue remained<br />

on the bones, or processing of fresher remains resulted in disarticulation of<br />

all elements) at the time of deposition in the burial feature. In order to test<br />

this observation scientifically, a sequential battery of statistical tests was<br />

designed, based on formal hypotheses of spatial distribution patterns of<br />

skeletal elements.<br />

In this case, the bivariate Ripley’s K function K12 (t) was used to study<br />

the interaction of multiple series of points (proximal and distal locations of<br />

long bones) distributed on a plane. This method is more informative than<br />

its equivalent parametrical counterparts, such as nearest-neighbor analyses,<br />

as it provides information not only on the presence and type of spatial<br />

association, but also on its intensity and scale (range).<br />

Results indicate that, in fact, at least some of the individuals or<br />

anatomical units were placed in the Orton Quarry burial feature in an articulated<br />

state. Further, these findings suggest that spatial proximity of<br />

anatomical units (such as proximal tibia/distal femur) can be used<br />

effectively as a valid criterion for selecting potential matches of bones from<br />

the same individual.<br />

The implications for addressing issues of commingling within mass<br />

graves in human rights cases are clear. Although most attempts to<br />

determine which bone belonged to which individual rely almost<br />

exclusively on skeletal features such as size, chronological age, sex,<br />

idiosyncratic variation, or even taphonomic modification of elements,<br />

significant stream-lining of the process can be accomplished through the<br />

careful recovery of contextual information during the recovery phase of the<br />

project.<br />

Finally, if these investigations are to be considered “forensic” in<br />

nature, and if they follow the original intent of human rights legislation, the<br />

goal should not be confined to the identification of the victims. Forensic<br />

evidence takes the form of not only the biological remains of humans<br />

interred in the burial feature, but the contextual relationship of all associated<br />

evidence, such as personal effects, weapons, trace evidence; as well<br />

as, environmental evidence, such as stratigraphic data, faunal, botanical,<br />

and geological evidence (soils types, water movement through deposits,<br />

etc.). The collection and ultimately, the interpretation of this collage of<br />

evidence permits investigators to not only identify the victims but to<br />

provide a comprehensive, testable hypothesis of events surrounding the<br />

burial episode.<br />

Mass Graves Excavation, Context, Prosecution Consideration<br />

444


H57 Advances in the Assessment of Commingling<br />

Within Samples of Human Remains<br />

Douglas H. Ubelaker, PhD*, Smithsonian Institution, Department of<br />

Anthropology, NMNH, MRC 112, Washington, DC 20560<br />

Attendees will gain an understanding of the issues involved in the<br />

assessment of commingling in the analysis of human remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by offering an overview to the symposium on commingling<br />

being organized by others. It will synthesize concepts and issues presented<br />

by others in the symposium as well as present the authors’ own views on<br />

the methodology and logic of such analysis.<br />

This presentation provides an overview of approaches to the study of<br />

commingling in the analysis of human remains and discusses the potential<br />

for new research.<br />

Forensic anthropological analysis of human remains routinely<br />

includes assessment of commingling. Such evaluation is a component of<br />

the study of apparent single individuals to assure that remains of others are<br />

not included. Commingling analysis is especially important in complex<br />

assemblages of multiple individuals and in cases of extreme fragmentation.<br />

Inventory represents an important first step in commingling analysis.<br />

Careful inventory can immediately yield evidence of multiple individuals<br />

in the form of duplicated bones. Inventory of bone type (including side)<br />

can be supplemented with information on age at death, sex, bone size, and<br />

robusticity, other aspects of bone morphology and patterns of articulation.<br />

Specialized techniques that have been used to further commingling<br />

analysis include ultraviolet light analysis, radiography, serological study,<br />

neutron activation, bone weight, trace element analysis, molecular analysis,<br />

and bone density study.<br />

If evidence of multiple individuals is detected, it is important to<br />

establish the minimum number of individuals represented. This number<br />

can be generated through combinations of the procedures summarized<br />

above but may under-represent the actual number of individuals present.<br />

Additional research is needed to evaluate the effectiveness of the<br />

varied approaches to commingling analysis, in consideration of human<br />

variation and the complex taphonomic factors that frequently are involved<br />

in the preservation of human remains in forensic contexts.<br />

Commingling, Human Remains, Forensic Anthropology<br />

H58 Closed Case Files: Sequelae of a Case<br />

of Complex Postmortem Mutilation<br />

Kerriann Marden, MA*, and John W. Verano, PhD, Tulane University,<br />

Department of Anthropology, 1021 Audubon Street, New Orleans,<br />

LA 70118<br />

After attending this presentation, attendees will understand the<br />

potential usefulness of anthropological analysis in the reconstruction of a<br />

complex postmortem mutilation.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting a detailed case study of a complex dismemberment<br />

which underscores the utility of anthropological analysis in the<br />

corroboration of documented details of a crime.<br />

This poster describes the follow-up to a serial murder case that is<br />

being presented as a paper at these meetings (Dr. John Verano, Tulane<br />

University), in which the perpetrator and his accomplice strangled,<br />

dismembered, and dispersed the parts of three women. Whereas Dr. Verano<br />

has amply covered the details contributing to the resolution of the case, this<br />

poster details the follow-up examination of the torso of one of the victims<br />

as a case study in complex postmortem treatment involving dismemberment<br />

and extensive fragmentation. This case is unique in that the<br />

accomplice has provided law enforcement personnel with a detailed<br />

confession chronicling the murders and their aftermath, against which the<br />

accuracy of the anthropological analysis could be tested.<br />

The perpetrator had intentionally disfigured and dismembered the<br />

victim after her murder, in an effort to both dispose of the body and to<br />

prevent her identification in the event that the parts were discovered.<br />

Working on information provided by the accomplice in the murders, the<br />

Jefferson Parish Sheriff’s Office recovered a severed Caucasian female<br />

head from a St. Charles Parish swamp. Separately, New Orleans Police<br />

recovered the partially decomposed torso of a Caucasian female in the New<br />

Orleans area in January 2002. Because the torso bore characteristics<br />

similar to open dismemberment cases in Jefferson Parish, the N.O.P.D.<br />

transferred the torso to the Jefferson Parish Coroner’s Office for autopsy<br />

and analysis. The torso was recovered in a state of moderate decomposition,<br />

and was comprised of the thorax from cervical to lumbar vertebrae<br />

with the right shoulder and arm attached, but the fingers removed. The<br />

other appendages, pelvis and sacrum were never recovered, although the<br />

head collected by J.P.S.O. from a separate context was suspected to be from<br />

the same victim. Relevant portions of the skeleton were removed for<br />

anthropological analysis by Dr. John Verano of Tulane University, and the<br />

remainder of the torso was stored in the morgue freezer at the Jefferson<br />

Parish Forensic Center. The head was ultimately determined to be from the<br />

same individual and a positive identification was made. Due to the preponderance<br />

of evidence, both perpetrators eventually plead guilty in the case.<br />

After adjudication and before interment of the victim’s remains, the<br />

torso was also analyzed to examine the extent of the perpetrators’ efforts to<br />

conceal the body. The bulk of decomposed tissue was first removed<br />

mechanically by gentle manipulation with wooden tools by the death investigator<br />

in the case, Bill Donovan of the Jefferson Parish Coroner’s Office,<br />

and the presenting author. The bones were then macerated and degreased<br />

using a non-bleaching method (1). Due to extensive fragmentation, some<br />

adherent soft tissue was left surrounding shattered elements, which were<br />

wrapped individually in cheesecloth during the process to retain all fragments.<br />

Subsequent to removal of soft tissue, the skeletal elements were<br />

refitted and analyzed by the presenting author to determine the type and<br />

sequence of damage, which included various forms of cut marks and<br />

extensive fragmentation. Anthropological analysis revealed significant<br />

fracturing and cutting consistent with both the observed damage to the head<br />

of the same victim and with certain damage to the remains of the successive<br />

victims. An unusual tool mark on the clavicle was also consistent with distinctive<br />

tool marks observed on the head.<br />

The tool marks and degree of destruction observed in anthropological<br />

analysis were then compared with the tools used by the perpetrators, which<br />

were collected from a local bayou by law enforcement agents based on a<br />

statement from one of the perpetrators. The cause and sequence of damage<br />

surmised by the anthropologist was also compared with the actions of the<br />

perpetrator and his accomplice, as gleaned from extensive taped confessions<br />

made to law enforcement officers. Comparison with documented<br />

details of the case supported the anthropological analysis, stressing the<br />

effectiveness of anthropological analysis in reconstructing complex postmortem<br />

treatment.<br />

References:<br />

1. Fenton TW, Birkby WH and Cornelison J. A fast and safe non-bleaching<br />

method for forensic skeletal preparation.<br />

J Forensic Sci 2003; 48(1): 274-476.<br />

Dismemberment, Reconstruction, Forensic Anthropology<br />

445 * Presenting Author


H59 A Tale of Two Bodies: Separating<br />

Commingled Skeletal Remains With<br />

Similar <strong>Bio</strong>logical Profiles<br />

Laura C. Fulginiti, PhD*, Forensic Science Center, 701 West Jefferson,<br />

Phoenix, AZ 85007; Kristen M. Hartnett, MA, Arizona State University,<br />

Department of Anthropology, PO Box 872402, Tempe, AZ 85287; and<br />

Philip E. Keen, MD, Maricopa County Office of the <strong>Medical</strong> Examiner,<br />

701 West Jefferson Street, Phoenix, AZ 85007<br />

After attending this presentation, attendees will gain insight into how<br />

separation of two biologically similar commingled individuals can be<br />

achieved through meticulous examination, anatomical congruencies and<br />

differential weathering patterns.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting two individuals recovered from a remote desert<br />

area. At the time of recovery, the skeletal remains were commingled and<br />

spread across a square mile. Careful examination of the condition of the<br />

remains, anatomical congruencies and radiographic analysis allowed the<br />

authors to successfully separate the remains and achieve positive identification<br />

on one individual. These results allow the investigators to more<br />

aggressively investigate the circumstances surrounding the deaths and the<br />

families to bury their loved ones.<br />

Commingling of skeletal remains often confounds investigators<br />

attempting to discover the identity of unknown individuals. A recent case<br />

in Arizona highlights the difficulties with commingled remains and offers<br />

an example of how radiographs, condition of the remains and anatomical<br />

congruencies can assist in the separation of individuals in these types of<br />

cases.<br />

On June 1, 2004, Sheriff’s deputies from Maricopa County, Arizona<br />

convened in a remote desert area to recover skeletal remains allegedly<br />

discovered by a camper. The first author accompanied the detectives in<br />

order to assist with the recovery. Initial survey of the scene indicated that<br />

the skeletal remains represented at least two individuals. The anthropologist<br />

was able to quickly confirm these findings. Clothing and other artifacts<br />

from two individuals were also located during the search. The<br />

remains were documented according to standard scene processing<br />

protocols. The skeletal elements and clothing were bagged and transported<br />

to the Maricopa County Forensic Science Center for examination by the<br />

pathologist and anthropologist.<br />

The skeletal remains were incomplete and had suffered from<br />

carnivore predation. In addition, one of the initial findings at the autopsy<br />

was that these two individuals were both males, very similar in age and<br />

height and had little to distinguish them from one another. However, the<br />

two skeletons had responded to the environment in very different ways,<br />

allowing a preliminary division that could then be verified by more scientific<br />

means. The coloration, degree of adherent tissue and overall texture<br />

and quality of bone was very different between the two men. The first<br />

author performed the initial partition and then the second author confirmed<br />

her findings.<br />

After the separation, anatomical congruencies between the recovered<br />

elements were evaluated. These confirmed the findings based strictly on<br />

observed differences. At the end of this procedure, there were two<br />

phalanges, a fibula shaft and miscellaneous bone fragments that could not<br />

be assigned to either decedent.<br />

Anthropological assessment based on sternal rib ends, pubic symphysis<br />

and epiphyseal closure revealed that the men were in their twenties<br />

at the time of death. Long bone lengths produced living stature estimates<br />

of 5 foot 10 inches and 5 foot 8 inches respectively. Ancestry could not be<br />

accurately assessed due to incomplete recovery. One of the males had<br />

bilateral septal apertures of the humeri, a non-metric trait with a frequency<br />

of between 4 and 13% based on assessment of known human skeletal<br />

series. The other male had a more robust skeletal structure, with heavier<br />

elements and more developed muscle attachment sites.<br />

At the time of the autopsy, the case agent had delivered radiographs of<br />

a male missing from the area. The radiographs contained images of the<br />

* Presenting Author<br />

thorax, abdomen and right arm. Comparison of the right arm in the antemortem<br />

radiographs to the anatomy of the recovered right arm from one of<br />

the skeletal remains revealed morphological similarities that supported a<br />

positive identification. The right arm in the antemortem and postmortem<br />

radiographs exhibited a large sternal aperture in the olecranon fossa of the<br />

humerus. Given the low frequency of this non-metric trait in human<br />

skeletal series, as well as its proclivity to manifest more often in females<br />

and on the left side, this supported the ten other morphological similarities<br />

identified between the films. Further investigation by the sheriff’s office<br />

revealed that this man had gone missing with his close friend and neither<br />

had been seen for several months. These findings were in concordance with<br />

the condition of the remains.<br />

This poster presents two individuals recovered from a remote desert<br />

area. At the time of recovery, the skeletal remains were commingled and<br />

spread across a square mile. Careful examination of the condition of the<br />

remains, anatomical congruencies and radiographic analysis allowed the<br />

authors to successfully separate the remains and achieve positive identification<br />

on one individual. These results allow the investigators to more<br />

aggressively investigate the circumstances surrounding the deaths and the<br />

families to bury their loved ones.<br />

Skeletal Remains, Commingling, Radiographic Comparison<br />

H60 Performance of FORDISC 2.0<br />

Using Inaccurate Measurements<br />

Adam Kolatorowicz, BS*, Carlos J. Zambrano, BA, and Stephen P.<br />

Nawrocki, PhD, Archeology and <strong>Forensics</strong> Laboratory, University of<br />

Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN 46227<br />

The goal of this presentation is to present to the forensic anthropological<br />

community the necessity of proper training in the collection of<br />

metric data for use in discriminant function analysis.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing the sensitivity of discriminant function analysis to<br />

measurement errors. These results demonstrate the necessity of receiving<br />

proper training in the collection of metric data as well as the need to check<br />

instrumentation used to collect metric data. It is suggested that only<br />

individuals who have received a substantial amount of training should be<br />

using FORDISC 2.0 in a professional arena.<br />

Once decomposition has progressed beyond the point of recognizing<br />

the soft tissue indicators of an individual’s sex and ancestry (“racial”<br />

affiliation), it becomes the job of the forensic anthropologist to make these<br />

determinations. The determination of sex and ancestry are part of the<br />

biological profile that the anthropologist constructs during a skeletal<br />

analysis. The anthropologist uses both non-metric and metric analyses to<br />

determine these characteristics. However, the determination of ancestry is<br />

not always a clear or simple task. In recent years the use of metric analysis<br />

has become more prominent due to the advancement of computers and use<br />

of statistical software. FORDISC 2.0, distributed by the University of<br />

Tennessee at Knoxville, is a program that facilitates the collection and use<br />

of metric data in discriminant function analysis to determine sex and<br />

ancestry from the skeleton. The program was developed using the Forensic<br />

Data Bank, which is an electronic accumulation of data from modern<br />

forensic cases from around North America. The use of FORDISC 2.0 is<br />

prevalent in the field of forensic anthropology and at times it may be used<br />

by individuals having only a cursory knowledge of measurement techniques<br />

and morphometrics. This poster will examine the outcome of poor<br />

data input into FORDISC 2.0 to determine how well the program performs<br />

with inaccurate data.<br />

The 24 standard FORDISC 2.0 cranial measurements were taken on<br />

four carefully-selected crania that had been positively identified or had<br />

enough soft tissues at autopsy to make a determination of sex and ancestry.<br />

The measurements were entered into the program to classify each specimen<br />

using the “White” male, “White” female, “Black” male, and “Black”<br />

446


female reference groups. Two of the specimens were chosen because they<br />

were classified as strongly belonging to one of the reference groups, while<br />

the others were weakly classified. The measurements with the highest<br />

relative weights in the discriminant functions were then selected and<br />

manipulated by the addition and subtraction of 1 to 5 mm from the original<br />

measurement, and the changes in probabilities and classification were<br />

recorded. Measurements were changed all at once and in isolation. Results<br />

demonstrate that individuals who are classified strongly into a reference<br />

group remain strongly classified in that same group even with significantly<br />

altered measurements. Individuals with a weak classification into a<br />

reference group can be subject to a significant change by the addition or<br />

subtraction of even as little as 1 mm to a single measurement. It is<br />

generally accepted that interobserver error among trained individuals can<br />

reach 2 to 3 mm. Depending on the measurement and the morphology of<br />

the subject, errors of this magnitude can have a significant influence on the<br />

discriminant function analysis. These results demonstrate the necessity of<br />

receiving proper training in the collection of metric data as well as the need<br />

to check instrumentation used to collect metric data. These findings in no<br />

way suggest the abandonment of the use of FORDISC 2.0 or other forms<br />

of discriminant function analysis, however, the authors suggest that only<br />

individuals who have received a substantial amount of training should be<br />

using FORDISC 2.0 in a professional arena.<br />

Ancestry Determination, FORDISC 2.0, Discriminant Function<br />

Analysis<br />

H61 Testing Determination of Adult Age at Death<br />

Using Four Criteria of the Acetabulum<br />

Angela Hampton, BS*, University of New Mexico, Department of<br />

Anthropology, MSC01-1040, 1 University of New Mexico, Albuquerque,<br />

NM 87131<br />

The goal of this presentation is to evaluate the usefulness of a new<br />

aging technique based on degenerative changes to the acetabulum.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how accurate aging techniques are integral to<br />

identification of human remains. A method of age assessment from the<br />

posterior os coxa, such as the acetabulum, is desirable since this region is<br />

commonly preserved in forensic and archaeological contexts.<br />

This poster will present the results of a study testing a recently<br />

published aging technique. This method, developed by Rouge-Maillart and<br />

colleagues (2004), sought to quantify degenerative changes to the<br />

acetabulum and equate these to age ranges. Because the acetabular region<br />

of the os coxa tends to be preserved in both forensic and archaeological<br />

contexts, an accurate aging method utilizing this area could increase the<br />

amount of useful information gained from the analysis of human skeletal<br />

remains.<br />

Four features were scored based on degenerative changes: the rim of<br />

the acetabulum, porosity of the acetabular fossa, porosity of the lunate<br />

surface, and “apical” activity (degenerative changes of the posterior cornu<br />

of the lunate surface). The original study examined 30 white males,<br />

ranging in age from 24 to 81. Results showed a “significant” correlation<br />

between age and the acetabular rim and fossa. The purpose of the current<br />

research was to test the method for the ability to replicate the results as well<br />

as to expand the sample to include white females. In this study, all observations<br />

were made on adult Caucasians between the ages of 19 and 100 in<br />

the documented skeletal collection housed at the University of New<br />

Mexico’s Maxwell Museum. The sample size was 103, with 53 females<br />

and 50 males. During the data collection phase of this research, the<br />

observer was unaware of the age of the individuals observed. Scores for<br />

each of the four criteria were recorded and documented ages were matched<br />

to the individual scores for the final statistical analysis.<br />

The results of this study show statistically significant correlations<br />

between age and acetabular rim, and age and acetabular fossa for males.<br />

For the female sample, age correlates with the acetabular rim, acetabular<br />

fossa and also with apical activity. The results of the porosity of the lunate<br />

surface are not significant for either sample population (? α 0.05). Despite<br />

the significance of the results, the correlations are not strong, with apical<br />

activity in females having the highest correlation (0.63). Also, the results<br />

of the current study are not discreet; there are large age ranges and<br />

significant overlap of ages between the stages. In addition, a high rate of<br />

intra-observer error was noted for both sexes.<br />

A useful refinement to this method would be to create more<br />

descriptive definitions of each stage. Clearer descriptions of “extensive”<br />

osteophytes vs. “substantial” osteophytes in stages three and five of the<br />

acetabular rim, for example, will help other observers to apply this method.<br />

Further clarification of what is meant by “localized” destruction of the rim<br />

and when it becomes “generalized” destruction and thus progresses to the<br />

next stage of degeneration may also make this technique replicable by other<br />

observers as well as improving intra-observer error.<br />

Rouge-Maillart’s et al. method may be most effective for categorizing<br />

specimens into broad age ranges because of the large overlap in scoring for<br />

all age groups. Perhaps this technique may be best applied in conjunction<br />

with other methodologies, such as the auricular surface. Although the<br />

present study found that the technique did not produce highly accurate<br />

results when tested on specimens drawn from the Maxwell Museum’s documented<br />

collection, the method may still contribute useful data for the<br />

assessment of age from skeletal remains, particularly when other diagnostic<br />

features are not observable. It may be possible in the future to narrow the<br />

ranges and increase accuracy if more detailed descriptions of the stages are<br />

produced.<br />

Acetabulum, Degenerative Changes, Aging Technique<br />

H62 A Potential New Morphological<br />

Indicator of <strong>Bio</strong>logical Affinity<br />

in Human Skeletal Remains<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator, MSC11 6030,<br />

1 University of New Mexico, Albuquerque, NM 87131<br />

The goal of this study is to introduce a new cranial non-metric trait<br />

which can aid investigators and anthropologists in assessing the population<br />

affinity of unidentified skeletal remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting a new method of assessing biological affinity in<br />

unidentified remains.<br />

Establishing population affinity in cases involving unidentified<br />

decomposed or skeletal remains is an integral part of a complete osteological<br />

analysis. Determining the ethnic affinity of skeletal remains found<br />

in forensic contexts greatly reduces the number of antemortem records<br />

searches needed to establish identity. Anthropologists have traditionally<br />

relied on both morphological and metric indicators to determine racial<br />

identity. Determining ancestry from non-metric traits relies on a skull<br />

exhibiting traits believed to be representative of a particular population.<br />

This study introduces a new morphological indicator, the infraorbital<br />

“fold,” which demonstrates the potential to differentiate White individuals<br />

from those of Black, Hispanic or Native American ancestry. The morphology<br />

of the lateral infraorbital margin, specifically the presence/absence<br />

of an “infraorbital fold,” appears to be an accurate indicator of ancestry.<br />

The infraorbital fold, when present, is a projection or crest of bone<br />

emanating from the lateral portion of the infraorbital margin. The superior,<br />

medial portion of the zygomaticomaxillary suture protrudes anteriorly,<br />

forming a transverse crease. This bony projection is restricted to the zygomatic<br />

bone; the fold terminates medially at the zygomaticomaxillary suture.<br />

The trait was scored as present if the fold was evident bilaterally; the trait<br />

was scored absent if neither infraorbital region displayed the fold.<br />

The sample was drawn from the documented collection housed at the<br />

447 * Presenting Author


Laboratory of Human Osteology of the Maxwell Museum at the University<br />

of New Mexico. Additional individuals were taken from the Office of the<br />

<strong>Medical</strong> Investigator’s forensic collection, also housed at the Maxwell<br />

Museum. All individuals included in the sample had known sex, age, and<br />

ethnic affinity. This trait was scored on a total of 418 adult skulls; 276 were<br />

males, 142 were females. The sample included 228 White, 104 Native<br />

American, 77 Hispanic, and 9 Black individuals.<br />

The fold was present in 93.4% of the White individuals but only 2.6%<br />

of the Hispanic, and 6.7% of the Native American individuals. The fold<br />

was completely absent in the small number of Blacks included in the study.<br />

Knowledge of the anatomy of the suborbital region aids in understanding<br />

why the trait varies among populations. The orbital surface of the<br />

zygomatic bone is the site of the orbital fat pad and the insertion for the<br />

inferior oblique muscle of the eye. The lateral infraorbital margin serves as<br />

the site of attachment for the palpebral and orbital portions of the orbicularis<br />

oculi muscle as well as the levator labii superioris and zygomaticus<br />

major and minor. Variations in these soft and hard tissues among racial<br />

groups have been reported previously.<br />

Population variation of a closely associated trait – the angle of the<br />

zygomaticomaxillary suture – provides further insight. The morphology of<br />

the suture varies among Whites, Black and Native Americans. Suture<br />

structure typifying Whites is described and illustrated as “s-shaped,” with<br />

the superior and inferior portions of the suture oriented medially and the<br />

midpoint of the suture deviating laterally. It is the upper portion of the<br />

zygomatic, superior to the suture’s midpoint deviation, which makes up the<br />

infraorbital fold (when present). Although described respectively as<br />

“angled” or “curved,” suture morphology for both Native Americans and<br />

Blacks is illustrated as an arc with its medial most point inferior to the orbit.<br />

The absence of a sharp change in direction within the suture may provide<br />

greater joint stability and raises the possibility that the infraorbital fold<br />

represents a buttress for muscle attachment.<br />

Ethnic affinity cannot accurately be determined by a single indicator<br />

or isolated trait. The infraorbital fold trait, when used in concert with other<br />

cranial non-metric traits, appears to contribute significantly to the correct<br />

assignment of ancestry in unidentified crania. Additional studies on larger<br />

Black samples, as well as other ethnic groups, are warranted.<br />

Osteology, Population Affinity, Identification<br />

H63 An Evaluation of Racial Differences<br />

in the Human Mandible Using<br />

Discriminant Function Analysis<br />

Marie Danforth, PhD*, University of Southern Mississippi, Department<br />

of Anthropology and Sociology, 118 College Drive, #5074, Hattiesburg,<br />

MS 39406<br />

After attending this presentation, attendees will understand the<br />

potential value of mandibular measurements in the assessment of ancestry<br />

in the human skeleton, specifically focusing on discriminant function<br />

analysis.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that the determination of race from the skeleton<br />

is one of the most difficult areas of assessment in forensic anthropology.<br />

This presentation will provide another technique in such assessment using<br />

a bone that is often well preserved.<br />

As most in the forensic community are aware, determination of<br />

ancestry using the human skeleton is often challenging. The mandible is<br />

not traditionally regarded as featuring many reliable indicators of race with<br />

only a few non-metric differences, such as the more pointed chins seen in<br />

whites, having been noted in discussions of racial assessment (Rhine 1990).<br />

Researchers, however, have observed that at times entry of ascending<br />

ramus data into Fordisc 2.0 analysis changed the racial assignment of a particular<br />

skull. Although this is likely attributable to the small sample sizes<br />

of the referent populations used in generating the statistical functions<br />

* Presenting Author<br />

employed, it also suggests that a comprehensive study of mandibular<br />

metrics for blacks and whites might prove useful. The mandible would be<br />

an especially valuable bone since it is often well preserved. Consequently,<br />

such an analysis was undertaken, using the Terry Collection at the<br />

Smithsonian Institution to determine which parts of mandible, if any, are<br />

diagnostic in assessment of ancestry.<br />

The Terry Collection is composed of complete skeletons from medical<br />

school cadavers dating to the first half of the 1900s. As a result, individuals<br />

are of known sex, race, and age. Some 211 mandibles were evaluated with<br />

sample selection being severely limited by extensive antemortem tooth<br />

loss. It was desired that individuals have at least three of the six molars<br />

present to minimize the effects of loss on ramus morphology. The final<br />

sample was distributed as follows: black males – 68; white males – 68;<br />

black females – 33; and white females – 14. An additional 28 individuals<br />

composed a control sample. Eighteen measurements were taken using<br />

sliding calipers or a mandible board. Most measurements were standard for<br />

the mandible, although several concerning dental arcade dimensions were<br />

created for this project. Data were evaluated using stepwise discriminant<br />

function analysis in SPSS with groupings comprised of the entire sample,<br />

only males and only females.<br />

The variables that statistically entered into the three functions were<br />

consistently drawn from the same set: M2-prosthion length, bigonial<br />

breadth, minimum ramus breadth, alveolar length, and ramus height. All of<br />

the functions had Eigenvalues greater than 1.0, canonical correlations over<br />

.700, and Wilk’s lambda values less than .500. Classification success rates<br />

were 75.3% for the entire sample (BM, BF, WM, WF), 86.2% (males<br />

alone), and 93.0% (females alone). When the discriminant functions were<br />

applied to the control sample, the success rates were 72.0%, 89.5%, and<br />

87.5%, respectively.<br />

These results suggest that consistent metric differences are present in<br />

mandibles between whites and blacks, although the diagnostic features do<br />

not seem to cluster in one area of the bone (i.e. the ramus or the dentition).<br />

The similarity in variable selection for the functions for each sex was surprising,<br />

suggesting that racial differences are indeed being detected. It<br />

should be noted, however, that the classification results were much better<br />

when the sexes were separated. Although these findings are very encouraging,<br />

further work still needs to be conducted, especially with a larger<br />

sample size of white females. It is also important that the role of antemortem<br />

tooth loss be more directly addressed since individuals evaluated<br />

by forensic anthropologists often suffer from extensive dental pathology.<br />

Mandible, Measurements, Ancestry<br />

H64 Evaluation of Regression Equations<br />

to Estimate Age at Death Using<br />

Cranial Suture Closure<br />

Carlos J. Zambrano, BA*, Archaeology and <strong>Forensics</strong> Laboratory,<br />

University of Indianapolis, 1400 East Hanna Avenue, Indianapolis,<br />

IN 46227<br />

The goal of this presentation is to present to the forensic anthropological<br />

community the utility of regression formulae to estimate age at<br />

death using cranial suture closure.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that cranial suture closure can be a useful tool<br />

to estimate age.<br />

Age at death is one of the primary components of the biological<br />

profile constructed by forensic anthropologist during a skeletal analysis.<br />

There are several indicators used to estimate age at death for adults,<br />

however, some are employed more frequently than others. The study of<br />

cranial suture closure and its relationship with age dates back to the 16th<br />

century. However, since that time and continuing into the present, there<br />

have been doubts about the applicability of suture closure to age estimation.<br />

Even with this skepticism, researchers continue to examine suture closure<br />

448


as an indicator of age at death. Most recently Nawrocki (1998) introduced<br />

14 regression equations to estimate age using cranial suture closure. Testing<br />

of the performance of these equations as well as their applicability as an age<br />

estimator has been limited. This study examines 6 of the regression equations<br />

(Equations 1, 2, 3, 4, 7, and 8) created by Nawrocki using recently<br />

deceased individuals. The test sample contains 356 individuals (111<br />

females, 255 males) of European ancestry. The majority of the test sample<br />

is derived from documented skeletal collections curated by the University of<br />

Tennessee and the Maxwell Museum at the University of New Mexico. A<br />

small percentage of individuals were forensic cases processed by the<br />

University of Indianapolis Archeology and <strong>Forensics</strong> Laboratory.<br />

In total, 31 landmarks were scored on each specimen: 18 ectocranial<br />

(external) surface, 7 endocranial (internal) surface, 2 facial, and 4 from the<br />

palate. Following Meindl and Lovejoy (1985), one-centimeter segments<br />

along the cranial sutures were scored from 0 to 3, where 0 is no closure, 1<br />

is 1-50% closure, 2 is 51-99% closure, and 3 is complete obliteration. The<br />

endocranial and palatal sutures were scored following Nawrocki’s (1998)<br />

guidelines. Age was estimated for each individual using up to 4 different<br />

equations: 2 general equations (EQ 1 and 2) and 2 group-specific equations<br />

(i.e. all females, European females). Inaccuracy and bias were calculated<br />

for each equation to assess its performance. The percentage of individuals<br />

whose estimated age falls within each equations ± 2SE prediction interval<br />

was also calculated. An analysis of covariance (ANCOVA) was used to<br />

determine if suture closure is influenced by an individual’s sex.<br />

Inaccuracy is the average absolute error of the estimate. For Equation<br />

1, inaccuracy was 12.81yrs (M + F). Inaccuracy for Equation 2 was<br />

13.44yrs (M + F). The 2 male-specific equations (EQ 4 and EQ 8) had<br />

inaccuracies of 12.58 and 15.64 years respectively. The inaccuracy for the<br />

2 female-specific equations (EQ 3 and EQ 7) was 22.18 and 18.84 years<br />

respectively. Bias is a measure of the overall under- or over-estimation.<br />

Bias for EQ 1 was –5.61yrs (M + F). Bias for EQ 2 was –7.61yrs (M + F).<br />

Bias for the 2 male-specific equations (EQ 4 and EQ 8) was 2.21 – and 8.25<br />

– years respectively. For the 2 female-specific equations (EQ 3 and EQ 7),<br />

bias was –19.13 and –4.21 years respectively. The percentage of individuals<br />

falling within ± 2SE for the general equations ranged from 73.6 to<br />

93.5. For the male-specific equations (EQ 4 and EQ 8), 84.4% and 74.7%<br />

respectively fell within ± 2SE. The percentage for the female-specific<br />

equations (EQ 3 and EQ 7) was 52.6% and 59.5% respectively. The<br />

ANCOVA results suggest that summed suture score is influenced by sex.<br />

This study found that the general equations performed well and in general<br />

had better results than the group-specific equations. The male-specific<br />

equations performed better than the female-specific equations. The poorer<br />

performance for the females may be due to a larger number of older individuals<br />

in that subgroup compared to the males. Cranial suture closure<br />

does correlate with age, however, sex influences that relationship and needs<br />

to be accounted for when using sutures to estimate age. In conclusion,<br />

cranial suture closure can be a useful tool to estimate age and the longlasting<br />

skepticism should be reconsidered.<br />

Cranial Suture Closure, Age at Death Estimation, Forensic<br />

Anthropology<br />

H65 Test of an Alternative Method for<br />

Determining Sex in the Hip:<br />

Applications for Modern Americans<br />

Ginesse A. Listi, MA*, Louisiana State University, Department of<br />

Geography and Anthropology, Baton Rouge, LA 70803; H. Beth Bassett,<br />

MA, Louisiana State University, Department of Geography and<br />

Anthropology, Baton Rouge, LA 70803<br />

The goal of this research is to test the success rate of a recently<br />

published method for sexing the pelvis in modern American populations.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing information on a new technique, which could be<br />

used in cases where sex determination is ambiguous.<br />

Many techniques exist for determining sex in the skeleton based on<br />

pelvic morphology. These methods yield success rates that vary between<br />

80-95% depending on the methodology and population. In the last decade,<br />

violent crime rates have been consistently high in south Louisiana1 . This<br />

increased crime rate has resulted in an augmented number of forensic cases<br />

in which an anthropologist has been needed to determine the sex of the<br />

individual in putrefactive or skeletal remains. An investigation of alternative<br />

techniques for sexing the pelvis may prove beneficial in identifying<br />

unknown individuals in such cases.<br />

A recently published method for sexing the pelvis alleges a 98%<br />

success rate2 . This methodology is based on five “characters” of the hip,<br />

including aspects of the preauricular surface, greater sciatic notch, form of<br />

the composite arch, morphology of the inferior pelvis, and ischiopubic proportions.<br />

Using these characters, eleven possible “conditions” are observed<br />

that can be scored as male, female, or intermediate. For each character, the<br />

conditions are combined to form a composite score. Then, the sum of the<br />

composite scores is used to determine the sex of the individual. While the<br />

accuracy of this method reportedly is high, all collections used in this<br />

research are European (specifically, French and Portuguese), and one<br />

cannot assume the methodology would yield equally high success rates in<br />

other populations. Therefore, further testing, specifically on modern<br />

American collections, is necessary to ensure the technique’s applicability in<br />

the United States.<br />

The purposes of the present study are: 1) to evaluate the success rate<br />

of the Bruzek methodology for modern American pelves using different<br />

population subgroups; 2) to compare the success rate of this method with<br />

traditional techniques3 ; and 3) to determine the replicability and ease of this<br />

method for other observers.<br />

A total of 450 os coxae from individuals of known sex have been evaluated<br />

from the Donated Collection housed at the Forensic Anthropology<br />

and Computer Enhancement Services (FACES) Laboratory at Louisiana<br />

State University, the William M. Bass Donated Collection housed at the<br />

University of Tennessee, and the Robert J. Terry Anatomical Collection<br />

housed at the Smithsonian. All data were collected using macroscopic<br />

visual examination and photographic images of the os coxae.<br />

Preliminary results from a subset of the data demonstrate that the<br />

Bruzek method correctly identified sex in 81% of the cases, with 9.5% classified<br />

as “ambiguous” and 9.5% assigned the incorrect sex. The traditional<br />

methods yielded a success rate of 86%, with the remaining 14% classified<br />

as “ambiguous.” Additionally, many aspects of the Bruzek method were<br />

difficult to replicate, which therefore increased the potential for interobserver<br />

error.<br />

The overall applicability of the Bruzek method is questionable given<br />

these preliminary results. However, certain aspects of this methodology,<br />

such as analyzing the greater sciatic notch by dividing it into proportions,<br />

provided new ways of evaluating conventionally subjective regions of the<br />

hip. Combining such aspects with traditional methods may be useful when<br />

trying to determine sex in ambiguous or fragmentary remains.<br />

References:<br />

1. Bouzon H. Assessing increases in violence: an analysis of homicide<br />

cases from Orleans Parish, Louisiana. MA Thesis, 2004. Louisiana State<br />

University, Department of Geography and Anthropology.<br />

2. Bruzek J. A method for visual determination of sex using the human hip<br />

bone. American Journal of Physical Anthropology 2002; 117:157-168.<br />

3. Rogers T and Saunders S. Accuracy of sex determination using morphological<br />

traits of the human pelvis. J Forensic Sci 1994; 39:1047-1056.<br />

Forensic Anthropology, Sex Determination, OS Coxae<br />

449 * Presenting Author


H66 Sexing the Zygomatic Bone<br />

Rebecca J. Wilson, BS*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

Attendees will learn the zygomatic bone is sexually dimorphic and has<br />

a potential to be used when addressing questions of sex, especially when<br />

using the skull in creating a biological profile.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the sexual dimorphism of the zygomatic bone<br />

and its applicability to sex estimations through traditional cranial<br />

measurement and geometric morphometric approaches.<br />

The goal of this presentation is to demonstrate sexual dimorphism in<br />

the zygomatic bone and its potential for metric sex estimations through the<br />

use of a Microscribe 3-DX Digitizer.<br />

This poster will demonstrate the potential of the zygomatic bone for<br />

sex estimation. The attribution of sex is an important component of the<br />

biological profile, and relies on the sexually dimorphic characteristics of<br />

the human skeleton for its assessment. Sexing involving the skull relies on<br />

non-metric traits, such as mastoid size, and/or comprehensive cranial<br />

measurements. Investigating individual components of the skull, such as<br />

the zygomatic bone, metrically, could strengthen sex estimation using the<br />

skull. However, measuring the zygomatic bone is problematic when using<br />

a traditional caliber approach, since intra-observer variation in measurements<br />

is often the same as the corresponding error. Geometric morphometrics,<br />

using coordinate data could eliminate much of this problem.<br />

As early as Woo (1930-31), the need for focusing on the metric<br />

assessment of individual elements of the skull was established. Ancestral<br />

differences in the zygomatic bone cannot be properly assessed without<br />

addressing intra-population sexual dimorphism first. A metric analysis of<br />

the zygomatic bone will demonstrate its potential to become a criterion in<br />

the suite of characteristics examined when assessing sex, especially when<br />

using the cranium.<br />

The zygomatic bone is situated in the superior, lateral aspect of the<br />

face comprising the cheek, lateral wall of the orbit, and the infratemporal<br />

fossa (Gray 1973). It has three surfaces: the lateral, which bears the malar<br />

tubercle, the temporal for attachment of the temporalis muscle, and the<br />

orbital, which bears the eminentia orbitalis for attachment of the check ligaments<br />

(Gray 1973, Whitnall 1911). Three processes: the maxillary,<br />

frontal, and temporal with corresponding borders are discernable. On the<br />

posterior-superior border, a tuberosity, called the tuberculum marginale or<br />

marginal process, is located for attachment of temporal fascia (Oxnard and<br />

Wealthall 2003). This process tends to be more strongly developed in<br />

males (WEA 1980). The marginal process appears early in childhood<br />

development, between the second and third years, whereas the malar<br />

tubercle and masseteric attachment do not form until puberty (Scheuer and<br />

Black 2002). This marginal process, the height and width of the zygomatic<br />

bone will be assessed for significant sex differences.<br />

Coordinate data were collected from a random sample of 60 males<br />

and 60 females of European ancestry using a mechanical arm Microscribe-<br />

3-DX digitizer. 14 landmark data points were taken to provide an accurate<br />

depiction of the bone. A centroid point was established and was the basis<br />

for calculating three measurements: the height, width, and projection of the<br />

marginal process. These measurements were evaluated using the SPSS statistical<br />

software package for significance at a p< 0.05. When analyzed separately,<br />

the mean and standard deviation of the height, width, and marginal<br />

process projection suggest the zygomatic bone displays sexually dimorphic<br />

features. However, in a multivariate analysis, the height and width were the<br />

only measurements significant at the p< 0.05 level suggesting that the<br />

sexual dimorphism seen in the marginal process is eliminated when size is<br />

* Presenting Author<br />

controlled-for.<br />

This research indicates the zygomatic bone is sexually dimorphic<br />

within a European population. Further research addressing shape<br />

characteristics and inter-population variation needs to be completed before<br />

the utilization of the zygomatic bone in sex estimation. While there are<br />

implications for its use in sexing, further investigations must be conducted<br />

to verify its utility, especially in accurately determining sex.<br />

Forensic Anthropology, Zygomatic Bone, Sex Estimation<br />

H67 The Morphometric Study of the Hyoid<br />

Bone for Sex Determination of Koreans<br />

Deog-Im Kim*, U-Young Lee, MD, and Je-Hun Lee, Department of<br />

Anatomy, Catholic Institute for Applied Anatomy, 505, Banpo-dong,<br />

Socho-gu, Seoul, 137701, South Korea; Dae-Kyoon Park, MD,<br />

Department of Anatomy, College of Medicine, Soonchunhyang University,<br />

646 Eupnae-ri, Shinchang-myun, Cheonan, 330090, South Korea; and<br />

Seung-Ho Han, MD, PhD, Department of Anatomy, Catholic Institute for<br />

Applied Anatomy, College of Medicine, The Catholic University of Korea,<br />

505, Banpo-dong, Socho-gu, Seoul, 137701, South Korea<br />

The goal of this presentation is to present research on the hyoid bone<br />

which might be useful for sex determination of Koreans in archaeological<br />

and forensic studies.<br />

This presentation will impact the forensic community and/or<br />

humanity by investigating sexual dimorphism in the hyoid bone and the<br />

usefulness of the hyoid bone as a sex indicator. Use of the hyoid bone<br />

would make sex determination more scientific and exact, and racial differences<br />

by this study would be easier than before.<br />

Sex determination is usually the first step of the identification process<br />

because many of the subsequent methods for age and stature estimation are<br />

sex-dependent. Most of the older studies of sex differences are centered on<br />

morphological traits. For example, the shape of the hyoid bone is sexrelated.<br />

Newer studies on the hyoid focus on morphometry in a largely<br />

quantitative and statistical sense. This study focuses on morphometry of<br />

the hyoid bone for sex determination.<br />

The hyoid bones were examined from 52 Korean males and 33<br />

Korean females. As for the age range of the subjects, all age categories<br />

over 20 years took part in the data, for both males and females. In each<br />

case, the hyoid bone was separated from the larynx and dissected surrounding<br />

connective tissue. Each specimen was photographed with a<br />

digital camera. For each bone 34 measurements were taken directly from<br />

the photograph with a computer program, and statistically analyzed with<br />

the computer program SPSS 11.0.<br />

Twenty of 34 measurements have significant sex differences. They<br />

include maximum sagittal length, width of body of the hyoid bone, and<br />

length of greater horn, etc (p


Hyoid Bone, Sex Determination, Koreans<br />

H68 Evaluation of the Sternal Rib End Age<br />

Estimation Technique Using a Modern<br />

<strong>Medical</strong> Examiner Sample<br />

Jennifer C. Love, PhD*, Regional Forensic Center, 1060 Madison<br />

Avenue, Memphis, TN 38104; Gina Hart, MA, Regional <strong>Medical</strong><br />

Examiner’s Office, 325 Norfolk Street, Newark, NJ 07103; and Brian<br />

Spatola, MA, 125 5th Street, NE, Washington, DC 20002<br />

Following this presentation the audience will have an understanding<br />

of the value of the sternal rib end aging technique in the medical examiner’s<br />

setting.<br />

This presentation will impact the forensic community and/or<br />

humanity through the evaluation of a well respected age estimation method<br />

by applying it to a modern medical examiner sample.<br />

The phase method using the sternal end of the fourth rib for estimating<br />

age at death developed by Iscan, Loth, and Wright (1,2) has been shown to<br />

be a reliable and accurate method. This method is also enriched by several<br />

advantages. Sternal rib end changes do not appear to be effected by<br />

biomechanical stresses and no consistent association between accuracy of<br />

age determination and cause of death, medical history, height, weight, or<br />

occupation has been found. The sternal rib end is easily accessible in a<br />

medical examiner setting, especially when working with fresh or only moderately<br />

decomposed bodies. Unlike the pubic symphysis, it is harvested<br />

easily without excessive cutting of the body. Finally, commercially<br />

available casts (3) enable the practitioner the benefit of comparing the<br />

specimen to a three dimensional object. Given the advantages of this<br />

method, the goal of this study is to evaluate the phase method by applying<br />

it to a modern medical examiner sample of known individuals.<br />

Evidentiary skeletal materials archived at the Regional Forensic<br />

Center, Memphis were used in this study. The right and left fourth rib<br />

sternal ends of 50 individuals were examined. The sample included Black<br />

and White males and females ranging in age from 13-75 years. The<br />

specimens were harvested during autopsy for bone trauma analysis or identification<br />

purposes during a 14-year period (1990-2003). The soft tissue<br />

was removed from the specimens by soaking them in a water and degreaser<br />

bath at an elevated temperature. Marrow was removed by soaking them in<br />

a water and peroxide bath at an elevated temperature.<br />

Three independent judges evaluated each specimen in a blind test.<br />

The true ages were concealed until all specimens were assigned a phase.<br />

The race and sex of the specimen was known in order to apply the appropriate<br />

standard. Both the photographs and text of the original articles (1, 2)<br />

and the commercially available casts (3) were used. The judges are forensic<br />

anthropologists working in medical examiners offices. All have a<br />

minimum of a Master’s education level and several years of field<br />

experience.<br />

Thirty-seven percent of the sample was correctly assigned the age<br />

corresponding phase. Eighty-one percent of the sample was correctly<br />

assigned within one phase and 97% were correctly assigned within two<br />

phases of the age corresponding phase. Of the subgroups, Black males<br />

were the only group of reasonable size for statistical analysis, 28<br />

individuals. The results show this group was significant over-aged. The<br />

tendency to overage Black males is consistent with Iscan et al. findings that<br />

Black males were younger for each phase and emphasizes the need to<br />

develop race specific standards (4) .<br />

The value of the study is the evaluation of a well respected age<br />

estimation method using a modern medical examiner sample and the most<br />

appropriate tools: the original articles and the three-dimensional<br />

casts (1, 2, 4) .<br />

References:<br />

1. Iscan MY, Loth SR, Wright RK. Age estimation from the rib by phase<br />

analysis: white males. J Forensic Sci 1984; 29(4):1094-104.<br />

2. Iscan MY, Loth SR, Wright RK. Age estimation from the rib by phase<br />

analysis: white females. J Forensic Sci 1985; 30(3):853-63.<br />

3. Iscan MY, Loth SR, Wright RK. Casts of age phases from the sternal end<br />

of the rib for White males and females. France Casting, Fort Collins,<br />

Colorado.<br />

4. Iscan MY, Loth SR, Wright RK. Racial variation in the sternal extremity<br />

of the rib and its effect on age determination. J Forensic Sci 1987;<br />

32(2):452-66.<br />

Forensic Anthropology, Age Estimation, Sternal Rib Ends<br />

H69 A Test of Four Macroscopic Methods for<br />

Age Estimation of Human Skeletal Remains<br />

(Lamendin, Lovejoy Auricular Surface,<br />

Iscan, Suchey-Brooks)<br />

Laurent Martille, MD*, Service de Medecine Legale Chu de Montpellier,<br />

CHU Lapeyronie, 191 Avenue du Doyen Gaston Giraud, Montpellier,<br />

34295, France; Douglas H. Ubelaker, PhD, Department of Anthropology,<br />

NMNH, Smithsonian Institution, Washington, DC 20560-0112; and<br />

Fabienne Seguret, MD, and Eric Baccino, MD, Service de Médecine<br />

Légale, CHU Lapeyronie, 191 Avenue du Doyen Gaston Giraud,<br />

Montpellier, 34295, France<br />

The goal of this presentation is to show how to combine the<br />

Lamendin, Lovejoy, Iscan, and Suchey-Brooks methods for age estimation.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how macroscopic methods for age estimation<br />

are well-known but they are not often compared. Forensic anthropologists<br />

may be interested to have a comparison of those four methods on the Terry<br />

collection<br />

Age estimation at death of human skeletal remains or non-identified<br />

bodies is a difficult task in forensic practice, because no method has proven<br />

to be both accurate and simple. Four macroscopic indicators for age<br />

estimation were tested and compared (pubic symphyseal face, auricular<br />

surface, sternal end of fourth rib, translucency of the tooth and periodontosis).<br />

Method: This study compares the accuracy of those four methods<br />

when applied to the Terry collection housed at the Smithsonian’s National<br />

Museum of Natural History. The sample consists of 210 individuals with<br />

a balanced number of males and females, and black and white subjects,<br />

ranging in age from 25 to 90 years. For the pubic symphysis the authors use<br />

the Suchey-Brooks method (SB), for the auricular surface the Lovejoy<br />

method (LJ), for the ribs the Iscan (IC) method and for the teeth, the<br />

Lamendin method (LM). Each of the indicators was applied with complete<br />

independence from all others. For this reason, pubic symphyseal faces were<br />

covered during auricular aging. Bias, inaccuracy, and the intraclass<br />

correlation coefficient (ICC) was calculated which assesses similarity and<br />

proximity between quantitative data.<br />

Results: The inaccuracy was for each method and all ages (mean +/ -<br />

standard deviation) as follows: IC 10 +/- 8.6 years, SB 10.7 +/- 9 years, LM<br />

11.3 +/- 8.2 years and LJ 11.6 +/- 9.1 years. Taking in account age group<br />

by decade, from 25 to 40 years the most accurate method is the SB method<br />

and from 40 to 60 years the most accurate method is the LM method.<br />

Between 61 and 70 years of age, all methods are quite equivalent. After the<br />

age of 70, all methods are inaccurate although the IC method is the most<br />

outstanding. Concerning bias, results show a global underestimation for all<br />

methods, although less using the LM method. By decade, as in several<br />

studies, this study highlights the tendency to overestimate the age of young<br />

individuals, and vice versa. The Spearman correlation coefficients were<br />

respectively 0.67 for the IC method, 0.66 for the SB method, 0.59 for the<br />

LM method and 0.57 for the LJ method. The ICC was respectively 0.62 for<br />

the IC method, 0.55 for the SB method, 0.43 for the LM method and 0.45<br />

for the LJ method.<br />

Discussion and conclusions: Overall, the accuracies of these four<br />

451 * Presenting Author


anthropological methods for age estimation are close, but when age groups<br />

are taken into account, each method may not be applied during all of the<br />

lifespan with the same weight. The difficulty is to find the good<br />

combination of methods. Two approaches could be distinguished – the<br />

multifactorial aging method described by Lovejoy and the Two Step<br />

Procedure proposed by Baccino. For aging techniques, the correlation<br />

coefficient is not the best informative parameter. Inaccuracy and bias are<br />

more useful. Experience and training may change results obtained by the<br />

various methods, and more particularly for the LJ method which is less<br />

useful in forensic practice.<br />

Age Estimation, Forensic Anthropology, Comparison of Methods<br />

H70 The Application of the Lamendin and<br />

Prince Dental Aging Methods to a<br />

Bosnian Population: Formulas for<br />

Each Tooth Group Challenging One<br />

Formula for All Teeth<br />

Nermin Sarajlic, MD*, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, 71000, Bosnia and Herzegovina; Zdenko<br />

Cihlarz, PhD, Departmen of Forensic Medicine, UKC, Tuzla, 75000,<br />

Bosnia and Herzegovina; and Eva E. Klonowski, PhD, and Piotr<br />

Drukier, MS, International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

The goal of this presentation is to evaluate the application of the<br />

Lamendin dental aging method and Prince’s modification of the Lamendin<br />

method to a Bosnian population. This research project tests the accuracy<br />

of formulas developed for dental age estimation for each tooth group in<br />

comparison with one formula for all teeth, made by Lamendin and Prince’s<br />

modification of the Lamendin method as applied to a Bosnian population.<br />

The sample consists of 847 teeth (incisors and canines) from 200 males of<br />

known age.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a successful application of this technique,<br />

which can be used as a tool for age determination of skeletal remains.<br />

The unique DNA led identification process created by ICMP in<br />

Bosnia and Herzegovina on such a large number of missing persons also<br />

requires accurate aging techniques for antemortem-postmortem<br />

comparison.<br />

One of the more recently developed techniques, which has proved to<br />

be simple and accurate (Soomer et al. 2003), is the Lamendin method for<br />

age determination of adults from single-rooted teeth (Lamendin et al.<br />

1992), as derived from a French population. The primary components of<br />

this method are measurements of periodontosis and root transparency.<br />

Lamendin presented the following simple equation for age assessment: A =<br />

0.18 x P + 0.42 x T + 25.53 (where: A = age in years, P = periodontosis<br />

height / root height x 100 and T = transparency height / root height x 100).<br />

Prince and Ubelaker (2002) modified Lamendin’s method by adding<br />

root height (RH) to the equations for white and black males and females.<br />

The equation for white males is: A = 0.15 x (RH) + 0.29 x P + 0.39 x T +<br />

23.17. Prince claimed that inclusion of root height reduced the mean<br />

difference and therefore improved accuracy.<br />

Skeletal remains found in mass graves in Bosnia and Herzegovina<br />

present additional problems that can be addressed with improved age determination<br />

techniques. The remains are often commingled or incomplete,<br />

with skulls often separated from the rest of the skeleton. Therefore simple,<br />

quick and accurate dental aging methods may facilitate the re-association<br />

of crania and mandibles to postcranial elements. With passing time,<br />

exhumed remains are more deteriorated and sometimes only teeth are<br />

available for age estimation.<br />

The Lamendin method and Prince’s modification of the Lamendin<br />

method have already been proven useful when applied to a Bosnian popu-<br />

* Presenting Author<br />

lation (Sarajlic et al. 2003) but both authors, Lamendin and Prince,<br />

developed only one formula for all single rooted teeth. According to their<br />

methodology, the authors developed six formulae for dental age estimation,<br />

three for maxillary and three for mandibular teeth: central incisors, second<br />

incisors and canines. The estimated ages obtained by those formulas have<br />

been compared with the estimated ages obtained with the original<br />

Lamendin and Prince formulae as well as with the estimated age from the<br />

formula developed on the whole sample.<br />

The estimation of age according to the formulae developed for each<br />

tooth group was significantly more accurate than the estimation of age from<br />

Lamendin’s and Prince’s formulae and than the estimated age from the<br />

formula developed on the whole sample.<br />

The best results were obtained with the second maxillary incisors<br />

giving mean error of 6.60 years with standard deviation of 5.08 and<br />

standard error of 0.50. The lowest mean error, 4.82 years, was produced by<br />

the age group of 40 – 49 years.<br />

However, regardless of which formulas are used, there is a consistent<br />

overestimation of age in younger individuals and underestimation of age in<br />

older individuals.<br />

Dental, Age Estimation, Bosnian<br />

H71 Age Determination From Adult Human<br />

Teeth: Interest of Gustafson’s Criteria<br />

Clotilde G. Rougé-Maillart, MD*, Nathalie C. Jousset, MD, Arnaud P.<br />

Gaudin, MD, and Michel P. Penneau, MD, PhD, Service de Médecine<br />

Légale, Centre Hospitalier Universitaire - 4 rue Larrey, Angers, 49100<br />

Cedex 01, France<br />

The goal of this study is to test a simple method using the Gustafson’s<br />

criteria and to compare it with the Lamendin method.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a new method for age determination that may<br />

be most effective on older individuals.<br />

Materials: A total of 43 teeth were examined (38 extracted teeth, and<br />

5 teeth were removed from corpses at autopsy). The age range of the<br />

individuals sampled was 13-73 years. The authors worked with the entire<br />

group to test this method, but to compare the method with Lamendin’s<br />

method; only the teeth were worked with issuing from individuals greater<br />

than 30 years of age. Teeth were intact without pathological processes and<br />

marginal periodontitis.<br />

Method: The age estimation of each tooth was carried out by one<br />

examiner. First, periodontitis was estimated. The labial and lingual faces of<br />

teeth were drilled to obtain a central section 1mm thick. At this stage,<br />

researchers estimated root transparency. Then, a central section 0.25 mm<br />

thick was obtained. The four other criteria were estimated. Then the point<br />

allocated to each of the six age related changes listed above were summed<br />

and used the Gustafson’s regression line.<br />

Statistical Analysis: Descriptive and comparative statistics using<br />

SPSS software was produced. After having determined the ages according<br />

to the authors’ method, the results were compared with the real age and the<br />

mean of the errors was calculated. Then, methods were compared with<br />

Lamendin, using only the teeth from individuals more than 30 years of age.<br />

Parametric methods were used in view of the small sample size (test of<br />

student).<br />

Result: This method is easy. All that is needed is a drill and a turbine.<br />

Preparation takes only half an hour. The results show that this method had<br />

a mean error of approximately 6 years. In age groups under 60 years, error<br />

was important and underestimates were predominant. Concerning age<br />

groups between 30 and 60 years, the differences between this method and<br />

Lamendin were not statistically significant. Concerning the oldest people<br />

(> 60 years), the range of error is very significant for the two methods. But,<br />

it was noticed that when ages were underestimates, root transparency was<br />

452


ight quoted (2 or 3). The criteria was corrected (adding a coefficient) in<br />

the cases where root transparency was estimated at stage 2 or 3 with all<br />

others criteria estimated at stage 1. This eliminated the error in the case of<br />

the oldest individuals.<br />

Conclusion: This method is easier than Gustafson’s method and<br />

there’s a good correlation between criteria and ages. This method isn’t as<br />

effective for estimating ages between 30 and 60. Lamendin’s method is<br />

simplest. But this method can be used because there are no significant differences<br />

between the two methods. However, this method can be used with<br />

the youngest people. It can be an easy method when pubic symphysis aging<br />

is not an option, or to complete the estimation. Perhaps this method will be<br />

most useful to estimate ages of people in the oldest age group, using a coefficient.<br />

Physical Anthropology, Age Estimation, Teeth<br />

H72 Serial Bone Histology: Inter-<br />

and Intra-Bone Age Estimation<br />

Mariateresa A. Tersigni, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

After attending this presentation, attendees will better appreciate bone<br />

micro-morphology, attendant visualization, and quantification methods<br />

used to histologically discern differences throughout the human cortical<br />

long bone shaft.<br />

This presentation will impact the forensic community and/or<br />

humanity by identifying the degree of differentiation of microstructures<br />

used for histological aging throughout the shafts of the long bones, in order<br />

to determine the validity/accuracy of aging fragmentary remains using<br />

microstructures.<br />

Few publications are available on the histological (microscopic)<br />

differentiation throughout human or non-human mammalian long bone<br />

cortices. That is, are osteon population dynamics specific to proximal, midshaft<br />

of distal segments? This study utilizes Kerley’s (1965) four quantification<br />

categories (non-Haversian canal, osteon, and old osteon fragment<br />

number, and percent circumferential lamellae) to estimate age as well as to<br />

quantify the differential structure counts from human femur, tibia and<br />

fibula based upon section location. Each long bone was evaluated<br />

metrically following the Chicago Standards. From each midshaft onecentimeter<br />

increments were marked moving proximally and distally, which<br />

resulted in twenty-five to forty segments per bone. Three thin sections<br />

were cut from each one-centimeter segment using a high-concentration<br />

diamond blade mounted on a Buehler Isomet 1000 saw. This technique<br />

employed a modification of the methods individually created by Stout and<br />

Ubelaker.<br />

The Kerley quantification categories were used to enumerate the same<br />

microstructures in the humerus, radius, and ulna to identify structural<br />

change from the proximal to distal ends. Age estimation via the Kerley<br />

method is not made on the pectoral girdle elements, because the method<br />

was not intended for these bones. All sections were subjected to quantification<br />

identical to Kerley’s quadrant (anterior, posterior, medial, and<br />

lateral) using a Leica DMRX light microscope at 5x, 10x and 20x power<br />

magnification. Morphometric analysis of the Kerley’s quantification categories<br />

was conducted using Image-Pro Express software on the Dell<br />

Optiplex GX270.<br />

Quantification of the aforementioned microstructures indicates there<br />

are statistically significant differences throughout the shaft, which will<br />

create significantly different age estimations depending upon section<br />

location. Paired T tests were conducted on the above categories to discern<br />

the mean intra and inter bone differences. ANOVA used the variables of<br />

osteon population, old osteon fragment number, and non-Haversian canal<br />

populations against the variables of within and between bones. Age assessments<br />

using the Kerley method based on the femur, tibia, and fibula<br />

revealed that estimates made on segments away from midshaft were<br />

significantly different to the .05 level.<br />

These findings generate two related conclusions. First, metabolically,<br />

histological bone maintenance/remodeling varies greatly throughout the<br />

shaft. Second, it is imperative that the fragment location is correctly identified<br />

and that midshaft is used for this method, because, as this research<br />

explains, moving away from midshaft when using this method can lead to<br />

significantly different age estimations. These results are particularly<br />

pertinent to fragmentary remains, suggesting that quantification on<br />

fragmentary remains can provide incorrect age estimates. Furthermore,<br />

this research underscores the fact that age estimates of fragmentary human<br />

remains must account for significant difference of microstructure<br />

populations throughout the shaft as well as within one thin section.<br />

Skeletal <strong>Bio</strong>logy, Bone Microstructure, Histological Aging<br />

H73 Measure Twice, Cut Once? Measurement<br />

Error Levels in Histomorphometry<br />

Christian M. Crowder, MA*, University of Toronto, Department of<br />

Anthropology, 100 St. George Street, Toronto, Ontario M5S 3G3, Canada<br />

After attending this presentation, attendees will understand a method<br />

to assess repeatability between measurements, the amount of measurement<br />

error within rib cross-sections and between serial cross-sections, and if<br />

multiple cross-sections are warranted for evaluation.<br />

This presentation will impact the forensic community and/or<br />

humanity by underlining the importance of exploring measurement and<br />

sampling error levels in histological methods. This research stresses that<br />

the repeatability of measurements is paramount and demonstrates a<br />

statistical method to evaluate measurement agreement. Addressing issues<br />

surrounding repeatability are the first steps to further the use of quantitative<br />

bone histology in the field of forensic anthropology.<br />

Compared to the myriad of gross morphological methods available to<br />

forensic anthropologists, histological methods for estimating age at death<br />

are underutilized. Uncertainties regarding how much bone to evaluate and<br />

the associated levels of sampling error may cause this underutilization.<br />

Significant sampling error can occur within and between cross-sections,<br />

with the latter’s sampling error increasing dramatically as the amount of<br />

cortical area evaluated decreases (2) . A rib cross-section with 10mm 2 of cortical<br />

area may demonstrate several hundred percent difference in bone formation<br />

between serial bone cross-sections (5) . Frost (2) recommends a<br />

minimum of 50mm 2 of cross-sectional bone in non-pathological individuals<br />

be analyzed to minimize sampling error. Stout (4) asserts that the<br />

time necessary to increase the amount of histological samples must be<br />

weighted against the gains. It is for this reason that he recommends the<br />

evaluation of two rib cross-sections per individual. Conflicting reports of<br />

measurement error within and between studies may arise due to inadequate<br />

methods of error assessment, such as correlation or paired t-tests, producing<br />

misleading results (1) . Another issue is the absence of clear guidelines for<br />

how much error is acceptable. This ultimately means that it is the decision<br />

of the researcher; however, a 10% error level is commonly used. The goals<br />

of this research are to evaluate precision in rib intra-site histomorphometric<br />

measurements and assess inter-site measurement agreement to determine if<br />

two cross-sections are adequate.<br />

Two rib cross-sections were evaluated from 30 individuals of known<br />

age and sex (14 females, 16 males; aged 27-79 yrs) selected at random from<br />

a collection of 234 individuals from the cemetery site of Spitalfields,<br />

London. None of the individuals demonstrate any gross or histological<br />

morphology indicating a pathological condition. Osteon population<br />

densities (OPD = number of intact + fragmentary osteons ÷ surface area)<br />

were recorded following the Stout (1986) method. A plot of the difference<br />

between measurements against the mean of the first and the second<br />

measurement was utilized for both intra- and inter-site values. Absolute<br />

mean percent differences were calculated to quantify the magnitude in<br />

variability between measurements with the 10% error level as the cutoff for<br />

453 * Presenting Author


acceptance.<br />

The results show that absolute mean percent difference in OPD values<br />

for the intra-site evaluation is 8.5% indicating repeatable measurements.<br />

The mean difference is not significantly different from zero, further<br />

indicating that repeatability was achieved. The absolute mean percent<br />

difference in OPD values for the evaluation of serial cross-sections is 15%.<br />

The plot of the mean difference indicates a magnitude bias; therefore, the<br />

data was logged transformed to provide a clearer picture of agreement. The<br />

overall mean difference was significantly different from zero indicating<br />

that repeatability was not achieved. Interestingly, the minimum difference<br />

in error between serial sections was less than 1% and the maximum was<br />

~ 50%.<br />

Overall intra-site precision error is below the 10% level, but individually<br />

7 of the 30 samples exceeded the acceptable error level. Fifteen of the<br />

30 samples demonstrate moderate to large amounts of diagenesis. Six of<br />

the 7 samples that failed acceptance are within the diagenetic group. When<br />

diagenesis is present a cross-section should be measured twice and the<br />

average value recorded in order to minimize the chance of intra-site measurement<br />

error.<br />

Overall the inter-site error for the serial cross-sections failed to meet<br />

the 10% level of acceptance, but individually 12 out of the 30 were below<br />

the 10% level. These samples have a mean cortical area of 16.5mm2 (range: 9-24mm2 ), while the rejected samples have a mean cortical area of<br />

13.8mm2 (range: 8-20mm2 ). The amount of cortical area overlap and the<br />

lack of a pattern between error levels and diagenesis, indicates that serial<br />

section measurement variability is random. A slight magnitude bias in the<br />

error was detected, indicating a systematic increase in error as OPD<br />

increases. Because OPD is a calculated value, it is difficult to determine<br />

the cause. Most likely, it is a combination of the decrease in cortical area<br />

and the increase in fragmentary osteons over time. Because substantial differences<br />

can exist between serial cross-sections, measuring one section<br />

twice will not account for this error. This indicates that the evaluation of<br />

multiple cross-sections is required. As a result of the random nature in<br />

measurement error (despite the slight trend with increased error and<br />

decreased cortical area), Stout’s recommendation for the use of only two rib<br />

cross-sections from a normal individual should be sufficient in the attempt<br />

of minimizing the potential error.<br />

References:<br />

1. Bland JM, Altman DG. Statistical methods for assessing agreement<br />

between two measurements of clinical measurement. The Lancet, 1986; i:<br />

307–10.<br />

2. Frost HM. Tetracycline-based histological analysis of bone remodeling.<br />

Calcif Tissue Res, 1969; 3:211–237.<br />

3. Stout SD. The use of bone histomorphology in skeletal identification:<br />

The case of Francisco Pizarro. J Forensic Sci, 1986; 31(1):296–300.<br />

4. Stout SD. Histomorphometric analysis of archaeological bone. Ph.D.<br />

Dissertation, Washington University, Missouri, 1976.<br />

5. Wu K, Schubeck KE, Frost HM, Villanueva A. Haversian bone formation<br />

rates determined by a new method in a mastodon, and in human diabetes<br />

mellitus and osteoporosis. Calc Tissue Res, 1970; 6:204–9.<br />

Precision, Histomorphometry, Osteon Population Density<br />

H74 The Effects of Cerebral Palsy on Age<br />

Indicators in the Human Skeleton<br />

Mary S. Megyesi, MS*, Department of Anthropology, 354 Baker Hall,<br />

Michigan State University, East Lansing, MI 48824; and Norman<br />

Sauer, PhD, Department of Anthropology, 354 Baker Hall, Michigan<br />

State University, East Lansing, MI 48895<br />

Attendees will learn how systemic diseases like cerebral palsy may<br />

have dramatic effects on skeletal indicators of age at death.<br />

This presentation will illustrate the potential effects of systemic<br />

* Presenting Author<br />

disease on skeletal indicators of age at death and address how such diseases<br />

can impact other aspects of a forensic case, such as identification.<br />

In 2002 the authors were asked to examine human remains believed<br />

to be those of a 25-year-old male with a known history of severe cerebral<br />

palsy (CP). While the circumstantial evidence for a correct identification<br />

is compelling, there are significant inconsistencies between the biological<br />

profile indicated by the remains and the profile of the missing person. Most<br />

of the age indicators on the skeleton suggest an age of 12-18 years at the<br />

time of death with the highest likelihood at around 15 years (10 years<br />

younger than the known age of the victim). Since current estimates place<br />

the number of individuals with some form of CP in the United States at<br />

around 500,000, it is important to know if this case is an exception or if<br />

such variation is to be expected in known or suspected cases involving<br />

cerebral palsy. This paper has two objectives. First, a case is presented<br />

involving a CP patient and attendant maturational disparities to the forensic<br />

anthropology community; and second, the authors report on existing<br />

medical literature on the effects CP on growth and maturation.<br />

The skeletal remains in question presented with unfused long bone<br />

epiphyses and sphenooccipital synchondrosis and partially fused ilium,<br />

ischium, and pubis. According to the anthropological literature on skeletal<br />

development in the general population, such conditions are associated with<br />

an age at death of 12-18 years. In general the skeleton is unusually gracile<br />

and individual bones are quite small. In addition, the remains display<br />

several developmental anomalies, such as proximal epiphyses on the 2nd<br />

metacarpals and a midline defect on the anterior arch of the first cervical<br />

vertebra. In contrast to the immature developmental indicators, dental<br />

attrition is extensive and suggestive of a much older individual. It is<br />

possible that this wear is related to the involuntary contraction of jaw<br />

muscles, a condition often associated with CP.<br />

The effects of systemic disease on rates of skeletal maturation are<br />

poorly understood. For example there are indications that acromegaly may<br />

lead to premature suture closure (Marushia, M. and N.J. Sauer 1997) and<br />

diseases like osteoarthritis may suggest that a skeleton represents a much<br />

older individual. With respect to CP, Worley, et al. 2002 report on a cross<br />

sectional study of 207 affected children, that the completion of sexual maturation<br />

was significantly delayed compared to the general population. It<br />

may be that there is a causal relationship between delayed sexual maturation<br />

and skeletal development. This relationship in general and with<br />

respect to congenital diseases warrants further study.<br />

Forensic anthropologists need to be aware of the variation in age<br />

indicators that may be associated with certain systemic diseases. This case<br />

is an important warning for anthropologists pay attention to indicators of<br />

disease stemming directly from the remains under study or from supporting<br />

documentation such as medical records.<br />

Age Indicators, Cerebral Palsy, Dysmaturation<br />

H75 The Impact of Age Related Changes in<br />

Vertebral Column on Age Determination<br />

for Identification Purposes<br />

Eva E. Klonowski, PhD*, Nermin Sarajlic, MD, Piotr Drukier, MS, and<br />

Alexandra M. Klonowski, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, 71000, Bosnia and Herzegovina<br />

The goal of this presentation is to introduce the impact of a recently<br />

improved method of age-at-death estimation using progressive morphological<br />

changes in the vertebral column for the identification process in<br />

Bosnia and Herzegovina.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing the results of using changes in the vertebral column<br />

on age determination and their impact on narrowing age ranges and<br />

therefore increasing the accuracy of predicted ages.<br />

The exhumation and identification process in Bosnia and Herzegovina<br />

454


egan in autumn 1995 and during the first years, only traditional methods<br />

were used for establishing the identity of unknown human remains. The<br />

basic method that was used relied on the recognition of clothing, personal<br />

artifacts, and eventually documents that were rarely recovered with the<br />

victim. If the recognition of clothing and artifacts was supported by<br />

positive results during postmortem and antemortem comparison of the<br />

individual’s biological profile, such as sex, age, stature, and dental status,<br />

the remains were declared identified and released to the family. With the<br />

lack of other more sophisticated methods (at the beginning of the<br />

exhumation/identification process, costly DNA testing was not available)<br />

this procedure was accepted and widely used all over Bosnia and<br />

Herzegovina. Traditional methods worked well in the identification of<br />

victims buried soon after death by surviving family members or neighbors<br />

in single or multiple graves; however, when it came to identify victims<br />

recovered from mass graves, traditional methods failed. The sheer number<br />

and state of the remains representing victims of similar age, mostly male,<br />

combined with a lack of detailed medical and dental information reduced<br />

the effectiveness of traditional identification. Despite intensive efforts, a<br />

very limited number of victims were identified from mass graves.<br />

The situation changed significantly when ICMP was established to<br />

help clarify the fate of the missing persons in the Former Yugoslavia. Using<br />

recent advances in DNA technology, ICMP introduced a pioneering DNA<br />

program on a massive scale as a new strategy for the identification of<br />

unknown remains. In two and half years, 4,163 individuals have been identified<br />

with help of DNA. However, even with the tremendous success of<br />

the DNA matching process, it is essential that the biological profile of the<br />

remains generated by anthropologists during postmortem examinations is<br />

as accurate and close to the chronological age of the decedent as possible.<br />

A high accuracy of age determination is particularly important in the case<br />

of remains that have been exhumed from mass graves containing the<br />

victims of ethnic cleansing in 1992 and the fall of Srebrenica in 1995.<br />

During both events thousands of men were killed and many families lost all<br />

male family members. It is not uncommon that three or four brothers lost<br />

their lives. Since a DNA match cannot distinguish their identity, it is<br />

essential to determine narrow age ranges that will help in identification.<br />

During the examination of skeletal remains exhumed in BiH several<br />

methods are routinely used for age at death determination of mature<br />

remains. They are: Suchey & Brooks and Todd methods for the pubic<br />

symphysis; Iscan & Loth method for sternal end of rib, epiphyseal closure<br />

of sternal end of clavicle, closure of S1 and S2; Lovejoy method for<br />

auricular surface of ilium; Lamendin dental method; Albert & Maples for<br />

union of vertebral ring; and Drukier et al. for absorption of vertebral ring<br />

and age related changes in vertebral body.<br />

Within 5703 positive DNA matching reports, almost 500 were issued<br />

for more than one name. In a situation when none of the brothers had<br />

children, an accurate age at death determination can be one of the most<br />

helpful factors in successful identification. Routinely conducted comparisons<br />

of chronological and estimated age at death show that age related<br />

changes observed in the vertebral column have a distinctive influence on<br />

narrowing estimated age ranges. They are regarded by the authors as one<br />

of the most useful age indicators, especially for individuals from 20 to 40<br />

years of age, who make up the majority of missing persons in Bosnia and<br />

Herzegovina. This presentation will show the results of using changes in<br />

the vertebral column on age determination and their impact on narrowing<br />

age ranges and therefore increasing the accuracy of predicted ages.<br />

Aging Techniques, DNA Supported Identification, Forensic<br />

Anthropology<br />

H76 Finding Clues on the Bony Surface:<br />

The Use of Markers of Occupational<br />

Stresses as Aids to Identification and Age<br />

Determination in Skeletonized Remains<br />

J. Marla Toyne, MA*, John W. Verano, PhD, and Laurel S. Hamilton, MA,<br />

Tulane University, 1021 Audubon Street, Department of Anthropology,<br />

New Orleans, LA 70118<br />

Attendees will gain an understanding of methods for assessing<br />

osteoarthritis and musculoskeletal stress markers, and the importance of<br />

these morphological features in forensic casework.<br />

This presentation will impact the forensic community and/or<br />

humanity by highlighting the importance of assessing all features from<br />

skeletonized remains; and suggesting the use of standardized methods to<br />

assess osteoarthritis and musculoskeletal stress markers in forensic cases to<br />

aid identification and supplement age estimations<br />

Forensic anthropologists often have a limited amount of physical<br />

material with which to investigate the possibility of a crime or to attempt to<br />

identify human skeletal remains. Therefore, it is important to incorporate<br />

as many lines of evidence that can be observed from the skeleton as possible.<br />

It has been noted that frequently forensic anthropology case reports<br />

include basic data on sex, age, race, stature estimates, and trauma from the<br />

skeleton, but they may not include additional morphological characteristics<br />

such as patterns of osteoarthritis (OA) or musculoskeletal stress markers<br />

(MSM). These bony changes are considered to result from biomechanical<br />

stresses applied to the bones during life and can be used to suggest possible<br />

lifestyles or activity patterns of the individual. Since bone progressively<br />

responds differently to such stresses with age, the degenerative nature of<br />

OA could provide additional clues as to the age at death of the individual.<br />

In New Orleans in 2004, a case was investigated where the particular<br />

features of osteoarthritis of the shoulders, hands, and spinal column of the<br />

deceased could have provided important clues to identification had antemortem<br />

records been available. The suspected decedent was described as<br />

an elderly female who worked as a local seamstress in her home. The<br />

results of an osteological examination of the skeleton demonstrated that the<br />

deceased had extensive degenerative change in both shoulders, as well as<br />

severe bilateral changes in the 1st metacarpal-trapezium joint. The individual<br />

did not exhibit typical clinically reported patterns of joint degeneration<br />

of the hand, in that there was little deterioration of the distal phalangeal<br />

joints. This suggests some activity-related etiology was affecting<br />

that joint of the thumb specifically. The extent of the spinal osteoarthritis<br />

and scoliotic curvature of the lower spine would have produced a visible<br />

phenotype and greatly affected the individual’s mobility. This pathological<br />

feature would be useful in aiding identification of the remains through<br />

interviews with known associates such as neighbors. The pathological<br />

changes observed in the skeleton present a unique pattern that would have<br />

had visible characteristics when the individual was alive.<br />

Additionally, while there are no published sources for comparison<br />

with contemporary populations, the assessment of MSM and the contrast of<br />

the deceased’s MSM scores with some prehistoric archaeological samples<br />

are of potential application. The MSM scoring patterns are not similar to<br />

prehistoric females, as expected since she lived in the Twentieth Century;<br />

however, the individual did demonstrate a high overall average score for<br />

MSM of the upper limb indicating a physically active life. In general, the<br />

osteological evidence is consistent with the suggested occupational activities<br />

of the individual as someone who used her arms and especially her<br />

hands a great deal, such as a seamstress would, but it does not definitively<br />

exclude other types of physical actions or possible occupations. The<br />

overall degree of joint deterioration and high MSM score is consistent with<br />

the suspected decedent’s age at death.<br />

While the analysis of OA is an important area of research in the<br />

modern medical field and is of interest to archaeologists studying health in<br />

455 * Presenting Author


ancient populations, forensic anthropologists do not frequently incorporate<br />

this data into their investigations. Observing and scoring of OA and MSM<br />

from skeletal cases in a systematic fashion can aid future investigations not<br />

only in describing clues for positive identification based on specific<br />

pathological conditions, but also in aging the skeletons. Additionally, such<br />

investigations could provide a significant counterpoint to clinical literature<br />

where the distribution and degree of bone modification is reported only<br />

from radiographs and patient commentary. Having modern data on individuals<br />

of known age, sex and life history can enlighten other areas of<br />

research on human biology and lifestyle.<br />

Osteological Features, Osteoarthritis, Markers of Occupational Stress<br />

H77 Cross-Sectional Diaphyseal Geometry,<br />

Degenerative Joint Disease, and Joint<br />

Surface Area in Human Limb Bones: A<br />

Comparison of American Whites & Blacks<br />

Heather A. Walsh-Haney, MA*, CA Pound Human Identification<br />

Laboratory, University of Florida, PO Box 112545, Gainesville, FL 32611<br />

The goal of this presentation is to examine the accuracy of skeletal<br />

markers of age and occupation through analysis of cross-sectional diaphyseal<br />

geometry, degenerative joint disease, and joint surface areas.<br />

This presentation will impact the forensic community and/or<br />

humanity by adding to knowledge concerning the creation of a biological<br />

profile for an unknown victim that is based upon skeletal analysis.<br />

Aging and physical activity are key variables affecting normal adult<br />

bone structure. Marked differences in skeletal rugosity are typically referenced<br />

in forensic anthropology cases when determining life history parameters<br />

(i.e., age, sex, occupation) necessary to establish a presumptive or<br />

positive identification as evinced by variation in (1) diaphyseal size and<br />

shape (i.e., a marker of load baring) and (2) degree of degenerative joint<br />

disease expression (i.e., DJD; marker of age). While there is no shortage<br />

of research that explores how diaphyses and joints structurally change with<br />

physical activity and age, far too little research has examined how these<br />

variables covary within the same skeletal samples. Studied separately,<br />

contradictory results suggest that neither occupation nor age have a<br />

consistent effect on long bone remodeling, which possibly leads to the<br />

creation of inaccurate biological profiles of unknown individuals. As part<br />

of a broader research study examining distinctions between the effects of<br />

age and behavior-related changes to joint surfaces by comparing samples<br />

disparate in occupation (i.e., mild, moderate, strenuous activity level) and<br />

age group, this study examines cross-sectional diaphyseal geometry, degenerative<br />

joint disease, and joint surface areas of bones of the shoulder, elbow,<br />

hip, and knee in African American and European American industrialists<br />

from the Robert J. Terry Anatomical Collection and William Bass Donated<br />

Collection (N=125 and N=130, respectively) to set baseline data. These<br />

data answer the following questions:<br />

• Does the joint lipping associated with DJD increase joint<br />

surface area as a functional response to force applied to the<br />

joint surface over time (i.e., repetitive physical activity) thus<br />

making an individual appear biologically older?<br />

• Are long bone diaphyses more accurate indicators of load<br />

history associated with repetitive activity than joint surface<br />

areas and the expression of DJD?<br />

• Can individuals with less active lifestyles be differentiated from<br />

more active individuals based upon analysis of diaphyseal<br />

cross-sections, joint surface areas, and degenerative joint<br />

disease?<br />

To answer these questions, the left humerus, radius, ulna, femur, and<br />

tibia of each individual were grossly and radiographically examined. Only<br />

those individuals with known age at death, weight, and occupation were<br />

included in the study sample. Individuals that were immature, under-<br />

* Presenting Author<br />

weight/overweight relative to height (i.e., below 42 kg and above 90 kg),<br />

or grossly pathological were excluded. The joint surfaces of the shoulder<br />

were grossly evaluated for DJD using a 4x hand lens and identified through<br />

the presence of lipping, bone spurs, and exostoses, porosity and eburnation<br />

using a grade based system. Additionally, joint lipping was scored as either<br />

trace, mild, moderate or severe and degree of lipping was measured using<br />

sliding calipers (mm). Joint surface areas were determined using Scion<br />

Image. Lastly, cross-sectional diaphyseal geometry was evaluated with<br />

computed tomographic (CT) scanning and subsequent biomechanical<br />

analysis (i.e., each CT image was generated using a 1.5mm thick slice with<br />

a 4 second exposure time at 170 MA and 120 kV).<br />

All data were tested for violations for assumptions of parametric tests<br />

using the Kolmogorov-Smirnov test. These data were not normally<br />

distributed. Therefore, test means and standard deviations (z-scores) for<br />

each activity variable (DJD, JSA, or CSD) was determined and these data<br />

were pooled – data by sample, age and sex – to compare the arm, forearm,<br />

thigh, and leg using nonparametric tests (Mann-Whitney U and X2 analysis<br />

of variance). The skeletal samples were also compared using MANCOVA<br />

to determine the best predictor of activity (DJD, JSA, CSD, or MSM)<br />

within samples and between samples for the upper or lower extremity.<br />

Cross-sectional geometries and joint surface contours were evaluated using<br />

elliptical Fourier coefficients which computed average distances between<br />

groups. Then, the shape-based distances between the groups were<br />

examined using principle coordinates analysis (PCO). Physical activity<br />

effects were not significantly different between these two samples; though<br />

a significant interaction between JSA, lipping, and DJD expression was<br />

indicated.<br />

Cross-Sectional Analysis, Degenerative Joint Disease, Occupational<br />

Markers<br />

H78 Skeletal Markers of Obesity<br />

in the Lower Leg<br />

Megan K. Moore, MS*, Department of Anthropology, 250 South Stadium<br />

Hall, University of Tennessee, Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will understand the<br />

biomechanical effects of obesity on the bones of the lower leg and the<br />

subsequent skeletal markers, which can suggest obesity during life.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing researchers further insight into the relationship<br />

between soft tissues and skeletal tissues during life. The University of<br />

Tennessee has the unique opportunity to provide this type of research due<br />

to the large donated collection with extensive antemortem records.<br />

Obesity in the United States is reaching epidemic proportions. More<br />

than fifty percent of all adults are overweight, with a fast growing<br />

percentage of obese children. Skeletal markers of obesity are investigated<br />

as a combination of multiple traits due to the complex nature of obesity on<br />

the human skeleton. The purpose of this study is to examine the biomechanics<br />

of obesity in the vertebral column, hip and knee and its relationship<br />

with osteoarthritis, diffuse idiopathic skeletal hyperostosis (D.I.S.H.), and<br />

the frequency of fracture. This project investigates osteoarthritis of the<br />

medial and lateral tibial plateau and proximal femur, fracture of the distal<br />

fibula and proximal femur, as well as the presence of D.I.S.H. A total of 44<br />

skeletons from obese (n=21) and non-obese (n=23) adult individuals were<br />

analyzed, with ages ranging from 20 to 86 years. The skeletons represented<br />

in this sample are from individuals of known age, height and weight, from<br />

the donated collection of the Forensic Anthropology Research Facility at<br />

the University of Tennessee, Knoxville.<br />

In a review of clinical literature on the biomechanics of obesity, the<br />

effects of obesity in the leg can be separated into two separate suites of<br />

traits for the two dominant types of knee malalignment associated with<br />

obesity. Genu varum is responsible for greater torque on the hip and knee,<br />

456


decreased joint space on the medial knee joint, 100% of weight bearing on<br />

the medial side and osteoarthritis of the medial tibial plateau. There are<br />

relatively few effects of this varus malalignment on the foot. In contrast,<br />

genu valgum preserves the integrity of the knee and hip, compromising the<br />

integrity of the foot and ankle, which will be investigated in a future<br />

research project. From clinical reports, the ankle is more prone to severe<br />

lateral malleolar fracture and greater rear foot movement as a result of this<br />

condition. Obese individuals will exhibit greater asymmetry, with individuals<br />

typically favoring the right side. The findings of this skeletal<br />

analysis support some of these clinical findings. Osteoarthritis of the left<br />

lateral tibia, the right medial tibia and the right proximal femur all show<br />

fairly significant Chi-square relationships to obesity at the level p = 0.1,<br />

with these results being asymmetric and not completely consistent with the<br />

clinical findings. The presence of D.I.S.H. was significantly correlated<br />

with obesity at the level p = 0.1. There was no significant correlation<br />

between obesity and ankle fracture or between obesity and hip fracture in<br />

this skeletal sample.<br />

As the number of obese individuals living today increases, so will the<br />

number and frequency of obese in skeletal populations. Thus it is of significant<br />

forensic concern to be able to determine whether a skeletonized<br />

individual was obese or not and whether this can be ascertained from the<br />

skeleton. This preliminary research, despite the small sample size, shows<br />

promise for the future for determining obesity in the skeleton. Skeletal<br />

markers of obesity investigated as a suite of traits could prove useful to<br />

identification in the field of forensic anthropology. Furthermore, the biomechanics<br />

of obesity need to be better understood in order to stop the cycle<br />

of obesity.<br />

Obesity, Skeletal, <strong>Bio</strong>mechanics<br />

H79 Serial Murder With Dismemberment<br />

of Victims in an Attempt to Hinder<br />

Identification: A Case Resolved Through<br />

Multidisciplinary Collaboration<br />

John W. Verano, PhD*, Department of Anthropology, Tulane University,<br />

1021 Audubon Street, New Orleans, LA 70118<br />

The goal of this presentation is to illustrate the importance of collaborative<br />

forensic investigation, and highlight the specific contributions of<br />

forensic anthropology to resolving complex cases involving postmortem<br />

mutilation of bodies to conceal their identity, and cause and manner of<br />

death.<br />

Collaboration between forensic anthropologists and other medicolegal<br />

investigators has proven increasingly important in the investigation of<br />

homicides, particularly in cases where bodies have been extensively altered<br />

postmortem in an attempt to conceal the identity of victims and the cause<br />

and manner of death. Positive identification of victims and the linking of<br />

crimes by patterns of postmortem dismemberment are increasingly<br />

recognized as areas where forensic anthropologists can make important<br />

contributions.<br />

This paper presents a serial homicide case that was resolved through<br />

the active collaboration of homicide detectives, the District Attorney’s<br />

Office, and various forensic scientists. Key to the prosecution’s strategy in<br />

this case was a linking of three homicides and positive identification of the<br />

victims. While identification of the second and third victims was relatively<br />

straightforward, the first (Victim 1) was more complex, and required<br />

collaboration between the Assistant District Attorney, a local hospital, and<br />

the forensic anthropologist. Victim 1’s body was intentionally mutilated<br />

and dismembered, and parts had been disposed of over a wide geographic<br />

area. Some remains (a torso and attached right arm) were subsequently<br />

found by chance, while investigators were led to others (the head, upper<br />

neck and severed left forearm) by the co-defendant in the case, whose<br />

testimony was key in revealing details of the postmortem history of Victim<br />

1 that would otherwise have been difficult to reconstruct from the physical<br />

evidence alone. The co-defendant also led police to tools allegedly used to<br />

dismember the victim. Matching of the different parts of Victim 1’s body<br />

was achieved through forensic anthropological analysis. The remains were<br />

defleshed and patterns of sharp force trauma associated with the intentional<br />

severing of the head and fingers were identified and compared. Skeletal<br />

analysis revealed that the head had been severed between the fifth and sixth<br />

cervical vertebrae by multiple blows with an edged weapon (later identified<br />

in testimony to homicide detectives as a machete). In addition to a match<br />

between chop marks on the neck vertebrae recovered from the two<br />

locations, a small portion of the transverse process of the fifth cervical<br />

vertebra was found still attached to the trunk, and was matched with the rest<br />

of the vertebra found still articulated with the neck and head. Similarities<br />

in the manner and location at which the fingers were severed linked all<br />

three victims.<br />

Although DNA analysis was successful in demonstrating a match<br />

between Victim 1’s head, left arm, trunk and bloodstains found in the<br />

defendant’s apartment and storage locker, this was not sufficient for a<br />

positive identification because comparative DNA could not be obtained<br />

from living relatives. Examination of the defleshed skull, however,<br />

revealed evidence of an apparent healed gunshot wound to the left frontal<br />

and parietal bones. The injuries had not been seen at autopsy, as they were<br />

concealed by soft tissue. The forensic anthropologist requested a search for<br />

local hospital records with the hope that antemortem and postmortem<br />

comparisons of the gunshot wounds might lead to an identification. After<br />

an extensive search, both a police report and hospital records were located.<br />

Comparisons of antemortem and postmortem radiographs revealed<br />

multiple points of correspondence, allowing a positive identification. Upon<br />

reviewing the evidence against him, and facing a capital murder trial, the<br />

key defendant in the case pled guilty to the murders and is now serving<br />

three consecutive life terms in prison.<br />

Dismemberment, Postmortem Modification, Positive Identification<br />

H80 Fifty Years of Questions:<br />

The Re-Evaluation of a Korean<br />

War Soldier Buried in the United States<br />

Mary H. Manhein, MA*, and Ginesse A. Listi, MA, Louisiana State<br />

University, Department of Geography and Anthropology, Baton Rouge,<br />

LA 70803<br />

The goal of this presentation is to inform researchers of problems and<br />

rewards associated with exhumation and reanalysis of previously identified<br />

soldiers from the Korean War era who have been returned home and buried<br />

in the United States<br />

This presentation will impact the forensic community and/or<br />

humanity by showing that taphonomic processes can affect the DNA<br />

extraction from well-preserved bones, and that dental identification<br />

continues to be a valid tool in forensic science.<br />

On December 2, 1950, PFC James B. Sanders, of the United States<br />

Army, Company D, 32nd Infantry Regiment, was reported missing in action<br />

while helping to secure the town of Hagaru-ri in the Chosin Reservoir of<br />

Korea. In the fall of 1953, the Sanders family received a telegram that noted<br />

there was reason to believe that Cpl Sanders (promoted to Cpl after he was<br />

missing in action) might be or might have been in communist custody. In<br />

February, 1954, the Department of the Army declared Cpl Sanders “to be<br />

dead.” According to the Army’s report, they based this declaration on “the<br />

lapse of time without information to support a continued presumption of<br />

survival.” Following the end of the war as part of “Operation Glory,”<br />

communist forces reportedly recovered ten sets of buried remains from an<br />

area within the region of the Chosin Reservoir. In the fall of 1955, the Army<br />

advised the Sanders family that they had approved the identification of one<br />

set of the remains as those of Cpl James B. Sanders. According to official<br />

government documents, “Association of Cpl Sanders ... is based on<br />

457 * Presenting Author


favorable dental; very favorable comparison of physical characteristics, and<br />

place of casualty in relation to recovery site of remains.” Cpl Sanders’<br />

remains were shipped home to the United States in a sealed casket.<br />

However, on May 27, 1957, Cpl Sanders’ name once again appeared in a<br />

government publication entitled “Return of American Prisoners of War Who<br />

Have Not Been Accounted For by the Communists” (1) .<br />

For close to fifty years following the burial, the Sanders family felt<br />

that the remains in the casket might not be those of their son and brother.<br />

Their fears were based in part on the fact that his name continued to appear<br />

on various lists of soldiers missing in action that were published after Cpl<br />

Sanders’ remains were returned home. In addition to that were the medical<br />

records associated with the recovered remains which indicated that Cpl<br />

Sanders had a healed, broken foot bone. The family knew of no broken<br />

bone. Also, Cpl Sanders’ brother Lloyd, a soldier himself in that era, was<br />

not allowed a furlough to attend his brother’s funeral. Sealed caskets; list<br />

after list of prisoners of war thought to be in enemy custody; ambiguous<br />

government papers; an undocumented healed, injury; and seemingly<br />

unwarranted decisions about a funeral furlough added to a grieving<br />

family’s concern.<br />

Eventually, through association with a victims’ advocate group, the<br />

family contacted the Louisiana State University Forensic Anthropology and<br />

Computer Enhancement Services Laboratory (LSU FACES Lab) and asked<br />

for assistance in opening Cpl Sanders’ grave, reanalyzing the remains, and<br />

sampling bone and teeth for DNA confirmation of his identity. In the<br />

summer of 2003, FACES Laboratory personnel exhumed the casket.<br />

Unknown to surviving family members, the casket was enclosed in a<br />

metal vault. The vault, a Clark, was still sealed; so was the casket. When<br />

the casket was opened, the state of preservation of the interior casket lining,<br />

associated burial goods, and the skeletal remains themselves (which were<br />

tightly packed in a bundle) encouraged the researchers to conduct a<br />

complete skeletal analysis and to sample the remains for DNA testing. One<br />

unusual, though not totally unexpected, feature of the burial was a heavy<br />

coat of grayish-white powder covering all of the bones in the bundle.<br />

Referred to by some as “burial powder,” this material was known to have<br />

been placed in soldiers’ caskets at a particular mortuary in Japan.<br />

According to one researcher, this powder had affected the extraction of<br />

DNA from at least one other case from that era (personal communication).<br />

Results of the reanalysis of the skeletal remains by anthropologists<br />

and a forensic odontologist showed congruency with the antemortem<br />

dental records for Cpl Sanders. Additionally, cranial features and other<br />

skeletal markers were consistent with the description of Cpl Sanders in life.<br />

Though no small foot bones showed any obvious, healed break, x-ray<br />

equipment used for confirmation of the old injury by the Army was not<br />

available in the embalming laboratory where the skeletal analysis took<br />

place.<br />

Subsequent x-ray diffraction analysis of the powder from Cpl<br />

Sanders’ casket showed that it is comprised mainly of inorganic calcium<br />

sulfate in varying degrees of hydration. Calcium Sulfate is the main<br />

component of Drierite, a popular desiccant. Also, after months of<br />

exhaustive efforts to extract DNA from the bone or tooth, Reliagene<br />

Laboratory in New Orleans was unable to do so. However, the biological<br />

profile and the dental profile confirm that Cpl Sanders is buried in Cpl<br />

Sanders’ grave.<br />

References:<br />

1. Return of American Prisoners of War Who Have Not Been Accounted<br />

for by the Communists. Hearing before House of Representatives<br />

Subcommittee. U.S. Government Printing Office, May 27, 1957, p 28.<br />

Korean War Soldier, Forensic Anthropology, Burial Powder<br />

* Presenting Author<br />

H81 Diagnosis of Anencephaly, a Common<br />

Lethal Neural Tube Defect, From<br />

Taphonomically Altered Fetal or<br />

Neonatal Skeletal Remains<br />

J. Christopher Dudar, PhD*, and Steve D. Ousley, PhD, Department of<br />

Anthropology, National Museum of Natural History, Smithsonian<br />

Institution, PO Box 37012, MRC 138, Washington, DC 20013-7012<br />

Attendees will learn about the prevalence and appearance of<br />

anencephaly and how it can be overlooked, or even misdiagnosed, in<br />

certain recovery contexts. Attendees will be able to implement a robust<br />

quantitative osteometric method to determine anencephaly from abandoned<br />

fetal or neonatal remains that have been scavenged or otherwise<br />

taphonomically altered.<br />

Anencephaly is a relatively common birth defect that universally<br />

results in miscarriage or neonatal death. Establishing the cause of death is<br />

essential in cases of abandoned newborns, however, the determination of<br />

anencephaly from taphonomically altered fetal or neonatal skeletal remains<br />

can be difficult when recovery is incomplete due to scavenging animals or<br />

other taphonomic variables. A robust osteometric procedure was developed<br />

from documented cases of anencephaly which provides a probability<br />

statement that will impact the forensic community and/or humanity by<br />

assisting in the establishment of differential diagnoses of cause of death in<br />

abandoned fetal or neonatal remains.<br />

Anencephaly is defined as the complete absence of a skull vault<br />

resulting from a failure of closure in the anterior neuropore. The prevalence<br />

of this lethal neural tube defect ranges between 1 in 1000 live births in the<br />

U.S. to between 5 to 7 in 1000 live births in some regions of Ireland and<br />

Wales. Establishing the cause of death is essential in cases of fetal or<br />

neonatal abandonment; however, the forensic anthropology and<br />

paleopathology literature displays a deficiency of diagnostic criteria to<br />

identify this relatively common defect when various taphonomic processes<br />

result in incomplete or altered fetal or newborn remains. Even fetal<br />

remains that are completely mummified can lead to initial misdiagnosis of<br />

anencephaly (Dupras et al., 2002).<br />

Osteometric data was collected from 7 clinically documented<br />

anencephalic skeletons curated at the National Museum of Natural History,<br />

Smithsonian Institution, and contrasted with normal fetal database standards<br />

from Fazekas and Kosa (1978). Comparisons involving the proportions<br />

of basi-cranial elements (those most likely to be preserved in recovery<br />

contexts) yielded statistically significant differences related to the<br />

congenital abnormalities of this condition. Random sampling of the small<br />

documented anencephalic collection assisted in the creation of a suite of<br />

logistic regression models. These models were then tested on a partially<br />

preserved, archaeologically recovered, fetal skeleton that has been demonstrated<br />

to possess morphological traits strongly indicative of a profound<br />

neural tube defect involving the skull and vertebral column (Dudar, 2002).<br />

This archaeological case study was predicted to be anencephalic with a<br />

probability of p>0.99 with the developed logistic regression model.<br />

This maximum likelihood-based method provides a robust procedure<br />

that will generate a probability of anencephaly that will assist in the differential<br />

diagnosis of cause of death in forensic contexts from taphonomically<br />

altered or scavenged remains.<br />

458


Fetal Remains, Anencephaly, Cause of Death Diagnosis<br />

H82 Utilizing Taphonomy and Context to<br />

Distinguish Perimortem from<br />

Postmortem Trauma in Fire Deaths<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main,<br />

Fayetteville, AR 72701<br />

The goals of this presentation are to demonstrate interactions of fire<br />

environments with the condition and preservation of human remains; to<br />

illustrate the importance of correlating the in situ position of burned bone<br />

with lab analysis for differentiating skeletal traumatic injury from<br />

taphonomy of heat and fire; to introduce problems of interpreting original<br />

body position in structural fires; and to discuss spatial relationship models<br />

for human remains in advanced stages of cremation for purposes of scene<br />

reconstruction.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing benefits of experimental modeling demonstrating<br />

how soft and hard tissues of the human body are affected by heat and how<br />

these results are applicable to forensic casework dealing with extensively<br />

burned human remains. This modeling has the potential to identify features<br />

differentiating preexisting traumatic injury created in fresh bone from postmortem<br />

fractures caused by taphonomic changes to bone by fire and heat.<br />

With the exception of crematoriums, human remains rarely burn in<br />

ideal conditions free of structural debris, dynamic environmental change, or<br />

body shifting during the reduction process. Heat alone causes muscle<br />

shrinking and dehydration, thus repositioning arms, legs, torso, and head<br />

into the flexed ‘pugilistic posture.’ Fire simultaneously impacts the<br />

surrounding environment, reducing construction materials and collapsing<br />

exposed spatial areas into layers of debris. Environmental changes<br />

potentially aid preservation or produce further damage by impacting and<br />

fragmenting brittle burned bone. Reduction of supporting materials of<br />

furniture, floors, or levels also contributes to fragmentation and dispersed<br />

spatial relationships of remains. Similar to decomposition, favorable<br />

conditions of ample oxygenation, circulation, and fuels accelerate soft and<br />

hard tissue destruction by fire, whereas restricted conditions impede proper<br />

combustion, thus producing visual differences in final appearances of<br />

burned human remains left for forensic analysis. Considering these<br />

taphonomic variables can assist scene reconstruction and differentiation of<br />

heat-related fractures from preexisting traumatic injuries in fragmentary<br />

burned skeletal remains.<br />

Experimental burn research with human cadavers served as a model<br />

for observing interactions of the body, environment, and heat-related<br />

changes to known position and preexisting trauma in soft tissue and bone.<br />

Remains were photographically documented prior to, during, and<br />

following burning in conditions replicating forensic fires. Analysis began<br />

with the in situ position of remains at the scene, noting deviations from<br />

known original positions, influence and degradation of construction<br />

materials, spatial relationships of remains, relative fragment size and<br />

distance from the body, and condition of traumatic injuries in bone<br />

following incineration.<br />

Distorted repositioning of limbs are observable heat-related changes<br />

to skin and muscles. Living skeletal tissues undergo similar dynamic transformations<br />

where heat pyrolyses and removes organic components (lipids,<br />

collagen, protein, water), producing black carbonization or charred bone.<br />

Depletion of organic materials weakens structural properties of remaining<br />

inorganic bone, appearing as white or gray calcined bone after heat drives<br />

off remaining carbon. Color changes occur simultaneously with shrinking<br />

and deformation of remaining inorganic skeletal structures, creating heatrelated<br />

fractures and brittle bone. These are expected taphonomic<br />

processes for advanced stages of burned bone and are produced differently<br />

than traumatic injury in fresh bone from applied external force.<br />

Preexisting wounds in fresh bone are vulnerable to thermal damage<br />

through accelerated exposure by penetrated tissues, abnormally positioned<br />

long bones from shrinking muscles, or exposed fracture margins, particu-<br />

larly in cranial bone. Exposure to heat caused soft tissue injuries, modeled<br />

by surgical incisions, to exaggerate wound morphology due to shrinking<br />

skin, muscle, and fat. Superficial soft tissue injuries were difficult to<br />

discern for advanced stages of cremation (calcination) in the absence of<br />

associated color or tool marks in bone. Skeletal fractures in long bones<br />

were overpowered by contracting muscles from heat, pulling broken<br />

margins apart like an open hinge. In thicker tissues shrinking muscles overlapped<br />

fractured ends embedding deeper into surrounding tissues, thus<br />

shortening the limb.<br />

Evidence of preexisting skeletal fractures in long bones was best<br />

represented by correlating abnormal in situ positions with photographic<br />

images following extinguishment and skeletal analysis of reconstructed<br />

specimens. Cranial bone requires similar attention to the in situ position or<br />

distribution of fragments. Fragmentation results from biochemical<br />

reduction of organic materials from living bone (which leaves inorganic<br />

calcined bone and heat fractures), preexisting skeletal trauma, collapsed<br />

debris (walls, ceiling, roof, windshield), body shifting or falling during the<br />

fire, and/or handling and transport of fragile bone. Since traumatic<br />

fractures are produced by force impacting or penetrating fresh bone, it is<br />

possible to differentiate them from heat-related fractures produced by<br />

organic pyrolysis, shrinking, and deformation of inorganic skeletal<br />

structures. Traumatic fracture margins were eroded, weathered, and<br />

deformed from heat exposure and more noticeable in thinner cortical and<br />

cranial bone than thicker cortical structures.<br />

Context at the scene is an invaluable source of information for investigating<br />

fire deaths. Time and intensity of heat exposure contribute to the<br />

progressive degradation of human remains. Bodies salvaged earlier sustain<br />

less tissue damage when compared to advanced or complete reduction by<br />

fire. Similar logic applies to structural materials surrounding the body.<br />

Degraded or collapsed materials can either reduce possibilities of finding<br />

intact skeletal remains because of increased impact and skeletal fragmentation,<br />

or create artificial protection with fallen debris shielding tissues of<br />

the body from heat. Documenting context and relationship of human<br />

remains within the immediate environment yields contributory information<br />

toward explaining burn patterns of the body and scene. However, caution<br />

should be given to interpreting original position or behavioral body<br />

language (protective stance) of the victim since contracting muscles alter<br />

the body’s posture and throughout burning remains can shift position,<br />

become artificially restrained, fall, or become impacted and repositioned by<br />

larger debris. These factors provide challenges directly associated with<br />

their unique environments (structural, vehicular, public transportation, or<br />

mass disaster) and should be integrated with laboratory analysis of burned<br />

soft and skeletal tissues for reconstructing identity and differentiating<br />

perimortem traumatic injury from postmortem taphonomic changes to bone<br />

by fire. Examples of these differences will be illustrated with models from<br />

experimental burn research and forensic casework.<br />

Burned Bone, Perimortem and Postmortem Trauma, Taphonomy<br />

H83 Burned Beyond Recognition:<br />

Attempts to Destroy Evidence of Death<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main, Fayetteville,<br />

AR 72701; Alan G. Robinson, MSc, Guatemalan Forensic Anthropology<br />

Foundation, Guatemala City, Guatemala City, 01002, Central America;<br />

Kate Spradley, MA, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and O’Brian C. Smith, MD, Regional Forensic<br />

Center, 1060 Madison, Memphis, TN 38104<br />

The goals of this presentation are to illustrate differences among postmortem<br />

and perimortem effects of burning to osseous tissues as a means to<br />

destroy evidence of death or identity; to describe techniques for identifying<br />

signatures of perimortem trauma in extremely burned skeletal remains,<br />

especially cranial bone; to demonstrate utilities of actualistic modeling as a<br />

tool for analyzing difficult cases of burned human remains; and to provide<br />

459 * Presenting Author


examples of intentional attempts to destroy human remains and traumatic<br />

evidence with fire.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing techniques for differentiating perimortem and<br />

postmortem trauma in burned human remains.<br />

Analysis of burned human remains presents many challenges since<br />

fire alters familiar personal features of hair, skin, fingerprints, and unique<br />

facial soft tissues used for visual identification. More extreme cases require<br />

additional methods developed in anthropology and odontology to assess the<br />

biological profile, unique features of osseous and dental tissues for personal<br />

identification, and presence or absence of traumatic injury. Intentional use<br />

of fire to obscure or destroy human remains complicates these analyses but<br />

does not render them impossible. Contrary to popular belief, burning<br />

human remains whether fleshed or as dry bone, does not completely<br />

destroy all evidence. Such cases are difficult to process since heat degrades<br />

organic structures of bone, creating embrittlement, deformation, and fragmentation<br />

of bone. Accompanying dynamic changes of human tissues with<br />

heat, external factors of impacts with fallen debris or intentional reduction<br />

by the assailant further complicates analysis of surviving remains.<br />

Experienced anthropologists recognize skeletal structures of age and sex in<br />

fragmentary bone, but analyzing traumatic injury in remains intentionally<br />

burned to destroy evidence of death during the perimortem or postmortem<br />

interval presents a challenging task for reconstructing fatal events.<br />

The authors conducted a comparative study involving cases of<br />

traumatic death and intentional burning from repatriated Guatemalan sites<br />

known for indigenous genocide by their military within the past 30 years<br />

and experimental human cadaver burn research to test identification<br />

techniques of traumatic injury in cranial and long bones. For the control<br />

sample, the researchers replicated perimortem blunt force trauma in five<br />

fleshed crania, removed soft tissue, burned specimens in a dry or partially<br />

fleshed state, and compared signatures of skeletal injury with four traumatized<br />

crania and long bones burned in the flesh to examine differences of<br />

perimortem and postmortem burn patterns.<br />

Presence of soft tissue contributed to visual differences between<br />

fleshed perimortem burn patterns and postmortem burning of partially<br />

fleshed or dry bone. Through experimental burn research with human<br />

cadavers it is understood how different anatomical areas of the body burn<br />

predictably from known distributions of soft tissues (skin, muscle, fat)<br />

around each bone. Fleshed specimens with perimortem trauma exhibited a<br />

range of color changes to bone, showing progressive heat damage over<br />

large exposed bones of the upper face and vault versus skeletal structures<br />

deeply protected by lower facial and neck muscles that remained unburned<br />

or less severely compared to the exposed vault. Dry or partially<br />

decomposed specimens with perimortem trauma presented different burn<br />

patterns with more consistent blackening and calcination of the exposed<br />

bone and teeth lacking soft tissue protection. Color changes were valuable<br />

distinguishers of perimortem from postmortem burning episodes.<br />

Perimortem traumatic injury was more difficult to discern in fleshed<br />

and defleshed specimens. Intact cranial bone fractured naturally from heat<br />

stress. Preexisting traumatic fractures undergoing thermal alteration<br />

appeared different than natural heat-related fractures. Disruptions or<br />

weakness in bone structure from fractures, impacts, or penetration became<br />

early failure points as bone shrinks from heat exposure, intensifying these<br />

discontinuities and producing permanent deformation. Heat causes fractures<br />

to open and remain exposed, producing an eroded, worn, weathered<br />

appearance opposed to heat-related fractures created by shrinking in dry<br />

charred and calcined bone. Characteristics of traumatic and heat-related<br />

fractures should be examined following cranial reconstruction and not on<br />

individual fragments. Perimortem fractures produced in green bone were<br />

also compared to postmortem fractures in grease-free dry bone to simulate<br />

a prolonged postmortem interval and features of non-lethal breaks in bone<br />

(environmental and taphonomic factors noncontributory to death).<br />

Known features of traumatic injury for experimental specimens were<br />

compared to reconstructed skeletal remains of the genocide victims excavated<br />

in Guatemala. Field samples examined consisted of individuals<br />

violently murdered and burned to destroy evidence of death or identity (1) .<br />

* Presenting Author<br />

Field cases were independently analyzed to test the validity and<br />

reproducibility of traumatic signatures in experimental research as an<br />

effective tool for modeling forensic casework. Successful techniques for<br />

identifying features of preexisting trauma in burned bone will be presented<br />

for use in the forensic community. Examples of both known traumatized<br />

features and case examples will be used to demonstrate effective techniques<br />

for identifying traumatic injury in burned human remains.<br />

References:<br />

1. REMHI (Recovery of Historical Memory Project) and ODHAG (Human<br />

Rights Office of the Archdiocese of Guatemala) Guatemala Never Again!<br />

Orbis Books Maryknoll, New York. 1999.<br />

Burned Bone, Traumatic Injury, Postmortem Burned Bone<br />

H84 Dismembered Bodies -<br />

Who, How, and When<br />

Tzipi Kahana, PhD*, Israel National Police, 67 Ben Zvi Street, PO Box<br />

8495, Tel Aviv, 61085, Israel; Inmaculada Aleman, PhD, Department of<br />

Anthropology, Faculty of Medicine, University of Granada, Granada,<br />

18012, Spain; Miguel C. Botella, MD, PhD, Deptartment of<br />

Anthropology, Faculty of Medicine, University of Granada, Granada,<br />

18012, Spain; and Jehuda Hiss, MD, National Centre of Forensic<br />

Medicine, 67 Ben Zvi, PO Box 8495, Tel Aviv, 61085, Israel<br />

Attendees will become familiar with various forensic aspects of postmortem<br />

dismemberment.<br />

In the forensic literature there are many isolated case reports of postmortem<br />

dismemberment, this presentation will impact the forensic community<br />

and/or humanity by attempting to provide a comprehensive view of<br />

the main features common to the majority of dismemberment cases.<br />

Close scrutiny into 14 cases of body dismemberment of homicide<br />

victims, analyzed at the National Centre of Forensic Medicine – Israel<br />

National Police (Israel) and the laboratory of Anthropology of the<br />

University of Granada (Spain), provides insight into various aspects of this<br />

type of postmortem mutilation.<br />

The sample includes eight males and six females whose ages ranged<br />

between 12 and 67 years old. Four of the bodies are unidentified while the<br />

remaining ten were identified by means of a variety of techniques including<br />

fingerprints comparison, dental and medical data, and comparison of DNA<br />

profiles.<br />

The investigation into these cases reveals common features regarding<br />

intent, state of mind of the perpetrator, cutting method, anatomical location<br />

of the severing cuts, and most commonly used tools to accomplish the<br />

deed.<br />

The approach for an exhaustive analysis of all aspects of dismemberment<br />

cases requires careful handling of the remains to avoid damage<br />

during autopsy, thorough photography prior to removal of the severed parts,<br />

systematic documentation of the anatomical distribution of the cutting<br />

activity and examination of the walls of the cut-marks to expound the<br />

nature of the tool employed.<br />

The objective of the perpetrator can be elucidated by the care or lack<br />

thereof in concealing the dismembered cadaver. In 5 cases (35%), the perpetrators<br />

cut off the hands and heads of their victims in order to hinder the<br />

identification of the deceased. This assertion is confirmed by the removal<br />

of portions of skin from the chest and back of two of the victims to eliminate<br />

tattoos that could have been conducive to positive identification of the<br />

cadavers. The disposal of the victims is a good indicator of the aim of the<br />

perpetrator; often the objective is to “send a message.” In two cases the<br />

assassins decapitated their victims and left them to be found in their own<br />

homes; in five instances the mutilated body parts were left in areas of easy<br />

access to the public.<br />

The most common reason for dismembering a body is to facilitate<br />

concealment and transportation; in 35% of the cases the taphonomic features<br />

indicated that the body parts were kept under refrigeration and were<br />

460


subsequently disposed of – either buried or wrapped separately and thrown<br />

in scattered garbage containers.<br />

The state of mind of the person behind the murder can be ascertained<br />

by the number of cut marks on the cadaver. As a rule, a very high number<br />

of cuts or stabs are considered indicative of “overkill” or high disregard for<br />

the victim. This phenomenon was encountered in ~45% of the cases<br />

examined.<br />

Oftentimes the postmortem interval precludes determining the cause<br />

of death; in six of the 14 cases, lethal stab-wounds were detected while in<br />

one case the perpetrator confessed that he had strangled the victim. For the<br />

remaining seven cases, the cause of death is undetermined.<br />

The skills required to successfully dismember a cadaver are revealed<br />

by the neat results obtained by perpetrators somewhat proficient in human<br />

anatomy or in meat processing that cut very near or within the joints,<br />

utilizing dedicated tools like surgical scalpels or butcher knives. In six<br />

cases, the perpetrator’s knowledge of anatomy was reflected in the small<br />

number of incisions and a minimum of kerf marks. In contrast, the<br />

unskilled perpetrator utilizes heavy utensils and due to his lack of<br />

knowledge in anatomy leaves many “false starts” In two cases (one from<br />

Israel and one from Spain) the perpetrator severed the body in half through<br />

the lumbar vertebrae but couldn’t separate the limbs from the torso. The<br />

cut-marks left in the soft tissue in the vicinity of the axillary and inguinal<br />

areas are good indicators of the cutting sequence in these cases.<br />

The implementation of 3-dimensional techniques including casting<br />

and photography will be illustrated. Typical marks associated with specific<br />

cutting devices will be described in detail. In 20% of the cases the<br />

perpetrators used more than one tool to accomplish the dismemberment;<br />

this information was instrumental for the police investigation.<br />

Dismemberment, Taphonomy, Tool Marks<br />

H85 Differential Human Decomposition<br />

in the Early Stages: An Experimental<br />

Study Comparing Sun and Shade<br />

Carrie F. Srnka, MA*, 6352 Iradell Road, Trumansburg, NY 14886<br />

The goal of this presentation is to provide information to help further<br />

the accuracy of the estimate of time since death (or postmortem interval,<br />

PMI) in cases that involve decomposition in very sunny locations such as<br />

a field, or those in very shady locations such as a dense forest.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting research which examines the affects of sun and<br />

shade on the early stages of human decomposition. The results of this study<br />

should further the base knowledge on PMI estimation for the forensic<br />

anthropology community.<br />

The analysis and estimation of time since death has long been a<br />

significant contribution of the forensic anthropologist to the death investigation.<br />

It is also, perhaps, the most difficult portion of data that the forensic<br />

anthropologist must analyze. It is widely known that many factors directly<br />

affect the rate of decomposition and therefore blur the actual PMI.<br />

Throughout the years many experimental studies have been conducted,<br />

attempting to generate information about decomposition. The purpose of<br />

this study was to analyze two possible extremes that arise in most<br />

casework: the affects of positioning a body in the direct sunlight or in<br />

complete shade.<br />

To examine differences in decomposition in the early stages, a study<br />

using five human bodies that were un-autopsied, unembalmed, and had no<br />

soft tissue trauma was conducted. The study took place in 2002 at the<br />

Anthropology Research Facility in Knoxville, TN. The remains were<br />

placed out at the facility as soon as they became available during the<br />

summer months. All remains were placed in a supine position, with no<br />

clothing. During the study, data was observed, and collected daily<br />

including information on the weather, the remains and the amount of insect<br />

activity. Weather data that was collected independently at the two sites<br />

included current temperature, high and low temperature for the 24-hour<br />

period, humidity, rainfall, and sky conditions. Decomposition data that was<br />

observed included marbling, skin slippage, bloat, discoloration,<br />

desiccation, and skeletonization. In order to have data that would be<br />

relevant to actual casework, all other environmental factors were not<br />

eliminated from the study (except animals access, as scatter would have<br />

greatly detracted from the observations).<br />

Results from the study were quite confounding but will be examined<br />

more thoroughly. The decomposition patterns of remains left in direct<br />

sunlight differed slightly from those of remains placed in complete shade.<br />

The remains in the sun progressed evenly through early decomposition but<br />

then hit a plateau during which time there were minimal changes in<br />

coloration, marbling, bloating, skeletonization, and insect activity. On the<br />

other hand, the remains in the shade maintained a constant rate of<br />

decomposition and did not run into the same type of stall in progress.<br />

Therefore, the remains in complete shade actually decomposed faster, some<br />

reaching skeletonization earlier. The weather data was more informative in<br />

terms of fieldwork. The temperature readings indicated that the sun bodies<br />

experienced highs that averaged about 10 degrees Celsius above those in<br />

the shade, where lows were very similar. In addition, the rain gauge<br />

readings indicated that remains in open, sunny locations are exposed to<br />

much higher rainfall levels. The forest canopy actually worked to block<br />

and redistribute rain limiting the amounts that reach the remains in heavily<br />

shaded areas. The data recorded daily and the photographs can serve as a<br />

great comparative sample when analyzing actual casework, weather<br />

comparisons, and fluctuation analysis.<br />

The study was very informative, but the evaluation of the data<br />

maintains that analyzing PMI is truly an estimate. The more studies such<br />

as this, combined with actual known PMI casework can only help to<br />

increase the accuracy of the estimation that the forensic anthropologist is<br />

asked to make in death investigations.<br />

Decomposition, Postmortem Interval (PMI), Forensic Anthropology<br />

H86 Raccoon (Procyon lotor) Foraging as a<br />

Taphonomic Agent of Soft Tissue<br />

Modification and Scene Alteration<br />

Jennifer A. Synstelien, MA*, and Walter E. Klippel, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996; and Michelle D. Hamilton, PhD, Eastern Band of<br />

Cherokee Indians, Tribal Historic Preservation Office, PO Box 455,<br />

Cherokee, NC 28719<br />

Attendees will acquire an appreciation for the remarkable strategies<br />

employed by an opportunistic carnivore to exploit the insect species<br />

attracted to carrion.<br />

Human medicolegal investigations increasingly rely on entomology to<br />

estimate time-since-death based on species’ presence or absence, and stages<br />

of development. Estimates, however, may deviate when carrion-seeking<br />

insects are subject to predation themselves. Ants, wasps, beetles, and birds<br />

have been documented to scavenge carrion for fly eggs, larvae, or both.<br />

The authors have observed brown rats (Rattus norvegicus) ingest developing<br />

larvae found on human remains. These predators alter the entomological<br />

evidence which can be collected from the scene, and record of their<br />

presence must be taken into account when estimating the postmortem<br />

interval. To the authors’ knowledge, there has been no prior record of<br />

mammals directing as much, if not the majority, of their efforts towards<br />

locating, and recovering, insect fauna, as they do in scavenging carrion.<br />

This paper examines the foraging strategies of the raccoon at the<br />

University of Tennessee’s Anthropological Research Facility—a 2 ½ acre<br />

plot of land set aside for human decomposition research. Prompted by the<br />

paucity of literature on small mammal scavenging behavior, multiple<br />

cameras were stationed at the Facility to record the nocturnal behavior of<br />

animals inhabiting, or frequenting, the Facility. The cameras were main-<br />

461 * Presenting Author


tained throughout most of the September 2003 through July 2004 calendar<br />

months, after which point they were sporadically operated. Ancillary visits<br />

in daylight enabled detailed photographic documentation of any previous<br />

night’s activity.<br />

Raccoons (Procyon lotor), in the order Carnivora, can be found<br />

throughout much of the United States. Although highly adaptable to diverse<br />

habitats, they prefer hardwood forests near streams, lakesides, or other<br />

bodies of water. They may establish dens in hollow trees, abandoned<br />

ground burrows, brush piles, caves or rock piles, drain pipes; and in, or<br />

under, buildings and structures. Urbanization has attracted many raccoons<br />

into metropolitan areas due to easily obtainable food, water, and shelter.<br />

Exceptionally inquisitive, their unique dexterity enables them to<br />

manipulate objects and probe crevices extracting contents within reach for<br />

examination.<br />

Raccoons forage at night for a variety of foods including fruit, berries,<br />

nuts, fish, mollusks, snails, earthworms, insects, crayfish, clams, frogs,<br />

turtles, carrion, and small rodents and birds as well as their eggs. They may<br />

incorporate new foods into their diet – such as corn, grain, vegetables, pet<br />

food, melons, birdseed, and garbage – by watching the behavior of other<br />

raccoons. In temperate regions of the United States, they have been known<br />

to uproot lawns in urban areas while ‘grubbing’ for insects and their larvae.<br />

This behavior usually begins in the fall when many young raccoons are<br />

responsible for finding their own food, leading biologists to believe it may<br />

be preparation for winter when doubling their weight is required to survive<br />

into spring.<br />

Bacteria, insects, and soil microbiota are the primary drivers of<br />

decomposition. Insects are attracted to carrion for sustenance for themselves<br />

or their offspring; whether via the corpse itself, or by other species<br />

frequenting the site. Post-feeding, the larvae of beetles and flies burrow<br />

beneath ground litter and into soil adjacent to, and underneath, the corpse,<br />

seeking protection from predators and other elements in preparation for<br />

pupation. While newly transformed beetles and flies emerge from the soil<br />

within several days, dead adult insects may remain in the soil; in some<br />

instances, many years after death. Blow fly larvae are normally found in<br />

the first three to five centimeters of soil, while larvae of some of the gnatlike<br />

flies can be found in buried remains up to depths of four feet. In temperature<br />

regions, the soil insect fauna beneath the skeletal remains at the<br />

ground surface will return to normal in approximately two years.<br />

Recorded video and photographs visually demonstrate raccoon foraging<br />

to be an agent of soft tissue modification and scene alteration secondary<br />

to the quest for entomological nourishment. Indeed, a good deal of<br />

time and effort is spent probing for larvae feeding deep within the internal<br />

body cavities, snatching-up wriggling larvae from the body and ground,<br />

and unearthing larvae pupating within the soil.<br />

Forensic Entomology, Animal Activity, Postmortem Interval<br />

H87 Interdisciplinary Forensic Science<br />

Workshops: A Venue for Data Collection<br />

Jeffery K. Tomberlin, PhD*, Texas A&M University, 1229 North U.S.<br />

Highway 281, Stephenville, TX 76401; A. Midori Albert, PhD*,<br />

University of North Carolina at Wilmington, 601 South College Road,<br />

Wilmington, NC 28403; Jason H. Byrd, PhD, Office of the <strong>Medical</strong><br />

Examiner, 1360 Indian Lake Road, Daytona Beach, FL 32164;and David<br />

W. Hall, PhD, David Hall Consultant, Inc., 3666 Northwest 13th Place,<br />

Gainesville, FL 32605<br />

After attending this presentation, attendees will understand the need to<br />

record observations regarding the decomposition process of animals used<br />

as models for conducting forensic workshops; understand the value of such<br />

observations for the development of research objectives; and understand<br />

the value of such observations from various regions of the United States, or<br />

even the world, for future forensic investigations.<br />

Forensic workshops are primarily conducted to educate law<br />

* Presenting Author<br />

enforcement personnel on the novel use of various disciplines as a means<br />

to solve crime. This presentation will impact the forensic community<br />

and/or humanity by demonstrating that these workshops can also be used<br />

to record observations on insect and botanical demographics and<br />

taphonomy.<br />

Workshops are a common vehicle for educating law enforcement<br />

personnel on the application of entomological, anthropological, and<br />

botanical techniques to gather forensically important information. From<br />

June 8 to June 11, 2004, such an interdisciplinary workshop was conducted<br />

outside of Charlotte, NC. The American Academy of Applied <strong>Forensics</strong>,<br />

under the auspice of the Central Piedmont Community College, hosted this<br />

workshop.<br />

In preparation for this workshop, three pigs weighing individually<br />

between 40 to 60 kg were sacrificed and placed in the field on June 4, while<br />

three pigs of similar size were killed and placed in the field on June 7. The<br />

carcasses were placed at three sites. Two of the sites, separated by approximately<br />

20m, were in a wooded lot, while the remaining site was in a sunlit<br />

area approximately 10m from the nearest wooded site. Two carcasses, one<br />

from each kill date, were placed approximately 1m apart at each site.<br />

During the afternoon session on the last day of the workshop, participants<br />

collected three Chrysomya rufifacies (Macquart) (Diptera:<br />

Calliphoridae) 3rd instar maggots from one pig that was killed on June 7;<br />

these data represent the first record of this forensically important insect<br />

species in North Carolina. Furthermore, these data provide evidence of this<br />

species expansion into new geographic regions of the United States.<br />

The interdisciplinary nature of this workshop allowed participants to<br />

understand the intersection of entomology, anthropology, and botany. The<br />

new entomological information gathered may have implications for body<br />

decomposition patterns and rates, thus leading to new research ideas to<br />

further contribute to forensic science applications.<br />

Anthropology, Entomology, Botany<br />

H88 Society of Forensic Anthropologists<br />

(SOFA): An Introduction<br />

Craig H. Lahren, MA*, North Dakota Department of Health, Office of<br />

the <strong>Medical</strong> Examiner, PO Box 937, Bismarck, ND 58502; and Thomas<br />

E. Bodkin, MA, Hamilton County <strong>Medical</strong> Examiner’s Office, 3202<br />

Amnicola Highway, Chattanooga, TN 37406<br />

After attending this presentation, attendees will be aware of the newly<br />

formed Society of Forensic Anthropologists (SOFA), its members’ contributions<br />

to active medicolegal investigations, and professional concerns the<br />

members believe affect the evolving practice of forensic anthropology in<br />

the 21st century.<br />

This presentation will impact the forensic community and/or<br />

humanity by introducing the Society of Forensic Anthropologists (SOFA)<br />

to the larger forensic community and invite their discussion of the group’s<br />

overall mission and professional concerns affecting the discipline.<br />

In recent years an increasing number of forensically trained anthropologists<br />

have found professional employment in the medical examiner<br />

system. Often these individuals carry a dual role within the office serving<br />

as a medicolegal death investigator and/or autopsy technician in addition to<br />

being the forensic anthropologist. Typically, they are the only forensic<br />

anthropologists practicing within their office, contrary to the academic<br />

setting where you may have several peers. This environment has led to a<br />

feeling of isolation and limited means of professional communication. As<br />

a result, several forensic anthropologists working in the medical examiner<br />

system have formed the Society of Forensic Anthropologists (SOFA). For<br />

the most part, SOFA is a web-based discussion forum enabling its members<br />

to consult on cases, discuss advances in the field, and raise concerns<br />

regarding the evolving practice of forensic anthropology in the 21st<br />

century.<br />

462


SOFA formally came to be in February 2003 and is currently<br />

comprised of 20 members who work professionally throughout the United<br />

States. Education levels of members include Masters, PhD or PhD,<br />

D-ABFA. Most lecture and train other anthropologists through various<br />

institutions. A statistical survey of SOFA members conducted in July 2004<br />

revealed that members manage all forensic anthropology cases in areas<br />

ranging in size from a single county to a complete state. During 2003,<br />

members were assigned 628 anthropology cases and wrote 545 formal<br />

reports. Reports were filed with various legal agencies. Many of the<br />

members have testified and/or been subpoenaed to testify as expert<br />

witnesses in court. In sum, SOFA members make a large professional<br />

contribution to current medicolegal casework and thereby, the growth of<br />

forensic anthropology.<br />

During the past year, group members have brought two professional<br />

concerns to the forefront of discussion. One concern is the lack of policy<br />

for certification of forensic anthropologists practicing within the medical<br />

examiner system; and a second is the lack of a standardized system to peer<br />

review formal reports written by isolated forensic anthropologists. The<br />

purpose of this presentation is two fold: first, to introduce SOFA to the<br />

larger forensic anthropology community; and second, to define and raise<br />

awareness of these concerns.<br />

Forensic Anthropology, Professional Communication, Society of<br />

Forensic Anthropologists (SOFA)<br />

H89 The Forensic Anthropology Society<br />

of Europe: An Introduction<br />

Eric Baccino, MD*, Service de Medicine Legale, Hopital Lapeyronie Chu<br />

de Montpellier, Montpellier, 34295 Cedex 5, France; Christina Cattaneo,<br />

Instituto di Medicine Legale, Via Mangiagalli, Milano, 20133, Itlay; Yves<br />

Schuliar, MD, Institut de Recherche Criminelle de la Gendarmerie<br />

Nationale, 1 Boulevard Theophile Sueur, Roisny-Sous-Bois, 93110,<br />

France; Eugenia Cunha, PhD, Departamento da Anthropologia,<br />

Universitate de Coimbra, Coimbra, 3000-056, Portugal; Randolph<br />

Penning, Institut Fur Rechtsmedizin, Frauenlobstrasse 8a, Munchen,<br />

80337, Germany; and Jose Luis Prieto, Instituto de Medicina Forense,<br />

Severo Ochoa s/n, Madrid, 28040, Spain<br />

After attending this presentation, attendees will understand how<br />

forensic anthropology is organizing itself in Europe.<br />

This presentation will impact the forensic community and/or<br />

humanity by improving transatlantic collaboration in forensic anthropology<br />

and the certification process in Europe in this field. This is the introduction<br />

of a European scientific association dedicated to forensic anthropology and<br />

to the development of international collaboration in this field.<br />

The first board of FASE (Forensic Anthropology Society of Europe)<br />

was elected at the IALM (International Academy of Legal Medicine)<br />

Congress in Milan, September 2003 during a plenary session which was<br />

officially announced at a preliminary FASE meeting held during the<br />

International Academy of Forensic Sciences meeting in Montpellier in<br />

September 2002; it is made of people from five European countries.<br />

The Board is composed of one President, two vice-Presidents, a<br />

Secretary a Treasurer, and one auditor. Offices are of the duration of three<br />

years. All Board members may be reelected for a second term of office.<br />

The newly elected Board takes over official duties on 1 January following<br />

elections.<br />

The FASE was created to bring together anthropologists, forensic<br />

pathologists, odontologists, geneticists, and other experts in the fields of<br />

forensic medicine and forensic science, in the scientific and academic promotion<br />

and development of the discipline of forensic anthropology across<br />

Europe.<br />

The goals of FASE are:<br />

• To encourage the study of, improve the practice of, establish and<br />

enhance standards for, and advance the science of forensic<br />

anthropology and related disciplines; promote knowledge and<br />

research in the field<br />

• To harmonize techniques and diagnostic procedures in forensic<br />

anthropology across Europe<br />

• To encourage and promote adherence to high standards of ethics,<br />

conduct, and professional practice in forensic anthropology<br />

• To promote training and certification in forensic anthropology<br />

and eventually create Boards of certificates and inform the<br />

existence of trained forensic anthropologists in order to<br />

guarantee high quality performance in the medicolegal study<br />

of human remains;<br />

• The formation of working groups in different areas of forensic<br />

anthropology and the accreditation of protocols and laboratories.<br />

Membership: In order to become a member of FASE one must be a<br />

member of the International Academy of Legal Medicine (IALM).<br />

Applications for membership must therefore be made to IALM, according<br />

to the statutes of the Academy, specifying that he/she also wants to become<br />

a FASE member.<br />

Board and General Assemblies: The General Assembly will elect<br />

members of the FASE Board, decide on congresses and meetings, on<br />

rules/statutes, and other matters dealing with the aims of the Society. The<br />

General Assembly will meet once every year, at FASE or IALM meetings.<br />

The Secretary of the Board will forward invitations to the meeting together<br />

with the Agenda of meetings six weeks before the date of the meeting.<br />

Yearly assessment: One year after its creation, FASE has officially 30<br />

registered members (16 MD, anthropologists, dentists, etc.,) coming from<br />

eight different countries (2 non-Europeans). A one week workshop in<br />

forensic anthropology (the 7th) was given in Milan from June 28 to July 2<br />

to 10 students. The first yearly meeting of FASE was held in Frankfurt on<br />

the 22nd an 23rd of October (more than 20 oral presentations); next year it<br />

will be held in Monastir during the 2nd Mediterranean Academy of<br />

Forensic Sciences Biennial meeting (June 22-25, 2005) and in Budapest in<br />

2006 (IALM meeting). Two newsletters were written (one published in the<br />

International Journal of Legal Medicine). More up to date information will<br />

be provided on February 2005.<br />

Forensic Anthropology, Europe, Organization<br />

H90 The Louisiana Identification Data Analysis<br />

Project (IDA): A Comprehensive Analysis<br />

of Missing and Unidentified Cases<br />

H. Beth Bassett, MA*, and Mary H. Manhein, MA, Forensic<br />

Anthropology and Computer Enhancement Services Laboratory,<br />

Department of Geography and Anthropology, Louisiana State University,<br />

Baton Rouge, LA 70803<br />

The goal of this presentation is to present the forensic community with<br />

information about an effort to solve long-term, unresolved cases. The<br />

outcome of the presentation includes the potential for cooperative efforts<br />

among forensic scientists to share resources and methods that may assist<br />

with such cases.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing information about the Louisiana IDA project, a<br />

method for establishing a central location for identification data (including<br />

both missing persons and unidentified remains). The Louisiana IDA<br />

project may be used as a template for forensic scientists in other areas of<br />

the country who are addressing the same identification issues. Finally, the<br />

IDA project has potential for providing the public with resolution of<br />

unidentified and missing persons cases.<br />

Thus far, the focus of research in the field of forensic anthropology<br />

has included the proliferation of principles and methodologies whose applications<br />

result in the successful resolution of cases of unidentified remains<br />

(Krogman and Iscan 1986). Additionally, many authors have presented<br />

case studies which highlight unusual techniques and/or applications that<br />

463 * Presenting Author


have led to identifications (Bennett and Benedix 1999 and Walsh-Haney et<br />

al. 1999). Yet, unresolved missing persons and unidentified remains cases<br />

are rarely discussed in presentations and literature (Grisbaum and<br />

Ubelacker 2001 and Marks 1995). Additionally, many states lack a<br />

centralized location for information on missing people and unidentified<br />

remains. This results in a breakdown of communication among different<br />

agencies that deal with these types of cases and ultimately leaves<br />

unresolved cases open for long periods of time.<br />

The Louisiana Identification Data Analysis Project (IDA) initiated at<br />

the Louisiana State University Forensic Anthropology and Computer<br />

Enhancement Services Laboratory (LSU FACES Lab) involves the<br />

systematic collection and storage of traditional identification profile information<br />

along with DNA profile data on Louisiana’s cases of missing<br />

persons and unidentified remains. Throughout the history of the LSU<br />

FACES Lab there have been 91 cases of unidentified remains (with varying<br />

degrees of completeness) that have been analyzed to an exhaustive degree<br />

yet have never been identified. These unidentified individuals are from<br />

many locations across the state of Louisiana and from other states as well.<br />

Many of them have unique characteristics (such as tattoos, healed skeletal<br />

fractures, and dental restorations/features) that could corroborate or negate<br />

their potential identity when compared with information about missing<br />

people. Also, some Louisiana agencies have retained or buried unidentified<br />

remains that have never been evaluated by an anthropologist and/or<br />

odontologist.<br />

To initiate the IDA project, data on approximately 400 missing<br />

persons and unidentified remains cases from across Louisiana and the<br />

country was collected. This number represents only a fraction of these<br />

types of cases from Louisiana and the nation. Through the IDA project, the<br />

Forensic Anthropology and Computer Enhancement Services Laboratory is<br />

becoming the central location for data on Louisiana’s missing and unidentified<br />

people. It is hypothesized that some identifications could be resolved<br />

by providing a centralized location for the information on these cases.<br />

Currently, the researchers are continuing to compare the data on missing<br />

people from across the state and country with known cases that have been<br />

found but are unresolved. The systematic data collection on Louisiana’s<br />

missing people and unidentified remains has begun using the WINID3<br />

software package, a Windows-based dental and demographic program.<br />

Additionally, bone, hair, and tooth samples are being provided to the North<br />

Louisiana Criminalistics Laboratory for DNA profiling of the unidentified<br />

remains. Concurrent with the analysis of accessible cases, the database is<br />

being built by gathering additional information on other missing persons<br />

from across Louisiana. Finally, the authors aim to collect biological and<br />

DNA profile information of all people missing from Louisiana.<br />

The goal is to resolve as many of these cases of unidentified remains<br />

and missing persons as possible. As the Louisiana database continues to<br />

build, the authors wish to invite other anthropologists to consider this<br />

model and join in this substantial effort.<br />

References:<br />

1. Bennett JL and Benedix DC. Positive Identification of Cremains<br />

Recovered from an Automobile Based on Presence of an Internal Fixation<br />

Device. J Forensic Sci 1999; 44; 1296-1298.<br />

2. Grisbaum GA and Ubelacker DH. An analysis of forensic anthropology<br />

cases submitted to the Smithsonian Institution by the Federal Bureau of<br />

Investigation from 1962 to 1994. Smithsonian Contributions to<br />

Anthropology No. 45. Smithsonian Institution Press, Washington DC,<br />

2001.<br />

3. Krogman WM and Iscan MY. The Human Skeleton in Forensic<br />

Medicine. Springfield: CC Thomas, 1986.<br />

4. Marks MK. William M. Bass and the Development of Forensic<br />

Anthropology in Tennessee. J Forensic Sci 1995; 40; 741-750.<br />

5. Walsh-Haney H. Katzmarzyk C. and Falsetti AB. Identification of<br />

Human Skeletal Remains: Was He a She or She a He? In Fairgrieve, SI,<br />

editor. Forensic Osteological Analysis. Springfield: CC Thomas, 1999,<br />

17-35.<br />

Forensic Anthropology, Unidentified Remains, Missing Persons<br />

* Presenting Author<br />

H91 FAD - A Database Application for<br />

Forensic Anthropology in Human Rights<br />

Ute Hofmeister, MA*, Porzellangasse 48/12a, Alipasina 45a, Vienna,<br />

1090, Austria; Anahi Ginarte, Lic., EAAF, Rivadavia 2443, dpto 3 y 4,<br />

Buenos Aires, C1034ACD, Argentina<br />

The goal of this presentation is to introduce the forensic community to<br />

a new database application as a tool for forensic anthropology and to show<br />

the advantage of using such an application in the practice of forensic<br />

exhumations, examinations, and identifications.<br />

This presentation will impact the forensic community and/or<br />

humanity by presenting a new tool to facilitate and standardize Forensic<br />

anthropological work in a human rights context.<br />

In order to support forensic anthropologists working in a human rights<br />

related field, the authors, in cooperation with the Argentine Forensic<br />

Anthropology Team (Equipo Argentino de Antropologia Forense – EAAF)<br />

created a special database application for exhumation and identification of<br />

human remains. The Forensic Anthropological Database (FAD) facilitates<br />

the process of identification of skeletal remains and has been instrumental<br />

in assisting the EAAF in organizing and processing their world-wide case<br />

load. It features modules on exhumation, anthropological analysis, sorting,<br />

and re-association of commingled remains, and antemortem information on<br />

missing persons that can be matched with the postmortem data obtained<br />

from anthropological analysis. In addition, the database supports general<br />

conclusions and statistical analysis from examined cases, such as biological<br />

and traumatic profile of skeletal populations. In this electronic format, the<br />

data also remains available for further scientific research. As such, the FAD<br />

is the first system of its kind and, being easy to use and based on easily<br />

accessible software, constitutes an important contribution to the forensic<br />

anthropological investigation of human rights violations and the identification<br />

of the victims.<br />

Forensic Anthropology, Forensic Archaeology, Database<br />

H92 New Tools for the Processing of Human<br />

Remains From Mass Graves: Spatial<br />

Analysis and Skeletal Inventory<br />

Computer Programs Developed for<br />

an Inter-Disciplinary Approach to the<br />

Re-association of Commingled,<br />

Disarticulated and Incomplete<br />

Human Remains<br />

Hugh H. Tuller, MA*, Joint POW/MIA Accounting Command, Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI<br />

96853-5530; Cecily Cropper, BSc*, Ute Hofmeister, MA*, Laura<br />

Yazedjian, MSc, Jon Sterenberg, MSc, and Jon M. Davoren, MA*,<br />

International Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

71000, Bosnia and Herzegovina<br />

The goal of this presentation is the introduction of two computer programs<br />

that can potentially assist mortuary personnel in the re-association of<br />

numerous disarticulated body parts through inter and intra-site analysis for<br />

purposes of facilitating identification and increasing efficiency of a large<br />

scale DNA identification process.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the use of computer database programs by all<br />

professions involved in the identification of human remains from mass<br />

graves.<br />

The means of deposition of human remains within mass graves often<br />

464


leads to a large amount of disarticulation, commingling and incomplete<br />

bodies. While ‘routine’ cases are usually processed in stages by separate<br />

forensic disciplines, often in separate locations, the simultaneous<br />

processing of hundreds to thousands of human remains from mass graves<br />

can be overwhelming if a similar system is employed. The complexities of<br />

recovery, recording, and processing large amounts of disarticulated remains<br />

require innovative solutions that integrate several disciplines. This panel<br />

wishes to present to the forensic community a process by which data<br />

recorded during the recovery and examination of remains from mass graves<br />

may be used to assist in the re-association of disarticulated human remains.<br />

The first database application involves spatial analysis of<br />

commingled, disarticulated and incomplete bodies. Contemporary<br />

methods of mass grave recovery operations often include the electronic<br />

three-dimensional recording of bodies, body parts, artifacts, and related<br />

feature location and position. From these locational points, maps can be<br />

created to represent the crime scene or to reconstruct the sequence of<br />

events, including separate depositions of remains from a number of primary<br />

graves. However, the use of the data points does not have to end with map<br />

making. These locational points may also be extremely useful in guiding<br />

re-association efforts of disarticulated remains on the large scale needed at<br />

mass graves. The electronic survey data can be queried to generate a list of<br />

a particular body part, in order of distance, which may belong to a specific<br />

body missing that element. The premise is that the closest disarticulated<br />

body part to a body missing that particular part has a higher probability of<br />

being the correct match than all other same body parts at the site that are<br />

further away. The resulting list has the potential to save hours of work by<br />

providing mortuary personnel with an inventory of the nearest targeted<br />

body part to aid in re-association with a body. Instead of having to<br />

randomly search through all potential body part matches the mortuary<br />

worker can use the generated list as a starting point in their search for the<br />

most likely match.<br />

The second application involves a comprehensive visual skeletal<br />

inventory that again can be queried for purposes of re-association. During<br />

initial examination of remains mortuary personnel can record all present<br />

body elements for each case they work on in the skeletal database. After<br />

all cases have been recorded the mortuary worker can then query the<br />

database for all the potential matches to a particular body part or body<br />

missing that element. Combined, the spatial analysis and the visual skeletal<br />

database may prove to be important tools in strengthening the efficiency of<br />

re-association and identification of complex and large scale sets of human<br />

remains.<br />

With the success of mass scale DNA testing, DNA analysis of all<br />

elements recovered is possible. The unfortunate down side of DNA<br />

analysis is the cost of the process. While recovery and identification<br />

missions of mass disasters in the United States and other developed nations<br />

are usually well enough funded to cover the cost of such testing, this is not<br />

true of most less developed or post-conflict countries. The desired effect of<br />

such databases is a decrease in unnecessary DNA sampling and analysis,<br />

and an increase in overall processual efficiency.<br />

The presenting panel made up of Recovery, Mortuary, DNA, and<br />

Database personnel will provide examples of the use of spatial analysis and<br />

skeletal inventory database programs with remains recovered from mass<br />

graves. Each panelist will describe his or her role in the processing of the<br />

remains and how the programs integrate into their work.<br />

Database, Commingled Remains, Re-association<br />

465<br />

* Presenting Author


jDALLA<br />

Physical Anthropology<br />

j2004<br />

H1 Skeletons in the <strong>Medical</strong> Examiner’s<br />

Closet: Realities and Merits of<br />

Investigating Human Skeletal Remains<br />

Undergoing Long Term Curation in<br />

the <strong>Medical</strong> Examiner’s Office<br />

Donna C. Boyd, PhD*, Radford University, Box 6948, Department<br />

of Sociology and Anthropology, Radford, VA 24142; William Massello<br />

III, MD, Office of the Chief <strong>Medical</strong> Examiner, 6600 Northside High<br />

School Road, Roanoke, VA 24019<br />

The goal of this presentation is to illustrate the scientific and educational<br />

value of studying the “cold” case in forensic anthropology.<br />

This presentation will impact the forensic community and/or<br />

humanity by encouraging qualified forensic anthropologists to inventory<br />

and study (in some cases, restudy) “cold” cases undergoing long-term<br />

curation in <strong>Medical</strong> Examiner’s offices or other such facilities.<br />

Miscellaneous collections of forensically significant unidentified<br />

human skeletal remains are commonly curated over a substantial period<br />

of time in <strong>Medical</strong> Examiner’s offices and other such facilities across the<br />

nation. Many of these are considered “cold” cases due to the absence of<br />

significant leads in these cases in several years. Others may be donated<br />

or unclaimed remains or those transferred from other facilities (e.g.,<br />

Sheriff’s offices, Police department closets). It is paradoxical that while<br />

the general public may perceive these cases as intriguing (with considerable<br />

potential for being “solved”), many professionals may see them<br />

as scientifically uninformative due to the inherent problems plaguing<br />

them. These problems often include an absence of contextual information<br />

concerning the derivation of the remains. It may not be known<br />

when, where, or even under what circumstances the remains were found,<br />

for example. In addition, key evidence may have deteriorated or been<br />

compromised in the intervening years—witnesses, relatives, and perpetrators<br />

may no longer be available, and linking evidence between each<br />

of these lost. Finally, the longer the period of curation, the greater the<br />

effect of physical deterioration on the remains themselves; there is also<br />

a greater chance of compromising their remaining contextual integrity.<br />

Given these limitations, it is not surprising that these cases may be<br />

treated as lower priority. While it is true that the odds of resolving many<br />

of these older cases are significantly lower than more recent ones, the<br />

value of these “cold” cases is more subtle and far-reaching.<br />

The objective of this presentation is the documentation of both<br />

national and regional difficulties and benefits of inventorying and<br />

studying these types of cases. The prevalence of these “cold” cases as<br />

well as their status is assessed nationally through a cross-sectional<br />

survey of medical examiners and forensic anthropologists across the<br />

country. On a regional level, the Virginia State Office of the Chief<br />

<strong>Medical</strong> Examiner, Western District, in Roanoke, Virginia, serves as a<br />

model for the kinds of cases which may be present in other such facilities.<br />

A survey of the collections housed within this office reveals a wide<br />

range of case types, histories, and degrees of contextual integrity.<br />

Systematic study of these cases over the past four years has resulted in<br />

the compilation of data with significant scientific and educational merit<br />

in at least three ways. First, forensic case reports (detailing basic vital<br />

statistical information for each case) have been completed and placed on<br />

file at the Roanoke <strong>Medical</strong> Examiner’s office for future reference in the<br />

event that these cases become active again. This can, in fact, stimulate<br />

renewed interest and investigation of these cases. Second, these cases<br />

have scientific research value in that they expand the known range of<br />

human skeletal variation—they represent males and females of diverse<br />

* Presenting Author<br />

ages, races, and pathological states and as such may aid the development<br />

and testing of new methods of forensic skeletal analysis and the validation<br />

of existing ones. Intensive study of the antemortem and perimortem<br />

pathologies which are manifested on these cases (including<br />

trauma and anomalies) give insight into the identification and differentiation<br />

of these conditions as well as the processes responsible for them.<br />

Likewise, observation of postdepositional effects on these remains<br />

enhances our understanding of the taphonomic pathways which they and<br />

other skeletonized remains endure. Finally, a third benefit derived from<br />

these cases is in the realm of education. These bones have been used as<br />

“practice” forensic cases for students enrolled in osteology and forensic<br />

anthropology courses at Radford University and can be an invaluable<br />

hands-on teaching tool for the young forensic scientist seeking to gain<br />

on-the-job experience. In sum, the oft-abandoned “cold” curated<br />

forensic case has much to offer in terms of its educational and scientific<br />

value and warrants further investigation.<br />

Forensic Anthropology, Cold Cases, Education<br />

H2 Nonmetric Characteristics of the Skull for<br />

Determining Race in Blacks and Whites<br />

Nicole D. Truesdell, BA*, 1933 South Brightside View Drive,<br />

Apartment E, Baton Rouge, LA 70820<br />

This presentation has two objectives: to demonstrate the reliability<br />

of nonmetric morphological observations of the human skull for race<br />

attribution; and to illustrate secular trends found in frequency differences<br />

between the temporally divergent samples.<br />

The results of this study are useful for forensic anthropology by<br />

showing the relative reliability of seven nonmetric traits used for attribution<br />

of race in the skull. A forensic anthropologist often uses nonmetric<br />

morphological characteristics for race assessment in the field.<br />

This study confirms that this method is still applicable. The results of<br />

this study should also be of interest to bioanthropologists by the<br />

resulting quantification of morphological change in the facial and cranial<br />

form due to secular trends.<br />

Physical anthropologists have used morphological traits in the<br />

cranium, dentition, and mandible as a means of assessing race from the<br />

skull. Variance in reliability of these nonmetric traits are thought to be<br />

due to social and genetic group change, making racial identification<br />

much more difficult in modern cases. But does admixture inhibit nonmetric<br />

morphological characteristics as a means for identifying race in<br />

the skeleton? An evaluation of a group of these traits and influences from<br />

secular change in these traits needs to be determined.<br />

Three different temporal samples were evaluated from collections<br />

at the Smithsonian Institution, totaling 324 crania. Morphological criteria<br />

were assessed from Hooton’s 1949 “Harvard List” and Gill’s 1986<br />

Craniofacial Criteria in Forensic Race Identification, and seven traits<br />

were selected. Six assess facial features and one describes braincase<br />

form. The facial region was emphasized because previous research has<br />

shown this region to be the most accurate for race attribution.<br />

The Terry Collection was initially used (100 Blacks and 107<br />

Whites) to test the nonmetric criteria for accuracy and repeatability.<br />

Reliability testing of the traits was conducted using two sets of 25 crania<br />

blindly selected from the Terry Collection evaluated by the author and a<br />

second test independently evaluated by an intern. Each test obtained<br />

84% accuracy in correctly attributing race from the cranium. These<br />

results indicate the reliability of these traits to attribute biological race<br />

without significant inter-observer error.<br />

466


Four American Colonial sites were then evaluated: The Armor and<br />

Drummond Harris Sites, Governor’s Landing, Virginia (nine Whites); Cliffs<br />

Plantation, Westmoreland County, Virginia (nine Blacks, five Whites);<br />

Catoctin Furnace, Thurmont, Maryland (nine Blacks) and a Colonial<br />

Cemetery from Deep River, Maryland (one Black, three Whites). An<br />

assortment of West African and Caribbean crania from the collections were<br />

also selected in order to obtain an originating “African” population from<br />

which to compare and assess admixture to later American Black groups.<br />

Results from the research found that the Terry Blacks exhibited<br />

typical Negroid characteristics in orbital shape (oblong), nasal bridge<br />

(wide 50% of the sample), cranial form (long, 65% of the sample), nasal<br />

spine (small, 46% of the sample), and nasal sill (dull to no sill for 84% of<br />

the population). Alveolar prognathism was not a strong characteristic in<br />

the Black population with only 32.5% having pronounced and 38.6%<br />

having slight prognathism. Total nasal form was also not as expected, with<br />

only 44% having a broad nasal form.<br />

Whites in the Terry Collection, exhibited strong typical Caucasoid<br />

characteristics for each of the traits. There was no alveolar prognathism,<br />

the orbits were rhomboid with a narrow nasal bridge large nasal spine and<br />

sharp nasal sill, the total nasal from being narrow and cranial form is high.<br />

Terry Whites also tended to exhibit a much more prominent chin than<br />

Blacks as well as greater brow ridging in the medial orbital region than<br />

Blacks. This most likely due to the pinched nasal bridge morphology.<br />

Race attribution accuracy in the Terry Collection overall identified<br />

Blacks at 90% while Whites were correctly classified at 94.4%. When<br />

divided sex, Black females yielded 90% correct, White females yielded<br />

88% accuracy and White males had 100% accuracy while Black males<br />

were lower at 90% correct.<br />

The American Colonial Blacks displayed higher frequencies for<br />

alveolar prognathism, wide nasal bridge, long cranial form, insipient nasal<br />

spine, lack of nasal sill, and total nasal form. As such, this group presents<br />

more strongly “typical” Negroid features than the Terry Blacks. Orbital<br />

shape was exactly 50/50, indicating that this trait is not as useful as a racial<br />

criterion for this group. The White Colonial population was decidedly<br />

more difficult to identify. Colonial Whites tend to have elongated crania,<br />

which make their faces appear more rectangular. This gives the suggestion<br />

of African origins. Subsequently, accuracy for the Colonial Whites was<br />

only 50% while for the Colonial Blacks it was 100%.<br />

The African and Caribbean skeletal material overall gave the<br />

strongest typical Negroid results, as was expected. Alveolar prognathism<br />

was clearly present, along with a wide nasal bridge, long cranial form,<br />

small to absent nasal spine, absent to dull nasal sill, and a broad nasal<br />

form. As was found before, orbital shape was not a distinctive feature.<br />

Frequency comparisons of the three sample clearly show differences<br />

in facial form between these groups, illustrating the secular trends present<br />

due to significant admixture in the American Black sample, especially<br />

after the American Civil War. The Terry Blacks displays morphological<br />

form that is much more intermediate to the frequencies in the Colonial<br />

Blacks and certainly divergent from the frequencies of the African Blacks.<br />

Conversely, the American Terry Whites are not as distinctly different from<br />

their temporally earlier counterparts, other than in facial height, as discussed<br />

above.<br />

Nonmetric Traits, Race Attribution, Cranial Morphology<br />

H3 3-Dimensional Morphometric Analysis<br />

of the Zygomatic as Used in Ancestral<br />

Identification<br />

Summer J. Decker, BA*, Jennifer L. Thompson, PhD, and Bernardo T.<br />

Arriaza, PhD, Department of Anthropology & Ethnic Studies,<br />

University of Nevada at Las Vegas, 4505 Maryland Parkway, Box<br />

455003, Las Vegas, NV 89154-5003<br />

This poster will demonstrate a technique which in capturing the<br />

form of a craniofacial trait, lends increased accuracy to ancestry<br />

assessment.<br />

This presentation will impact the forensic community and/or<br />

humanity by serving to increase scientific knowledge of new technologies<br />

and methods available to the forensic community that augment<br />

traditional methods and may ultimately increase precision in human<br />

identification. Ancestral identification, although often shrouded in controversy,<br />

continues to be an integral component of the biological profile.<br />

By adopting new technologies and methods, forensic scientists enhance<br />

their likelihood of successfully identifying unknown individuals.<br />

The purpose of this poster is to investigate the potential of 3-D geometric<br />

morphometric landmark data to determine ancestry using the<br />

zygomatic region of the skull.<br />

The determination of ancestry is often a critical component in the<br />

forensic identification of human skeletal remains. Ancestral classification<br />

is usually measured by examining a suite of metric and nonmetric<br />

traits whose grouping tendencies have been extensively<br />

researched. For example, traditional metric morphological measurements<br />

have shown that ancestry can be determined from the skull 85-90<br />

percent of the time (Krogman & Iscan 1986:296; Sauer 1992).<br />

However, an overwhelming number of these traits are non-metric in<br />

nature and cannot be measured with traditional osteological tools (Rhine<br />

1990). The ability to predict the ancestral group or groups with which<br />

an individual is associated is based solely on the observer’s experience.<br />

While many non-metric traits are recorded as present or absent (e.g.,<br />

inion hook, metopic suture, wormian bones, etc.), others leave a<br />

tremendous amount of room for interpretation and, consequently,<br />

observer error. While traditional methods of ancestral analysis have<br />

proven their usefulness in forensic identification, new technologies are<br />

providing the opportunity to reevaluate current methods and create new<br />

techniques for analysis, like geometric morphometrics, which should<br />

help forensic and physical anthropologists to increase the accuracy of<br />

their results.<br />

Over the past 20 years, the frequency of geometric morphometric<br />

studies has increased in physical anthropology. The applicability of such<br />

studies is now being explored by individuals in the field of forensics<br />

(e.g., Ousley 2003). Geometric morphometrics, the study of biological<br />

size and shape variation, is based on the analysis of 3-D coordinate data<br />

of anatomical landmarks (Bookstein 1991). These studies have increased<br />

precision and control error in the interpretation of biological data over<br />

those using traditional metric measurements. The coordinate data of geometric<br />

morphometric analyses, in particular, use the relationships<br />

between the landmarks to give a more comprehensive depiction of an<br />

object. Landmarks must be clearly defined and be able to be reproduced<br />

with certain accuracy by different observers. While many of these<br />

correspond with accepted anatomical landmarks like ectoconchion,<br />

zygion, and jugale, they often do not give the most complete picture of<br />

the object being studied. However, additional craniometric landmarks<br />

can be designed to complete this gap and better represent the form of the<br />

trait being studied.<br />

This study examines the geometric morphological form of the<br />

zygomatic since it is a bone of particular interest to those attempting to<br />

identify ancestry of an individual. According to Rhine (1990), the angle<br />

of the zygomatic, in relation to the entire craniofacial region, can vary<br />

between Caucasoid (retreating), Mongoloid (projecting), and Negroid<br />

(vertical) skulls. The distinction between these populations is often made<br />

by placing a pencil across the nasal aperture and by attempting to insert<br />

a finger between the zygomatic and pencil in order to determine the<br />

angle (Bass 1995). While “eye balling” methods are beneficial in the<br />

field or for a quick assessment, there are times when more accurate<br />

methods are needed, especially in today’s often hostile judicial climate.<br />

The purpose of this pilot study was to transform a non-metric<br />

ancestral trait into a metric one by quantifying or ‘metricizing’ it. A<br />

Microscribe G2X 3-D digitizer was used to collect data from a variety of<br />

landmarks to help capture the size and shape of the zygomatic. The<br />

software package Morphologika (O’Higgins) helped with the visualization<br />

of form and the statistical analyses used to assess the variation of<br />

form within and between populations to isolate discriminating factors.<br />

467 * Presenting Author


The sample was comprised of individuals of known origin, both male<br />

and female, representing each traditional ancestral group, Caucasoid,<br />

Mongoloid, and Negroid. The preliminary results confirm the distinctiveness<br />

of the zygomatic region yet also reveal interesting patterns of<br />

variation within each of these traditional ancestral groups.<br />

This study serves to increase scientific knowledge of new technologies<br />

and methods available to forensic anthropology that augment<br />

traditional osteological methods and may ultimately increase precision<br />

in human identification. Ancestral identification, although often<br />

shrouded in controversy, continues to be an integral component of the<br />

biological profile. By adopting new technologies and methods, forensic<br />

anthropologists enhance their likelihood of successfully identifying<br />

unknown individuals.<br />

Bass, WM. Human Osteology: A Laboratory and Field Manual. 4th ed.<br />

Columbia: Missouri Archaeological Society, Inc. Special Publication<br />

No. 2, 1995.<br />

Bookstein, FL. Morphometric Tools for Landmark Data: Geometry and<br />

<strong>Bio</strong>logy. Cambridge: Cambridge University Press, 1991.<br />

Krogman, WM, Isçan MY. The Human Skeleton in Forensic Medicine.<br />

2nd ed. Springfield, IL: Charles C. Thomas, 1986.<br />

O’Higgins P, Jones N. Morphologika (software). University College of<br />

London © 1999.<br />

Ousley, SD. Forensic Anthropology, Repatriation and the “Mongoloid”<br />

Problem. In: Proceedings of the American Academy of Forensic<br />

Sciences Annual Meeting; 2003 Feb 17-22; Chicago (IL); 245-246.<br />

Rhine S. Non-metric Skull Racing. In: Gill GW, Rhine, S, editors.<br />

Skeletal Attribution of Race. Albuquerque, NM: Maxwell Museum of<br />

Anthropology, Anthropological Papers No. 4, 1990:9-20.<br />

Sauer N. Forensic Anthropology and the Concept of Race: If Races<br />

Don’t Exist, Why are Forensic Anthropologists so Good at Identifying<br />

Them? Social Science & Medicine. 1992;34(2):107-111.<br />

Ancestry, 3D Geometric Morphometrics, Human Identification<br />

H4 Sex Determination of Infants<br />

and Juveniles From the Clavicle<br />

Natalie R. Langley, MA* and Richard Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, Knoxville, 250 South Stadium<br />

Hall, Knoxville, TN 37996<br />

The goal of this presentation is to present the forensic community<br />

with rates of accuracy obtained by using the clavicle to sex sub-adults<br />

from a modern sample.<br />

This presentation will impact the forensic community and/or<br />

humanity by directing attention to an underutilized skeletal element that<br />

may have potential in sexing subadults.<br />

This poster will give the results of a test of the clavicle’s accuracy<br />

in determining sex in subadults. This study was conducted because of<br />

the difficulty of accurately sexing subadult skeletons. Much of the<br />

research done up to this point focuses on the pelvis and the teeth.<br />

Unfortunately, the number of studies done on subadult sexing is<br />

somewhat sparse, largely due to a lack of sizable skeletal samples of<br />

known sex and age.<br />

The present study uses a modern autopsy sample of infant and<br />

juvenile clavicles housed at the University of Tennessee in Knoxville.<br />

The McCormick clavicles were collected between 1986 and 1997 by Dr.<br />

William F. McCormick from individuals of known sex, age and ancestry.<br />

The sample available for this study consists of mainly Caucasian<br />

children, and, consequently, the results presented here should not be generalized<br />

to all ethnic backgrounds. Furthermore, there were no children<br />

between the ages of four and six from which data could be obtained.<br />

Future research and the inclusion of additional samples will eliminate<br />

this gap.<br />

* Presenting Author<br />

The sample consists of 86 individuals: 36 females and 50 males.<br />

The left clavicle was absent in seven individuals, but all others had both<br />

clavicles. For purposes of statistical analysis, the sample was divided<br />

into infants (0-3 years) and juveniles (7-17 years). Statistical analysis<br />

was done with SAS version 8.2. Three measurements were taken from<br />

each clavicle: (1) maximum length, (2) sagittal diameter at midshaft, and<br />

(3) vertical diameter at midshaft. Separate accuracy rates were obtained<br />

for each measurement.<br />

Maximum length of the clavicle yielded accuracy rates of about<br />

62% for both age groups and sexes: infant females=62%; infant<br />

males=59%; juvenile females=62%; juvenile males=63%. Vertical<br />

diameter at midshaft gave slightly better rates overall: infant<br />

females=60%; infant males=63%; juvenile females=69%; juvenile<br />

males=73%. The results for sagittal diameter at midshaft differed vastly<br />

between age groups: infant females=51%; infant males=53%; juvenile<br />

females=85%; juvenile males=77%.<br />

The best rate obtained for the infant group was 63%, which suggests<br />

that, although the clavicle is sexually dimorphic at birth (or even<br />

before then), it is not a reliable indicator of sex in infants for forensic or<br />

archaeological purposes. Likewise, maximum length is not a reliable<br />

indicator of sex in juveniles. However, the measures of diameter proved<br />

fairly reliable for sex determination in juveniles (69-85%).<br />

These results suggest that measures of robusticity may be more sexually<br />

dimorphic in juveniles than measures of length. Indeed, in an 1998<br />

American Journal of Physical Anthropology article titled Growth<br />

Patterns in the Modern Human Skeleton (105(1):57-72), Humphrey<br />

states that sexual dimorphism in long bone length is attained at adolescence,<br />

whereas sexual dimorphism in long bone diameters develops<br />

between birth and five years. Specifically, Humphrey maintains that<br />

sexual differences in all dimensions of the clavicle are already present at<br />

birth. The present research suggests that sexual dimorphism in long bone<br />

diameter is greater in the juvenile group than in infants. These results<br />

warrant further investigation into this area, and the authors are working<br />

to increase the sample size and eliminate the information gap for 4-6year-old<br />

children.<br />

Sexing, Sub-Adults, Clavicle<br />

H5 Sexual Dimorphism in the Distal Humerus<br />

Suzanne S. Ii, BA*, 4198 East Manning Avenue, Fowler, CA 93625-<br />

9631; David R. Hunt, PhD, National Museum of Natural History,<br />

Department of Anthropology, Washington, DC 21201<br />

This presentation provides the results of a metric analysis of six<br />

measurements on the distal humerus to determine their accuracy in discriminating<br />

the sex of the individual. The results indicate the most<br />

accurate measurements to be the articular width and biepicondylar<br />

width.<br />

This presentation will impact the forensic community and/or<br />

humanity by showing that the distal left humerus can provide an alternative<br />

to sex identification in a forensic setting when other elements are<br />

missing. Occupational stress or habitual stress on the elbow may be the<br />

influential variable affecting the accuracy of some of the measurements<br />

for sex identification. This can be seen in the disparity of the articular<br />

width versus the biepicondylar width measurement results. Further<br />

refinement in measuring techniques of the distal humerus may provide<br />

better quantification of the sexual dimorphism in this bone.<br />

Fragmentary remains in a forensic setting often do not include the<br />

most obvious elements used to measure or make morphological<br />

assessment of the sex for the individual. With the exclusion of elements<br />

such as the cranium, pelvis, or femora, sex identification becomes<br />

increasingly difficult to undertake. This becomes even more difficult<br />

when only isolated bones or partial remains are found. To assist in the<br />

determination of sex from fragmentary remains, this study focuses on<br />

468


measurements of the distal humerus to evaluate the differences present<br />

in this morphology by statistical means. The object of this study is to<br />

identify metric differentiation between males and females in a modern<br />

population for use in determining sex from the distal humerus.<br />

This study evaluated 268 adult left humerii from 141 males and 127<br />

females from the Robert J. Terry Anatomical Collection. Humerii<br />

exhibiting abnormalities, severe arthritic wear, and fragmentation were<br />

excluded from this study. Elements were randomly chosen to avoid any<br />

selection biasing. However, equal numbers of Blacks and Whites and<br />

males and females were obtained from the collection to provide balanced<br />

sample sets for statistical comparison. Morgue records of the<br />

individuals in the Terry Collection were utilized to obtain reported cause<br />

of death, age, sex, and race.<br />

Discriminant analysis was applied to assess the metric variables’<br />

ability to accurately assign sex using SYSTAT 10.2 software. Variables<br />

were analyzed independently and their accuracy determined. The two<br />

variables with highest ability to attribute sex were then combined to test<br />

for their ability as a combined set. All six measurements were also analyzed<br />

as one combined set with the races pooled, the only discretionary<br />

variable being between males and females, since race cannot be identified<br />

in fragmentary remains.<br />

From the results of the statistical analysis, the combined six<br />

variable set provided a total correct sex attribution rate of 94%, with a<br />

97% accuracy rating in the females (120 females correctly classified, 4<br />

females misclassified) and the male sample producing a 91% accuracy<br />

rate (128 males accurately classified, 13 males misclassified). The two<br />

most valuable independent variables for sex attribution were articular<br />

width, with a total accuracy of 93% (97% correct for females and 89%<br />

for males) and biepicondylar width, correctly identifying sex at 85%<br />

correct (86% for females and 85% for males). These two measurements<br />

combined had a total accuracy rating of 93%, correctly classifying 120<br />

females and misclassifying 4 females (97%) and 127 males were classified<br />

correctly with 14 males misclassified (90%).<br />

Either articular width or biepicondylar width can be used independently<br />

as a defining measurement to accurately attribute sex to an individual.<br />

The combination of the two measurements provides a high<br />

degree of accuracy in determining sex. Articular width is the most<br />

reliable single measurement to correctly sex individuals. These few measurements<br />

can prove valuable when uncovering partial remains and can<br />

consequently give possible evidence to determine the identity of the<br />

individual.<br />

The results of this investigation have shown that the distal left<br />

humerus can provide an alternative to sex identification in a forensic<br />

setting where other elements, such as the pelvis and cranium, are<br />

missing. Occupational stress or habitual stress on the elbow may be the<br />

influential variable affecting the accuracy of some of the measurements<br />

for sex identification. This can be seen in the disparity of the articular<br />

width versus the biepicondylar width measurement results. Further<br />

refinement in measuring techniques of the distal humerus may provide<br />

better quantification of the sexual dimorphism in this bone. Additional<br />

studies should also be conducted to substantiate this study’s results.<br />

Humerus, Forensic Anthropology, Sexual Dimorphism<br />

H6 Sex vs. Gender: Does it Really Matter?<br />

Frank P. Saul, PhD* and Julie M. Saul, BA, Consultants, Lucas<br />

County Coroner’s Office and Wayne County <strong>Medical</strong> Examiner’s<br />

Office, 3518 East Lincolnshire Boulevard, Toledo, OH 43-1203<br />

After viewing this presentation, participants should have a better<br />

understanding of the terms “sex” and “gender” and the practical and<br />

research implications of their usage.<br />

In these days of increasing awareness, if not increasing frequency,<br />

of unintentional as well as intentional cross dressing and similar practices,<br />

it is increasingly important to maintain the distinction between the<br />

terms “sex” (biologic identity) and “gender” (social identity). The<br />

authors believe that it is potentially confusing to refer to “gender identification<br />

of dried blood stains” as has occurred in the Journal of Forensic<br />

Sciences. The individual whose biological remains are one sex may<br />

have been “passing” as the other.<br />

Walker and Cook (1999), speaking primarily to anthropologists,<br />

eloquently expressed their concern about the increasing use of the terms<br />

sex and gender as synonyms. They reviewed the usage and etymology of<br />

the two terms, but basically, sex refers to an individual’s biologic<br />

identity and gender refers to an individuals social identity (which may,<br />

or may not, coincide with that individuals sex or biologic identity). Sex<br />

is determined by the presence or absence of the Y chromosome but<br />

gender may be assumed or chosen by the individual.<br />

One of the most interesting examples of gender assumption may be<br />

found in the Sioux Indians of the past in the American Great Plains. The<br />

Sioux epitomized the stereotypical Indian warrior on horseback who<br />

sought out hand-to-hand combat with the enemy. Less well known is the<br />

fact that Sioux culture made provision for males who did not wish to<br />

become warriors to declare instead that they were berdaches and assume<br />

female gender clothing and roles such as food preparation and camp<br />

chores. Apparently they did this without stigmatization and homosexual<br />

orientation was not necessarily involved.<br />

History also records individual females who donned male clothing<br />

so that they could assume a male gender role and serve as soldiers during<br />

the American Civil and other past wars.<br />

In an otherwise excellent text, Steele and Bramblett (1988) matter<br />

of factly (and with no explanation) refer to “The Estimation of Gender”<br />

and continue to do so in contexts where the term sex had previously been<br />

used in similar publications.<br />

However, the seemingly academic distinction between sex and<br />

gender has profound significance for both archaeological and forensic<br />

applications of osteological analysis.<br />

The authors were unaware of the extent of the problem until several<br />

years ago when they were asked to assist a graduate student about to<br />

undertake archaeologic field research on gender as revealed by cultural<br />

associations and context in ancient Maya burials (Geller 1998). It was<br />

at that time that they learned how influential (and obfuscating) Steele<br />

and Bramblett’s text had been in helping to train a generation or so of<br />

anthropologists.<br />

In addition, a number of presumably well-meaning non-anthropologists<br />

apparently have come to believe that gender is a more politically<br />

correct way of referring to sex and this inappropriate term now shows up<br />

on official forms and in similar contexts. (For a discussion of some of<br />

the ramifications of this usage, see Jennifer Mather Saul (2003)).<br />

The authors’ research on the ancient Maya involves assigning male<br />

or female sex to skeletons using standards based preferably on the proportions<br />

and contours of the human pelvis, which has been designed by<br />

natural selection for successful birthing in females. As indicated above,<br />

some of their archaeologist colleagues are attempting to learn about the<br />

gender/sociocultural roles played by these individuals in life, using the<br />

artifacts/grave goods encountered within the burial. Some of the artifacts<br />

used to denote female gender/roles include the problematic spindle<br />

whorls that appear to be associated with weaving. Unfortunately, when<br />

skeletal remains are fragmentary and pelvic sex indicators have not been<br />

available (and in some instances even when appropriate pelvic remains<br />

were available) assumptions of biologic sex of burials have been made<br />

using such artifacts, or, even more misleading - the dictum that only<br />

males are buried in tombs. The authors have previously demonstrated<br />

the fallacy of the latter at Altar de Sacrificios (1972) and Rio Azul (2000)<br />

using pelvic remains that indicated the occupants were females. In fact,<br />

both females within the Altar tomb also possessed the pre-auricular sulci<br />

that denote the changes that occur in late pregnancy due to the release of<br />

the hormone relaxin.<br />

Fortunately, mistakes have been avoided in their forensic practices<br />

at the Wayne County <strong>Medical</strong> Examiners Office (WCMEO) in Detroit,<br />

469 * Presenting Author


Michigan, and the Lucas County Coroners Office (LCCO) in Toledo,<br />

Ohio, by proceeding cautiously. It is always tempting to use clothing to<br />

jump to conclusions when confronted with otherwise immediately<br />

unidentifiable remains, but obviously clothing (and jewelry) are transferable<br />

and should not be used for sexing or positive identifications. A<br />

recent WCMEO case involved the mostly skeletonized remains of a<br />

probable black child. The authors’ biographic profile estimated the age<br />

at 4-6 years and although they are always hesitant to sex an immature<br />

individual they noted: Sex Uncertain, but possibly male based on the left<br />

ilium and mandible. An accompanying T-ball league T-shirt later led to<br />

a girls T-ball team and a young female whose black father had passed her<br />

outgrown shirt on to a male relative who passed it on to his 5-year-old<br />

son, who turned out to be the victim in this case.<br />

In an LCCO case, as reported in the first news broadcasts, involved<br />

the discovery of an apparent black female at the foot of the stairs in the<br />

home of an apparently missing white male golf professional. The<br />

apparent black female was fully clothed in a dramatic dress, jewelry,<br />

hose and high heels and wrapped from head to ankles in a plastic bag and<br />

duct tape. Wisely, the deputy coroner did not jump to conclusions and<br />

the careful unwrapping of the mummy revealed a sad case of death by<br />

accidental sexual asphyxiation of a white male.<br />

Additional examples to be presented include brightly painted toenails<br />

on a male airplane crash victim who had attended a bachelor party<br />

the night before and similar cautionary cases of potential sex/gender<br />

confusion.<br />

Walker PL, Cook D. Brief communication: gender and sex: vive la difference.<br />

Amer J Physical Anthrop, 1998;106:255-9.<br />

[Steele DJ, Bramblett CA. The anatomy and biology of the human<br />

skeleton. College Station, Texas, Texas A&M University Press 1988.<br />

Geller PL. Analysis of sex and gender in a Maya mortuary context at<br />

Preclassic Cuello, Belize. Chicago, IL, University of Chicago,<br />

Unpublished Masters Thesis 1998.<br />

Saul JM. Feminism: Issues and arguments. Oxford, UK, Oxford<br />

University Press 2003.<br />

Saul FP. The human skeletal remains from Altar de Sacrificios,<br />

Guatemala: An osteobiographic analysis. Cambridge, MA. Peabody<br />

Museum of Harvard Press 1972.<br />

Saul FP, Saul JM. The people of Rio Azul. In: Adams REW, editor. Rio<br />

Azul reports, number 5, The 1987 season. San Antonio, TX.<br />

Mesoamerican Archaeological Research Laboratory, University of Texas<br />

2000.<br />

Sex vs. Gender, Social Identity, <strong>Bio</strong>logic Identity<br />

H7 Age at Death Determination Using the<br />

Skeletal Histomorphometry of the Third<br />

Metacarpal and Third Metatarsal From<br />

Autopsy and Cadaver Samples<br />

Adrienne L. Foose, BA*, Robert R. Paine, PhD, and Richard A.<br />

Nisbett, PhD, Texas Tech University, Department of Sociology,<br />

Anthropology, and Social Work, PO Box 1012, Lubbock, TX 79409-<br />

1012; Sridhar Natarajan, MD, Texas Tech University Health Sciences<br />

Center, Department of Pathology, Division of Forensic Pathology,<br />

3601 4th Street, Lubbock, TX 79430<br />

The goal of this presentation is to present to the forensic community<br />

a new method to aid in age at death determination using the<br />

microanatomy of the third metacarpal and third metatarsal bones of the<br />

human skeleton.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a new method for age approximation using<br />

bone histology of the third metacarpal and third metatarsal bones of the<br />

human skeleton.<br />

* Presenting Author<br />

The metatarsal and metacarpal bones have not been examined histologically<br />

to determine the possible significance between skeletal age<br />

and actual age at death. Our hypothesis is that human cortical bone of the<br />

third metacarpal and third metatarsal yields statistically significant<br />

results that correlate with documented age, based on the cumulative<br />

microscopic age changes of bone. The aim of this ongoing research is to<br />

contribute to the growing body of methodologies used for histological<br />

aging determination and identification of skeletal material in a forensic<br />

context.<br />

Autopsy samples were obtained through signed consent release<br />

from the Texas Tech University Health Sciences Center, Division of<br />

Forensic Pathology, Lubbock County <strong>Medical</strong> Examiner’s Office. Bone<br />

samples were also acquired from cadavers available from the Texas Tech<br />

University Health Sciences Center, Department of Anatomy. For each<br />

sample, information on the individual’s age, sex, height, weight, health<br />

conditions prior to death, and cause of death were collected. The documented<br />

ages for our 50 samples range from 19 to 93 years of age at<br />

death. The histomorphometric analysis involves preparing thin sections<br />

of the mid-shaft of the left third metacarpal and left third metatarsal as<br />

complete cross-sections. A number of factors were examined at the<br />

microscopic level; specifically, we focused on intact and fragmentary<br />

secondary osteon counts per mm2 for the entire cortical cross-section of<br />

each bone. The data are then used to produce age-predicting regression<br />

formulas. This procedure follows closely to suggestions made by Stout<br />

& Paine (1992).<br />

With incomplete fragmentary remains, microscopy of these bones<br />

may be one of the only means of age approximation. Based on the concluding<br />

statistical significance, age-predicting equations developed for<br />

the metacarpal, metatarsal, and for a combination of both bones can be<br />

used in conjunction with, or in lieu of, other age determination methods.<br />

Stout SD, Paine RR. Breif communication: Histological age estimation<br />

using rib and clavicle. Amer J Physical Anthrop, 1992:87(1):111-5.<br />

Bone Histology, Age Determination, Forensic Anthropology<br />

H8 The Effects of Size in Craniometric<br />

Discriminant Functions<br />

Franklin Damann, MA* and John E. Byrd, PhD, Joint POW/MIA<br />

Accounting Central Identification Laboratory, 310 Worchester Avenue,<br />

Hickam AFB, HI 96853<br />

After attending this presentation, attendees will be able to recognize<br />

of the effects of size in craniometric discriminant functions designed for<br />

sex determination. An approach is recommended that mediates size<br />

effects.<br />

This presentation should lead to an improved understanding of the<br />

discriminant function, and its use for sex determination of skeletal<br />

remains. The presentation offers an alternative approach to sex determination<br />

when the case involves large females or small males.<br />

Forensic anthropologists have been employing discriminant functions<br />

to classify crania for decades. The classic papers by Giles and<br />

Elliot provided numerous functions that permitted anthropologists to<br />

address questions of population affinity (i.e., race) and sex using cranial<br />

measurements. The discriminant function approach was attractive<br />

because it enjoyed error rates similar to those of experienced anthropologists<br />

rendering subjective judgements, but was clearly more objective.<br />

More recent years have seen the development of the software package<br />

FORDISC (Ousley and Jantz 1996), which uses reference data from<br />

numerous human populations to calculate custom discriminant functions<br />

suited to a specific case. This study explores the effects of size on discriminant<br />

functions designed to determine the sex of a specific cranium.<br />

When presented with a case specimen from an apparent male who was<br />

of relatively small size, the authors subjected the 16 cranial measurements<br />

from the case specimen to a discriminant analysis in FORDISC,<br />

which indicated that the individual was female. We hypothesized that<br />

470


this result was due to the small size of the cranium. To address our<br />

hypothesis, we calculated C-scores (Howells 1995) for the 16 measurements<br />

using the craniometric data in FORDISC (black and white, males<br />

and females) and calculated a new discriminant function. The new<br />

function classified the individual as male, but not convincingly, as the<br />

discriminant score was close to the sectioning point. Finally, we selected<br />

a set of 6 measurements that contributed strongly to the first C-score discriminant<br />

function, and calculated a second function based on these.<br />

This second function classified the case specimen unequivocally as<br />

male. This study highlights the fact that discriminant functions derived<br />

for sex determination and based on raw measurements will key on the<br />

size differences between males and females. Thus, large females and<br />

small males will systematically misclassify. For cases where such circumstances<br />

are suspected, we recommend the calculation of functions<br />

based on C-scores as an alternative approach.<br />

Craniometrics, Discriminant Functions, Sex<br />

H9 A Tale of Two Museums: Available Fetal<br />

Collections at the National Museum of<br />

Natural History and the Albert Szent-<br />

Gyorgi <strong>Medical</strong> University, Hungary<br />

Angie K. Huxley, MA, PhD*, PO Box 493812, Redding, CA 96049-3812<br />

The purpose of this presentation is to inform the forensic science<br />

community of the two fetal collections worldwide available for research<br />

– the fetal collections at the NMNH, Washington D.C., U.S.A., and the<br />

Hungarian collection at the Albert Szent-Gyorgi <strong>Medical</strong> University, in<br />

Szeged, Hungary. The biological profiles of the collections will be discussed,<br />

the nature of the collection process will be compared, and the<br />

inherent limitations of the reviewed.<br />

This presentation will impact the forensic community and/or<br />

humanity by allowing for a rare opportunity to study fetal materials that<br />

are not readily available elsewhere. While there are inherent limitations<br />

involved in using museum collections, as the materials may be pathological,<br />

anomalous or unwanted, the fact that there are no other collections<br />

available necessitates their usage. Such data may be useful to<br />

develop fetal profiles for forensic cases, and thus determine fetal<br />

viability.<br />

Forensic fetal remains are occasionally submitted to the Office of<br />

the <strong>Medical</strong> Examiner for age determination, as well as possibility of<br />

fetal viability. There are few references on forensic fetal osteology, and<br />

there are fewer collections available for research. These fetal collections<br />

are located the at the National Museum of Natural History (NMNH), in<br />

Washington D.C.,, U.S.A., and the Albert Szent Gyorgi <strong>Medical</strong><br />

University in Szeged, Hungary, Eastern Europe. The primary objective<br />

of this presentation is to inform the forensic anthropologists of the two<br />

fetal collections, the composition of the collections, the nature of the collection<br />

process, and the inherent limitations of these materials.<br />

The fetal collections at the NMNH were collected in the early<br />

1900s by organizations and private physicians. The collection consists of<br />

271 fetuses, of which 120 are white and 151 and black, mixed or<br />

“mulatto.” These represent 119 males and 94 females between the ages<br />

of three lunar months and newborns. The card catalog may provide<br />

limited information on ancestry, phenotypic sex or even age. The materials<br />

were obtained from private physicians or during autopsy, then<br />

donated the NMNH through Dr. Hrdlicka. Since most of the collection<br />

represents spontaneous abortions, the collection is probably biased<br />

towards anomalous or pathological materials.<br />

The Hungarian remains were collected after WWII to present. The<br />

materials collected immediately after WWII may represent illegally<br />

aborted fetuses, as abortion was outlawed in the country after the war.<br />

The fetuses collected thereafter may represent spontaneously aborted<br />

fetuses, or maternal/fetal demise that were submitted the pathologists in<br />

the area. These materials were collected, macerated and measured. The<br />

morphometric data were published in “Forensic Fetal Osteology” (1978)<br />

by Fazekas and Kosa. The collection is composed of 138 skeletons, composed<br />

of 71 males and 67 females between the ages of three lunar<br />

months and full-term newborns. All of the fetuses are of Eastern<br />

European descent. Autopsy records are available on all fetuses, however<br />

lunar age may not always be available. Indeed, on would have to pull<br />

all of the autopsy records to record which of the fetuses are of known<br />

lunar age, and which fetuses had lunar age calculated through<br />

Haase’s rule.<br />

The two collections are different in terms of their biological profiles.<br />

The NMNH collection was collected approximately 100 years ago,<br />

and are composed of black, white and mixed fetuses. The ages were<br />

given my other mother, or were assigned by the pathologist Yet, there are<br />

no other known black fetal materials available for research. In contrast,<br />

the Hungarian collection represent a more homogenous population<br />

although there are be some fetuses of minority descent intermixed in this<br />

material.<br />

Anthropology, Museum, Fetus<br />

H10 Skeletal Markers of Parturition:<br />

Analysis of a Modern American Sample<br />

Jonathan D. Bethard, BA*, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37916<br />

This presentation examines morphological markers of parturition<br />

on the bony pelvis. The research presented in this poster tested markers<br />

of parturition against known obstetric histories. Preliminary results<br />

indicate that workers should not infer parity status from the bony pelvis.<br />

This presentation will impact the forensic community and/or<br />

humanity by describing preliminary results which indicate that physical<br />

anthropologists should not attempt to assess parity by scoring morphological<br />

markers of the bony pelvis.<br />

The goal of this research was to examine the relationship between<br />

parturition and morphological changes exhibited in the bony pelvis.<br />

Physical anthropologists and bioarchaeologists are often charged<br />

with the task of generating biological profiles from skeletal remains. A<br />

particular area of interest within skeletal biology has looked at the<br />

effects of parturition on the skeleton. Angel (1969) reported that the<br />

degree of pelvic scarring correlates with the number of offspring produced<br />

during fecund years. According to Krogman and Iscan<br />

(1986:248), “Angel initiated a new research avenue for skeletal anthropologists<br />

and indicated that parturition could be determined from<br />

skeletal remains.”<br />

A thorough literature review indicates that workers have maintained<br />

that both positive and negative correlations between parturition<br />

and morphological markers exist. Houghton (1974) scored the preauricular<br />

sulci of 119 pelves and was able to distinguish two distinct forms<br />

of the groove. Differentiated at GL or GP, Houghton remarked that the<br />

former designation was applied to innominates presenting a “narrow,<br />

short, straight-edged, and shallow groove at the antero-inferior margin of<br />

the joint.” The latter description was applied to pelves with a coalescence<br />

of pits and craters. Houghton reasons that sulci scored GP are<br />

more likely associated with parturition than those scored GL. Moreover,<br />

the author contends that skeletal makers of parturition are more evident<br />

on the sacro-iliac joint than the pubic symphysis.<br />

In an extensive study, Suchey et al. (1979), analyzed 486 pubic<br />

bones of modern American females. Suchey and colleagues studied<br />

dorsal pitting of the pubis in order to associate the number of full term<br />

pregnancies, interval since last pregnancy, and age of decedent with parturition<br />

condition. Adhering to methods defined in Stewart (1970),<br />

Suchey and colleagues were unable to statistically correlate parturition<br />

with specific skeletal markers. As a result, Suchey et al., assert “a rigid<br />

system of classification is of dubious value.”<br />

471 * Presenting Author


The William M. Bass Donated Skeletal Collection curated by the<br />

Forensic Anthropology Center at the University of Tennessee was utilized<br />

in this research. Female skeletons of known parity status (n=27)<br />

were scored for the degree of dorsal pitting of the pubis and morphological<br />

appearance of the preauricular sulcus. Pits on the dorsal pubis<br />

were scored as either absent, small to trace or well-marked (after Stewart<br />

1970). Pubic bones scored as “absent” were unremarkable with regard<br />

to dorsal pitting while “trace to small” indicated the presence of poorly<br />

marked or shallow depressions. “Moderate to large” dorsal pits were a<br />

minimum of 5mm and noticeably deep. Preauricular sulci were scored<br />

similarly following Houghton (1974).<br />

Statistical analyses tested the relationship between parity and<br />

scored morphological markers.Non-parametric chi-square analyses<br />

assessed the following associations: parity/dorsal pitting, parity/preauricular<br />

sulcus, age/dorsal pitting, age/preauricular sulcus and age/parity.<br />

Such analyses resulted in statistically insignificant results. Chi-square<br />

results were 2.03, 5.03, 39.6, 35.8 and 12.6, respectively. In all cases,<br />

P>0.05. P values ranged from .143 to .856 and clearly indicate an<br />

insignificant relationship between any suggested associations. These<br />

results indicate a poor correlation between parturition and skeletal<br />

change. Overall, this research further suggests that skeletal markers<br />

should not be used to assess parturition in paleodemographic or forensic<br />

contexts. While this notion may be counterintuitive, statistical analyses<br />

indicate an insignificant relationship.<br />

Angel JL. The basis of paleodemography. Am J Phys Anthropol 1969;<br />

(30):425-438.<br />

Houghton P. The relationship of the pre-auricular groove of the illium to<br />

pregnancy. Am J Phys Anthropol 1974; (41):381-390.<br />

Krogman WM, Iscan MY. The Human Skeleton in Forensic Medicine.<br />

2nd ed. Springfield: Charles C. Thomas, 1986.<br />

Stewart, TD. Identification of the scars of parturition in skeletal remains<br />

of females. In: Stewart, TD editor. Personal Identification in Mass<br />

Disasters. National Museum of Natural History: 127-133.<br />

Suchey, JM, Wiseley DV, Green RF, Noguchi TT. Analysis of dorsal<br />

pitting in the os pubis in an extensive sample of modern American<br />

females. Am J Phys Anthropol 1979; (51): 517-540.<br />

Parturition, Physical Anthropology, Skeletal <strong>Bio</strong>logy<br />

H11 Variation in Cremains Weight:<br />

Tennessee vs. Florida<br />

William M. Bass, PhD*, and Richard L. Jantz, PhD, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will know that the<br />

weight of cremated human remains (cremains) exhibit considerable variation,<br />

and that weights derived from one sample cannot be extrapolated<br />

to other samples.<br />

The presentation will emphasize to forensic anthropologists that<br />

cremation weights vary and that much more information is required if<br />

we are to understand the variation.<br />

The weight of cremains is of interest in medico-legal situations<br />

where questions arise about whether commercial crematoria have<br />

returned appropriate remains to family members. We have only been<br />

able to identify one published study providing weights of cremated<br />

human remains on a statistically valid sample (Warren and Maples<br />

1997), which reports weights from a Florida sample. Since cremains<br />

weight reflects bone mass, it is not unreasonable to expect that it will<br />

vary regionally, as other anthropometric features do.<br />

A study of weights obtained from a commercial crematorium in<br />

East Tennessee was undertaken in order begin an investigation of variation<br />

in weight of cremated remains. Cremation was performed<br />

according to the standard procedure of the crematorium using standard<br />

equipment. Remains were weighed using an OHAUS digital scale,<br />

* Presenting Author<br />

model CS5000, to the nearest gram. Age, sex and race were recorded,<br />

but body weight or other anthropometric information was unavailable.<br />

Since races other than white were uncommon, the analysis was limited<br />

to whites. The sample consists of 151 males and 155 females, ranging in<br />

age from 18 to 99.<br />

Summary statistics for cremains weights in grams are:<br />

Sex Mean S.D.<br />

Males 3379.77 634.98<br />

Females 2350.17 536.43<br />

These weights are about 500 grams greater than those reported by<br />

Warren and Maples, a highly significant difference. We also found that<br />

cremains weight decreases with age; the decrease begins earlier and proceeds<br />

more rapidly in females than in males. Weight loss with age is<br />

related to bone loss in older individuals. The relationship with age does<br />

not explain the difference between the Florida and Tennessee samples.<br />

Tennessee cremains are heavier when age is controlled.<br />

There are two possible explanations for the difference in cremains<br />

weights: 1) difference in cremation technique or 2) difference in bone<br />

mass. Unfortunately, the question cannot be answered definitively with<br />

evidence available. Cremation techniques are fairly standard so the difference<br />

is more likely due to bone mass. Since premortem height and<br />

weight are unavailable on the Tennessee sample, this possibility cannot<br />

be addressed directly. Regardless of the cause, the results reported here<br />

make it clear that there is substantial variation, and cremation weights<br />

from one sample cannot be extrapolated to other areas. Whether variation<br />

is patterned regionally is not known and the answer to this question<br />

must await additional information.<br />

Warren MW, Maples WR. The anthropometry of commercial cremation.<br />

J Forensic Sciences 1997;42:417-423.<br />

Cremation Weights, Bone Mass, Forensic Anthropology<br />

H12 When DNA is Not Available Can<br />

We Still Identify People?<br />

Recommendations for Best Practice<br />

Jose P. Baraybar, BA, MSc*, Office on Missing Persons and <strong>Forensics</strong><br />

(OMPF), United Nations Mission in Kosovo (UNMIK),<br />

AUCON/KFOR, Kosovo A1503, Austria<br />

The learning objectives of this presentation are as follows. First, to<br />

understand the role played by traditional identification methods in cases<br />

of violations against International Humanitarian Law. Second, to show<br />

how a systematic process involving experts from different fields<br />

increases the chances of identifying war victims trough traditional<br />

methods.<br />

This study makes an impact on the forensic community in general<br />

and in the forensic anthropology community in particular by providing<br />

an example on how a systematic approach to individual identification in<br />

cases of serious human rights violations can provide good results in the<br />

absence of sophisticated technology.<br />

The application of DNA profiling to the identification of victims of<br />

mass disasters is considerably recent, but the use of such techniques to<br />

victims of war crimes and crimes against humanity is even more recent.<br />

While DNA technology has become more common and the prices of<br />

testing have substantially dropped, its use in large-scale projects is primarily<br />

dependent on the availability of resources and in turn of the will<br />

of political powers to fund such activities. Paradoxically in countries<br />

where large number of victims remain unidentified are those in which<br />

this kind of technology is not available, and if so only in a limited scale<br />

(i.e., Rwanda, Congo, Guatemala). In those same settings the use of “traditional”<br />

techniques is generally favored over other more technologically<br />

costly. Traditional techniques generally consist of combining<br />

witness testimony, personal effects and clothing, and anthropological<br />

and dental data in order to corroborate or to exclude the identity of an<br />

individual. This paper provides recommendation of best practice to<br />

472


conduct identifications in settings with technological limitations. The<br />

sample consists of 95 cases from victims of the conflict in Kosovo<br />

between 1998-1999, in which positive presumptive identifications were<br />

generated and were later corroborated through DNA testing.<br />

Generally overlooked in the individual identification of victims of<br />

any kind of armed conflict is the investigation on the “event of disappearance”<br />

that defines interactions between victim(s) and perpetrator(s) in<br />

a place and time. People simply do not “disappear.” Forced disappearance<br />

is a well-planned practice designed to provoke anguish in the population<br />

and relatives of the missing person as well as a sense of relentless and of<br />

an unstoppable process. Understanding how people went missing (who<br />

took them, how many, in what were they taken, at what time, where were<br />

they seen going to) may help to establish their whereabouts. The reconstruction<br />

of the “event of disappearance” is crucial to determining the<br />

composition of the family target group to participate in the identification<br />

process.<br />

Once the family target group is defined, the relatives are selected. A<br />

priority is given to next of kin relatives to the missing person. Friends and<br />

more distant relatives would participate at a later stage. An ante-mortem<br />

form is filled from each relevant relative prior to participating in the<br />

clothing exhibition.<br />

The clothes of the victims are carefully washed and dried; preferably<br />

photographs of any personal effects are displayed separately from the<br />

clothes to which they were associated. The clothes are arranged on the<br />

floor, on some kind of tarpaulin or even colored surface, in a roughly<br />

anatomical position. Each family member or group of family members<br />

from one single missing person is accompanied to look at the display. One<br />

or two relatives are given latex gloves and a mask in case they may want<br />

to touch or feel the clothes or artifacts. No pressure is exerted over the relatives,<br />

they are allowed to take their time and observe the display. Once a<br />

recognition is made, the family is encouraged to see the artifacts if any.<br />

The family is not shown any specific set of artifacts or told which were the<br />

ones found with the clothing.<br />

Once the identification of a person has been triggered, both the postmortem<br />

and ante-mortem files of the person are pulled out and the family<br />

is taken to an interview area. The following people typically participate<br />

during the interview: one police officer specialized in identifications, one<br />

anthropologist, one dentist and one pathologist that remains on call for any<br />

specific information that may be required as well as to discuss with the<br />

team once the interview is finished. Each specialist asks questions separately.<br />

Initial questions concern the clothing and artifacts (make, materials<br />

used, whether it was purchased or home made, any anecdotal events associated<br />

to them). Subsequent questions concern the biological profile of the<br />

victim (age, sex, stature, ante-mortem injuries) and the teeth (the dentist<br />

expects some basic clues regarding basic features such as tooth rotations,<br />

extractions, prostheses, bridges or repairs, occlusion, etc.). Each specialist<br />

scores the responses collected on a scale of 1 to 3 as bad, medium and<br />

good.<br />

The main problem with any scoring is however that there are a<br />

number of elements that do not depend on the accuracy of the family<br />

members but on that of the specialists. For example, while anthropological<br />

determinations are a factor of the techniques used (i.e., age, stature), a<br />

dental comparison is dependent on the availability of an antemortem<br />

odontogram which can only be compared to another odontogram and not<br />

to a literary reconstruction of someone else’s dentition.<br />

Once the interview is finished, the experts that participated in the<br />

interview separately discuss each case. Generally after such discussion<br />

cases are classified in a scale of 1-3 as a good, medium or bad match. In<br />

any case, traits deriving from the body (anthropology, odontology or<br />

pathology) carry more weight than circumstantial evidence such as<br />

clothing.<br />

While DNA testing is a favored technique over ”traditional”<br />

methods, it is not always available. If it is available it still depends on the<br />

existence of ante-mortem and post-mortem information to carry out identification.<br />

Experts participating in traditional identifications must develop<br />

emic categories to transform objective physical features into recognizable<br />

categories by the family. They must also do the opposite by developing a<br />

system by which the dentist, for example, understands that the cue given<br />

by a family member regarding an impacted anterior tooth could be anything<br />

from a visible extra tooth to a bump on the gum, or that a prosthesis<br />

could also be something removed from the mouth at bedtime.<br />

Identification, DNA, Traditional Methods<br />

H13 Variation in Size and Dimorphism<br />

in Eastern European Femora<br />

Richard L. Jantz, PhD* and Erin H. Kimmerle, MA, University of<br />

Tennessee, Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will know that there are<br />

variations in size and dimorphism of the femur among local Eastern<br />

European populations, and by extension, other postcranial bones, that<br />

requires population specific skeletal information upon which to base<br />

identification criteria.<br />

This presentation will impact the forensic community and/or<br />

humanity by encouraging forensic anthropologists working in human<br />

rights in foreign countries to develop criteria specific to the populations<br />

on which they work.<br />

The conflict in the former Yugoslavia has resulted in hundreds of<br />

mass graves containing thousand of individuals. There are still insufficient<br />

data from documented skeletons from the region to allow local<br />

standards to be developed. Furthermore, there is evidence of variability<br />

among ethnicities in the area. Metric data obtained from the femur of<br />

Kosovars and Croats provides the first opportunity to examine their relationship<br />

to Croats and Bosnians. Implications of variation for sexing<br />

and stature estimation will be examined.<br />

Only three variables were taken from the Kosovo femora:<br />

Maximum length, bicondylar length and femur head diameter. Only<br />

maximum length and head diameter were used. The Kosovo sample<br />

consists of 449 males and 73 females. Antemortem stature was also<br />

available for about 90 Kosovars and 86 Croats. Femora from 150<br />

American white males and 89 white females were available for<br />

comparison.<br />

Both femur length and femur head diameter exhibit significant variation<br />

among samples. Variation among samples remains significant<br />

when American whites are excluded, so even different ethnicities in the<br />

same general region differ from one another. Bosnians, among the<br />

Eastern European groups, have the longest femora with the largest<br />

heads. Kosovars have short femora with large heads, and Croats are<br />

intermediate. American whites exceed all groups in femur length, but<br />

have the smallest head diameter. If American white femur head diameter<br />

is used as a sexing criterion and applied to Kosovars, over one quarter of<br />

females are classified as males.<br />

Stature formulae from Trotter and Gleser (WWII reference sample),<br />

Ross and Konigisberg (Bosnian/Croatian reference sample), Sarajlic<br />

(Bosnian reference sample) and the Forensic Data Bank (recent<br />

American White reference sample) were used to estimate stature of both<br />

Kosovars and Croats for whom antemortem stature was available. All<br />

three formulae underestimated the Eastern European sample, Trotter and<br />

Gleser the most, the Forensic Data Bank the least. The Kosovo and Croat<br />

antemortem statures are estimates, mainly from family members. Like<br />

Americans, Eastern Europeans appear to overestimate stature, resulting<br />

in underestimates when using regression equations derived from measured<br />

stature.<br />

These results show the importance of identification criteria from<br />

the populations to which they are being applied. American identification<br />

criteria cannot be exported to Eastern Europe, and within Eastern<br />

Europe, criteria for different ethnicities are desirable.<br />

Postcranial, Sexing Criteria, Stature Estimation<br />

473 * Presenting Author


H14 Local Standards vs. Informative Priors<br />

in Applied Forensic Anthropology<br />

Lyle W. Konigsberg, PhD*, Department of Anthropology, 250 South<br />

Stadium Drive, University of Tennessee, Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will understand statistical<br />

methods for obtaining age estimates based on reference sample<br />

skeletal aging data and appropriate prior distributions for age-at-death.<br />

The results of this research demonstrate the importance of prior<br />

information as well as the appropriate use of reference sample data when<br />

determining age-at-death from skeletal material. This research provides<br />

a statistical method for unbiased estimation of age-at-death in the<br />

applied forensic anthropology context.<br />

Considerable debate over the need for “population-specific”<br />

skeletal estimators continues in forensic anthropology for sex, age-atdeath,<br />

and stature estimators. This debate acquires practical importance<br />

when forensic anthropologists are called upon to build descriptive profiles<br />

of decedents who come from populations that lack reference<br />

skeletal data. This paper addresses the perceived need for populationspecific<br />

information on age determination by explicitly considering the<br />

statistical basis for age-at-death estimation.<br />

It is quite common in studies of age-at-death estimation to order age<br />

within each skeletal stage and then to calculate percentiles for ages falling<br />

within that particular stage. In some cases, percentiles such as the 2.5th<br />

and 97.5th are provided to give a 95% confidence interval for age-at-death<br />

conditional on stage. In other cases, the range of ages (from the minimum<br />

age, or 0th percentile, to the maximum age, or 100th percentile) is given<br />

for broader coverage. These percentile-based confidence intervals are<br />

deficient descriptors because of three statistical problems. First, the percentiles<br />

themselves are estimates that may be misleading when based on a<br />

stage for which few skeletons were observed. Second, the percentiles give<br />

a very incomplete description of the age-at-death (conditional on stage)<br />

data. Finally, the percentile values depend on not only the biological information<br />

contained in the age “indicator,” but also the a priori age-at-death<br />

distribution of the reference sample.<br />

In this paper it is suggested that a better method for presenting ageat-death<br />

data conditional on skeletal stage for a reference sample is to<br />

provide the Kaplan-Meier survivorship by skeletal stage. This solves the<br />

first and second statistical problems, in that confidence intervals are<br />

available for the survivorships (which are percentiles) and the survivorships<br />

provide all of the available percentiles. However, the Kaplan-<br />

Meier method does not solve the third problem, because the method still<br />

depends on both the biology of aging and the age structure of the reference<br />

sample. To show that this third problem remains, this paper compares<br />

the Kaplan-Meier survivorship by pubic symphyseal phase from a<br />

number of reference samples to the survivorship by phase for 232 known<br />

age-at-death individuals from the Korean War. The reference data survivorship<br />

by phase greatly exceeds that for the Korean War dead,<br />

because the a priori age distribution for the Korean War dead is much<br />

younger. There may also be population differences in biological aging<br />

between the reference samples and the Korean War dead sample.<br />

To address the question of population specificity Kaplan-Meier survivorships<br />

by phase for the Korean War dead are approximated using<br />

parametric models that depend on an a priori age distribution and information<br />

on biological aging from a reference sample. In the case of the<br />

Korean War, there is a large amount of information available on the ageat-death<br />

for U.S. soldiers killed in action (see Frank A. Reister’s “Battle<br />

Casualties and <strong>Medical</strong> Statistics: U.S. Army Experience in the Korea<br />

War” available on-line from http://history.amedd.army.mil/), which for<br />

the purposes of this paper is modeled using a log-normal distribution.<br />

This informative prior must then be combined with information on pubic<br />

symphyseal aging taken from a known age-at-death reference sample.<br />

For known age samples symphyseal data from the Korean War dead,<br />

males from anatomical and forensic collections, and males and females<br />

from the Balkans are used.<br />

* Presenting Author<br />

The results of the parametric models show that, from a practical<br />

standpoint, it makes little difference which reference sample is used to<br />

age the Korean War dead. The choice of an inappropriate prior, however,<br />

can have drastic effects on the models. It can consequently be suggested<br />

that forensic anthropology’s concern with obtaining “population specific”<br />

estimators or “local standards” may be misdirected. Instead,<br />

greater emphasis should be placed on characterizing appropriate priors<br />

and on extracting information on biological aging from larger well-documented<br />

skeletal collections. In a similar vein, it may not be necessary<br />

to have, for example, stature estimation equations that are based on very<br />

specific reference collections. Instead, a combination of large generic<br />

reference samples with appropriate priors can be used to tailor make<br />

such “population specific” estimators (Ross and Konigsberg 2002).<br />

Ross AH, Konigsberg LW. New formulae for estimating stature in the<br />

Balkans. J Forensic Sciences 2002;47:165-167.<br />

Age-at-Death Estimation, Statistical Methods, Survival Analysis<br />

H15 A Bayesian Approach to Calculating<br />

Age Using Pubic Symphyseal Data<br />

Erin H. Kimmerle, MA*, Lyle Konigsberg, PhD, and Richard Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, 250 South Stadium<br />

Hall, Knoxville, TN 37996-0720; Jose Pablo Baraybar, MSc, Office of<br />

Missing Persons and <strong>Forensics</strong>, Department of Justice, United Nations<br />

Mission in Kosovo, Pristina<br />

The learning objectives of this presentation are as follows. First, to<br />

understand how the ages of victims are used in the investigative and evidentiary<br />

processes of criminal proceedings. Second, to determine<br />

whether population-specific aging criteria are needed for the Balkans.<br />

Third, to demonstrate how a Bayesian approach to the construction of<br />

age profiles for unidentified victims produces the most accurate and<br />

precise age ranges possible, thereby meeting the criteria of Daubert v.<br />

Merrell Dow Pharmaceuticals, 509 US 579 (1993) for the presentation<br />

of scientific evidence in court.<br />

This study makes an important impact both on the field of forensic<br />

science and on humanity by providing new aging criteria for the Balkans<br />

that meets requirements for the presentation of scientific evidence in<br />

court; by establishing criteria that are the most reliable thereby ensuring<br />

the best chances for positive identifications to be made for victims; by<br />

providing insight into long-standing paleodemographic questions about<br />

population variation in aging; and by contributing to our understanding<br />

of the effects of individual inter-observer variation in the formulation of<br />

new methodology and successful identification.<br />

The ages of victims plays an important role in determining the<br />

minimum number of individuals recovered from a mass grave, in individual<br />

identification, and in constructing the demographic profile of<br />

victims. The demographic profile of victims is one of the central issues<br />

in the prosecution of individuals indicted by International Criminal<br />

Tribunal for the Former Yugoslavia. The case of The Prosecutor of the<br />

Tribunal against Radislav Krstic (Case No. IT-98-33) was a landmark<br />

case because it was the first conviction of genocide in Europe and relied<br />

on forensic evidence. It was also a precedent setting case for forensic<br />

anthropology in that the methods used to construct demographic profiles<br />

of victims based on American and Balkan reference samples were questioned<br />

in court. The defense team questioned the anthropological expert<br />

witness as to why American (Katz and Suchey 1986) and Balkan<br />

(Simmons et al., 1999) aging methods differed and which were the most<br />

reliable for use in the former Yugoslavia.<br />

The purpose of this study was to determine whether a Bayesian<br />

analysis using an informative prior for the age-at-death profile derived<br />

from a large non-Bosnian reference sample could produce the most<br />

accurate ages for unidentified victims from the Balkans. A reference<br />

sample of identified genocide victims from Kosovo, Bosnia, and Croatia<br />

(n=876) was used to determine the age structure of genocide victims.<br />

474


The pubic symphyses were scored in the manner of Suchey-Brooks for<br />

a subset of the Balkan sample (n=298), as well as, from various<br />

American anatomical reference collections (n=1517). The Gompertz-<br />

Makeham hazard model was used to calculate the informative prior for<br />

age. The informative prior was combined with the likelihood of being a<br />

particular age conditional on a given pubic symphyseal phase that then<br />

was compared to the empirical survivorship model by phase. We found<br />

that the survivorship model accurately predicts age for each pubic symphyseal<br />

phase, indicating the problem with the current methodologies is<br />

based on statistical methodology, not biological variation in the aging<br />

processes of American and Balkan populations. A revised calibration of<br />

pubic symphyseal methodology using a Bayesian approach does provide<br />

the most precise and accurate age ranges possible. Finally, four<br />

observers scored each pubic symphysis for the Balkan sample independently<br />

to determine the effect of inter-observer variation. Correlations<br />

among the four observers varied for both pubic symphysis-scoring<br />

systems. Correlations for the Todd system ranged from .80-.92 among<br />

females (n=83) and .24-.66 among males (n=108). Correlations among<br />

observers for the Suchey-Brooks system ranged from .77-.95 among<br />

females and .63-.85 among males.<br />

Katz D, Suchey J. Age determination of the male os pubis. Amer J<br />

Physical Anthrop 1986;80:167-172.<br />

Simmons T, Tuco V, Kesetovic R, Cihlarz Z. Evaluating age estimation<br />

in a Bosnian forensic population: Age-at-Stage vs Probit Analysis.<br />

Proceedings of the American Academy of Forensic Sciences, 1999;38H.<br />

Bayesian Analysis, Aging Methods, Inter-Observer Variation<br />

H16 Aging the Elderly: A New Look<br />

at an Old Method<br />

Gregory E. Berg, MA*and Erin Kimmerle, MA, University of<br />

Tennessee, 250 South Stadium Way, Knoxville, TN 37996<br />

After attending this presentation, attendees will learn to present an<br />

alternate strategy for aging elderly female pubic symphyses.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing the forensic community a better tool to produce<br />

age estimates for elderly individuals, which is not currently available.<br />

Physical anthropologists have long been confronted with the<br />

problem of estimating skeletal age of elderly individuals. Some believe<br />

that it is impossible to determine advanced age with any level of precision.<br />

Experts have also questioned the accuracy of ageing skeletal<br />

remains from pubic bone morphology. As a result, large age categories<br />

such as 40+, 50+, and 60+ years have been used to minimize the impact<br />

of these problems. Refinements to the current definitions in the Suchey-<br />

Brooks unisex ageing method may alleviate some of the problem.<br />

Specifically, if the late phases are refined and an additional stage added<br />

(a 7 phase instead of a 6 phase system), the method may be improved.<br />

Further, since the determination of age ranges should reflect the demographic<br />

profile of a population they are drawn from, then a different statistical<br />

approach, transition analysis, should be considered.<br />

This study consisted of 148 female individuals from the University<br />

of Tennessee William Bass Donated Collection (Donated, n=63) and a<br />

known age Balkan forensic sample (Balkan, n=85). Each pubic symphysis<br />

was scored with the aid of a standard desk magnifying glass. The<br />

new definitions and decision-making rules for females were as follows:<br />

Suchey-Brooks Phases 1-4: No modifications were made.<br />

Phase 5: The rim is complete at this stage, but the symphyseal face<br />

may show a slight depression as it begins to erode. The pubic tubercle is<br />

separated from the face. The quality of bone on the articular surface is<br />

still good and very compact. In a few cases, a slight amount of porosity<br />

may be present, but it usually affects less than 15% of the symphyseal<br />

face. Only extremely mild signs of osteoporosity/osteopenia are present<br />

(if any) and the ventral aspect of the symphysis is typically not porous.<br />

Decision making traits are: 1) if the articular surface still has<br />

majority of compact bone with less than 15% porosity anywhere on<br />

surface, and 2) osteoporosity/osteopenia is absent or extremely mild,<br />

score as a Phase 5. If either of these two traits is observed greater than<br />

specified, then score as greater than a Phase 5.<br />

Phase 6: The symphyseal face is usually depressed and the rim<br />

begins to erode, beginning with the superior ventral aspect. The quality<br />

of bone on the articular surface is breaking down, no longer retaining the<br />

smooth, compact surface. The symphyseal face is eroded, in the form of<br />

either porosities or small channel-like structures – coalescences of<br />

smaller porosities into oblong pores/channels. Osteoporosis is mild to<br />

moderate in this phase. Lipping of the articular surfaces can be present.<br />

Decision making traits are: 1) if less than 50% of the symphyseal<br />

surface is porous, and 2) lipping is mild to moderate then it is scored as<br />

a Phase 6. If the symphyseal face appears to be borderline (40-60% of<br />

face is porous but still a fair amount of compact bone), then osteoporosity/osteopenia<br />

should be used as the deciding feature. If this trait is<br />

moderate to severe, then it is scored as a Phase 7. The weight of bone<br />

should be the primary indicator, though other indications of osteoporosis<br />

can be found on the ventral aspect of the pubis where porosity may be<br />

present and the bone may have a striated quality.<br />

Phase 7: The symphyseal face is extremely porous and eroded<br />

(>50% of its surface). Osteoporosity/osteopenia is present and is typically<br />

moderate to severe in nature (the bone is very light in weight). The<br />

symphyseal face appears to be relatively flat, since the rim is highly<br />

eroded and is losing definition. The ventral surface of the symphysis is<br />

typically scarred or has striated bone with ligamentous outgrowths,<br />

occurring typically near the obturator foramen. Lipping of the articular<br />

surfaces is often moderate, but may be mild or severe. This character is<br />

highly variable.<br />

Inter- and intra-observer error was tested among four observers and<br />

was not statistically significant, indicating that each observer was<br />

scoring in a similar fashion. In order to compare results with the published<br />

data from the Suchey-Brooks method (males), regression analyses<br />

were conducted on these populations. For the Donated collection, age<br />

regressed on phase produced a highly significant model (r=0.8361,<br />

R2=0.6992, F=144.06, p=


H17 Model of Age Estimation Based<br />

on Dental Factors of Unknown<br />

Cadavers Among Iranians<br />

Babak Faghih Monzavi, DDS*, No 93351 Sanie Zadeh Lane-Chahar<br />

Bagh Bala Avenue, Esfahan 81638-93351, Iran; Arash Ghodoosi, MD,<br />

Fayz Square- Forensic Medicine Center of Esfahan Province, Esfahan,<br />

Iran; Omid Savabi, DDS, MS, Azadi Square- Hezar Jerib Avenue,<br />

Esfahan University of <strong>Medical</strong> Science, School of Dentistry, Esfahan,<br />

Iran; Asghar Karimi, DDS, Fayz Square - Forensic Medicine Center of<br />

Esfahan Province, Esfahan, Iran; Akbar Hasanzadeh, MS, Azadi<br />

Square- Hezar Jerib Avenue, Esfahan University of <strong>Medical</strong> Sciences,<br />

School of Health Sciences, Esfahan, Iran<br />

After attending this presentation, attendees will be informed about<br />

age estimation of unknown human remains of Iranian ancestry based on<br />

dental techniques, including Gustafson’s method.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing a more thorough understanding of dental aging<br />

techniques as applied to an Iranian skeletal population.<br />

Estimation of age in unknown cadavers is an important method for<br />

their identification. The most common method in adults (older than 25<br />

years) is the use of dental parameters as described by Gustafson in 1947.<br />

In 1950, he presented his models based on microscopic and macroscopic<br />

features of teeth. Pillai and Bhaskar (1974) showed that Gustafson’s<br />

method is influenced by external factors such as race and culture in an<br />

Indian sample. Gustafson’s method was used by Rahimian, Sabaghian<br />

and Savabi in Iran. In these two studies, the correlation coefficients<br />

between observed and estimated ages were .80 and .95, respectively.<br />

However, the models were never calculated. In Iran, age is estimated by<br />

formulae that were designed using a Swedish sample. Therefore, appropriate<br />

models for application to Iranian samples should be developed.<br />

This study is a cross sectional study. The samples were selected<br />

from Iranian cadavers, examined at the Forensic Medicine Organization<br />

of Isfahan province. Their ages ranged from 25 to 60 years. This range<br />

was classified into five-year age groups. Thirty cases were selected for<br />

each group. The inclusion criterion was the presence of at least one<br />

single-root tooth on the mandible (premolar, canine or incisor). The<br />

cases were selected over a 9 month period. After tooth selection, the distance<br />

between sulcus of gingiva and cervix of tooth (CEJ) in the medial<br />

aspect of buccal surface was measured (in millimeters) with a probe to<br />

calculate the periodontosis factor. After extraction, the teeth were<br />

cleaned and put in tubes containing alcohol and glycerin. Alcohol allows<br />

for better presentation by dehydration of the translucent area of root.<br />

For each case, variables such as name/surname, age, type of tooth,<br />

and the periodontosis factor (mm) were gathered. A non-stop Bego device<br />

was used to make sections ranging from .5 to 1.0 mm. Three teeth were<br />

deleted from the study due to previous treatment on their roots.<br />

Microscopic studies were done by stereomicroscope with a precision of<br />

0.1 mm. The factors and their classifications are defined as the following:<br />

Periodontosis factor (P): ratio of distance between sulcus of gingiva<br />

and cervix of tooth (CEJ) to the root. P0: No periodontosis. P1:<br />

Beginning of periodontosis. P2: Periodontosis evident coronally on<br />

more than one third of root.<br />

Attrition factor (A): extent of destruction of crown. A0: No<br />

attrition. A1: Attrition up to enamel level. A2: Attrition up to dentin<br />

level. A3: Attrition up to pulp.<br />

Secondary dentine factor (S): ratio of secondary generated dentin to<br />

the total volume of pulp cavity. S0: No secondary dentin. S1: Secondary<br />

dentin up to upper part of pulp cavity. S2: Secondary dentin up to half of<br />

pulp. S3: Diffuse calcification of the entire pulp.<br />

Root resorption factor (R): extent of destruction of root due to<br />

resorption. R0: No resorption. R1: Spotted like resorption. R2: Root<br />

resorption at the level of cementum. R3: Extensive resorption of<br />

cementum and dentin.<br />

* Presenting Author<br />

Cementum apposition factor (C): extent of increment of cementum.<br />

C0: Normal thickness (undetectable). C1: Thickness more than normal<br />

(detectable). C2: Generation of thick cementum. C3: Hypercementosis<br />

thickness.<br />

Translucency of the root factor (T): ratio of height of translucency<br />

area to the length of root. T0: No translucency. T1: Beginning of translucency<br />

of root. T2: Translucency more than 1/3 of apical root. T3:<br />

Translucency more than 2/3 of apical root.<br />

Statistical analysis of this study is based on linear regression<br />

analysis, using sum of the ranks of the factors (SR) as predictor of age.<br />

Statistical analyses were done by SPSS.<br />

A total of 210 cadavers comprising 185 males (88.1%) and 25<br />

females (11.9%) were selected. Mean and standard deviation of SR is<br />

6.72 (1.81). Correlation coefficients of age with attrition, periodontosis,<br />

root resorption, secondary dentine, cementum apposition and translucency<br />

of the root are .394 (P


H18 New Formulae for Estimating Age<br />

in the Balkans Utilizing Lamendin’s<br />

Dental Technique<br />

Debra A. Prince, BS, MA* and Lyle W. Konigsberg, PhD, University of<br />

Tennessee, Knoxville, 250 South Stadium Hall, Department of<br />

Anthropology, Knoxville, TN 37996-0760<br />

After attending this presentation, attendees will understand how to<br />

estimate age-at-death in the Balkans based on an appropriate reference<br />

sample and formula<br />

This presentation will impact the forensic community and/or<br />

humanity by providing an appropriate formula based upon a Balkan reference<br />

sample to estimate age-at death for genocide victims.<br />

As with all forensic identifications, proper reference samples are<br />

critical when anthropologists employ methods to identify victims of<br />

genocide. Several methods to estimate age-at-death are utilized in the<br />

Balkans, such as osteomorphic changes of the pubic symphysis and<br />

sternal ends of ribs, histological sections of the clavicle and Lamendin’s<br />

dental aging method. This presentation will focus on Lamendin’s<br />

method and the purpose is two fold: 1) to analyze the consistency and<br />

accuracy of four observers employing Lamendin’s technique and, 2) to<br />

recalculate the formula specific to the reference sample.<br />

Lamendin et al.’s (1992) original research analyzed 306 singlerooted<br />

teeth extracted at the time of autopsy from 208 individuals. All<br />

individuals were considered to have French ancestry. Three measurements<br />

were required to estimate age-at-death: root height (the maximum<br />

distance between the apex of the root and the cemento-enamel junction);<br />

periodontal regression (maximum distance between the cemento-enamel<br />

junctions and the line of soft tissue attachment); and translucency of the<br />

root (measured from the apex of the root towards the cemento-enamel<br />

junction, using a lightbox to enhance the image). This research produced<br />

an overall mean error of + 8.4 years on their working sample and + 10<br />

years on their forensic control sample. Prince and Ubelaker (2002)<br />

employed Lamendin’s method on an American sample of 400 teeth,<br />

where absolute mean errors of 8.23 years and 7.7 years were produced<br />

using Lamendin’s method and recalculated formulas. Sarajlic et al.<br />

(2003) employed Lamendin’s original formula and Prince and<br />

Ubelaker’s formula to Balkan males. They reported that Prince and<br />

Ubelaker’s white male formula lowered mean errors for the male sample<br />

in the Balkans.<br />

The current research applies Lamendin’s method to 429 singlerooted<br />

teeth of known age and sex, which were extracted at the time of<br />

autopsy from genocide victims in the Balkans. Three measurements<br />

were taken from each tooth: root height, periodontal regression, and<br />

translucency of the root. All measurements were taken from the labial<br />

surface with digital calipers and recorded in millimeters. Four<br />

observers, three with modest experience of the procedures and one<br />

observer with considerable experience, took the measurements from<br />

each tooth. Each observer took blind measurements. Attrition scores<br />

were also recorded after Smith (1984).<br />

All data were analyzed using the “R” statistical package. A repeated<br />

measures ANOVA was utilized to determine any significant difference<br />

among the four observers and regression analysis was used to produce<br />

the new formula based on the Balkan reference sample.<br />

Although previous research has shown that Lamendin’s method is<br />

reliable in estimating age-at-death, a formula based on an appropriate<br />

reference sample is necessary for application in the Balkans. The author<br />

proposes that recalculating the formula based on the sample above will<br />

reduce mean errors when estimating age-at-death and be more appropriate<br />

for estimation in the Balkans.<br />

Lamendin H, Baccino E, Humbert JF, Tavernier JC, Nossintchouk RM,<br />

Zerilli A. A simple technique for age estimation in adult corpses: the two<br />

criteria dental method. J Forensic Sciences 1992;37(5):1373-1379.<br />

Prince DA, Ubelaker DH. Application of Lamendin’s adult dental aging<br />

technique to a diverse skeletal sample. J Forensic Sciences<br />

2002;47(1):107-116.<br />

Sarajlic N, Klonowski E, Drukier P, Harrington R. Lamendin and<br />

Prince’s dental aging methods applied to a Bosnian population.<br />

Proceedings of the Fifty-fifth Annual American Academy of Forensic<br />

Sciences; 2003 Feb 16-21; Chicago (IL): 2003;250.<br />

Smith BH. Patterns of molar wear in hunter-gatherers and agriculturalists.<br />

Amer J Physical Anthrop 1984;63(1):39-56.<br />

Balkans, Age-At-Death, Dental<br />

H19 Sternal Rib Standards for Age Estimation<br />

in Balkan Populations: An Evaluation of<br />

U.S. Standards Using Alternative<br />

Statistical Methods<br />

Jaime Stuart, MA* and Lyle Konigsberg, PhD, University of Tennessee,<br />

250 South Stadium Hall, Knoxville, TN 37996<br />

The goals of this presentation are: 1) to evaluate the accuracy of US<br />

sternal rib standards of age estimation used in the Balkans, and 2) to<br />

present cumulative probit regression and Bayes’ methodology as alternative<br />

statistical methods for the estimation of age at death.<br />

This presentation will impact the forensic community and/or<br />

humanity by evaluating the accuracy of existing US sternal rib standards<br />

for age estimation used in the Balkans; and presenting to the forensic<br />

community an alternative statistical approach for the estimation of<br />

age-at-death using a cumulative probit regression model and Bayes’<br />

methodology.<br />

Presently, US aging standards are used to generate ages at death for<br />

victims of the Balkan war. However, the accuracy of Balkan estimates<br />

derived from US standards has not yet been systematically evaluated.<br />

This presentation addresses this issue. Further, alternative statistical procedures<br />

are used to estimate the ages at death of the US and Balkan<br />

samples used in this study.<br />

The US sample contains 156 sternal ribs of known individuals from<br />

the William M. Bass Donated (WMB) and Forensic Skeletal Collections<br />

(FC) at the Department of Anthropology at the University of Tennessee.<br />

Sternal rib data for an additional 32 individuals of known age, sex, and<br />

ancestry were obtained from the Forensic Data Bank (FDB) and<br />

included in the US sample. Both sexes are represented, and ages at death<br />

range from 18 to 94 for white males (with a mean age of 51.22 yrs.) and<br />

20 to 89 for white females (with a mean age of 49.35). The presenter (JS)<br />

classified rib ends from the WMB and FC into one of nine phases (0-8)<br />

using the rib end phase descriptions developed by Iscan et al. (1984,<br />

1985) for white males and white females. Data obtained from the FDB<br />

had been previously collected by various observers from around the<br />

country. The Balkan sample contains 529 male and 78 female sternal rib<br />

ends of known individuals from the Baraybar Forensic Skeletal<br />

Collection. Ages at death range from 17 to 90 years for males (with a<br />

mean age of 49.17 yrs.) and 17 to 96 for females (with a mean age of<br />

53.67 yrs.) Four observers (GB, EK, DP, and JS) classified rib ends<br />

from the Baraybar Collection into one of nine phases (0-8) using the rib<br />

end phase descriptions developed by Iscan et al. (1984, 1985), for white<br />

males and white females. Data collected by the observer who produced<br />

the highest correlation between rib phase and chronological age (EK)<br />

were used in this study.<br />

Traditionally, physical and forensic anthropologists estimate age by<br />

assigning a mean age and age range to an unknown individual based on<br />

the distribution of the age indicator in a known age reference collection.<br />

With the cumulative probit and Bayesian approaches, however, probabilities<br />

are assigned to each possible age in the age at death distribution<br />

of an unknown individual and the single age assigned the highest probability<br />

is the most likely age at death for that individual. While these<br />

477 * Presenting Author


approaches involve several computational steps and are mathematically<br />

more complex they provide certain advantages over traditional methodology,<br />

including: 1) assignment of probability to age-at-death estimates,<br />

2) less subjective age estimates, 3) more realistic error estimates, and 4)<br />

practitioners are not forced to use truncated age ranges when estimating<br />

the ages-at-death of older adult individuals (i.e., 50+ years).<br />

The US data were analyzed using cumulative probit and Bayesian<br />

methods in order to find the highest posterior density of age (i.e. most<br />

likely age) for each rib phase. Ages at death were then calculated for a<br />

sub-sample of the Balkan data using the “standards” derived from the<br />

US sample. If US standards do not provide accurate age at death estimates<br />

for the Balkan sub-sample, population-specific standards are warranted.<br />

Iscan, M., Loth, Susan R., and Wright, Ronald K. (1984) Age estimation<br />

from the rib by phase analysis:<br />

white males. Journal of Forensic Sciences 29(4):1094-1104.<br />

Iscan, M., Loth, Susan R., and Wright, Ronald K. (1985) Age estimation<br />

from the rib by phase analysis:<br />

White females. Journal of Forensic Sciences 30(3):853-863.<br />

Estimation of Age-at-Death, Population-Specific Standards,<br />

Bayesian Approach<br />

H20 Geometric Morphometric Techniques<br />

for Ancestry Assessment in Sub-Adults<br />

Una Strand Vidarsdottir, BSc, PhD*, Department of Anthropology,<br />

University of Durham, 43 Old Elvet, Durham, County Durham DH1<br />

3HN, United Kingdom<br />

After attending this presentation, attendees will be able to assess the<br />

way in which geometric morphometric techniques can be used to<br />

reliably assess ancestry in skeletal samples of sub-adults.<br />

It is hoped that the Morphometric Forensic Identification of Subadults<br />

(MorFIdS) resource will facilitate the identification of sub-adult<br />

remains in a multi-ethnic context, and that it will eventually be available<br />

for use in a ‘user-friendly’ format, readily applied by experts and laypeople<br />

alike.<br />

This paper presents some of the research and developments carried<br />

out within the remits of the MorFIdS (Morphometric Forensic<br />

Identification of Sub-adults) identification resource. The resource is<br />

based on a large dataset of three-dimensional co-ordinates taken from a<br />

diverse sample of human skeletal populations. It has been developed<br />

specifically to aid in the assessment of ancestry in sub-adults of all ages.<br />

The identification of ancestry in human skeletal remains is an<br />

important factor in narrowing down the potential identity of individuals<br />

in a forensic context, as well as for repatriation. Hitherto, this type of<br />

identification has been based on quantitative or qualitative assessments<br />

of the morphology of the adult cranio-facial skeleton.<br />

Similar identification has proven highly difficult in sub-adults, as<br />

the degree of allometric changes in the cranio-facial skeleton during<br />

post-natal growth is greater than the extent of the possible ancestry-specific<br />

morphologies. However, recent advances in analytical techniques<br />

have allowed the study of inter- and intra-population differences in facial<br />

form during growth (e.g., Strand Vidarsdottir et al., 2002), and led to the<br />

examination of the possibility of developing models of population specific<br />

morphologies at all ages. This work has revealed that using the<br />

geometric morphometric school of techniques, it is possible to identify<br />

ancestral morphologies in the cranio-facial skeleton of infants as young<br />

as 1 year of age. MorFIdS (Morphometric Forensic Identification of<br />

Sub-adults) is a computer-based resource specifically developed from<br />

this research for the application of morphometric techniques to the identification<br />

of sub-adult skeletal remains. It aims to facilitate identification<br />

* Presenting Author<br />

of ancestry on the basis of complete and partial cranio-facial skeletons.<br />

Tests show that given large sample-data sets, in particular where<br />

ancestral populations can be narrowed down by other means, sub-adults<br />

can be identified to racial group with up to 95% certainty. This is comparable<br />

to the success rate of ancestral identification in adults using<br />

established techniques.<br />

The presentation will outline the research behind the project, and<br />

the possibilities it offers with regards to forensic identification in the<br />

field or laboratory, both in an international and US context. It also outlines<br />

the future focus of the MorFIdS project, and the ways in which it<br />

is hoped to make these techniques more readily available to forensic scientists,<br />

archaeologists, and law enforcement personnel.<br />

Vidarsdottir US, O’Higgins P, Stringer C. A geometric morphometric<br />

study of regional differences in the ontogeny of the modern human facial<br />

skeleton. J Anat 2002;201(3):211-29.<br />

Geometric Morphometrics, Ancestry Assessment, Sub-Adults<br />

H21 Population Affinities of “Hispanic” Crania:<br />

Implications for Forensic Identification<br />

Dennis E. Slice, PhD*, Wake Forest University School of Medicine,<br />

Department of <strong>Bio</strong>medical Engineering, <strong>Medical</strong> Center Boulevard,<br />

Winston-Salem, NC 27157-1022; Ann H. Ross, PhD, North Carolina<br />

State University, Department of Sociology and Anthropology, Campus<br />

Box 8107, Raleigh, NC 27695-8107<br />

After attending this presentation, attendees will understand the<br />

extent of the morphological diversity of individuals classified as<br />

Hispanics and the potential of geometric morphometric methods for<br />

quantifying that diversity and incorporating it into the assessment of<br />

unidentified human remains.<br />

This presentation will impact the forensic community and/or<br />

humanity by illustrating the importance of regional diversity in the<br />

cranial morphology of persons identified as Hispanic in the United<br />

States using the relatively new methods of geometric morphometrics.<br />

The term “Hispanic” is used in the U.S. to identify persons of<br />

Spanish speaking countries and their descendants. Such classification,<br />

however, fails to recognize the varied genetic background of the subsumed<br />

populations resulting from the diverse ethnohistories and<br />

migration patterns of their native regions. In the forensic setting, the use<br />

of such a broad classification amounts to the disregard for potential<br />

sources of variation that could otherwise lead to a much more precise<br />

characterization of unidentified human remains.<br />

In this report, we present results of research designed to document<br />

and begin to address this problem. We use geometric morphometric<br />

methods to assess the craniometric affinities of a sample of modern<br />

Mexicans using the coordinates of twenty-three standard craniometric<br />

landmarks. The Mexican sample (n=31) was compared to samples of an<br />

indigenous pre-contact population (Ayalan) from Ecuador (n=13),<br />

modern Cubans (n=23), persons of African descent as represented in the<br />

Terry collection (n=18), modern Spanish (n=30), and pre-contact<br />

Cubans (n=6). Previous analysis had shown the modern Cubans were<br />

most similar to the Africans and only slightly less similar to the Spanish,<br />

but they were quite distinct from the pre-contact Cubans. This suggests<br />

a nearly complete replacement of the indigenous Cuban populations by<br />

an admixture of Spanish and Africans with a slightly higher African<br />

component. We speculated that other Hispanic populations, such as<br />

Mexicans, would show different results with a greater affinity toward<br />

indigenous populations and a much reduced similarity to persons of<br />

African descent.<br />

A nonparametric multivariate analysis of variance comparing the<br />

sum-of-squares accounted for by group membership to that of 999<br />

478


andom permutations of group membership showed differences between<br />

all pairs of samples to be highly significant, with p values at or near the<br />

minimum (p=0.001) possible for the test (p


H24 High Velocity Fluvial Transport:<br />

A Case Study From Tennessee<br />

Nicholas P. Herrmann, PhD*, Beth Bassett, MA, and Lee M. Jantz, PhD,<br />

University of Tennessee, 250 South Stadium Hall, Department of<br />

Anthropology, Knoxville, TN 37996<br />

After attending this presentation, attendees will have a better understand<br />

variations in skeletal transport in fluvial systems.<br />

This presentation will impact the forensic community and/or<br />

humanity by providing insight into the varied patterns of skeletal<br />

transport in different fluvial transport systems and will aid crime scene<br />

investigators and forensic anthropologists in future case work and<br />

research.<br />

Fluvial transport of human remains and the osteological evidence<br />

of such transport has been documented both anecdotally and systematically<br />

by various researchers during the past several decades.<br />

Historically, fluvial taphonomic studies have been applied to the interpretation<br />

of paleoanthropological contexts. The classic study by Boaz<br />

and Behrensmeyer (1976) documents the transportability of individual<br />

elements in flumes to simulate fluvial transport systems and provides an<br />

interpretive base for examining bone deposits recovered from fluvial<br />

systems.<br />

Researchers attempting to address current issues of fluvial transport<br />

in forensic anthropology have provided information on various riverine<br />

environments. The research by Dilen (1984) examines remains location<br />

and identification through the use of human-like mannequins. The mannequins<br />

were used to simulate the riverine transport of a human body<br />

and predict the behavior of partially decomposed human remains in such<br />

circumstances. Another study by Bassett and Manhein (2002), involves<br />

the documentation and evaluation of known Mississippi River cases to<br />

aid with the prediction of location of remains lost in a river environment.<br />

Still other studies address skeletal disarticulation sequences (Haglund,<br />

1993), osteological indications of fluvial transport and taphonomy<br />

(Nawrocki et al., 1997), and isolated cases of fluvial transport (Brooks<br />

and Brooks, 1997). While these studies provide valuable information for<br />

investigations of deaths involving riverine environments, none of them<br />

specifically address evidence of submersion and transport in more seasonal<br />

bodies of water.<br />

In this study the effects of a restricted high velocity periodic<br />

transport system are examined through a case example from East<br />

Tennessee. In the spring of 2003, the University of Tennessee Forensic<br />

Anthropology Center participated in the recovery of human skeletal<br />

material from a small, unnamed creek in Alcoa, Tennessee. The remains<br />

were completely skeletonized. Periodic high flow episodes had occurred<br />

in the creek due to heavy rain in the past 12 months and the skeletal<br />

material was scattered as a result of fluvial transport. Skeletal elements<br />

were recovered along a one-kilometer section of the creek bed.<br />

Topics addressed in this study include a discussion of the pattern of<br />

elemental transport relative to past research, illustrations of bone surface<br />

evidence of fluvial transport in the form of scratches and scrapes, and a<br />

discussion of the depositional context of the elements recovered. Insight<br />

into the varied patterns of skeletal transport in different fluvial transport<br />

systems will aid crime scene investigators and forensic anthropologists<br />

in future case work and research.<br />

Bassett HE, Manhein MH. Fluvial transport of human remains in the<br />

lower Mississippi River. J Forensic Sci 2002;47:719-724.<br />

Boaz NT, Behrensmeyer AK. Hominid taphonomy: transport of human<br />

skeletal parts in an artificial fluviatile environment. Amer J Phys<br />

Anthrop 1976;45:53-60.<br />

Brooks S, Brooks RH. The taphonomic effects of floodwaters on bone.<br />

In Haglund, WD, Sorg, MH, editors. Forensic taphonomy: the postmortem<br />

fate of human remains. New York: CRC Press, 1997; 553-558.<br />

Dilen DR. The motion of floating and submerged objects in the<br />

Chattahoochee River. Atlanta, GA. J Forensic Sci 1984;29:1027-1037.<br />

* Presenting Author<br />

Haglund WD. Disappearance of soft tissue and the disarticulation of<br />

human remains from aqueous environments. J Forensic Sci<br />

1993;38:806-815<br />

Nawrocki SP, Pless JE, Hawley DA, Wagner SA. Fluvial transport of<br />

human crania. In Haglund, WD, Sorg, MH, editors. Forensic<br />

taphonomy: the postmortem fate of human remains. New York: CRC<br />

Press, 1997; 529-552.<br />

Physical Anthropology, Taphonomy, Fluvial Transport<br />

H25 Investigation of Nocturnal Oviposition<br />

by Forensic Flies in Central Texas<br />

Robert S. Baldridge, PhD, Baylor University, PO Box 97388, Waco, TX<br />

76798; Susan G. Wallace, PhD*, Baylor University, PO Box 97370,<br />

Waco, TX 76798; Ryan Kirkpatrick, BS, Texas A&M University,<br />

Department of Entomology, College Station, TX 77843<br />

After attending this presentation, the participants will be presented<br />

with additional data supporting the idea that forensic flies do not oviposit<br />

under nocturnal conditions. These data and those from previous studies<br />

support the idea that lack of nocturnal oviposition should be considered<br />

in estimating the postmortem interval (PMI).<br />

This presentation will impact the forensic community and/or<br />

humanity by providing knowledge regarding the nocturnal oviposition<br />

behavior of forensic flies is required for estimating postmortem interval.<br />

The postmortem interval (PMI) establishes a framework within<br />

which the time of death can be estimated. Laboratory and field investigations,<br />

using non-human oviposition baits, are important in interpreting<br />

data associated with human death scene investigations. These investigations<br />

in different geographic areas identify the species available for<br />

ovipositing, the time of oviposition, and the effects of environmental<br />

factors on oviposition behavior.<br />

There continues to be discussion of the ability of flies to oviposit on<br />

corpses deposited at night. Several studies have reported nighttime<br />

oviposition under artificial lights and in darkened conditions. Other<br />

studies have reported no oviposition during the nighttime. Such contradiction<br />

continues to promote research to determine the degree to which<br />

nocturnal oviposition occurs.<br />

We will report on the effect of artificial light on oviposition by<br />

forensic flies in the Waco, Texas area. Three baits were used: 1) freshly<br />

killed white rats (Rattus rattus) (placed three feet off the ground), 2)<br />

recently thawed subadult pigs (Sus scrofa) (placed on the ground), and<br />

3) ground beef (fresh, one, two and three day old; placed three feet off<br />

the ground). The fly species attracted to and ovipositing on the baits and<br />

environmental parameters at the baits were recorded to determine the<br />

degree to which these factors might interact to affect fly attraction and<br />

oviposition. The elevated presentation of the rat and beef baits and the<br />

short exposure time for the pig baits minimized the effect on oviposition<br />

usually experienced from foraging workers of Solenopsis invicta (red<br />

imported fire ant) common in the area. However, during one observation<br />

period the rat bait was foraged on by vespid wasps and they did seem to<br />

interfere with oviposition by forensic flies.<br />

Field studies were conducted during the summer of 1993 (rats,<br />

seven nights, June-August, 1800-0900 hours CDST, urban site), and the<br />

summer of 2003 (pigs, three nights, June and July, 2100-2300 hours<br />

CDST, rural site; ground beef, three nights, 2200-0400 hours CDST,<br />

rural site). Diurnal oviposition studies determined that flies were present<br />

in the area and did oviposit on the baits. All baits were removed from<br />

the field sites and maintained under laboratory rearing conditions to<br />

determine fly species that oviposited on them.<br />

Species present on the rat bait included Phaenicia coeruleiviridis<br />

(green bottle fly), P. cuprinus (bronze bottle fly), Cochliomyia macellaria<br />

(secondary screwworm fly) and Sarcophaga haemorrhoidalis<br />

(flesh fly). With the exception of P. cuprinus, these species oviposited<br />

480


on rats (freshly killed, viscera exposed; placed at 1800, 2100, 2400, and<br />

0600 hours) in lighted and dark situations before 2130 hours and after<br />

0630 hours. The pig baits attracted Musca domestica (house fly), P.<br />

coeruleiviridis, C. macellaria, and Chrysomya rufifacies (the hairy<br />

maggot blow fly). These species arrived at, and oviposited on, pigs in<br />

lighted and dark areas before 2120 hours but not between 2120 and 2300<br />

hours. No flies oviposited on the ground beef baits placed in lighted and<br />

dark sites. These data support studies reporting no nocturnal oviposition<br />

by forensic flies.<br />

Forensic Science, Forensic Entomology, Nocturnal Oviposition<br />

H26 The Ability to Amplify Skeletal DNA<br />

After Heat Exposure Due to Maceration<br />

Krista E. Latham, MS*, Temple University, Department of<br />

Anthropology, 1115 West Berks Street, Philadelphia, PA 19122;<br />

Jennifer L. Harms, BS, Carlos J. Zambrano, BA, Mary K. Ritke, PhD,<br />

and Stephen P. Nawrocki, PhD, University of Indianapolis, Department<br />

of <strong>Bio</strong>logy, 1400 East Hanna Avenue, Indianapolis, IN 46227<br />

After attending this presentation, attendees will become aware that<br />

the heat generated by the boiling of skeletal remains during maceration<br />

does not adversely affect the ability to amplify and analyze skeletal<br />

DNA found in the bone samples.<br />

Forensic anthropologists can take bone samples for future DNA<br />

amplification (via the polymerase chain reaction) and analysis before or<br />

after removing soft tissues by the process of maceration. The heat and<br />

chemicals associated with the maceration process do not hamper the<br />

ability to successfully extract and amplify skeletal DNA found within<br />

the bone.<br />

The goal of this presentation is to present to the forensic anthropological<br />

community the effect of heat exposure, due to the maceration of<br />

soft tissues, on subsequent polymerase chain reaction (PCR) analysis of<br />

skeletal DNA.<br />

The sampling of skeletal material for genetic analysis is becoming<br />

increasingly common in the forensic sciences. For forensic anthropologists,<br />

a genetic profile obtained from skeletal DNA complements the<br />

biological profile constructed for an individual. In order to conduct a<br />

thorough skeletal analysis it is often necessary to remove by maceration<br />

any soft tissues that may conceal signs of trauma or bony landmarks<br />

used to create the biological profile. The maceration process involves<br />

immersing the remains in simmering water for an extended period of<br />

time. Because both heat and water are known to increase the rate of<br />

DNA degradation, and therefore hamper DNA amplification and<br />

analysis it is reasonable to think maceration may complicate the ability<br />

to successfully extract and amplify skeletal DNA found within the bone.<br />

However, the authors have previously demonstrated that the maceration<br />

of skeletal remains can improve the amount of extracted skeletal DNA<br />

detectable by chemiluminescent techniques, although the quantity of<br />

extracted DNA does not predict the quality or ability to amplify the<br />

DNA. This poster will present a subsequent study comparing the differences<br />

in the ability to amplify skeletal DNA before and after the process<br />

of removing soft tissue by maceration, and show that these differences<br />

are insignificant via statistical analysis.<br />

Femora were collected from Sus scrofa (pigs) displaying varying<br />

stages of natural decomposition, ranging from one month to one year of<br />

surface exposure in a wooded area, which would be similar to the condition<br />

of skeletal remains that a forensic anthropologist would receive<br />

for analysis. Pig remains were chosen because their bone decomposition<br />

and microstructure are similar to that of humans, and because specimens<br />

are easily obtained for experimental studies. Fifteen pig femora were<br />

sampled for genetic analysis before and after six hours of simmering in<br />

water, 70 ml of Borax and 100 ml of bleach (in a 50cmx31cmx15cm<br />

pan) at 95º C. An additional thirteen pig femora were sampled for<br />

genetic analysis before and after ten hours of simmering in water, 70 ml<br />

of Borax and 100 ml of bleach (in a 50cmx31cmx15cm pan) at 95º C.<br />

Time intervals of six and ten hours were chosen in order to investigate a<br />

wider range of heat exposure. Water was periodically added to keep the<br />

bones submerged and keep the Borax and bleach concentrations constant.<br />

Short interspersed nuclear elements (SINEs) are common target<br />

sites for PCR based genetic fingerprinting because of their high copy<br />

number in humans and other higher eukaryotes. A pig specific primer<br />

was designed to amplify a 374 base-pair region of the Pre-1 porcine<br />

SINE, which is found on several pig chromosomes. The Pre-1 porcine<br />

SINE primers were added to the skeletal DNA samples and amplified via<br />

PCR consisting of 35 consecutive cycles at 95º C for one minute, 62º C<br />

for one minute, and 72º C for one minute. The amplified samples were<br />

electrophoresed through an agarose gel and visualized after immersion<br />

in ethidium bromide and exposure to ultra-violet light. Amplification<br />

success was determined by the presence or absence of amplified skeletal<br />

DNA visible on the agarose gel. A total of 15 out of the 28 samples taken<br />

before maceration contained amplifiable DNA and 18 out of the 28<br />

samples taken after maceration contained amplifiable DNA. The number<br />

of samples containing amplifiable DNA before versus after maceration<br />

was compared using McNemar’s test for significant changes showed no<br />

significant difference between the two groups of samples at p=0.05.<br />

High temperatures are known to increase the rate of DNA degradation<br />

by disrupting the chemical bonds in DNA molecules and accelerating<br />

fragmentation rates. This investigation into the amplification<br />

success of skeletal DNA obtained before versus after maceration is of<br />

value to forensic anthropologists in demonstrating that the heat generated<br />

by the boiling of skeletal remains does not adversely affect the<br />

ability to amplify and analyze DNA found in the samples.<br />

Skeletal DNA, PCR, Maceration<br />

H27 Home is Where the Bones Are:<br />

Rat Nesting Behavior as a Tool<br />

in Forensic Investigations<br />

Tamara L. Leher, BA* and Turhon A. Murad, PhD, California State<br />

University, Chico, Department of Anthropology, Chico, CA 95929-400<br />

After attending this poster presentation, the attendee will gain a<br />

better understanding of the importance of rat nesting behavior to<br />

forensic field investigations, as well as the need to provide resources<br />

for appropriately trained personnel to aid in field survey and excavation.<br />

This presentation will impact the forensic community and/or<br />

humanity by emphasizing the need to be familiar with the nesting<br />

behavior of local rodent species as their nests may be a valuable source<br />

of evidence and human remains. This presentation also underscores the<br />

importance of providing resources for appropriately trained personnel in<br />

the areas of field survey and excavation techniques.<br />

The intent of this poster is to demonstrate the importance of<br />

thorough field investigation, highlighting the need to be familiar with rat<br />

nesting behavior. A case study will be presented to underscore the importance<br />

of investigating rat nests for human remains as well as for other<br />

evidence that may shed light on the nature of the events surrounding the<br />

death of a particular individual.<br />

It is not always the case that field investigators are able to discover<br />

the remains of an individual fully intact. In fact, it is often the case that<br />

the activities of any variety of animals can perplex field investigations,<br />

resulting in only the partial recovery of a set of remains. Rodents are<br />

infamous for their scavenging activity, often leaving their mark in the<br />

form of gnawing/bite marks. Eat and run is not always the rule of<br />

thumb; in fact some rodent species like to take their new found treasures<br />

home.<br />

481 * Presenting Author


Neotoma spp. (species vary region by region), known as the<br />

woodrat or packrat makes it a habit of collecting various objects,<br />

including wood, bone, shell, etc. The packrat will typically range within<br />

100 meters of their dens or nests, often at night and are found at elevations<br />

ranging from 0-3700m (depending on the species). Many species<br />

do not hibernate and will keep several food caches.<br />

Archaeologists, paleontologists, and others have been investigating<br />

rat nests and middens for over 50 years and in that time, have been able<br />

to produce not only plants and pollen, but shiny objects and a large<br />

quantity of bone as well. The packrats are notorious for incorporating<br />

bone into their nests and being attracted to shiny items.<br />

California State University, Chico, was contacted by a county in<br />

northern California to aid in the field recovery of human remains. Over<br />

a three day period, members of the CSU Chico Physical Anthropology<br />

and Human Identification Field Recovery Team traveled to the site,<br />

clearing brush, walking survey transects, and eventually excavating four<br />

packrat nests.<br />

While conducting the survey, human remains were encountered on<br />

the ground surface, protruding from and lying on top of what were identified<br />

as rat nests. The area was cleared of excess brush, poison oak, and<br />

a few smaller trees. When the area was clear, four distinct mounds were<br />

identified as packrat nests. Over the next two days, crews worked to<br />

carefully excavate and sift material from the nests. On the last day, a<br />

fifth nest was discovered at the base of a tree, resulting in the recovery<br />

of additional remains. In total, 85% of the individual was recovered,<br />

75% of which was located within the packrat nests.<br />

A complex case such as this illustrates the importance of packrat<br />

nests to field investigations. Familiarity with the scavenging practices,<br />

but more specifically the general behavior and habits of the rodent<br />

species of a particular region may result in the recovery of a more complete<br />

set of remains, as well as additional evidence. This case also underscores<br />

the importance of providing the necessary resources for those<br />

appropriately trained in field survey and excavation techniques so that<br />

they may collect remains and evidence from burial scenes and surface<br />

scatters.<br />

Rodent Behavior, Taphonomy, Forensic Anthropology<br />

H28 Anthropological Tissue Depth<br />

Measurement Standards: A Comparison<br />

For Accurate Facial Reproduction<br />

Stacie Terstegge, MS*, University of New Haven, Public Safety and<br />

Professional Studies, California Campus, 6060 Sunrise Vista<br />

Boulevard, Citrus Heights, CA 95610; Brandi Schmitt, MS, University<br />

of California, Department of Cell <strong>Bio</strong>logy and Human Anatomy,<br />

School of Medicine, Davis, CA 95616<br />

After attending this presentation, attendees will obtain comparison<br />

information regarding data for facial reproductions.<br />

This presentation will impact the forensic community and/or<br />

humanity by contributing additional novel data to a currently accepted<br />

investigation method.<br />

A comparison was performed between accepted anthropological<br />

tissue depth measurements and documented postmortem tissue depth<br />

measurements for the purpose of evaluating a standard facial reproduction<br />

(a.k.a. reconstruction) procedure. The intent of such an evaluation<br />

is to review standard reproduction techniques and measurements<br />

for their accuracy, and perhaps, identify areas where improvements may<br />

be necessary.<br />

The association between soft tissue and its underlying cranial morphology<br />

has been researched and reported upon in anthropological literature.<br />

However, there is a lack of research comparing facial reconstructions<br />

with documented tissue depth measurements taken immediately<br />

* Presenting Author<br />

post mortem. Additionally, a comparison of anthropological versus<br />

medical measurements, such as those utilized in plastic surgery reconstructions<br />

has not been previously conducted.<br />

The procedure of facial reproduction is a subjective matter, which<br />

requires much artistic interpretation. While this artistic interpretation is<br />

an integral element of facial reproduction, continued data collection may<br />

result in a more accurate and therefore, realistic interpretation. The<br />

premise of this study was the completion of a facial reproduction as may<br />

be executed in the course of an investigation with the artist blinded to all<br />

known specimen factors. A comparison of the finished reproduction<br />

product to pre-recorded tissue depth measurements was then performed.<br />

A whole body donor was identified and tissue depth measurements<br />

taken at various sites of the facial and cranial bones.The cranial<br />

specimen was then prepared via an accepted skeletonization procedure<br />

to remove the soft tissue and clearly expose the boney structures. The<br />

artist then conducted a preliminary examination of the skull to estimate<br />

age, sex, and race of the specimen. Both two and three-dimensional<br />

reproductions were performed. Upon completion of both, the artist was<br />

supplied with the previously collected data. The two dimensional reproduction<br />

was visually compared with photographs of the deceased taken<br />

approximately five days post mortem. Photographs were taken with<br />

scale. The three dimensional reproduction, and the associated measurements<br />

collected and utilized with standard methodology, were compared<br />

with the pre-documented tissue depth measurements of the specimen, in<br />

an attempt to assess accuracy within the facial reproduction/reconstruction<br />

process.<br />

Significant discrepancies were noted between standard anthropological<br />

tissue depth measurements and those collected post mortem from<br />

the donor specimen. The average measurement reported from the differences<br />

of the two measurement sets was 2.875 mm with a range of 0.25<br />

mm to 11.00 mm. While some of these variations may be attributable to<br />

normal anatomical variation, morphology, cranial position at death or<br />

traumatic injury, this does not account for the large range of measurements<br />

in all areas. These factors hold importance in the facial reproduction<br />

process as they account for a considerable part of the variation<br />

in the sketching and modeling processes. Additionally, while few<br />

medical measurements are reported in the literature, those that are can be<br />

valuable to the discipline of anthropology and specifically to the reproduction<br />

procedure(s). Overall results indicate that there is some level of<br />

inaccuracy that may be overcome with proper data collection and<br />

comparisons.<br />

It is envisioned that with additional research and long-term documentation<br />

of tissue depth measurements from donors of various age,<br />

gender and racial categories, there is potential for more accurate facial<br />

reproductions to be achieved.<br />

Facial Reproduction, Tissue Depth Measurement, Facial<br />

Reconstruction<br />

H29 Silent Slaughter in Guatemala: The<br />

Importance of Sex, Age, and Pathological<br />

Identification in a Case of Large Scale,<br />

Deliberate Starvation of Children<br />

Jason M. Wiersema, MA*, Department of Anthropology, Texas A&M<br />

University, College Station, TX 77840; Mario Vasquez, MA, Oficina de<br />

Derechos Humanos del Arzobizpado de Guatemala, 115 5th Avenue,<br />

Guatemala City, 33154, Guatemala; Luis Rios, MA, Department of<br />

Anthropology, Universidad Autonima de Madrid, Madrid, 15404, Spain<br />

After attending this presentation, attendees will be presented with<br />

another case in which complications associated with the application of<br />

inappropriate standards for sex, age, and pathological determination<br />

complicated a large scale forensic investigation.<br />

482


This presentation will impact the forensic community and/or<br />

humanity by making forensic scientists more aware of the need for the<br />

establishment of appropriate standards for sex and age determination as<br />

well as pathological lesion interpretation, and to advocate the establishment<br />

of population specific standards for populations whose circumstances<br />

are unique.<br />

This poster will use a case of large scale intentional starvation in<br />

Guatemala to demonstrate the importance of, and complications associated<br />

with the application of methods of aging and sexing, as well as the<br />

interpretation of pathological lesions on skeletal remains of a population<br />

with two confounding factors: subadult age, and chronic malnutrition<br />

prior to the event.<br />

The value of reliable techniques of age and sex determination is<br />

well known in the forensic setting. It is also well known that the existing<br />

techniques for determining age and sex are significantly influenced by<br />

outside factors such as population specific variation in growth rate and<br />

the influence of illness and/or malnutrition on skeletal maturation. This<br />

poster demonstrates a set of circumstances within which sex and age<br />

determination are of unique relevance, individually buried, uncommingled<br />

remains in an area for which standards for sex and age determination<br />

are not established and there is considerable reason to believe<br />

that the existing ones are not appropriate.<br />

Additionally, knowledge of the presentation and etiology of pathological<br />

conditions is known to be of considerable value in the interpretation<br />

of past lifeways from archaeological skeletal assemblages. This<br />

paper illustrates an instance in which this knowledge was of considerable<br />

forensic value, but that may fall prey to the same problems of<br />

interpretation that befall their interpretation in archaeological analyses<br />

(the osteological paradox).<br />

In the 1980s, the Central American country of Guatemala was in the<br />

midst of a war between the government and the country’s indigenous<br />

peoples which ultimately resulted in the massacre, forced disappearance,<br />

and extrajudicial killings of an estimated 100,000 to 140,000 primarily<br />

indigenous people. The year following the coup which resulted in Efrain<br />

Rios Montt’s seizure of the country’s presidency was by far the most<br />

devastating for the indigenous groups, only a small group of whom (in<br />

the form of leftist guerilla groups) had been fighting to improve their<br />

impoverished lifestyles and posed a threat to the government which was<br />

debatable at best. In 1982 the systematic removal of the adults and isolation<br />

of the children by the army, from the small Maya village of Ilom<br />

resulted in the deaths of approximately 150 children. It is suspected that<br />

the encirclement of the village by the military ultimately resulted in the<br />

deaths of the children by starvation rather than by the violent means used<br />

elsewhere. The ODHAG (Oficina de Derechos Humanos del<br />

Arzobizpado de Guatemala), a small forensic team funded by the<br />

Catholic church aimed, in the summer of 2003 to exhume the remains of<br />

some of these children in the hope that evidence supporting the starvation<br />

theory might be collected.<br />

The particular circumstances of the interment of these children,<br />

including their hasty burial by families upon their return and the lack of<br />

grave markers associated with the individual graves, the extent of vegetation<br />

growth and finally the fact that 21 years had passed since the<br />

graves were dug compromised the confidence with which the anthropologists<br />

could follow the information provided by family members<br />

regarding grave locations. Often, general grave location was known, but<br />

upon contact with remains during excavation, doubt arose in the minds<br />

of the anthropologists regarding the reliability of the location of the<br />

grave. This was exacerbated by the fact that the estimated ratio of<br />

children to adults in the village, as in much of rural indigenous<br />

Guatemala is around 10:1, the result being a high number of children in<br />

the cemetery with which these children might be confused. Additional<br />

complications arose in the lab. It could not be concluded that the use of<br />

existing techniques of subadult age determination (based on American<br />

and German children) was appropriate to these children given their<br />

chronic malnutrition. Also several of the existing techniques for sexing<br />

sub adult remains including form of the ilium and mandible were used,<br />

but their appropriateness to this particular population was difficult to<br />

determine.<br />

This poster illustrates these problems with photographs, diagrams,<br />

and comparisons to other data including the INCAP (Institute of<br />

Nutrition of Central America and Panama) longitudinal study that chronicled<br />

growth patterns of Guatemalan children and their response to nutritional<br />

supplementation. Upcoming research will compare specific portions<br />

of the INCAP data to the data collected here.<br />

Sex and Age Determination, Pathology Identification, Guatemala<br />

H30 Using Real-Time PCR Quantification<br />

of Nuclear and Mitochondrial DNA<br />

to Develop Degradation Profiles for<br />

Various Tissues<br />

Elias J. Kontanis, BS, BA*, Cornell University, Department of Ecology<br />

& Evolutionary <strong>Bio</strong>logy, Corson Hall, Ithaca, NY 14853<br />

The goals of this study are to develop nuclear and mitochondrial<br />

DNA postmortem degradation profiles for various soft and osseous<br />

tissues using real-time quantitative PCR; to compare the effectiveness of<br />

several DNA extraction and purification methods; and to mitigate the<br />

effects of co-extracted PCR inhibitors.<br />

This presentation will impact the forensic community and/or<br />

humanity by allowing investigators to optimize compromised tissue<br />

sampling, extraction, and purification protocols in order to facilitate the<br />

decedent identification process.<br />

DNA based decedent identification methods are dependant on the<br />

successful extraction, purification and amplification of template molecules.<br />

Oftentimes, samples encountered in forensic contexts are compromised<br />

due to postmortem degradation and environmental exposure.<br />

As a result, investigators must have a clear understanding of DNA<br />

amplification success potential for various tissues prior to sampling.<br />

Successful molecular analysis is also dependent on a comparative<br />

awareness of extraction and purification method effectiveness. This<br />

study explores DNA degradation as well as the isolation and purification<br />

capabilities of various extraction methods and inhibitor troubleshooting<br />

strategies.<br />

DNA was extracted from lung, liver, spleen, psoas muscle, parietal<br />

bones, ribs, vertebral bodies, and femoral shafts obtained over a two year<br />

period from 28 pigs: 14 placed in a pond shore environment and 14<br />

deposited on land beneath a broadleaf forest canopy. Tissue samples<br />

were extracted using the Armed Forces Institute of Pathology (AFIP)<br />

organic extraction protocol along with the Qiagen QIAamp® silica<br />

adsorption protocol. A 250 bp nuclear locus and a 226 bp region of the<br />

mtDNA D-loop were then amplified using the ABI® Model 7000<br />

Sequence Detector. A sequence specific fluorescent probe was used to<br />

estimate initial template copy number in each sample. During amplification<br />

the probe hybridizes to the target DNA sequence. TAQ DNA<br />

Polymerase subsequently cleaves a fluorescent reporter dye from the<br />

hybridized probe. Upon cleavage the reporter dye fluoresces. As additional<br />

target amplicons are produced during each PCR cycle, the fluorescent<br />

signal increases. Samples containing a greater initial template<br />

copy number will produce a detectable fluorescent signal at an earlier<br />

amplification cycle (i.e. detection threshold cycle). The relationship<br />

between initial template copy number and detection threshold cycle is<br />

used to develop a DNA degradation profile for each tissue sampled over<br />

the two year postmortem interval. The degradation profiles provide<br />

insight as to the suitability of each sample for nDNA or mtDNA analysis<br />

given a particular deposition environment and postmortem interval. The<br />

amplification efficiency of each successful reaction is also measured to<br />

assess the need for further template purification. Complete amplification<br />

failure is further evaluated using quality control PCR (qcPCR) to differ-<br />

483 * Presenting Author


entiate between amplification inhibition and DNA degradation beyond<br />

the limits of analytical sensitivity. Template samples determined to have<br />

co-extracted inhibitors are processed further to facilitate amplification.<br />

The effects of adding bovine serum albumin, sodium hydroxide, and<br />

larger quantities of Taq Polymerase on amplification efficiency are evaluated.<br />

Based on the aforementioned information, investigators will be able<br />

to optimize compromised tissue sampling, extraction, and purification<br />

protocols in order to facilitate the decedent identification process.<br />

DNA Degradation, Real-Time PCR, PCR Inhibition<br />

H31 Preservation in Paradise II:<br />

A Pre-Columbian Burial in a<br />

Contemporary Cemetery<br />

Kathryn M. Jemmott, MA*, CA Pound Human ID Laboratory,<br />

University of Florida, Building 114 SW Radio Road, Gainesville, FL<br />

32611; Ann H. Ross, PhD, North Carolina State University,<br />

Department of Sociology and Anthropology, Raleigh, NC 27612;<br />

Loreto S. Silva, Comision de la Verdad, Balboa, Panama City,<br />

Panama; Lazaro M. Cotes, Comision de la Verdad, Balboa, Panama<br />

City, Panama; Carlos Fitzgerald, PhD, Patrimonio Historico, Panama,<br />

Panama City, Panama<br />

The goal of this presentation is to document the discovery of a Pre-<br />

Columbian burial encountered in contemporary cemetery on the island<br />

of Coiba, Republic of Panamá.<br />

This presentation will impact the forensic community and/or<br />

humanity by enabling us to identify a unique, non-forensic feature in a<br />

contemporary forensic setting as well as providing insight into possible<br />

factors involved in the preservation of skeletal remains in a tropical environment.<br />

Pre-Columbian indigenous populations inhabited the island of<br />

Coiba, off the Pacific coast of the present-day Republic of Panamá, from<br />

approximately 500 BCE until the early 16th century with the arrival of<br />

the Spanish. This paper presents the excavation, recovery and analysis of<br />

a Pre-Columbian burial encountered in contemporary cemetery (the<br />

Marañon Cemetery), during the course of human rights work on the<br />

island of Coiba, Republic of Panamá. The Marañon Cemetery has served<br />

as a final resting-place for the inmate inhabitants of the Coiba prison<br />

colony from 1914 until 1992. The Pre-Colombian remains that are the<br />

focus of this work were encountered in a relatively shallow grave,<br />

approximately 55-cm in depth, on the west side of the cemetery and<br />

were arranged in a neat “packet style” burial.The remains were<br />

extremely fragmentary and fragile. All the bones displayed cortical<br />

flaking and many elements crumbled upon contact. Roots and dirt were<br />

present in almost all of the elements. All skeletal elements appeared to<br />

be represented, although the deteriorating preservation did not permit the<br />

intact recovery or inventory of all elements. However, even though the<br />

general state of preservation of this burial was poor, several nearly complete<br />

bones were recovered. The remains were not in an anatomical or<br />

articulating position, indicating that they were skeletonized when they<br />

were placed in the grave. Historical sources document that the Guaimi<br />

Indians of the Chiriquí region observed similar burial practices,<br />

exposing the cadaver on a platform for a year and then interring the<br />

bones in family burial grounds. The skeleton was determined to most<br />

likely represent a female, based on gross cranial and pelvic morphology,<br />

in her late teens or early twenties. Age was assessed via the epiphyseal<br />

closure method. Fragments of iliac crest displayed clear epiphyseal scars<br />

and the vertebral epiphyses were not fused to the vertebral bodies, suggesting<br />

an age of less than 25 years. Ancestry was assessed via morphological<br />

features and pathologic conditions of the remains. Severe wear<br />

was exhibited on the teeth, especially the molars and incisors, exposing<br />

the dentin. Some degree of flattening was observed on the occipital.<br />

Expansion of the diploë was noted, with cranial thickness measured at<br />

* Presenting Author<br />

10mm. Porotic hyperostosis was present on the parietals and the<br />

occipital while significant bilateral cribra orbitalia was noted on the<br />

orbital plates of the frontal. These latter conditions are indicators of<br />

anemias that are commonly observed in prehistoric populations, but are<br />

rarely seen in contemporary populations. Linear enamel hypoplasias<br />

were noted on a canine and an incisor. This suite of traits indicates that<br />

these remains are of pre-Columbian indigenous origin and not of<br />

forensic medico-legal significance. While the state of preservation of<br />

this burial would by and large be considered poor, the authors were surprised<br />

to find that it was actually better preserved than many of the contemporary<br />

burials that were examined. Factors possibly contributing to<br />

this differential preservation may be the fact that the burial was located<br />

further away from the destructive palm root systems on the east side of<br />

the cemetery, and that the remains were skeletonized when they were<br />

buried, depriving the root systems and insects of soft tissue on which to<br />

feed. This unique burial enabled us to identify a non-forensic feature in<br />

a contemporary forensic setting as well as providing insight into possible<br />

factors involved in the preservation of skeletal remains in a tropical environment.<br />

Pre-Columbian Burial, Forensic Anthropology, Tropical<br />

Environment<br />

H32 The Archaeology of Tyranny<br />

Lazaro M. Cotes, Comision de la Verdad, Balboa, Panama City,<br />

Panama; Kathryn M. Jemmott, MA, CA Pound Human ID Laboratory,<br />

University of Florida, Building 114 SW Radio Road, Gainesville, FL<br />

32611; Loreto S. Silva, Comision de la Verdad, Balboa, Panama City,<br />

Panama; Ann H. Ross, PhD, North Carolina State University,<br />

Department of Sociology and Anthropology, Raleigh, NC 27612<br />

The goal of this presentation is to present the identification of<br />

human rights victims in the Republic of Panamá.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating anthropological methods that can be successfully<br />

used for human rights identifications, even in tropical environments,<br />

that are not conducive to good preservation of remains.<br />

The Republic of Panamá has experienced a tumultuous first century<br />

of independence from Colombia, including the military dictatorships of<br />

Omar Torrijos (1968-1981) and Manuel Noriega (1981-1989), and the<br />

United States invasion in 1989. During the period of the dictatorships,<br />

over one hundred individuals were “disappeared” or executed for their<br />

political views. In 2001, the Panamanian Truth Commission (Comisión<br />

de la Verdad) was formed in attempts to identify the “disappeared” and<br />

offer some closure to the families of the victims. Based on informant testimony<br />

received by the Truth Commission that suggested some of the<br />

“disappeared” may be on Coiba, the authors, under the auspices of the<br />

Truth Commission, and with the cooperation of the National Police and<br />

the assistance of many others, undertook a large scale excavation of the<br />

Marañon Cemetery on the island of Coiba, Republic of Panamá. A Tprobe<br />

was used to locate soft areas in the ground, suggesting possible<br />

graves. Workmen shoveled down through the ground until the outlines<br />

of a grave or remains were located, or until hard, undisturbed ground<br />

was reached. Careful excavation of the remains then followed, in hopes<br />

of retrieving intact elements to aid in the identification process.<br />

This paper will focus on the analysis of the remains of two individuals,<br />

one who remains unidentified, the other who now has name,<br />

Jerónimo Díaz Lopez. The first individual nicknamed El Pectorado, for<br />

the large wooden cross lying on top of the chest area, was in a relatively<br />

good state of preservation. The remains were determined to represent an<br />

adult male of indigenous ancestry (like the general population of<br />

Panama) most likely in his late thirties or forties. A reactive healing<br />

fracture was noted at the distal third of the left fibula. In addition, there<br />

was evidence of a healed fracture to the right nasal and frontal process<br />

of the maxilla. A perimortem, comminuted fracture with no evidence of<br />

484


healing was observed approximately one third of the distance from the<br />

acromial end on the left clavicle. Fractures of the outer third of the<br />

clavicle are relatively rare, involving only 15 to 30% of clavicular fractures.<br />

The fracture appears to have resulted from a direct blow to the<br />

anterior aspect of the one, rather than a fall on a shoulder, which is the<br />

most common cause of clavicular fractures. This individual may represent<br />

one of the prison inmates or one of the “disappeared,” and the<br />

authors continue to hope that his biological profile may match a profile<br />

as information continues to be revealed.<br />

The other set of remains, now identified as Jerónimo Díaz Lopez,<br />

displayed variable states of preservation with the long bones being relatively<br />

well preserved, while the axial skeleton was very fragmentary and<br />

poorly preserved. Several religious artifacts, such as rosaries and religious<br />

icons, were found around the neck area. Sex was assessed via<br />

gross morphology of the cranium and pelvis and age was assessed via<br />

the epiphyseal union method. The remains were determined to be those<br />

of a male in his early twenties, with African admixed ancestry. Seven<br />

coins were also recovered in the grave with dates ranging from 1965 to<br />

1983, indicating a date of death no earlier than 1983. All of these factors<br />

were consistent with the biological profile of Jerónimo, who was said to<br />

have escaped Coiba on a raft in 1985. The clinching identifying characters<br />

were two gold upper central incisors, one of which was false, the<br />

other was a gold cap inscribed with what appeared to be the letter “V.”<br />

These teeth were consistent with those of Jerónimo, described by his<br />

sister, and positively identified by his brother. After 18 years of wondering<br />

where Jerónimo was, if he would ever come home, his family<br />

now knows where he has been and that, unfortunately, he cannot return<br />

home. This work demonstrates that anthropological methods can be successfully<br />

used for human rights identifications, even in tropical environments,<br />

that are not conducive to good preservation of remains.<br />

Human Rights, Panama, Forensic Anthropology<br />

H33 An Historical Perspective on<br />

Nonmetric Skeletal Variation:<br />

Hooton and the Harvard List<br />

Joseph T. Hefner, BS*, Department of Anthropology, University of<br />

Florida, 5007 NW 29th Street, Gainesville, FL 32607; Stephen D.<br />

Ousley, PhD, Smithsonian, NMNH MRCI 138, Washington, DC 20560;<br />

Michael W. Warren, PhD, Department of Anthropology, University of<br />

Florida, Gainesville, FL 32605<br />

After attending this presentation, attendees will learn the historical<br />

perspective on Earnest Hooton’s research on nonmetric morphological<br />

variants as indicators of ancestry.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating increased awareness of the development of<br />

nonmetric trait analysis within forensic anthropology.<br />

Earnest A. Hooton (1887 – 1954) was perhaps the most influential<br />

physical anthropologist among early researchers interested in the field of<br />

race and race studies. Hooton single-handedly trained most of the dominant<br />

contributors to the study of race. During his tenure at Harvard<br />

University, beginning in 1913, and ending with his death in 1954, he displayed<br />

an active interest in all things racial. The focus of this presentation<br />

is his research detailing the nonmetric morphological variants he<br />

prescribed as useful indicators of racial affinity.<br />

Hooton believed it was possible to find non-adaptive morphological<br />

variants capable of differentiating the various ‘races’ of man and<br />

that morphological features were of greater anthropological significance<br />

than diameters and indices. In lecture notes obtained from the Peabody<br />

Museum, Hooton expresses his views concerning the advantages and<br />

disadvantages of morphological (as opposed to metric) observations as<br />

racial criteria. Advantages of anthroposcopy and morphological traits<br />

according to Hooton are: “1) [They] spring to the eye, [and are] qualitative<br />

as well as quantitative; 2) [They are] dependent upon form dif-<br />

ference rather [than] size, [or] proportions; and 3) [Are] more certainly<br />

heritable.” The only disadvantage of morphological treatment, according<br />

to Hooton, was that many of the traits are incapable of metric treatment.<br />

Hooton, whose list of students represents a Who’s Who of later<br />

race/ancestry researchers, passed on to his students traits he deemed<br />

diagnostic of race. They are not referenced to a particular study by<br />

Hooton; rather, they represent his legacy as a teacher. These traits, and<br />

their perceived value in ancestry determination, have continued to be<br />

passed on from mentor to student, almost unchanged to the present day.<br />

Despite their widespread use, actual frequencies in more modern populations<br />

have only recently been adequately assessed.<br />

To facilitate data collection, Hooton began to develop the forms and<br />

standard descriptions known as the Harvard List. The List has changed<br />

little since the time Hooton was recording data. Although no one knows<br />

for sure how many anthropologists use similar versions of the List, it is<br />

reasonable to assume that a majority of Hooton’s students used or borrowed<br />

from it when establishing their own laboratory protocols for data<br />

collection. Hooton believed that “methods and methodology [were] the<br />

very vitals of any study and should be kept up to date and in the forefront<br />

of ones thinking.” In an unpublished manuscript, Hooton tests the<br />

Harvard List on five of his former students – Coon, Angel, Birdsell,<br />

Lasker, and Newman – to assess their ability to score nonmetric variants<br />

without standard illustrations. This preliminary test failed miserably,<br />

with the observers in agreement in only 18.7% of the cases. These formative<br />

tests pointed out a shortcoming of the List – a lack of standardized<br />

scales for observation. Unfortunately, the Hooton archives do<br />

not include the second trial of these five participants utilizing standard<br />

scales, so it will never be known whether the scales would have helped,<br />

or whether Hooton was satisfied with the use of the Harvard List by subsequent<br />

researchers. Despite his awareness of this shortcoming and his<br />

attempts to resolve the issue, the lack of standardized descriptions of<br />

morphological variants continues to present a serious obstacle to<br />

accurate and consistent ancestry determination by modern physical<br />

anthropologists.<br />

Ancestry, Nonmetric Variation, E. A. Hooton<br />

H34 Nonmetric Trait Frequencies<br />

and the Attribution of Ancestry<br />

Steven N. Byers, PhD*, University of New Mexico at Valencia, 280 La<br />

Entrada Road, Los Lunas, NM 87031<br />

After attending this presentation, attendees will understand the<br />

value of nonmetric trait frequencies in attributing ancestral group to<br />

human skeletal remains.<br />

Forensic anthropologists and other scientists will realize the complexity<br />

of using nonmetric traits to attribute ancestry.<br />

A study was performed to explore the possibility of attributing<br />

ancestry to human skeletal remains from nonmetric trait frequencies.<br />

Since the attribution of ancestral group (e.g., race) is one of the four<br />

major demographic characteristics used by law enforcement agencies to<br />

begin the process of matching skeletal remains to missing persons files,<br />

any method that aids in the correct determination of this trait is of no<br />

small importance to forensic anthropologists.<br />

Published statistics of ancestral groups in the United States (e.g.,<br />

White, Black, Asian, American Indian, and Hispanic) were gathered<br />

both from the general population and from population subgroups (e.g.,<br />

state, local statistics) as well as from US crime statistics. Also, the frequency<br />

of nonmetric traits of the teeth (e.g., shovel-shaped incisors,<br />

Bushman canine), skull (e.g., os japonium, Inca bones), and postcranium<br />

in these groups also were gathered. Using simple mathematical (e.g.,<br />

combinatorics) and statistical techniques (e.g., Bayes’ Theorem), these<br />

data were analyzed several different ways to determine their value in<br />

attributing ancestry. First, the occurrence of a trait was used to compute<br />

the probabilities of ancestral grouping using raw frequencies of indi-<br />

485 * Presenting Author


vidual characteristics. Next, these frequencies were combined to<br />

determine the value of the occurrence of multiple traits to attribute<br />

ancestral group; at this stage, methods were used to combine these traits<br />

assuming both independence and dependence of trait occurrence (e.g.,<br />

the probability of shovel-shaped incisors and incisor winging). Finally,<br />

these data were entered into Bayes’ Theorem to estimate ancestry from<br />

the occurrence of a trait or suite of traits given the breakdown of<br />

ancestral groups both in the general population and within smaller<br />

demographic areas (e.g., state, county) as well as statistics on deaths due<br />

to murder, suicide, and accident.<br />

Some surprising, and even unlikely, results were obtained. For<br />

example, although shovel-shaped incisors are much more common in<br />

people of Asian ancestry (including Native American) than those<br />

descended from native people of Europe and Africa, the occurrence of<br />

this trait in a skeleton gives only a probability of p=.345 that the person<br />

was of Asian ancestry. This is due to the small portion of people in this<br />

group (approximately 4.5%) in the general US population. The probability<br />

of White ancestry with the occurrence of this trait is approximately<br />

p=.526 while it is p=.129 for Black ancestry. This result is surprising<br />

considering the weight given by forensic anthropologists to the<br />

appearance of such features. With this and similar findings in mind, a<br />

number of questions emerge from this study. First, how accurate are the<br />

published frequencies of these traits? (Hrdlicka reported a frequency of<br />

8.8% for U.S. Whites with shovel-shaped incisors.) Second, how representative<br />

of the general population of the United States are these frequencies?<br />

Third, should the frequencies in the general population be<br />

used in these calculations or are local and even death statistics (particularly,<br />

criminal deaths) more appropriate? Given the complexity of this<br />

situation, it appears that considerable judgment must be used when<br />

employing nonmetric traits in the attribution of ancestry.<br />

Nonmetric Traits, Ancestry, Bayes’ Theorem<br />

H35 Non-Metric Indicators of Ancestry:<br />

Making Non-Metric Traits More<br />

User Friendly in Racial Assessments<br />

Michael Finnegan, PhD*, Kansas State University, Osteology<br />

Laboratory, 204 Waters Hall, Manhattan, KS 66506<br />

Attendees at this presentation will be able to assess the utility of<br />

racial assessment of skeletal remains primarily between Caucasoid and<br />

Negroid ancestries. They will learn the accuracy of radiographic technique<br />

on cranial remains and which infracranial non-metric traits are<br />

best suited for accurate racial assessment. Finally, they will have an<br />

appreciation of the most productive infracranial traits used in discriminating<br />

between Negroid and Caucasoid ancestry in skeletal forensic<br />

cases or cases involving human rights violations.<br />

The addition of techniques, procedures and methodology in the<br />

estimation of racial ancestry in difficult forensic cases-either current<br />

legal cases or cases of human rights violations.<br />

During the last 25 years, a number of techniques have been<br />

employed to use non-metric traits, either singularly or in various sets, as<br />

an indicator of skeletal ancestry. Works by Finnegan and Schulter-Ellis,<br />

1978; Cooprider et al., 1980; Finnegan and Rubison 1984; and Finnegan<br />

1994, have addressed the usefulness of a variety of radiographic and<br />

observational non-metric trait techniques in assessing the racial affiliation<br />

of earlier human crania and infracranial skeletons and the more<br />

applied assessment of single skeletal remains to their parent racial group<br />

using various non-metric traits. While classification accuracy of<br />

pairwise comparisons ranges from 85% to 95% in infracranial archaeological<br />

and cadaver dissection room materials samples and specific<br />

cranial pairwise comparisons approach 98% accuracy between<br />

Caucasoid and Negroid cranial samples. However, a number of the necessary<br />

techniques are either quite time consuming or statistically tedious<br />

and therefore not in general use. A general, less cumbersome discrim-<br />

* Presenting Author<br />

inant analysis is needed if non-metric infracranial traits can be employed<br />

in current and future case work in forensic anthropology.<br />

To these ends, the data on thirty infracranial traits were taken on<br />

356 individuals from three earlier archaeological samples; Aleuts, Coast<br />

Eskimo and Yukon River Eskimo, and two cadaver dissection room<br />

samples, Americans with predominately Caucasoid ancestry. and<br />

Americans with predominately Negroid ancestry. All samples were<br />

housed at the Department of Anthropology at the Smithsonian<br />

Institution. The sex of the skeletons was known in the dissection room<br />

samples. In the archaeological samples, sex was estimated on the basis<br />

of pelvic morphology. While infracranial non-metric traits are rarely<br />

significantly different from side to side in population samples, they are<br />

often asymmetric from side to side within the individual. Therefore, for<br />

the purpose of racial differences, each side was considered a data set,<br />

thus allowing 2N for our sample, or 712 items. Since all individuals did<br />

not have all or complete elements, the number of observations per<br />

skeleton varied slightly. As well, those elements showing pathology or<br />

trauma, either antemortem or postmortem, were also excluded. As a<br />

result, the final sample sizes were slightly reduced.<br />

The criteria for scoring the non-metric traits was taken from<br />

Finnegan (1978). To eliminate inter-observer error, all observations and<br />

data recordings were made by the author. Skeletal elements read early<br />

in the day were reread late in the day to control any evolution in the<br />

reading criteria.<br />

The results of pairwise comparisons and the accuracy of individual<br />

assignments varied considerably between population groups (68% to<br />

92%). None of the individual comparisons met the accuracy suggested<br />

by reported cranial or infracranial non-metric population studies!<br />

However, some selection of particular infracranial non-metric traits did<br />

produce more consistent classification assignments (78% to 96%), but<br />

an a priori selection limiting the number of non-metric traits and population<br />

samples was necessary. This a priori selection may not distract<br />

from the usefulness of using infracranial non-metric traits in the<br />

assessment of ancestry in skeletal forensic cases or cases involving<br />

human rights violations.<br />

Cooprider KB, Rubison RM, Finnegan M. Racial classification based<br />

on non-metric skeletal traits. Homo 1980; 31(1):1-21.<br />

Finnegan M. Non-metric variation of the infracranial skeleton. J<br />

Anatomy 1978;125(1):23-37.<br />

Finnegan M, Rubison RM. Multivariate distances and multivariate classification<br />

systems using non-metric traits in biological studies. In: Van<br />

Vark GN, Howells WW, editors. Multivariate Statistical Methods in<br />

Physical Anthropology. Dordrecht, Holland: Reidel Publishing,<br />

1984;69-80.<br />

Finnegan M. Schulter-Ellis FP. The tympanic plate in forensic discrimination<br />

between American Blacks and Whites. J Forensic Sciences,<br />

1978;23(4):771-777.<br />

Race, Skeletal Remains, Ancestry<br />

H36 Playing the “Race” Card Without a<br />

Complete Deck: The Addition of<br />

Missing Asian Data to Aid Racial<br />

Determinations in Forensic Casework<br />

David R. Rankin, MA*, and C.E. Moore, PhD, U.S. Army Central<br />

Identification Laboratory, Hawaii, 310 Worchester Avenue, Hickam<br />

AFB, HI 96853-5530<br />

After attending this presentation, the viewer will understand: 1) the<br />

application of non-metric methods in race determination of human<br />

skeletal remains in forensic casework, 2) the necessary utility this<br />

affords the forensic scientist in determining an individual biological<br />

profile and ultimately, individual identification, and 3) improvements<br />

needed in the reference population data set.<br />

486


This presentation will impact the forensic community and/or<br />

humanity by improving the accuracy in making racial estimations of<br />

human remains within the context of forensic identification casework,<br />

specifically addressing the problem of a lack of a true Asian population<br />

in the reference data used in the determination of Mongoloid remains.<br />

The identification of human skeletal remains in forensic casework<br />

often requires both inductive and deductive observations. The process<br />

requires first the deductive capability of building a singularly clearer<br />

picture, or biological profile, of an individual from potentially a whole<br />

suite of smaller clues – in the case of the forensic anthropologist, specific<br />

bony landmarks. Inductive processes then take over in the comparison<br />

of specific characteristics from this unknown individual with<br />

like characteristics observed in medical and dental records of known<br />

individuals fitting the same general profile. This is a practical application<br />

of the science of anthropology to problems in the “real” world.<br />

The forensic application of anthropology to the problem of racial<br />

estimation is often misconstrued as inconsistent with theoretical components<br />

of biological anthropology. However, basic tenets must be emphasized<br />

in the application of anthropological techniques towards forensic<br />

ends: (1) Forensic anthropologists do not place value judgments on their<br />

determinations of race, and unlike pure academic anthropology, which<br />

focuses on describing population groups and their life-ways, forensic<br />

applications of the science ultimately seek to identify the individual;<br />

(2) Race is an important social construct that can often be assessed through<br />

skeletal observation, and since the public that is served by forensic investigation<br />

requires descriptive diagnoses which can be applied to narrow the<br />

search for individual identity, forensic anthropologists would be remiss to<br />

disregard the ability to identify these skeletal traits. Forensic determinations<br />

of racial affiliation do not further notions of racism. At the same time<br />

forensic anthropologists must work within the framework understood by<br />

the living, applicable to how they perceive themselves. Genetically based,<br />

phenotypically expressed, or characteristically perceived, race determinations<br />

are a valid and important tool used in the forensic sciences successfully<br />

to help achieve positive identifications and bring needed closure to<br />

both loved-ones and the judicial process.<br />

It is the nature of comparative methods that a reference sample representing<br />

a population be a true model of that group. For years, the broad<br />

reference population designated “Mongoloid” has been defined by<br />

studies almost entirely derived from “Southwestern Mongoloid” remains<br />

(Rhine 1990). The model in general has been developed by researchers<br />

most familiar with American forensic cases, skeletal series such as the<br />

Terry and Hamann-Todd collections, and a variety of Native American<br />

archaeological populations. Clearly, data specifically including Asian<br />

and Southeast Asian populations are under-represented. Our research<br />

involves an examination of non-metric cranial features in modern<br />

Southeast Asian skeletal populations. Skeletal collections from the<br />

Chiang Mai University <strong>Medical</strong> School, Thailand, the Mahidol School<br />

of Medicine in Bangkok, Thailand and a collection of remains stored in<br />

the Memorial Museum at the former Choeung Ek Khmer Rouge prison<br />

camp near Phnom Penh, Kingdom of Cambodia were subjected to nonmetric<br />

trait analysis. The results will be evaluated by critical comparison<br />

to the model for Southwestern Mongoloid as described by Rhine in his<br />

1990 publication “Non-Metric Skull Racing,” in the edited work<br />

Skeletal Attribution Of Race (Gill and Rhine 1990). Standard criteria<br />

were used for assessing racial affinity in forensic contexts. It is hypothesized<br />

that the Southeast Asian remains will display some trait frequencies<br />

relatively consistent with the standard repertoire of Mongoloid<br />

traits, but that they will also display features and trait frequencies that<br />

contradict the commonly accepted model. The end result of this research<br />

will be presented here and will contribute to the important ongoing<br />

critical evaluation of forensic racial assignation, expand the overall<br />

database of non-metric cranial traits in human populations, and refine<br />

the criteria for assessing racial affiliation in forensic contexts.<br />

The opinions and assertions expressed herein are solely those of the<br />

authors and are not to be construed as official or as the views of the United<br />

States Department of Defense, the United States Department of the Army,<br />

or the United States Army Central Identification Laboratory, Hawaii.<br />

Non-Metric Race Determination, Human Skeletal Remains,<br />

Forensic Casework<br />

H37 The Zygomaticomaxillary Suture:<br />

A Study of Variability Within Homo Sapiens<br />

Amy A. Holborow, BS, MA*, Department of Anthropology, University<br />

of Wyoming, PO Box 3431, Laramie, WY 82071<br />

After attending this presentation, attendees will understand how<br />

one can use zygomaticomaxillary suture patterning to aid in the identification<br />

of an individual’s ancestry.<br />

This research will have an immediate impact throughout the field of<br />

forensic anthropology because it illuminates previous studies and gives<br />

more detailed insight into population biology.<br />

This research examines the frequency of occurrence of different<br />

zygomaticomaxillary suture shapes/forms among major populations of<br />

Homo sapiens. This study tests the hypothesis that zygomaticomaxillary<br />

suture shapes do not differ in frequencies within various major populations<br />

of Homo sapiens. This research expanded on a previous study<br />

(n=133) by examining a sample size of 769 individuals from eleven<br />

major worldwide populations. Frequencies of these two suture shapes<br />

were determined for each of the populations and this evidence was used<br />

to determine the forensic utility of this trait. Populations examined for<br />

this study include U.S. Whites, American Indians from the Southwest,<br />

American Indians from the Great Plains of North America, U.S. Blacks,<br />

Japanese, Northern Chinese, Southeastern Chinese, Mongolians,<br />

Australian Aborigines, Peruvians, and East Polynesians from Easter<br />

Island.<br />

The primary goal of this research is to assess the frequencies of<br />

suture shapes within a sample that represents many of the world’s major<br />

populations. A second objective of this study is to determine whether or<br />

not other suture shapes exist besides the curved and angled forms<br />

described in previous studies. The third goal has been to determine the<br />

forensic utility of using suture patterning to aid in the identification of an<br />

individual’s ancestry.<br />

Two methods, a visual assessment and a metric assessment, are<br />

used to classify the angled and the curved suture patterns. For many<br />

years, the visual method was accepted as the standard way to assess the<br />

zygomaticomaxillary suture pattern. While testing the visual method, the<br />

author found that many individuals are hard to assess visually, meaning<br />

it is difficult to tell whether they have angled or curved patterns. These<br />

borderline patterns appear to look ‘straight’ until the use of metrics<br />

allows one to determine reliably whether the pattern is angled or curved.<br />

Through testing, the author established a more accurate method using<br />

calipers to take three measurements along the suture. The three measurements<br />

taken along the suture are: M1= zygoorbital breadth; M2 =<br />

bimaxillary breadth; and M3 = widest breadth along the sutures at any<br />

point above the bimaxillary points. These measurements allow for the<br />

assessment of the overall suture pattern for an individual in a manner<br />

that is more objective, replicable, and testable.<br />

After collecting data from 11 different populations (n=769) the null<br />

hypothesis was rejected. As a result of this study it was discovered that<br />

many populations do pattern well and have significantly higher frequencies<br />

of angled or curved forms. The author established that the previously<br />

documented curved and angled forms are the only two shapes<br />

that consistently pattern well within populations. Furthermore, the<br />

author determined that this trait is forensically useful in assessment of<br />

ancestry, however, it is not as definitive as suspected in previous studies.<br />

This research also revealed the weakness in using one trait solely for<br />

race attribution. The zygomaticomaxillary suture is a useful forensic trait<br />

only when combined with the many others used to assess ancestry. With<br />

documented suture pattern frequencies for many populations, forensic<br />

487 * Presenting Author


anthropologists will now know what the probability of assessing<br />

ancestry is using zygomaticomaxillary suture patterns. This research will<br />

have an immediate impact throughout the field of forensic anthropology<br />

because it illuminates previous studies and gives more detailed insight<br />

into population biology.<br />

Forensic Anthropology, Zygomaticomaxillary Suture, Ancestry<br />

H38 Racial Variation in Palate Form and the<br />

Shape of the Transverse Palatine Suture<br />

Kristen J. Rawlings, MA*, University of Wyoming, Department of<br />

Criminal Justice, A&S 223, PO Box 3197, Laramie, WY 82071<br />

After attending this presentation, attendees will have been presented<br />

for consideration of forensic and physical anthropologists the<br />

racial differences noted between Black, White, and Native Americans in<br />

palate shape and transverse palatine suture form.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that both palate form and transverse palatine<br />

suture shape differ significantly by major racial population and are,<br />

therefore, of value in assessing ancestry from skeletal remains. Palate<br />

form is shown to be of much greater utility in this regard than is palatine<br />

suture shape and can be seen from this study to be one of the very best<br />

areas of the skeleton for the attribution of race within Homo sapiens.<br />

Regardless of the debate over the validity of race, the identification<br />

of ancestry through the quantification of observable racial characteristics<br />

has proven essential in forensic casework in order to help establish a<br />

victim’s identity. This study defines two skeletal traits thought to be<br />

important to skeletal biologists and forensic anthropologists – the shape<br />

of the external bony palate and the form of the transverse palatine suture.<br />

The frequency of occurrence of both traits is determined for three North<br />

American skeletal population samples, which will be referred to here as<br />

Black American, Native American, and White American.<br />

As early as 1916, physical anthropologists noted variations in<br />

palatal form. Earnest A. Hooton created a checklist for anthropology students<br />

at Harvard University to insure consistency in the research performed<br />

on various osteological specimens. On this list, Hooton noted<br />

shapes of palates. While these data were collected, they do not appear<br />

to have been compiled in any systematic scientific study. After the creation<br />

of the Harvard Checklist, palatal forms went virtually unnoticed<br />

until the latter half of the 20th century. Although researchers mention<br />

variation in palatal form, a comprehensive study of these forms was not<br />

performed until the early 1980s. Then, George W. Gill added palatal<br />

forms to the University of Wyoming’s Osteology Checklist. Samples of<br />

Plains Indians and Pioneer Whites were examined from the University<br />

of Wyoming collections, as well as American Blacks from the Terry<br />

Collection of the Smithsonian Institution. After 15 years of collecting<br />

data on forensic and archaeological specimens, Gill noticed what he<br />

thought were clear patterns of palatal form variation. Gill also described<br />

palatal form trends within major geographic populations.<br />

Masters student Patrick Chapman was asked, in the early 1990s, to<br />

begin compiling data on palatal forms. Chapman began to compile data<br />

for the study from additional records of the osteological repository at the<br />

University of Wyoming. This survey included specimens returned to law<br />

enforcement agencies, Native American groups, Peruvians, Polynesians,<br />

and others.<br />

From these data, Chapman recorded the palatal forms he looked at<br />

in three basic categories outlined in the Harvard Checklist – triangular<br />

(parabolic), elliptic, and hyperbolic. Chapman further illustrated what<br />

Gill had suggested – that these palatal forms occurred in different frequencies<br />

within the various major geographic racial groups represented<br />

in the United States. According to Chapman’s compilation, Black<br />

Americans frequently exhibit hyperbolic palatal forms, Native<br />

Americans and East Asians often show elliptic forms, and White<br />

Americans tend to display parabolic palatal forms. Chapman also<br />

* Presenting Author<br />

worked with many specimens from Gill’s research on Easter Island and<br />

in Peru, finding interesting correlations with these populations as well.<br />

However, the current study focuses solely on Black, Native, and White<br />

American groups.<br />

Chapman also compiled research collected by Gill on transverse<br />

palatine suture forms. These sutures, Chapman noted, fit into four basic<br />

categories, which he defined as anterior curved, anterior jagged (jagged),<br />

posterior curved, and straight. While each of these suture forms exists<br />

within all North American populations, posterior curved sutures seem to<br />

rarely occur outside Polynesian peoples. Within the U.S. populations<br />

reviewed in Chapman’s work, the following correlations between transverse<br />

palatine suture forms and races were made: Black Americans most<br />

often displayed anterior curved sutures, Native Americans and East<br />

Asians frequently exhibited straight sutures, and White Americans<br />

tended to show jagged sutures.<br />

The current study began mainly as a way to expand the samples of<br />

the populations researched by Gill. Because the majority of the research<br />

on American specimens performed by Gill and compiled by Gill and by<br />

Chapman centered on the western United States, the present research<br />

investigates palatal forms and suture types on populations not explored<br />

in previous studies. This was done to determine whether the correlations<br />

between palatal forms, transverse palatine sutures, and race exist in populations<br />

throughout the United States. Of particular interest are Native<br />

American populations since the Chapman and Gill research centered primarily<br />

on Plains Indian populations.<br />

The current study further performs statistical analysis of non-metric<br />

traits to determine the association, if any, between population and palatal<br />

form, as well as between population and transverse palatine suture<br />

shape. These statistical analyses are then compared to those of Chapman<br />

and Chapman and Gill. It evaluates palatal shapes and transverse<br />

palatine suture forms based on the visual criteria defined by Gill. The<br />

study makes three discrete observations, which are palatal form, palatine<br />

suture form, and a new method of palatine suture form classification.<br />

Palate, Palatine Suture, Population Variability<br />

H39 Femoral Variation Between<br />

Whites and American Indians<br />

H. Anne Halvorsen, MA* and Rick L. Weathermon, MA, Department of<br />

Anthropology, University of Wyoming, Laramie, WY 82072<br />

This discussion will present to the physical and forensic anthropological<br />

community a detailed study of three areas of the femur which<br />

demonstrate significant variation between two populations, U.S. Whites<br />

and American Indians, and which show promise in distinguishing these<br />

populations in a forensic context.<br />

The femur has long been studied in physical anthropology, and<br />

notable differences have been found between major human populations.<br />

Studies at the University of Wyoming have focused primarily on morphological<br />

differences noted between whites and American Indians.<br />

The current study expands on three such studies, and provides a way to<br />

quantify these differences. This study compares the means of these populations<br />

in three areas: femoral torsion, platymeria, and intercondylar<br />

notch height. Statistical analyses were run to test the hypothesis that in<br />

each of these areas independently no significant variation exists.<br />

Torsion height is a single measurement taken with standard sliding<br />

calipers, where the maximum height of the femur head is measured from<br />

the surface upon which it is resting, with both condyles lying flat on the<br />

surface. Differences between American Indian femora and those of<br />

whites have been noted in the degree of torsion, with American Indians<br />

evidencing higher torsion. Statistical analyses from the current sample<br />

have supported this observation, and noted that the difference is quite<br />

significant. At the extremes of the populations, racial discrimination in<br />

a forensic context can be obtained with a high degree of certainty from<br />

this trait alone.<br />

488


Femoral platymeria has been shown to be another trait useful in distinguishing<br />

individuals from these populations, with American Indian<br />

femora exhibiting a much higher degree of platymeria, or flatness, of the<br />

proximal femur. Platymeria is obtained through two standard measurements<br />

of the femur, anterior-posterior (A-P) and medial-lateral (M-L)<br />

subtrochanteric diameter. Together these measurements quantify the<br />

observed morphology of the proximal end of the femur in cross-section;<br />

whites tend to be more circular in cross-section, with similar values of<br />

both A-P and M-L, while American Indian femora exhibit a flatness of<br />

the femur, with a smaller A-P diameter. Statistical analyses of these populations<br />

in the current study again show that there is a significant difference<br />

in this trait, and that it is another trait which can be extremely<br />

useful in distinguishing femora from these populations.<br />

Finally, variations in the intercondylar notch height of the distal<br />

femur were compared between the two populations. Intercondylar notch<br />

(ICN) height is another single measurement taken of the maximum<br />

height, wherever found, of the ICN from the surface upon which the<br />

bone is resting, in the same position as with torsion height. Statistical<br />

analysis demonstrated that there is a significant difference between the<br />

means of the two populations, with whites exhibiting a higher ICN<br />

height. With this trait alone, femora of these populations can be distinguished<br />

with a high degree of certainty at the extremes of each<br />

population.<br />

This study has been conducted in an attempt to explore and quantify<br />

variations between the femora of whites and American Indians, and has<br />

its most value, perhaps, in a forensic context to help in the identification<br />

of individual unknown skeletal remains from these populations. Each<br />

area of the femur explored here has shown variation between these populations<br />

which has proven to be statistically significant. This study lends<br />

credibility to the observed morphological differences which have been<br />

noted in the past, and quantifies how valuable are these techniques of<br />

racial differentiation by use of the femur.<br />

Femoral Variation, American Indians, US Whites<br />

H40 Population Variability in the Proximal<br />

Articulation Surfaces of the Human<br />

Femur and Humerus<br />

George W. Gill, PhD*, Department of Anthropology, University of<br />

Wyoming, Laramie, WY 82071<br />

This presentation will demonstrate the magnitude of racial difference<br />

between American Indians and Whites with regard to two<br />

important long bone articulation surfaces, and then to provide a new,<br />

adjusted metric scale for accurate sexing of native remains.<br />

Since Thomas Dwight, the father of American forensic physical<br />

anthropology, conducted his pioneering work on the human femur at the<br />

end of the 19th century, the maximum diameter of the head of the femur<br />

has been known to vary significantly between males and females. Since<br />

the work of Dwight’s student, George A. Dorsey, on the vertical height<br />

of the head of the humerus (1897 – only three years after Dwight’s historic<br />

Shattuck Lecture) the proximal end of that bone has likewise been<br />

acknowledged as a reliable indicator of sexual dimorphism. Pearson and<br />

others soon followed these earliest investigations with additional work,<br />

particularly on the femur. The majority of these metric studies however<br />

focused on the large-statured Whites of Europe and North America, with<br />

little attention to the more moderately proportioned populations<br />

indigenous to Asia and the Americas.<br />

T. Dale Stewart, a pioneer of these kinds of sexual dimorphism<br />

studies within the modern era of forensic anthropology, did extend these<br />

same metrics to significant samples of American Blacks. He found the<br />

means for the two populations (U.S. Blacks and Whites) regarding<br />

maximum diameter of the femoral head, at least, to be nearly identical.<br />

White males average 48 mm in femur head diameter while Black males<br />

average 47.2. The White female mean of 42 mm is even closer to the<br />

Black female average of 41.5 mm. Such close patterning between these<br />

two large populations of North America has, over the years, led forensic<br />

anthropologists, bioarchaeologists and other human osteologists to tend<br />

to utilize a single scale for the sexing of the skeletal remains of all populations<br />

of Homo sapiens.<br />

In order to test the reliability of the use of this metric scale (published<br />

first by Stewart and then later by Bass and others in modern<br />

standard textbooks) beyond the initial population samples of U.S. Blacks<br />

and Whites, the present study was undertaken. During the author’s excavations<br />

and analysis of prehistoric skeletal remains from coastal West<br />

Mexico in the 1960s, data collection for these two measurements of the<br />

femur and humerus was initiated. The focus at the time was to test these<br />

dimensions collected on a short-statured population of indigenous<br />

Mesoamericans against those collected historically from samples of<br />

American Whites and Blacks. Initial results were suggestive of meaningful<br />

racial differences, so in order to develop further data from another<br />

contrasting sample of American Indians, similar measurements were collected<br />

on Northwestern Plains Indians. Within the past year all metrics<br />

have been compiled from both American Indian population samples,<br />

with a total adult skeletal sample of 67 Mesoamerican Indians, and 58<br />

Northwestern Plains Indians. The means for these two Native American<br />

populations on both femoral head diameter and the vertical diameter of<br />

the head of the humerus are nearly identical. On the other hand, they are<br />

smaller than (and differ significantly from) the means for Blacks and<br />

Whites. This has led to the development of new metric scales for the<br />

sexing of American Indian skeletal remains that are specific to Native<br />

Americans and therefore provide more accurate results in skeletal<br />

analysis. These results also underscore the importance of testing for<br />

racial differences in important skeletal traits of Homo sapiens before<br />

using them beyond the initial population samples upon which they are<br />

based.<br />

Population Variability, Femur, Humerus<br />

H41 Racial Assessment Using<br />

the Platymeric Index<br />

Daniel J. Wescott, PhD*, University of Missouri at Columbia,<br />

Department of Anthropology, 107 Swallow Hall, Columbia, MO 65211;<br />

Deepa Srikanta, BA, University of Missouri at Columbia, Department<br />

of <strong>Bio</strong>logy, Columbia, MO 65211<br />

The goal of this presentation is to illustrate the usefulness of the<br />

platymeric index as an indicator of race.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that subtrochanteric shape can be successfully<br />

used to distinguish between Native Americans and American<br />

Whites and Blacks in skeletal cases.<br />

Noticeable differences in the shape of the proximal diaphysis of the<br />

femur have been observed between populations. The two most frequently<br />

cited causes for these differences are biomechanics and genetics.<br />

In the anthropological literature, biomechanics have probably received<br />

the most support, but Gill and his colleagues have argued that marked<br />

racial, and therefore genetic, differences are present in the shape in the<br />

proximal femur. In general, Gill and colleagues have found that the subtrochanteric<br />

anteroposterior diameter in Whites and Blacks is greater<br />

than that of East Asians and Native Americans. In other words, Whites<br />

and Blacks tend to have eurymeric (rounder) diaphyses, while Native<br />

Americans and East Asians have platymeric (flatter) proximal femur<br />

shafts.<br />

In this paper, we examine variation and population differences in<br />

proximal femur shape using the platymeric index (PI) on a sample of<br />

nearly 3000 individuals. Among populations, the PI typically ranges<br />

from approximately 70 to 100. Individuals with an index below 85 are<br />

489 * Presenting Author


considered to display platymeria, while those above 85 are eurymeric.<br />

For the analysis of population differences, we examined five populations:<br />

American Blacks (N=319), American Whites (N=672), Native<br />

American (N=1280), Polynesian (N=179), and non-Indian Mexicans<br />

(N=40). We then, as did Gill and colleagues, grouped Native Americans<br />

and Polynesians into one group and American Whites and Blacks into a<br />

second group. The Native American group was then subdivided into six<br />

geographical regions (Northern Plains, Central Plains, Southern Plains,<br />

Prairie, Great Basin, and Southwest) and three subsistence strategies<br />

(Agriculturalists, Hunter and Gatherer, and Village Horticulturalist). No<br />

significant differences were found between males and females within<br />

populations, so the sexes were pooled for analysis.<br />

Our results generally support Gill and colleagues’ assertion that the<br />

PI can be used successfully by forensic anthropologists to distinguish<br />

Native Americans and Polynesians (81% correctly classified) from<br />

American Whites and Blacks (74% correctly classified). Native<br />

Americans (mean PI=78) and Polynesians (mean PI=71) are on average<br />

more platymeric than American Whites (mean PI=90) and Blacks (mean<br />

PI=91). Non-Indian Mexicans (mean PI=89) generally have a subtrochanteric<br />

femur shape more similar to American Whites and Blacks.<br />

Our results strongly suggest, however, that some caution should be used<br />

when using the platymeric index to discriminate between populations.<br />

The range of variation in all populations is considerable, making discrimination<br />

between the five populations difficult. Native Americans,<br />

for example, range from extremely platymeric to eurymeric and frequently<br />

classify as Polynesian or non-Indian Mexican.<br />

Within Native Americans there are differences between regions and<br />

subsistence strategies. The PI is least in populations from the Northern<br />

Great Plains (mean PI = 75), the Native American population studied by<br />

Gill and colleagues, and greatest in the Southern Plains (mean PI = 83).<br />

Populations from the Southwest (mean PI = 78), Northern Prairie (mean<br />

PI = 79), Great Basin (mean PI = 81), and Central Plains (mean PI = 82)<br />

are intermediate in their PI. Village Horticulturalists (mean PI = 77) and<br />

Agriculturalists (mean PI=78) are generally more platymeric than<br />

Hunter and Gatherers (mean PI = 81).<br />

We agree with Gill and colleagues that the shape of the proximal<br />

femur can be used successfully by forensic anthropologists to distinguish<br />

between Native Americans and American Blacks and Whites. But,<br />

our results also suggest that there is great variation within groups, and<br />

differences between populations are probably due to both genetics and<br />

biomechanics. As a result, we suggest that caution should be taken when<br />

using only the femur for the estimation of race.<br />

Forensic Anthropology, Femur, Subtrochanteric Shape<br />

H42 Race — A New Synthesis for a New Century<br />

John M. McCullough, PhD*, University of Utah, 270 South 1400 East,<br />

Salt Lake City, UT 84112-0060<br />

Before WW II race was a major subject of study in physical anthropology<br />

and some social sciences. Race was viewed as a logical extension<br />

of the Linnean binomial system, working from Family, Genus, and<br />

species to sub-species, or race. The horrible excesses of the National<br />

Socialist Party in racially “purifying” Germany in the 1930s and 1940s<br />

lead many anthropologists and others to decry the concept of race as<br />

dangerous and declare race to no longer exist in living humans. Other<br />

criticisms include the fact that anthropologists cannot agree upon the<br />

number of races that exist, the inability to precisely define the geographical<br />

extent of racial boundaries, and the lability of human variation<br />

chronologically. There can be no logical answer to the charge that if race<br />

exists it shouldn’t because of the catastrophic mischief that some have<br />

wreaked in using the concept; that is an unfortunate fact of history which<br />

no person of good will wishes to see repeated. Answers or explanations<br />

can be provided for other criticisms. To the criticism that race does not<br />

exist because we cannot agree upon the number of races – there is also<br />

* Presenting Author<br />

disagreement as to the number of sexes in humans; is it two or three or<br />

six or thirty-two? If race does not exist because of disagreement as to<br />

number, neither can sex exist and we are a unisex species. As to the criticism<br />

that we cannot draw clear geographical boundaries between races,<br />

the author submits that discrete boundaries are a better definition of<br />

incipient species or genera than subspecies. We will always expect contiguously<br />

distributed subspecies to interbreed and create fuzzy boundaries<br />

that may change through time, even short periods of time. Another<br />

criticism, that race cannot be ascribed to an individual, the author<br />

submits that forensic anthropologists can and ought to attempt to do this<br />

in every case submitted to them. Papers to be presented later in this symposium<br />

will present means of identifying individuals of different racial<br />

groups and even racial mixes, and sometimes the statistical probability<br />

of a correct ethnic or racial identification. We regularly do this with<br />

anthroposcopic skeletal traits and can now do so with an adequate DNA<br />

sample. A last criticism of the racial concept is that individuals in the<br />

same nuclear family may belong to separately defined sub-sub races or<br />

sub-sub-sub races. Rather than dealing with “race,” perhaps we are<br />

dealing with major gene complexes which merit further genetic rather<br />

than taxonomic study. In the past 60 years anthropology matured in<br />

methods of studying human variation, human genetics and increased<br />

types of variation have been discovered and described. We have also<br />

become more sophisticated in theoretical and philosophical issues.<br />

Following a Wittgensteinian suggestion, a new approach is suggested in<br />

viewing race as a legitimate taxonomic level by referring to race not as<br />

a firm, fixed racial “type,” but rather as a floating concept, emphasizing<br />

trait associations much like the definitions of culture areas in cultural<br />

anthropology and languages in linguistics. In each, we can define a<br />

culture area or language, but the exact borders may not be precisely<br />

definable, and we expect considerable cultural or linguistic (or genetic)<br />

variation within each. That does not vitiate the validity of the culture<br />

area concept or the idea of a language – each obviously exists – any<br />

more than fuzzy and labile borders of genetic groups vitiates the concept<br />

of race; whatever groupings may arise should be determined empirically,<br />

not denied emotionally. While still not in favor, the recent interest in<br />

sexual selection ought to refocus our interest on superficial anthroposcopic<br />

traits as suggested by Darwin in 1871. Despite the social and biological<br />

differences which exist today, we must remember that we are all<br />

united as a single species with a shared history and a shared future.<br />

Taxonomy, Race Classification, Evolutionary Theory<br />

H43 Forensic Anthropology and<br />

the Belief in Human Races<br />

Norman J. Sauer, PhD*, Department of Anthropology, 354 Baker Hall,<br />

Michigan State University, East Lansing, MI 48824<br />

This paper will present the view that races are cultural constructs<br />

not biological entities; and that migration patterns and historical events<br />

are largely responsible for the emergence and persistence of current,<br />

unscientific notions of human race.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating by exploring the notion that races or subspecies<br />

of humans do not exist; that there is no scietific justification for<br />

human races; and that current views of race or human subspecies are the<br />

result of historical events including non-random human migration<br />

patterns.<br />

Leonard Lieberman has documented a steady decline in references<br />

to race in anthropological journals and an increasing rejection of the<br />

concept of race by physical anthropologists. Despites his findings the<br />

traditional belief that humanity is divisible into 3 or 4 major groups with<br />

some kind of biological meaning appears to be alive and well among<br />

some forensic anthropologists. Certainly, a significant number take the<br />

view that human variation is gradual over space and that human races<br />

490


have no foundation in biology. There are probably fewer people that take<br />

intermediate views than one might imagine. In this paper, two aspects of<br />

the race debate will be examined: 1) recent thinking about the scientific<br />

bases for human races, and 2) the seeming reality of race in America.<br />

It is well known that the current concept of the 4 major races stems<br />

from the 18th century writings of Linneaus and Blumenbach. Writing a<br />

century before Darwin and Mendel and 200 years before the development<br />

of modern genetics, Linneaus knew nothing about evolutionary<br />

theory or the nature of the human genome and very little about human<br />

variation. Nonetheless, his ideas persist virtually unchanged.<br />

The race concept need not be an issue of belief. It should be an<br />

issue of science. Unlike religious tenets, the existence of human races is<br />

testable. Formal definitions of race and subspecies have been debated,<br />

the distribution of genes in human populations is becoming better understood<br />

and population histories and lineages are being reconstructed.<br />

Alan Templeton (2002) explicates the problem of human races by<br />

exploring exactly what races are and how humans fit into the model.<br />

Templeton points out that there are two definitions of race customarily<br />

applied to plant and animal species. Races are either “geographically<br />

circumscribed, genetically differentiated populations,” or “distinct evolutionary<br />

lineages within species.” Then he systematically applies data<br />

on human genetic diversity to demonstrate how human populations<br />

satisfy neither definition. There is no scientific justification for the existence<br />

of races in our species, in fact to the contrary, modern molecular<br />

genetic data demonstrate quite clearly that human races do not exist.<br />

Why then is the concept of race so compelling to a group of modern<br />

forensic anthropologists? The answer lies in large part to human migrations.<br />

It is often assumed that if races ever were a reality for human populations,<br />

the concept has been blurred in recent centuries by human<br />

migration. Borrowing from the sociocultural concept of the ethnographic<br />

present, the author of one text has coined the term the heterographic<br />

present referring to the past when human populations were in areas of<br />

the world inhabited by their ancestors. It might seem like the massive<br />

migrations of the past several centuries have mixed up otherwise stable<br />

populations and races that represent the true nature of human diversity.<br />

Actually, the opposite is true. Human migrations are a significant contributor<br />

to the emergence and persistence of the race concept.<br />

Before people began to move about in large numbers, human variation<br />

was gradual in space. There is no evidence to the contrary. Of<br />

course, there were differences between local populations, to a greater or<br />

lesser degree depending on isolating mechanisms and gene flow. Native<br />

Australians and Tasmanians were isolated by water, the Amish by religious<br />

and ethnic views. However, more than anything else, differences<br />

between groups reflected geographic distance.<br />

When early European explorers encountered peoples of Africa and<br />

Asia, often by ship, they saw individuals at the extremes of their distribution<br />

(West and Southern Africa, East Asia) not the myriad, gradually<br />

varying populations in between. Likewise, the post Columbian peopling<br />

of the Americas reflects mainly selective migrations from Western<br />

Europe, West Africa and the Far East. It is the juxtaposition of people<br />

from widely separated parts of the world that emphasizes biological differences<br />

and creates the illusion of discrete groups or races. In different<br />

parts of the world with different migration histories, races (or something<br />

like them) are perceived, but they are different.<br />

There needs to be a clearer understanding of the nature of human<br />

diversity. An understanding based not on belief, but on scientific evidence.<br />

The formal application of modern genetic data to taxonomic<br />

rules governing subspecies illustrates that there is no valid justification<br />

for a subspecific taxon in the species Homo sapiens. This paper argues<br />

that the dominant notion of human races in the U.S. is the result of a<br />

unique population history and a non-critical acceptance of 18th pre-<br />

Darwinian notions about the nature of human diversity.<br />

Forensic Anthropology, Race, Scientific Justification<br />

H44 The Deconstruction of Race:<br />

Its Origins and Existence<br />

Emilie L. Smith, BA*, 1910 Runaway Bay Lane, Apartment P,<br />

Indianapolis, IN 46224<br />

This paper describes some aspects of the ‘race debate’ among<br />

forensic anthropologists and how it applies to their practices.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating an understanding of the historical context of<br />

race, its progression into popular convention, and its use and practice in<br />

forensic anthropology.<br />

Perhaps the greatest reigning debate among forensic anthropologists<br />

is the concept of whether ‘race’ truly exists. This important<br />

question has spurred many intelligent debates, and provided many noteworthy<br />

perceptions from each side. However, a common conclusion has<br />

yet to be reached.<br />

The term race appeared in the eighteenth centuries, especially in the<br />

literature by Linnaeus and Blumenbach. However, their distinctions and<br />

divisions among the human species would undoubtedly be characterized<br />

as strongly racist in today’s scientific societies as they were based on an<br />

exaggerated amplification of physical traits, moral characteristics,<br />

overall temperament, and political behavior. A later theory by Darwin<br />

was based on the natural selection idea that man had evolved from an<br />

apelike ancestral form. He believed that since there are no white apes,<br />

the white race was more civilized than the dark races, which he thought<br />

to be closer to their nonhuman ancestors. This explanation of human<br />

associations became widely accepted in both scientific circles and in<br />

popular convention.<br />

In 1951, a group of fourteen physical anthropologists and geneticists<br />

came to a unanimous agreement on a common definition of race.<br />

However, this definition must not have sufficed for many physical<br />

anthropologists because the debate of the existence of race caused a significant<br />

uproar during the 1960s, with the attack on the concept of race<br />

being led by Montagu, Livingstone, and Brace and its defense by<br />

Dobzhanzky and Coon and Garn. During the 1970s, those authors of<br />

physical anthropology textbooks with a strong oppositional opinion of<br />

the race concept openly expressed their opinions in their text. Based on<br />

the large number of these authors supporting the notion that race does<br />

not exist, it seems that there is an indication of a decline in support for<br />

classifications of race. In 1993, physical anthropologists at the American<br />

Association of Physical Anthropologists pushed for a modification of the<br />

UNESCO statement on race. However, since anthropologists do not<br />

agree on the existence of race, their amendment was defeated.<br />

It seems that most of the ‘great race debate’ centers on the relevance<br />

of the actual term ‘race’ and the connotations derived from its use. Thus,<br />

part of the disagreement on race is attributable to the lack of consensus<br />

on its definition and use in scientific analyses. Some alternative suggestions<br />

for the replacement of the word ‘race’ have included terms such<br />

as genogroup, population, ethnic group, and ancestry. In addition, many<br />

scientists are unclear on the origins of the term ‘race’ and its progressive<br />

use among scientific communities. Since the definition of race cannot be<br />

agreed upon, it seems that the focus has evolved as to whether or not race<br />

exists as a biological reality among human populations and if it can,<br />

therefore, be correctly determined by forensic anthropologists. While<br />

many physical anthropologists and scientists believe that race does not<br />

exist, how is it that the race myth persists in popular convention? How<br />

can forensic anthropologists determine race for a biological profile if it<br />

does not exist? This presentation serves to further examine the historical<br />

context of race, its progression into popular convention, and its use and<br />

practice in forensic anthropology.<br />

Race, Ethnicity, Ancestry<br />

491 * Presenting Author


H45 Race vs. Ancestry: A Necessary Distinction<br />

Vicki L. Wedel, MS, MA*, University of California, Santa Cruz,<br />

Department of Anthropology, Social Sciences 1 Faculty Services, 1156<br />

High Street, Santa Cruz, CA 95060<br />

This paper presents a historical and archaeological perspective on<br />

the development of racial classifications as they have been applied to<br />

forensic anthropological analysis.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating a critical assessment of race, a difficult<br />

concept that is used in our analyses of skeletal material.<br />

Development of a biological profile, which includes sex, age, and<br />

ancestry, is a basic component of the anthropological assessment for<br />

forensic purposes. The use of racial classifications in issues of personal<br />

identification is often critical to narrowing the search parameters. While<br />

the error factors for correct estimation of age and sex determination are<br />

relatively straight-forward, the quantification of “correct” assessment of<br />

ancestry is less clear. Although it is possible to scientifically quantify<br />

and describe human biological variation, linking this variation to<br />

socially recognized racial categories is problematic. Two primary areas<br />

of concern can be distinguished. First, the social categories themselves<br />

have changed and continue to change. Self-identification entails many<br />

factors other than direct ancestry and often varies by the context in<br />

which the identification is made. Identification by other parties may be<br />

based on limited knowledge of ancestry and incorporate assumptions<br />

about descent that have little foundation in reality.<br />

The second area from which difficulties arise concerns the basis<br />

upon which the assessments themselves are based. The skeletal material<br />

from which we take measurements and test hypotheses regarding<br />

ancestry was collected during a time when nonscientific definitions of<br />

biological race were prevalent. The exact ancestry was often not known<br />

for the individuals in our major collections, and racial classifications<br />

were assigned based on soft tissue morphology. Some skeletal collections<br />

were even amassed for racist purposes by anatomists and anthropologists<br />

trying to correlate anatomical variation with social superiority<br />

or inferiority. The historical record, however, shows that European,<br />

African, and Asian ancestral groups mixed rapidly after arriving in<br />

America. Examination of the archaeological record, as well as recent<br />

studies of genetic relatedness, show that while people may still have<br />

been identified as belonging to one “race,” their ancestry often reflected<br />

many different sources.<br />

In this presentation, information from a series of historic archaeological<br />

sites is utilized to show how the issues of identity and ancestry<br />

became confounded during the historical period. Issues of class, community,<br />

and access to resources become as important for establishing<br />

“race” in the social context as the actual ancestry. <strong>Bio</strong>logical and nonbiological<br />

definitions of race and ancestry are considered and a discussion<br />

of how social conceptions of race have shaped our discussions<br />

of biological variation is offered. The implications to those who practice<br />

forensic anthropology are also addressed. When combined with the<br />

current understanding of the biological definition of “race” and the<br />

uncertain empirical basis, the confusion between race and ancestry is<br />

highlighted.<br />

<strong>Bio</strong>logical races of humans do not exist, regardless of the social categories,<br />

if we stand by the biological definition of race as a subspecies<br />

or variant. Therefore we may be attempting to scientifically sort phenotypic<br />

variation by studying groups socially classified within recent<br />

history. These socially classified groups may have shared equally in<br />

racial prejudice and socioeconomic discrimination but less substantially<br />

in ancestry. It is therefore timely to reconsider the nature of the variation<br />

we are attempting to quantify, both for forensic purposes and for skeletal<br />

biological studies of health and nutritional status among historic skeletal<br />

populations.<br />

Race, Ancestry, <strong>Bio</strong>logical Profile<br />

* Presenting Author<br />

H46 Race as a Viable Concept<br />

Thomas A. Furgeson, BA, BS*, University of Wyoming, 2109-C East<br />

Hancock Street, Laramie, WY 82072<br />

This presentation presents an argument for retaining racial categorizations<br />

in physical anthropology within appropriate contexts.<br />

This presentation aims to add to the discussion of the contentious<br />

issues of the use of the race concept and race terminology in physical and<br />

forensic anthropology.<br />

The concept of race is discussed in reference to the American<br />

Association of Physical Anthropologists’ 1996 “AAPA Statement on<br />

<strong>Bio</strong>logical Aspects of Race,” the intent of which was to formalize the<br />

Association’s position on this contentious issue. The position of the AAPA<br />

via the “statement” is that racial divisions are perpetuated by the social convention<br />

of race, that the concept of race itself is not biologically and scientifically<br />

sound, and that the discipline of physical anthropology is obligated<br />

to move away from the race concept. This is to prevent the perpetuation or<br />

perceived legitimization of racial discrimination based on research within<br />

physical anthropology. The issues of social race versus biological race and<br />

historical and contemporary conceptions of the term race are considered in<br />

order to explore the race concept. It is argued here that race, as currently<br />

used in physical anthropology, is closely aligned with its social component,<br />

is neither bound by past misuses nor an idea of rigid and discrete biological<br />

boundaries, and remains a viable concept.<br />

Categorization, clinalism, and their relationship with the concept of<br />

biological race are discussed in the first section. The tendency of humans to<br />

categorize is considered in terms of historically hierarchical racial divisions<br />

and other human categorizations in order to illustrate the cogency or lack of<br />

cogency of such categorizations, and to show that discrete and pure<br />

examples—the absence of which opponents of the race concept cite as<br />

reason to do away with it—are not a necessary condition for a categorization<br />

to be valid and useful. The concept of clinalism and the critique of race<br />

based on historical racial ideas speak against the continued use of the race<br />

concept. This would be reasonable if race as currently conceived and<br />

employed in physical anthropology retained its historical typological character.<br />

This issue is examined through a comparison of clinal concepts and<br />

historical racial notions with the usage of racial terminology and the<br />

meaning of race in contemporary physical anthropology.<br />

The second section discusses the relationship between social race,<br />

racism, and the concept of biological race. With social race a reality, what is<br />

its relationship to concepts of biological race? The problem of racism is discussed<br />

in reference to this question, and it is argued that racism, while based<br />

on differences of many kinds, is a phenomenon neither grounded in nor activated<br />

by scientific realities. Racism is therefore not susceptible to contrary<br />

scientific proof or argument, and the effectiveness of moving away from the<br />

biological race concept is questionable in terms of its ability to alleviate the<br />

problem. This situation is complicated by the undisputed existence of social<br />

race. It is suggested that a more effective strategy for combating racism than<br />

race denial is acknowledgment of and dialog about differences, whether<br />

social or physical, such that these differences can be placed within their<br />

proper contexts and parameters. The acknowledgement of human biological<br />

variation is not fated to be bound to hierarchical schema, but is and can be<br />

presented as a unifying and positive component of the human condition.<br />

The practicality of the race concept is discussed in the final section.<br />

Forensic anthropology makes use of racial categories and has highly<br />

accurate methods for assessing ancestry, one of several critical determinations<br />

in the important business of identifying unknown dead, whether<br />

victims of crime, disaster, war or other circumstances. Critiques of forensic<br />

anthropological methodology are considered, as are alternatives to the use of<br />

racial terminology and the race concept within the subdiscipline. The use of<br />

the race concept in forensic anthropology illustrates the reorientation of the<br />

biological concept of race from the historical, determinist model to its<br />

current, more limited and accurate model of expressing human adaptive<br />

variation.<br />

Race, Ancestry, Racism<br />

492


H47 Deaths of Undocumented<br />

Immigrants in Southern Arizona<br />

Bruce O. Parks, MD*, Eric Peters, MD, Cynthia Porterfield, DO,<br />

David Winston, MD, and Diane Karluk, MD, Pima County Forensic<br />

Science Center, 2825 East District Street, Tucson, AZ 85714; Sam<br />

Keim, MD, University of Arizona Department of Emergency Medicine,<br />

University of Arizona College of Medicine, Tucson, AZ; Michael<br />

Kent, MD, Emergency Department, Northwest Hospital, Tucson, AZ<br />

The attendees for this presentation will better understand the perils<br />

that face undocumented immigrants and the spectrum of injury and<br />

disease that cause death. They will also have a better understanding of<br />

related issues that face local death investigation systems.<br />

This presentation will give forensic scientists a better understanding<br />

of how death investigation systems are involved with a unique<br />

population of individuals. Ultimately, the mortality these people experience<br />

may be reduced.<br />

This presentation will detail the pathologic findings of undocumented<br />

aliens who die in Southern Arizona as they attempt to reach destinations<br />

throughout the United States, primarily for better employment<br />

opportunities.<br />

There has been a dramatic increase in the number of deaths of non-<br />

United States citizens who illegally enter the Southwest deserts of<br />

Arizona and California from Mexico. The largest percentage of these<br />

deaths is due to exposure to the hot environment of the summer and late<br />

spring. Other causes of death include trauma, natural disease and<br />

exposure to the cold. In a number of cases, the cause of death remains<br />

undetermined due to advanced decomposition and the absence of historical<br />

information. These individuals often remain unidentified.<br />

Deaths which occurred over a two-year period, 2002 and 2003, are<br />

presented. The bodies were brought to the Pima County Forensic<br />

Science Center (Office of the <strong>Medical</strong> Examiner) for examination. Most<br />

of the individuals were discovered dead within Pima County and many<br />

of these individuals were on the Tohono O’odham Indian Reservation to<br />

the west of Tucson. Occasionally people were found alive but died after<br />

being transported to local hospitals. A minority of the cases were<br />

referred to the office from adjacent Southern Arizona counties. The<br />

study group consisted of a broad age range with men outnumbering<br />

women. Occasionally children were involved. Complete autopsies were<br />

performed on this population unless medical diagnoses have been established<br />

through hospitalization.<br />

The increase in heat-related deaths is mainly responsible for the<br />

overall rise in immigrant deaths. In the desert southwest, temperatures<br />

are often over a hundred degrees Fahrenheit from June to September. It<br />

is speculated that greater numbers of immigrants are passing through the<br />

more dangerous, hot, barren, desert because the United States government<br />

is more closely monitoring the safer, populated regions along<br />

the border. Pathologic findings are often minimal in those dying from<br />

exposure to the hot environment. Most of the individuals show features<br />

of decomposition, which occurs quickly at such high temperatures.<br />

Even if the body is recovered soon after death prior to the development<br />

of putrefaction, rarely does one see previously described, heat-related<br />

pathologic processes such as cerebral edema and petechiae of the skin<br />

and internal organs.<br />

Chemical evidence of dehydration was a common finding as manifested<br />

by elevated sodium and chloride levels often with elevated blood<br />

urea nitrogen and creatinine. However, dehydration was not always a<br />

factor for the cause of death. Toxicology testing was routinely performed<br />

although rarely positive for both legitimate and illicit drugs. Ethanol was<br />

often discovered and usually attributed to postmortem bacterial<br />

production.<br />

The cause of death for heat-related death was certified as hyperthermia<br />

or probable hyperthermia even though body core temperature<br />

information was usually lacking. Simply certifying the cause of death as<br />

heat-related was not considered adequate by the local vital records<br />

department. When death was delayed and medical attention was provided<br />

to a small number of these individuals, elevated body temperatures<br />

were discovered.<br />

The rather large number of these deaths has strained the resources<br />

of multiple agencies along the Arizona border including medical<br />

examiner’s offices. Complete autopsies are generally performed on these<br />

individuals in order to best understand the cause of death. This information<br />

may be useful to help reduce this trend. In addition, should there<br />

be efforts to prosecute any individuals involved with organized efforts to<br />

smuggle immigrants into the United States, the most accurate cause of<br />

death will be available.<br />

Heat-Related Death, Immigrants<br />

H48 Metric Description of Hispanic<br />

Skeletons: A Preliminary Analysis<br />

Richard L. Jantz, PhD*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996-0720<br />

After attending this presentation, attendees will appreciate the<br />

importance of obtaining a better understanding of the skeletal features of<br />

this rapidly growing component of the American population.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that it should emphasize the importance of<br />

understanding the skeletal biology of this important component of the<br />

American population.<br />

Mexican Americans have been a large component of the population<br />

in the Southwest for a long time, but in recent decades they have been<br />

expanding into areas of the U.S. where their numbers have traditionally<br />

been small. The 2000 census reveals increases of 150-200 percent in<br />

some states such as North Carolina and Tennessee. Yet compared to<br />

Blacks and Whites, the formal knowledge base of Hispanic skeletons is<br />

low. Since forensic anthropologists in any part of the country are now<br />

likely to encounter Mexican American skeletons in their caseloads, it is<br />

obviously important to understand metric variation and to develop identification<br />

criteria specific to them.<br />

The Forensic Anthropology Data Base now has information about<br />

130 remains that may be termed Hispanic. These include various ethnicities,<br />

e.g., Puerto Rican, Cuban, Guatemalan, but the majority is of<br />

Mexican origin. This paper will deal with those of Mexican origin.<br />

Mexican skeletal remains are often found in circumstances that make<br />

positive identification difficult or impossible. Consequently, about 1/3<br />

are not positively identified. Cranial remains are more frequent than<br />

postcranial. Sample sizes are too small to develop a definitive characterization<br />

of Mexican Americans, but it is useful to present a preliminary<br />

picture to illustrate the importance of a more complete picture of their<br />

skeletal variation.<br />

Compared to American Blacks and Whites, Mexican American<br />

crania are somewhat smaller overall, with shorter vaults, narrower faces<br />

and orbits. Cranial morphology places Mexican Americans in an intermediate<br />

position in relation to Whites, Blacks and Amerindians,<br />

reflecting their hybrid status. However, crania are sufficiently distinctive<br />

to distinguish them from other groups. Postcranially, long bones are<br />

shorter and femur heads are smaller. The femur midshafts are rounder<br />

and more robust, and the subtrochanteric region is mildly platymeric.<br />

Sexing criteria derived from American Whites, whether cranial or postcranial,<br />

over classify Mexican American males as females, because of<br />

their smaller size. There are only 17 individuals in the database with<br />

some sort of stature, an inadequate number on which to base stature<br />

estimation.<br />

Hispanics, Cranial Variation, Postcranial Variation<br />

493 * Presenting Author


H49 Ours or Theirs?<br />

Walter H. Birkby, PhD*, Forensic Science Center, Office of the<br />

<strong>Medical</strong> Examiner, Pima County, 2825 East District Street, Tucson,<br />

AZ 85714<br />

After attending this presentation, the viewer will understand the<br />

complexity of the Undocumented Alien (UDA) issue and the implications<br />

this presents to the <strong>Medical</strong> Examiner’s Office and the identification<br />

of human remains.<br />

The case studies presented will help discern some skeletal characteristics<br />

which will give the forensic investigator insight into the<br />

problem of trying to determine regional origins.<br />

Undocumented aliens (UDAs) who enter the U.S. along the<br />

Arizona border must traverse an extremely hostile environment very<br />

nearly devoid of water and shade. Daytime temperatures often exceed<br />

120° F on the desert floor for days on end. Since the region is sparsely<br />

populated – and the UDAs are generally leery of contacting anyone<br />

north of the border lest they be Immigration Officials – when their water<br />

runs out each UDA becomes a probable <strong>Medical</strong> Examiner case<br />

sometime within the ensuing year or years.<br />

From past cases, it is known that all who are retrieved from the<br />

desert floor are not necessarily Mexican Nationals. South Americans<br />

and Central Americans are also represented on occasion, as are<br />

Southwest Native Americans and Hispanic Americans. In a decomposed<br />

or mummified or skeletonized (complete or incomplete) condition, can<br />

the Forensic Anthropologist suggest a probable ethnicity for the <strong>Medical</strong><br />

Examiner based on cranial, dental, and/or postcranial morphology?<br />

This paper seeks to address this issue by presenting a series of case<br />

studies and their ultimate conclusions. Each year the Forensic Science<br />

Center, Pima County, Arizona, is faced with an increasing UDA caseload<br />

and is tasked to work with the Mexican authorities to try to resolve the<br />

identities and fate of the unidentified remains. Increasingly as well, both<br />

skeletal and circumstantial evidence are sometimes recovered indicating<br />

that this is truly an international problem – that not all UDAs crossing<br />

our borders in the Southwest are Mexican citizens, but hail from other<br />

Central and South American countries. The case studies presented will<br />

help discern some skeletal characteristics which will give the forensic<br />

investigator insight into the problem of trying to determine regional<br />

origins.<br />

Undocumented Aliens, Southwestern U.S., Human Skeletal<br />

Identification<br />

H50 Skull-Photo Superimposition and Border<br />

Deaths: Identification Through Exclusion<br />

and the Failure to Exclude<br />

Todd W. Fenton, PhD*, and Norman J. Sauer, PhD, Michigan State<br />

University, Department of Anthropology, 354 Baker Hall, East<br />

Lansing, MI 48824<br />

After attending this presentation, attendees will understand the<br />

methodology and application of skull-photo superimposition.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating an improvement on the application of skullphoto<br />

superimposition as a technique for identification.<br />

This paper has four objectives: 1) to present a case in which five<br />

individuals (undocumented aliens) died after crossing over the southern<br />

Arizona border with Mexico; 2) to discuss the role of video skull-photo<br />

superimposition in the identification of two individuals in this “closed<br />

disaster;” 3) to describe the methods employed which resulted in identifications<br />

through exclusion and the failure to exclude; and 4) to explore<br />

the application of the logic of science to this cranio-facial technique of<br />

human identification.<br />

* Presenting Author<br />

Many of the individuals who die trying to illegally cross into at the<br />

United States along the Mexican border do not leave behind existing<br />

antemortem x-rays or fingerprints on file. As a result, skull-photo superimposition<br />

presents a very useful technique in the investigation of border<br />

deaths, particularly in the identification of undocumented aliens.<br />

Identification in these cases can be the result of either the exclusion of,<br />

or the failure to exclude, the skull as a match to the photo.<br />

On February 11, 2003, a hiker discovered human remains in a<br />

remote desert area of southern Arizona near the town of Ajo. The Pima<br />

County Sheriff’s Department responded and led a search team which<br />

also included rangers from the Bureau of Land Management. The scene,<br />

located on the lower slope of a mountain, was rocky with low, sparse<br />

desert vegetation consisting mainly of mesquite trees, palo verde trees,<br />

ocotillo, and various forms of cacti. The search took place over the<br />

course of two days and resulted in the recovery of five skulls, five backpacks,<br />

four personal identification cards, clothing, and a large number of<br />

skeletonized postcranial remains scattered over a 50 to 100 yard radius.<br />

With this evidence, investigators at the Forensic Science Center in<br />

Tucson, Arizona and the Pima County Sheriff’s Department began<br />

working with the Consulate of the Republic of Mexico to identify the<br />

deceased. Through these cooperative efforts, the names of all five of the<br />

individuals traveling in this group were presumably known. As a result,<br />

this case of multiple border deaths is analogous to a “closed disaster”<br />

(such as a small aircraft crash in which there is a passenger roster).<br />

The anthropological analyses conducted at the Forensic Science<br />

Center determined that the disarticulated skeletal remains represented<br />

two adult Hispanic males and three adult Hispanic females. The two<br />

males and one of the females could be segregated and tentatively identified<br />

and assigned names. The other two females reputed to be traveling<br />

in this group, however, were close in age and height, which made<br />

skeletal separation extremely difficult. It was at this point that the<br />

authors were asked to assist the identification efforts by performing<br />

skull-photo superimpositions at the Michigan State University Forensic<br />

Anthropology Laboratory.<br />

The system at Michigan State utilizes two video cameras, a video<br />

mixer, a monitor, two VCRs, a computer, and image capturing software.<br />

The superimposition process begins by placing tissue depth markers on<br />

the skull and then generally sizing and orienting the skull with the photo.<br />

The “dynamic orientation process” follows, which is the most difficult<br />

and time-consuming part of the methodology. The goal of this process is<br />

to arrive at the “best fit” possible in the alignment of the skull with the<br />

antemortem photo. This is achieved by superimposing specific anthropometric<br />

landmarks on the facial soft tissues over the corresponding<br />

landmarks on the bones of the skull.<br />

In the ideal situation, the first step in the dynamic orientation<br />

process is to align the skull and photo at porion. In the second step, the<br />

left and right Whitnall’s tubercle of the skull is aligned with the left and<br />

right ectocanthion points of the face. These first two steps are critical in<br />

establishing the correct angle of inclination and declination in the superimposition.<br />

In the third step, the subnasal point of the skull is adjusted to<br />

align with the subnasal point of the face. In the fourth step, gnathion on<br />

the skull should align with gnathion on the face in the photo.<br />

Allowing for slight variations which may be present due to photographic<br />

variables (lens, distance, angle, etc.), if all of the landmarks<br />

align the next step is to systematically evaluate a list of morphological<br />

points of correlation between the face and skull. This list includes the<br />

contour of the head and jaw line, the eyebrow and brow ridge area, and<br />

the eye orbit and cheekbone region. The evaluation of these areas is<br />

greatly enhanced by the placement of tissue depth markers on the skull.<br />

The last step in this superimposition methodology is a metric analysis of<br />

the facial proportionality of both the aligned skull and the photo.<br />

The approach to image identification utilized at Michigan State is<br />

an adaptation of Popperian scientific method. Rather than prove<br />

hypotheses, the proper role of science is to construct hypotheses that are<br />

capable of falsification. In other words, it is improper to attempt to prove<br />

494


that two data sets (a skull and a photograph, for example) represent the<br />

same phenomenon.<br />

This approach begins with the assumption that the known and<br />

unknown images represent the same individual. Repeated attempts are<br />

made to reject (or falsify) the assumption. If there are any inexplicable<br />

differences between the skull and the photo during the “dynamic orientation<br />

process,” the evaluation of morphological correlation, or the<br />

metric analysis, then the individual is excluded from a match. The<br />

strength of the falsification or identification in a skull-photo case<br />

depends on the quality of the images, the experience of the experts, the<br />

thoroughness of the analyses, and the equipment. The process of comparing<br />

and matching features is essentially the same as traditional<br />

approaches to identification, however the logic of falsification frees the<br />

investigator from generating statements about probable or highly<br />

probably identification.<br />

In this case of multiple border deaths, two adult female skulls and<br />

a photograph reported to be one of the missing women were submitted.<br />

Using video skull-photo superimposition, one skull was excluded and<br />

the other was not excluded as a match. The ability and the failure to<br />

exclude were both the result of extensive comparisons and metric evaluation<br />

of facial proportionality, as well as the comparison of a number<br />

of morphological features of the face and skull. Due to the presumed<br />

closed nature of this case, the exclusion of one skull and the failure to<br />

exclude the other skull represented identifications.<br />

Finally, it is the opinion of the authors that in the absence of clear<br />

images of unique dental features, skull-photo superimposition does not<br />

yield a positive identification. Exclusion or the failure to exclude, on the<br />

other hand, are more typical outcomes of the method.<br />

Forensic Anthropology, Identification, Skull-Photo<br />

Superimposition<br />

H51 Reuniting Families: Using Phenotypic<br />

and Genotypic Forensic Evidence to<br />

Identify Unknown Immigrant Remains<br />

Lori E. Baker, PhD*, Department of Anthropology, Baylor University,<br />

PO Box 97370, Waco, TX 76798; Erich J. Baker, PhD, Department of<br />

Computer Science, Baylor University, Waco, TX 76798<br />

The authors will explain the formation of a new database and DNA<br />

effort to help identify immigrants that perish crossing the US/Mexico<br />

border.<br />

As the database grows, additional state offices participate and families<br />

become aware of the project, it is anticipated and hoped that the<br />

project can assist in significantly lowering the number of unidentified<br />

immigrants from the current 44%.<br />

Every year more than a million individuals pass illegally between<br />

the United States and Mexico. Along this line of passage spanning<br />

roughly 2,000 miles between Texas, Arizona, New Mexico, and<br />

California, there remain few migratory routes not well patrolled by the<br />

Department of Immigration and Naturalization, and these are confined to<br />

areas of extremely inhospitable terrain. As a result, individuals perish at<br />

an alarming rate, more than 500 people in 2001 alone, in their attempt at<br />

illegal immigration. Unfortunately, 167 of the 503 known deaths remain<br />

unidentified. To date there is no centralized, private, federal or statemandated<br />

mechanism that attempts the collection, curation or repatriation<br />

of the unidentified recovered remains. Municipal law enforcement<br />

agencies are further hampered in their efforts at identification because of<br />

the traditional lack of proper data sets necessary to make reasonable<br />

assumptions about the genetic heritage of discovered remains. The<br />

purpose of this project is to provide a database to aid in the identification<br />

process, helping to take some of the burden from the overloaded<br />

agencies that currently handle this work. In addition, the database will<br />

provide a link for families to a system that can help provide answers.<br />

This initiative has created a distributed on-line database, accessible<br />

by public officials and private citizens interested in searching for<br />

missing individuals based on both phenotypic and genotypic characteristics.<br />

This broad effort includes the exhumation of individuals from<br />

geographically disparate pauper graves, the classification of their<br />

physical characteristics, and the cataloging of observed metric traits, to<br />

include associated articles of possession, in a local relational database.<br />

The physical data alone represents a significant increase in our experimental<br />

data set, and therefore our knowledge, about the quantitative<br />

characteristics of individuals of both North and Central American<br />

heritage.<br />

Concurrent with the documentation of physical forensic evidence is<br />

the examination of individual DNA signatures. This project will attempt<br />

to perform genetic analysis of all unidentified immigrant remains and<br />

store the results for later comparison with candidate family members.<br />

The molecular analysis includes the sequence examination of the mitochondrial<br />

DNA (mtDNA) D-Loop region and, as funding permits, Short<br />

Tandem Repeat (STR) analysis.<br />

Because the Reuniting Families initiative is created around the paradigm<br />

of a password-controlled on-line relational data interface, it<br />

simultaneously achieves two objectives. First, as the curated repository<br />

grows, it will provide a much-needed set of genetic data that will aid in<br />

identifications, both in known immigrant cases and in other forensic situations.<br />

Secondly, relatives or friends of missing immigrants will be able<br />

to participate in an on-line search of the database using unique physical<br />

characteristics (height, age, sex, skeletal trauma) and descriptions of<br />

articles of clothing to help identify missing individuals. If this provides<br />

a possible match, DNA testing of a maternal relative will be done to<br />

confirm identification, and steps toward the repatriation of the remains<br />

will be taken.<br />

In July 2003, the first DNA identification of the project was performed<br />

thanks to the individuals at the Pima County <strong>Medical</strong> Examiners<br />

office and their extraordinary efforts. As the database grows, additional<br />

state offices participate and families become aware of the project, it is<br />

anticipated and hoped that the project can assist in significantly lowering<br />

the number of unidentified immigrants from the current 44%.<br />

mtDNA, Immigrant Deaths, Database<br />

H52 Migrant Deaths Along the California-<br />

Mexico Border: An Anthropological<br />

Perspective<br />

Madeleine J. Hinkes, PhD*, San Diego Mesa College, 7250 Mesa<br />

College Drive, San Diego, CA 92111<br />

Through this presentation, the author intends to facilitate multidisciplinary<br />

information sharing and discussion among border jurisdictions<br />

This presentation will impact the forensic community and/or<br />

humanity by bringing to the forensic community an awareness of some<br />

medicolegal issues unique to border jurisdictions.<br />

Any discussion of illegal border crossing between the United States<br />

and Mexico is fraught with political and cultural issues, such as the need<br />

to enforce enacted laws, maintain security, and caretake human rights.<br />

People will continue to cross international borders in search of a better<br />

life. Some will be caught and repatriated, some will be successful, and<br />

some will die trying. They are betrayed by guides, beset by gangs,<br />

beaten, robbed, raped, packed in hot airless vans, hit by cars, drowned,<br />

and abandoned to the elements. These are the individuals who come to<br />

the attention of the medical examiner or coroner and forensic anthropologist.<br />

At this point, medicolegal issues supercede sociopolitical ones.<br />

The deaths need to be investigated, remains autopsied and identified,<br />

next of kin notified.<br />

495 * Presenting Author


California shares a 150-mile border with Mexico. Along the<br />

border, remains are discovered by Border Patrol agents, hikers, offroaders,<br />

and other migrants. They are predominately male (88%, using<br />

1997-2003 San Diego data). They range in age from 14 to 75 years, with<br />

most in their 20s. They come mainly from Mexico, El Salvador,<br />

Honduras, and Guatemala. Some are found soon after death, others are<br />

in various stages of decomposition, due in part to the ecological diversity<br />

of San Diego County. Prior to 1995, the principal cause of death was<br />

motor vehicle accidents, at the rate of 2 per day. This changed in 1995<br />

when the California Department of Transportation built a barrier fence<br />

in the median of Interstate 5 south of the San Clemente checkpoint.<br />

Recently, the principal cause of death is exposure. Eastern San Diego<br />

County has a very “long thermometer” with extremes of daytime heat<br />

and nighttime cold.<br />

Identification can be difficult. <strong>Medical</strong> or dental records are rarely<br />

available. There may be a voter’s card or a bus ticket. Family members,<br />

often working through the Mexican consulate, identify clothing, new<br />

shoes, or distinctive belt buckles. Sometimes fellow migrants offer identification.<br />

Unfortunately, many of these bodies are still John or Jane<br />

Does. California’s recent so-called “John Doe” law mandates that dental<br />

samples be retained at the medical examiner’s office for these unidentified<br />

remains; further, in San Diego these bodies are buried, not<br />

cremated.<br />

In the 1990s, the Border Patrol began a concerted effort to establish<br />

and maintain control of the border, beginning in urban areas. Operation<br />

Gatekeeper began in October 1994, reaching from the Pacific Ocean to<br />

halfway across San Diego County. This heightened law enforcement<br />

presence changed the westernmost segment of the border south of San<br />

Diego from the most permeable to the least permeable stretch of the<br />

border. This spatial restructuring pushed migrants into more dangerous<br />

crossing areas, making their trip longer and more physically challenging<br />

as they made their way on routes through the mountains and deserts and<br />

more rural areas. A 2001 study by the University of Houston Center for<br />

Immigration Research documents how intensified border campaigns are<br />

affecting migrant death patterns through this redirection of flow. They<br />

attempted to quantify data from San Diego to McAllen, Texas, the full<br />

extent of the border with Mexico, using vital registration data supplemented<br />

by interviews with Border Patrol agents, law enforcement<br />

officers, and coroner’s personnel.<br />

Their findings accurately reflect what we see in southern<br />

California. For example, deaths due to exposure in harsh environmental<br />

conditions in San Diego County range from a high of 36 in 1988 to a low<br />

of 5 in 1998. Conversely, Imperial County shows a low of 2 in 1996 and<br />

a high of 21 in 1998. Imperial County presents its own set of challenges<br />

to migrants. They have a choice of waterless desert or the swiftly<br />

flowing All-American Canal. Not surprisingly, drowning deaths have<br />

increased from a low of 3 in 1996 to a high of 24 in 1998 as migration<br />

routes shifted eastward.<br />

The author’s anthropological jurisdiction since fall of 1994 has<br />

been San Diego and Imperial Counties, and the effects of spatial restructuring<br />

are being played out in southern California. The case database is<br />

124 from San Diego County and 71 from Imperial County, although the<br />

actual number of medical examiner migrant cases is higher. In San<br />

Diego these cases represent only about 2% of the annual medical<br />

examiner caseload, and Border Patrol personnel, based on their weekly<br />

live apprehension reports, estimate that the number of deceased migrants<br />

represents only about 1% of the total migrants who cross the southern<br />

California border. This may appear insignificant, but these cases still<br />

represent a very real forensic and human problem.<br />

Forensic Anthropology, Border Patrol, Migrant Deaths<br />

* Presenting Author<br />

H53 Issues Concerning the Skeletal<br />

Identification of Deceased Illegal Aliens<br />

Recovered on the Texas Border<br />

David M. Glassman, PhD*, Texas State University-San Marcos,<br />

Department of Anthropology, San Marcos, Texas 78666<br />

After attending this presentation, attendees will understand the<br />

general taphonomic alteration of bones, patterns of death, sex and age<br />

profiles, and other issues associated with skeletal identification of illegal<br />

aliens along the South Texas border.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating an appreciation for the difficulties in identifying<br />

human skeletal remains found along the South Texas border with<br />

Mexico.<br />

Each year a number of unknown skeletal remains are recovered<br />

from the contiguous counties of Texas that border Mexico. Generally, if<br />

the remains belong to a U.S. citizen of any ancestry, including Mexican-<br />

American, a positive identification is likely to follow a routine investigation<br />

of missing person’s reports and media coverage. However, if the<br />

deceased represents an illegal alien from Mexico, skeletal identification<br />

becomes hindered due to a number of constraints that affect the forensic<br />

anthropologist, medical examiner, and responsible law enforcement<br />

agency to resolve the identity and cause of death objectives mandated by<br />

the State of Texas.<br />

Although illegal aliens enter Texas using a variety of means<br />

including hiding in automobiles, tractor-trailer trucks, and train cars,<br />

much more commonly they enter on foot, at night, and in groups.<br />

Getting lost without appropriate provisions such as water may be<br />

responsible for the death of some illegal aliens. To maximize their<br />

chance of a successful crossing, a group may hire a coyote, or guide, to<br />

assist them across the Rio Grande River and into the larger South Texas<br />

cities of El Paso, Del Rio, Eagle Pass, Laredo, McAllen, Harlingen, and<br />

Brownsville. The illegal aliens, as well as coyotes, know that crossing<br />

in the most rural, desolate portions of the Texas border counties<br />

decreases the likelihood of being caught. However, this means an<br />

extremely long arduous walk to reach the city destinations. Therefore, a<br />

compromise appears to be the more common pattern.<br />

Illegal aliens who choose to cross the border in more rural areas<br />

place themselves at greater risk of death by natural causes or violence at<br />

the hands of a companion traveler or by the coyote, if one was used.<br />

Death in either case would likely not be reported due to fear of exportation<br />

or retribution. The vastness of the Texas terrain within the border<br />

counties is responsible for the typical long periods of postmortem<br />

interval between death and recovery of illegal aliens. Indeed, many of<br />

the human remains found in the border counties have been bleached<br />

white, weathered, and have sustained taphonomic destruction and loss of<br />

bone elements by animal activity prior to discovery. The accidental discovery<br />

of human remains near the border is primarily attributable to<br />

ranchers who oversee large South Texas ranches and by members of the<br />

U.S. Border Patrol while conducting their routine policing activities.<br />

Sixteen skeletal identification cases involving suspected illegal<br />

aliens from Mexico were reviewed for identifying patterns of association.<br />

Variables examined included, sex, age, degree of completeness,<br />

taphonomic bone alteration, and cause of death. In addition, morphological<br />

comparisons were made to determine the frequency of certain<br />

non-metric traits thought to be common among Mexican cranial morphology<br />

such as shovel-shaped incisors, wormian bones, and<br />

palatine tori.<br />

Forensic Anthropology, Skeletal Identification, Taphonomy<br />

496


H54 Identifying the Dead: Methods Utilized for<br />

Undocumented Immigrants, 2001-2003<br />

Bruce E. Anderson, PhD*, Pima County Office of the <strong>Medical</strong><br />

Examiner, Forensic Science Center, 2825 East District Street,<br />

Tucson, AZ 85714<br />

After attending this presentation, the attendee may better appreciate<br />

the problems associated with effecting identification when sparse antemortem<br />

records are present. The attendee will also become familiar with<br />

how the Pima County Office of the <strong>Medical</strong> Examiner collects and<br />

archives information for those who are not identified.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating how our office is coping with the identification<br />

of an increasing number of deaths associated with undocumented<br />

immigrants.<br />

The Pima County Office of the <strong>Medical</strong> Examiner has investigated<br />

an increasingly growing number of deaths of undocumented immigrants<br />

over the past three years. This additional number of deaths has greatly<br />

impacted the office in several ways, to include an increased need for<br />

accurate antemortem data in order to effect the identification of these<br />

unfortunate individuals. To this end, our office works closely with the<br />

local office of the Mexican Consulate to exchange antemortem and postmortem<br />

information. This exchange of information, in the successful<br />

case, typically results in a circumstantial identification being effected.<br />

Defined here, circumstantial identifications strive to attain multiple consistencies<br />

between antemortem and postmortem records, and to exhibit<br />

no unexplainable inconsistencies. Positive identifications are defined<br />

here as relating to a unique correspondence between an antemortem<br />

record and a similar postmortem record, again while exhibiting no unexplainable<br />

inconsistencies. Among the latter, those based on fingerprint<br />

comparisons constitute a decided minority of the total number of identifications,<br />

while those based upon comparisons of dental or medical radiographs<br />

are virtually non-existent. Thus, the majority of the identifications<br />

our office has effected over the past three years have been of the<br />

circumstantial variety, based in part upon consistencies in “individuating”<br />

characteristics such as tattoos, dental features, scars, and other<br />

healed traumata. Mitochondrial DNA sequence comparisons have been<br />

utilized in selected cases and presently remain a tool within the circumstantial<br />

realm of identification because of the inherent sharing within a<br />

maternal lineage. The technique of skull-photo superimposition, another<br />

utilized tool, is also considered in most cases to be a form of circumstantial<br />

identification.<br />

The Pima County Office of the <strong>Medical</strong> Examiner investigates<br />

deaths for three of the four counties that border Mexico, as well as<br />

another county to the immediate north, making our jurisdiction a formidable<br />

piece of the southern Arizonan landscape. Thus, a death resulting<br />

from an unsuccessful desert crossing into Arizona has a good chance of<br />

being investigated by our office. For the past two years (2002 and 2003)<br />

these cases have constituted approximately 10% of the yearly caseload.<br />

While the resources spent on performing the autopsy are commensurate<br />

with most other cases, and even less so when skeletal remains are<br />

examined, the resources expended on attempting to effect identification<br />

is decidedly greater than those cases involving US citizens. The principal<br />

reasons are two-fold: Firstly, because the vast majority of these<br />

deaths occur during the hottest months of the year, decomposition can<br />

render the victim’s face unrecognizable within a few hours. Secondly,<br />

the scarcity of written antemortem records, due to either their non-existence<br />

or unavailability, creates a situation in which traditional comparisons<br />

can not be made.<br />

Partly because of this, some of these individuals are not able to be<br />

identified, and eventually are subjected to a standard office protocol<br />

(developed for use on all unidentified remains) prior to being interred in<br />

a county cemetery (state law prohibits cremation in these cases). In this<br />

protocol, an extensive postmortem record is constructed, complete with<br />

radiographs (both dental and osseous) and tissue samples suitable for a<br />

possible future DNA comparison. It is hoped that by maintaining these<br />

postmortem records, each containing a full biological profile and<br />

recovery information, that potential future identifications could be made<br />

without the need of disinterment.<br />

Undocumented Immigrants, Positive Identification, Circumstantial<br />

Identification, Postmortem Record<br />

H55 Personal Identification and Death<br />

Investigation of Documented and<br />

Undocumented Migrant Workers in<br />

Florida: Demographic, <strong>Bio</strong>graphic,<br />

and Pathologic Factors<br />

Anthony B. Falsetti, PhD* and Heather Walsh-Haney, MA, C.A. Pound<br />

Human Identification Laboratory, Department of Anthropology,<br />

University of Florida, Gainesville, FL 32601; Martha J. Burt, MD,<br />

<strong>Medical</strong> Examiner Department, Miami-Dade County, Number One on<br />

Bob Hope Road, Miami, FL 33136<br />

After attending this presentation, participants will develop a better<br />

understanding of the unique demography, migration patterns and specific<br />

anatomical characteristics of documented and undocumented<br />

laborers and farm workers.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating insight in special forensic considerations for<br />

a specific population.<br />

Estimates on the number of migrant, documented and undocumented<br />

combined, workers in the state of Florida are varied, however the<br />

Atlas of State Profiles, prepared by the US Department of Health and<br />

Human Services in 1994, reports that there are approximately 185,000<br />

migrant farm workers and 253,000 seasonal farm workers for a total of<br />

435,375. Of these, 75% are born outside the United States; two-thirds of<br />

that percentage were born in Mexico, while another one-sixth are from<br />

Central America; of those born in the US most (one-third) are from<br />

Puerto Rico. Eighty-two percent consider themselves to be Hispanic and<br />

75% report that their native language is Spanish. The mean age of<br />

Florida farm workers is 32 years and approximately 25 percent are<br />

female. The numbers of documented versus undocumented workers also<br />

vary; however the same report notes that at least one-third of the total<br />

number of migrant workers are illegal. The leading causes of death in<br />

this population are resultant from traumatic injuries and complications<br />

related to HIV infection.<br />

The anthropological literature on occupational markers suggests<br />

that communities involved in laborious work or repeated positional<br />

behavior experience over-use injuries of the lower limb that include the<br />

classic ‘squatting facets’ presenting on the talus and distal tibia, as well<br />

as evidence of lumbar and thoracic injuries. These anatomical characteristics<br />

are thus resultant from repeated mechanical loads over a period of<br />

time and have been used widely by anthropologists to denote specific<br />

behavioral patterns for populations of individuals as well as the reconstruction<br />

of life ways. The forensic anthropologist working in coordination<br />

with the medical examiner may also use such markers, and others<br />

to individuate an otherwise unknown skeleton or set of decomposed<br />

human remains.<br />

Case histories from the C.A. Pound Human Identification<br />

Laboratory (CAPHIL) and the <strong>Medical</strong> Examiner Department, Miami-<br />

Dade County involving individuals who were thought to be or identified<br />

to be part of the migrant labor community in Florida were examined for<br />

their demographic profiles, injuries, causes and manners of death. Cases<br />

from Miami-Dade are limited to that district’s jurisdiction, while those<br />

from CAPHIL include individuals statewide. In addition to the traditionally<br />

noted ‘squatting’ and ‘kneeling’ facets of the lower limb and<br />

foot, marked changes are observed in the lumbar and thoracic vertebrae,<br />

as evidenced by lipping of the marginal bodies as well as the skeletal<br />

presentation of Schmorl’s nodes. Upper limb joint surfaces, such as the<br />

497 * Presenting Author


glenoid fossa and humeral head, display arthritic change as well as additional<br />

non-specific degenerative bony changes to the hand and wrist.<br />

Further noted is evidence of untreated traumatic injuries that include displaced<br />

fractures of the upper and lower limbs (including the hand and<br />

wrist) and the mid-facial skeleton. The biological or demographic profile<br />

of these individuals follows the primary population description for<br />

migrants in that they are predominately young males (mid-twenties to<br />

early thirties) of Hispanic descent. The manners and causes of death are<br />

similar to the population as a whole.<br />

For the personal identification of individuals thought to be migrant<br />

workers whether documented or undocumented, it is recommended that,<br />

in addition to the presentation of the classic over use injuries, one should<br />

fully examine the entire skeleton for a suite of characteristics that are<br />

suggestive of repetitive behaviors. The biological or demographic<br />

profile of the decedent is also of import. Further, information from the<br />

scene, including its relative location to fields and crops, time of the year<br />

and the phase of the growing season, all need to be taken into account<br />

and recorded. These characteristics, both population-wide and specific,<br />

should allow investigators to narrow down the numbers of unknown<br />

decedent records that need to be examined and assist the medical<br />

examiner in preparing the death certificate for submission for the<br />

tracking of trauma and disease, and other health-related issues in this<br />

population.<br />

Personal Identification, Migrant Farm Workers, Forensic<br />

Anthropology<br />

H56 Fatal Footsteps: The Murder of<br />

Undocumented Border Crossers in<br />

Maricopa County, Arizona<br />

Laura C. Fulginiti, PhD*, A.L. Mosley, MD, V. Shvarts, MD, J. Hu, MD,<br />

K.D. Horn, MD, P.E. Keen, MD, and R.M. Hsu, MD, Forensic Science<br />

Center, 701 West Jefferson, Phoenix, AZ 85007<br />

After attending this presentation, attendees will learn about a new<br />

trend of killing undocumented workers in Arizona. The majority of<br />

deaths among this group are from dehydration and exposure while<br />

crossing the desert to seek work. However, some of these individuals are<br />

being held for ransom and then killed when the family is unable to pay.<br />

The additional burden this places on the medical examiner and law<br />

enforcement will be discussed.<br />

The forensic community will be made aware of a disturbing change<br />

in the manner of death for undocumented workers crossing the border<br />

from Mexico into Arizona.<br />

The mortality rate among undocumented workers in Arizona has<br />

increased seven fold in the past five years (Bureau of Customs and<br />

Border Protection, as quoted in The Arizona Republic). Border patrol<br />

agents in California and Texas have tightened control over their borders<br />

with Mexico thereby increasing the amount of traffic from Mexico into<br />

Arizona. In 1998-1999, the number of deaths among Arizona border<br />

crossers was 28. That number increased dramatically in 1999-2000 to<br />

106. As of July 17, 2003, 104 crossers had died, indicating (albeit anecdotally)<br />

a further increase in mortality among this group. The number<br />

of deaths expressed as a percentage of persons apprehended has also<br />

increased during the same time period. In 1998, 5 individuals died for<br />

every 100,000 apprehended. Today, that number stands at 33.7 per<br />

100,000.<br />

In the past, most immigrant deaths occurred as a result of dehydration<br />

and exposure. More recently, a new trend has emerged, that is,<br />

death of border crossers at the hands of the persons hired to lead them<br />

across the border. These smugglers, known as “coyotes,” charge thousands<br />

of dollars for their services. In some cases, the smugglers attempt<br />

to extort additional money from the families of their victims by holding<br />

* Presenting Author<br />

them hostage once they have crossed the border.<br />

Eight deaths in Maricopa County during the months from January<br />

2002 through March 2003, are reflective of this trend. The individuals<br />

were recovered from a remote location on the northwestern side of<br />

Maricopa County. Each was young to middle aged and became the<br />

victim of homicidal violence. The period since death in the cases ranges<br />

from very recent to months. Three of the eight remain unidentified.<br />

There are striking similarities in these deaths, including the location of<br />

recovery, the condition of the victims and the way in which they were<br />

killed. The consistencies are suggestive that the same group of suspects<br />

was involved in the use of this area, or at the least that a network of<br />

information was available about the remoteness of the site. The location<br />

was abandoned after the Sheriff of Maricopa County announced<br />

increased surveillance. No additional bodies have been recovered in the<br />

area since this announcement.<br />

Three theories are currently at work in these cases. One suggests<br />

that the deaths are warnings from vigilante groups opposed to the undocumented<br />

workers crossing over from Mexico. There is no evidence to<br />

support this contention, however the investigating agency has not ruled<br />

it out. Drug trafficking was initially the prevailing theory, however evidence<br />

came to light that in some of the cases extortion was a more likely<br />

explanation.<br />

Some coyotes have turned from drug trafficking to human smuggling<br />

in part because profits can be made and the penalties are far less<br />

severe. Rival smugglers hijack one another’s “cargo” and ransom the<br />

victim’s to their families. Alternatively, the original coyote holds the<br />

border crosser hostage until the family can provide more money. In<br />

either case, if the family cannot pay, the individual is killed.<br />

This disturbing trend, as illustrated by the eight cases in this paper,<br />

places a different kind of burden on law enforcement and the medical<br />

examiner. The autopsies are more protracted while the investigation is<br />

more complicated and often leads back to the undocumented worker’s<br />

country of origin. Usually, the most complex part of the investigation in<br />

the more typical undocumented worker’s death is that of identification<br />

and notification of the next of kin. If those tasks are accomplished, the<br />

body is returned and the case is closed. In the case of homicide, identification<br />

of the decedent is only the first step towards resolution of the<br />

case. This paper will present the details of the eight homicides and<br />

discuss the change from death by dehydration to murder.<br />

Undocumented Workers, Mexican Border, Homicide<br />

H57 Osseous Traumata Caused by a<br />

Fall From a Height: A Case Study<br />

Kristen M. Hartnett, MA*, Arizona State University, Department of<br />

Anthropology, PO Box 872402, Tempe, AZ 85287-2402; Laura C.<br />

Fulginiti, PhD, 701 West Jefferson, Phoenix, AZ 85007<br />

The goal of this presentation is to present a case study concerning<br />

the effects of a fall from a height on the skeleton.<br />

This presentation will impact the forensic community and/or<br />

humanity by detailing analysis of skeletal remains from an individual<br />

who fell from a height.<br />

The remains of an incomplete and fragmentary human skeleton<br />

were found in the Grand Canyon at the bottom of a four hundred foot<br />

cliff when authorities went into the canyon to recover an unrelated witnessed<br />

suicide jumper. At the time, information on sex, age, race, stature,<br />

pathology, and trauma was requested. The individual was later identified<br />

as a white male, age forty-five, and of European ancestry.<br />

The remains were completely skeletonized and had minimal associated<br />

desiccated soft tissue. The skeletal elements were badly fragmented<br />

with evidence of carnivore activity and differential exposure to<br />

the weather and sun. Only seven cranial fragments and four teeth were<br />

recovered. A rough estimate of one to five years was given for elapsed<br />

498


time since death.<br />

The pattern of perimortem trauma in this case, and the location<br />

where the remains were found suggest that the individual fell approximately<br />

four hundred feet from the cliff edge above. The manner of death,<br />

whether accident, suicide, or homicide could not be determined from the<br />

skeletal remains. Evidence indicating a fall from a height from the<br />

cranium, humeri, ribs, vertebrae, pelvis, femora, and tibiae is discussed<br />

in the sections below.<br />

Both humeri sustained injuries that appear to be perimortem in<br />

nature. The diaphysis of the left humerus was obliquely fractured in a<br />

manner consistent with spiral oblique fractures in fresh bone. Also, the<br />

right humeral head was separated from the shaft at the anatomical neck<br />

in a clean transverse fracture. Fractures were present at the sternal ends<br />

of at least two ribs, and perhaps a third. The trauma to the ribs appears<br />

to have occurred in fresh bone because the bone was depressed in a<br />

linear fashion, as if it were bent inwards in a “greenstick” type of<br />

fracture. Not all of the vertebrae of this individual were recovered. A<br />

careful examination of the vertebrae present led to the discovery of one<br />

small fracture on the transverse process of the fifth lumbar vertebra. The<br />

fracture line is visible and a piece is displaced, but it was not broken off,<br />

suggesting that the bone was fractured perimortem.<br />

The pelvis displayed several fractures indicative of impact after<br />

free fall. There is a fracture on the left iliac blade that is depressed, suggesting<br />

that the fracture was created in green bone. The fracture line<br />

itself is depressed and a fragment on the edge of the line is pushed<br />

inwards. A fracture is also noted at the edge of the left acetabulum where<br />

bone is bent in with a visible fracture line and displaced fragments. The<br />

ischial fractures present may or may not be postmortem in nature and<br />

cannot be accurately used to support the idea that this individual fell<br />

from a height while still alive.<br />

In the femora, fractures requiring a great deal of force were noted.<br />

Both the right and left femoral heads were sheared off at the neck. The<br />

fractures of the femoral necks are not typical of carnivore damage.<br />

Animal activity does affect the proximal and distal ends of long bones,<br />

but usually involves chewing, tearing, and gnawing. No tooth marks or<br />

signs of gnawing were found at the proximal ends of the femora. The<br />

damage is more consistent with perimortem shearing trauma than postmortem<br />

damage.<br />

The right tibia was badly fractured longitudinally into at least five<br />

pieces. Part of the lateral tibial plateau is cracked longitudinally, which<br />

may or may not be perimortem damage. The edge of the medial aspect<br />

of the tibial plateau and the medial malleolus on the left tibia appears to<br />

be sheared off as well. The right and left fibulae are both fragmentary.<br />

The osseous traumata visible in this individual found at the bottom<br />

of the Grand Canyon suggests that he either jumped or fell four hundred<br />

feet, impacted a slope, and then probably rolled or bounced for an<br />

unknown distance. Primary impact was likely with the feet, but secondary<br />

impacts probably occurred as his body continued down slope<br />

from the primary impact point. The shearing fractures of both femoral<br />

heads from the necks and the longitudinal fracturing of the tibiae<br />

strongly support the hypothesis that the individual landed feet first.<br />

However, in the vertebrae that were present, there were no compression<br />

fractures, which are common in feet and buttock primary impacts.<br />

Furthermore, few tarsals and metatarsals were recovered, and those that<br />

were did not show any signs of impact trauma. The fact that very little<br />

of the cranium was recovered suggests that it was fractured into many<br />

pieces either from direct contact with the ground surface in a secondary<br />

impact, or from the force of the vertebral column bursting through the<br />

base of the skull upon primary feet impact. Fragments of the occipital<br />

were not found, making it impossible to determine if a ring fracture was<br />

present. The remaining fractures of the humeri, ribs, pelvis, and vertebrae<br />

can be attributed to secondary impacts after the body struck the<br />

slope initially at a depth of approximately four hundred feet and continued<br />

to bounce further down slope.<br />

Forensic Anthropology, Falls, Fracture<br />

H58 Multidisciplinary Efforts in the<br />

Identification of Three Unidentified<br />

Females in the State of New Jersey<br />

Donna A. Fontana, MS*, New Jersey State Police, River Road, PO Box<br />

7068, West Trenton, NJ 08628; Raafat Ahmad, MD, Mercer County<br />

<strong>Medical</strong> Examiner Office, Mercer County Airport, Building #31, West<br />

Trenton, NJ 08628; Jay Peacock, MD, Monmouth County <strong>Medical</strong><br />

Examiner Office, Centra State <strong>Medical</strong> Center, Route 537, Freehold,<br />

NJ 07728; Ronald Suarez, MD, Morris County <strong>Medical</strong> Examiner<br />

Office, PO Box 900, Morristown, NJ 07963-0900<br />

The goal of this presentation is to present cases to the forensic community<br />

that utilize various forensic disciplines in the tentative identification<br />

of unidentified bodies.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating the utility of using different forensic disciplines<br />

in the identification process of unidentified remains.<br />

This poster reports on the combined multi-disciplinary efforts of<br />

forensic pathology, forensic anthropology, radiology, hair analysis and<br />

composite drawing in the identification process of three unidentified<br />

females in the State of New Jersey. The results of these efforts will be<br />

presented for review.<br />

On July 18, 2001, an unidentified clothed and mummified body<br />

was found in Trenton, New Jersey, at the bottom of steps leading to a<br />

basement of a bar that had been closed since June 1996. The forensic<br />

anthropological examination determined the victim to be a Negroid<br />

female, between 25-35 years of age at the time of death and between<br />

4’9”-5’0” in height. The cause of death was listed as “Extensive fractures<br />

of skull” and the manner of death was determined to be<br />

“Homicide”. Postmortem x-rays revealed a healed mandibular fracture.<br />

Unique “jewelry” and a diastema between the upper central incisors<br />

were also useful identifiers in this case. A forensic composite drawing<br />

was rendered which was based upon the anthropometric measurements<br />

provided by the forensic anthropologist and tissue thickness measurements<br />

for a Negroid female. A newspaper article and composite of the<br />

victim resulted in a tentative identification. Positive identification was<br />

subsequently made through fingerprint comparison after successful<br />

rehydration of the fingertips.<br />

On March 4, 2002, an unidentified skeletonized/mummified body<br />

was found in a wooded area in Denville, New Jersey. The autopsy<br />

revealed the presence of three tattoos on the mummified skin unique<br />

enough for tentative identification. The forensic anthropological examination<br />

determined the victim to be a Caucasian female, between 24-34<br />

years of age at the time of death and between 4’9”-5’0” in height.<br />

Examination also determined that she had at least one child. The cause<br />

of death was listed as “Pending further studies” and the manner of death<br />

was determined to be “Pending.” A forensic composite drawing was rendered<br />

which was based upon the anthropometric measurements provided<br />

by the forensic anthropologist and tissue thickness measurements for a<br />

Caucasian female. A flyer was subsequently made which included the<br />

composite and the tattoos. Positive identification was made through fingerprint<br />

comparison after successful rehydration of the fingertips.<br />

On November 18, 2002, an unidentified and nude female body was<br />

uncovered by a backhoe in a vacant lot in Tinton Falls, New Jersey. At<br />

autopsy, the body measured 5’0” and weighed 106 lbs. in the body bag.<br />

The victim had dark, straight hair. The forensic anthropological and radiological<br />

examination determined the victim to be of Caucasian/ Hispanic<br />

ancestry and between 15-17 years of age at the time of death. Hair<br />

analysis determined the hair to be 5-6 inches in length, dark brown in<br />

color with 1 - 1 ½ inches of the tips tinted orange. The analysis also<br />

determined that the hair was recently cut and racial characteristics were<br />

of Caucasian origin. The cause of death was listed as “Homicidal violence<br />

of undetermined etiology” and the manner of death was deter-<br />

499 * Presenting Author


mined to be “Homicide.” The only physical identifier found with the<br />

victim was an initial ring with the cursive letter “F” with white or clear<br />

stones. A forensic composite drawing was rendered which was based<br />

upon the anthropometric measurements provided by the forensic anthropologist<br />

and tissue thickness measurements for a Caucasian female. A<br />

newspaper article and composite of the victim resulted in a tentative<br />

identification. Positive identification was subsequently made through<br />

fingerprint comparison using fingerprints filed with the Immigration and<br />

Naturalization Service only 3 months prior to discovery of the body.<br />

Identification, Forensic Anthropology, Composite Drawing<br />

H59 Bullet Wipe on Bone:<br />

Production and Detection<br />

David Z.C. Hines, BA*, C.A. Pound Human Identification Laboratory,<br />

PO Box 112545, University of Florida, Gainesville, FL 32611<br />

After attending this presentation, attendees will understand the<br />

influence, if any, of caliber, range, angle, and bullet design on the<br />

production of bullet wipe; to determine the effect of maceration on the<br />

detection bullet wipe; to find whether proton-induced X-ray emission<br />

(PIXE) analysis may be used to detect non-visible bullet wipe.<br />

This presentation will impact the forensic community and/or<br />

humanity by codifying much that had been believed to be true, but had<br />

not been examined by any previous study. The issue of cross-contamination<br />

in maceration is addressed for the first time.<br />

Most bullets in civilian use are made of lead hardened with tin or<br />

antimony. Lead is a soft, dense metal with a low melting point<br />

(Fahrenheit 621). When it passes through bone, it often leaves traces in<br />

the form of small fragments in the hole or on the surface of the bone<br />

itself. These radio-opaque traces are called bullet wipe. In the absence<br />

of a well-defined entrance or exit wound, bullet wipe is a useful indicator<br />

of gunshot. This study was undertaken to determine what factors<br />

influence the production and detection of bullet wipe.<br />

A total of 345 gunshot wounds were produced in 69 pig crania and<br />

postcrania. Two revolvers were used: a 1909 Model Army Colt in .38<br />

Special and a North American Arms Black Widow mini-revolver in .22<br />

Long Rifle and .22 Magnum. The pig bones were shot five times each,<br />

at ranges of ten feet and hard contact, at angles of ~90 degrees and ~180<br />

degrees, with a variety of ammunition (full-metal jacket, jacketed soft<br />

point, hollowpoint, and unjacketed lead). After being shot, the specimens<br />

were radiographed. They were macerated for a minimum of 24<br />

hours, cleaned, and radiographed again. The presence of bullet wipe on<br />

each specimen was scored before and after maceration on a scale from 0<br />

(no traces present) to 3 (large traces present). Proton-induced X-ray<br />

emission (PIXE) analysis was used to search for bullet wipe on bones for<br />

which no wipe was observable.<br />

Conclusions<br />

1) The presence of bullet wipe on bone is determined by bullet<br />

design. Bullet wipe may be separated into two distinct types. Direct<br />

bullet wipe is produced by physical contact between the primary mass of<br />

the bullet and bone, and is found on the margin of a gunshot wound.<br />

Indirect bullet wipe is produced by fragments shed by the bullet. The<br />

presence and nature of bullet wipe on bone is determined by bullet<br />

design. The study found range and angle to be irrelevant to the production<br />

of bullet wipe.<br />

2) Full-metal-jacket, unjacketed, soft-point, and hollow-point<br />

bullets cause different patterns of bullet wipe. Bullets with a full metal<br />

jacket, which have no exposed lead, typically produce no visible wipe at<br />

all. In the extremely unlikely event that any wipe is present, it is indirect.<br />

Unjacketed bullets produce both direct and indirect wipe in ample<br />

amounts. Soft-nosed bullets produce direct and indirect wipe, but much<br />

less of each than unjacketed bullets, and hollowpoints produce indirect<br />

wipe and little direct wipe. Because .22 caliber rounds are open at the<br />

* Presenting Author<br />

base, these generalizations do not hold for small-caliber ammunition.<br />

3) Maceration can affect the presence of bullet wipe and result in<br />

cross-contamination. Direct bullet wipe does not appear to be affected<br />

by maceration. Indirect bullet wipe, however, can be reduced or eliminated.<br />

Small particles of indirect wipe may transfer from one specimen<br />

to another if the specimens are macerated together. Pre-maceration radiography<br />

is essential to guard against such cross-contamination.<br />

4) PIXE analysis is a useful tool in analysis of bullet wipe, particularly<br />

when reconstruction of trauma is difficult.<br />

Bullet Wipe, Gun Shot, PIXE<br />

H60 Skeletal Evidence of<br />

Homicidal Compression<br />

Alison Galloway, PhD*, University of California, Social Science One<br />

FS, Santa Cruz, CA 95064; Lauren Zephro, MA, Monterey County<br />

Sheriff’s Office, 1414 Natividad Road, Salinas, CA 93906-3102<br />

The goal of this presentation is to present the forensic anthropological<br />

community with examples of cranial and postcranial fractures<br />

due to the application of compressive force. This presentation will also<br />

provide a framework and protocols for the recognition and interpretation<br />

of compression damage to the skeleton.<br />

This presentation will impact the forensic community and/or<br />

humanity by increasing awareness of compression injuries in the context<br />

of homicide.<br />

Compression fractures occur when bone tissue is compacted to the<br />

point of failure. In forensic cases, such fractures are often seen in falls<br />

from height but may also be encountered in victims of homicide. Our<br />

experience with recent cases demonstrates evidence of homicidal cranial<br />

and postcranial compression skeletal injuries.<br />

When coroners and medical examiners turn to the anthropologist<br />

for assistance, the remains are often decomposed to the point that evidence<br />

of soft tissue injury no longer exists. The remains may be partial<br />

due to taphonomic processes and postmortem damage may overlap the<br />

antemortem and perimortem defects. Careful examination and documentation<br />

is essential.<br />

Compression injuries in instances of homicide usually involve the<br />

head or chest. This pattern is in contrast to compressive injuries encountered<br />

in motor vehicle accidents and falls, which typically involve compression<br />

of the long bones, spine or pelvic region. Homicidal injuries<br />

may be more difficult to detect as the fractures are often incomplete due<br />

to the lower forces imparted. Careful preparation of the skeleton combined<br />

with macro and microscopic examination of all bone surfaces is<br />

essential to recognize and interpret trauma.<br />

In the cases presented in this poster, compression was applied to the<br />

body of the victim resulting in incomplete fractures. Four cases are<br />

included in this report:<br />

Case 1: The remains of an adult female in her mid-fifties were<br />

found under a house. Minimal damage was evident on the left lateral<br />

portion of the anterior vault and some in the orbits. However, internal<br />

examination revealed extensive perimortem fracturing in the sphenoidal<br />

region suggesting compression of the skull.<br />

Case 2: The remains of an adult female were found in a remote<br />

wooded area. The alleged perpetrator gave a detailed confession that<br />

could be matched to the skeletal defects. Included among the damage<br />

was an incomplete fracture of the internal surface of the sternum that<br />

matched his claim that he knelt on her chest in order to twist her neck.<br />

Case 3: The decomposed remains of an adult male were discovered<br />

in a wooded area, located along side a road. The remains showed<br />

extensive perimortem trauma, including at least nine discrete blunt force<br />

injuries to the skull. The hyoid and thyroid cartilage displayed complete<br />

fractures. In addition, incomplete fractures were noted on the sternum,<br />

right rib six, left rib six, cervical vertebrae five and six, and right<br />

clavicle, suggesting excessive compressive force was applied to the<br />

500


anterior chest.<br />

Case 4: Remains found in a dumpsite showed compression fractures<br />

of the rib cage, but were more consistent with the presence of a carnivore<br />

and were presumably inflicted after the death of the individual<br />

from other causes.<br />

These cases demonstrate that subtle damage can be interpreted.<br />

Postmortem damage due to carnivores may be a compounding factor in<br />

skeletal trauma interpretation.<br />

Trauma Analysis, Compression Injuries, Incomplete Fractures<br />

H61 Determining Medicolegal<br />

Significance: Human vs. Selkie<br />

Vincent H. Stefan, PhD*, Lehman College, CUNY, Department of<br />

Anthropology, 250 Bedford Park Boulevard West, Bronx, NY 10468<br />

After attending this presentation, the participant will be aware of<br />

the morphological similarities and differences between human and seal<br />

thoracic vertebrae. Detailed morphological comparisons between human<br />

and seal thoracic vertebrae will provide invaluable knowledge to<br />

forensic anthropologists and pathologists who may encounter marine<br />

mammal skeletal remains due to the coastal jurisdictions they cover.<br />

This presentation will impact the forensic community and/or<br />

humanity graphically documenting and illustrating the morphological<br />

similarities and differences of human and seal thoracic vertebrae.<br />

Background: In many cases, the first question asked by a forensic<br />

anthropologist is whether the skeletal remains are human or non-human.<br />

For the vast majority of those cases, the question is answered relatively<br />

easily and quickly. Comparisons between human and non-human<br />

skeletal remains typically rely on macroscopic aspects of skeletal morphology<br />

(maturity, size, architecture of articular surfaces, areas of<br />

muscle attachment, fusion of elements, thickness of cortical bone,<br />

density of cancellous bone, delineation of cortical and cancellous bone,<br />

etc.), as well as microscopic aspects (osteon organization, plexiform<br />

bone, Haversian systems, etc.). The human skeletal possesses morphological<br />

features which reflect our primate ancestry and unique evolutionary<br />

adaptations (bipedal locomotion, enlarged brain, reduced faces,<br />

etc.), and it is these features which allows for the determination as to<br />

whether any given complete/partial skeleton or individual skeletal<br />

element is human or non-human. However, if the remains are those of a<br />

pathological human specimen or human fetal specimen with congenital<br />

birth defects, the determination of human/non-human becomes far more<br />

difficult. Additionally, several non-human skeletal elements have and<br />

continue to confuse some law enforcement personnel and forensic scientists<br />

(bear paws, pig premolars, horse distal caudal vertebrae). This<br />

poster will present another non-human skeletal element that has and<br />

could confuse forensic scientists.<br />

Case History and Pathological/Anthropological Assessment: On<br />

June 19, 2003, skeletal remains (two thoracic vertebra and rib fragment)<br />

were found by a 10 year old boy digging in the water behind a relative’s<br />

home at Oak Beach, New York. The County Police Department was<br />

notified and collected the remains and turned them over to the County<br />

<strong>Medical</strong> Examiner’s Office where a pathological examination was conducted<br />

on June 24, 2003. The initial assessment of the vertebrae was that<br />

the remains were potentially from an adult human. On June 27, 2003, the<br />

anthropological examination of the two thoracic vertebrae and rib<br />

fragment revealed them to be “non-human,” from an immature animal.<br />

On a cursory level the vertebrae looked very similar to human thoracic<br />

vertebrae, but detailed morphological features of the transverse<br />

processes, vertebral body, and the presence of vertebral body epiphyseal<br />

disks not rings were not consistent with human morphology.<br />

Consultation with Darrin Lunde, Collections Manager, Department of<br />

Mammalogy, American Museum of Natural History on July 21, 2003,<br />

resulted in the identification of the skeletal elements as belonging to a<br />

seal (Order: Pinniped; Family: Phocidae; exact genus and species not yet<br />

determined).<br />

Conclusions: The determination as to whether any given set of<br />

skeletal remains is human or non-human, in most circumstances, is a relatively<br />

easy task to perform. The forensic literature is replete with analytical<br />

and anecdotal evidence of non-human skeletal remains that have<br />

and continue to be misidentified as human. A thorough search of the<br />

forensic literature found no reference to seal skeletal remains potentially<br />

misidentified as human. Though infrequently encountered, knowledge<br />

of the similarities and differences between human and seal thoracic vertebral<br />

morphology will prove invaluable to forensic anthropologists and<br />

pathologists whose jurisdictions include coastal regions where seal and<br />

other marine mammal skeletal remains may be recovered by civilians<br />

and law enforcement personnel.<br />

Human vs. Non-Human, Seal, Thoracic Vertebrae<br />

H62 Assessment of Saw-Blade Wear Patterns<br />

and Wear-Related Features of the Kerf Wall<br />

Laurel Freas, BA*, Department of Anthropology, C.A. Pound Human<br />

Identification Laboratory, University of Florida, PO Box 112545,<br />

Gainesville, FL 32611<br />

This poster presents the results of a preliminary study investigating<br />

the effects of progressive saw-blade wear on the appearance of kerf walls.<br />

This presentation will impact the forensic community and/or<br />

humanity by adding to the established methodology for the interpretation<br />

of saw-marks in human bone in cases of postmortem dismemberment.<br />

Furthermore, it allows for greater specificity in reconstruction<br />

of postmortem events by providing the forensic anthropologist with<br />

additional information about the tool(s) used in dismemberment.<br />

Post-mortem dismemberment of homicide victims creates a challenge<br />

for forensic anthropologists charged with identification of the victim<br />

and reconstruction of the events of the crime, based on evidence contained<br />

in the victim’s skeletal remains. The pattern and distribution of the cuts<br />

may provide investigators with clues to the motivation and intent of the<br />

perpetrator in carrying out the dismemberment. By determining what class<br />

of tool was used in the dismemberment (i.e. knife, ax, or saw), the forensic<br />

anthropologist can provide police with an additional avenue by which to<br />

connect a suspect to the victim. The methodology for distinguishing<br />

among different types of saws potentially used in the dismemberment,<br />

based on the appearance of the cut marks (kerfs) they produce is well<br />

established. By virtue of the cutting action of their numerous identical<br />

teeth, saws create distinct, repetitive patterns of fine striations on the sides<br />

(kerf walls) of the cut mark. These patterns yield information on all the<br />

key characteristics of the saw in question: type and width of tooth set,<br />

tooth type, number of teeth per inch, and if it is a hand- or power-saw.<br />

This preliminary study seeks to compliment the established<br />

methodology of cut mark interpretation by investigating the impact of<br />

increasing saw-blade wear on the appearance of the kerf wall. Three<br />

questions were considered:<br />

1. How can cuts made by a brand-new saw be distinguished from<br />

those made by a saw that has been subjected to normal usage (and<br />

now shows a fair degree of wear) based on the appearance of the<br />

kerf walls? Can corresponding differences be observed in the<br />

appearance/condition of the saw blade?<br />

2. Is there an observable difference between saw-blade wear<br />

generated by use on bone and wear generated by use on the saw’s<br />

intended substrate (i.e., wood for crosscut and rip saws; metal for<br />

hacksaws)? Correspondingly, will there be differences between<br />

the appearance of kerf walls created by saws used only on bone<br />

and those created by saws which were used first on the intended<br />

substrate and then on bone, beyond anticipated wear-related<br />

differences?<br />

3. How will incidental damage (e.g., broken or bent teeth) to the<br />

saw-blade, occurring in normal use of the saw, affect the<br />

501 * Presenting Author


appearance of the kerf wall?<br />

In this study, brand-new blades of three common types of saws<br />

(cross cut, rip cut and hack saws) were used to make series of 30 cuts in<br />

white-tailed deer (Odocoileus virginianus) tibiae; the kerf walls of each<br />

cut were then examined under a stereoscopic light microscope. By this<br />

manner, it was observed that the patterns of coarse and fine striations on<br />

the kerf walls became progressively more shallow and indistinct with<br />

increasing saw-blade wear. This pattern correlated well with the accumulation<br />

of rounded-off teeth and edges and eburnation of teeth along<br />

the length of the saw. Control groups, made by using three saws which<br />

were identical to those in the first group to saw through wood and metal,<br />

showed highly similar wear patterns to the saws used only on bone. No<br />

differences were observed in the appearance of the kerf walls of cut<br />

marks in bone made by saws used only on bone versus those made by<br />

saws used first on wood or metal. Only one broken saw-tooth was<br />

observed in the course of this study; it produced deep, erratic gouges on<br />

the kerf walls, which also became progressively more shallow as the cut<br />

series progressed.<br />

Tool Mark Analysis, Dismemberment, Forensic Anthropology<br />

H63 Hereditary Multiple Exostoses:<br />

An Identifying Pathology<br />

Melissa L. Gold, BS*, Department of Anthropology, C.A. Pound<br />

Human Identification Laboratory, University of Florida, PO Box<br />

112545, Gainesville, FL 32611<br />

This poster presents a case of hereditary multiple exostoses, or<br />

osteochondromatosis, and demonstrates the utility of stable, nonaggressive<br />

lesions in antemortem/postmortem radiographic identification.<br />

This presentation will impact the forensic community and/or<br />

humanity providing an example of how certain stable, non-aggressive<br />

pathological lesions can make personal identification relatively straightforward<br />

if antemortem resources are available.<br />

Hereditary multiple exostosis, also known as osteochondromatosis<br />

or diaphyseal aclasis, is a condition where multiple benign, cartilaginous<br />

tumors (exostoses) develop at the metaphyses of endochondral bone.<br />

Although exostoses may be pedunculated or sessile in appearance, both<br />

develop cortex and spongiosa continuous with that of the bone on which<br />

they appear. Most commonly twenty or more tumors are found distributed<br />

bilaterally and growing away from the closest joint. Usually<br />

exostoses are found on one or more of the following: the distal femur,<br />

proximal/distal tibia, proximal humerus, distal radius or proximal/distal<br />

fibula. In addition to exostoses, individuals with osteochondromatosis<br />

also tend to be of a shorter stature and exhibit expanded metaphyseal<br />

areas of affected long bones. There may be significant growth asymmetry,<br />

secondary deformation of a nearby unaffected bone or increased<br />

susceptibility to fracture of an affected bone. The disease is usually manifested<br />

by age 12. This case history illustrates the utility of these types<br />

of lesions in personal identification from skeletal remains.<br />

In spring of 2003, police found a body in an advanced state of<br />

decomposition suggesting a postmortem interval estimation of over two<br />

months. Almost all skeletal elements were recovered and taken to the<br />

laboratory for identification and trauma analysis.<br />

The decedent was determined to be an adult male, who would<br />

probably have been classified as “white” based on metric and non-metric<br />

traits. Antemortem trauma was evident in the form of several healed<br />

fractures of the face, hand, lower leg and several ribs. The decedent<br />

exhibited pathological traits consistent with extensive osteochondromatosis<br />

including: multiple lobulated lesions on the metaphyses of the<br />

distal femora and the proximal/distal tibiae and fibulae, trumpet-shaped<br />

metaphyses and internal orthopedic fixation of the distal tibiae and<br />

* Presenting Author<br />

fibulae to correct bilateral pathological fractures.<br />

Postmortem radiographs of the tibiae, fibulae and femora were<br />

taken in order to confirm the diagnosis of multiple exostoses and to<br />

image the fractures and surgical appliances.The cranium was radiographed<br />

as well to illustrate a maxillary fracture and the frontal sinus<br />

pattern. Antemortem radiographs of the suspected victim, a 48-year-old<br />

white male, were then obtained and compared to those taken of the<br />

recovered remains. The antemortem radiographs pre-dated the time of<br />

death by several years. These films showed an acute fracture of the left<br />

maxilla within the floor of the orbit, an acute spiral fracture of the<br />

proximal shaft of the right tibia, multiple bony lesions on the proximal<br />

and distal metaphyses of the tibiae and fibulae, healed fractures of both<br />

distal fibulae with internal fixation via an orthopedic plate and an associated<br />

malleolar fracture of the tibia fixed with two cannulated orthopedic<br />

lag screws. The investigation revealed that the decedent’s father<br />

had also suffered from hereditary multiple exostoses.<br />

Comparison between the antemortem and postmortem radiographs<br />

showed identical placement of the aforementioned trauma and<br />

pathology, with the exception of the acute fracture of the tibia which was<br />

well-healed by the time of the postmortem radiograph. The frontal sinus<br />

pattern was also identical.<br />

Based on the attributes of osteochondromatosis, i.e., tumors and<br />

pathological fractures, a positive identification was easily made. All of<br />

the imaged lesions displayed remarkable stability, further demonstrating<br />

that the lesions were benign and non-aggressive. These types of benign<br />

lesions, including single lesions of osteochondroma, osteomatoid exostoses,<br />

and myositis ossificans can serve as excellent life history markers<br />

of personal identity.<br />

Human Identification, Hereditary Multiple Exostoses, Forensic<br />

Anthropology<br />

H64 Empirical Validation and Application<br />

of the Quality-Control Polymerase<br />

Chain Reaction (qcPCR) Inhibitor<br />

Detection System<br />

Elias J. Kontanis, BS, BA*, Cornell University, Department of Ecology<br />

& Evolutionary <strong>Bio</strong>logy, Corson Hall, Ithaca, NY 14853; Krista E.<br />

Latham, MS, Temple University, Department of Anthropology, 1115<br />

West Berks Street, Philadelphia, PA 19122; Mary K. Ritke, PhD,<br />

University of Indianapolis, Department of <strong>Bio</strong>logy, 1400 East Hanna<br />

Avenue, Indianapolis, IN 46227<br />

The primary objective of this study is to optimize the quality<br />

control Polymerase Chain Reaction (qcPCR) inhibitor detection system<br />

by empirically determining its breadth of effectiveness and its sensitivity<br />

range. Effectiveness and sensitivity will be tested by utilizing several<br />

commonly encountered PCR inhibitors. The qcPCR detection system<br />

will then be compared to several other methods used to detect the<br />

presence of inhibitory substances in PCR template solutions. A variety<br />

of soft tissue and bone samples with prior negative amplification results<br />

are evaluated using qcPCR.<br />

This presentation will impact the forensic community and/or<br />

humanity by developing a more accurate understanding of the relative<br />

effects of various PCR inhibitors. Investigators will also be able to differentiate<br />

between amplification inhibition and DNA degradation<br />

beyond the current limits of analysis.<br />

Many current forensic DNA analysis methods are dependent on the<br />

successful amplification of a template DNA sample using the polymerase<br />

chain reaction (PCR). However, forensic samples often contain<br />

co-extracted diffusible compounds that partly or completely inhibit<br />

amplification of the template DNA molecules producing false-negative<br />

PCR results. Common diffusible inhibitors encountered in forensic con-<br />

502


texts include substances produced by the body (e.g., heme-products, bile<br />

salts, collagen) and compounds introduced from the environment by diagenetic<br />

processes (e.g., humic and tannic acids). Identifying PCR template<br />

samples that contain inhibitory substances allows investigators the<br />

opportunity to utilize inhibitor neutralization strategies, increasing the<br />

chance of a successful re-amplification attempt. This study will provide<br />

empirical evidence supporting the development of a PCR-based method<br />

to identify false-negative amplification results.<br />

The proposed qcPCR system utilizes a 500 base-pair region of<br />

lambda phage DNA as the reporter template that is amplified using<br />

lambda phage specific primers. Test template solutions that have failed<br />

to amplify during previous attempts are spiked into the reporter amplification<br />

reaction. The qcPCR solution is then thermocycled using parameters<br />

optimized for reporter (lambda DNA) template amplification.<br />

The yield of amplified DNA obtained from the test template-spiked<br />

qcPCR is compared to that of a positive-control qcPCR lacking the test<br />

template. If both reactions yield the same amount of reporter amplicon<br />

(500 bp of lambda DNA), the test template solution does not contain diffusible<br />

inhibitory compounds capable of blocking or reducing the amplification<br />

efficiency of the reporter reaction. If however the test templatespiked<br />

samples yield less reporter amplicon than the control, the test<br />

template solution is assumed to contain diffusible inhibitors, suggesting<br />

genetic analysis will be compromised.<br />

While a theoretically sound method, little empirical work has<br />

demonstrated its applicability to a range of known PCR inhibitors commonly<br />

encountered in forensic contexts. A variety of diffusible PCR<br />

inhibitors (humic acid, tannic acid, heme-products and collagen) are<br />

used to test the effectiveness and sensitivity range of the qcPCR system.<br />

Different concentrations of each inhibitor are mixed with varying concentrations<br />

of inhibitor-free genomic pig DNA. An amplification success<br />

matrix is constructed to determine the minimum inhibitor concentration<br />

necessary to reduce amplification efficiency. The inhibitor-genomic template<br />

mixes are then spiked into a qcPCR to assess the system’s detection<br />

capabilities for single inhibitors. The aforementioned inhibitor/DNA<br />

templates are also used to evaluate the following inhibitor detection<br />

methods: spectrophotometric measurement of template purity, amplification<br />

efficiency calculation using real-time PCR, and the presence of<br />

oligonucleotide primer dimers in failed amplification attempts. Results<br />

are compared to assess the inhibitor detection capabilities of each<br />

method. The qcPCR inhibitor detection method is then used to evaluate<br />

lung, liver, spleen, psoas muscle, parietal, rib, vertebral body and<br />

femoral shaft DNA extractions that have failed to amplify during previous<br />

attempts. These samples were obtained over the course of two<br />

years from 28 pigs: 14 placed in a pond-shore environment and 14<br />

deposited on a forest floor. Additionally, qcPCR analysis is reported for<br />

femoral DNA extractions from historic human burials.<br />

This study will demonstrate that the proposed qcPCR inhibitor<br />

detection method allows investigators to reliably identify specimens that<br />

require more rigorous DNA extraction and purification procedures, thus<br />

facilitating the diagnostic amplification process and minimizing the<br />

potential for false-negative results.<br />

Quality Control Polymerase Chain Reaction (qcPCR),<br />

PCR Inhibitors, Inhibitor Detection<br />

H65 Defining Perimortem: Blunt Force Trauma<br />

Derinna V. Kopp, MA*, Jacquel Arismendi, MA, and Shannon A.<br />

Novak, PhD, Department of Anthropology, University of Utah, 270<br />

South 1400 East, Room 102, Salt Lake City, UT 84112<br />

After attending this presentation, attendees will understand the<br />

quantiative and qualitative changes to bone when blunt force trauma is<br />

induced at 30-day intervals over six months.<br />

This presentation will impact the forensic community and/or<br />

humanity by demonstrating that if the morphological changes in fracture<br />

characteristics of bone throughout the decomposition process can be<br />

quantified and statistically validated, such findings would facilitate<br />

skeletal trauma analysis and subsequently the testimony of forensic<br />

anthropologists.<br />

Determining whether a traumatic lesion occurred perimortem or<br />

postmortem is one of the most important concerns in the analysis of<br />

skeletal remains. Distinguishing between perimortem trauma and<br />

damage that occurs after deposition, however, can be difficult. While the<br />

different fracture characteristics of fresh and dried bone are known and<br />

easily identifiable, the varying fracture characteristics of bone<br />

throughout the decomposition period are unknown. As bone decomposes,<br />

moisture, grease, collagen fibers, and other organic materials that<br />

give elasticity to the bone degrade, resulting in bone that is more friable<br />

and fragile with time. The rate at which these materials are lost is<br />

dependant on postmortem environmental and climatic factors. In fact,<br />

the fracture characteristics of fresh bone may remain for several weeks<br />

after death, making it difficult to determine when a fracture occurred<br />

during the decomposition process. If these morphological changes could<br />

be quantified and statistically validated, such findings would facilitate<br />

skeletal trauma analysis and subsequently, the testimony of the forensic<br />

anthropologist.<br />

To examine the differing fracture characteristics of bone throughout<br />

the perimortem to postmortem interval, a trauma study using sheep<br />

humeri was conducted. A constant blunt force was used to induce<br />

trauma on sheep humeri at 30-day time intervals for six months. The<br />

study bones were obtained from ewes of the same age, when they were<br />

sacrificed as part of a biomedical femoral-tibial joint replacement study.<br />

At the time of sacrifice, the right and left forelimb of twelve animals was<br />

dissected, the wool and skin removed, and the humeri disarticulated at<br />

proximal and distal joints. The muscle tissue was kept on the humeri to<br />

allow for more realistic trauma induction and decomposition of the<br />

remains. Two hours after sacrifice, trauma was induced on two right<br />

humeri—these specimens served as time “0” or the perimortem baseline.<br />

The remaining specimens were placed in a wire mesh cage in the<br />

western desert of Utah between May and October 2003, allowing the<br />

humeri to decompose naturally. Temperature and humidity at the<br />

location was monitored with an Oakton RH/TempLog at fifteen-minute<br />

intervals for the entire length of the study. Every 30 days, two of the<br />

humeri were retrieved, measured, photographed, and subjected to blunt<br />

force trauma.<br />

Blunt force trauma was induced with a metal femoral head component<br />

attached to a guillotine apparatus, which allowed for a consistent<br />

reproduction of known force (designed by Dr. Kent Bachus, director of<br />

the biomechanics Laboratory at the University of Utah School of<br />

Medicine). The right humeri were clamped to the base of the apparatus<br />

at the proximal and distal joint surfaces to allow for trauma induction on<br />

the anterior-lateral midshaft. The guillotine was dropped from a height<br />

of 67 cm, resulting in trauma induced at 25.3 joules.<br />

Following trauma induction, anterior-posterior and medial-lateral<br />

contact-radiographs and photographs were taken. All adherent soft tissue<br />

was carefully removed, making sure not to alter the fractured surface.<br />

The skeletal trauma was photographed, reconstructed, illustrated, and<br />

described in detail. The following variables were measured for each<br />

specimen:<br />

• Thickness of cortical bone at impact site<br />

• Fracture type<br />

• Number of fragments<br />

• Minimum and maximum length of each fragment<br />

• Angle of fracture margin bevel (internal, external, flush)<br />

• Number and length of radiating fractures<br />

• Color of host bone and color of bone at fracture margins<br />

These variables will be coded for the two specimens in each of the<br />

six time periods. Multivariate statistical analysis will be conducted to<br />

assess any temporal trends in the data. At the time of abstract submission,<br />

our analysis of the first three time periods has identified distinct<br />

503 * Presenting Author


differences in fracture morphology, especially in the size and number of<br />

fragments. Specifically, there is a 1200% increase in micro-fragments<br />

(


affecting the spine and joints.<br />

Anthropological examination of the innominates, mandible, and<br />

postcranial skeleton suggest the individual is male. The age range based<br />

on pubic symphysis morphology and sternal rib end analysis is 45-60<br />

years of age. A comprehensive analysis of ancestry could not be conducted,<br />

as the cranium was not recovered. The individual’s stature was<br />

obtained by using the forensic femur formula, yielding an estimated<br />

stature of 5’4”+/-3.4”.<br />

The most prominent of the skeleton’s pathological features is the<br />

thoracic region of the spine where T3 through T7 are completely fused<br />

and form a 90-degree anterior bend. There is no intervertebral space and<br />

the discs are compacted and calcified. The inter- and supraspinousligaments<br />

on the posterior surface of these vertebrae are ossified. The<br />

anterior and lateral surfaces the vertebral bodies display thick syndesmophytes<br />

making it difficult to differentiate them. The lower ribs are<br />

very straight, likely due to the anterior bend of the torso and the pressure<br />

exerted by the organs. In the thoracic region several ribs are also fused<br />

at the costovertebral joint.<br />

The first through the fourth lumbar vertebrae are fused by thin, vertical<br />

fibrous endesopathic growths appearing at the insertion of the longitudinal<br />

spinal ligament on the anterior surface and lateral margins of<br />

the vertebral bodies. These vertebrae are connected by thin bony bridges<br />

called sydesmophytes. Several of the lumbar vertebrae are also fused at<br />

superior and inferior zygapophyses. Cervical vertebrae 3 through 5 and<br />

7 have small fused syndesmophytes on the anterior vertebral bodies and<br />

the intervertebral space is maintained. The sacroiliac joints are fused and<br />

entheses of the femur, patellae, scapulae, clavicles, tibiae, fibulae and os<br />

coxae display ossified tendons and ligaments.<br />

Tuberculosis of the spine (Pott’s disease) is characterized by the<br />

collapse of a portion of the spine into an angular kyphosis. Pott’s disease<br />

begins with an abscess in the vertebral body caused by inhalation of<br />

Mycobacterium tuberculosis into the lungs, passing through the lymphatic<br />

system to the spine. This leads to the destruction of the intervertebral<br />

space and collapse of the spine into an angular deformity. It<br />

usually affects between two and four vertebrae, often at the lower thoracic<br />

and upper lumber region. The involvement of at least four thoracic<br />

vertebrae is necessary for diagnosis.<br />

Pott’s disease is a lytic process and bone regeneration is<br />

uncommon. This case has significant bone regeneration, however it is<br />

likely due to the bone-forming attributes of another origin. Pott’s disease<br />

rarely affects the posterior neural arch, transverse processes, and<br />

spinous processes, but this has been observed in untreated adults.<br />

Ankylosing spondylitis is a degenerative inflammatory disease<br />

affecting connective tissue at ligament insertions. It often affects males<br />

between the ages of 15-35. It is of unknown etiology, however individuals<br />

with the disease often have the antigen HLA-B27 in their blood.<br />

The disease causes erosion of the bone at entheses and new bone<br />

replaces it and the connecting ligament ossifies. A new insertion is<br />

formed above the cortical bone creating an irregular bony process. In<br />

this case, the os coxae, the lesser trochanter, and both femora and<br />

patellae all display these enthesopathies. Fusion of the sacroiliac joints,<br />

which has been called the hallmark of ankylosing spondylitis, is present<br />

in this case as well as the progressive fusion of the anterior longitudinal<br />

ligament. Syndesmophytes, bridge the gap between the vertebral bodies<br />

and consequently fuse several vertebrae together forming a bamboo-like<br />

appearance. The lumbar and cervical vertebrae are consistent with this<br />

diagnosis as they display symmetrical syndesmophytes that become<br />

smaller in the cervical region. Involvement and fusion of the<br />

zygopophyseal joints and costovertebral joints may be present in cases<br />

of ankylosing spondylitis and are present in this case. The features of<br />

the appendicular skeleton, as well as the early stage of bamboo-like<br />

appearance of the spine are consistent with a diagnosis of ankylosing<br />

spondylitis.<br />

In an effort to understand the origins of these pathologies and create<br />

a more complete biological profile, a DNA test is being conducted to<br />

determine if the individual did indeed have Pott’s disease. In addition, it<br />

is believed that this individual also suffered from ankylosing spondylitis.<br />

In spite of these distinctive skeletal changes, the decedent remains<br />

unidentified.<br />

Forensic Anthropology, Ankylosing Spondylitis, Tuberculosis<br />

H68 Symmetrical Fracturing of the Skull<br />

From Self-Inflicted Gunshot Wounds:<br />

Reconstructing Individual Death Histories<br />

From Skeletonized Human Remains<br />

Todd W. Fenton, PhD*, Jered B. Cornelison, MS, and Leslie A. Wood, BS,<br />

Michigan State University, Department of Forensic Science, 560 Baker<br />

Hall, East Lansing, MI 48824<br />

The goal of this presentation is to describe a potentially diagnostic<br />

pattern of fractures associated with submandibular shotgun wounds.<br />

This presentation will impact the forensic community and/or<br />

humanity by making it possible to diagnose submandibular, mid-line<br />

gunshot injuries from cranial fracture patterns, even in cases where the<br />

remains are skeletonized and highly fragmented.<br />

The attendee will become familiar with a potentially diagnostic<br />

pattern of fractures associated with self-inflicted midline gunshot<br />

wounds. The three objectives of this poster is to present two cases in<br />

which skeletonized remains were found in association with a shotgun; to<br />

describe and display the observed perimortem “suite of fractures” in<br />

both cases and discuss the observed bilateral symmetry of those fractures;<br />

and to suggest a possibly diagnostic pattern of fractures consistent<br />

with self-inflicted midline gunshot wounds.<br />

In the following two cases, skeletonized humans remains were<br />

recovered from remote areas and submitted to forensic anthropologists.<br />

Following identification in each case, the main focus of the anthropological<br />

analysis was the skeletal trauma. In both cases, the skull was submitted<br />

in a highly fragmented state. Nevertheless, by focusing on the<br />

pattern of perimortem cranial fractures, the anthropologists contributed<br />

key information regarding the circumstances of death in these cases.<br />

Case 1: In September of 2000, skeletonized human remains were<br />

recovered from a wooded area in mid-Michigan by a law enforcement<br />

search team. At the scene, a shotgun was found in association with the<br />

remains. Anthropological analysis determined that the remains were<br />

those of an adult male of European ancestry, and a positive identification<br />

was made through comparative radiography. The skull was recovered in<br />

a fragmentary state with at least 45 distinguishable fragments present.<br />

Most of the skull fragments were recovered making it possible for a<br />

complete reconstruction. During the process of charting and photographically<br />

documenting the linear fractures displayed by the skull, a<br />

bilaterally symmetrical perimortem fracture pattern became apparent.<br />

The “suite of symmetrical fractures” observed in this case are enumerated<br />

by aspect as follows. The anterior aspect of the skull displays<br />

transverse fractures of the mandible in the chin region, vertical fractures<br />

of the mandibular body, Le Fort II fractures of the maxillae, tripod fractures<br />

of the zygomatics, and a midline frontal fracture. The lateral aspect<br />

of the skull exhibits fractures running along the temporal lines of the<br />

frontal, a diastatic fracture of the coronal suture which continues laterally<br />

along the parietals, horizontally oriented fractures of the parietal,<br />

and vertical fractures of the parietal. The basilar aspect of the skull displays<br />

occipital fractures adjacent and posterior to the foramen magnum,<br />

a midline fracture of the basi-occiput, as well as fractures of the palate<br />

and pterygoid processes of the sphenoid.<br />

Based on this symmetrical pattern, as well as the pattern of<br />

mandibular fracturing, and the orientation of beveling on the palate and<br />

frontal bones, the trauma was attributed to a submandibular gunshot<br />

wound.<br />

Case 2: In January of 2003, hunters discovered skeletonized human<br />

505 * Presenting Author


emains and an associated shotgun in a wooded area of the western lower<br />

peninsula of Michigan. The remains were those of an adult male of<br />

European ancestry. A positive identification was made through comparative<br />

mitochondrial DNA analysis. The cranium and mandible were<br />

recovered in a fragmentary and incomplete state, with only 26 skull fragments<br />

present. As a result, it was not possible to reconstruct the cranial<br />

vault. Even so, the recovered portions of the skull exhibited a bilaterally<br />

symmetrical fracture pattern very similar to the skull in the above case,<br />

which lead the authors to believe that this was a case in which either a<br />

submandibular or intraoral gunshot wound was the cause of the skeletal<br />

trauma.<br />

In both of the above cases, the skulls did not exhibit the classic<br />

gunshot entry or exit injuries. They did, however, exhibit important evidence<br />

in the form of bilaterally symmetrical fracture patterns. This distinctive<br />

pattern is believed to be the result of submandibular or intraoral<br />

shotgun wounds in which there is a centralized explosive dispersion of<br />

gases. It is known that when these expansive gases enter the restricted<br />

space of the cranial vault, the increase in intracranial pressure causes<br />

fragmentation and fracturing of the skull. These two cases may illustrate<br />

that this type of fracturing does not occur randomly, but rather along predictable<br />

planes. The lines of fracture most likely occur in areas that are<br />

structurally weaker which crumple under the force of such explosive<br />

events. These findings lead the authors to believe that it may be possible<br />

to diagnose submandibular or intra-oral mid-line gunshot injuries from<br />

cranial fracture patterns, even in cases where the remains are skeletonized<br />

and highly fragmented.<br />

Forensic Anthropology, Shotgun Wounds, Skeletal Trauma<br />

H69 In the Name of the Dead: The Panamanian<br />

Truth Commission’s Search for the<br />

“Disappeared”<br />

Loreto Suarez Silva, Director of Anthropology, Comision de la Verdad<br />

de Panama, Balboa, 27695-8107, Republic of Panama; Kathrynn M.<br />

Jemmott, MA, University of Florida, C.A. Pound Human ID<br />

Laboratory, Gainesville, FL 32611; Ann H. Ross, PhD*, Department of<br />

Sociology and Anthropology, North Carolina State University, Campus<br />

Box 8107, Raleigh, NC 27695-8107<br />

The goal of this presentation is to present the results of the skeletal<br />

analyses of the victims of human rights violations in Panama.<br />

This presentation will impact the forensic community and/or<br />

humanity by exposing the forensic community to human rights investigation<br />

efforts in Panama.<br />

Panama’s democratic history came to an abrupt halt in 1968 after a<br />

coup d’etat toppled President Arnulfo Arias ten days and eleven hours<br />

after his administration began. This coup set in motion Panama’s twentyone<br />

years of military dictatorships that began with General Omar<br />

Torrijos (1968-1981) and continued with General Manuel Noriega<br />

(1981-1989). Forced disappearances, tortures and arbitrary execution of<br />

its victims, characterized the military regimes of the 1970s and 1980s.<br />

In 1999, several clandestine graves were discovered one of which<br />

later was identified as the remains of Heliodoro Portugal. His remains<br />

were positively identified via DNA on 21 August of 2000. Heliodoro<br />

Portugal had been identified as a leftist by the military junta and was last<br />

seen being forcibly pushed into a car on 14 May 1970. As a result of<br />

these findings, the Panamanian Truth Commission (La Comisión de la<br />

Verdad de Panamá) was formed on January 18, 2001 by Executive Order<br />

issued by the lady President Mireya Moscoso. The objective of the Truth<br />

Commission as written in the executive decree “is to contribute to the<br />

clarification of the truth regarding human rights violations fundamental<br />

to life, including the disappearances committed during the military<br />

regimes that governed Panama beginning in 1968…”<br />

As of April 18, 2002, the Truth Commission has amassed enough<br />

* Presenting Author<br />

information to recognize 110 persons assassinated and disappeared.<br />

However, these numbers have already increased considerably as new<br />

information is gathered, including the positive identification of Jerónimo<br />

Díaz Lopez in June 2003. Fifty percent of the victims were murdered or<br />

disappeared between 1968-1972, twenty percent between 1973-1983,<br />

twenty-eight percent between 1984-1989, and two percent with no<br />

known information.<br />

Thirty-four excavation sites have presently been identified in the<br />

provinces of Panamá, Chiriquí, Veraguas, Coclé, Bocas del Toro and<br />

Colón. However, much of the resistance against the military regimes was<br />

felt in the province of Chiriquí. Skeletal identifications are extremely<br />

difficult because of various taphonomic processes (for example, soil<br />

acidity, insect activity and bacterial activity, roots, humidity, etc.), conditions<br />

that are not conducive to good skeletal preservation and therefore<br />

the remains sustain considerable postmortem damage. Interestingly,<br />

many of the skeletal elements recovered from the mainland were hand<br />

and foot bones that generally do not have a high rate of recovery. The<br />

recovery and identification efforts that have yielded the most positive<br />

results have been from the island of Coiba. In our efforts to locate the<br />

remains of Floyd Britton arrested in 1968 and who was sentenced to<br />

Coiba, others have been inadvertently identified who were not known to<br />

have perished there. The remains of Sergeant Sánchez Tenas who was<br />

killed in 1975 at the hands of another member of the military police and<br />

whose murder was covered-up by the military was identified via mtDNA<br />

analysis while testing the skeletal samples in hopes of finding Floyd.<br />

The identification of Jerónimo Díaz Lopez was made via dental comparison<br />

and traditional forensic anthropological techniques. Floyd<br />

Britton has yet to be identified. However, recovery and identification<br />

efforts will continue on Coiba as a result of these other identifications to<br />

search for others who are believed to be buried there.<br />

Forensic Anthropology, Human Rights, Panama<br />

H70 Truth, Justice, and Forensic<br />

Anthropology in Latin America<br />

Clyde Snow, PhD*, c/o ALAF and EAAF, 10 Jay Street #502, Brooklyn,<br />

NY 11201<br />

The author will introduce a new forensic organization dedicated to<br />

the application of forensic anthropology to human rights and judicial<br />

investigations in Latin America and present the experiences of some of<br />

the organizations’ members.<br />

Through introducing the Latin American Forensic Anthropology<br />

Association (ALAF) to a wider forensic community, we hope to expand<br />

the network of Latin American forensic specialists and supporters,<br />

encourage forensic work in judicial investigations and see the organization’s<br />

objectives adopted more widely in the region.<br />

This session presents the Latin American experience of applying<br />

forensic anthropology and archaeology to human rights and other judiciary<br />

investigations over the past two decades. The presenters will<br />

describe the origin of the application of forensic anthropology in Latin<br />

America, overviews of the state of forensic anthropology investigations<br />

in a number of countries and discuss major trends, challenges, and<br />

problems in their work. In February 2003, for the first time, forensic<br />

anthropologists from throughout Latin America, and Dr. Clyde Snow,<br />

who chaired the meeting, gathered at Austin College in Sherman, Texas<br />

to discuss national experiences, commonalities and differences in particular<br />

cases and possibilities for working together to further forensic<br />

work in judicial investigations. Following this meeting, ALAF, the Latin<br />

American Forensic Anthropology Association was established.<br />

ALAF’s founding members largely work for non-governmental<br />

organizations that were trained by Dr. Clyde Snow, and pioneered the<br />

application of forensic anthropology to human rights investigations in<br />

their own countries, including Argentina, Chile, Guatemala, and Peru.<br />

As a result, ALAF is sponsored by the Guatemalan Forensic<br />

506


Anthropology Foundation (FAFG), Human Rights Office of the<br />

Archbishop of Guatemala; Center of Forensic Analysis and Applied<br />

Sciences (CAFCA), the Peruvian Forensic Anthropology Team ( EPAF),<br />

and the Argentine Forensic Anthropology Team ( EAAF). Founding<br />

members of ALAF from Colombia, Mexico and Venezuela work within<br />

national medical legal systems and in universities, enriching the background<br />

and membership of the association.<br />

ALAF founding members from Argentina, Chile, Colombia,<br />

Guatemala, Mexico, Peru, and Venezuela have established objectives for<br />

forensics in Latin America that range from establishing ethical and professional<br />

criteria for the practice of forensic anthropology to concern<br />

with the access of families of the deceased to procedures and results of<br />

forensic investigation. ALAF is concerned with the promotion of professional<br />

accreditation, improving the training of professionals working<br />

in this field, promoting the adaptation of international forensic standards<br />

by national forensic institutes, and mechanisms of protection for ALAF<br />

members and families. Another ALAF objective is defending the scientific<br />

and technical autonomy of forensic anthropology investigations in<br />

Latin America and the Caribbean because these investigations are often<br />

lodged in state-run medical-legal institutes. Because forensic anthropologists<br />

and archaeologists in Latin America, whether working as independent<br />

experts or inside government institutions, often work on cases<br />

where state institutions are reportedly involved in crimes under investigation,<br />

this relationship is often a source of tension. Especially under<br />

these circumstances, in many cases in Latin America, forensic investigations<br />

are vital to truth and justice. Through the organization of ALAF,<br />

we hope to contribute to protecting the integrity of these investigations<br />

as well as enlarging a community for forensic practitioners.<br />

This session, introduced and moderated by Dr. Clyde Snow,<br />

includes participants from Argentina, Colombia, Guatemala, Peru, and<br />

Chile who are ALAF founding members. They will discuss and share<br />

their national and international experience in forensic investigation both<br />

in their home countries and internationally. Through the introduction of<br />

ALAF to a wider forensic community, we hope to expand the network<br />

of Latin American forensic specialists and supporters, encourage<br />

forensic work in judicial investigations and see these objectives adopted<br />

more widely in the region.<br />

Forensic Anthropology, Human Rights, Latin America<br />

H71 Perspectives and Recommendations<br />

From the Field: Forensic Anthropology<br />

and Human Rights in Argentina<br />

Mercedes C. Doretti*, Argentine Forensic Anthropology Team (EAAF),<br />

10 Jay Street #502, Brooklyn, NY 11201; Luis Fondebrider, c/o ALAF<br />

and EAAF, 10 Jay Street #502, Brooklyn, NY 11201<br />

The author will describe the work and goals of the Argentine<br />

Forensic Anthropology Team (EAAF), a non-governmental, non-profit<br />

organization dedicated to the application of forensic sciences- mainly<br />

forensic anthropology and archaeology - to the investigation of human<br />

rights violations.<br />

The presentation examine the work of the Argentine Forensic<br />

Anthropology Team to the forensic community, including perspectives<br />

and recommendations that have emerged from almost two decades of<br />

field work throughout the world.<br />

This paper describes the work and goals of the Argentine Forensic<br />

Anthropology Team (EAAF), a non-governmental, non-profit organization<br />

dedicated to the application of forensic sciences- mainly forensic<br />

anthropology and archaeology - to the investigation of human rights<br />

violations.<br />

EAAF, founded in 1984 when democracy returned to Argentina,<br />

was created to recover the remains of people “disappeared” by the state<br />

during the preceding military regime and to address the failure of state<br />

institutions to provide knowledge and support to families and others<br />

searching for their loved ones. This paper briefly describes the legal, historical,<br />

psychological, and technical contexts the team arose from and<br />

confronted upon its creation, and how these have contributed to the<br />

team’s methodology for working on human rights cases in Argentina and<br />

other parts of the world.<br />

At the request of local or international tribunals, human rights organizations,<br />

and truth commissions, the EAAF has worked in most Latin<br />

American countries, as well as Africa, Asia and Eastern Europe. During<br />

this work, EAAF has developed a systematic approach for forensic<br />

investigations, including extensive preliminary work, archeological<br />

work and laboratory analysis. Because many members of the forensic<br />

community are familiar with the methodologies used in archaeological<br />

and laboratory work, this paper focuses on the particular details of<br />

EAAF’s preliminary investigation, including the collection of background<br />

information, ante-mortem data, and information about and visits<br />

to reported killing and burial sites related to the case. EAAF often works<br />

at the invitation of local non-governmental organizations (NGO). Often<br />

at great risk to their members, they form an essential bridge between<br />

investigative bodies and witnesses, survivors and families of the victims.<br />

The team also advocates the central role of families of victims in the<br />

investigation process. Normally, after verifying that families are seeking<br />

a forensic investigation, EAAF involves members in the preliminary<br />

investigation and provide explanations of and access to forensic procedures<br />

and laboratory results.<br />

Based on our experiences working as forensic anthropologists in<br />

the field and for truth commissions, special commissions of inquiry and<br />

national and international tribunals, EAAF has observed a variety of perspectives,<br />

issues and problems and developed a number of suggestions<br />

in response to investigating violations in the context of institutional<br />

bodies that are established for fixed periods of time. These include<br />

mechanisms to continue recovery and identification processes beyond<br />

the mandates of commissions or tribunals, witness protection programs,<br />

and counseling and psychological support for persons who testify and<br />

for families and friends of victims and staff members before, during and<br />

after exhumations. EAAF also advocates direct contact between forensic<br />

teams and local NGOs and with relatives of victims of human rights<br />

violations<br />

Finally, this paper summarizes the main currents and future challenges<br />

currently confronting the EAAF. These include improving access<br />

to DNA analysis for human rights cases, training local teams and experts<br />

and the application of international forensic protocols into national<br />

forensic systems.<br />

Forensic Anthropology, Argentina, Human Rights<br />

H72 The Development of Forensic<br />

Anthropology in Chile<br />

Isabel Reveco*, Association for Latin American Forensic<br />

Anthropology, c/o EAAF, 10 Jay Street #502, Brooklyn, NY 11201<br />

From this presentation, attendees will learn about the development<br />

of forensic anthropology in Chile and how the discipline has contributed<br />

to ongoing human rights investigations in the country.<br />

This presentation will impact the forensic community by examining<br />

the development of forensic anthropology in Chile, especially in relation<br />

to human rights cases.<br />

Forensic anthropology in Chile arose in the context of systematic<br />

human rights violations carried out by the military dictatorship under<br />

Augusto Pincohet (1973-1990). The dictatorship killed more than 5000<br />

political prisoners and “disappeared” another 2000.<br />

In 1989, the Association of Relatives of Disappeared Political<br />

Prisoners (AFDD) invited Dr. Clyde Snow and members of the<br />

Argentine Forensic Anthropology Team (EAAF) to serve as forensic<br />

experts in a case of the discovery of remains that were thought to corre-<br />

507 * Presenting Author


spond with disappeared political prisoners. During this visit to Chile, Dr.<br />

Snow spoke of the necessity of forming a forensic anthropology team<br />

independent from state organizations in order to guarantee the independence<br />

of scientific investigation not influenced by political pressures.<br />

AFDD convened a group of anthropologists and archaeologists who participated<br />

in the College of Anthropologists, the national association for<br />

this discipline. In 1990, an interdisciplinary group including anthropologists,<br />

archaeologists, odontologists and specialists in biochemistry<br />

formed the Chilean Forensic Anthropology Group (GAF) as a non-profit<br />

organization. Over the course of five years, this group participated in<br />

numerous discoveries of remains, mostly in relation to judicial investigations<br />

focusing on the search for and investigation of the disappeared.<br />

This work addressed a great void in the country with regard to human<br />

rights investigations. In 1994, the GAF dissolved and the Identification<br />

Unit of the <strong>Medical</strong> Legal System, a governmental organization under<br />

the Ministry of Justice, was formed. This multidisciplinary unit, staffed<br />

by medical doctors, odontologists, and anthropologists, is exclusively<br />

dedicated to the identification of disappeared political prisoners. In<br />

1998, the Genetic Sample Bank of Families of Disappeared Political<br />

Prisoners was formed, the first governmental genetic sample bank of its<br />

type in Latin America. The bank maintains genetic samples from families<br />

of the victims for safekeeping so that, when necessary, remains may<br />

be tested against these samples.<br />

Presently, more than 500 judicial investigations are underway that<br />

will ideally lead to the discovery of the disappeared, the identification of<br />

their remains and the determination of responsibility for their disappearance.<br />

Forensic anthropology is central to these goals.<br />

Forensic Anthropology, Chile, Human Rights<br />

H73 Forensic Anthropology in Guatemala<br />

Fredy Peccerelli *, c/o ALAF and EAAF, 10 Jay Street, #502,<br />

Brooklyn, NY 11201; José Samuel Suasnavar Bolaños, Lourdes<br />

Penados, and Mario Vasquez, c/o ALAF and EAAF, 10 Jay St #502,<br />

Brooklyn, NY 11201<br />

The author will introduce the forensic community to the work of<br />

three organizations–the Guatemalan Foundation for Forensic<br />

Anthropology (FAFG), the Center for Forensic Analysis and Applied<br />

Sciences (CAFCA), and the Exhumations Team of the Guatemalan<br />

Archbishop’s Office for Human Rights (ODHAG)– currently carrying<br />

out forensic investigations in Guatemala.<br />

This presentation outlines the growth and development of forensic<br />

anthropology in Guatemala as a response to its contemporary social needs.<br />

In February 2003, for the first time, forensic anthropologists from<br />

throughout Latin America responsible for pioneering the application of<br />

forensic anthropology to human rights and training in their own countries,<br />

and Dr. Clyde Snow, who trained and continues to support many<br />

participants, gathered at Austin College in Sherman, Texas. Participants<br />

discussed national experiences, commonalities and differences in particular<br />

cases and possibilities for working together to further forensic<br />

work in judicial investigations in Latin America. Representatives from<br />

three organizations currently carrying out forensic work in<br />

Guatemala–the Guatemalan Foundation for Forensic Anthropology<br />

(FAFG), the Center for Forensic Analysis and Applied Sciences<br />

(CAFCA), and the Exhumations Team of the Guatemalan Archbishop’s<br />

Office for Human Rights (ODHAG)–were present. Following this<br />

meeting, ALAF, the Latin American Forensic Anthropology Association<br />

was founded. ALAF’s founding members, including representatives of<br />

the three aforementioned organizations, work for non-governmental<br />

organizations that were trained by Dr. Clyde Snow.<br />

This paper presents the Guatemalan context for the emergence of<br />

forensic investigations of human right cases, examines the current state<br />

of these investigations and discusses particular perspectives, trends and<br />

challenges that have emerged from our work over the course of more<br />

* Presenting Author<br />

than a decade.<br />

During the thirty-six years of internal armed conflict that<br />

Guatemala endured, the population was subject to many human rights<br />

violations. Most of these atrocities occurred in rural Mayan communities.<br />

The Historical Clarification Commission (CEH) reported that, as<br />

a result of the conflict, over 200,000 people perished or disappeared.<br />

Even before the Peace Accords were signed in 1996, the victims’<br />

families began the search for their lost loved ones and began the struggle<br />

of uncovering the truth. However, Guatemala did not have organizations<br />

that could attend to these needs. Recognizing this pressing issue, teams<br />

(FAFG, ODHAG, CAFCA) were gathered and trained to carry out<br />

forensic anthropological investigations, with a focus on exhuming clandestine<br />

burials and analyzing the remains found.<br />

The emergence of forensic anthropological teams in Guatemala<br />

dedicated to the application of forensic anthropology and archaeology to<br />

human rights and judicial investigations was stimulated further by the<br />

Historical Clarification Commission’s recommendation that all cases of<br />

massacres and extrajudicial executions be investigated, giving back to<br />

the victims’ relatives the right to know the truth about what happened to<br />

their family members and consequently strengthening the country’s<br />

judicial system.<br />

This presentation outlines the growth and development of forensic<br />

anthropology in Guatemala as a response to its contemporary social<br />

needs.<br />

Guatemala, Human Rights, Forensic Anthropology<br />

H74 The Peruvian Forensic Anthropology Team<br />

(EPAF) and the Memory of the Missing<br />

Jose Pablo Baraybar, MSc*, Aldo Bolanos, Carmen Rosa Cardoza,<br />

Mellisa Lund, Giovani Macciotta, and Juan Carlos Tello, Peruvian<br />

Forensic Anthropology Team (EPAF), c/o ALAF and EAAF, 10 Jay<br />

Street #502, Brooklyn, NY 11201<br />

The author will discuss the formation and work of the Peruvian<br />

Forensic Anthropology Team (EPAF) and the large-scale collection of<br />

antemortem information on missing persons in Peru as part of the<br />

Memory of the Missing project.<br />

With this paper, the forensic community will learn about the activities<br />

of the Peruvian Forensic Anthropology Team (EPAF) and their campaign<br />

for the collection of ante-mortem information of missing persons.<br />

Created in February 2001, the Peruvian Forensic Anthropology<br />

Team (EPAF), a non-governmental organization, advocates the search<br />

for missing persons in Peru through scientific methods of forensic<br />

anthropology and archaeology. Recent estimates by the Truth and<br />

Reconciliation Commission in Peru suggest that during the 1980s and<br />

90s, the worst period of political violence, some 60,000 people were<br />

killed and of those, some 9,000 went missing.<br />

It is EPAF’s view that investigations aimed at determining the<br />

whereabouts of missing persons should be carried out by independent<br />

teams not involved with the State system. This is particularly true in the<br />

Peruvian case, where the state institutions were involved directly or indirectly<br />

in the disappearance of people.<br />

Between 2001 and 2002, EPAF undertook five workshops at the<br />

national level to provide prosecutors, lawyers, human rights activists and<br />

archaeology students with the basic information regarding the use of<br />

forensic science in investigating human rights violations. In addition,<br />

EPAF and the Ombudsman’s Office of Peru published a manual on<br />

effective forensic investigations of graves containing human remains.<br />

During this period, EPAF was also appointed as an expert group by the<br />

Public Prosecutor’s Office and human rights organizations. They<br />

became involved in cases such as the storming in 1997 of the Japanese<br />

Ambassador’s residence in Lima and other cases against Vladimiro<br />

Montesinos and the Fujimori regime (1990-2000). While working with<br />

508


the Truth and Reconciliation Commission (CVR) of the Peruvian<br />

Government, EPAF conducted the first exhumation of missing persons<br />

in the Province of Ayacucho dating from 1983. In 2002, after a ninemonth<br />

collaboration with the Truth and Reconciliation Commission<br />

(CVR) and following certain conditions that compromised its independence,<br />

EPAF returned to work as an independent organization.<br />

The search for missing persons is not a forensic activity limited to<br />

the recovery and examination of human remains. It is rather a set of<br />

activities contributing to finding the remains of a missing person and<br />

restoring his/her identity. Paramount to the latter is the availability of<br />

antemortem data used to perform an individual identification.<br />

Considering the number of missing persons in Peru and the lack of antemortem<br />

records, EPAF has launched the Memory of the Missing, a<br />

project designed to gather antemortem information for missing persons<br />

as well as the details their disappearance. The combination these data<br />

provides information on the biological profile of the victim (age, sex,<br />

race, stature, handedness, individuating characteristics, dental chart) as<br />

well as information on the possible place where the body was disposed.<br />

Additional details include information about perpetrators and their<br />

modus operandi (Army, paramilitary groups, rebel organizations). All<br />

information is maintained in a specialized database that allows for<br />

complex searches to be performed.<br />

The implementation of the project and the collection of antemortem<br />

data empower grassroots organizations and family associations. EPAF is<br />

providing technical support, supervising quality control and providing<br />

training by means of workshops throughout the provinces worst hit by<br />

the violence of the 1980s and 90s. EPAF is successfully building a<br />

network of local and regional family associations that participate in this<br />

process. The urgency of this project is demonstrated by the fact that a<br />

large number of relatives of those who went missing in the early 80s are<br />

dying of old age, disease or sorrow. Therefore, if this crucial information<br />

is not collected immediately it may be lost forever, further diminishing<br />

the chances to identify the remains of missing persons.<br />

With this paper, the forensic community will learn about the activities<br />

of the Peruvian Forensic Anthropology Team (EPAF) and their campaign<br />

for the collection of antemortem information of missing persons.<br />

Equipo Peruano de Antropologia Forense (EPAF), Gral. Canterac # 583-<br />

E, Jesus Maria, Lima-Peru.<br />

Peru, Forensic Anthropology, Antemortem Data<br />

H75 Forensic Anthropology in Colombia<br />

Andres Patiño* and Edixon Quinones Reyes, c/o ALAF and EAAF,<br />

10 Jay Street #502, Brooklyn, NY 11201<br />

The authors will introduce the forensic community to the current<br />

state of forensic anthropology investigation in Colombia.<br />

This presentation will impact the forensic community by demonstrating<br />

the development of forensic anthropology in Colombia and how<br />

it differs from other cases in Latin America.<br />

In Colombia, forensic anthropology has developed as an applied<br />

science using tools from social anthropology, biological anthropology and<br />

archaeology to utilize scientific evidence in death and crime investigations.<br />

For over ten years, a small but growing group of anthropologists<br />

from different universities and government agencies has demonstrated to<br />

police authorities and medicolegal institutions that forensic anthropology<br />

is the backbone in the scientific process of determining not only identities<br />

from human skeletal or decomposed remains but also to provide important<br />

information in determining cause and manner of death. From the late<br />

1980s to the present, many Colombian anthropologists have worked on<br />

many different kinds of cases, ranging from simple crime scenes to<br />

complex investigations concerning human rights violations.<br />

In the 1980s, the sociopolitical situation, the civil conflict<br />

(including armed confrontation), and the lack of specialized analysis in<br />

some medicolegal cases contributed to an urgent need for forensic<br />

anthropologists. The siege of the Palace of Justice in Bogota in 1985<br />

that resulted in many casualties and total destruction of the building, the<br />

terrorist bombings in urban areas and the Armero mudslide disaster all<br />

contributed to this need. In the same year, the participation of physical<br />

anthropologists in crime investigations grew, particularly in relation to<br />

specific cases, including the discovery of an apparent mass grave in a<br />

place named Cueva de la Trementina, located in northern Colombia.<br />

With the Constitutional modifications in 1991, many official and<br />

government agencies were improved and others created, including the<br />

National Institute of Legal Medicine and the Attorney General’s office.<br />

These agencies created specialized laboratories including forensic<br />

anthropology facilities and began to recruit and train professional crews<br />

with experience in the analysis of human remains. This training was<br />

made possible since 1994 with support from international groups and<br />

agencies such as the Argentine Forensic Anthropology Team (EAAF),<br />

the International Criminal Investigative Training Assistance Program of<br />

the US Department of Justice, the Federal Bureau of Investigation, the<br />

Armed Forces Institute of Pathology, the Deutsche Gesellschaft fur<br />

Technische Zusammenarbeit (Germany) and Universidad del Pais Vasco<br />

(Spain) since 1994.<br />

Forensic anthropology as a formal discipline was introduced in<br />

Colombia at the National University in 1994. Since then, this university<br />

has established a postgraduate course and several workshops and<br />

training courses to reinforce academic training in this area, not only for<br />

students but also for officials and medical examiners.<br />

Since the late 1990s, Colombia has established several forensic<br />

anthropology laboratories to support crime scene investigators and<br />

medical examiners. While in other parts of Latin America, forensic<br />

anthropology has grown mostly in relationship to non-governmental<br />

teams working in human rights. These teams are often constituted as<br />

nongovernmental organizations. Despite the internal conflict in<br />

Colombia that has also produced severe human rights violations,<br />

forensic anthropology has largely developed within government<br />

agencies. By developing within these agencies, forensic anthropologists<br />

have had access to a much wider range of forensic cases that included<br />

not only human rights cases but also mass disaster cases and more<br />

‘normal’ criminal cases such as individual and serial murder cases.<br />

Since 1997, Colombian forensic anthropologists have also worked as<br />

experts and advisors in other countries.<br />

In the near future, further modifications in the Colombian legal<br />

system will allow us to expand forensic anthropology’s range and to<br />

meet new challenges. Lawyers and prosecutors as well as government<br />

agencies will employ experts such as forensic anthropologists in courts.<br />

Theoretically, this will improve academic and professional performance,<br />

provide for proper investigations of deaths and the implementation of<br />

the rule of law. However, forensic anthropology has many methodological<br />

and empirical difficulties to overcome.<br />

Colombia, Identification, Forensic Anthropology<br />

H76 Postmortem and Perimortem Fracture<br />

Patterns in the Long Bones of Deer<br />

Bruce P. Wheatley, PhD*, Department of Anthropology and Social<br />

Work, University of Alabama, Birmingham, AL 35294-3350<br />

After attending this presentation, attendees will have more information<br />

on fracture patterns of long bones in deer to help elucidate the<br />

interval between perimortem and postmortem.<br />

Forensic anthropologists need to be cautious in their determination<br />

of perimortem vs. postmortem trauma. This study of deer long bones<br />

suggests that some of the fracture patterns utilized in making a determination<br />

of perimortem or postmortem trauma may not be “cut and dry.”<br />

If perimortem breaks have green bone response due to their greater<br />

moisture content and if it is possible to preserve this moisture content in<br />

a postmortem environment, then postmortem bone breaks may mimic<br />

509 * Presenting Author


“perimortem” breaks.<br />

The perimortem interval is of great interest to forensic anthropologists<br />

and the line separating it from postmortem trauma can be unclear,<br />

Maples (1986), for example, called “the perimortem interval an elastic<br />

interval at best and a vague concept at worst.” The moisture content of<br />

bone is said to be a major factor determining fracture patterns (Johnson,<br />

1989). So called green or “wet” bone is more flexible; it contains fresh<br />

marrow and has a greater energy-absorbing capacity than “dry” bone<br />

before failure. It has also been stated that the biomechanics of fractures<br />

on whole bones is rather limited (Lyman, 1994). A bone trauma experiment<br />

was designed to test these ideas and to provide further information<br />

on fracture patterns.<br />

There are three samples of sub-adult and adult white-tailed deer<br />

that were obtained from local deer processing plants and broken on Feb.<br />

7, 2003. Group 1: Femora and humeri from 17 animals killed on the<br />

15th or 16th of December, 2002. These bones were never frozen and<br />

they were put outside on a wooden platform on Dec. 24th for 44 days<br />

before they were fractured. The average low for that period was 32.5<br />

degrees F. and the average high was 51 degrees F. The temperature went<br />

below freezing on 20 days. The postmortem interval is 52-53 days.<br />

Group 2: Femora and humeri from 8 animals killed on Jan. 20th were<br />

frozen and then thawed before they were broken. The postmortem<br />

interval is 18 days. Group 3: Femora and humeri from 5 animals killed<br />

on Jan. 31st, and from 2 animals killed on Feb. 7th, and from one animal<br />

killed on Feb. 3rd. These bones were never frozen and the postmortem<br />

interval is less than one week.<br />

Measurements made before breakage include: total length, lateral<br />

and anterior-posterior width, and weight. Video of the breakage and<br />

photographs of the bones after breakage were recorded. A Dynatup 8250<br />

Drop Weight Impact Test Machine applied a compressive force weighing<br />

11.3 kilograms. The drop height varied and variables, such as<br />

load/velocity curves to impact, load to failure, time to failure, and energy<br />

to failure were recorded. The striking surface of the impactor is three<br />

inches by four inches. The proximal end of the bone was held in a vice<br />

and the other end was placed on a platform. The bones were cleaned<br />

and processed with Biz, baking soda and ammonia.<br />

Fracture patterns of the proximal and distal ends of the long bones<br />

were examined. Only one bone in the sample broke in half and the features<br />

of this bone were only scored once. The following features that are<br />

sometimes said to indicate perimortem trauma were examined (Villa and<br />

Mahieu, 1991). Some of these are: fracture angle on the z axis, fracture<br />

surface morphology, fracture outline, sharp edges, and the presence of<br />

fracture lines. The attribute states recorded for fracture angle are 1)<br />

oblique (obtuse or acute); 2) right; 3) oblique and right (mixed).<br />

Fracture surface or edge morphology was classified as smooth or rough.<br />

Fracture outline was classified as: 1) transverse, fractures are straight<br />

and transverse to the long axis of the bone; 2) curved, spiral or helical<br />

fractures, and V-shaped or pointed fractures, and 3) intermediate, fractures<br />

have a straight or single plane morphology but are diagonal, and<br />

fractures with a stepped outline. Fractures on or near epiphyses were not<br />

considered. Fracture edges were classified as sharp or right angle and<br />

fracture lines were recorded as present or absent.<br />

The results are as follows. In regards to the first feature, Group 1)<br />

bones exhibited 2 oblique fracture angles, 24 right angles and 6 mixed.<br />

Group 2) bones exhibited 3 oblique angles, 7 right angles and 6 mixed<br />

and Group 3) exhibited 9 oblique angles, 3 right angles, and 4 mixed<br />

angles. The fracture surface morphology of all three groups was rough.<br />

While some bones had a fine surface they also had uneven surfaces with<br />

crests and waves. In regards to fracture outline, Group 1) bones had 9<br />

transverse, 7 curved, and 16 intermediate outlines. Group 2) bones had<br />

5 transverse, 5 curved, and 5 intermediate outlines and Group 3) had 1<br />

transverse, 15 curved, and 0 intermediate outlines. In regards to fracture<br />

edges, all 17 of the Group 1) bones had some sharp edges while 12 of<br />

the bones had some right angles. Eight of the Group 2) bones had some<br />

sharp edges and 6 of them had some right angles. All of the Group 3)<br />

* Presenting Author<br />

bones had some sharp edges and 5 of them had some right angles.<br />

Fracture lines were present on 8 of the Group 1) bones and absent on 9<br />

of them. Five of the Group 2) bones have fracture lines and 3 do not and<br />

all of the Group 3) bones have fracture lines.<br />

The determination of perimortem or postmortem trauma is difficult<br />

based on the fracture patterns of deer long bones examined in this study.<br />

Some of the bones fractured almost two months after death exhibit patterns<br />

that are sometimes said to indicate perimortem trauma. These patterns<br />

are: oblique angles, curved or helical fracture outlines, sharp edges,<br />

and fracture lines. Further study of fracture patterns and their depositional<br />

environment is necessary.<br />

Johnson E. Human-modified bones from a Paleo Indian site in the<br />

Aucilla River, North Florida. In: Bonnichsen R, Sorg M, editors. Bone<br />

modification. Maine: Institute for Quaternary Studies, 1989:431-471.<br />

Lyman RL. Vertebrate Taphonomy. Cambridge University Press,<br />

Cambridge, 1994.<br />

Maples WR. Trauma analysis by the forensic anthropologist. In: Reichs<br />

KJ, editor. Forensic Osteology. Springfield: CC Thomas, 1986;<br />

218-228.<br />

Villa P, Mahieu E. Breakage patterns of human longbones. Journal of<br />

Human Evolution 1991; 21:27-48.<br />

Deer Long Bones, Postmortem Fracture Patterns, Perimortem<br />

Fracture Patterns<br />

H77 Healing Following Cranial Trauma<br />

Lenore Barbian, PhD*, and Paul S. Sledzik, MS, National Museum of<br />

Health and Medicine, Armed Forces Institute of Pathology, 6825 16th<br />

Street NW, Washington, DC 20306-6000<br />

After attending this presentation, attendees will understand the<br />

macroscopically observable osseous changes related to cranial healing<br />

for an historic skeletal sample with known time since injury.<br />

The analysis of fractures in dry bone is of considerable medicolegal<br />

importance and can contribute significant information on cause and<br />

timing of death. Perhaps the most difficult task faced by the forensic<br />

anthropologist is in regard to fracture timing and distinguishing between<br />

perimortem and antemortem fractures. This study supports that many<br />

factors, both internal and external, promote or retard the fracture healing<br />

process. Even with numerous interacting components, some generalizations<br />

regarding fracture healing can be made. In calculating time elapsed<br />

since trauma, one can provide a minimal response time only, knowing<br />

that it takes at least a certain number of days for a response to occur.<br />

Some individuals will respond more slowly, but due to the physiology<br />

and pathophysiology of bone remodeling, individuals cannot respond<br />

more quickly.<br />

The analysis of fractures in dry bone is of considerable medicolegal<br />

importance and can contribute significant information on cause and<br />

timing of death. Perhaps the most difficult task faced by the forensic<br />

anthropologist is in regard to fracture timing and distinguishing between<br />

perimortem and antemortem fractures. With the right sample, it is possible<br />

to be more definitive in estimating the time elapsed since injury in<br />

the cranium. This paper reports on the gross appearance of the initial<br />

osseous response following perforating and penetrating gunshot wounds<br />

and the course of this bony response over time.<br />

The Civil War skeletal collection at the National Museum of Health<br />

and Medicine, Armed Forces Institute of Pathology, contains nearly<br />

2,000 skeletal specimens showing disease and trauma. Detailed reports<br />

by physicians exist with significant case history information regarding<br />

the nature of the injury, time elapsed from insult to recovery or death,<br />

and the methods of medical treatment. From this collection, a total of<br />

134 crania, calvariae, and cranial sections were analyzed for evidence of<br />

bony response following fracture. Each specimen was examined and<br />

scored for the presence or absence of four types of bone response:<br />

510


osteoblastic response, osteoclastic response, line of demarcation, and<br />

sequestration around the site of fracture. Osteoblastic response was<br />

defined as the deposition of subperiosteal new bone typically seen in a<br />

periosteal reaction. Osteoclastic response was defined as areas of pitting<br />

affecting the existing cortical bone and occasionally exposing the diploë.<br />

A line of demarcation was seen as an “etched” line running adjacent to<br />

the fracture margin, appearing as a shallow depression or canal with<br />

sharp margins. Sequestration was noted when a segment of the bone was<br />

becoming necrosed and detached.<br />

The patterns of osteoclastic and osteoblastic response to cranial<br />

fracture are similar. In general during the first week post-fracture, no<br />

blastic or clastic response was noted. Following this latent period, there<br />

is increasing incidence of expression, and by the sixth week postfracture<br />

both osteoclastic and osteoblastic activity were scored for 100%<br />

of the sample. While this pattern appears to be straightforward, interpretation<br />

of the expression of the line of demarcation and sequestration<br />

are more difficult. The observations suggest that the line of demarcation<br />

establishes the boundary between the living bone and bone which will<br />

not survive the fracture due to a disruption in its blood supply. The<br />

resorption or exfoliation of the sequestrum appears to be a long-term<br />

event as sequestration is scored as present in the sample well past the<br />

eighth- week of healing.<br />

In the specimens used in this study, the role of infection must be<br />

considered. During the U.S. Civil War nearly 100% of soldiers who survived<br />

gunshot injuries suffered from infection, and there is evidence that<br />

two of the osseous responses scored are most likely due to infection. In<br />

a 1946 study of cranial in adult rats, Pritchard observed that infection<br />

will cause widespread new bone formation under the periosteum of the<br />

skull. Similar response was observed in the Civil War sample with the<br />

formation of subperiosteal new bone formation at distances greater than<br />

5 cm from the fracture margin. In addition, sequestration is rare when<br />

pyogenic infection is not present. Yet, sequestration was scored as<br />

present in over eight percent of all observations and in nearly twenty<br />

percent of the observations occurring after the third week post-fracture.<br />

Many factors, both internal and external, promote or retard the<br />

fracture healing process. Even with numerous interacting components,<br />

some generalizations regarding fracture healing can be made. In calculating<br />

time elapsed since trauma, one can provide a minimal response<br />

time only, knowing that it takes at least a certain number of days for a<br />

response to occur. Some individuals will respond more slowly, but due<br />

to the physiology and pathophysiology of bone remodeling, individuals<br />

cannot respond more quickly.<br />

Cranial Fracture, Trauma Healing, Time Since Injury<br />

H78 Burning Observations of Decomposed<br />

Human Remains: Obscuring the<br />

Postmortem Interval<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main,<br />

Fayetteville, AR 72701; O’Brian C. Smith, MD, Regional Forensic<br />

Center, University of Tennessee, 1060 Madison Avenue, Memphis,<br />

TN 38104<br />

After attending this presentation, attendees will be able to:<br />

1) identify effects of heat to early, middle, and advanced stages of<br />

decomposing soft tissue; 2) compare and contrast features of the<br />

pugilistic posture between fresh and decomposed remains; 3) demonstrate<br />

characteristics used for recognizing burned remains of a decomposed<br />

body; and 4) define the hallmark decomposition stage when the<br />

pugilistic posture is compromised by degenerative tissue changes.<br />

This presentation will define similarities and differences in how<br />

decomposed remains burn in an attempt to cremate human remains after<br />

death. Additionally, it will demonstrate how burning obscures the postmortem<br />

interval and why caution should be used when dealing with<br />

cases of intentional criminal incineration of human remains.<br />

Intentional burning of human remains is often a secondary process<br />

done to obliterate physical evidence, personal identification, or evidence<br />

of trauma. Prolonged disposal may result from temporarily abandoning<br />

or purposely storing remains. This belated decision to destroy corporeal<br />

evidence by fire after days or months may also involve intentional<br />

removal to a location unassociated with the original crime scene.<br />

Complicating the investigation is the task of estimating the postmortem<br />

interval from decomposed and burned remains. Unless remains have<br />

been frozen or left in a cool environment they will experience some level<br />

of tissue breakdown from autolysis and decomposition processes. If the<br />

decision to incinerate remains takes days or weeks, then it is important<br />

to know if and how burning decomposed tissues produce discernible<br />

deviations from the expected burn patterns of fresher tissues. Currently<br />

only speculation exists regarding the effects burning on decomposed<br />

remains and its impact on the pugilistic posture, burn patterns to soft<br />

tissue and bone, and the signature differentiating immediate postmortem<br />

burning from delayed attempts to later destroy the body.<br />

In an effort to better understand this process, burning simulations<br />

were conducted using portions of unembalmed human bodies from<br />

anatomical gift donations which were preserved as frozen specimens<br />

until removal for designated exposure times. For multiple studies<br />

cadaver materials were segregated into general anatomical groups<br />

according to type: heads, arms, and legs. At week long intervals specimens<br />

from each anatomical group were individually thawed and placed<br />

in plastic bins. The specimens were then left to decompose during the<br />

months of June and July with average daily temperatures ranging from<br />

70-95 degrees F. The redundancy in the protocol created known times<br />

of postmortem environmental exposure and produced a reasonable range<br />

of early, middle, and late stages of decomposition.<br />

After a representative range of decomposed material was generated<br />

for each anatomical group, each specimen was prepared for the burning<br />

process. Prior to burning, specimens were seriated according to intervals<br />

of decomposition (earliest to advanced stages), photographed, and had<br />

muscle tissue removed for histological analysis. Specimens were then separated<br />

and placed within the context of a low temperature radiant heat fire<br />

for photographic documentation of the burning sequence. Limbs of arms<br />

and legs were laid in fully extended positions to document changes in progressively<br />

decomposed tissues from the expected pugilistic posture.<br />

Photographic intervals captured variations in the rate and amount of muscular<br />

response to the effects of burning for each decompositional stage.<br />

An independent series of specimens was allowed to progress to an<br />

advanced stage of decomposition to observe differences from the actions<br />

of anthrophagic insect activity, mummification, and features of preexisting<br />

trauma. One set of remains was allowed limited open access to<br />

insects to simulate exposed outdoor conditions. Another set was completely<br />

restricted by plastic and placed within a warm indoor environment<br />

to simulate secondary storage within an attic or shed. A third set<br />

was partially mummified in a dry indoor setting. Pre-existing ballistic<br />

trauma was created in a final set prior to decomposition and burning for<br />

the purpose of pattern analysis of soft tissue and bone.<br />

This study relates the effects of heat to generalized decomposition<br />

stages and avoids specific time since death estimates due to regional climatic<br />

variations. Overall, morphological changes in early decomposing<br />

specimens were difficult to differentiate from the freshest control<br />

samples. During advanced stages of burning, middle to late stages of<br />

decomposition was indistinguishable from early stage specimens in<br />

terms of their ability to attain the pugilistic posture.<br />

A photographic essay illustrating progressive stages of burning for<br />

decomposing tissue stages will be presented. In addition, information<br />

concerning the influences of alternative taphonomic conditions and the<br />

effects of preexisting trauma will be presented. This information will<br />

demonstrate how burning obscures the postmortem interval and interpretations<br />

of it should be approached with caution when dealing with<br />

cases of intentional criminal incineration of human remains.<br />

511 * Presenting Author


Fire Investigation, Decomposition, Burned Bone<br />

H79 Experimental Study of Fracture<br />

Propagation in the Human Skull:<br />

A Re-Testing of Popular Theories<br />

Anne M. Kroman, MA*, University of Tennessee, Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN 37996<br />

This presentation outlines the results of a study examining fracture<br />

propagation in the human skull and demonstrates the biomechanical<br />

forces behind blunt force trauma.<br />

This research will impact the forensic community by demonstrating<br />

that highly regarded and cited fracture pattern theories regarding blunt<br />

force trauma and the human skull are incorrect and unsupported by<br />

experimental testing.<br />

Trauma analysis is an ever growing area of forensic anthropology.<br />

In many cases, accurate interpretation of fractures in bone may be the<br />

only objective means of determining cause and manner of death<br />

(Berryman and Symes 1998). Postmortem trauma assessment is an<br />

essential tool for identifying the location of impact sites, sequencing<br />

blows, and establishing the characteristics of the object responsible for<br />

injury (Berryman and Symes 1998). In anthropological trauma analysis,<br />

one of the most complicated and confusing areas is blunt force trauma.<br />

One of the key researchers to contribute to area of blunt force<br />

trauma interpretation was E.S. Gurdjian. Gurdjian and colleagues conducted<br />

research on cranial fractures, and extensively published on the<br />

topic. Today his work is still considered a standard reference for the<br />

fields of forensic anthropology and forensic pathology. However, recent<br />

evaluation of his predictions of fracture propagation patterns in the skull<br />

has led to questioning.<br />

The theories of Gurdjian and colleagues (1945, 1947, 1950a,<br />

1950b) describe how the cranial vault responds to blunt force impact.<br />

They state that when the cranium is impacted, an area of inbending is<br />

created at the point of force application, with an area of outbending<br />

occurring in other remote areas of the skull. Fracture propagation then<br />

begins in these areas of outbending (even on the opposite side of the<br />

cranium), then radiate back towards the point of impact, sometimes<br />

never reaching it (1947, 1950a, 1950b). This notion that fracture initiation<br />

begins away from the point of impact is heavily cited in both<br />

anthropology and pathology (Berryman and Symes 1998, Galloway<br />

1999, DiMaio and DiMaio 2001, Knight 1996), and has led anthropologist<br />

to identify points of impact in locations other than the central area<br />

of fractures. Recent sentiments among practicing forensic anthropologists<br />

and pathologists working in the area of trauma analysis have<br />

expressed a strong concern that Gurdjian’s theories are leading anthropologists<br />

astray (Symes 1989). Observed cases of blunt force trauma<br />

indicate that fracture initiation begins at the point of impact, not at a<br />

location remote to it. The conflicting opinions regarding the theories of<br />

Gurdjian and fracture propagation in the skull, has led to the need for<br />

further research.<br />

Most of the current bone trauma research is taken from forensic<br />

specimens that are examined in a postmortem setting. While this type of<br />

research is crucial to the field, it is always after the fact. This study<br />

attempted to evaluate the theories of Gurdjian in a controlled, experimental<br />

setting. A study design was developed that would utilize new<br />

technology in the fields of industrial and biomedical engineering, while<br />

keeping with the needs of anthropology. Because of the unique biomechanical<br />

properties of the human skull, it was decided that a non-human<br />

substitute was not an option. Instead, five fully fleshed, un-embalmed<br />

cadaver heads were used. An engineering drop tower system was constructed<br />

to delivered calibrated, fully monitored blows to the left parietal<br />

region in each specimen. Five data acquisition load cells monitored the<br />

biomechanical response of the skulls for compressive and shear stress in<br />

the X, Y, and Z moments in millisecond intervals. With the data from the<br />

load cells, the forces through out the impact and fracture propagation<br />

* Presenting Author<br />

were charted and analyzed. To help solve the question of how and where<br />

fracture propagation occurs in relation to the point of impact, a high<br />

speed film system was also designed. By filming at a speed faster than<br />

the fracture can travel through bone, it allowed the entire fracture event<br />

to be viewed and analyzed. After testing, each specimen was examined,<br />

with fractures charted and photographed. The experimental design<br />

allowed for complete monitoring throughout the impact event, and provided<br />

extensive data on how the cranium responds to blunt force trauma<br />

and fracture occur. The high speed filming allowed for the fractures to<br />

be observed as they traveled. The data from the test specimens was then<br />

compared to the original results from the Gurdjian studies and to known<br />

blunt trauma forensic cases.<br />

The results from data analysis, high speed film, and examination of<br />

fracture patterns in the test subjects clearly show that fracture propagation<br />

initiates at the point of impact in the skull, then radiates out. High<br />

speed film clearly captured the fractures traveling from the point of<br />

impact in the parietal, posterior to the occipital. No fractures were<br />

observed to originate in locations other than the point of impact. These<br />

results are contrary to the theories of Gurdjian and colleagues, and substantiate<br />

recent claims from practicing forensic anthropologists and<br />

pathologists.<br />

Berryman HE, Symes SA. Recognizing gunshot and blunt cranial<br />

trauma through fracture interpretation. In: Reichs KJ, editor. Forensic<br />

Osteology: Advances in the identification of human remains. Illinois:<br />

Charles C. Thomas, 1998<br />

DiMaio VJ, DiMaio D. Forensic pathology. 2nd ed. Boca Raton, CRC<br />

Press, 2001<br />

Galloway A. Fracture patterns and skeletal morphology: introduction<br />

and the skull. In: Galloway A, editor. Broken Bones. Springfeild, IL:<br />

Charles C. Thomas, 1998<br />

Gurdjian ES. Impact head injury, mechanism, clinical and preventive<br />

correlations. Springfeild, IL: Charles C. Thomas, 1975<br />

Gurdjian ES, Lissner HR. Deformation of the skull in head injury: a<br />

study with the “stresscoat” technique. Surgery, Gynecology, and<br />

Obstetrics 1945;81:679-687.<br />

Gurdjian ES, Lissner HR, Webster JE. The mechanism of production of<br />

linear skull fractures. Surgery,Gynecology, and Obstetrics 1947;<br />

85:195-210.<br />

Gurdjian ES, Webster JE, Lissner HR. Studies on skull fracture with<br />

particular reference to engineering factors. American Journal of Surgery<br />

1949;78: 736-742.<br />

Gurdjian ES, Webster JE, Lissner HR. The mechanism of skull fracture.<br />

Journal of Neurosurgery 1950a;106-114.<br />

Gurdjian ES, Webster JE, Lissner HR. The mechanism of skull fracture.<br />

Radiology 1950b;54:313-338.<br />

Gurdjian ES, Webster JE, Lissner HR. Observations on prediction of<br />

fracture site in head injury. Radiology 1953;60:226-235.<br />

Knight B. Forensic Pathology, 2nd ed. London: Arnold, 1996<br />

Symes SA, Berrryman HE, Smith OC. The changing role of the forensic<br />

anthropologist: pattern and mechanism of fracture production. Lecture<br />

presented at Mountain, Swamp, and Beach meeting of practicing<br />

forensic anthropologists. Gatlinburg, TN, 1989.<br />

Blunt Force Trauma, Fracture Patterning, Gurdjian<br />

H80 The Use of Non-Unique Dental<br />

Characters and Non-Unique DNA<br />

Types to Estimate Probability of Identity<br />

Mark D. Leney, PhD* and Bradley J. Adams, PhD, U.S. Army Central<br />

Identification Laboratory, HI, 310 Worchester Avenue, Hickam AFB,<br />

HI 96853<br />

This presentation will address issues regarding human identification.<br />

In particular, the attendee will learn how to statistically evaluate<br />

512


non-unique characteristics as part of the identificaiton process.<br />

Specifically, dental treatment and mitochondrial DNA will be addressed.<br />

Case examples will be provided.<br />

Forensic identifications using unique dental characteristics, such as<br />

those seen in most antemortem dental radiographs, generally allow the<br />

establishment of the identity of a decedent beyond doubt. Similarly,<br />

nuclear DNA profiles generated from recent or well-preserved human<br />

remains can also serve to establish identity without the need for<br />

extensive supporting evidence; it is generally claimed that the probability<br />

of a random match to a STR profile using the 13 CODIS loci is less<br />

than one in a trillion (Holt et al 2000).<br />

In casework seeking to identify unaccounted for US military personnel,<br />

the Central Identification Laboratory, Hawaii (CILHI) usually<br />

encounters putative identifications where the biological remains are too<br />

old or degraded to produce reliable STR profiles under currently validated<br />

technologies. Also, suitable references for nuclear DNA comparisons<br />

may not be available. Regarding dental comparison, the antemortem<br />

treatment records associated with many of the CILHI cases lack<br />

dental radiographs. For these reasons, the CILHI commonly has to rely<br />

on other lines of evidence for comparison with an unidentified set of<br />

remains. One source includes antemortem narrative dental treatment<br />

records (or odontograms) that are part of an individual’s medical history.<br />

Another avenue is the comparison of mitochondrial DNA family reference<br />

sequences for missing servicemen with evidence sequences<br />

obtained from the unidentified remains.<br />

A consistent pattern of extraction and restoration between unidentified<br />

dental remains and an antemortem narrative dental record does not<br />

establish a positive identity. Similarly, mitochondrial DNA sequence<br />

matches cannot be used to establish a positive identification as many<br />

individuals within the population at large can share the same mitochondrial<br />

DNA type. Nevertheless, the recent publication of population databases<br />

for these two types of evidence allows the ready estimation of the<br />

probability of the evidence matching an individual at random (Adams<br />

2003; Monson et al, 2002). The mitochondrial DNA evidence and the<br />

dental evidence can be considered as independent of each other and,<br />

therefore, the respective probability inferences can be combined using<br />

the product rule. The resulting random match probability provides an<br />

explicit quantification of the certainty with which an identity can be<br />

determined on the basis of the combined evidence (i.e., the probability<br />

of identity). Examples from casework will be presented to illustrate the<br />

utility of this approach in the identification process.<br />

Forensic Odontology, Mitochondrial DNA, CILHI<br />

H81 Reassociating Commingled Remains<br />

Separated by Distance and Time:<br />

The Tale of Simon And Steven<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator, University<br />

of New Mexico, MSC11 6030, Albuquerque, NM<br />

After attending this presentation, the attendees should understand<br />

the difficulty of reassociating human remains separated by great distances<br />

and time and crossing law enforcement jurisdiction boundaries.<br />

Also, the role seasonally controlled irrigation systems can play in the<br />

transport of human remains.<br />

This case involves two men, three counties, five months, seven law<br />

enforcement jurisdictions and the reassociation of remains separated by<br />

over 60 miles.<br />

On July 10, 2002, Steven, a 55-year-old Native American male, was<br />

released from the Santa Fe County Adult Detention Center in northern<br />

New Mexico. He is reported to have met with Simon, a 31-year-old<br />

Native American male. The two men were known associates and longtime<br />

drinking companions. Both men were residents of the San Felipe<br />

Pueblo in Sandoval County. Although family and friends reported phone<br />

calls or sightings of the men shortly thereafter, the whereabouts of the<br />

two men became unclear and they were subsequently reported missing<br />

to the Bureau of Indian affairs. Their disappearances were believed<br />

linked.<br />

On October 12, 2002, a decomposed human torso was discovered<br />

in an irrigation ditch in Bernalillo County in the town of Corralles. The<br />

remains had been reported to law enforcement 10 days prior but had<br />

been dismissed as animal remains despite the presence of clothing.<br />

Subsequent searches revealed isolated bones scattered over six miles of<br />

the irrigation system. Problems in communication among law<br />

enforcement jurisdictions excluded Steven and Simon from the missing<br />

persons list. The remains were retained, unidentified, for several months<br />

by the medical examiner.<br />

On November 29, 2002, a maintenance man working at the Ranch<br />

Viejo subdivision sewage treatment plant in Santa Fe County noticed his<br />

dog playing with a round object and investigated. The object was a<br />

defleshed human skull. The field deputy medical investigator and law<br />

enforcement on scene initially determined the skull to be that of a<br />

female. A thorough anthropologic analysis correctly identified the sex<br />

and age of the individual and the skull was subsequently identified as<br />

belonging to Steven. The skull was recovered 25 miles from the<br />

Detention Center (the last confirmed sighting of Steven) and more than<br />

47 miles from the San Felipe Pueblo (where the two men were reported<br />

missing).<br />

On December 19, 2002, an employee of the Rio Grande<br />

Conservancy was monitoring the irrigation system in Bernalillo County<br />

when he discovered a human skull trapped below one of the control<br />

gates. Searches of the irrigation canals and surrounding area produced<br />

no additional remains. The skull was identified as belonging to Simon.<br />

Simon’s skull was recovered 57 miles from Steven’s skull and 12 miles<br />

from the Pueblo where he was last seen. A medical examiner’s deputy<br />

investigator recalled the headless torso recovered from the same irrigation<br />

system two months prior and suggested the postcranial remains<br />

may also belong to Simon. Comparisons of antemortem x-rays excluded<br />

Simon but examination of multiple AM radiographs confirmed the<br />

remains as belonging to Steven. The distance between the recovery sites<br />

for Steven’s skull and his postcranial remains was more than 66 miles.<br />

The cause and manner of death for both men remains undetermined.<br />

This case addresses several important issues: 1) the recognition of<br />

irrigation systems as significant vectors of transport; 2) the need for an<br />

anthropological consult at the scene; 3) the value of retaining partial,<br />

unidentified remains; and 4) problems inherent in cases crossing law<br />

enforcement jurisdictions.<br />

Most importantly, this case illustrates the need to reexamine current<br />

protocols regarding identifications generated by partial remains. Present<br />

standard operating procedures call for the removal of an identified individual<br />

from the missing persons list, even in cases where a significant<br />

portion of the remains are absent. Matching elements discovered prior<br />

or subsequent to the identification relies solely on the recall of investigators.<br />

Remains separated by unusual distances, large expanses of time<br />

or jurisdiction boundaries are unlikely to be reassociated.<br />

Physical Anthropology, Identification, Taphonomy<br />

H82 Temporomandibular Joint Morphology<br />

and the Assessment of Potential<br />

Commingling<br />

Vincent H. Stefan, PhD*, Lehman College, CUNY, Department of<br />

Anthropology, 250 Bedford Park Boulevard West, Bronx, NY 10468<br />

After attending this presentation, the participant will understand the<br />

morphology of the temporomandibular joint and the correlation of osteometric<br />

variables of articulating structures of the cranium and mandible.<br />

513 * Presenting Author


The utility of correlated osteometric variables of articulating structures<br />

of the temporomandibular joint (TMJ) in the association of disarticulated<br />

human remains or the identification of commingled remains will be<br />

demonstrated.<br />

This paper has two objectives:1) to document the correlation<br />

between measurements of adjacent articular surfaces and structures,<br />

specifically of the temporomandibular articulation, and 2) to demonstrate<br />

the utility of correlated osteometric variables of articulating structures<br />

of the temporomandibular joint in the identification and association<br />

of disarticulated human remains, even when portions of the cranium or<br />

mandible are missing or damaged.<br />

Background: In many forensic and archaeological contexts, an individual’s<br />

remains may become scattered or commingled. Often, the<br />

forensic anthropologist is called upon to address the concerns of<br />

minimum numbers of individuals and the association of elements of a<br />

single individual. In those cases of disassociation, the relationship of the<br />

cranium to the mandible may be uncertain. When attempting to associate<br />

a cranium and mandible, several features are often observed which<br />

could indicate that separate elements are from the same individual: 1)<br />

proper occlusion of the maxillary and mandibular dentition, 2) close<br />

fitting articulation of both mandibular condyles into the glenoid fossae,<br />

and 3) overall similar physical appearance due to postmortem taphonomic<br />

activity. However, these assessments can not be made if the<br />

cranium and/or mandible have been damaged due to perimortem/postmortem<br />

trauma and scavenging damage resulting in the loss of dentition<br />

and/or skeletal structures. Differential weathering of skeletal elements<br />

can also confound the association efforts.<br />

These confounding factors were manifested in a recent forensic<br />

case. Skeletal remains were discovered in the Muttontown Preserve,<br />

Long Island, New York, on November 10, 2001. The initial anthropological<br />

examination indicated extensive weathering and rodent gnawing<br />

on the cranium which resulted in the loss of the majority of the maxilla,<br />

maxillary dentition, the malars, zygomatic arches, glenoid fossae and<br />

articular eminences, mastoid processes and other cranial structures. The<br />

cranium and mandible also displayed differential weathering. The first<br />

anthropologists to examine the remains stated in their report that, “The<br />

bicondylar breadth formed by the mandibular condyles does not correspond<br />

to the breadth of the tempomandibular fossae indicating at least<br />

the possibility that the basicranium and mandible represent two individuals.”<br />

They further state, “The best explanation for the poor fit of the<br />

mandible to the basicranium is that the mandible and skull have<br />

undergone considerable postmortem distortion caused by weathering<br />

and other factors.” An anthropological reexamination was conducted on<br />

the skeletal remains on May 19, 2003. The reexamination revealed that<br />

the first anthropologists failed to take into account the extent of damage<br />

to the glenoid fossae produced by the rodent gnawing. If one were to<br />

extrapolate the original size and breadth of the glenoid fossae, the<br />

mandibular condyles would articulate quite well with the calvarium.<br />

The remaining portions of the glenoid fossae articulated well with the<br />

mandibular condyles. There was no evidence of warping or postmortem<br />

distortion of the mandible or calvarium due to weathering. These visual<br />

assessments raised two questions: 1) How much of the glenoid fossae<br />

and articular eminences had been removed due to rodent gnawing?, and<br />

2) How consistent were the visual assessments/interpretations with the<br />

actual TMJ morphology?<br />

This investigation is designed to determine the degree to which<br />

metric measurements of articulating TMJ structures of the cranium and<br />

mandible are correlated, and determine if a cranium and mandible can be<br />

associated through morphometric analysis. The study sample comprised<br />

47 individuals form the American Museum of Natural History, New<br />

York; seven individuals from the documented anatomy collection with<br />

* Presenting Author<br />

know age, sex and race, and 40 individuals from the Heidenheim<br />

Cemetery, Wurtenberg, Germany Collection. Fourteen measurements of<br />

the cranium and mandible were taken, measurements that were most<br />

likely to reflect joint congruence of the TMJ. These measurements document<br />

the morphology of the glenoid fossae, articular eminences, and<br />

mandibular condyles. All measurements were taken with a sliding and<br />

spreading caliper to the nearest 0.1 mm. A correlation analysis technique<br />

was utilized to investigate the relationship between the measurements of<br />

the bony structures of the TMJ. As expected, strong correlations exist<br />

between cranial measurements, mandibular measurements, and between<br />

the cranial and mandibular measurements of the bony structures of the<br />

TMJ. Of particular interest are the correlations between Biglenoid<br />

Breadth (BGB) and Biendoglenoid Breadth (BEB) (0.86707), and<br />

Biarticular Breadth (BAB) and Bicondylar Neck Breadth (BCN)<br />

(0.81645). These strong correlations indicate that individual cranial and<br />

mandibular variables could be utilized in regression analyses to predict<br />

missing or damaged variables. A test of their potential predictive value<br />

was made utilizing the forensic case discussed above.<br />

Due to extensive rodent gnawing of the cranium, several measurements<br />

of the cranium and TMJ could not be taken with the exception of<br />

Biendoglenoid Breadth (BEB). All measurements of the mandible could<br />

be made. A regression analysis was conducted to predict Biglenoid<br />

Breadth (BGB) from Biendoglenoid Breadth (BEB), which resulted in a<br />

predicted breadth of 113.85mm. A regression analysis was conducted to<br />

predict Biarticular Breadth (BAB) from Bicondylar Neck Breadth<br />

(BCN), which resulted in a predicted breadth of 114.14mm. Biglenoid<br />

Breadth (BGB) and Bicondylar Breadth (BIC) were strongly correlated<br />

(0.82264), and possessed an average difference (BGB - BIC) of 3.7mm.<br />

The observed BIC measurement of 110mm and the predicted BGB and<br />

BAB measurements of 113.85 and 114.14 respectively clearly indicate<br />

that the mandibular condyles would have articulated completely with the<br />

original glenoid fossae and articular eminences.<br />

Conclusions: When presented with disassociated or commingled<br />

skeletal remains, it is necessary for the forensic anthropologist to accurately<br />

reallocate those remains to specific individuals. Instigated by a<br />

recent forensic case involving a possible commingled cranium and<br />

mandible, this project investigated the congruence of the temporomandibular<br />

joint articulation and assessed the possibility of predicting<br />

the morphology of the missing skeletal element from the morphology of<br />

the adjacent skeletal element present. This research has proven the<br />

utility of articulation congruence in the prediction of missing element<br />

morphology and measurements of the TMJ, and illustrated the potential<br />

for allocation of disassociated skeletal elements. This research has also<br />

supported the visual assessments and interpretations made on the<br />

forensic case discussed above; that the cranium and mandible were from<br />

the same individual and that there was no evidence of warping or postmortem<br />

distortion of the mandible or calvarium due to weathering.<br />

Cranial and Mandibular Measurement<br />

Measurement Definition<br />

BGB Biglenoid Breadth; Distance across the most lateral<br />

extension of the glenoid fossae<br />

BAB Biarticular Breadth; Distance across the most<br />

lateral extension of the articular eminences<br />

BEB Biendoglenoid Breadth; Distance between the left<br />

and right endoglenoid processes<br />

BIC Bicondylar Breadth<br />

BCN Bicondylar Neck Breadth<br />

Temporomandibular Joint, Skeletal Element Association,<br />

Commingled Remains<br />

514


H83 Using GIS Technology to Locate<br />

Clandestine Human Remains<br />

Ann Marie W. Mires, PhD*, Office of the Chief <strong>Medical</strong> Examiner, 720<br />

Albany Street, Boston, MA 02118; Alberto Giordano, PhD, Department<br />

of Geography, University of Texas, Austin, TX 77005<br />

Attendees will learn the application of geographical information<br />

systems (GIS) technology to locating and predicting the location of clandestine<br />

human remains.<br />

This study provides law enforcement and medical examiner personnel<br />

with a model and predictive tools to reopen “cold” cases where no<br />

remains were located and allow them the opportunity to re-examine and<br />

search for these remains.<br />

GIS technology has contributed spatial analysis to the fields of geography,<br />

archeology, and epidemiology. Forensic anthropology can benefit<br />

greatly by the application of GIS to the location of clandestine human<br />

remains and to the mapping of missing and/or unidentified individuals to<br />

yield spatial patterns in the data. This paper presents two applications of<br />

GIS data to the location and mapping of clandestine human remains.<br />

The first case study involved the use of GIS to locate scattered human<br />

remains. An article of clothing was discovered in a wooded area. The<br />

clothing matched an item belonging to a missing person who had been<br />

missing for three years. A grid matrix was overlain onto a 35 acre plot of<br />

land in a rugged hillside terrain. Grid lines were laid out and trained State<br />

Police searchers (Special Emergency Response Teams) were employed to<br />

cover, in “arm-to-arm” search style, 100% of the wooded terrain. The<br />

location of each article of evidence and any skeletal elements were added<br />

to the grid matrix using global positioning system (GPS) instruments. As<br />

more items were located, the resulting map began to indicate directionally,<br />

the source of the skeletal remains, which had been scattered over the<br />

hillside by a scavenging carnivore. After a period of three weeks, over 50<br />

acres were covered and the site where the body had initially been<br />

deposited on the surface was located. The location of the original “drop”<br />

site allowed crime scene specialists to process the site for trace evidence<br />

allowing for the potential of linking the crime to a potential suspect.<br />

Approximately 40% of the individual was recovered using this location<br />

technique and 100% of the grid area was covered.<br />

The second case study involved applying this location and recovery<br />

technique to cases of unidentified skeletal remains and missing individuals<br />

from the last twenty years in Massachusetts. The locations of unidentified<br />

clandestine remains were mapped using GIS and compared to sites where<br />

human material was recovered and identified. These data were analyzed<br />

using demographic and spatial variables including geographical landmarks,<br />

distance to roads, indoors vs. outdoors, buried vs. surface, etc.<br />

Interesting patterns in the data emerged that may be useful predictors in<br />

“cold” cases. Utilizing trends from previous scenes, a predictive model<br />

was developed that missing and abducted individuals could potentially<br />

have been deposited within a 5 mile radius of their abduction. Using the<br />

abduction site as the center, a five-mile radius was circumscribed and the<br />

following sequence of questions was applied: 1) Did the original search<br />

cover all of the localities presented in the five mile radius?; 2) What topographic<br />

landmarks exist within the 5 mile grid area and are these likely to<br />

have been areas where a body was deposited? and; 3) Reopen the “cold”<br />

case and implement a 100% grid search of all likely areas within the five<br />

mile radius, with special attention to surface scatters of skeletal material,<br />

material evidence, soil and ground disturbances, areas of subsidence, and<br />

construction that may have occurred in the intervening years.<br />

This type of modeling has allowed researchers to revisit “cold” cases<br />

and apply these systematic testing techniques to ascertain if the original<br />

deposit of human remains was somehow missed or overlooked by<br />

searchers.<br />

Geographical Information Systems, Clandestine Human Remains,<br />

Modelling<br />

H84 Anthropological Review of Remains<br />

From Srebrenica as Part of the<br />

Identification Process<br />

Piotr Drukier, MSc*, Eva Klonowski, PhD, Laura Yazedjian, Rifat<br />

Kesetovic, and Edwin F. Huffine, MS, International Commission on<br />

Missing Persons, Alipashina 45a, 71000 Sarajevo, Bosnia and<br />

Herzegovina<br />

This paper presents the procedures established by the International<br />

Commission on Missing Persons (ICMP) during anthropological review<br />

of Srebrenica remains as a part of large scale, DNA supported identification<br />

process. This unique approach to the problem of highly commingled<br />

remains may also be helpful in establishing standard procedures<br />

for resolving similar occurrences of mass identification in other post<br />

conflict areas.<br />

This paper impacts the forensic community by combining an<br />

anthropological review and DNA testing results to produce accurate<br />

identifications and to reassociate skeletal remains.<br />

During exhumations in the Podrinje area (eastern Bosnia and<br />

Herzegovina), led by the International Criminal Tribunal for the former<br />

Yugoslavia (ICTY) from 1996 to 2001 and the Bosniak Commission on<br />

Tracing Missing Persons from 1996 until the present, more than 6,000<br />

cases were collected from surface and exhumed from single, multiple<br />

and mass graves (primary and secondary) that related to fall of UN<br />

Safety Zone of Srebrenica on July 11th, 1995. Due to number of missing<br />

persons coupled with the conditions of the recovered bodies, classical<br />

anthropological methods were not of great use in producing significant<br />

numbers of identifications. Therefore a DNA supported identification<br />

program was created in order to help resolution to families of missing<br />

persons.<br />

The large-scale, DNA identification process of Srebrenica victims<br />

operated by the International Commission on Missing Persons at the<br />

Podrinje Identification Project required establishing and using new and<br />

specific anthropological procedures. Due to history of Srebrenica<br />

graves, the majority of cases exhumed in area of Podrinje represent<br />

highly commingled and very often incomplete remains. The majority of<br />

exhumed cases had already been examined by anthropologists and an<br />

autopsy performed by pathologists. However, in order to help ensure that<br />

not only as complete a set of remains as possible were returned to the<br />

family, but also that each set of skeletal remains consisted of only one<br />

individual, additional anthropological review procedures were established.<br />

The role of the forensic anthropologist in the process of identification<br />

was not limited to estimating sex, age at death, stature and<br />

defining antemortem trauma. It also required creating new types of<br />

“visual” body inventories during examinations and reassociating commingled<br />

remains. Furthermore, a system of exchanging information<br />

among DNA laboratories, morgue and forensic examination officials on<br />

the status of additional DNA samples collected from the remains, and the<br />

results of anthropological review for antemortem and postmortem comparison<br />

helped produce a highly efficient system for both reassociation<br />

and identification.<br />

Commingling, Reassociation, Forensic Anthropology, Human<br />

Identification<br />

515 * Presenting Author


H85 Exhumation... and What After?<br />

ICMP Model in Bosnia and Herzegovina<br />

Eva Klonowski, PhD*, Piotr Drukier, MSc, and Nermin Sarajlic, MD, MSc,<br />

International Commission on Missing Persons, Alipashina 45a, 71000<br />

Sarajevo, Bosnia and Herzegovina<br />

This paper introduces a model for the entire process of exhumation,<br />

examination and identification in Bosnia and Herzegovina conducted by<br />

local authorities in cooperation with the International Commission on<br />

Missing Persons (ICMP). Since 2001 more than 2500 DNA supported<br />

identifications have been completed.<br />

ICMP anthropologists are active participants in the exhumation,<br />

examination, reassociation, and review of remains for comparison of<br />

antemortem and postmortem data, as well as assisting families during<br />

the identification process.<br />

In the second part of last century, armed conflicts around the world<br />

have taken the lives of millions of civilians. Among the countries<br />

impacted by these events are Argentina, Guatemala, Rwanda, the former<br />

Yugoslavia, and, recently, Afghanistan and Iraq. In some of these<br />

countries people were killed or “disappeared” because of their political<br />

views. Others were victims of ethnic cleansing. The problem of<br />

prosecuting the perpetrators of these crimes on the basis of recovered<br />

evidence and identified victims attracted many scientists and organizations<br />

involved in human rights issues.<br />

The first exhumations for the purpose of collecting evidence for<br />

genocide took place in late 1990s in Rwanda, Croatia, and in Bosnia and<br />

Herzegovina by UN Crime Tribunals. The first exhumations for the purposes<br />

of victim identification began in Argentina and Guatemala in<br />

1980s. Unfortunately, these exhumations were not done in continuous<br />

way nor conducted under the auspices of local authorities.<br />

The war in Bosnia and Herzegovina took the lives of more 250,000<br />

people. Many were killed during ethnic cleansing actions in the<br />

beginning of war in 1992, throughout 1993, and after the fall of<br />

Srebrenica in July 1995. After the war ended in December 1995, about<br />

30,000 persons were unaccounted for and listed as missing. The first<br />

exhumation in BiH occurred in October 1995, and was conducted by<br />

local authorities in a northwestern area of Bosnia called Krajina. In the<br />

following year all former warring parties were performing exhumations<br />

for identification purposes. At this time, the ICTY initiated exhumations<br />

in the Srebrenica area in order to collect evidence for war crimes. Since<br />

then, the remains of thousands of victims have been exhumed. In eight<br />

years of exhumation activities by the ICTY and local commissions,<br />

about half of the exhumed cases (usually representing complete remains)<br />

were identified using traditional methods. The remainder could not be<br />

identified due to the lack of sufficient postmortem and antemortem data.<br />

Since it was established in the summer of 1996, the ICMP has<br />

helped address the fate of missing persons in the former Yugoslavia<br />

through exhumations and victim identification. The ICMP became a<br />

pivotal partner in this process following the introduction of a new<br />

strategy focusing on victim identification using DNA.<br />

Exhumation, DNA Identification, Examination<br />

H86 Air-Drying as a Means of Preservation<br />

for the Unidentified and Unclaimed<br />

Remains From the World Trade Center<br />

Benjamin J. Figura, BA*, PO Box 4423, Chico, CA 95927-4423<br />

After attending this presentation, attendees will understand the<br />

method of air-drying preservation utilized for the unidentified and<br />

unclaimed remains from the collapse of the World Trade Center, its<br />

theory, and the rationale for its adoption.<br />

* Presenting Author<br />

Participants will come away from the presentation with the<br />

knowledge and understanding of the air-drying method of preservation<br />

used for the unidentified and unclaimed remains from the World Trade<br />

Center (WTC). This method of preservation has not been previously<br />

attempted.<br />

This paper presents the air-drying process used for the preservation<br />

of the unidentified and unclaimed remains from the September 11th,<br />

2001, collapse of the World Trade Center towers. The human remains<br />

held in storage at the Office of the Chief <strong>Medical</strong> Examiner (OCME) in<br />

Manhattan were preserved using a method of air-drying that has not been<br />

previously attempted. These remains will be included in the permanent<br />

memorial to be constructed at the WTC site. Because the status of<br />

unclaimed remains may change in the future, and of the possibility of<br />

further identifications, the remains within the memorial must be easily<br />

accessible. The air-drying process was adopted as the best way to preserve<br />

the remains for permanent storage while avoiding the problems<br />

associated with other options for preservation.<br />

The remains recovered from the site of the WTC were subjected to<br />

numerous taphonomic processes. The incredible forces involved in the<br />

initial impacts of the aircraft, the resulting unchecked fires, the eventual<br />

collapse of the towers themselves, in addition to exposure to water used<br />

for fire suppression, resulted in remains exhibiting extreme fragmentation,<br />

commingling, contamination and various states of decomposition.<br />

The condition of the recovered remains has made the identification<br />

process both extremely difficult and time- and resource-consuming.<br />

Many of the remains are unable to provide enough DNA to<br />

allow for identification. Some remains that yield significant amounts of<br />

DNA are unable to be identified because of unavailable reference<br />

samples. In addition, many of the identified remains are intentionally<br />

left unclaimed by families or because of legal reasons. The result is a<br />

large number of unidentified and unclaimed remains.<br />

Three possible options were considered by the OCME for the<br />

preservation of the remains: freezing, chemical preservation, and drying.<br />

Freezing the remains was ruled out because it was deemed infeasible to<br />

maintain for the life of the monument. Formaldehyde, the best choice<br />

for chemical preservation, was undesirable because it is carcinogenic,<br />

has a strong odor, and degrades DNA. Drying of the remains was<br />

deemed the best option for a number of reasons. The removal of water<br />

reduces the weight of the remains, effectively halts decomposition (and<br />

its related offensive odors), and preserves DNA. The preservation of the<br />

DNA is important in the event the OCME has to resample the remains.<br />

Lastly, the environment needed to store the dried remains is relatively<br />

simple to maintain.<br />

The drying process itself involves the placement of the remains in<br />

a specially designed room at a temperature of 150°F (66°C) and negligible<br />

humidity until the moisture is removed. 150°F was established as<br />

a temperature that, coupled with the dry environment, facilitated the<br />

rapid removal of moisture while minimizing further degradation of the<br />

specimen DNA.<br />

The drying process was determined to be complete by using visual<br />

and physical inspection of the remains. Considerations were given to the<br />

portion of the body represented, elapsed time, and any taphonomic treatments<br />

that may have occurred (concrete dust, jet fuel, etc.). Upon completion<br />

of the drying process, the remains were sealed in airtight<br />

packages suitable for permanent storage.<br />

When finished, the OCME will have successfully dried the over<br />

14,000 unidentified and unclaimed remains from the World Trade<br />

Center. An assessment of the effect of the drying process on the genetic<br />

material held within the remains is currently underway, with details and<br />

results of the research to be published in the future.<br />

Air-Drying/Dehydration, Decomposition, Preservation<br />

516


H87 Preliminary Results on the Use of<br />

Cadaver Dogs to Locate Vietnam<br />

War-Era Human Remains<br />

Paul D. Emanovsky, MS*, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam AFB, HI 96853<br />

The paper will examine some preliminary results of the use of cadaver<br />

dogs to search for missing American service members in Vietnam. Some<br />

issues associated with cadaver dog use will also be presented.<br />

The location of clandestine burials is often a difficult task. The use of<br />

cadaver dogs is thought, by some, to be an effective tool for searching and<br />

ruling out large areas in the search for burial sites. However, the use of<br />

cadaver dogs has not been validated for a variety of environments and taphonomic<br />

scenarios. This paper will explore some of the issues related to<br />

cadaver dog use, particularly in Southeast Asia.<br />

Cadaver dogs have, in some cases, proven to be useful for locating<br />

decomposing human remains. A dog search for buried remains can result in<br />

several outcomes: 1) the dog alerts and human remains are found,<br />

2) the dog alerts and nothing is found, 3) the dog does not alert and there are<br />

no remains present or 4) the dog does not alert and yet remains are present.<br />

When a dog successfully locates remains the results are relatively easy to<br />

assess. However, when a dog does not alert in a given area the situation<br />

becomes more difficult to evaluate. In other words, did the dog miss buried<br />

bone or are there truly no human remains in the area? Conversely, if the dog<br />

alerts and nothing is found then it may be the case that external factors<br />

caused the false positive rather than the presence of actual human remains.<br />

These conundrums make it extremely difficult for an investigator to evaluate<br />

the efficacy of cadaver dogs. There have been only limited studies and case<br />

reports testing the validity of utilizing dogs for the detection of modern clandestine<br />

burials and surface deposition of decomposing human remains. One<br />

of the key issues explored in this paper is whether dogs who have been<br />

trained to find recently decomposed human remains can also detect the<br />

remains of individuals who have been exposed to the myriad of taphonomic<br />

processes presented by the Southeast Asian environment for over 30 years.<br />

The Joint Task Force-Full Accounting (JTF-FA), in an effort to utilize<br />

new methods for locating the remains of fallen U.S. service members in<br />

Southeast Asia, chose to experiment with the concept of a Human Remains<br />

Dog Team (HRDT). To this end, JTF-FA enlisted the assistance of a Rhode<br />

Island State Trooper and his two cadaver dogs. From February 18 through<br />

March 20 2003, the HRDT (a team comprised of military and civilian personnel)<br />

surveyed sites associated with eight Vietnam War-era losses in the<br />

southern and central Socialist Republic of Vietnam.<br />

The standard procedure for this investigation was as follows: The<br />

HRDT would interview witnesses who purported to have knowledge of a<br />

burial location. The witness subsequently pointed out a general area for the<br />

dogs to survey. The dogs would then search the area and if they alerted (the<br />

dogs were trained to sit down when they detected decomposing human<br />

remains) or showed interest (not a sit alert but expressed interest in an area as<br />

determined by the handler) the HRDT would conduct limited subsurface<br />

excavation based on the combined witness statement and dog responses.<br />

Exceptions to this protocol were two cases previously scheduled by JTF-FA<br />

to be excavated by full-scale recovery teams. The Investigators in Charge<br />

(IC) for their respective cases showed the dog handler where to search based<br />

on witness interviews. The dog handler then made recommendations to the<br />

ICs based on the dogs’ reactions. Thus, the ICs were able to generate their<br />

excavation strategies based not only on witness statements and material evidence<br />

visible on the surface, but also by incorporating the dog handlers’ input.<br />

Of the eight cases investigated, the dogs alerted or showed interest at<br />

six of the locations. No human remains were found at any of the sites.<br />

Details of the investigation and the exploration of the cadaver dog alerts will<br />

be presented. General problems associated with the use of cadaver dogs will<br />

also be discussed, particularly in reference to their use in locating Vietnam<br />

War-era burials.<br />

Forensic Archaeology, Cadaver Dogs, Taphonomy<br />

H88 Genes, Nerves, and Bones: Neural<br />

Networks, Genetic Algorithms, and<br />

Forensic Anthropology<br />

Suzanne Bell, PhD*, West Virginia University, Department of Chemistry,<br />

PO Box 6045, Morgantown, WV 26506; Richard L. Jantz, PhD,<br />

Department of Anthropology, University of Tennessee, Knoxville,<br />

TN 37996-0720<br />

Attendees will be provided with an overview of neural networks and<br />

genetic algorithms including a discussion of their strengths and weaknesses<br />

for forensic applications. Although forensic anthropological<br />

aspects will be emphasized, all attendees will leave with the basic information<br />

needed to begin exploration and implementation of neural network<br />

modeling and analysis of forensic data they encounter.<br />

The presentation will encourage the forensic community to explore,<br />

exploit, and adopt neural networks and genetic algorithms in their area of<br />

interest. These approaches provide a powerful new tool that forensic scientists<br />

can use to improve modeling and to enhance their understanding of<br />

the large complex data sets and databases common to forensic science.<br />

Multivariate statistical techniques are firmly entrenched in forensic<br />

anthropology, most visibly in the widely used FORDISC program. Neural<br />

networks, which are flexible, robust, and distribution-independent, can<br />

significantly enhance and supplement such traditional statistical methods.<br />

A comprehensive empirical approach to network modeling avoids the<br />

“black box” stigma often associated with nets, and can lead to valuable<br />

insights, particularly in revealing and studying complex, multivariate relationships<br />

among input variables. Additionally, the increasing reliance of<br />

the business community on data mining has led to the availability of<br />

affordable, PC-based neural network software which is often integrated<br />

into larger statistical packages. Numerous network architectures,<br />

including supervised and unsupervised algorithms, increases their utility<br />

as modeling and data analysis tools. They complement statistical methods,<br />

and when used in concert, nets and statistics provide a more complete<br />

understanding of anthropological data sets, as well as of other databases<br />

used in forensic science. Finally, the coupling of networks to genetic algorithms<br />

has dramatically improved network optimization, training, and<br />

variable selection procedures. As a result, neural networks have become<br />

a viable tool for forensic anthropology as well as forensic science generally.<br />

This presentation will focus on the anthropological data the<br />

Howells database, including crania from all over the world. Incorporated<br />

in this collection is data from Terry/Todd 19th century anatomical collections,<br />

recent American Whites, Blacks and Hispanics from the Forensic<br />

Data Bank (FDB). The FDB is perhaps the most familiar collection to<br />

forensic practitioners.<br />

Prior to the mid 1980s, forensic identification criteria were based<br />

almost exclusively on the large anatomical collections (Terry and<br />

Hamann-Todd) containing individuals with mainly 19th century birth<br />

dates. Since modern documented skeletal collections are few in number,<br />

the FDB was conceived and launched in 1986 with a grant from the<br />

National Institutes of Justice as a way to obtain data from modern individuals.<br />

The FDB contains extensive demographic information for many<br />

cases, including place of birth, medical history, occupation, stature, and<br />

weight. The skeletal information in the database includes cranial and postcranial<br />

metrics, suture closure information, various aging criteria scores,<br />

and other information. Statistical analysis of this database has demonstrated<br />

that the American population has changed dramatically, presumably<br />

from the unparalleled environmental changes that have occurred<br />

over the past 100 years. Therefore, predictive models, both statistical and<br />

neural network created from the FDB typically aim to determine the ageat-death,<br />

sex, and status of the remains as historical (ca. 100 years old or<br />

more) or forensic. Such tasks are addressed by FORDISC; parallel neural<br />

network/genetic algorithm models were created for comparison here,<br />

using cranial measurement variables and the larger Howells/FDB collection.<br />

517 * Presenting Author


This presentation will present a non-mathematical overview of neural<br />

networks and genetic algorithms which will lead into a review of findings<br />

from on-going work using different neural network topologies. The creation<br />

and characterization of the network models will be explained, as well<br />

as methods used to elucidate information and hidden structure from the<br />

underlying database of cranial measurements. Genetic algorithm<br />

approaches to determine variable importance and sensitivity will also be<br />

discussed. Comparison of performance and finding from statistical techniques<br />

will be shown to illustrate how the two techniques can work in<br />

concert. A short overview of available and affordably software packages<br />

will also be provided. It is hoped that this presentation will facilitate wider<br />

adoption of neural networks in the forensic anthropological community as<br />

well as the forensic community at large.<br />

Forensic Anthropolgy, Neural Networks, Forensic Data Bank<br />

H89 U.S. Army Identification Laboratories<br />

for WWII and Korea and the History<br />

of Forensic Anthropology<br />

Christopher M. McDermott, MA*, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Building 45, Hickam AFB,<br />

HI 96853<br />

This presentation will provide historical information about the<br />

development of forensic anthropology in the history of the effort to<br />

recover and identify our nation’s war dead. Attendees will retain<br />

valuable examples of the interation between a developing forensic<br />

science and a bureacratic institutional setting. The pragmatic application<br />

of this knowledge may help anthropologists and other forensic scientists<br />

to navigate institutional support for forensic scientific work.<br />

The history of forensic anthropology contributes much to our sense<br />

of the obstacles and challenges that the field has overcome over the<br />

course of the last 60 years.<br />

This paper highlights the significant contributions of several<br />

anthropologists to the science of forensic anthropology through work<br />

identifying war dead. This paper documents the transition from a<br />

beginning with a few select scientists adapting their broader research<br />

interests to address problems in identification, to the establishment of a<br />

vigorous science with its largest institutional support from the US Army.<br />

As an application of scientific knowledge, forensic anthropology<br />

depends upon building both a growing base of data and a growing<br />

awareness of how to resolve particular identification and forensic<br />

problems. The massive war dead identification program presented challenges<br />

and opportunities that served to spur professional and scientific<br />

improvement to methods and research designs in forensic anthropology.<br />

The effort to meet these challenges and design pragmatic solutions to<br />

diverse problems is a hallmark of the efforts made by anthropologists<br />

working for the U.S. Army identifying recovered remains from WWII<br />

and Korea. The impact of this effort has been demonstrated as central to<br />

the development of modern forensic anthropology. Anthropologists<br />

involved in this work faced many similar challenges to basic research<br />

and overcoming institutional barriers that affect current development of<br />

the field. A closer examination of these historical efforts offers avenues<br />

for discussion and guidelines for addressing institutional and scientific<br />

obstacles.<br />

The role of anthropologists and anatomists as essentially technical<br />

advisors in the World War II identification effort opened the eyes of the<br />

military to the scientific expertise of the day. But more importantly from<br />

the perspective of the developing science the large scale of the analytical<br />

and practical problems that faced the scientists spurred multiple lines of<br />

research. The challenges of pursuing these lines of research within the<br />

institutional structure and bureaucracy of the military focused the scientists’<br />

arguments for changed practices and proposals for research. This<br />

process is examined in the correspondence and documentary history of<br />

the WWII identification effort. The expansion of the technical role of the<br />

* Presenting Author<br />

anthropologists in the to identify recovered remains from Korea presented<br />

new challenges and fostered the advance of significant new analytical<br />

tools. The impact of these experiences on the anthropologists that<br />

participated in the identification effort would provide significant shaping<br />

to the professional development of the applied science. In addition, the<br />

techniques developed in the course of the war dead identification efforts<br />

paired with continuing expansion of the knowledge base and successes<br />

of human identification science outside the military domain. The effort<br />

to identify war dead from Southeast Asia coincided with significant<br />

changes in the contributions that anthropologists could provide to identifying<br />

recovered remains. The basic process for identifying remains<br />

from Southeast Asia built on the technical role and expertise that anthropologists<br />

had established for WWII and Korea. The processes then in<br />

place did not take account of all of the recommendation that the scientists<br />

had proposed or the growth of the field outside of the military.<br />

Since that time the continuous effort to recover and identify war dead<br />

from WWII, Korea, and Southeast Asia has profited from increasing the<br />

roles and expertise of the anthropologist in the process and has faced<br />

several challenges of overcoming institutional barriers that resist the<br />

implementation of expert advice.<br />

History, Forensic Anthropology, War Dead<br />

H90 The ASCLD-LAB Accreditation of the<br />

Joint POW/MIA Accounting Command,<br />

Central Identification Laboratory<br />

Vincent J. Sava, BS, MA*, Joint POW/MIA Accounting Command<br />

Central Identification Laboratory, 310 Worchester Avenue, Building<br />

45, Hickam AFB, HI 96853<br />

The process leading to the ASCLD-LAB accreditation of the<br />

Department of Defense Joint POW/MIA Accounting Command Central<br />

Identification Laboratory, the first forensic skeletal identification laboratory<br />

so credentialed, and the issues addressed during the accreditation<br />

process will be discussed.<br />

This presentation will impact the forensic community by demonstrating<br />

the lessons learned during accreditation of a forensic anthropology<br />

laboratory.<br />

Accreditation of forensic laboratories by professional organizations<br />

has been a growing trend over the past decade. In August 2003, the<br />

Department of Defense Joint POW/MIA Accounting Command (JPAC)<br />

Central Identification Laboratory (CIL) became the first forensic<br />

skeletal identification laboratory to achieve American Society of Crime<br />

Laboratory Directors-Laboratory Accreditation Board (ASCLD-LAB)<br />

accreditation. ASCLD-LAB is a voluntary program in which any crime<br />

laboratory may participate in order to demonstrate that its procedures,<br />

casework, facilities, personnel, and equipment meet established<br />

standards.<br />

On 5 September 2002, application for accreditation was submitted<br />

to ASCLD-LAB. During the ensuing compliance period, the Quality<br />

Manager and Inspection Team Chief solved a variety of problems prior<br />

to the inspection that threatened accreditation. In some ways, a forensic<br />

identification laboratory is starkly different than a typical crime laboratory.<br />

The CIL’s mission, to identify war dead from previous conflicts<br />

and to lend recovery and identification expertise to military and civilian<br />

law enforcement agencies, means that the nature of the evidence is different,<br />

casework is more protracted, and the analyses conducted by individual<br />

analysts are more diverse. Further, the CIL’s disciplines are nontraditional<br />

relative to ASCLD-LAB. Accordingly, the CIL’s forensic<br />

anthropology, odontology and material (artifactual) evidence disciplines<br />

were treated as sub-disciplines under the trace evidence discipline and<br />

forensic archaeology was equated with crime scene processing.<br />

Additionally, the CIL initially sought accreditation for its mtDNA sampling<br />

procedures under forensic biology, however ASCLD-LAB<br />

declined this request since the CIL only samples teeth and bones for<br />

518


mtDNA and conducts no on-site analysis. ASCLD-LAB later suggested<br />

that should forensic anthropology and odontology ever be incorporated<br />

as an ASCLD-LAB discipline then criteria could be established for<br />

mtDNA sampling procedures.<br />

The inspection took place from 24-27 March 2003. The CIL was<br />

inspected against 109 pre-established criteria. Each criterion is designated<br />

by ASCLD-LAB as essential (E), Important (I) or Desirable (D).<br />

To achieve accreditation, all of the “E” criteria have to be passed, 75%<br />

of the “I” and 50% of the “D”. The major inspection activities included<br />

examination of documentation and casework, staff interviews, and evaluation<br />

of evidence storage and security.<br />

Examination of documentation was accomplished through criteria<br />

files supplied by the Quality Manager. Each file acted as an index by<br />

listing the relevant documentation used to support compliance for a particular<br />

criterion. Casework, and in particular note taking, came under<br />

intense scrutiny. Altogether, 200 suitable case files were presented to the<br />

inspection team. Interviews were conducted with the on-hand staff,<br />

approximately 25 people. Interviews focused on selected aspects of<br />

casework, the work environment, and knowledge of Laboratory programs<br />

and procedures, in particular safety, proficiency testing and other<br />

aspects of training. Laboratory Management was similarly interviewed.<br />

The results from both sets of interviews were then compared for consistency<br />

in order to gauge the communications flow in the Laboratory<br />

(bottom-up and top-down), overall morale, and the strengths and weaknesses<br />

in management policies. An examination of evidence storage and<br />

security, the most stringently enforced criteria, was conducted by one of<br />

the inspectors. The focus was the sealing, marking and labeling of evidence,<br />

and the physical security of the building.<br />

The CIL passed 105 of the 109 criteria. The inspection team indicated<br />

that the four non-compliant criteria were those most often scored<br />

as deficient during initial inspections. Of the four criteria designated as<br />

non-compliant, two were essential and two were important. Our overall<br />

criteria scores were: Essential (E): 44/46 X 100 = 95.65%; Important<br />

(I): 41/43 X 100 = 95.35%; Desirable (D): 20/20 X 100 = 100%.<br />

The two deficient essential criteria resulted in a 90-day remediation<br />

period. The first criterion, marking all evidence with a case number for<br />

identification, was deficient since the CIL did not normally mark biological<br />

evidence. The other deficient criterion, involved the definition<br />

and marking of analytical notes, too many of which were not up to<br />

ASCLD-LAB or CIL standards. After the inspection team accepted the<br />

remediation plan, a 90-day compliance period ensued. On June 30, 2003,<br />

a remediation report, largely containing copies of analytical notes and<br />

photographs of marked evidence documenting our compliance of deficient<br />

essential criteria, was forwarded to the original ASCLD-LAB<br />

inspection team. The team reviewed and approved the report, and<br />

recommended accreditation 2003, which was formally granted in<br />

August 2003.<br />

Central Identification Laboratory, ASCLD-LAB, Accreditation<br />

H91 Outside Traditional Skeletal Casework:<br />

A Forensic Anthropologist in a <strong>Medical</strong><br />

Examiner’s Office<br />

Tom E. Bodkin, MA*, Hamilton County <strong>Medical</strong> Examiner Office,<br />

3202 Amnicola Highway, Chattanooga, TN 37409<br />

After attending this presentation, attendees will have a new understanding<br />

of the duties and responsibilities of a forensic anthropologist<br />

employed outside traditional skeletal casework.<br />

An appreciation for the many ways an anthropologist can function<br />

in the medical examiner office environment, and a revitalization of the<br />

importance of case reports in forensic anthropology.<br />

This presentation will relate the author’s personal experience as a<br />

forensic anthropologist employed in a county government medical<br />

examiner office. It is hoped that this presentation will increase<br />

awareness that non-academic opportunities exist for those with forensic<br />

anthropology training. The roles and responsibilities of the author in the<br />

medical examiner office draw on all an anthropologist’s skills, not only<br />

knowledge of human osteology, but also sociocultural and archaeological<br />

skills. The author’s responsibilities that will be discussed<br />

include:<br />

• Assisting the forensic pathologist at autopsy<br />

• Managing the morgue and supplies<br />

• Coordinating histology and toxicology laboratories<br />

• Taking post-mortem x-rays<br />

• Scene and morgue photography<br />

• Computer maintenance and database management<br />

• Processing of evidence<br />

• Maintaining the bloodborne pathogen exposure control<br />

plan (OSHA)<br />

• Coordinating scientific donations and managing a comparative<br />

skeletal collection<br />

• Participating as an on-call death investigator<br />

• Non-skeletal crime scene processing and investigation<br />

• Meeting with families, law enforcement officers, and attorneys<br />

• Delivering lectures to civic organizations, schools and universities,<br />

and law enforcement training academies<br />

• Clerical duties (e.g., preparation of death certificates)<br />

• Providing forensic anthropology consultations and reports.<br />

These consultations range from skeletal scene recovery with<br />

full-length reports to one-page diagrams or reports produced<br />

in the morgue at autopsy.<br />

The largest contribution of the author is in the morgue, where<br />

verbal opinions regarding trauma and post-mortem interval can be given<br />

on-the-spot to the medical examiner.<br />

The author feels there is a common perception in the discipline that<br />

“research presentations“ have become more preferred than “case<br />

reports.” This implies that a distinction exists between research forensic<br />

anthropology and applied forensic anthropology. When a distinction can<br />

be drawn between application and research, a feedback loop can be set<br />

up to compliment both. This loop consists of applied forensic anthropologists<br />

in medical examiner offices that generate research questions, and<br />

research forensic anthropologists that provide the tools for applied<br />

anthropologists to do their work. The future health of forensic anthropology<br />

will require constant and open lines of communication in this<br />

loop. This communication is mediated by the “case report” in various<br />

journals and/or conferences. Our discipline should work to rid itself of<br />

the idea that little can be learned case studies.<br />

Most of the author’s daily responsibilities were not part of the “traditional”<br />

forensic anthropology graduate training, but rather were<br />

learned on-the-job. Few forensic anthropologists have an opportunity to<br />

work on a daily basis with forensic pathologists. Although the training<br />

the author received in graduate school laid a solid foundation for<br />

working in a medical examiner office, it is proposed that forensic anthropology<br />

graduate programs expand their curricula to prepare students for<br />

careers outside traditional academic research. A curriculum designed to<br />

prepare one for work in a medical examiner office should include<br />

courses such as:<br />

• Grief counseling<br />

• Sociological aspects of crime<br />

• Epidemiology and public health<br />

• Evidence handling and curation<br />

• Computer technology and database management<br />

• Website authoring<br />

• Legal processes and post-mortem laws<br />

• Non-skeletal crime scene processing and medical<br />

history investigation<br />

• Bloodborne pathogen/OSHA plan authoring<br />

• Funeral home industry information<br />

• Public and professional speaking instruction<br />

519 * Presenting Author


Forensic anthropologists in the new millennium can offer more than<br />

osteological analysis to medical examiner offices. We are best suited to<br />

work within this type of system because of our holistic and comparative<br />

training.<br />

Forensic Anthropology, <strong>Medical</strong> Examiner Offices, Forensic<br />

Training Programs<br />

H92 <strong>Forensics</strong> and Television: A Learning<br />

Experience or Beguiling Obsession?<br />

Ellen R. Salter-Pedersen, BA, BSc*, Department of Geography and<br />

Anthropology, 227 Howe-Russell, Louisiana State University, Baton<br />

Rouge, LA 70803<br />

This paper will examine how the recent influx of television programs<br />

with forensic science themes is changing the public awareness of<br />

the field.<br />

This paper explores the recent increase in the popularity of forensic<br />

science on television. It will present the issues associated with the presentation<br />

of the field in the media, as well as a survey of a study group<br />

and their perceptions of the forensic science television programs.<br />

On an average day in the Baton Rouge, Louisiana viewing area,<br />

approximately 45 hours of television programs with crime or law<br />

enforcement themes are broadcast on 26 channels. Some stations, such<br />

as Court TV, are almost entirely devoted to the subject. The programs<br />

range in reality from the fictional Crossing Jordan and CSI to those<br />

based on real cases such as the New Detectives and Forensic Files. CSI<br />

is currently one of the most watched drama programs on television with<br />

more than 8 million viewers per week. The new programs differ from<br />

the detective programs of the 1970s and 1980s such as Dragnet and Hill<br />

Street Blues in that forensic science has now become a major component<br />

of the programs. On programs such as CSI, The New Detectives and the<br />

Forensic Files, forensic science is the focus and often more details are<br />

revealed about the victims than the characters or individuals who investigate<br />

the crimes.<br />

While the programs incorporate real science, liberties are often<br />

taken. The most common is a compression of time. Scientific tests and<br />

results may be simplified for the viewers. On the fictional programs,<br />

often the detectives may act upon their hunches or visions. Laws may<br />

be disregarded for the sake of the plot and the cameras. Finally, the<br />

limited number of characters are put in a variety of settings resulting in<br />

their being well versed in many different aspects of forensic science. It<br />

is not uncommon to see the same individual who examines blood spatter<br />

also examining a body or even interviewing suspects.<br />

The increased interest in forensic science is in part the result of television.<br />

Major events in the past decade have focused on forensic science.<br />

The O.J. Simpson trial, the Bill Clinton and Monica Lewinsky scandal,<br />

and the terrorist attacks of September 11, 2001, were perhaps the three<br />

most widely chronicled of these events. In all three of the events, forensic<br />

techniques, particularly the use of DNA, were reported on regularly.<br />

The popularity of television programs based on forensic science<br />

may be met with mixed feelings among those in forensic science fields.<br />

Questions to be considered include whether or not too many details are<br />

being revealed and what the effects of programs that take liberties with<br />

real scientific techniques are. Do these programs have the potential to<br />

create a new kind of criminal who can anticipate the investigation and<br />

prevent or contaminate evidence? Will individuals who watch these programs<br />

feel a greater competence and knowledge than they really possess<br />

and seek careers in forensic science or even attempt to be involved in a<br />

crime scene without the proper training?<br />

A survey of university students enrolled in an introductory level<br />

anthropology class at Louisiana State University suggests that these programs<br />

are popular among this group. The students did not believe that<br />

the programs were completely accurate but a significant portion felt that<br />

the programs were ‘somewhat realistic.’ The majority of the students<br />

* Presenting Author<br />

thought that they had a good understanding of the field of forensic<br />

science and that watching the programs had changed their perception of<br />

forensic science.<br />

The popularity of these programs as evidenced by the survey of university<br />

students and the Nielsen ratings, suggests that the interest in<br />

forensic science and crime programs has become a noteworthy and<br />

influential part of popular culture, at least for the present. The use of<br />

consultants on many of the programs, both fictional and based on reality,<br />

gives the viewers the feeling of authenticity. But, as television<br />

executives bring more forensic science-based programs to the public,<br />

more liberties with the actual science may be taken to maintain the<br />

interest of the viewers. The end result may be programs that appear<br />

authoritative giving viewers a distorted picture of the forensic science<br />

profession.<br />

Television, <strong>Forensics</strong> and the Public, Changing Perceptions<br />

H93 Estimation of Living Body Weight<br />

Using Measurements of Anterior<br />

Iliac Spine Breadth and Stature<br />

Jaime A. Suskewicz, BA*, Louisiana State University, 2000 Brightside<br />

Drive, #722, Baton Rouge, LA 70820<br />

After attending this presentation, participants will understand the<br />

utility of anterior superior iliac spine (ASIS) breadth and stature measurements<br />

in predicting living body weight from skeletal remains.<br />

This presentation will offer a technique that may facilitate accurate<br />

weight prediction in cases of missing or unidentified decedents. Body<br />

weight information may serve to enhance search criteria and present a<br />

more accurate biological profile.<br />

The purpose of this study is to assess the utility of bi-iliac breadth<br />

and stature measurements in weight estimation. The focus of the project<br />

is on predicting living body weight of deceased individuals from a<br />

skeletal sample of modern Americans.<br />

The primary objective of the forensic anthropologist is to provide<br />

information useful in obtaining positive identifications of deceased<br />

persons. Standard identification criteria for creating a decedent’s biological<br />

profile include ancestry, sex, age, and stature, but not body<br />

weight. The inclusion of body weight in the biological profile could<br />

introduce an additional component to the identification criteria and may<br />

serve to augment a search image.<br />

Several attributes of body weight, however, may depreciate its use<br />

as a profile characteristic. For example, body weight information is often<br />

underreported and may only be reliable from limited records, such as<br />

medical documents. Body weight is also subject to drastic fluctuation in<br />

short periods of time. In addition, obesity and malnutrition may be<br />

factors lending to inconsistent prediction results.<br />

Despite these apparent shortcomings body weight is nevertheless<br />

an undeniable aspect of a decedent’s identity. The forensic anthropologist<br />

must take care to maximize the available information so that the<br />

chances of identification are increased. Body weight information may<br />

not only assist in creating a more complete biological profile but may<br />

also provide insight into other forensic considerations such as body<br />

transport, body disposal, and other taphonomic processes (Stubblefield,<br />

2003). What occurs during the postmortem interval may be strictly<br />

dependent on the body mass of the decedent.<br />

Few studies pertaining to body weight prediction of modern<br />

humans have been carried out. In fact, most literature relevant to the prediction<br />

of body weight from skeletal remains is concerned with reconstructing<br />

hominid biology. Many paleoanthropological studies involve<br />

comparative analyses between modern human and primate remains and<br />

the fossilized bones of early humans. Research on the issue of body<br />

mass has generated prediction techniques based on both cranial and<br />

postcranial measurements. The results of paleoanthropological<br />

endeavors have provided us with a few viable options regarding tech-<br />

520


niques for estimating body weight in modern humans.<br />

This study is comparable to earlier methods established by Ruff<br />

(2000) in the estimation of body weight based on measurements of biiliac<br />

breadth and stature. Ruff’s goals were to examine the feasibility of<br />

predicting hominid body mass with the use of multiple regression equations.<br />

The body mass estimation equations were derived from 56<br />

sex/population-specific sample means broadly representative of the<br />

world’s living populations. However, Ruff’s data were collected from<br />

literature sources dating from 1951 to 1989 and did not include any<br />

modern American samples. In order to test the accuracy of the equations,<br />

Ruff applied the technique to two very different modern human samples.<br />

Included in the sample were New Guinean Karkar Islanders and a group<br />

of U.S. Marine Recruits, all of which were young adults. Ruff’s results<br />

indicated that body weight of modern individuals could be estimated<br />

with reasonable accuracy in cases of known stature and bi-iliac breadth.<br />

For the purposes of hominid body mass estimation, Ruff also<br />

applies the equations to a sample of Olympic athletes. Ruff bases this<br />

rationale on the likelihood that extreme athletes may have a body type<br />

more representative of the degree of physical conditioning characteristic<br />

of earlier populations. Results revealed only an average 3% prediction<br />

error, indicating the body mass equations may be useful in estimating the<br />

weight of early hominids.<br />

Although Ruff’s results indicate low prediction error when stature<br />

is known, the technique may also be useful in situations of estimated<br />

stature, as is usually the case in forensic situations. The potential of<br />

Ruff’s equations for great accuracy makes it worthwhile to test a similar<br />

method to on a modern American population of average fitness and<br />

various ages. In this study ASIS breadth was substituted for bi-iliac<br />

breadth because the relationship between the two measurements in proportion<br />

to overall body breadth is not significantly different, and ASIS<br />

breadth is easily located and measured in both skeletal remains and<br />

living humans. The ASIS technique may serve to facilitate weight estimation<br />

when sacrum, both pelves, and at least one long bone are present<br />

for an individual.<br />

All data for this project were collected using the William K. Bass<br />

Donated Collection at the University of Tennessee, Knoxville. Various<br />

measurements were performed on skeletal material from 92 individuals.<br />

The individuals chosen for measurement were those in the collection<br />

with weight and stature records. The sample consisted of 2 black<br />

females, 13 black males, 15 white females, and 62 white males. The age<br />

range was between 25 and 84, with 60% over the age of 50. Information<br />

obtained from all subjects included age, weight, height, race, sex, ASIS<br />

breadth, and maximum lengths of the humerus, tibia, and femur. The<br />

sacrum and pelves were rearticulated with the use of a large rubber band<br />

so that ASIS breadth could be assessed. All ASIS measurements were<br />

taken with spreading calipers to the nearest 0.1 cm. Humeral, tibial, and<br />

femoral lengths were established with the use of an osteometric board to<br />

the nearest 0.1 cm. Stature calculations were performed for each individual<br />

using standard formula based on maximum long bone length<br />

(Buikstra and Ubelaker, 1994). Although stature was known for all<br />

cases, the process of height calculation was necessary in order to<br />

determine the usefulness of body weight equations in forensic circumstances.<br />

Stature estimations and ASIS breadth were then inserted into<br />

regression equations for estimation of body weight.<br />

The preliminary results of this study are not comparable to Ruff’s<br />

results. Percent prediction error exhibits a value too high to be considered<br />

useful in forensic investigations. Several explanations for these<br />

results are possible. The inclusion of estimated stature as opposed to<br />

actual stature in the equations decreased prediction accuracy. Certain<br />

attributes of the Bass collection may have contributed a high prediction<br />

error as well, such as questionable weight records, the ages of the<br />

deceased, and the under-representation of women and African<br />

Americans in the collection. Additional data on younger adults and<br />

equally represented racial typologies are needed in order to more accu-<br />

rately formulate such equations.<br />

1Buikstra JE and Ubelaker DH, editors. Standards: For Data Collection<br />

From Human Skeletal Remains. ayetteville, Arkansas: Arkansas<br />

Archaeological Survey, 1994.<br />

2Ruff CB. Body Mass Prediction From Skeletal Frame Size in Elite<br />

Athletes. American Journal of Physical Anthropology, 2000 (113):507-<br />

517.<br />

3Stubblefield PR. Body Weight Estimation in Forensic Anthropology<br />

(abstract). American Academy of Forensic Sciences Annual Meeting<br />

Abstract Handbook. #H2: 262-263. Chicago, Illinois. February, 2003.<br />

Forensic Anthropology, Weight Estimation, Bi-iliac Breadth<br />

H94 Preliminary Observations of<br />

Vertebral Centra Retraction<br />

and Its Relationship to Age<br />

A. Midori Albert, BS, MA, PhD*, Anthropology Program, University of<br />

North Carolina at Wilmington, 601 South College Road, Wilmington,<br />

NC 28403-5907<br />

After attending this presentation, attendees will a understand the<br />

degenerative process of vertebral centra retraction, first described by<br />

Drukier et al. (2003), and how it relates to aging as well as its consideration<br />

for use in age estimation, particularly if key skeletal age markers<br />

such as pubic symphyses and or sternal ends of right fourth ribs are<br />

absent or damaged.<br />

This presentation will impact the forensic community by sharing<br />

preliminary findings and reporting on the continued development of a<br />

new age estimation for unknown skeletons<br />

The goal of this beginning study was to explore the relationship<br />

between a recently observed degenerative phenomenon of the vertebral<br />

centra with age at death from a known sample for purposes of assessing<br />

the efficacy of its future use as an age estimation method for unknown<br />

skeletons.<br />

Specifically, the degenerative phenomenon, first described by<br />

Drukier et al. (2003) as a “sucking in” of the superior and inferior vertebral<br />

centra, occurs in adults after vertebral centra maturation is complete<br />

(i.e., after epiphyses of the superior and inferior vertebral centra—<br />

the “ring” epiphyses—are fully fused to the centra). The “sucking in”<br />

occurrence takes place when the central portion of the surface of the vertebral<br />

body begins to pull away or retract from the perimeter, where what<br />

was once the vertebral ring epiphysis has fused to the centrum, and sinks<br />

inferiorly, leaving a “sucked in,” concave appearance that we refer to as<br />

“retraction.” Drukier et al. (2003) have hypothesized a possible link<br />

between vertebral centra retraction and age at death, based on observations<br />

and skeletal analyses of decedents from recently exhumed mass<br />

graves in Europe.<br />

To test Drukier et al.’s (2003) hypothesis, the retraction phenomenon<br />

and its relationship to known age at death was studied using a<br />

sample from the Robert J. Terry Skeletal Collection, housed at the<br />

Smithsonian Institution in Washington, DC. Superior and inferior centra<br />

of the thoracic vertebrae (T1-T12) and the first two lumbar vertebrae<br />

(L1-L2) of 63 known individuals (16 black females, 9 white females, 19<br />

black males, 19 white males), ranging in age at death from 23 years to<br />

78 years, were examined.<br />

Gross morphological observations of vertebral centra retraction<br />

were documented using a newly developed numerical scoring system<br />

based on progressive stages of retraction observed. Stages of retraction<br />

were coded as 4, 5, 6 or 7 for each centrum, inferior and superior, of each<br />

vertebra used in the study—T1 through T12, L1 and L2. Stage 4 was the<br />

least retracted, whereas Stage 7 was the most retracted. Stages of<br />

retraction were designated as 4 through 7 to represent that this process<br />

occurs after epiphyseal union of the superior and inferior centra is complete<br />

(Stages 0-3, according to the Albert and Maples method, 1995).<br />

521 * Presenting Author


Thus, similar numbers for the stages between the two methods (i.e., 0-3<br />

for both epiphyseal union and retraction) would not be confused<br />

between the two differing processes—one a maturation process (epiphyseal<br />

union), the other a degenerative process (retraction).<br />

Descriptions of vertebral centra retraction in Stages 4 through 7 are<br />

as follows: Vertebral centra showing no retraction or a slight, beginning<br />

depression or concavity in the center of the centrum, with no separation<br />

along the perimeter, were designated as Stage 4. Stage 5 comprised<br />

either of two scenarios: 1) slight to moderate depression or concavity in<br />

the center of the centrum, or 2) retraction occurring along the perimeter<br />

of the centrum, or along the anterior border where what was once the<br />

epiphyseal ring separated or retreated from the centrum, where the<br />

centrum was depressed at these loci. In this case, the center of the<br />

centrum appeared slightly convex relative to the periphery of the<br />

centrum. Retraction in Stage 6 was moderate to advanced, occurring<br />

both at the center of the centrum radiating outward, as well as along a<br />

greater area of the perimeter of the centrum, where what was once the<br />

epiphysis was further separated (retracted) from the centrum along the<br />

anterior, lateral, and posteriolateral borders (with the posterior aspect of<br />

the perimeter of the centrum the last to retract, during Stage 7.<br />

Separation or retraction during this stage encompassed a greater surface<br />

area of the centrum, which was sunken in. The perimeter of the area<br />

retracted sloped inward, declining slightly, forming somewhat of a “V”<br />

shape. In the last stage, Stage 7, vertebral centra retraction was<br />

advanced, appearing noticeably more depressed or concave than in previous<br />

stages. The perimeter of the area retracted no longer sloped inward<br />

at an angle (“V”shape); rather, there was a vertical drop along the entire<br />

perimeter of the centrum (i.e., anterior, lateral, posteriolateral, and posterior<br />

aspects), forming somewhat of a “U” shape. Retraction was<br />

extensive over the surface of the centrum, where the centrum was clearly<br />

concave relative to the perimeter, which appeared to “wall in” or “rim”<br />

the central portion of the centrum. How these stages best relate to<br />

chronological age will be discussed.<br />

Gross observation results of vertebral centra retraction revealed a<br />

distinct and predictable pattern in its progression as related to increasing<br />

age. Retraction along the perimeter of the centrum begins posteriolaterally<br />

and progresses anteriorly, with the posterior aspect the last portion<br />

to retract. Further, the centra of the middle thoracic (T5-T8) and the first<br />

two lumbar vertebrae (L1-L2) frequently showed more advanced<br />

retraction than the centra of the superior (T1-T4) and inferior (T9-T12)<br />

thoracic vertebrae.<br />

Quantitative analyses involved calculating a mean value for vertebral<br />

centra retraction for each individual in the sample, which represented<br />

the overall extent of the retraction phenomena for each person.<br />

Results of preliminary statistical analyses showed no significant correlation<br />

between overall mean retraction values and age. There were no<br />

statistically significant differences between overall mean retraction<br />

values of the superior vertebral centra when compared to the inferior<br />

vertebral centra. Mean values for vertebral centra retraction were also<br />

calculated separately for superior thoracic vertebrae (T1-T4), middle<br />

thoracic and first two lumbar vertebrae (T5-T8, L1-L2), and inferior thoracic<br />

vertebrae (T9-T12); these values showed no statistically significant<br />

correlation with age. When the data were analyzed separately by sex and<br />

ancestry, however, some interesting findings emerged. F-tests for the<br />

variance between the superior thoracic, middle thoracic and lumbar, and<br />

inferior thoracic vertebral centra retraction mean values showed that the<br />

superior thoracic retraction mean values differed significantly from the<br />

inferior thoracic retraction mean values (p


denote open (0), beginning (1), active (2), recent (3), and complete union<br />

(4), following the method described by McKern and Stewart.<br />

Epiphyseal closures that were difficult to observe after eight years of<br />

taphonomic changes, such as the medial border and inferior angle of the<br />

scapula, and the transverse and spinous processes of the vertebrae, were<br />

not recorded. Age data were obtained once a DNA match was made and<br />

the identification completed.<br />

Of 72 cases collected, results suggest that a majority of the epiphysis<br />

are completely fused two years earlier in the Bosnian population<br />

than those Americans killed in the Korean War as observed by McKern<br />

and Stewart. From these results, it would appear that the Srebrenica<br />

youth are maturing at an accelerated rate as compared to the American<br />

youth and that the age ranges offered by McKern and Stewart can be narrowed<br />

to address the growth rates of this population.<br />

Epiphyseal Closures, Aging, Sub-Adults<br />

H96 An Evaluation of the Greulich and Pyle<br />

Skeletal Aging Standards for the Hand<br />

and Wrist in a Contemporary Multiethnic<br />

Population<br />

Susan M.T. Myster, PhD, Hamline University, MB 196, 1536 Hewitt<br />

Avenue, St. Paul, MN 55104; Sarah E. Nathan, BA*, Department of<br />

Forensic Sciences, Nebraska Wesleyan University, Lincoln, NE 68503<br />

The objectives of this pilot study are two-fold: 1) to evaluate the<br />

accuracy of the Greulich and Pyle (1959) hand and wrist development<br />

standards when used to estimate the age of subadult individuals of<br />

diverse ethnic backgrounds and, 2) to measure the direction and magnitude<br />

of error in in different age and ethnic subgroups. Attendees will<br />

gain an awareness of the limitations of the Greulich and Pyle standards<br />

when applied as an age-determination technique and how to best utilize<br />

the existing standards when estimating the age of individuals from different<br />

ethnic backgrounds.<br />

The contribution of this research to the forensic community is the<br />

awareness of the magnitude and direction of error in applying the<br />

Greulich and Pyle standards for hand and wrist development when determining<br />

age-at-death for contemporary subadults of various ethnic and<br />

socioeconomic backgrounds and the need for further research to develop<br />

new standards for skeletal age assessment of the hand and wrist.<br />

Forensic Anthropologists apply age-determination techniques in a<br />

wide variety of contexts. They are frequently asked to provide age estimates<br />

for unidentified individuals, applicants seeking asylum in the<br />

United States, and to reconcile various records that report conflicting<br />

ages. The reliability of the techniques applied is, of course, of utmost<br />

importance and unreliable techniques can have significant consequences,<br />

including delaying identification of an unknown individual,<br />

denial of asylum, and an erroneous conclusion as to an individual’s<br />

probable age. The research presented here reports the results of a pilot<br />

study conducted to assess the accuracy of the Greulich and Pyle (1959)<br />

standards for the development of the hand and wrist when applied to a<br />

contemporary multiethnic sample of children from an urban medical<br />

examiner’s office.<br />

The impetus for the current research was a case involving legal documents<br />

that reported two different birth years for in individual accused<br />

of homicide. The county attorney’s office responsible for prosecuting the<br />

case requested an age-assessment in order to determine if the accused<br />

should be tried as an adult or juvenile. The individual was born outside<br />

of the United States and is of Southeast Asian descent. Given that the<br />

individual was still living, the age determination techniques applied<br />

were limited to an evaluation of dental development and eruption and<br />

epiphyseal union. Skeletal radiographs were taken of numerous sites of<br />

the skeleton. The skeletal development exhibited by the individual<br />

necessitated heavy reliance on the stage of development of the<br />

hand/wrist.<br />

A literature search conducted during the case indicated that the<br />

Greulich and Pyle (1959) standards of development were the most<br />

recently published standards for the hand and wrist. These standards<br />

were devised from a sample of radiographs from the Brush Foundation<br />

collection housed at Western Reserve University School of Medicine.<br />

This collection consists of a longitudinal sample of x-rays taken between<br />

1931 and 1942 of children from families described as “above average in<br />

economic and educational status.” The sample utilized by Greulich and<br />

Pyle is comprised of from two to 21 hand/wrist films of 1000 healthy,<br />

American-born “White” children, most of Northern European ancestry,<br />

from the Cleveland area of Ohio. The literature search also identified<br />

recently published articles that concluded the Greulich and Pyle standards<br />

of development might not be accurate for healthy individuals of<br />

non-White ethnic backgrounds.<br />

In order to assess the accuracy of the Greulich and Pyle hand/wrist<br />

standards of development in a contemporary multiethnic sample of individuals<br />

from varied socioeconomic backgrounds, the medical examiner<br />

case files of all children between the ages of birth and 19 years of age<br />

autopsied by the Hennepin County <strong>Medical</strong> Examiner’s Office between<br />

1974 and 2001 were reviewed. Case files containing recorded demographic<br />

data, including date of birth, date of death, sex, and ethnicity and<br />

the existence of x-rays of sufficient quality to reasonably assess<br />

hand/wrist development and the presence of Harris lines were selected<br />

for analysis. The research sample consists of 359 individuals, 231 males<br />

and 128 females. The sample is further subdivided into four ve age-categories<br />

(Early, Middle, Late Childhood, and Adolescence - per Loder et<br />

al. 1993) and six ethnic groups (American Indian, “Black,” Asian,<br />

Hispanic, “White,” and multiethnic). Country of birth and antemortem<br />

health status were not recorded in the case files. Following definition of<br />

the sample, each author evaluated the radiographs of each individual and<br />

assigned a skeletal age using the standards defined by Greulich and Pyle.<br />

Degree of agreement of the three observers was calculated and indicated<br />

only a moderate degree of agreement between the three observers<br />

reflecting, most likely, differences in level of experience. For this<br />

reason, differences between recorded chronological age and the estimated<br />

bone age of each observer were calculated. A Paired-Samples Ttest<br />

was performed to evaluate the null hypothesis that the mean difference<br />

between the chronological and skeletal ages was zero. Mean differences<br />

were compared between subgroups defined by sex, age, and<br />

ethnicity. Statistically significant differences between chronological and<br />

skeletal age exist for both males and females variously by age category<br />

and ethnicity. The results of our study support the need for the development<br />

of new standards for hand/wrist development to accurately<br />

assess the age of subadult individuals from a variety of ethnic backgrounds.<br />

Greulich WW, Pyle SI. Radiographic Atlas of Skeletal Development of<br />

the Hand and Wrist, 2nd ed. Stanford, CA: Stanford University Press,<br />

1959.<br />

Loder RT, Estle DT, Morrison K, Eggleston D, Fish DN, Greenfield ML,<br />

Guire KE. Applicability of the Greulich and Pyle skeletal age standards<br />

to black and white children of today. Amer J Diseases Children<br />

1993;147:1329-1333.<br />

Age Determination, Hand/Wrist Development, Accuracy<br />

523 * Presenting Author


Assessment<br />

H97 A Quantitative Study of Morphological<br />

Variation in the OS Coxa for the<br />

Purpose of Estimating Sex of<br />

Human Skeletal Remains<br />

Peer H. Moore-Jansen, PhD* and Amber Harrison, BA*, Department<br />

of Anthropology, Wichita State University, 114 Neff Hall, Wichita,<br />

KS 67260-0052<br />

After attending this presentation, attendees will understand skeletal<br />

variability and forensic anthropological application.<br />

This presentation will impact the forensic community by demonstrating<br />

the contribution of further data to the understanding of skeletal<br />

variation.<br />

The study of sexual dimorphism in the morphology of the os coxa<br />

has long been core of osteological analysis and essential to forensic<br />

anthropological investigation. Past research clearly documents the os<br />

coxa to be one of the most suited elements for the estimation of sex in<br />

human skeletal remains. Although not exclusively, previous studies have<br />

focused primarily on qualitative assessments of pelvic shape and few<br />

have proposed specific quantitative dimensions to substantiate observed<br />

qualitative patterns of variation. This study addresses past observations<br />

of size and shape variation in male and female pelvic morphology by<br />

documenting sexual dimorphism in the os coxa by the application of<br />

alternative measurements. The study also examines the possibility of<br />

further characterizing and testing shape variation in the os coxa.<br />

Twenty-two measurements were recorded on a calibration sample<br />

of 80 females and 80 males from the Robert J. Terry Osteological<br />

Collection housed at the Smithsonian Institution, Washington, D.C. The<br />

data represent members of varied group affiliations and ranging in age<br />

from 25 and 50 years. In addition to standard length and breadth dimensions,<br />

alternative measurements specifically developed to quantify qualitative<br />

observations include, among others, the sub pubic angle, size of<br />

the rami, shape of the obturator foramen, and dimensions of the auricular<br />

surface. Other measurements characterizing the pelvic basin shape and<br />

size are also recorded. All measurements were taken with standard<br />

equipment including spreading, coordinate and sliding calipers and an<br />

osteometric board.<br />

Summary statistics were generated for the purpose of univariate<br />

assessments and a stepwise discriminant procedure with a MAXR option<br />

was applied to the data to generate a multivariate assessment of the sex<br />

discriminating ability of the proposed recording protocol.<br />

The results derived from the calibration sample were applied to two<br />

independent test samples, including a separate sample of 20 males and<br />

20 females from the Terry collection and 18 males and 15 females from<br />

the WSU-BAL Cadaver Collection housed at Wichita State University<br />

<strong>Bio</strong>logical Anthropology Laboratory.<br />

The results of our study provides promising insight to quantifying<br />

sexual dimorphism in the os coxa and concludes that measurements can<br />

be applied to better characterize overall shape differences between the<br />

sexes which have previously been mostly limited qualitative assessments.<br />

We further conclude that traditional observations of sexual<br />

dimorphism in the os coxa, especially those commonly used in nonmetric<br />

assessments, are not be as distinct as sometimes expressed.<br />

Finally, the results presented here provide an added contribution to the<br />

estimation of sex in skeletal remains in both forensic and archaeological<br />

settings.<br />

Os Coxa, Sex Estimation, Skeletal Variation<br />

* Presenting Author<br />

H98 A Review of Age Estimation Using<br />

Rib Histology: Its Impact on<br />

Evidentiary Examination<br />

Christian M. Crowder, MA*, University of Toronto, 100 St. George<br />

Street, Toronto, Ontario M5S 3G3, Canada<br />

The goal of this research is to show that the forensic specialist must<br />

perform more rigorous scientific trials on new and existing methods,<br />

especially if the method is being used: 1) well outside of the reference<br />

sample, 2) on an element other than the one for which the method was<br />

developed, or 3) if the method has been altered on the premise of specialized<br />

knowledge that has not been adequately tested.<br />

The main impact of this research is to bring attention to assessing<br />

the precision and accuracy of methods that are being utilized by forensic<br />

specialists, particularly if those methods have been altered without<br />

further testing. Often, in the literature, the terms “precision” and<br />

“accuracy” are confused or entirely ignored. More rigorous testing must<br />

be performed before publishing new methods or they could run the risk<br />

of failing the Daubert or Mohan criterion when utilized in forensic<br />

casework.<br />

Research has shown that the use of rib histomorphometrics for the<br />

estimation of adult age at death can provide precise and accurate age<br />

estimates. Current methods require histological thin sections from the<br />

middle third of the sixth rib. Human ribs have thin cortices and are less<br />

resilient to destructive taphonomic processes than other skeletal elements.<br />

Therefore when human remains are recovered, the ribs are often<br />

severely damaged or absent. In these circumstances it may be difficult or<br />

impossible to identify a specific mid-thoracic rib. If the sixth rib is<br />

unavailable or cannot be positively identified, closely associated midthoracic<br />

ribs (namely the 5th and 7th) or a suspected sixth rib are often<br />

deemed adequate for use due to similarities reported in bone remodeling<br />

kinetics. The affect that slight remodeling deviations have on histologically<br />

derived age estimates has not been reported. The goal of this<br />

research is to record the amount of variation in osteon population densities<br />

of the middle third of the mid-thoracic ribs and determine if age<br />

prediction equations developed for the sixth rib can be applied to nonsixth<br />

ribs with similar reliability. The potential rate of error must be<br />

explored in order to meet the Daubert and Mohan criterion, which established<br />

general guidelines for admissibility of scientific evidence in U.S.<br />

and Canadian courts.<br />

The sample consists of ribs taken from twenty cadavers (eleven<br />

males and nine females) from two university teaching facilities in<br />

Ontario. Ages range from 59 to 89 years. Thin sections were removed<br />

from the middle third of ribs three through eight. A total of 120 thin sections<br />

were analyzed and osteon population densities (OPD) calculated.<br />

Results show that osteon population density values for ribs three, four,<br />

seven, and eight were consistently below the OPD values of the sixth<br />

ribs indicating that the sixth rib may possess a different remodeling environment.<br />

Intra and interperson results indicate that the eighth rib is the<br />

most variable of the non-sixth ribs. The large variance demonstrated in<br />

some of the intraperson OPDs indicates that remodeling may be<br />

occurring at different rates between ribs of the same person. The difference<br />

between values may not appear to be significant until they are<br />

figured into the age prediction equations.<br />

Overall, all the non-sixth ribs produced significant correlations with<br />

the sixth rib OPD values. This was expected considering that previous<br />

research has demonstrated that rib tissue is less biomechanically active,<br />

and has minimal variability in bone remodeling. However, regardless of<br />

524


which non-sixth rib is used intraperson OPD values may vary sufficient<br />

that age estimates would be significantly different than those from the<br />

sixth ribs. Factor analysis and regression analysis indicate that ribs five<br />

and seven are better predictors of the sixth rib OPD values than ribs<br />

three, four, and eight and therefore should be used if the sixth rib is<br />

unavailable. Due to differential OPD values within the ribcage, error<br />

ranges developed from this research for non-sixth rib OPD values should<br />

be used when the sixth rib is unavailable or unidentifiable.<br />

Because of the guidelines established from the United States<br />

Supreme Court in Daubert v. Merill-Dow Pharmaceuticals, 113 S.Ct.<br />

2786 (1993), and from the Canadian courts in R. v. Mohan, 89 C.C.C.<br />

(3d) 402 (1994), and in the wake of the United States v. Plaza, Criminal<br />

NO. 98-362 (2002), methods utilized or altered by forensic anthropologists<br />

may soon be challenged. The forensic specialist must perform more<br />

rigorous scientific trials on new and existing methods in order to meet<br />

the Daubert and Mohan standards.<br />

Histomorphometry, Osteon, Daubert<br />

H99 Distinguishing Between Human and<br />

Non-Human Secondary Osteons in Ribs<br />

Elizabeth J. Whitman, MA*, 1044 Eugenia Drive, Mason, MI 48854<br />

After attending this presentation, attendees will understand new criteria<br />

helpful in distinguishing human from non-human bone.<br />

This presentation will impact the forensic community by presenting<br />

new criteria for distinguishing human from non-human bone in cases<br />

where only minute quantities of bone are available. It also demonstrates<br />

a need for more research on the histomorphology of non-weight bearing<br />

bones in a wider range of species.<br />

This paper will present rib histomorphology research being conducted<br />

at the Michigan State University Forensic Anthropology<br />

Laboratory. One of the first questions a forensic anthropologist answers<br />

is whether a bone is human or non-human. Under normal circumstances,<br />

this can be done using gross morphological features. However, this task<br />

becomes more difficult when the bone samples are extremely small or<br />

fragmentary. In this case, microscopic examination of the histomorphology<br />

of the bone tissue may be necessary. Most human compact bone<br />

is characterized by cylindrical structures known as primary and secondary<br />

osteons. Non-human bone has other distinctive arrangements of<br />

bone tissue not commonly found in humans. For example, plexiform<br />

bone has a regular “brick wall” appearance that may be briefly seen in<br />

human fetal bone tissue, but is commonly found in weight-bearing bones<br />

of non-humans. Histological arrangement of bone tissue is not consistent.<br />

It varies within the same bone, between bones of the same individual,<br />

and between individuals of the same species. In addition, the distinctive<br />

non-human forms of bone are all primary in nature; as bone<br />

remodels it can be replaced with secondary osteonal bone. As a result,<br />

while the presence of plexiform bone, for example, can be used to<br />

classify a bone as non-human, the presence of only osteonal bone does<br />

not mean that the bone is human. How do we tell human osteons from<br />

non-human osteons? Past research has primarily examined this question<br />

using weight-bearing bones such as femora. However, this study<br />

examines rib histomorphology since secondary osteons have been documented<br />

in this non-weight bearing bone in a much wider range of nonhuman<br />

species than in femora.<br />

Rib samples of adult humans (n=10), adult dogs (n=10), beef cattle<br />

(n=10), and bear (n=1) were obtained for this study. These samples were<br />

cleaned, dried, and then thin-sectioned using a diamond blade saw. Each<br />

sample was then mounted and examined under a stereomicroscope. The<br />

images were digitally captured and measured using SigmaScan software.<br />

Secondary osteons were found in the canine, bovine, and ursine<br />

samples as well as in the human samples. Measurements of the diameters<br />

of the osteons found that humans, cows, and bear were not reliably<br />

distinguishable based on the size of the osteons. However, the sizes of<br />

the secondary osteons in dogs were significantly smaller compared to<br />

that of humans. The size of the central, or Haversian, canal proved more<br />

useful. Both cows and dogs had significantly smaller Haversian canals<br />

compared to humans. The central canal was also smaller in the bear rib,<br />

but not significantly. Osteonal banding was also observed in most of the<br />

bovine samples and a few of the canine samples. These bands were<br />

found between plexiform bone and less organized arrangements of secondary<br />

osteons. This suggests that osteonal banding may be a transitional<br />

developmental feature, with the bands developing as secondary<br />

osteons replace the organized plexiform tissue.<br />

Anthropology, Bone Histology, Osteons<br />

H100 Species Identification of Small<br />

Skeletal Fragments Using Protein<br />

Radioimmunoassay (pRIA)<br />

Douglas H. Ubelaker, PhD*, Smithsonian Institution, Department of<br />

Anthropology, NMNH, MRC 112, Washington, DC 20560; Jerold M.<br />

Lowenstein, MD, California Pacific <strong>Medical</strong> Center, 2333 Buchanan<br />

Street, San Francisco, CA 94115; Darden G. Hood, BS,<br />

MicroAnalytica, LLC, 4989 SW 74 Court, Miami, FL 33155<br />

This presentation will demonstrate how protein radioimmunoassay<br />

can be utilized in the forensic analysis of small skeletal fragments to distinguish<br />

human from non-human animal and determine non-human<br />

animal species.<br />

This presentation will make the forensic community aware how<br />

protein radioimmunoassay (pRIA) can be used in the analysis of small<br />

bone fragments to identify human vs. non-human origin and animal<br />

species.<br />

With increased awareness of the potential for positive identification<br />

through molecular analysis of skeletal remains, fragmentary evidence is<br />

frequently submitted for forensic examination. Prior to DNA analysis it<br />

is usually desirable to determine if remains are of human origin and if<br />

not, on occasion, to determine the species represented. When specimens<br />

are too small or taphonomically compromised for conventional morphological<br />

diagnosis, investigators can use SEM/EDS to help determine if<br />

bone and/or tooth is represented. Histological examination may reveal<br />

a distinct non-human pattern but usually is not diagnostic for human<br />

since the human histological pattern is shared with some non-human<br />

animals. In addition, preparation of histological sections may preclude<br />

DNA analysis in cases involving very small particles. In such cases,<br />

protein radioimmunoassay can be utilized to distinguish human from<br />

non-human animal and to identify the species. In addition to identification<br />

of modern, well-preserved specimens, pRIA has been shown to<br />

make correct determinations on cremated specimens and on archaeological<br />

specimens as ancient as 11,000 years.<br />

Analysis by pRIA consists of three phases: extraction of sample<br />

bone material from the specimen, isolation of the protein, and pRIA to<br />

identify species.<br />

Extraction of the sample material consists first of removing and discarding<br />

the outer one-two mm of the surfaces to remove any significant<br />

external protein contamination.<br />

Protein is isolated by placing 20-200 mg of bone matter into a 10<br />

ml vaccutainer and capping it. A syringe is then utilized to first add a<br />

solution of 1M EDTA and then to create a partial vacuum within the vaccutainer.<br />

Subsequently, the solution is gently shaken and rotated for two<br />

to five days at room temperature to dissolve the bone.<br />

The pRIA species identification is obtained using solid phase<br />

double antibody radioimmunoassay. The EDTA protein extract is placed<br />

in polystyrene microtiter plates to allow the protein to bind to the plate<br />

(thus in a “solid phase”). Various samples of antisera (raised in rabbits)<br />

of albumins or sera of various species are then added to the wells con-<br />

525 * Presenting Author


taining the extracted solid phase protein (antigen), allowing the antibody<br />

to bind to the antigen. After cleansing, radioactive (iodine-125) antibody<br />

of rabbit gamma globulin (produced in donkeys) is added and radioactivity<br />

of the wells is quantified in a scintillation counter. Species is<br />

determined through evaluation of the measure of radioactivity uptake<br />

which represents the extent of binding of species specific antisera.<br />

As a demonstration of the applicability of this technique, six bone<br />

samples were submitted for blind analysis. Each weighed less than 1.8<br />

grams and was too small for morphological determination of species.<br />

Three of these samples had been removed from known human remains<br />

and three from known non-human animal bones. In addition, one of the<br />

non-human specimens was known to represented a deer (Odocoileus virginianus).<br />

pRIA analysis correctly differentiated the human from nonhuman<br />

samples and correctly identified the known deer sample, given<br />

the choice of five possible non-human animals (cow, deer, dog, goat and<br />

pig) using 200 mg or less of each specimen.<br />

pRIA, Bone Fragments, Species Identification<br />

H101 Developing the “Isotope Fingerprint”<br />

in Human Skeletal Remains<br />

Benjamin Swift, MB, ChB*, and Guy N. Rutty, MD, Division of<br />

Forensic Pathology, University of Leicester, Robert Kilpatrick Clinical<br />

Sciences Building, Leicester Royal Infirmary, Leicester LE2 7LX,<br />

United Kingdom; Richard Harrington, PhD, International Commission<br />

on Missing Persons, Alipasina 45a, 71000 Sarajevo, Bosnia and<br />

Herzegovina<br />

After attending this presentation, attendees will have an increased<br />

knowledge of the potential for isotope based analysis of human skeletal<br />

remains, which will assist in the identification of the post-mortem<br />

interval, and may further provide information which will suggest<br />

country, or region, of origin of the deceased, and even age estimations at<br />

death.<br />

The authors consider that the analytic method will be of great<br />

benefit in investigations, providing information that will assist in identifying<br />

an individual, and provide additional information that, until now,<br />

had not been available to those examining skeletal remains.<br />

With increased global transportation and movement of individuals,<br />

notably those gaining entry illegally into countries, any such method that<br />

can aid in identifying a deceased based upon isotope concentrations<br />

would be of great importance.<br />

Forensic pathologists are often requested to examine remains that<br />

have been unearthed during excavations and building developments,<br />

particularly in light of the publicity surrounding recent criminal cases.<br />

Once it has been established that the remains are indeed human the<br />

question of period of internment arises. Despite the extensive literature<br />

published upon this subject it remains notoriously difficult to quantify<br />

with the majority of cases relying heavily upon the “experience” of the<br />

investigating pathologist.Whether such experience yields correct<br />

answers is questionable; corroborating evidence is often absent and<br />

therefore the pathologist is unable to recognise any errors in judgement.<br />

It is generally accepted that remains should be no more than 75<br />

years old to warrant police interest. Therefore any reliable dating method<br />

should distinguish bones from within this interval accurately from those<br />

lying outside of it. Previous work has focused upon the physiochemical<br />

properties of bone or its organic constituents, though the results have<br />

failed to produce a workable calibration system. Several papers have<br />

also suggested the measurement of specific radionuclides which, unlike<br />

methods that depended upon chemical changes, are affected less by<br />

alterations within the physiochemical environment to which bones have<br />

lain exposed.<br />

Radiocarbon (14C) has proved a valuable tool for dating archaeological<br />

samples for over 50 years now. However, with a half-life of 5730<br />

years, the accuracy of this technique within a narrower time frame has<br />

* Presenting Author<br />

yet to be verified.<br />

Previously the concentrations of 210Pb and 210Po have been determined<br />

in human bone mainly to evaluate the contribution to internal<br />

radiation doses. Little work has been undertaken into the potential for<br />

using these isotopes as detection tools for dating human skeletal<br />

remains, despite appropriate radioactive half lives (notably 22.3 years<br />

and 138.4 days for 210Pb and 210Po, respectively). The research is<br />

therefore examining the potential for using such isotopes as predictable<br />

biological clocks; ones that are activated at death and through analysis<br />

of which can provide the investigators with an accurate and reliable indicator<br />

of the post-mortem interval.<br />

Though used in archaeology the use of radionuclide mapping has<br />

yet to be developed in forensic science. The theory is based upon the<br />

knowledge that in life an individual incorporates its environment into its<br />

body over time. The food we eat, the water we drink, the air we breathe<br />

all contain small quantities of isotopes and trace elements that, once<br />

ingested, enter our skeletal system to a varying degree. These quantities<br />

alter between geographical regions and countries, depending upon the<br />

underlying geology of the areas. It should therefore be possible, through<br />

the analysis of material, to confirm the region that the individual lived<br />

within when they died.<br />

The forensic applications of both such systems would be of great<br />

benefit to both police forces and international organizations by narrowing<br />

search parameters down greatly. In cases where no documentation<br />

has been found to suggest where they lived, such a test would be<br />

invaluable to investigating officers who possess relatively limited<br />

resources.<br />

Our initial results would appear to confirm these hypotheses and<br />

have proved useful in on-going investigations.<br />

Isotope, Fingerprint, Postmortem Interval<br />

H102 Skeletal Manifestations of Non-Hodgkin’s<br />

Lymphoma and Multiple Myeloma:<br />

A Differential Diagnosis<br />

Alaina K. Goff, BA* and Wendy Potter, MS, University of New<br />

Mexico, Department of Anthropology, Albuquerque, NM 87131;<br />

Debra Komar, PhD, Office of the <strong>Medical</strong> Investigator, University of<br />

New Mexico, Albuquerque, NM 87131<br />

After attending this presentation, participants will understand the<br />

criteria for differentially diagnosing non-Hodgkin’s lymphoma (NHL)<br />

from multiple myeloma (MM) when presented with forensic skeletal<br />

material exhibiting multiple osteolytic lesions.<br />

The primary purpose of this paper is to determine whether a differential<br />

diagnosis based solely on skeletal remains is adequate for identifying<br />

NHL from other disease processes producing multiple osteolytic<br />

lesions. The impact of this research in forensic anthropology is clear; it<br />

identifies the potential for and possible limitations of pathological diagnoses<br />

based on skeletal changes. This information helps in identification<br />

and may provide the cause of death for unidentified individuals in future<br />

forensic casework.<br />

Lymphomas represent any neoplastic growth occurring in lymphoid<br />

tissue and are categorized into one of two subtypes; Hodgkin’s or non-<br />

Hodgkin’s. The incidence of NHLs is three times more likely among<br />

whites than blacks, with a slight predilection for males. Primary lymphoma<br />

of bone (PLB) represents 7-25% of NHLs and predominantly<br />

produces “moth-eaten” osteolytic lesions. Diffuse histiocytic lymphoma<br />

(DHL) accounts for 68% of all PLBs and 1/3 of all childhood NHLs.<br />

Lesions are characteristically lytic; however, mixed lytic and sclerotic<br />

reactions are common. Lesions resulting from DHL are primarily distributed<br />

in the axial skeleton but often appear in long bone diaphyses.<br />

Multiple myeloma is a disorder of white blood cells causing an over<br />

stimulation of osteoclasts while simultaneously suppressing osteoblastic<br />

activity. This aggressive disease is the most common primary malig-<br />

526


nancy of bone. It is characterized by numerous, completely osteolytic<br />

lesions that are primarily distributed in the axial skeleton and long bone<br />

metaphyses. Radiographically, the lesions have a distinctive “punchedout”<br />

appearance, especially in the cranial vault; these defects may also<br />

produce a scalloped endosteal margin in long bones. No reactive new<br />

bone is associated with the lesions. The incidence of MM is two times<br />

more likely among blacks than whites, slightly favoring males over<br />

females. Less than 1% of cases occur in individuals less than 40 years<br />

of age.<br />

The Maxwell Museum of Anthropology at the University of New<br />

Mexico houses a large collection of skeletal remains with documented<br />

age, sex, biological affinity, cause and manner of death, and medical<br />

history. A DHL patient drawn from this collection was used to illustrate<br />

typical bony changes resulting from NHL; this individual was directly<br />

compared to the remains of an unidentified woman exhibiting similar<br />

skeletal lesions of unknown etiology.<br />

In 1962, a 36-year-old male was diagnosed with multifocal diffuse<br />

histiocytic lymphoma. Recurrent lesions developed later that year, and<br />

his left leg was amputated distal to the femoral midshaft. Twenty years<br />

later, he developed skull lesions; this recurrence was treated with radiation.<br />

In 1986, the lymphoma returned, affecting the soft palate and right<br />

ankle. Full body and local radiation was administered, but three months<br />

later, he died of sepsis secondary to diffuse histiocytic lymphoma.<br />

In this case, the individual’s skeleton exhibits pathognomonic<br />

lesions for non-Hodgkin’s lymphoma. Numerous lytic defects and areas<br />

of sclerotic deposition are present on the cranium. The left femur has<br />

osteolytic lesions, which are permeative and have a “moth-eaten”<br />

appearance. A resorptive lesion is present on the proximal fibula that has<br />

destroyed the trabeculae and created a granular appearance to the<br />

medullary cavity. Lesions on the distal half of the right tibial diaphysis<br />

have a “moth-eaten” appearance.<br />

The remains of an unidentified woman were brought to the Office<br />

of the <strong>Medical</strong> Investigator in Albuquerque for autopsy and identification.<br />

The individual (Jane Doe) was between 20-25 years of age and<br />

of Caucasian ancestry; her skeleton exhibited multiple permeative<br />

lesions. Purely osteolytic lesions were observed on the centrum of the<br />

third lumbar vertebra and the sternum. Destruction of the sternum was<br />

marked. Three small discrete lytic lesions perforated the inner table of<br />

the calvarium affecting the diploë. Sclerotic bone addition was also<br />

noted on the parietals and occipital. The sternal end of the right first rib<br />

consisted solely of a lace-like cortical structure; no cancellous bone<br />

remains in this area. The lesions are characteristic of a rapidly progressing<br />

pathological condition spread via hematogenous or lymphatic<br />

dissemination. Diseases presenting similar skeletal changes include lymphoma<br />

and multiple myeloma.<br />

Although she has relatively few lesions, Jane Doe’s remains exhibit<br />

similar skeletal changes to those of the man diagnosed with DHL.<br />

Mixed sclerotic and lytic reactions observed on her cranium are<br />

extremely rare for patients with MM and are more diagnostic of NHLs.<br />

Radiographs also fail to show the distinctive “punched-out” and scalloped<br />

lesions of MM; instead the lesions are “moth-eaten,” indicative of<br />

NHLs. The differences observed between Jane Doe and the documented<br />

individual (specifically the number of lesions) are likely related to survivorship<br />

and treatment. In addition, Jane Doe is a young Caucasian<br />

adult; this profile favors a diagnosis of DHL, a subtype of NHL that<br />

often affects younger individuals. In general, NHLs are three times more<br />

common among whites. In contrast, MM affects blacks twice as often<br />

as whites and its occurrence is extremely rare in individuals less than 40<br />

years of age.<br />

In conclusion, both lymphoma and multiple myeloma should be<br />

considered when assessing a skeleton exhibiting multiple lytic lesions.<br />

However, the skeletal lesion morphology and demographic distribution<br />

should provide adequate criteria for a differential diagnosis between<br />

DHL and MM.<br />

Multiple Myeloma, Non-Hodgkin’s Lymphoma, Multiple<br />

Osteolytic Lesions<br />

H103 Computer Assisted Facial<br />

Reconstruction Technique<br />

Yves Schuliar, MD* and Pascal Chaudeyrac, MS, Institut de Recherche<br />

Criminelle de la Gendarmerie Nationale, 1 Boulevard Theophile Sueur,<br />

Rosny-sous-Bois 93110, France; Richard Aziza, MD, 13 Avenue Eylau,<br />

Paris 75116, France; Jean-Noel Vignal, PhD, Institut de Recherche<br />

Criminelle de la Gendarmerie Nationale, 1 Boulevard Theophile Sueur,<br />

Rosny-sous-Bois 93110, France<br />

The objective of this paper is to present the methodology of twodimensional<br />

(2D) facial reconstruction used at the Forensic Sciences<br />

Laboratory of the French Gendarmerie and the subsequent results.<br />

Secondly, a research project examining computerized three-dimensional<br />

(3D) reconstruction will be shown.<br />

Identifying skeletal remains can be difficult. Facial reconstruction<br />

techniques may be required to provide information regarding the facial<br />

characteristics of the unknown remains. The process of computerized<br />

3D reconstruction can offer additional information about the real face of<br />

the victim and can assist in the identification process.<br />

Among the activities of the Forensic Medicine Department of the<br />

Institut de Recherche Criminelle de la Gendarmerie Nationale, facial<br />

reconstruction often represents the ultimate solution for the identification<br />

process of a body. This method is employed only when more traditional<br />

methods of identification do not allow for a positive identification.<br />

The basic approach of the method is based on the principle of the<br />

facial sketch, which traditional was applied to cases where a crime<br />

victim would describe the facial features of a perpetrator. In the case of<br />

skeletal remains, it is the skull that describes the facial features of person<br />

and helps ascertain its shape and proportions. The technique used in the<br />

Laboratory is relies on the method of 2D image warping. Since 1996, it<br />

has aided in the identification of victims who would otherwise remain<br />

unknown. At the request of paleoanthropologists, this method has also<br />

been applied to reconstruct facial features of crania from historic and<br />

prehistoric sites.<br />

At the present time, the Laboratory is involved with a research<br />

project along with a local computer sciences university. This project will<br />

further our goals of developing an application software for 3D reconstruction.<br />

Using tridimensional anatomical data, this new approach will<br />

restore the relief of a face according to the underlying anatomy with a<br />

numerical data bank of muscles and soft tissue thicknesses of the face.<br />

As a result, the face can be presented in front, profile, three-quarter view.<br />

This anatomical and tridimensional approach of facial reconstruction is<br />

interdisciplinary and involves the specialties of anatomy, anthropology,<br />

plastic surgery, computer science, forensic pathology, and radiology.<br />

The results of this project have the potential to draw in other disciplines,<br />

such as aesthetic and reconstructive plastic surgery and facial and maxillary<br />

surgery.<br />

Facial Reconstruction, Computer, Identification<br />

H104 Testing the Reliability of Frontal<br />

Sinuses in Positive Identification<br />

Using Elliptic Fourier Analysis<br />

Angi M. Christensen, PhD*, 301 Taliwa Drive, Knoxville, TN 37920<br />

This paper will examine the EFA coefficients of digitized frontal<br />

sinus outlines to estimate the probability of a correct identification and<br />

discuss the reliability of the technique. Further, the research will discuss<br />

when EFA comparison of frontal sinus outlines can provide quantitative<br />

substantiation for a forensic identification based on these structures.<br />

This presentation will demonstrate the importance of considering<br />

527 * Presenting Author


Daubert guidelines when conducting research in forensic anthropology,<br />

as well as provide the community with a new method for frontal sinus<br />

radiograph comparison.<br />

The use of frontal sinus radiographs for confirming the identity of<br />

human remains dates to 1925. Traditionally, such identifications involve<br />

comparing antemortem and postmortem radiographic records and are<br />

usually conducted by a forensic anthropologist, pathologist, or radiologist.<br />

The expert makes a visual assessment as to the agreement between<br />

the two radiographs (or lack thereof), making a largely subjective<br />

judgment as to whether the two belong to the same individual.<br />

Despite the fact that the comparison of frontal sinus radiographs for<br />

positive identification has become an increasingly applied and accepted<br />

technique, it is exceedingly rare that an expert’s opinion goes unchallenged<br />

by other experts and/or opposing council. Moreover, recent<br />

rulings concerning admissibility of scientific evidence in court require<br />

more than credibility, persuasion, and manifest experience of the scientific<br />

expert. The current method of frontal sinus radiograph comparison<br />

by visual assessment fails to meet evidence admissibility guidelines as<br />

set forth in the 1993 case of Daubert v. Merrell-Dow Pharmaceuticals,<br />

Inc. Specifically, there has been no evaluation of the probability of<br />

misidentification using the technique, and there are no standards for confirming<br />

or rejecting a putative identification. Even though identifications<br />

based upon frontal sinus radiograph comparisons have been routinely<br />

accepted by scientists, medical examiners and law enforcement officials,<br />

these shortcomings could pose serious problems if forensic scientists<br />

were called upon to testify regarding such an identification at trial.<br />

In response to these shortcomings, a study was conducted to assess<br />

the reliability of frontal sinuses in forensic comparisons using a geometric<br />

morphometric approach called Elliptic Fourier Analysis (EFA).<br />

In this study, the shape of a frontal sinus was represented by digitized<br />

points along its outline as seen in a standard anterior-posterior radiograph.<br />

EFA fits a closed curve to the ordered set of data points, generating<br />

a set of coefficients that can be treated as shape descriptors and can<br />

be used as variables in discriminatory or other multivariate analyses.<br />

EFA coefficients were generated from 808 digitized outlines of<br />

frontal sinuses. Likelihood ratios (the probability of the evidence supposing<br />

a hypothesis is true, divided by the probability of the evidence<br />

supposing it is false) and posterior probabilities (the probability that the<br />

identification is correct assuming that the identification is as likely to be<br />

correct as incorrect) were calculated based on these coefficients. The<br />

average likelihood ratio in this study was remarkably high (about<br />

1.09E+84 to 1), indicating that the odds of a match given the correct<br />

identification are significantly higher than the odds of a match from the<br />

population at large. The posterior probability for most cases was 1 or<br />

very near 1 indicating that the probability of a correct identification<br />

given a match would be nearly 1 in most cases, and about 96% on<br />

average.<br />

Thus, for individuals with sufficiently remarkable frontal sinuses,<br />

using EFA coefficients of digitized outlines to estimate the probability of<br />

a correct identification, and thereby confirm or reject a presumptive<br />

identification, is a reliable technique. The technique has also been effectively<br />

applied to forensic comparisons. Given these results, EFA comparison<br />

of frontal sinus outlines is recommended when it may be necessary<br />

to provide quantitative substantiation for a forensic identification<br />

based on these structures.<br />

Forensic Anthropology, Frontal Sinuses, Daubert<br />

H105 Markers of Mechanical Loading in the<br />

Postcranial Skeleton: Their Relevance to<br />

Personal Identification of Human Remains<br />

Kenneth A.R. Kennedy, PhD*, Cornell University, Department of<br />

Ecology and Evolutionary <strong>Bio</strong>logy, Corson Hall, Ithaca, NY 14853<br />

This study offers a new assessment of a methodology for measuring<br />

* Presenting Author<br />

degrees of postcranial muscular-skeletal robusticity (MSR) that can<br />

benefit the forensic anthropologist in personal identification of human<br />

remains. The “Femoral Robusticity Index,” and some other commonly<br />

taken postcranial indices, are demonstrated to be less reliable indicators<br />

of robusticity than examination and recording of multiple markers of<br />

occupational stress (MOS).<br />

Preservation of muscular tissue from victims of mass casualties<br />

resulting from assaults by terrorists, accidents, or acts of nature may<br />

allow the forensic anthropologist to assess a hitherto commonly overlooked<br />

observation in cases of personal identification - measurement of<br />

degrees of postcranial muscular-skeletal robusticity (MSR). This<br />

variable refers to degrees of skeletal massiveness, strengthening or structural<br />

buttressing of a skeletal element by addition of bone tissue as a<br />

response to high mechanical loading, observable girth or “heftiness” of<br />

a living individual or a well preserved body, general thickness of long<br />

bones, and bone strength relative to body size. Gracile body forms and<br />

skeletal elements reflect the reduction of factors contributing to robusticity,<br />

but absence or reduced expression of MSR is also critical to positive<br />

identification of human remains.<br />

When bodies are taphonomically degraded, their skeletal remains<br />

allow a more accurate estimation of this variable from morphometric<br />

and radiographic examination of enthesopathic lesions at loci of muscular<br />

and ligamentous attachments. Under conditions of intensive<br />

mechanical stress, muscular contraction produces on attachment loci<br />

rough patches, tuberosites, crests or tubercles with an enlargement or<br />

hypertrophy of these attachment areas. While these features of bone<br />

remodeling are recognized today as markers of occupational stress<br />

(MOS) (the responses of osteological tissue to a range of habitual activities<br />

in life) the traditional method to assess MSR has been the calculation<br />

of the ratio of the length of a long bone to its mid-shaft diameter<br />

or circumference. The “Femoral Robusticity Index” has been regarded<br />

by many biological anthropologists for over a century as the diagnostic<br />

measure of total skeletal massiveness or gracility. Both forensic anthropologists<br />

and palaeoanthropologists have observed that marked cranial<br />

robusticity and molar crown tooth sizes are not necessarily correlated<br />

with postcranial robusticity for a given individual or a population.<br />

Notation of “robusticity” has been included in protocols of sex<br />

determination of skeletal remains, males usually exhibiting more pronounced<br />

features and larger body sizes than females in prehistoric and<br />

modern human populations. Apart from sexual dimorphism, markers of<br />

postcranial muscular-skeletal robusticity have been attributed by some<br />

bioarchaeologists to geographical and climatic adaptations to habitats<br />

(lower degrees of muscular-skeletal robusticity in hot-humid Tropical<br />

regions; higher in peoples of northern latitudes under conditions of coldstress),<br />

to athletic activities, socioeconomic patterns, nutrition and<br />

pathology, inheritance, secular trends, and locomotion over rough<br />

terrains.<br />

It is argued here that bone remodeling as a consequence of habitual<br />

patterns of behavior-markers of occupational stress (MOS) - is the major<br />

determining factor in the expressions of MSR. This hypothesis was<br />

tested by comparing values of the “Femoral Robusticity Index” in three<br />

human skeletal samples: modern European males who had been prisoners<br />

subjected to hard labor over many years (N = 15), modern males<br />

from India who had spent their lives in manual labor and in pulling rickshaws<br />

(N = 16), and prehistoric South Asian males from Middle<br />

Holocene burial deposits on the Gangetic Plain of India (Sarai Nahar Rai<br />

and Mahadaha) who were hunter-gatherers (N = 24).<br />

Multivariate and bivariate analyses indicate that comparative<br />

values of the Femoral Robusticity Index are insignificant in measuring<br />

muscular-skeletal robusticity in this male sample from the Temperate<br />

and Tropical Zones or Europe and Asia respectively. Rather, where<br />

MSR are pronounced in femora and other postcranial bones, MOS are<br />

the most obvious aspects of bone remodeling under contrasting conditions<br />

of habitual stress-related adaptations.<br />

The protocols of the investigation of human remains by forensic<br />

528


anthropologists can be supplemented and advanced by an understanding<br />

of the dynamic relationship of MSR to MOS in cases where personal<br />

identification is the focus of investigation. Although no single factor can<br />

account for degrees of muscular-skeletal robusticity in modern and prehistoric<br />

human populations, the effects of habitual patterns of activity<br />

imposing stress upon the integrity of the muscular-skeletal system<br />

provide another and critical component of the forensic anthropologist’s<br />

protocol in achieving a positive personal identification of human<br />

remains.<br />

Muscular-Skeletal Robusticity, Forensic Anthropology<br />

Methodologies, Femoral Robusticity Index<br />

H106 Rapid Responses to International<br />

Incidents: To Go or Not to Go<br />

(or When to Go and How to Go)?<br />

Tal Simmons, PhD*, School of Conservation Sciences, Talbot Campus,<br />

Bournemouth University, Poole, Dorset BH12 5BB, United Kingdom<br />

Panelists: Alison Galloway, PhD*, University of California, Social<br />

Science One FS, Santa Cruz, CA 95064; Jose Pablo Baraybar, BA, MSc*,<br />

Office on Missing Persons and <strong>Forensics</strong> (OMPF), United Nations<br />

Mission in Kosovo (UNMIK), AUCON/KFOR, Kosovo A1503, Austria;<br />

Laura Bowman, BA*, 3856 Porter Street NW, E-371, Washington,<br />

DC 20016; Melissa Connor, MA, RPA*, 11101 South 98th Street, Lincoln,<br />

NE 68526; Margaret Cox, PhD*; William D. Haglund, PhD*, 20410 25th<br />

Avenue, NW, Shoreline, WA 98177; Sara Kahn, MSW, MPH*, 108 West<br />

76th Street, #2A, New York, NY 10023; Mary Ellen Keough, MPH*,<br />

Meyers Primary Care Institute, 630 Plantation Street, Worcester,<br />

MA 01605<br />

Attendees of this roundtable discussion will gain an understanding<br />

of the factors involved in both assessing the advisability and evaluating<br />

the implementation of a forensic response to an international incident<br />

where the abuse of human rights is suspected.<br />

This presentation will impact the forensic community by demonstrating<br />

differing views on the advisability of launching rapid forensic<br />

investigatory responses to international incidents of suspected human<br />

rights abuses. Panelists will debate past responses and explore their<br />

aftermath in terms of both legal and humanitarian ramifications.<br />

Over the past 20 years, forensic personnel of various disciplines<br />

have become involved increasingly in rapid response deployments to<br />

international incidents where crimes involving breaches of international<br />

humanitarian law or human rights are suspected of having occurred. The<br />

nature of the responses and of the responsibilities of the international<br />

forensic community varies tremendously in organizational structure,<br />

quantity of personnel involved, and duration of the response. This roundtable<br />

discussion brings together professionals from several disciplines<br />

(forensic scientists, psychosocial professionals, and human rights specialists)<br />

in order to explore the lessons they have learned during participation<br />

in these incidents, with particular emphasis on the planning and<br />

implementation of large international forensic investigations of human<br />

rights abuses and the responsibilities of the international forensic community.<br />

Each panelist in the roundtable has considerable experience at<br />

the organizational level in either rapid response, or the aftermath of rapid<br />

response, deployments in reaction to human rights catastrophes. The<br />

target audiences for this discussion are students and junior personnel<br />

who have been, or who may become, members of such teams; experienced<br />

practitioners are also encouraged to attend and participate.<br />

Responses to human rights catastrophes are organized and run by<br />

non-governmental organizations, national governments, and international<br />

forums (e.g., the United Nations special commissions and truth<br />

commissions, ad hoc tribunals, etc). The hierarchical organization of<br />

these bodies has meant that forensic scientists participating in large<br />

international investigations or humanitarian responses are often<br />

detached from the responsibility for the consequences of their work.<br />

From a forensic practitioner’s perspective this has meant that international<br />

responses to such humanitarian catastrophes are characterized by<br />

the rapidity of their implementation and consequent ad hoc planning.<br />

Numerous questions – to which there are no single answers – arise from<br />

responses of this kind:<br />

1. Given that the passing of time leads to the deterioration of<br />

material evidence and witness recollection, when should any<br />

investigation by the international community be launched?<br />

What issues and concerns must be addressed prior to this<br />

response?<br />

2. Are the methods used in criminal investigations internal to a<br />

nation-state applicable to international investigations of largescale<br />

human rights abuses? Is the issue really one of methods,<br />

or is it rather perceptions of standards? What conflicts of interest<br />

exist?<br />

3. Does the apparent urgency of a forensic response by the<br />

international community warrant the absence of communication<br />

and liaison with other involved non-forensic organizations?<br />

In the context of this discussion, a response is defined as the initial<br />

deployment of civilian experts into a region where human rights violations<br />

are suspected of having taken place and the actual investigation of<br />

crimes using the techniques available to forensic scientists. Although<br />

this definition excludes secondary responses, which may take place and<br />

continue over subsequent months or years, rapid response teams or organizations<br />

are frequently responsible for setting the parameters and conditions<br />

under which subsequent teams and organizations must conduct<br />

their work. Thus, the legacy of rapid response deployments lingers far<br />

beyond the initial time spent at the scene/morgue and, to a certain extent<br />

colors (if not dictates) the mandate of every organization electing to participate<br />

subsequently in human rights work in the same region.<br />

The goals and mandates of the primary stages of forensic investigations<br />

into large-scale human rights abuses appear deceptively simple.<br />

Usually they are set too narrowly (e.g., documentation of criminal activities<br />

through witness testimony, grave construction, and cause and<br />

manner of death) so that primacy is given to the logistics of the immediate<br />

forensic investigatory and documentary processes (e.g., archaeological,<br />

crime scene, investigatory, anthropological, pathological). The<br />

long-term ramifications of these types of activities often seem to be<br />

ignored so that exhumations and autopsies are provided for, but the positive<br />

identification of the exhumed and autopsied individuals and the<br />

issuance of death certificates are not. Witnesses to criminal events are<br />

interviewed, but family members of the missing are not asked to provide<br />

antemortem information and DNA samples that may aid in the identification<br />

process.<br />

Examples where rapid responses to gross human rights abuses have<br />

affected subsequent activities by forensic scientists and human rights<br />

organizations include:<br />

• The initial work of International Criminal Tribunal for the former<br />

Yugoslavia (ICTY) teams in Bosnia and Croatia in 1996 and the<br />

subsequent work of Physicians for Human Rights (PHR) and the<br />

International Commission on Missing Persons (ICMP) in the<br />

former Yugoslavia from 1997 to the present.<br />

• The deployment of ad hoc forensic teams in Kosova under the<br />

direction of the ICTY in 1999 and the subsequent work of the<br />

Organization for Security and Cooperation in Europe (OSCE) and<br />

ICMP in 2000.<br />

• The initial work of the International Forensic Center of<br />

Excellence (INFORCE) in Iraq in May-June 2003 and any<br />

organization which may subsequently conduct work in Iraq.<br />

Although the desire to investigate immediately is valid, many<br />

reasons to hold off are equally valid. Security concerns - both for<br />

members of response teams and potential witnesses to events - must be<br />

addressed. The logistical capability of putting a team into the field must<br />

529 * Presenting Author


e evaluated. The not inconsiderable expenses of such a project must be<br />

funded. Unsurprisingly, these concerns are often addressed preeminently,<br />

but the issues pertaining to the efficacy and legacy of the initial<br />

response seldom garner the attention they merit. It will be argued that<br />

the role of the forensic scientist in large international human rights abuse<br />

investigations must be expanded to provide for a holistic response, one<br />

that includes not only technically and legally sound methods of investigation,<br />

but provides for the humanitarian consideration of the needs of<br />

surviving families and communities. Only in this way will rapid<br />

responses become appropriate responses.<br />

Human Rights Violations, Assessment, Holistic Responses<br />

* Presenting Author<br />

530


Physical<br />

Anthropology<br />

H1 Expressions of Handedness<br />

in the Vertebral Column<br />

Jennifer A. Synstelien, MA*, and Michelle D. Hamilton, MA, Department<br />

of Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

The observer of this poster will learn the usefulness of a new technique<br />

to determine handedness from the seventh cervical, thoracic, and<br />

lumbar vertebrae.<br />

The goal of this study is to evaluate a new approach to determining<br />

handedness by looking at laterality of the spinous processes of the vertebral<br />

column. The spinous process of the vertebra is a potential indicator<br />

of handedness as it is the attachment site for a number of muscles and ligaments<br />

associated with support and movement of the upper limb, and<br />

repetitive and preferential use of one arm over the other may be reflected<br />

in a deviation of the process to either the left or right of the midline. The<br />

major muscles of the vertebral column associated with positioning of the<br />

pectoral girdle and movement of the arm include the trapezius and latissimus<br />

dorsi. The trapezius muscle attaches to the spinous processes of C7-<br />

T12 and the latissimus dorsi T7-L5. This research specifically focuses on<br />

these vertebrae.<br />

Previous anthropological research on handedness has traditionally<br />

concentrated on observable bone indicators of musculoskeletal stress such<br />

as humeral asymmetry (the robusticity of muscle attachment sites and long<br />

bone length), differences in the length of paired arm elements, clavicular<br />

length and robusticity, scapular joint surface changes, and metacarpal size<br />

differences. Additional relationships explored include bone density and<br />

trabecular patterning, jugular foramen size and humeral expressions of the<br />

intertubercular sulcus, and nutrient foramen. These relationships have<br />

been investigated by comparing the degree and/or size of traits as<br />

expressed in the paired right and left elements.<br />

General observations on the deviation of the spinous processes from<br />

the midline have been made in both the chiropractic and clinical literature<br />

(Oliver and Middleditch, 1991). Chiropractic research by Redmond<br />

(1996) on unassociated and demographically unknown lumbar vertebra<br />

found the majority of spinous processes in his sample generally deviated<br />

to the right of the vertebral midline. He suggests this may be a consequence<br />

of unequal stress being applied to the processes from muscular<br />

strength differences associated with arm dominance. Additionally, the role<br />

handedness plays on the overall shape of the vertebral column has been<br />

clinically observed by Hollinshead (1982) who notes that some lefthanded<br />

individuals display lateral curvature with the convexity of the<br />

curve to the left.<br />

For the purpose of this research, vertebrae of both males and females<br />

from the William M. Bass Donated and Forensic Skeletal Collections<br />

were examined. These skeletons are of individuals with known handedness<br />

information. In human populations, the majority of individuals are<br />

right-handed, with preferential left-handedness ranging between 10-13%<br />

(see Steele 2000 for a review). The distribution of right- and left-handed<br />

individuals in this dataset is reflective of the distribution in the general<br />

population. Photographs were taken of the superior view of the vertebrae<br />

and a deviation of the spinous process from the vertebral midline was measured<br />

in degrees.<br />

Preliminary results indicate a majority of individuals show an<br />

observable deviation from the midline of the spinous process to the right,<br />

an anticipated finding since the majority of individuals are right-handed.<br />

Further research may indicate the (f) utility of this technique in the determination<br />

of handedness for forensic applications.<br />

Handedness, Spinous Process, Vertebral Column<br />

H2 Skull vs. Postcranial Elements<br />

in Sex Determination<br />

M. Katherine Spradley, MA*, and Richard L. Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, 252 South Stadium Hall,<br />

Knoxville, TN<br />

This poster will provide participants with information, derived from<br />

the Forensic Anthropology Data Bank, enabling them to make informed<br />

choices about which skeletal elements provide the most reliable indicators<br />

of sex.<br />

When performing a forensic anthropological analysis, sex estimation<br />

is one of the first and most important steps. A visual analysis of the pelvis<br />

is an excellent indicator of sex. However, not all forensic cases provide<br />

the luxury of a complete skeleton. If an individual is left exposed in an<br />

outdoor context, not all elements may be recovered due to various taphonomic<br />

processes. Some cases may only consist of a cranium, others just a<br />

few postcranial bones. What to use when only the skull and long bones<br />

are present, in the absence of the pelvis, is of some debate. Bass (1995)<br />

and Byers (2001) indicate that the skull is the second best area of sex<br />

determination, the pelvis being the most reliable. This perception persists<br />

despite evidence to the contrary (Berrizbeitia 1989, France 1998, Ousley<br />

2001, Robling and Ubelaker 1997). France (1998), while noting that the<br />

cranium is still often presented as the second best indicator of sex, reviews<br />

evidence showing that postcranial estimates are generally superior.<br />

The purpose of this study is: 1) to test the hypothesis that the skull is<br />

better than postcranial elements using a recent forensic sample, 2)<br />

establish a hierarchy of sexing reliability by element, and 3) investigate<br />

race variation in sexual dimorphism.<br />

The Forensic Data Bank (FDB) is unique in the fact that it continues<br />

to store data from individuals derived from the populations for which it is<br />

used, and provides an opportunity to explore postcranial sex discrimination<br />

techniques. Samples used in this study are comprised of 360 adult<br />

individuals, 90 Black and 270 White, with post 1929 birth years. Standard<br />

measurements were obtained for these individuals, 24 cranial, 10<br />

mandibular, and 44 post-cranial (Moore-Jansen, Ousley, and Jantz 1994).<br />

Mahalanobis distance, sectioning points, and expected classifications were<br />

computed for each individual measurement. A stepwise discriminant<br />

function analysis was performed on the cranium, mandible and each postcranial<br />

element in order to find the best subset of variables for a discriminant<br />

function. A MANOVA test was performed to test race variation in<br />

sexual dimorphism<br />

The humerus, clavicle, femur, scapula, tibia, radius, and ulna, respectively<br />

provided higher classification rates than the cranium in Whites. In<br />

Blacks, the humerus, clavicle, innominate, femur, and scapula, respectively<br />

yield higher classification results than the cranium. The fibula, calcaneus,<br />

mandible, and sacrum all present lower classification results than<br />

the cranium for both Blacks and Whites. The innominate presents as the<br />

third best element for sexing in Blacks and ranks below the cranium in<br />

Whites. In addition, the tibia ranks above the cranium in Whites and<br />

below in Blacks. The MANOVA test indicates the only elements<br />

exhibiting race variation in sexual dimorphism are the mandible and<br />

radius. Discriminant functions provide better classification rates than the<br />

univariate methods, with the exception of the tibia in Whites and the calcaneus<br />

in Blacks. Models and classification rates are provided.<br />

Sex Estimation, Sexual Dimorphism, Discriminant Function<br />

Analysis<br />

531 * Presenting Author


H3 Race and Ethnicity in Subadult Crania:<br />

When Does Differentiation Occur?<br />

Elizabeth A. Murray, PhD*, Hamilton County Coroner’s Office, College<br />

of Mount St. Joseph, 5701 Delhi Road, Cincinnati, OH<br />

Poster attendees will learn about survey data solicited from practicing<br />

forensic anthropologists on the issue of when skeletal attributes develop<br />

sufficiently to assign “race” to a largely intact human cranium.<br />

For at least the past few decades, the concept of “race” has been<br />

debated within the discipline of anthropology and professionals have<br />

taken various stances on whether or not “human races” exist. Regardless<br />

of the fact that the biological definition of race does not apply to humans,<br />

forensic anthropologists are nevertheless often able to classify skeletal<br />

remains to socially recognized racial or ethnic groups with a measure of<br />

accuracy. However, owing to the complexities of polygenic inheritance<br />

and increasing admixture, racial classification is often far more difficult<br />

than assigning stature, sex, or age, although standard references agree the<br />

skull is the obvious choice for attempting to make racial distinctions.<br />

In discussions of methodologies utilized in racial assessments,<br />

whether anthroposcopic or morphometric, there appears to be an underlying<br />

assumption, seldom voiced, that these methods are applicable to the<br />

remains of adults and adults only. Few references even make mention of<br />

racial assessments in subadults, and those that do generally refer to differences<br />

in long bone growth, and indicate this inter-group variability as<br />

being primarily of exogenous rather than endogenous origin. Krogman<br />

and Iscan (1986) have a section devoted to “Racial Differences” in their<br />

chapter “Skeletal Age: Early Years,” in which they conclude, “We see no<br />

valid reason to hold that there are any racial differences (their emphasis),<br />

in the sense that differences in sequence or time may be genetically<br />

entrenched and, hence, significant.” However, they do indicate “This<br />

problem has not been systematically studied save for the possibility of differences<br />

in the first two decades of life, and even here studies have focused<br />

mainly on evidence gained from the hand and wrist…” The scant references<br />

to racial differences among subadults include Choi and Trotter’s<br />

(1970) study of American fetal skeletons, and research conducted by<br />

Hauschild (1937) concerning skull differences in the third fetal month. It<br />

is curious that while differences have been postulated and studied in fetal<br />

remains, albeit meagerly, there has been no systematic or recent study of<br />

racial variation in children or adolescents.<br />

With regard to the development of skeletal traits associated with sex,<br />

it is widely held that these features do not appear until puberty and are ultimately<br />

of genetic origins that result in the timed differential production<br />

and release of hormones. In fact, although they are influenced environmentally,<br />

all growth processes that eventually culminate in the adult body<br />

size and morphology are guided by genetic and hormonal influences.<br />

However, general somatic growth occurs both prior to and after puberty.<br />

Therefore, it does not necessarily follow that skeletal traits associated with<br />

racial differences would have any direct relationship with puberty.<br />

Certainly some discrete traits, including dental traits such as Carabelli’s<br />

cusp or shoveling of incisors, appear dichotomously or discontinuously<br />

during the growth of an individual. However, morphometric racial traits,<br />

such as those in the cranium, are a function of differential growth among<br />

individuals of varying genetic backgrounds. Undoubtedly, these traits<br />

could be influenced to some extent by the same exogenous dietary, pathologic<br />

and socioeconomic factors that act upon long bone growth and<br />

development. However, because crania develop differently than long<br />

bones, it is possible they are not as markedly affected, or alternately,<br />

affected in different ways.<br />

The first objective of this study was to canvass the forensic anthropologic<br />

community regarding at what point in skeletal maturation they<br />

consider documenting morphological differences in the cranium that are<br />

typically associated with race or ethnicity. In addition, the author began to<br />

collect skull photographs of subadults of various ages and ethnicities to<br />

possibly further and more directly address this issue.<br />

* Presenting Author<br />

In May of 2002, a total of 245 surveys were sent to the membership<br />

mailing list of the Physical Anthropology Section of the American<br />

Academy of Forensic Sciences (AAFS). As of the writing of this abstract,<br />

85 of those surveys were returned to the author for a response rate of<br />

34.7%. Of the 85 respondents, 30 were Fellows in the Academy, 20 were<br />

Members, 17 held the rank of Provisional Member, 15 were Student status,<br />

2 were Trainee Affiliates, and 1 was a non-member. The greatest number<br />

of participants (n=27 or 31.8%) reported their years of experience at 5-15<br />

years, while 18 (21.2%) reported 15-25 years of experience, and 14<br />

(16.5%) reported 25 or more years of experience. Of the 85 respondents,<br />

26 (29.4%) reported either 5 or less years of experience or that they did not<br />

typically practice on their own. The survey also asked each participant to<br />

report on their average number of human cases per year and the average<br />

number of cases involving subadult/immature remains in which they participate<br />

annually (averaging the past five years).<br />

The key question in the survey was worded as follows: “What would<br />

be the lowest age-at-death at which you would typically feel ‘professionally<br />

comfortable’ assigning ‘race’ or ‘biological affinity’ to a largely<br />

intact human cranium?” The survey asked participants to choose only one<br />

of the following responses:<br />

• “I do not advocate assigning ‘race’ to human remains, regardless<br />

of age.<br />

• Only when skeletal maturation is totally complete (i.e., all<br />

epiphyses are fused).<br />

• 20-25 years at time of death<br />

• 15-20 years at time of death<br />

• 10-15 years at time of death<br />

• 5-10 years at time of death<br />

• 0-5 years at time of death<br />

• “I’ve never considered the question, and do not feel comfortable<br />

answering it.”<br />

Responses were tallied and then sorted by years of experience, cases<br />

per year, and other survey parameters.<br />

Within the 85 responses, all of the above answers were selected by at<br />

least one survey participant. One individual (1.2%) did not advocate<br />

assigning race to human remains, regardless of age, and one other individual<br />

(1.2%) declined to answer the question. Six respondents (7.1%)<br />

had never considered the question or did not feel comfortable answering<br />

it. The most frequent response (n=29 or 34.1%) was from those who indicated<br />

they would “typically feel professionally comfortable assigning<br />

race” when an individual is in the 15-20 year range; 15 of 85 (17.6%)<br />

reported they would feel comfortable assigning race only when skeletal<br />

maturation is totally complete; another 15 of the 85 respondents (17.6%)<br />

indicated they would assign race in the 20-25 year range; 7 respondents<br />

(8.2%%) would assign race in the 0-5 year range; 6 (7.1%) answered they<br />

would assign race in the 5-10 year category; and 5 participants (5.9%)<br />

would consider 10-15 years at time of death as the lowest age at which<br />

they would assign race. (It is interesting to note that there was no obvious<br />

correlation between the answer to the above question and the respondents’<br />

membership category or years of experience.) In summary, of the 77<br />

survey respondents who answered the question and indicated they do<br />

report race, 59 of those (76.6%) would not feel comfortable doing so until<br />

after age 15, an age that roughly correlates with the post-pubertal period<br />

in most subadults.<br />

As previously suggested, there is no biological reason to assume that<br />

the continuous types of morphological racial variability seen, in the<br />

cranium or elsewhere, are related to hormonal changes that occur specifically<br />

during the mid-to-later teenage years. However, from the survey one<br />

can conclude that forensic anthropologists are reluctant to assign a race<br />

below age 15. It is hoped that this paper will be the basis of a research<br />

agenda that helps illustrate at what point anthropologists can or cannot differentiate<br />

race or ethnicity from the crania of subadults.<br />

The presentation will provide a more thorough discussion of survey<br />

responses, as well as photographic evidence of subadult crania of various<br />

age and ethnic backgrounds. Future directions of study are to utilize<br />

532


Fordisc on crania of various ages, particularly older children, to see if any<br />

ethnic distinctions emerge, since the race differences Fordisc keys in on<br />

are mostly based upon shape rather than size (R Jantz, personal communication).<br />

Additionally, radiographs and photographs of living children<br />

and adolescents will be utilized to examine at what age cranial variations<br />

begin to emerge among subadults of varying ages.<br />

References<br />

Choi, S.C. and M. Trotter (1970) A statistical study of multivariate<br />

structure and race-sex differences of American white and negro fetal<br />

skeletons. AJPA 33: 307-313.<br />

Hauschild, R. (1937) Rassenunterscheide zwischen negriden und<br />

europiden Primordial-cränien des 3 Fetalmonats. Zeitschrift für Morphol<br />

und Anthropol, 36: 215-279.<br />

Krogman, WM and Iscan, MY (1986) The Human Skeleton in Forensic<br />

Medicine. Charles C Thomas, Springfield, IL.<br />

Race, Subadults, Cranium<br />

H4 An Examination of the Petrographic<br />

Technique in the Analysis of Cementum<br />

Increments for the Determination of<br />

Age and Seasonality in Human Teeth<br />

Tamara L. Leher, BA*, Department of Anthropology, California State<br />

University-Chico, P.O. Box 4036, Chico, CA<br />

The purpose of this presentation is to provide preliminary findings<br />

regarding the accuracy of cementum increments in determining age and<br />

seasonality in adult human teeth through the use of the petrographic techniques.<br />

The 1950s witnessed the development and refinement of microscopic<br />

techniques specifically focused towards the estimation of age in humans.<br />

Gustafson (1950) examined multiple points on thin sections of teeth and<br />

found that, with some degree of accuracy, one could attempt to estimate<br />

age for an individual through observable changes. Wildlife biologists<br />

began to use microscopic analysis on non-human teeth to examine the<br />

cementum. By counting the layers of cementum in a particular tooth, age<br />

as well as season of death (seasonality) of mammals could be determined.<br />

It was not until the 1980s that anthropologists would attempt age estimates<br />

based on examinations of cementum increments in human teeth. It would<br />

take twenty years before anyone published on the possibility of the determination<br />

of seasonality in human teeth.<br />

Why is cementum incrementation important to or even necessary for<br />

anthropology? To answer this question, one need only look at a fragmentary<br />

burial to see that teeth are one of the most durable elements of the<br />

human body. The techniques that anthropologists use in estimating age are<br />

only as useful as the available remains. Pubic symphysis degeneration,<br />

auricular surface changes, rib end changes, all of these techniques will<br />

require elements that often suffer damage, scavenging, or are completely<br />

missing from a burial or skeletal recovery. It is the intent of this study to<br />

demonstrate that cementum increment analysis, through the use of hard<br />

sectioning (petrographic) techniques, can be a valuable tool for providing<br />

accurate data on age and season of death.<br />

This study is a preliminary examination of the use of petrographic<br />

techniques to view cementum increments and via these increments,<br />

determine age and seasonality. Before any work is conducted, each tooth<br />

is cleaned and measurements are taken for general documentation<br />

including, tooth length and width, crown height, and root length. Each<br />

tooth is coded with a number letter combination (protecting the identity<br />

and information for each tooth) and embedded in epoxy. Once the epoxy<br />

hardens, the tooth is cut with a diamond-wafering saw. Longitudinal sections<br />

are chosen over cross sections so as to allow viewing of the entire<br />

tooth root. Each half of the tooth is affixed to a slide with epoxy, labeled<br />

with the code of the tooth, and sent through a diamond-wafering saw,<br />

further reducing the tooth. Sections not attached to slides are labeled and<br />

stored for future sectioning. After cutting is complete, each slide section<br />

is ground down on a glass plate with 600 grit silicon carbide until the<br />

section is thin enough for the cementum increments to be visible.<br />

Thickness of each section varies depending on the tooth and when clear<br />

visibility of the cementum increments is apparent.<br />

When a section is ground down to an appropriate thickness, it is<br />

viewed under a microscope using transmitted cross-polarized light. The<br />

entire length of the tooth root is examined. Increments are counted at the<br />

location that offers the best visibility (this varies from tooth to tooth).<br />

Counting the opaque lines and adding that count to the eruption date of the<br />

tooth being examined establish band count. Seasonality is determined by<br />

observing the outermost cementum increment. According to available<br />

research, opaque bands tend to correlate to winter seasons or seasons of<br />

slow growth while translucent bands tend to correlate to summer seasons<br />

or seasons of accelerated growth.<br />

Results of preliminary research demonstrate that cementum increments<br />

are visible in human teeth using the petrographic technique.<br />

Sections examined thus far seem to demonstrate a positive correlation<br />

between cementum increments and age for individuals between 18-60<br />

years of age (correlation decreases as age increases); however, results for<br />

correlation with seasonality were not conclusive. More research is necessary.<br />

Larger samples of teeth from forensic and historic material, as well<br />

as dental extractions of known age and seasonality will be valuable in<br />

determining accuracy, correlation, and examining the factors that<br />

influence variation within cementum increments.<br />

Age Determination, Cementum Increments, Season of Death<br />

H5 A Test of the Auricular Surface Ageing<br />

Method Using a Modern Sample:<br />

The Effect of Observer Experience<br />

Debra A. Komar, PhD*, Office of the <strong>Medical</strong> Investigator, University of<br />

New Mexico, Albuquerque, NM; Tim Petersen, MA, Department of<br />

Anthropology, University of New Mexico, Albuquerque, NM; Suzzette<br />

Sturtevant, BSc, and Britny Moore, BSc, Office of the <strong>Medical</strong><br />

Investigator, University of New Mexico, Albuquerque, NM<br />

This poster will present findings of a study to determine whether low<br />

accuracy rates using the auricular surface morphology ageing method are<br />

the result of observer error or methodological deficiencies.<br />

The validity of ordinal estimation methods such as ageing techniques<br />

rely both on the inherent accuracy of the method as well as the proficiency<br />

and experience of the observer. When poor accuracy rates are obtained,<br />

the difficulty lies in differentiating whether the fault lies with the method<br />

or the observer. This study utilizes a modern forensic collection and<br />

observers ranging from experienced faculty to novice undergraduates to<br />

evaluate the accuracy of the auricular surface morphology ageing technique<br />

developed by Meindl and Lovejoy (1985, 1989). The technique<br />

requires observers to classify the auricular surface of an individual<br />

according to eight phases. Written descriptions and photographs provide<br />

users of the method with criteria for each phase. The research sample used<br />

in this study consisted of 146 individuals from the documented collection<br />

at the Maxwell Museum of Anthropology at the University of New<br />

Mexico. The sample contained only individuals who died recently (1984<br />

to present) and whose demographic information was thoroughly documented,<br />

thereby providing accurate age and sex information. Age at death<br />

ranged from 18 to 101 years and both males and females were represented.<br />

The observers included a junior faculty member (DK) with over a decade<br />

of experience using this ageing method in hundred of forensic and archeological<br />

analyses; a Ph.D. candidate (TP) with four years of training and<br />

practical experience and two undergraduates (SS, BM) with solid backgrounds<br />

in anatomy but no prior experience or training in this ageing technique.<br />

Overall accuracy rates for the auricular surface method ranged<br />

533 * Presenting Author


from 25% correct for the junior observers, to 40% for the graduate student,<br />

and 84% correct for the faculty member. Intraobserver tests (using the<br />

Kappa statistic) were conducted to evaluate how consistent each<br />

researcher was in their observations. Results ranged from 75% (junior<br />

authors) to 100% (faculty member), indicating a fair to excellent degree of<br />

consistency based largely on experience. Interobserver tests (again utilizing<br />

the Kappa statistic) revealed poor agreement among the observers.<br />

Researchers with less experience noted that, despite the descriptions and<br />

photographs, the method was difficult to understand and use. Poorly<br />

defined or overlapping phases and vague descriptions were among the<br />

chief complaints. For example, the written description differentiating<br />

phases one and two states “changes from the previous phase are not<br />

marked and are mostly reflected in slight to moderate loss of billowing.”<br />

Phase 3 instructs the observer to “note smoothing of surface by<br />

replacement of billows with fine striae, but distinct retention of slight billowing.”<br />

Even for observers familiar with the definitions and features of<br />

the technique, such standards are often confusing and insufficient.<br />

Overall, the results indicate that the accuracy rates obtained with the<br />

auricular surface method do rely on the experience and training of the<br />

observer. However, tests of a similar ageing method (the Suchey-Brooks<br />

pubic symphysis morphology technique) by the two senior authors<br />

resulted in accuracy rates of 98% (DK) and 93% (TP) using the same collection.<br />

The Suchey-Brooks method requires observers to score the pubic<br />

symphysis of an individual as one of six distinct phases using written<br />

descriptions, illustrations, and casts. The results using the Suchey-Brooks<br />

method, combined with the high intraobserver scores of the senior authors,<br />

suggests that the poor accuracy rates obtained using the auricular surface<br />

method may not be exclusively the result of observer error. Several factors<br />

warrant consideration. First, the use of casts, well-defined phases with<br />

clear written descriptions, and separate standards for males and females<br />

seen in the Suchey-Brooks method render the method more “user<br />

friendly.” Second, the auricular surface method was originally created<br />

using the Hamman-Todd collection at the Cleveland Museum of Natural<br />

History, which contains individuals who died prior to 1940. The Suchey-<br />

Brooks method was developed on a modern forensic collection.<br />

Temporal changes as well as the application of standards developed on one<br />

population to alternate populations may constrain the successful use of the<br />

auricular surface method.<br />

Physical Anthropology, Ageing Methods, Osteology<br />

H6 Sex, Size, and Genetic Mistakes:<br />

Identifying Disorders of Sexual<br />

Differentiation in Human Skeletal Remains<br />

Linda O’Connell, BM, MSc*, Joy Steven, MSc*, and Margaret Cox, PhD*,<br />

School of Conservation Sciences, Bournemouth University, Poole, Dorset,<br />

United Kingdom<br />

This presentation will assess whether disorders of sexual differentiation<br />

can be identified in human skeletal remains and whether such<br />

changes affect the determination of sex. Results show that a number of<br />

skeletal manifestations associated with each of the disorders and that these<br />

may compromise the effectiveness of sex assignation.<br />

One of the most fundamental demographic parameters to be ascertained<br />

as part of any forensic or biological anthropological analysis is that<br />

of sex determination. The term sex can be defined in one of five ways:<br />

chromosomal sex, gonadal sex, phenotypic sex, gender, and sexual orientation.<br />

However, when forensic and biological anthropologists refer to this<br />

term, they are alluding to the biological sex of an individual, which is fixed<br />

by the X- and Y-chromosomes, and dictated by morphological characteristics.<br />

The potential effects of disorders of sexual differentiation upon elucidation<br />

of this demographic parameter, (particularly with respect to the<br />

effects on the pelvis and skull) has not been considered within this context.<br />

* Presenting Author<br />

A desk-based assessment extensively reviewed five selected<br />

disorders of sexual differentiation - Turner’s syndrome, Klinefelter’s<br />

syndrome, congenital adrenal hyperplasia, testicular feminization, and true<br />

hermaphroditism. The pathogenesis, aetiology, epidemiology, clinical<br />

features, and treatments of these conditions were investigated, together<br />

with any other mimicking conditions.<br />

Results showed that there are a number of skeletal manifestations<br />

associated with each of the disorders. Examination of these traits revealed<br />

that the normal expression of skeletal sexual dimorphism could be compromised<br />

as a result, with individuals being incorrectly assigned a sex.<br />

Furnished with this knowledge, the forensic or biological anthropologist<br />

will be in a position to not only offer a potential diagnosis, but also<br />

to fully evaluate any effects that this may have on the features employed<br />

for sex determination.<br />

Disorders of Sexual Differentiation, Sex Determination,<br />

Skeletal Analysis<br />

H7 The Foot as a Forensic Tool<br />

John A. DiMaggio, RPh, DPM*, Forensic Podiatry Consulting Services,<br />

2600 East Southern Avenue, Suite I-3, Tempe, AZ<br />

The goals of this presentation are to inform the forensic community<br />

of the importance of foot related evidence and the ability to use such<br />

evidence effectively in criminal cases.<br />

This poster will present information on how the forensic podiatrist<br />

uses his or her expertise in the analysis, comparison, and evaluation of<br />

barefoot impression and bare footprint evidence.<br />

The team approach is important to the success of any endeavor, especially<br />

in law enforcement. The team for footwear/barefoot impressions<br />

may include the crime scene specialist, investigator, forensic tracker,<br />

footwear examiner, and forensic podiatrist. The forensic anthropologist,<br />

who may have some overlapping responsibilities, may also be involved in<br />

the case. The podiatrist should take all foot casts, weight bearing or nonweight-bearing,<br />

and fabricate the models in dental stone. Laboratory<br />

personnel, as needed, can do the photography, inked impressions, etc., but<br />

with the assistance/recommendations of the podiatrist, because the needs<br />

may vary from case to case. As part of this process, the podiatrist can<br />

perform a suspect evaluation to include foot typing, biomechanical evaluation,<br />

pathology, and gait evaluation with the fabrication of evidentiary<br />

materials, such as a dynamic gait pattern, depending on case needs.<br />

The scene of the crime is a very important area that requires thorough<br />

evaluation. Discovery, documentation, and recovery are paramount and<br />

although most evidence is properly processed, for some reason, footprint<br />

evidence, unless it is quite obvious, is usually not. This is by no means is<br />

a slight on the job of criminal investigation personnel. However, there are<br />

many reasons for this trend, but due to the increase in the number of individuals<br />

working specifically in this field and increased education and<br />

training in the law-enforcement community, this trend is changing.<br />

The foot is similar in all individuals because of basic physiologic and<br />

anatomic factors. Due to inherent differences in body proportions, genetic<br />

predispositions, pathologic states, functional or dynamic variances or<br />

influences, footwear constraints, environmental factors, occupational<br />

influences, and injuries, it is unique to that individual. This uniqueness<br />

allows for the ability to identify individuals to being linked to a crime<br />

scene or wearing footwear that were either left at that scene or evidence<br />

of such.<br />

Foot related evidence includes bare or sock bloody footprints,<br />

impressions in a substrate such as dirt, sand, dust, or blood on floors. The<br />

foot image is often present on the sock liner of the shoe in both two and<br />

three-dimensional forms. The shoe will also show significant traits of the<br />

foot that it housed. Since a large percentage of the population has some<br />

type of foot problem, pathology present in the foot from a structural<br />

standpoint such as a bunion deformity, hammertoe deformity, digital<br />

534


imbalance, Haglund’s deformity, and many others will lead to a wear<br />

pattern in the shoe. Functional or biomechanical imbalance will lead to<br />

other wear patterns that can be observed in the upper shoe or on the<br />

outsole. The shoe may also leave impressions in dirt, mud, sand, and<br />

blood. The shoe is sometimes left at the scene or discarded nearby and the<br />

podiatrist is often asked if the wearer of the shoe can be identified. The<br />

shoe print is often discovered and not always conclusively identified.<br />

The poster will show exemplars of the foot that are used for comparisons<br />

and proper procedure for obtaining them, and for the footwear<br />

pertinent to the case. The foot zones as well as foot identification contours<br />

will be presented and their application to the identification process.<br />

The morphology of the foot and what can be ascertained regarding a<br />

“profile” of the individual who made the bloody footprint, for example,<br />

will be shown through various means.<br />

A case study will be presented to show the attendee the protocol and<br />

procedures used to come to a valid conclusion utilizing different forms of<br />

foot related evidence.<br />

Forensic Podiatry, Barefoot Morphology, Footprint/Impression<br />

Evidence<br />

H8 Back to the Basics: Anatomical Siding of<br />

Fragmentary Skeletal Elements From<br />

Victims of the World Trade Center Disaster<br />

Eric J. Bartelink, MA*, Jason M. Wiersema, MA, and Maria Parks, MA,<br />

Department of Anthropology, Texas A & M University, College Station,<br />

TX; Gaille MacKinnon, BA, MSc, Department of Conservation Sciences,<br />

University of Bournemouth, Bournemouth, United Kingdom; and Amy<br />

Zelson Mundorff, MA, Office of Chief <strong>Medical</strong> Examiner, New York City,<br />

520 First Avenue, New York, NY<br />

After attending this poster presentation, participants will learn:<br />

(1) methods used for the identification and anatomical siding of human<br />

remains from victims of the World Trade Center; (2) the practical utility of<br />

having visual and comparative reference material readily available when<br />

identifying fragmentary skeletal elements; and (3) the value of physical<br />

anthropologists in the mass disaster setting for identifying fragmentary,<br />

burned, and commingled remains. This presentation will further provide<br />

hands-on opportunity for participants to assess various methods<br />

(published and unpublished) used for the anatomical siding of fragmentary<br />

skeletal elements.<br />

The identification of skeletal elements employs the absolute basics of<br />

human osteological methods used in the laboratory and field setting, and<br />

generally precedes assessments of sex, age, ancestry, stature, and identifying<br />

characteristics. When dealing with a single individual, identification<br />

of skeletal elements is straightforward, although taphonomic factors may<br />

complicate analyses. However, for mass disasters the death toll is high<br />

and may involve a long process of identification for remains that are in a<br />

heavily fragmented state.<br />

Human osteological training provides the basic skills needed for the<br />

identification and anatomical siding of skeletal elements, as well as a comprehensive<br />

understanding of their orientation within the body. When more<br />

detailed methods are needed for assessing highly fragmentary and/or<br />

burned remains, closer attention to skeletal anatomy together with use of<br />

comparative material is often necessary in order to accurately identify and<br />

side elements.<br />

The terrorist attacks of September 11, 2001, resulted in the deaths of<br />

2,823 victims at the World Trade Center (WTC) in lower Manhattan, representing<br />

the worst mass fatality in U.S. history, and producing nearly<br />

20,000 individual body parts with varying levels of fragmentation and<br />

decomposition. After the initial search for survivors, the daunting task of<br />

recovering human remains from the site was undertaken. A multidisciplinary<br />

team comprising pathologists, anthropologists, odontologists, fingerprint<br />

and DNA specialists, and identification staff was established to<br />

facilitate the identification process at the Office of the Chief <strong>Medical</strong><br />

Examiner in Manhattan (OCME). Human remains were recovered from<br />

September 2001 through July 2002 from the WTC site, with a simultaneous<br />

secondary recovery effort at the Staten Island Landfill where debris<br />

was brought from the site to be sifted and screened for further remains.<br />

The fact that thousands of remains arrived at the OCME over a ten month<br />

period in a highly fragmented state, and were in many cases, incompletely<br />

recovered, prevented calculations of the minimum number of individuals<br />

(MNI) represented.<br />

The unusual circumstances of two hijacked commercial airliners,<br />

fully loaded with jet fuel, impacting the 110-story North and South WTC<br />

towers, followed by their subsequent collapse and the collapse of five<br />

other adjacent commercial buildings, introduced a multitude of taphonomic<br />

factors that complicated the positive identification of individuals.<br />

These included the mutilation, fragmentation, and amputation of body<br />

parts, extensive decomposition and natural mummification, commingling,<br />

the effects of fire destruction, and further damage incurred through the use<br />

of earth-moving machinery during the recovery effort.<br />

The extent to which remains were fragmented, burned, and/or<br />

decomposed hindered efforts to identify and anatomically side body parts,<br />

and further complicated interpretations of commingling. Because of the<br />

high incidence of commingling resulting from the collapse of the WTC<br />

complex and from recovery efforts to remove more than 1.6 million tons<br />

of debris from the site, the accurate siding of fragmentary remains proved<br />

to be an important component of the identification process. In the process<br />

of anthropological verification of remains following their original<br />

assessment, every attempt was made to identify and side fragmentary and<br />

burned remains through the use of comparative skeletal material, osteology<br />

textbooks, and methods developed throughout the course of the<br />

identification process.<br />

A variety of texts provide excellent detailed information for the<br />

anatomical siding of fragmentary skeletal remains using a variety of<br />

methods (e.g., Bass 1995, White 1991; Steele 1989). However, these<br />

sources may not be practical or readily available in the mass disaster<br />

setting, where time is often the greatest constraint and accuracy is the most<br />

important goal. The degree to which remains were fragmented, burned, or<br />

decomposed, along with the sheer number of individual cases assessed,<br />

presented practical problems for attempting to side fragmentary remains.<br />

This was particularly evident when common anatomical features typically<br />

used in identification were either missing, difficult to assess due to the<br />

presence of soft tissue, or were heavily charred or calcined. This presentation<br />

will focus on several methods used for the anatomical siding of<br />

fragmentary remains as part of the anthropological verification protocol<br />

for the WTC disaster, and will further discuss practical applications in<br />

forensic anthropology.<br />

Forensic Anthropology, Human Identification, Mass Disaster<br />

H9 The William M. Bass Donated Collection<br />

at the University of Tennessee - Knoxville<br />

Helen E. Bassett, MA*, M. Katherine Spradley, MA, and Lee Meadows<br />

Jantz, PhD, Department of Anthropology, University of Tennessee,<br />

250 South Stadium Hall, Knoxville, TN<br />

The attendee will be provided with an overview of the demographic<br />

information as well as some pathological information on the human<br />

remains available for study in the William M. Bass Donated Collection.<br />

The William M. Bass Donated Collection is housed at the Forensic<br />

Anthropology Center, University of Tennessee, Knoxville, and contains<br />

the remains of over 425 individuals. Since 1981, body donations have<br />

been accepted for anthropological research. In most cases, the donations<br />

are received immediately after death and are used in various on-going<br />

human decomposition studies at the Anthropological Research Facility.<br />

<strong>Medical</strong> and other biological information is received through contact<br />

535 * Presenting Author


etween Forensic Anthropology Center faculty and the individual prior to<br />

death and/or the individual’s family after their death. The purpose of this<br />

poster is to provide an overview of the demographic information about the<br />

donated collection and a brief look into some pathological conditions seen<br />

in the collection.<br />

The majority of the donated individuals are from Tennessee and the<br />

surrounding states, although some have come from as far away as Texas<br />

and Pennsylvania, with dates of birth ranging from the 189’s to 1974. The<br />

remains represent a 20th Century American sample continuing in time<br />

where the Terry and Hammann Todd collections end. A small number of<br />

individuals with early dates of birth result in overlap between these<br />

collections. Manners of death for the donated individuals include natural,<br />

accidental, suicide, and homicide, resulting in a wide age range.<br />

Additionally, the collection contains 27 infants and stillborns.<br />

Approximately 100 of the individuals have been autopsied prior to<br />

placement at the Anthropological Research Facility.<br />

Ancestry and sex are two important demographic variables to consider.<br />

More males than females are represented in the collection, and the<br />

majority of the individuals are of European descent. Other racial groups<br />

represented include African Americans, Hispanic, Mexican, and American<br />

Indian.<br />

Traumatic episodes are evident in the skeletal remains of the individuals.<br />

Many exhibit healed antemortem fractures, and some individuals<br />

have had limb amputations. Additionally, perimortem trauma (Meadows<br />

Jantz and Schneider, 1999) is present.<br />

Finally, many pathological conditions are seen in the individuals such<br />

as: osteoarthritis, eburnation, amputation, spondylolysis, and diffuse idiopathic<br />

skeletal hyperostosis (DISH).<br />

While osteological studies have been conducted using the collection,<br />

the increasing number of individuals available for study warrants a<br />

renewed interest and further analysis of the remains. The critical feature<br />

of the William M. Bass Donated Collection is that it is the largest collection<br />

of modern individuals available for anthropological study.<br />

Meadows Jantz, Lee and Kennan L. Schneider<br />

1999 Trauma Patterns in the William M. Bass Skeletal Collection.<br />

Proceedings AAFS, Annual Meeting, Orlando, Florida Vol. 5:215.<br />

Anthropology, William M. Bass Donated Collection, Demographics<br />

H10 The Hyoid Bone as a Sex Discriminator<br />

Michael Finnegan, PhD*, Department of Sociology, Anthropology and<br />

Social Work, Kansas State University, Manhattan, KS<br />

The purpose of this study was to assess whether the hyoid bone is a<br />

practical and reliable indicator of sex dimorphism.<br />

With an ever-increasing number of archaeological and forensic cases<br />

involving fewer and fewer recovered remains, the suite of methods to<br />

ascertain the sex of the remains diminishes. In this eventuality, more and<br />

varied techniques are requisite for the accurate estimation of skeletal sex.<br />

Encouraged by positive results of recent radiographic analyses of sex<br />

dimorphism in the hyoid bone (Reesink et al. 1998), the author started<br />

collecting metric data on macerate specimens of the hyoid bone.<br />

The hyoid bone is part of the cranium. It is positioned at the base of<br />

the tongue, suspended from the styloid processes of the temporal bones. It<br />

consists of a corpus, two greater cornua which articulate laterally, and two<br />

lesser cornua which articulate at the superior-lateral margins.<br />

The choice of dimensional criteria was based on a review of the literature<br />

and on the measurements taken by Reesink et al. (1998) and<br />

Papadopoulos et al. (1989). Based on their earlier multivariate analysis of<br />

13 traits, three traits appeared to be most useful in the radiographic<br />

analysis of sex dimorphism. The traits of choice are 1) the maximal height<br />

of the corpus (MMH); 2) the anterior posterior thickness of the corpus<br />

(ATP); and 3) the maximal transverse diameter of the corpus (MMH). .<br />

The chosen traits are also those that are most easily taken.<br />

* Presenting Author<br />

Data were taken on 52 hyoid bones (38 male and 14 female) from<br />

past forensic cases, cadaver materials and archaeological remains where<br />

the sex was either known or was judged from a combination of pelvic<br />

morphology and discriminant functions. All measurements were taken to<br />

0.1 mm. Hyoid bones with obvious pathology or trauma were excluded.<br />

Those hyoid bones that showed cornu-corpus fusion, to the extent of obliterating<br />

the measuring points, were omitted. Approximately 5% of the<br />

selected hyoid bones could not be measured, usually due to fusion of one<br />

or more greater cornu with the corpus. The classification formula is<br />

0.56(MMH)+1.92(ATP)+2.46(MTD)-73.2, with male assigned to positive<br />

values and female assigned to negative values.<br />

In males, 32 of 38, or 84.2%, were correctly classified. In females, 9<br />

of 14, or 64.3%, were correctly classified. Overall 41 of 52 or 78.9% were<br />

correctly classified. Both combined and male classifications were a few<br />

percent better than Reesink et al. (1998) radiographic technique, while<br />

female classification was not as good. These results may be an artifact due<br />

to the rather larger male sample and to a lesser extent the racial mixture,<br />

which has not been considered in this sample. Determination of sex based<br />

on the individual hyoid measurements is not significant. However, the<br />

overall correct classification is significantly higher than apriori probability<br />

and thus may be a useful technique in sex determination. Further verification<br />

of this technique on larger, racially separate samples is suggested<br />

before these hyoid measurements are added to the stable of reliable sex<br />

discriminators.<br />

Hyoid Bone, Sex Determination, Discriminant Function<br />

H11 The Estimation of Sex<br />

From the Proximal Ulna<br />

William E. Grant, MA*, Holland Community Hospital, 602 Michigan<br />

Avenue, Holland, MI; and Richard L. Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

This paper’s objective is to present the findings of a metric analysis<br />

quantifying the degree of sexual dimorphism of the proximal ulna and to<br />

assess its value in estimating sex.<br />

The estimation of sex based on measurements of long bones has been<br />

a useful tool to the forensic anthropologist and skeletal biologist for years.<br />

These techniques are particularly effective when one is confronted with<br />

analyzing fragmentary remains. Much of the research available has<br />

focused on analysis of the lower limb bones, with the humerus receiving<br />

slightly less attention. Fewer studies have been conducted using bones of<br />

the forearm, with most utilizing non-U.S. collections.<br />

The present study utilizes a discriminant function analysis of two<br />

measurements taken from the proximal ulna to estimate sex. The first<br />

measures the length of the semilunar and radial notches while the second<br />

measures the width of the proximal rim of the olecranon.<br />

White and Black male and female samples were taken from the<br />

William M. Bass Donated Skeletal Collection (n=113), the Smithsonian’s<br />

Terry Collection (n=98), and from U.S. Army Central Identification<br />

Laboratory, Hawaii (CILHI) cases (n=5). The Bass sample consisted of<br />

78 White males, 15 White females, 17 Black males, and 2 Black females,<br />

with ages ranging from 18-89 years. From the Terry Collection, measurements<br />

were taken from 8 White males, 51 White females, 7 Black males,<br />

and 33 Black females. The ages of this sample ranged from 17-54 years.<br />

For the CILHI sample, 4 males (2 White and 2 Black) and 1 female<br />

(White) were utilized, with ages ranging from 19-38 years.<br />

All of the ulnae were measured using a GPM sliding caliper with<br />

measurements taken to the nearest 0.5 millimeter. Whenever possible, the<br />

left ulna was chosen over the right, and only those ulnae free of pathological<br />

insult were measured.<br />

Discriminant function analyses were run on the data, with separate<br />

examinations conducted to control for any possible racial differences.<br />

536


Results (using both measurements) indicate that White males and females<br />

were correctly sexed with 93.2% and 95.5% accuracy (respectively), while<br />

Black males and females were correctly sexed 92.6% and 97.1% of the<br />

time (respectively). An analysis was also conducted to determine whether<br />

there was a significant secular trend between the Terry and Bass samples.<br />

The results of this latter test proved negative.<br />

The results of this study demonstrate that the proximal ulna is highly<br />

dimorphic. Sex estimation using two dimensions of the proximal ulna<br />

yields correct sex classification as high as any other postcranial element,<br />

and exceeds correct classification rates normally obtained from the skull.<br />

The proximal ulna has obvious application to sex estimation in mass<br />

disasters, where remains may be fragmented, but should also be given<br />

considerable weight in sex estimation of complete remains.<br />

Ulna, Sex Estimation, Sexual Dimorphism<br />

H12 The Utility of Nonmetric Cranial Traits<br />

in Ancestry Determination - Part II<br />

Joseph T. Hefner, BS*, C.A. Pound Human Identification Laboratory,<br />

Department of Anthropology, 1898 Seton Court, Clearwater, FL<br />

The primary goal of the current study is to provide the audience with<br />

an overview of the state of nonmetric trait analysis in ancestry<br />

determination, and to test the utility of five traits in the classification of<br />

unidentified human crania.<br />

The determination of ancestry is extremely useful for limiting the<br />

number of antemortem record searches during the forensic investigation of<br />

unidentified human remains. Most often, this determination – almost<br />

exclusively using the cranium – relies upon the combination of the<br />

assessment of a number of unique morphological features (nonmetric<br />

traits) and metric analysis of the shape of the skull. Evaluations utilizing<br />

nonmetric traits may be effective for predicting ancestry but relies on the<br />

observer’s experience. Furthermore, the frequency of many of these traits<br />

among populations has not been examined in full and the range in variation<br />

of these traits is often not considered in ancestry prediction studies<br />

resulting in the loss of existing gradations that are observed (Brues 1991).<br />

Considering this deficiency in the existing body of data,<br />

17 n onmetric cranial traits were documented for 762 individuals from 20<br />

populations throughout the world (European, n = 185; Asian, n = 156;<br />

American Indian, n = 241; African, n = 180) curated at the National<br />

Museum of Natural History, Smithsonian Institution. Last year (Hefner<br />

2002) five of these traits were discussed: inferior nasal aperture, nasal<br />

bone structure, nasal aperture width, interorbital breadth, and post-bregmatic<br />

depression. These five traits were shown to have only a minimal<br />

predictive value for ancestry. In this presentation, discussion will focus on<br />

the morphological variation and frequency distribution of five additional<br />

cranial traits. The traits include anterior nasal spine prominence, zygomaticomaxillary<br />

suture shape, transverse palatine suture shape, posterior<br />

zygomatic tubercle, and malar tubercle.<br />

First, each trait was examined and character states were defined, or,<br />

when appropriate, trait values from previous studies were utilized. Next,<br />

new anatomical terms and definitions were developed for character states<br />

not previously described. If possible, each trait was scored on a four or<br />

five-level scale, thus permitting the inclusion of intermediate morphologies.<br />

In this manner, each trait was scored progressively (i.e.,<br />

Posterior Zygomatic Tubercle: 0 = absent; 1 = weak; 2 = incipient; 3 =<br />

medium; and 4 = strong). Finally, in an attempt to properly quantify the<br />

morphological variability, standard frequency distributions for each of the<br />

character states were calculated. In addition, polychoric correlations were<br />

computed for all traits to determine inter– and intra-population variability.<br />

Ancestry determination from nonmetric traits classically relies on<br />

assessing whether a particular skull exhibits trait values that are believed<br />

to be representative of a given ancestral population (e.g., ‘angled’ zygomaticomaxillary<br />

suture in Asian and Native American individuals). In the<br />

current study, individuals possessing all five expected trait values ranged<br />

from 10.24% (13/127) for European individuals to 12.21% (21/172) for<br />

African individuals. Frequency distributions for most traits do not show<br />

significant differences between ancestral groups, with the possible<br />

exception of the transverse palatine suture. In this sample, 34.8% (64/184)<br />

of the Europeans possessed a “bulging” (asymmetrical) transverse palatine<br />

suture, 54.5% (90/165) of the Asian sample possessed a “straight” transverse<br />

palatine suture, 64.3% (207/322) of the Native American population<br />

possessed a “straight” transverse palatine suture, and 46.7% (64/184) of<br />

the African sample possessed an “anterior bulging” (symmetrical)<br />

transverse palatine suture. This agrees, to some degree, with the published<br />

results of Gill (1998). Polychoric correlations were statistically insignificant<br />

for all five traits in the current study. This lack of strength in<br />

association tentatively suggests that these traits may not be useful for<br />

clustering in ancestry prediction studies.<br />

These data appear to undercut the predictive value of these traits.<br />

Further research is necessary for the traits currently used by forensic<br />

anthropologists in making a determination of ancestry. The production of<br />

detailed, anatomically based descriptions that record the variability in trait<br />

expression, and recording the frequencies of these traits among populations,<br />

will greatly enhance the forensic anthropologist’s ability to<br />

determine ancestry through visual means.<br />

Ancestry, Nonmetric Traits, Human Identification<br />

H13 Forensic Anthropology, Repatriation,<br />

and the “Mongoloid” Problem<br />

Stephen D. Ousley, PhD*, Smithsonian Institution, Repatriation Office,<br />

Department of Anthropology, Washington, DC; Jessica L. Seebauer, BS,<br />

Department of <strong>Bio</strong>logy, State University of New York-Geneseo, Geneseo,<br />

NY; and Erica B. Jones, MA, Smithsonian Institution, Repatriation<br />

Office, Department of Anthropology, Washington, DC<br />

After attending this presentation, the participant will understand:<br />

1) discriminant function analysis (DFA) is a powerful tool for estimating<br />

ancestry from skeletal remains, 2) DFA using interlandmark distances<br />

(ILDs) can distinguish between Asian groups and American Indians very<br />

well, 3) morphometric relationships within and among Asian and Native<br />

American groups undermines the “Mongoloid” label and grouping, and<br />

4) an appreciation of population histories is important in analyzing modern<br />

human remains.<br />

Establishing the cultural affiliation of human remains is a vital part of<br />

the Native American Grave Protection and Repatriation Act (NAGPRA),<br />

which mandates the evaluation and repatriation of human remains to the<br />

appropriate Native American tribes. Often, the decision whether to<br />

repatriate and to whom is primarily based on biological data. Native<br />

American remains are a concern for forensic scientists and museum personnel,<br />

who need to distinguish between Native American remains and<br />

those from other groups (Pickering and Jantz 1994). The illegal sale of<br />

human remains is also a NAGPRA violation if the remains are those of an<br />

American Indian.<br />

The estimation of ancestry is more complicated if one tries to<br />

discriminate among closely related groups. Native Americans and Asian<br />

groups share a more recent common ancestor and have traditionally been<br />

grouped under the “Mongoloid” label. “Mongoloids” are supposed to<br />

share a variety of soft tissue and skeletal traits (such as anterior zygomatic<br />

projection, brachycephaly, and shovel-shaped incisors) though the trait<br />

frequencies rarely have been tabulated. Hefner (2002) analyzed a large<br />

sample and found that certain nonmetric traits used to distinguish<br />

“Mongoloids” were unreliable. Brace (1996), in analyzing craniometrics,<br />

found that the Mongols were the most divergent of the “Mongoloid”<br />

groups he examined. The morphometric differences among Asian groups<br />

and Native Americans are not well established.<br />

537 * Presenting Author


Ousley (2000), Ousley and McKeown (2001), and Mann and Ousley<br />

(2001) have shown that DFA of ILDs calculated from cranial landmark<br />

coordinates recorded with a three-dimensional digitizer is a quick and nondestructive<br />

method of recording overall morphology and determining the<br />

ancestry of complete or incomplete remains with accuracy and precision.<br />

The main advantages of using ILDs are that the forensic anthropologist<br />

only needs sliding and spreading calipers to collect ILDs, DFA can be<br />

easily used, including stepwise DFA to select the best variables to use, and<br />

partial remains can be more easily assessed. These advantages are<br />

naturally contingent on the appropriate populations being sampled.<br />

Using a three-dimensional digitizer, cranial landmark data from over<br />

400 Asians and over 500 Native Americans at the National Museum of<br />

Natural History, Smithsonian Institution, were collected. Seventy-eight<br />

landmark coordinates were recorded on each cranium, representing over<br />

3,000 ILDs that could be calculated, but analysis centered on Type 1 landmarks,<br />

those located at the intersection of sutures. The continental groups<br />

were comprised of Mongolians (100), East Asians (Japanese, Chinese,<br />

Korean, Buriat, Chukchi), Alaskan (Aleut, Eskimo, Indian) and Plains,<br />

Western, and Southern Native Americans. Interestingly enough, one<br />

museum cranium labeled “Chinese” was an outlier and was determined to<br />

be of European descent based on DFA of ILDs from Chinese and 19th<br />

Century American Whites (posterior probability = .99).<br />

The results show promise for use in forensic (especially Repatriation)<br />

situations where ancestry may be Asian as opposed to Native American.<br />

Mongolians were found to be the most divergent Asian group and were<br />

clearly distinct from East Asians and Native Americans. DFA classifies all<br />

three groups 94% correctly. One remarkable feature of the Mongolians is<br />

their extreme hyperbrachycephaly, probably among the highest in the<br />

world. East Asians showed greater similarity to Native Americans,<br />

especially Alaskan Native Americans, than to Mongolians, but could be<br />

separated from Alaskans 93% correctly using 25 variables in DFA. The<br />

similarity between East Asians and Alaskans is likely due to relatively<br />

recent gene flow across the Bering Strait.<br />

Our results remind the forensic anthropologist that ancestry will<br />

reflect population histories, and that terms such as “Mongoloid” may be<br />

misleading both biologically, because they tend to mask underlying<br />

variation, and taxonomically, because in this case Mongolians are quite<br />

divergent from East Asians and Native Americans.<br />

The use of ILDs continues to show great promise for use in forensic<br />

laboratories and museums where human remains are analyzed in terms of<br />

ancestry.<br />

Craniometrics, Discriminant Function Analysis, Mongoloids<br />

H14 A Strategy for Age Determination<br />

Combining a Dental Method (Lamendin)<br />

and an Anthropological Method (Iscan)<br />

Laurnet Martrille*, and Tarek Mbghirbi, Service de médecine légale,<br />

CHU Lapeyronie, 191 av, Montpellier, France; Alain Zerilli, DDS,<br />

Faculté d’odontologie, CHU Brest, cedex , France, Brest, France; F.<br />

Seguret, Département d’information médicale, CHU Montpellier,<br />

France; and Eric Baccino, MD, Service de médecine légale, CHU<br />

Lapeyronie, 191 av, Montpellier, France,<br />

The goals of this presentation are to improve the accuracy of age<br />

determination by combining the results of two methods, Lamendin and<br />

Iscan method.<br />

Estimating the age of non-identified individuals at death is a difficult<br />

task in forensic practice, because no method has proven to be accurate.<br />

The ideal method for age determination must be simple, reliable, and<br />

precise. Most of the authors recommend use of the many age indicators<br />

available.<br />

* Presenting Author<br />

A few years ago, the authors proposed a method, the Two Step<br />

Strategy (TSS), combining the Schey-Brook system and the Lamendin<br />

method. The two step strategy consisted of looking first at the pubic bone<br />

to determine sex and phase and then to determine estimated age from the<br />

SBS alone when the individual showed phase I, II, or III morphology or<br />

from the Lamendin method alone if phase IV, V or VI morphology existed.<br />

The objective of this project was to try to improve the accuracy of age<br />

determination by combining the results of two methods.<br />

The Iscan method is widely used and considered simple (especially<br />

with the help of pubic casts) and reliable. This method is based on the<br />

interpretation of the sternal articulation aspect of the forth rib.<br />

Unfortunately, in individuals over 40 (phase VI, VII, VIII) this method is<br />

not precise enough (SD over 10 years). Interestingly it is only in individuals<br />

under 40 that the Lamendin method shows SD over 10 years. This<br />

method is based on the measurement of translucence and periodontosis<br />

heights of an intact monoradicular tooth (preferably an upper incisor).<br />

The goal was to assess which was the best way to combine these<br />

methods in order to improve the age estimation accuracy without<br />

decreasing reliability.<br />

Samples of 39 Caucasians males (16 to 64 year of age) for whom the<br />

forth rib and an upper incisor were both available comprised the study. An<br />

estimate was considered correct when actual age determination from the<br />

rib fell within the mean +/- 1 SD of the Iscan phase and from the tooth<br />

within the estimated age +/- 1 SD of the decade. The «combination» of<br />

results gave an estimation using the age interval common to the Iscan and<br />

the Lamendin method (which very often resulted in a more “precise”<br />

estimation). The results will be developed and discussed.<br />

Results observed (1):<br />

Total sample 40 years<br />

N 39 28 11<br />

Correct aging % % %<br />

Iscan 64 57 54,5<br />

Lamendin 69 68 72<br />

Combining method 69 68 72<br />

Results observed two:<br />

Total sample 40 years<br />

N 39 28 11<br />

Correct aging % % %<br />

Iscan 71 75 63,6<br />

Lamendin 69 68 72<br />

Combining method 74,5 75 72<br />

Physical Anthropology, Forensic Odontology, Age Determination<br />

H15 Introducing Daubert to the Balkans<br />

Richard J. Harrington, PhD*, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo; Benjamin Swift, MBChB, Division of<br />

Forensic Pathology, Robert Kilpatrick Clinical Sciences Building,<br />

Leicester Royal Infirmary, Leicester, United Kingdom; and Edwin F.<br />

Huffine, MS, International Commission on Missing Persons, Alipasina<br />

45a, Sarajevo<br />

The goal of this presentation is to review the impact of recent<br />

technological advances¾most notably, DNA analysis and physiochemical<br />

testing, as integrated with traditional forensic anthropological and<br />

archaeological approaches¾on legal decisions made by local courts and<br />

commissions in the former Yugoslavia.<br />

The conflicts of the 1990s in the former Yugoslavia left perhaps<br />

30,000-40,000 missing, with most presumed dead. Since 1996, vast<br />

resources have been committed by international organizations to the<br />

538


ecovery, examination, and repatriation of mortal remains in this region.<br />

Much of this effort has been conducted under the auspices of organizations<br />

such as the International Criminal Tribunal for the former Yugoslavia<br />

(ICTY), which focuses on exhumations of mass graves for the purpose of<br />

war crimes investigations. However, two important considerations are<br />

that (1) ICTY is not responsible for the systematic personal identification<br />

process of the recovered mortal remains, and (2) ICTY is required by the<br />

international community to operate in accordance with accepted international<br />

standards of evidence collection, analysis, and legal presentation.<br />

By presenting such evidence before an international court, ICTY can<br />

effectively bypass local laws and customs.<br />

The International Commission on Missing Persons (ICMP), in<br />

contrast, assists in the systematic personal identification process and<br />

promotes cooperation and coordination among local commissions, courts,<br />

and exhumation teams. Although the mandate is different, the overall<br />

philosophy of the ICMP to promote adherence to the highest possible<br />

standards is in line with other international organizations. From the<br />

perspective of cultural relativism, this is equivalent to the promotion of<br />

“Western” standards.<br />

“Western” forensic science, as practiced in the U.S., is increasingly<br />

scrutinized within the context of the 1993 U.S. Supreme Court ruling on<br />

Daubert v. Merrell Dow Pharmaceuticals, Inc. Even among laypersons<br />

(and experts) who have never heard of Daubert, there appears to be an<br />

ever-increasing recognition that expert opinion presented in courtroom<br />

testimony should be based on objective science that passes validity and<br />

reliability tests.<br />

The introduction of so-called “Western science” into a traditionbound<br />

Eastern European region has been accelerated by the remarkable<br />

surge in DNA-led identifications in this region in the year 2002. The<br />

success of the ICMP DNA Program has led to a complete rethinking of<br />

how to approach the personal identification process in the former<br />

Yugoslavia. To the extent that the DNA-led approach to the identification<br />

process is assimilated culturally and legally in the region, it can be stated<br />

that Daubert has de facto gained a toehold in the Balkans.<br />

However, this successful introduction was not accomplished at the<br />

expense of traditional forensic sciences; rather, it required the integration<br />

of multiple lines of evidence, to include forensic/archaeological context<br />

analysis, biological (skeletal) profiling by anthropologists, and evidence<br />

review by police investigators and forensic pathologists. This has quickly<br />

led to the refinement of standard operating procedures for “routine” cases,<br />

and therefore has not (at least at the time of this writing) required the intervention<br />

of local courts to resolve disputes pitting “old” against “new”<br />

techniques.<br />

Several exceptional cases have been presented to ICMP that cannot<br />

necessarily be resolved by DNA matching or traditional approaches alone.<br />

During the course of recovery operations, skeletal remains that could<br />

predate the 1990s conflict are commonly encountered. Occasionally,<br />

intense public debate is generated over cases where former warring parties<br />

disagree over whether a set of remains does or does not date to the war<br />

period. Samples from some of these cases have been submitted for both<br />

DNA testing at ICMP labs and physiochemical testing for postmortem<br />

interval, dietary history, and geographic origins testing at the Division of<br />

Forensic Pathology, University of Leicester. Results of these tests are<br />

expected during the late summer of 2002, and these results, along with<br />

results of traditional analysis of evidence, will be presented to the appropriate<br />

local commissions and courts for review. This paper will provide an<br />

account of the impact of the Daubert-influenced “integrated approach”<br />

(i.e., traditional approaches combined with new-but-accepted and experimental-but-verifiable-and-reliable<br />

approaches) on local commission and<br />

court rulings.<br />

Forensic Sciences, Human Identification, Daubert<br />

H16 Dirty Secrets: Identification of Older<br />

Crime Scenes in the Former Yugoslavia<br />

Through Blood Protein and Volatile<br />

Fatty Acid Soil Analysis<br />

Hugh H. Tuller, MA*, International Commission on Missing Persons,<br />

Alipasina 45a, 71000, Sarajevo<br />

The goals of this presentation are to present to the forensic<br />

community evidence validating the analysis of soil deposits by CIEP, GC,<br />

and MS in the identification of older crime scenes.<br />

Those who commit murder regularly attempt to hide or destroy<br />

evidence to avoid prosecution. Murder scenes are cleaned up and bodies<br />

removed and concealed by the guilty party. After hiding the body, the<br />

murderer, rethinking his disposal plan, may even retrieve the body and<br />

attempt to hide it in a different, more secretive, location or destroy it in<br />

some manner, further confounding investigations. Identifying and documenting<br />

a crime scene, especially an older one, in the absence of a credible<br />

witness, a body, or other physical evidence is near impossible. However,<br />

the absence of observable evidence, while an obstacle, is not necessarily<br />

an end to the investigation. Despite removal, the body may have left<br />

behind microbiological evidence that can be collected and analyzed.<br />

Human blood proteins and volatile fatty acids (VFAs) deposited in soil at<br />

murder scenes and concealment/burial sites may remain stable over long<br />

periods of time; sophisticated soils analyses may be used to detect them.<br />

The same detection methods used by archaeologists for ancient<br />

artifact examination and criminologists in recent murder cases were used<br />

in this study to examine older soil deposits sampled from three sites<br />

investigated by the International Criminal Tribunal for the Former<br />

Yugoslavia (ICTY): an execution site, four individual graves in a<br />

cemetery, and a mass grave.<br />

An immunological test, crossover immunoelectrophoresis (CIEP),<br />

was used to identify blood proteins as independent evidence of an execution<br />

near Stutica, Kosovo. The passage of time between residue deposit<br />

and testing was an important element in this study. Forensic investigators<br />

rarely test soils for blood residue if the event in question is more than a few<br />

months old on the assumption that predatory microorganisms would<br />

degrade deposited residue beyond the ability to identify them. The Stutica<br />

blood proteins were deposited in soil approximately a year-and-a-half<br />

prior to analysis. In spite of the blood protein’s lengthy exposure to the<br />

soil, from a total of 72 samples, 44 returned positive results for human<br />

blood proteins.<br />

Similarly, VFAs in soils collected from cemetery graves in Duz,<br />

Kosovo and a mass grave in Knin, Croatia, were identified using a<br />

microFAST GC 2 (a field portable gas chromatograph) and a HP 5890<br />

Series II GC with a 5971 mass selective detector Mass Spectrometer (MS).<br />

Six samples were removed from four graves in the Duz cemetery for<br />

testing. Prior to exhumation and soil sampling, bodies laid in the graves<br />

approximately one-and-a-half-years. GC results from the cemetery<br />

revealed the presence of iso-butyric and valeric water soluble VFAs in one<br />

sample. MS examination of the samples was inconclusive. From a sixyear-old<br />

mass grave in Knin, three soil samples were analyzed in the same<br />

manner. GC and MS analysis revealed the presence of iso-butyric and isovaleric<br />

water soluble VFAs in two of the three remaining samples. In<br />

addition, MS analysis revealed the following non-water soluble VFAs in<br />

all three samples: capric, lauric, myristic, palmitic, stearic, and oleic.<br />

Possible causes for inconsistent results between the cemetery graves and<br />

the mass grave may be attributed to the differences in burial styles, soil<br />

moisture, and clay content.<br />

The positive findings of blood proteins and VFAs in the Kosovar and<br />

Croatian soils validate CIEP, GC, and MS analysis of older site soils. In<br />

the absence of bodies or other physical evidence, investigators are<br />

encouraged to use these methods of identifying and documenting sites to<br />

support their evaluation of suspected crime scenes. Demonstrating that<br />

539 * Presenting Author


murder scenes, execution sites, and individual and mass graves can never<br />

be completely cleaned—that evidence of past criminal activity can never<br />

be completely erased—may help to deter murder and human rights abuses<br />

in the future.<br />

Soil Analysis, Blood Protein, Volatile Fatty Acids<br />

H17 Exhumations in Bosnia and Herzegovina:<br />

Unique Challenges in the Recovery<br />

From Cavern Sites<br />

Eva E. Klonowski, PhD*, Nermin Sarajlic, PhD, and Piotr Drukier, MS,<br />

International Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

Bosnia and Herzegovina<br />

The purpose of this paper is to present an account of the challenges<br />

faced by forensic experts in recovery operations from deep caverns in<br />

Bosnia and Herzegovina.<br />

Three and half years of war in Bosnia and Herzegovina in the 1990s<br />

left about 250,000 dead and more then 30,000 missing, most of whom are<br />

presumed dead. The majority of missing persons are Muslims<br />

(“Bosniaks”) who were killed during so-called “ethnic cleansing” operations<br />

during the spring and summer of 1992 and in July of 1995 after the<br />

fall of Srebrenica. Their bodies were buried in a seemingly endless<br />

number of clandestine mass graves, dumped into rivers, wells, septic<br />

tanks, and caverns, or simply left unburied in fields, meadows, and forests.<br />

One of the most difficult kinds of exhumation sites is the underground<br />

cave (cavern). Bosnia and Herzegovina, with its mountainous<br />

configuration, has thousands of natural caves, caverns, crevices, and pits.<br />

During the conflict, many of them became convenient dumping grounds,<br />

soon filled with bodies from mass executions.<br />

From the time when the Lanište cavern containing remains of 188<br />

women, men, and children was discovered and exhumed in October 1996,<br />

the Bosniak State Commission for Tracing Missing Persons found 18<br />

natural caverns from which remains of 585 individuals were recovered,<br />

while dozens of other caverns were carefully inspected for the presence of<br />

human remains. Eight caverns were discovered in southwest part of the<br />

country in Herzegovina, seven in the northwestern region of Bosnia<br />

known as the Krajina, and four in eastern Bosnia.<br />

Recovery of remains from the caverns can be difficult and dangerous.<br />

Caverns can be deep (the deepest so far being 80 meters) and entrances<br />

can be as narrow as one meter. In addition to the dangers posed by natural<br />

threats (such as falling during ascent and descent), many caverns also<br />

contain a variety of explosive devices. To date, the remains recovered<br />

from caverns are generally skeletonized due to the length of time that has<br />

passed since bodies were dumped into them. However, in the Paklenik<br />

cavern that was exhumed in the summer of 2000 there were saponified<br />

remains of Bosniaks who were dropped in after reportedly being executed<br />

in the summer of 1992. In this case, deep layers of rocks and animal bones<br />

from a nearby slaughterhouse covering the bodies inhibited the natural<br />

process of decomposition.<br />

With or without such concealment or site tampering, such as damage<br />

by grenade explosions after the bodies are dropped in, there are numerous<br />

technical and practical problems in the recovery of remains from cavern<br />

floors. Over time, as bodies decompose and bones disarticulate, skeletal<br />

elements separate and slide out of the clothing. Often those bones either<br />

commingle with bones of other individuals or they slide down to the<br />

bottom of the cavern. After the cavern floor becomes covered with bones,<br />

virtually no space is left for maneuvering by recovery team members, who<br />

are forced to work from suspended platforms or by hanging from ladders<br />

and ropes. Limited space also prevents the full complement of team<br />

members from effectively working simultaneously. Creative approaches<br />

are necessary to allow for proper mapping and excavation of the remains<br />

from cavern floors.<br />

Forensic Anthropology, Exhumations, Mass Graves<br />

* Presenting Author<br />

H18 Resolution of Large-Scale Commingling<br />

Issues: Lessons From CILHI and ICMP<br />

John E. Byrd, PhD*, and Bradley J. Adams, PhD, U.S. Central<br />

Identification Laboratory, 310 Worchester Avenue, Hickam AFB, HI;<br />

and Lisa M. Leppo, PhD, and Richard J. Harrington, PhD, International<br />

Commission on Missing Persons, Alipasina 45a, Sarajevo, Bosnia and<br />

Herzegovina<br />

The goal of this presentation is to introduce a new method of<br />

osteometric sorting of commingled skeletal remains.<br />

Commingling of human skeletal remains can obstruct the process<br />

of forensic identification, especially when dealing with large numbers of<br />

deceased individuals. As the methods of forensic anthropology routinely<br />

require the compilation of information gleaned from multiple elements<br />

of the individual skeleton, commingling complicates the analysis.<br />

Furthermore, for humanitarian reasons alone it is the role of forensic<br />

experts to attempt to re-associate the largest amount of remains as<br />

possible for disposition to the next of kin.<br />

Anthropologists at the U.S. Army Central Identification<br />

Laboratory, Hawaii (CILHI) routinely encounter commingled skeletal<br />

remains, as from aircraft crashes and battleground mass graves.<br />

Likewise, anthropologists of the International Commission on Missing<br />

Persons (ICMP) working in the former Yugoslavia are faced with identifying<br />

several thousand sets of remains, a large portion of which are<br />

commingled to some degree. Scientists of the two organizations are<br />

collaborating to develop innovative new approaches to solving this<br />

recurring problem. Solutions to the commingling problems at CILHI<br />

and ICMP involve the disciplined application of traditional anthropological<br />

methods (e.g., pair-matching and articulation), the development<br />

of new anthropological methods (e.g., osteometric sorting), and the<br />

judicious use of DNA sampling and profiling interpretation. Aside from<br />

these purely scientific considerations, solutions to the commingling<br />

problem at the scale encountered by these organizations must include the<br />

development of a laboratory operational plan that incorporates the latest<br />

methods while simultaneously overcoming a number of serious<br />

constraints (e.g., limited numbers of personnel, high personnel turnover,<br />

limited space, limited time, etc.). In some situations the large quantity<br />

of remains precludes the ability of analysts to visually assess all of the<br />

bones at one time, and a “virtual” analysis is proposed to assist in the<br />

re-association procedure.<br />

A key component of the solution to the commingling problem<br />

advocated here is the method of osteometric sorting, a technique that has<br />

been developed by Byrd and Adams. Osteometric sorting works by<br />

testing the null hypothesis that two bones are of the correct size to have<br />

originated in the same individual. The linear statistical models<br />

employed are currently derived from a large reference data set developed<br />

by the CILHI. Since these data were taken from primarily American<br />

skeletons, existing models were tested against intact skeletal remains<br />

recovered in the former Yugoslavia. Test results confirm the applicability<br />

of the method to both populations. As a result, the data collected<br />

from the former Yugoslavia have been incorporated into the CILHI reference<br />

data set and new models are being generated for application by<br />

CILHI and ICMP anthropologists. Details concerning the resolution of<br />

commingling issues, including the incorporation of osteometric sorting<br />

into the laboratory operations at CILHI and ICMP, are presented.<br />

Measurements, Commingling, Human Identification<br />

540


H19 Reassociation of Skeletal Remains<br />

Recovered From Graves in Bosnia<br />

and Herzegovina<br />

Eva E. Klonowski, PhD*, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, Muhamed Mujkic, MS, Federation Commission<br />

on Tracing Missing Persons, Sarajevo, and Nermin Sarajlic, PhD, and<br />

Piotr Drukier, MS, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

The goal of this presentation is to familiarize the forensic<br />

community with the application of traditional forensic anthropology to<br />

the evaluation of commingled skeletal assemblages recovered from mass<br />

graves dating to the recent conflicts in Bosnia and Herzegovina. DNA<br />

testing is used to confirm the anthropological assessment of reassociation<br />

in several cases.<br />

Three and half years of war in Bosnia and Herzegovina took the<br />

lives of about quarter of million people. Approximately 30,000 of them<br />

as still reported as missing. The main purpose of those exhumations<br />

was—and still is—the identification of the deceased and return of their<br />

remains to the grieving families for proper burial. Unfortunately,<br />

exhumed remains are often either incomplete or commingled. Therefore<br />

all exhumed remains should be first carefully checked, inventoried, refitted<br />

if broken, and then re-associated (if possible) before the final<br />

examination and identification process.<br />

A wide variety of recovery sites are encountered in Bosnia and<br />

Herzegovina. Mortal remains may be buried in mass graves or<br />

clandestine isolated graves, dropped into caverns and wells, incinerated<br />

in houses, hidden in garbage dumps, or scattered through meadows,<br />

forests, or agricultural fields. Both primary and secondary graves are<br />

routinely exhumed, and the site formation processes and postdepositional<br />

disturbances (deliberate and otherwise) at both types of<br />

sites can lead to commingling or separation. The recovery process itself,<br />

as well as post-recovery examination, can introduce commingling or<br />

other disassociation if done hurriedly or by improperly trained workers.<br />

Unfortunately, there are no widely accepted scientific standards that<br />

are uniformly applied to the evaluation of commingled and disassociated<br />

remains. Forensic anthropologists with considerable experience with<br />

skeletal assemblages rely heavily on visual inspection of morphological<br />

traits. These experts review general shape and size of bones; shape, size,<br />

and location of articulating surfaces; discoloration of bones; pattern of<br />

ligament attachment; size and location of nutrient foramina; pattern of<br />

osteoarthritic lipping; deformation and remodeling of neighboring<br />

bones; pattern of changes in vertebral bodies, and age estimation in cases<br />

of re-associated upper and lower parts of the skeleton or skulls.<br />

Metric analysis has traditionally been limited to long bone length<br />

comparisons and comparisons of humeral and femoral head dimensions.<br />

More comprehensive osteometric analysis is being explored as a means<br />

of re-association, but this has yet to gain wide acceptance. However,<br />

rapid advances in DNA technology now make it more feasible and<br />

cost-effective to make bone-to-bone comparisons in the re-association<br />

effort.<br />

In addition to presenting an overview of the usefulness of<br />

traditional morphological trait analysis in assessing a Bosnian skeletal<br />

population, this paper will present the results of a limited number of<br />

bone-to-bone DNA comparisons to independently verify the forensic<br />

scientists’ expert opinions.<br />

Forensic Anthropology, Commingling, Human Identification<br />

H20 The Influence of Large-Scale DNA<br />

Testing on the Traditional Anthropological<br />

Approach to Human Identification:<br />

The Experience in Bosnia and Herzegovina<br />

Ana Boza Arlotti, PhD*, Edwin F. Huffine, MS, and Richard J.<br />

Harrington, PhD, International Commission on Missing Persons,<br />

Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

The purpose of this presentation is to review the impact of<br />

large-scale DNA testing on the practice of forensic anthropology in Bosnia<br />

and Herzegovina. The attendee will learn about the approaches adapted<br />

by forensic anthropologists in this region as they gain “instant feedback”<br />

from the DNA results and use the information to refine their techniques.<br />

The identification of the mortal remains of thousands of individuals<br />

who disappeared during the 1992-1995 war in Bosnia and Herzegovina<br />

(BiH) represents the most ambitious project of its kind. Since its creation<br />

in 1996, the International Commission on Missing Persons (ICMP) has<br />

worked in close cooperation with local commissions established in the<br />

Bosnian Federation and the Serbian Republic of Bosnia to recover and<br />

identify the missing, and bring closure for the loved ones of the missing.<br />

A large database for mortal remains recovered from mass graves and<br />

other sites has been created using traditional approaches in anthropology,<br />

pathology, and police investigations. However, despite the fact that thousands<br />

of remains have been recovered since 1996, and intensive efforts to<br />

identify these persons have been attempted, only a limited number of positive<br />

(as opposed to circumstantial) identifications had been achieved until<br />

recently. As ICMP DNA laboratories became fully operational in 2002,<br />

the sudden increase in DNA matches leading to positive identifications has<br />

created new roles and opportunities for forensic anthropologists.<br />

One misconception regarding DNA-led identifications is that once a<br />

DNA match is made, then a positive identification automatically follows.<br />

This is far from true: it is imperative that traditional forensic scientists<br />

review the tentatively identified remains and related evidence to ensure<br />

that the match is valid.<br />

With large-scale DNA matching for skeletal remains, the anthropologist<br />

receives a wealth of feedback on many cases in a short period. In<br />

reviewing the DNA evidence along with the biological profile (age, sex,<br />

stature, etc.) generated during the postmortem examination, the<br />

anthropologist is also receiving feedback on his or her own abilities to<br />

assess the human skeleton. This allows for improving one’s skills in creating<br />

biological profiles, but appropriate measures must be in place to<br />

ensure that circular reasoning and unconscious bias are eliminated. This<br />

is particularly important for age-at-death assessments, which can be highly<br />

subjective. By having more than one forensic expert review each case and<br />

by using multiple lines of evidence, proper safeguards are introduced to<br />

ensure that the traditional forensic techniques and the DNA results are<br />

properly integrated to ensure the highest degree of confidence in the identification<br />

process.<br />

Forensic Anthropology, Human Identification, DNA<br />

H21 Age-Related Changes in the<br />

Adult Male Vertebral Column<br />

Piotr Drukier, MS*, Nermin Sarajlic, PhD, and Eva E. Klonowski, PhD,<br />

International Commission on Missing Persons, Alipasina 45a, Sarajevo,<br />

Bosnia and Herzegovina<br />

This paper introduces a method for improving age-at-death estimates<br />

in the adult human male skeleton using progressive morphological<br />

changes in the vertebral column. Results of a preliminary descriptive<br />

analysis of 100 adult male skeletons of known ages for changes in three<br />

vertebral traits will be presented.<br />

541 * Presenting Author


Although there are currently many methods of age assessment<br />

available to forensic anthropologists, limited research has been conducted<br />

on the systematic changes in the vertebral column (e.g., Albert and Maples<br />

1995). To the extent that such studies have been conducted, the focus has<br />

typically been on stages of vertebral ring epiphyseal union, and is<br />

therefore restricted to younger individuals.<br />

During the course of postmortem examinations of victims of recent<br />

conflicts in Bosnia and Herzegovina, it was noted that (1) pubic symphysis<br />

metamorphosis was less reliable for age assessment of individuals over<br />

about age 40, and (2) other age-related changes in the vertebral column<br />

aside from ring fusion seemed to be sufficiently widespread and<br />

progressive to warrant further documentation.<br />

Already well known to forensic anthropologists is that three aspects<br />

of vertebral morphology undergo noticeable change with age. First, the<br />

vertebral secondary centers, including the epiphyseal ring, appear during<br />

puberty and fuse to the centrum between about ages 17-25 (Bass 1972);<br />

second, the inferior and superior aspects progress from a well-organized,<br />

ridged configuration in younger individuals to an amorphous, often<br />

porotic appearance in older individuals; and third, the inferior and superior<br />

rims transition from “straight” to “wavy” (undulating) to sharply lipped<br />

with age.<br />

Also well known to forensic anthropologists is that morphological<br />

changes in the vertebral column are highly influenced by biomechanical<br />

stress and pathological conditions, and therefore can be highly individualized<br />

due to different individual life histories. These factors have limited<br />

the usefulness of the vertebral column in age assessments of adults in<br />

genetically and culturally diverse populations.<br />

However, in Bosnia and Herzegovina lower genetic diversity and<br />

greater similarity in lifestyles than in, say, the U.S., may contribute to<br />

more predictable rates of change in the vertebrae that allow for greater<br />

confidence in its relevance for age assessment. Although even in this<br />

population the contribution of vertebral morphological analysis to age<br />

estimation is relatively modest, it appears to be sufficient to warrant<br />

further research.<br />

Aging Technique, Human Identification, Forensic Anthropology<br />

H22 Lamendin’s and Prince’s Dental Aging<br />

Methods Applied to a Bosnian Population<br />

Nermin Sarajlic, MD MSc*, Eva E. Klonowski, PhD, Piotr Drukier, MSc,<br />

and Richard J. Harrington, PhD, International Commission on Missing<br />

Persons, Alipasina 45a, Sarajevo, Bosnia and Herzegovina<br />

This presentation will evaluate the application of simple dental aging<br />

techniques to a Bosnian population. This research project tests the<br />

accuracy of Lamendin’s aging method and Prince’s modification of the<br />

Lamendin method as applied to a Bosnian population. The sample<br />

consists of 400 teeth (incisors and canines) from 100 males of known age.<br />

Identification of skeletal remains benefits from the use of accurate<br />

aging techniques. One of the more promising of recently developed<br />

techniques is the Lamendin method for age determination of adults from<br />

single-rooted teeth (Lamendin et al 1992), as derived from a French<br />

population. The primary components of this method are measurements of<br />

periodontosis and transparency of the root. Lamendin proposed the<br />

following simple equation for age assessment: A = 0.18 x P + 0.42 x T +<br />

25.53 (where: A = age in years, P = periodontosis height / root height x<br />

100 and T = transparency height / root height x 100).<br />

While other, traditional aging techniques have limited accuracy for<br />

aging remains of older individuals, several studies have shown that<br />

Lamendin’s method yields very good results, especially for individuals<br />

between ages 40 – 70.<br />

Prince (2002) modified Lamendin’s method by adding root height<br />

(RH) to the equations for white and black males and females. The<br />

equation for white males is: A = 0.15 x (RH) + 0.29 x P + 0.39 x T + 23.17.<br />

* Presenting Author<br />

Prince clamed that inclusion of root height reduced the mean difference<br />

and therefore improved accuracy.<br />

Skeletal remains found in mass graves in Bosnia and Herzegovina<br />

present additional problems that can be addressed with improved age<br />

determination techniques. The remains are often commingled or incomplete,<br />

with skulls often separated from the rest of the skeleton. Therefore<br />

simple, quick, and accurate dental aging methods may facilitate the reassociation<br />

of crania and mandibles to postcranial elements.<br />

This research conducted on Bosnian remains from the recent war<br />

(1992 – 1995) might be helpful not only in the identification of the missing<br />

from the war, but for new forensic cases in Bosnia and Herzegovina<br />

as well.<br />

Forensic Anthropology, Human Identification, Dental Aging<br />

Technique<br />

H23 Impact of Heat and Chemical Maceration<br />

on DNA Recovery and Cut Mark Analysis<br />

Dawnie W. Steadman, PhD*, Jeremy Wilson, BS, Kevin E. Sheridan, MA,<br />

and Steven Tammariello, PhD, Department of <strong>Bio</strong>logy, Binghamton<br />

University, P.O. Box 6000, Binghamton, NY<br />

The goals of this presentation are to educate forensic anthropologists<br />

and pathologists about the impact of common maceration techniques on<br />

the interpretation of tool marks and recovery of DNA from human bone.<br />

Molecular genetics is a powerful tool in the forensic sciences, with<br />

bones increasingly utilized as sources of both genomic and mitochondrial<br />

DNA. Thus, anthropologists must be extraordinarily cognizant of how<br />

skeletal materials are handled and chemically treated while in their<br />

custody. Few jurisdictions require bone samples to be extracted prior to<br />

anthropological analysis, and there are instances in which a case review at<br />

a later point in time may require molecular identification. Although<br />

chemical preservatives, such as polyvinyl acetate (PVA), are no longer in<br />

wide usage among forensic anthropologists because of the deleterious<br />

affects on DNA quality, there are no studies known to the authors that<br />

examine the impact of an even more widespread anthropological protocol<br />

– maceration. Anthropologists employ a varying array of chemicals and<br />

temperatures in maceration protocols but the affects on DNA quality and<br />

quantity are currently unknown. In addition, the anthropologist must<br />

always be concerned about the impact of soft tissue maceration on the<br />

subtle signs of sharp trauma. Since sharp trauma may leave only superficial<br />

marks in bone, it is possible that chemical stripping of the<br />

periosteum may compromise the appearance of incisions and/or create<br />

postmortem damage that may complicate anthropological analysis.<br />

Therefore, the purpose of this study is to evaluate the affects of common<br />

maceration techniques on DNA degradation and cut mark integrity.<br />

In order to quantify the amount of mitochondrial and genomic DNA<br />

from both cortical and spongy bone, fresh pig (Sus scrofa) rib cage<br />

sections and upper forelimbs were utilized. Bone samples were taken for<br />

DNA analysis before and after maceration. To test cut mark integrity, a<br />

single researcher stabbed each set of remains twice and marked the end of<br />

the cut bone with a notch for later reference. The remains were macerated<br />

using a control of warm water (90°C) and multiple experimental procedures<br />

found in published and non-published sources, including: bleach<br />

solution, dish soap, and meat tenderizer, EDTA and papain, hydrogen peroxide<br />

solution, and alternative heating methods such as an incubator and<br />

microwave oven. Nonmetal tools and soft toothbrushes were used to<br />

gently remove loose tissue during the maceration process. Observations<br />

were taken of the texture of the meat and bones, odor, duration of procedure<br />

(in hours), and bone condition. The bones were allowed to air dry<br />

prior to examination.<br />

A number of variables were scored for each experiment, including<br />

the time to complete maceration, ease of maceration, overall bone quality,<br />

and integrity of the cut mark. DNA recovery was quantified by initial<br />

542


spectrophotometry (A230, A260/280), followed by fluorescence-activated<br />

quantification based upon the DNA amount per bone sample. Briefly, the<br />

DNA pools from each bone sample were labeled with the fluorescent<br />

intercalating agent SYBR gold (Molecular Probes, Eugene, Oregon) and<br />

overall amount of DNA was quantified using a FLA3500<br />

PhosphorImaging System (Fujifilm, Tokyo, Japan). While the extraction<br />

of any amount of DNA from bone is quite significant, the isolation of<br />

intact DNA is the ultimate goal. To address this vital point, two experimental<br />

methods were utilized to detect the quality of DNA in each bone<br />

sample, agarose gel electrophoresis and PCR amplification. Following<br />

extraction, intact genomic DNA will run as a single band on an agarose<br />

gel. The presence of multiple bands or smears on the gel signifies<br />

degraded DNA. PCR amplification using primers designed to two gene<br />

loci, one nuclear and one mitochondrial, were then used to confirm the<br />

quality of the extracted DNA.<br />

The results indicate that the type of maceration technique had little<br />

affect on sharp trauma observations (though bleach was problematic) but<br />

that the DNA recovery rate was negatively influenced by excessive heat<br />

and a number of chemical treatments. The most effective maceration<br />

methods that preserved DNA also proved to be the most economical. It is<br />

recommended that forensic anthropologists use conservative, nonaggressive<br />

maceration protocols in the likely event that the bones will be<br />

utilized as a source of molecular information.<br />

DNA, Sharp Trauma, Maceration<br />

H24 Two Miles and Nine Years From Home:<br />

The Taphonomy of Aqueous Environments<br />

Casey Shamblin, BA*, and Mary H. Manhein, MA, Department of<br />

Geography and Anthropology, Louisiana State University, Baton<br />

Rouge, LA<br />

The goal of this case study is to provide insight into how taphonomic<br />

factors can produce unusual wear patterns on human remains.<br />

The recovery of human remains from aqueous environments remains<br />

a complex topic due to the dynamic nature of the environment. Important<br />

to the interpretation of the trauma on the bones is having information<br />

regarding: spatial orientation, water temperatures, pH levels, water<br />

currents, and abrasiveness of the submerged environment. Various<br />

taphonomic forces that affect human remains in water are only beginning<br />

to be understood, especially with regard to the estimation of the postmortem<br />

interval and bone erosion patterns.<br />

On January 4, 2002, Louisiana State University Forensic<br />

Anthropology and Computer Enhancement Services (FACES) lab personnel<br />

were called to a small pond near a road in East Baton Rouge Parish.<br />

A concerned citizen observed what appeared to be the tail end of a car in<br />

the pond and phoned the police. Though various people had noticed the<br />

metal protruding from the water over the years, until that day, no one had<br />

informed law enforcement. Upon retrieval of the mud-filled car from the<br />

pond, human remains were found inside the mangled vehicle. The visible<br />

remains were taken to the LSU forensic anthropology laboratory for<br />

analysis. A few days later, LSU FACES lab personnel traveled to a local<br />

wrecker yard, the location of the retrieved car, in search of any additional<br />

remains. Due to the distorted nature of the vehicle, a thorough search of<br />

the car was impossible. Using the “jaws of life,” local firemen removed<br />

the top of the vehicle. This provided the FACES lab personnel complete<br />

access to the interior of the car. Additional human remains and personal<br />

items were recovered. Through analysis and 19-year-old dental<br />

radiographs, which were provided by a retired orthodontist, the remains<br />

were positively identified as a man who had disappeared almost nine years<br />

earlier.<br />

Other than one right intermediate phalanx of the foot, all bones below<br />

the waist were recovered. This was due to the spatial orientation of the<br />

lower legs. Various bones of the upper body were recovered. Since the<br />

windshield was destroyed, the elements of the body that were not present<br />

in the vehicle could have been lost through the windshield opening at the<br />

time of the accident or upon removal of the car from the pond. The<br />

dynamic environment of the pond also could have displaced some of the<br />

elements.<br />

Spatial orientation enhances or impedes taphonomic agents from<br />

affecting particular bone surfaces. In this case, the lower legs were<br />

protected from abrasive agents in the water by the leather boots the<br />

decedent was wearing. The boots were too short to protect the proximal<br />

tibiae and fibulae. The proximal ends of the fibulae were completely worn<br />

down symmetrically. Both tibiae also exhibited an interesting wear<br />

pattern. Each tibial plateau was completely worn away with the exception<br />

of a small lateral portion of the plateau. Symmetrical erosion was also<br />

evident on the innominates. The innominates were both worn completely<br />

away from the iliac crest down to the iliac pillar. Both ischiopubic ramii<br />

were also missing. Symmetrical erosion of these elements was caused by<br />

a combination of abrasion and spatial orientation. Abrasive agents in the<br />

water moving through the vehicle over a period of almost nine years<br />

attributed to this phenomenon. Another possible factor in the symmetrical<br />

abrasion of the innominates was the spatial orientation of the bones<br />

rubbing against the fabric of the car seat.<br />

All human remains recovered from the vehicle exhibited varying<br />

degrees of wear and erosion from the aqueous environment. The unique<br />

erosion that occurred in this case was a result of abrasion, spatial orientation,<br />

and dissolution. This case study demonstrates how an aqueous<br />

environment can uniquely alter bone. By understanding the effects that<br />

aqueous environments can have on human remains, the forensic anthropologist<br />

is able to more accurately interpret the trauma that is evident on<br />

bones. This microenvironment provides a distinctive look at the<br />

taphonomy that can affect remains in a submerged vehicle.<br />

Taphonomy, Aqueous Environments, Forensic Anthropology<br />

H25 Dissolving Dentition: The Effects of<br />

Corrosive and Caustic Agents on Teeth<br />

Joy E. Lang, BSc, BA*, and Tosha L. Dupras, PhD, Department<br />

of Sociology and Anthropology, University of Central Florida,<br />

Orlando, FL<br />

By attending this poster presentation, the participant will become<br />

familiar with the chemicals that can be used to erode or dissolve the tissues<br />

of the dentition. This research provides an explanation of the chemical<br />

break down of the dentition in relation to masking identity.<br />

With the evolution of forensic technology, methods for positive identification<br />

are becoming increasingly accurate. New methods allow for a<br />

corpse to be identified at almost any point of decomposition. The new<br />

technology and methodology has led to a more creative and resourceful<br />

criminal, and as criminals become more forensically aware their methods<br />

of disposal change. Although few cases have been documented where<br />

chemicals are the mode of body disposal, this method provides a seemingly<br />

fool proof and effective approach to disposal. Several household<br />

chemicals contain harmful agents that when used can result in the masking<br />

of identity. The purpose of this pilot study is to indicate which chemicals<br />

can be used in order to erode or dissolve the dentition, and what type of<br />

damage each chemical causes to dentition.<br />

A local oral surgeon provided 20 adult human anterior and posterior<br />

teeth. Quantitative measurements of weight (g), crown width (mm), and<br />

tooth length (mm) were obtained for each tooth. Qualitative observations<br />

were recorded using digital imaging as well as photographs under a stereoscopic<br />

microscope. A small hole was drilled through the root of each tooth<br />

to allow for a wire to be inserted through the tooth. The five chemicals<br />

used in this project were muriatic acid (hydrochloric acid), sulfuric acid,<br />

potassium hydroxide, and two concentrations of sodium hydroxide, purchased<br />

through a local home improvement store and Fisher Scientific.<br />

543 * Presenting Author


The molar concentration of the chemicals purchased through Fisher<br />

Scientific (potassium hydroxide, sodium hydroxide and sulfuric acid) was<br />

similar to the concentrations found in common household cleaning<br />

products. Eighty milliliters of each chemical was poured into a 100 ml<br />

beaker and assigned a letter. Four teeth were submerged into each beaker,<br />

with the chemical solution only covering the enamel portion of the tooth,<br />

thereby mimicking the surfaces that would normally be exposed had the<br />

teeth remained in the alveoli. To quantify and record the corrosive effects<br />

of the chemicals, measurements and images of the dentition were taken at<br />

two-hour intervals for a total of 8 hours. During this time the chemical<br />

solutions were not replenished.<br />

Although all the chemicals tested demonstrated some level of dental<br />

destruction, the muriatic acid (hydrochloric acid) proved to be the most<br />

effective chemical in this experiment. Interestingly, the dentition<br />

submerged in muriatic acid showed a dramatic decrease in weight during<br />

the first two measurement periods. The authors hypothesize that this<br />

decrease in weight slowed as the chemical reaction subsided and the<br />

chemical degraded due to air contact and evaporation, suggesting that the<br />

most damage occurs during the first part of contact. After two hours of<br />

submersion the enamel of the dentition exposed to muriatic acid had dissolved,<br />

leaving the exposed dentin to slough off in sheets with only the<br />

organic component remaining. The dentition submerged in sulfuric acid<br />

showed some etching on the enamel surface, and at the end of the experiment<br />

the enamel surface had a white, powdery appearance (most likely<br />

the result of the breakdown of inorganic components of the enamel). The<br />

dentition exposed to the potassium and sodium hydroxide solutions<br />

showed minimal to no damage. Of all the chemicals tested in this pilot<br />

project the dentition exposed to muriatic acid left distinguishing marks and<br />

unique pattern on the dentition. With further investigation and analysis it<br />

may be possible to specifically isolate these characteristics as being unique<br />

to muriatic acid as well as other concentrations of hydrochloric acid.<br />

Corrosive Substances, Dentition, Masking Identity<br />

H26 Rituals Among the Santeria: Contextual<br />

Clues and Forensic Implications<br />

Heather A. Walsh-Haney, MA*, John J. Schultz, MS, and Anthony B.<br />

Falsetti, PhD, C.A. Pound Human Identification Laboratory/Department<br />

of Anthropology, University of Florida, P.O. Box 112545, Gainesville,<br />

FL; and Reinhard W. Motte, MD, Miami-Dade County, District 11 Office<br />

of the <strong>Medical</strong> Examiner, Number One on Bob Hope Road, Miami, FL<br />

The purpose of this paper is to present contextual and taphonomic<br />

evidence to identify the ritualistic use of human skeletal remains and other<br />

artifacts found in association with Santeria shrines. In addition, information<br />

regarding the geographic distribution and historic beginnings of<br />

the Santeria religion are presented.<br />

Originating in Cuba, the Santeria religion has been operationally<br />

defined as a syncretic fusion of Afro-Caribbean religions and Roman<br />

Catholicism. Development of the Santeria religion began in Cuba during<br />

the early 16th century when Spanish colonialists forcefully acquired slaves<br />

from Nigeria, the Congo, the Dominican Republic, and Haiti. In particular,<br />

slaves originating from the Yoruba region of Nigeria and to a lesser<br />

extent the Bantu from the Congo are considered to have been the major<br />

carriers of the African religious beliefs and practices that contributed to the<br />

Santeria religion.<br />

Non-practitioners often describe the Santeria religion as a religion<br />

that is primarily based upon oral traditions, rituals, and animal sacrifices.<br />

Yet, growing conservatism among the Santeria has shown that many<br />

* Presenting Author<br />

regard themselves as Catholic, having a belief system that is in line with<br />

“the ethical principles of Christianity” (Lefever 1996:2). Nevertheless,<br />

practitioners still seek Santeria priests (santero) in order to receive relief<br />

from physical pain, mental anguish, and protection from evil. The type of<br />

ceremony performed by the santero depends upon the type of problem to<br />

be solved: minor problems may be handled through the use of ritual<br />

objects, music, movement, and even esoteric words. Conversely, major<br />

problems require the invocation of the most important deities, necessitating<br />

additional propitiation including animals, rum, food, cigars, and<br />

water (Wetli and Martinez 1981). Paleros or mayomberos who perform<br />

rituals that stem from the black magic sect of the Santeria (the Palo<br />

Mayombe) are said to invoke injuries and deaths. Such rituals require the<br />

use of human skeletal remains.<br />

According to González-Whippler (1994) skeletal elements from<br />

different ancestral groups are associated with special abilities. In<br />

particular, the crania of Whites and Asians are thought to invoke special<br />

powers. These associations suggest that certain skeletal material may be<br />

more desirable and should have a different frequency if the practitioners<br />

are truly able to select skeletal material for its magical powers.<br />

Since the Mariel boatlift in 1980, the numbers of Santeria<br />

practitioners in the U.S. has increased. Researchers have estimated that as<br />

many as 300,000 practitioners live in New York City and nearly 70,000<br />

practitioners live in Florida (particularly Miami and Tampa) with clusters<br />

of Santeria practitioners noted in Detroit, Chicago, Atlanta, Gary<br />

(Indiana), Savannah, and several cities in California (Lefever 1996). As<br />

such, medical examiners and law enforcement agencies may encounter<br />

Santeria shrines and their attendant problems regarding the origin and<br />

identification of the human remains with increasing frequency. Therefore,<br />

illustrative cases from the C.A. Pound Human Identification Laboratory<br />

(CAPHIL) and the Florida District 11 Office of the <strong>Medical</strong> Examiner are<br />

presented in order to shed light on the associated contextual data that can<br />

be used to determine whether the human remains used in religious ritual<br />

settings are of contemporary medico-legal significance. Beginning with<br />

casework conducted by Drs. Wetli and Martinez (1981), cases presented<br />

in the seminal article were reexamined, supplemented by at least thirty<br />

additional cases from the District 11 Office of the <strong>Medical</strong> Examiner and<br />

CAPHIL. Specifically, each specimen was examined for taphonomic<br />

clues of their origin and cataloged associated artifacts when the<br />

information was made available.<br />

The skulls, crania, and occasional postcranial bones were recovered<br />

from a variety of contexts, including cemeteries, wooded areas, and<br />

homes. In some instances the human bones were found in association with<br />

black iron caldrons (called nganga) or wrapped in cloth or burlap bags and<br />

as centerpieces of altars. Artifacts in association with the skeletal material<br />

included knives, chains, locks, nails, beads, seashells, coins, candle wax,<br />

and mercury. The most commonly associated nonhuman bones included<br />

bird (chicken, parrot, and pigeon), bat, lizard, cat, turtle, fish, deer, pig,<br />

sheep and goat. Chicken feathers and blood were also noted on many of<br />

the bones and artifacts. No pattern was found in the application of chicken<br />

blood and feathers to any of these ritual items. Many of the human bones<br />

were acquired through grave robberies or biological and/or teaching specimens.<br />

Citations:<br />

Gonzalez-Whippler, M (1994) Santeria: the Religion, Faith, Rites,<br />

Magic. St. Llewellyn Publications, St.<br />

Paul, Minn.<br />

Lefever, H.G. (1996) When the saints go riding in: Santeria in Cuba and<br />

the U.S. Journal for the<br />

Scientific Study of Religion 35: 318-330.<br />

Wetli, C.V., and R. Martinez (1981) Forensic sciences aspects of Santeria,<br />

a religious cult of African origin.<br />

Journal of Forensic Sciences: 26 (3): 506-514.<br />

Santeria, Skeletal Remains, Artifacts<br />

544


H27 Frozen Human Bone:<br />

A Histological Investigation<br />

Mariateresa A. Tersigni, MA*, Department of Anthropology, University<br />

of Tennessee, 250 South Stadium Hall, Knoxville, TN<br />

The goal of this presentation is to determine the histological effects<br />

of freezing on human bone.<br />

A plethora of research has been produced concerning the fate of<br />

human bone when it has been exposed to various external stressors. These<br />

include taphonomic processes such as natural weathering, decomposition,<br />

and burning studies. Each study attempts to aid an investigator by trying<br />

to determine, for example, what exactly a human skeleton would look like<br />

after it had been exposed to an accelerated fire for thirty minutes. The<br />

result of this type of research may afford an investigator the opportunity to<br />

analyze the evidence at the crime scene and compare it to the research in<br />

order to draw educated conclusions about the actual evidence. This is not<br />

to imply that all of the questions of investigators have been answered.<br />

Rather, each new case brings more questions and more variables that need<br />

to be taken into consideration.<br />

One such question asks if there is a way to decipher whether a body<br />

or body parts have been previously frozen by looking at the skeletal<br />

elements. The circumstances that surround this question suggest that the<br />

victim would have been frozen for some time and was taken out of the<br />

freezing element and was allowed to thaw and decompose to the state of<br />

skeletonization. Would it be possible at this point to determine whether or<br />

not this body had indeed been frozen? Or, at a more basic level, does<br />

freezing damage the histological integrity of bone to prevent osteon aging<br />

ability.<br />

Few studies incorporate both the variable of low temperatures and<br />

human remains. However, two such studies focus on the decomposition<br />

of the soft tissue after a freeze thaw event, but none have focused on the<br />

bone itself. While there is no evidence that freezing can change the gross<br />

morphology, there has been no research concerning whether or not the<br />

microscopic structure of the bone would be altered as a result of the<br />

freezing process. This research will attempt to determine whether bone<br />

that has been previously frozen would be histologically distinguishable by<br />

looking for a patterned anomaly, such as patterned cracking.<br />

It is possible that the microscopic structure may indicate some<br />

changes due to the blood vessels, which run throughout the bone allowing<br />

for communication and nutrient flow between bone cells, undergoing the<br />

freezing process. Freezing allows for the expansion of fluids (including<br />

bodily fluids) and possibly for the forced increase in vessel diameter that<br />

may be evident, microscopically, in a section of frozen bone as small fractures<br />

in the bone microstructure.<br />

In order to determine whether the freezing can be identified within<br />

the bone microstructure, it is necessary to freeze several human bone sections.<br />

After the sections have been frozen for twenty-one days, they are<br />

allowed to thaw in accordance with the circumstances surrounding the<br />

question. The samples are thin sectioned in order to view their<br />

microstructure. This analysis affords the opportunity to look for changes<br />

in the microstructure that may be indicative of the freezing process.<br />

Statistically, the results of the microscopic analysis did not demonstrate<br />

significant differences in the histology of frozen and non-frozen<br />

human bone. The changes that were noted in the test samples (C samples)<br />

do indicate that some fracturing may occur due to the freezing process,<br />

although this fracturing may not be patterned nor may it occur systematically<br />

throughout the frozen bone. While this evidence of physical changes<br />

caused by liquid expansion is encouraging to note, the cracking was not<br />

consistently present throughout the sample set, nor, when found in a<br />

section of bone, was the cracking present around each of the haversian<br />

canals within the section.<br />

Even though there is not a consistent pattern to the fractures noted in<br />

the sample set, this should not rule out some histologically identifiable<br />

changes associated with freezing. It is clear that it is quite possible that<br />

bone sections may undergo noticeable changes due to the freezing process,<br />

although this experiment was unable to ascertain such information using<br />

light microscopy. The second part of this experiment is to view the<br />

specimens under a scanning electron microscope to analyze the bone<br />

surface for evidence of freezing.<br />

Bone Histology, Freezing Process, Microscopy<br />

H28 The Effect of Heat Associated With<br />

Maceration on DNA Preservation in<br />

Skeletal Remains<br />

Krista E. Latham, BS*, Carlos J. Zambrano, BA, and Mary Ritke, PhD,<br />

Department of <strong>Bio</strong>logy, University of Indianapolis, 1400 East Hanna<br />

Avenue, Indianapolis, IN<br />

The goal of this presentation is to present to the forensic anthropological<br />

community the differences in skeletal CNA preservation before<br />

and after exposure to heat by maceration of soft tissue.<br />

Genetic analysis is becoming an important aspect of the individual<br />

identification process in the field of forensic science. The discovery that<br />

DNA can be extracted from skeletal remains is becoming significant to<br />

forensic anthropologists because it complements identification by osteological<br />

analysis. The maceration of soft tissue is an important step in<br />

skeletal analysis because the removal of soft tissue makes signs of trauma<br />

and individualizing characteristics easier to see. However, the same<br />

taphonomic forces that affect bone preservation also affect the preservation<br />

of the DNA contained within the skeletal material. Heat is a factor<br />

that is known to increase the degradation process by accelerating the rate<br />

of the chemical reactions responsible for human decomposition. This<br />

poster will present the differences in skeletal DNA preservation before and<br />

after the process of removing soft tissue by boiling, and show whether<br />

these differences are significant in obtaining the amount of DNA needed<br />

for genetic analysis.<br />

For genetic analysis, 15 Sus scrofa (pig) femora were sampled before<br />

and after 6 hours of simmering in water, 70 ml of Borax and 100 ml of<br />

bleach at 95°C. An additional 13 pig femora were sampled for genetic<br />

analysis before and after 10 hours of simmering in water, 70 ml of Borax<br />

and 100 ml of bleach at 95°C. Water was periodically added to keep the<br />

bones submerged. Two time spans were chosen in order to investigate a<br />

wider range of heat exposure. The femora were collected from pigs<br />

displaying varying stages of natural decomposition, ranging from 1 month<br />

to 1 year of surface exposure, which would be similar to the condition of<br />

skeletal remains that a forensic anthropologist would receive for analysis.<br />

Pig remains were chosen because the decomposition process and bone<br />

microstructural make-up are similar to that of humans, and because<br />

specimens are easily obtained for forensic studies.<br />

A pig specific DNA probe was used to determine DNA quantification<br />

by luminescent detection using CDP-Star chemiluminescent techniques.<br />

Chemiluminescent detection relies on probes designed to bind to the DNA<br />

region of interest. Primers for a pig specific DNA sequence of 374 base<br />

pairs in length, a portion of the Pre-1 porcine short interspersed nuclear<br />

element, were designed to allow abundant amplification of the target DNA<br />

sequence. Short and long interspersed nuclear elements comprise over a<br />

third of the genome in higher eukaryotes and are common target sites for<br />

PCR based genetic fingerprinting. The Pre-1 porcine short interspersed<br />

nuclear element is found on several pig chromosomes at a relatively high<br />

copy number, and provides a tool for indirectly quantifying DNA<br />

recovered from pig bones. The Pre-1 DNA probe was produced by PCR<br />

amplification of DNA isolated from the white blood cells of freshly drawn<br />

pig blood obtained from a local veterinarian. The PCR product was<br />

crosslinked to an alkaline phosphatase enzyme that converts a dioxetane<br />

phosphate substrate to a dioxetane product. This conversion emits photons<br />

of light, which are captured on X-Ray film and used to determine the<br />

545 * Presenting Author


amount of DNA in the sample. A greater luminescent intensity indicates<br />

a larger amount of DNA. Known amounts of DNA from the pig white<br />

blood cells were quantified and used to construct a standard curve by slot<br />

blot analysis. The skeletal DNA samples were then quantified by slot blot<br />

analysis and compared to the standard curve for analysis.<br />

Temperature increases are known to accelerate the degradation rate<br />

of DNA by destabilizing hydrogen bonds, and increase the probability of<br />

strand breaks and cross-link formation. Comparing the amount of DNA<br />

obtained before and after maceration is of value to forensic anthropologists<br />

in demonstrating if the heat generated by the boiling of skeletal<br />

remains is great enough to affect the amount of skeletal DNA available for<br />

future genetic analysis.<br />

Skeletal DNA, Maceration, Genetic Analysis<br />

H29 Using Restriction Enzymes to Reduce<br />

the Inhibitory Properties of Bacterial<br />

DNA on PCR Amplification of Human<br />

DNA Sequences<br />

Janene Curtis, BS*, Archeology and <strong>Forensics</strong> Laboratory, and Christine<br />

M. Turk, BS, and Mary K. Ritke, PhD, <strong>Bio</strong>logy Department, University<br />

of Indianapolis, 1400 East Hanna Avenue, Indianapolis, IN<br />

This presentation suggests a protocol to successfully amplify a<br />

human DNA sequence (huTh01) from historic skeletal DNA samples that<br />

previously produced little or no Polymerase Chain Reaction (PCR) amplification.<br />

The results of this study demonstrate the potent inhibitory effects<br />

of DNA, obtained from a mixed population of soil microorganisms, on<br />

PCR amplification of huTH 01 (a short tandem repeat or STR) from<br />

human skeletal DNA. However, the PCR-inhibitory properties of soil<br />

microbial DNA was reduced by hydrolysis with a restriction enzyme.<br />

When DNA is recovered from bone samples, PCR amplification of<br />

specific informative DNA sequences is often inhibited. Difficulties in<br />

amplification of DNA may be due to diffusible inhibitors from the soil and<br />

surrounding burial environment (that co-purify with the skeletal DNA) or<br />

non-diffusible inhibition (due to covalent modification of the template<br />

DNA). One hypothesized source of diffusible inhibition is non-human<br />

DNA contamination whose source is predominantly the bacteria that<br />

colonized the bone during decomposition. The circular bacterial DNA<br />

chromosome is less prone to degradation than linear human chromosomal<br />

DNA, and from bone samples is usually purified in great excess compared<br />

to human DNA. The physical presence of the abundant bacterial DNA<br />

could conceivably interfere with PCR amplification by 1) reducing the<br />

ability of a human-specific primer to anneal to its complementary<br />

sequence (mispriming on the abundant bacterial DNA); and 2) saturating<br />

the active sites of the Taq DNA polymerase making little or no enzyme<br />

available for binding to the minute amounts of human DNA present.<br />

DNA extracted and purified from a mixed population of soil microorganisms<br />

(predominantly bacteria) was added to contemporary human<br />

DNA in a series of graduated ratios: 0.76 - 9.5 mg bacterial DNA was<br />

added to 0.112 mg of human DNA. The combined human and bacterial<br />

DNA samples were then PCR amplified using a primer pair designed to<br />

select for amplification of the short tandem repeat, TH 01 (huTH 01).<br />

PCR products were resolved by electrophoresis through a 10% poly<br />

acrylamide gel and visualized by ethidium bromide staining. The results<br />

indicated that DNA from a mixed population of soil bacteria was a potent<br />

inhibitor of PCR amplification from human DNA templates. All masses of<br />

bacterial DNA tested resulted in complete inhibition of PCR amplification<br />

of huTH 01.<br />

In an attempt to remove the inhibitory effects of the bacterial DNA<br />

on the PCR amplification of huTH 01, the restriction enzyme Pst 1 was<br />

used to hydrolyze the bacterial DNA before adding it to human DNA in<br />

the pre-PCR reaction cocktail. Aliquots of human DNA were combined<br />

with different amounts of either hydrolyzed bacterial DNA and or intact<br />

* Presenting Author<br />

bacterial DNA. At a ratio of 2.7:1 (mg: mg) of hydrolyzed bacterial DNA<br />

to human DNA, amplification of hu TH 01 was not inhibited. At this same<br />

ratio, intact bacterial DNA was inhibitory to huTH 01 amplification.<br />

When bacterial DNA: human DNA ratios fell below 1.3:1 (mg: mg), the<br />

bacterial DNA did not inhibit PCR amplification of huTH 01 whether<br />

hydrolyzed or intact. When bacterial DNA to human DNA ratios of 11.4:1<br />

(mg: mg) were tested, both hydrolyzed and intact bacterial DNA inhibited<br />

PCR amplification of huTH 01. Thus, there is a window at which<br />

hydrolysis of the bacterial DNA with Pst 1 will enable PCR amplification<br />

to occur.<br />

To test the potential of pretreatment of historic DNA templates with<br />

restriction enzyme, human DNA from three different historic bone<br />

samples was hydrolyzed using Pst 1 restriction enzyme. This DNA, along<br />

with control bone DNA not treated with Pst 1, was subjected to PCR<br />

amplification of huTH 01. Amplification occurred for all three samples of<br />

bone DNA samples tested; however, more huTH 01 was amplified after<br />

pretreatment of the bone DNA with Pst 1.<br />

These results have a practical application. Often when specific,<br />

informative DNA sequences cannot be amplified using bone DNA as a<br />

template, the amount of DNA used in the PCR reaction is decreased, to try<br />

to reduce or eliminate inhibitory effects of diffusible inhibitors such as<br />

foreign DNA. However, this method also dilutes the already limited<br />

amount of human DNA that can be amplified; if the human DNA is highly<br />

degraded to begin with (as is the case with historic samples) dilution may<br />

reduce the templates below the lower limit needed for PCR amplification.<br />

Attempts to separate the abundant bacterial DNA from the pg quantities of<br />

human DNA introduce the risk of contamination with contemporary DNA<br />

(from additional handling of samples) or the loss of the historic human<br />

DNA. However, results suggest that with the use of restriction enzymes,<br />

the original amount of bone DNA may be maintained or even increased;<br />

therefore a better chance of amplification and/or a higher yield of PCR<br />

product may be obtained.<br />

Historic DNA, DNA Profiling, PCR Inhibitors<br />

H30 Fire Scene Management Strategies<br />

for the Recovery of Human Remains<br />

From Severe Vehicle Fires<br />

Alan Price, MA*, Associate Director, Southern Institute of Forensic<br />

Science, Regional Service Office, 7224 West Canberra Street Drive,<br />

Greeley, CO; and Michael Britt, BS, Supervisor of Investigations,<br />

District 20, <strong>Medical</strong> Examiner’s Office, 3838 Domestic Avenue,<br />

Naples, FL<br />

This presentation proposes operational guidelines for scene<br />

management and recovery of victims of fatal vehicle fires.<br />

Fatal vehicle fires pose unique challenges to fire investigators,<br />

medical examiners, anthropologists, odontologists, and law enforcement<br />

personnel. The presenters strongly endorse initiating this investigative<br />

function as a multidisciplinary team approach. This presentation proposes<br />

operational guidelines for scene management and recovery of victims of<br />

fatal vehicle fires. The key to all fire death investigations is the preservation<br />

of the scene and the documentation of evidence associated with the<br />

causation of the fire. Prior to conducting the removal process of fire<br />

victims, it is vitally important to remember that the fire may have been<br />

ignited to conceal elements of a crime or to make the death appear<br />

accidental. Suicide by incineration is an uncommon modality of selfdestruction<br />

but there are documented instances of victims who prepare the<br />

scene to give the appearance of an accidental death. Death investigators<br />

are encouraged to approach all fire related deaths as homicides until they<br />

prove otherwise. These guidelines are presented to minimize postmortem<br />

trauma that may occur during the removal of a decedent from within the<br />

confines of a vehicle. Additionally, these steps are outlined to increase the<br />

accuracy of determining cause and manner of death, the origin of the<br />

546


vehicle fire and significantly contribute to the identification of the<br />

vehicle’s occupant(s). The following guidelines are proposed to outline<br />

procedures for recovering fatally burned victims of vehicle fires.<br />

1. Quality scene maintenance begins with appropriate fire suppression.<br />

A fog or mist water application is suggested, rather than a powerful full<br />

stream of water. This is highly likely to reduce the amount of postmortem<br />

trauma to victim(s) inside the vehicle. Educate fire departments that if<br />

there is an obviously deceased individual(s) grossly burned in a vehicle<br />

fire, use the minimum amount of low-pressure water to extinguish the fire.<br />

2. Subsequent to fire suppression a vehicle should be allowed to cool,<br />

and collected moisture should be permitted to drain from the vehicles<br />

interior. Fumes from burnt plastics, vinyls, paint and other chemicals<br />

should be given an opportunity to dissipate. This reduces the potential<br />

hazard of investigatory personnel inhaling toxic fumes.<br />

3. The presenters have discovered that moving burnt vehicles to a<br />

secure environment, while the victim(s) remained inside, has produced<br />

considerable destruction of evidence and postmortem trauma to the<br />

victim(s). If the vehicle is in a location where it can be left for a brief<br />

period of time, it is highly recommended that the vehicle not be moved,<br />

but a large tarp be placed over the vehicle and a guard or police officer<br />

stationed to maintain scene integrity.<br />

4. As in most investigations comprehensive quality photography of the<br />

scene is paramount. Every step of the recovery process should be photographed.<br />

Photographs taken with a wide-angle lens may yield clear evidence<br />

of a burn pattern as well as other details as to the fires origin.<br />

5. Leave victim(s) in place, and have fire personnel cut away the side or<br />

both sides of the vehicle. This allows safe access for personnel removing<br />

victims and reduces postmortem destruction to the victim(s) body while<br />

being removed.<br />

6. Notify a forensic anthropologist as soon as possible and request that<br />

they respond to the scene to assist in the recovery and removal of the<br />

victim(s). This is a crucial step in the recovery process, since severely<br />

charred human remains may be very difficult to distinguish from the<br />

various burnt debris from inside a vehicle.<br />

7. Before anything is actually removed from the vehicle being<br />

examined, collect carpet and seat material samples from around the body<br />

of each victim. If any of the victim’s clothing remains, samples should be<br />

collected and tested for the presence of accelerates. Liquids flow to the<br />

lowest level and ignitable liquids may “pool” in the clothing or matrix<br />

directly under the body. All samples from fatal vehicle fires should be<br />

placed in a glass jar, which is then placed into a clean, airtight metal container.<br />

A container should never be more than half full as a vapor space is<br />

vital to analysis.<br />

8. If victim(s) have been fused, or are adhering to the seat cushions or<br />

spring structure of the vehicle seats, cut the seats loose with the victim still<br />

in place. The seat can be removed and transported to the medical<br />

examiner’s office without disarticulating the victims.<br />

9. Human remains should not be placed into body bags after removal.<br />

They can be placed on a sheet of plywood sheet covered with a clean,<br />

white sheet. Placing victims in conventional body bags after removal is<br />

likely to produce additional postmortem damage to the skeletal structure<br />

of the victim. Every effort should be made to transport the victim(s) to the<br />

medical examiner’s office in the least disturbed condition possible.<br />

10. Each decedent from a vehicle fire should undergo full-body X-Rays.<br />

This is necessary to assess whether elements of a crime may exist, such as<br />

bullets or shotgun pellets for example. Additionally, jewelry or body artifacts<br />

that might confirm the identity of the individual(s) may remain undetectable<br />

without the assistance of radiological examination.<br />

11. Since most victims of extreme vehicle fires are identified solely by<br />

their dentition, extra caution should be exercised to preserve a victim’s<br />

dental structure. The integrity of exposed teeth can somewhat be safeguarded<br />

by applying an aerosol adhesive.<br />

12. After the fire victims have been removed, the vehicle should then<br />

continue to be checked by fire investigators to confirm the cause and<br />

origin of the fire.<br />

13. Every effort should be made not to process vehicle fires with human<br />

remains inside at night unless it is absolutely imperative. Fragments of<br />

bone, jewelry artifacts, as well as other significant evidence is likely to be<br />

overlooked due to inadequate lighting.<br />

Both presenters feel strongly that the above-mentioned guidelines<br />

will facilitate higher quality, more comprehensive fatal fire investigations.<br />

Fire department education as to fire suppression strategies where there are<br />

fatalities present is imperative, as well as establishing written procedural<br />

guidelines outlining the management of vehicle fire fatalities. It is<br />

suggested that a multi disciplinary approach to the scene management,<br />

victim recovery and identification of victims be initiated. It is also<br />

recommended that all entities involved in these types of investigations be<br />

made aware of the importance of a forensic anthropologist in the recovery<br />

process of human remains.<br />

Forensic Anthropology, Fire Suppression, Suicide by Incineration<br />

H31 Peculiar Marine Taphonomy Findings:<br />

Preservation of Human Remains as a<br />

Result of Submersion in Sequestered<br />

Environments<br />

Giancarlo Di Vella, MD*, Carlo Pietro Campobasso, MD, PhD, and<br />

Francesco Introna, MD, Section of Legal Medicine, University of Bari,<br />

Policlinico, piazza G. Cesare, Bari, Italy<br />

The purpose of this presentation is to present, by means of text and<br />

photographs, the taphonomic model of decomposition observed in 52<br />

human remains after 7 months at 800 meters underwater.<br />

Due to a growing need for information the taphonomic study of<br />

human remains recovered from the sea in order to interpret perimortem<br />

and postmortem modifications and to estimate time since death has<br />

emerged. Forensic goals that may be advanced by determining individual<br />

identity, place of death, and cause of death, need a model of decompositional<br />

changes or of preservation and a theoretical understanding of marine<br />

ecology specific to the environmental context where the remains were<br />

found. A search for marine death data including human remains and their<br />

recovery yielded very few studies or case reports in literature. This<br />

presentation reports the findings of medical examinations of 52 human<br />

bodies recovered in October 1997, after seven months spent 800 meters<br />

underwater in the Adriatic Sea. Victims of the Kater I. Radez, the boatpeople<br />

sank following a collision with an Italian Navy warship that was<br />

patrolling the Italian sea-frontiers (March 1997). In 1999, during the<br />

AAFS annual meeting (abstract G78), the authors discussed the model for<br />

the organization and operations that were used by the medical examiner’s<br />

team to recover the bodies and establish personal ID of all the victims.<br />

The environmental conditions were: temperature 4°C, a sandy and muddy<br />

seabed, high pressure (81 ata), salinity 35%, oxygen 0.5 ml/l, darkness,<br />

current running from north-east to south-west (velocity: 10-15<br />

cm/second). The bodies were found in each of four holds of the wreck: 8<br />

in the steering-compartment, 24 in the bow, 9 in the stern, 10 in the middle<br />

hold, 1 in the engine room. In addition, 1 completely skeletonized cadaver<br />

was recovered outside the wreck, on the sea-bottom. All the victims were<br />

wearing winter clothing when the ship was engulfed but their heads and<br />

hands were uncovered. The human remains were scored for regional<br />

presence of soft tissue, exposure of bone, and disarticulation to determine<br />

the general decomposition pattern. The regions scored were the head,<br />

neck, hands, forearms, upper arms, feet, legs, pelvic girdle, and trunk.<br />

Initial adipocere formation (soft with a greasy consistency) appeared on<br />

covered areas of all the bodies. The head and hands were skeletonized in<br />

57% of the cases, the hand-bones being disarticulated in 30% of these.<br />

The internal organs were in place and showed nearly normal coloration but<br />

demonstrated extensive softening and autolysis. The mechanism of soft<br />

tissue destruction in the skeletonized areas was the result of the feeding<br />

547 * Presenting Author


activity of marine scavengers such as small size fish and molluscs:<br />

clusters of Xylophaga dorsalis and Adula Simpsoni used the clothing and<br />

wooden supports of the wreck as a substrate for attachment. Some very<br />

unusual findings featured square or snowflake shaped crystals attached on<br />

the skin surface in covered areas. In conclusion, the pattern and sequence<br />

of decomposition observed have to be considered unusual for human<br />

remains lying in a marine context for several months: they appear to be<br />

related to submersion of the bodies inside a sequestered environments like<br />

the holds of a wreck.<br />

Marine Taphonomy, Human Remains, Decomposition<br />

H32 The Landscape’s Role in Dumped<br />

and Scattered Remains<br />

Mary H. Manhein, MA*, Ginesse Listi, MA, and Michael Leitner, PhD,<br />

Department of Geography and Anthropology, Louisiana State University,<br />

227 Howe-Russell, Baton Rouge, LA<br />

The goals of this presentation are to assess and understand the<br />

relationship between the landscape and dumped bodies.<br />

In February, 1987, at the American Academy of Forensic Sciences<br />

Annual Meeting in San Diego, Dr. Milton Newton, a geographer in the<br />

Department of Geography and Anthropology at Louisiana State University<br />

(LSU), co-authored and presented a paper in the Criminalistics Section<br />

entitled “Geoforensic Analysis of Localized Serial Murder: The Hillside<br />

Stranglers Located.” In that groundbreaking paper, Newton used spatial<br />

analysis without computer technology to demonstrate that geography can<br />

be a valuable forensic tool to aid in capturing serial killers. In his words,<br />

“The classification of serial murderers as to ‘type’ becomes important<br />

when we consider the geographical need to map phenomena according to<br />

kind.” Newton’s work is just one example of the ways in which he and<br />

others have applied such mapping techniques to a wide variety of different<br />

spatial activities. Since the 80s, advances in modern computer technology<br />

have allowed various researchers to more quickly, efficiently and easily<br />

manipulate geographical data to demonstrate the impact of the landscape<br />

and environment on human activities. Additionally, forensic scientists<br />

have taken advantage of such powerful techniques. Computerized<br />

mapping assists law enforcement agencies in strategic planning, crime<br />

analysis, and other operations. In the past, the applications have ranged<br />

from simple pin maps, or other mapping analyses, to the organization of<br />

information in usable databases.<br />

In this research project, the authors have combined the modern technology<br />

of the Global Positioning System (GPS), Geographic Information<br />

Systems (GIS), and Spatial Analysis (SA) with remotely sensed data,<br />

including Digital Orthophoto Quarter Quadrangle (DOQQ) images, to<br />

evaluate and analyze deposition sites of human remains from across<br />

Louisiana. The LSU Forensic Anthropology and Computer Enhancement<br />

Services Laboratory (FACES Lab) analyzed 100 for commonalities using<br />

GIS, GPS, DOQQ’s, and SA. These cases included those delivered to the<br />

FACES Laboratory and a subset of 32 cases retrieved in the field by<br />

FACES Lab personnel.<br />

In analyses of the larger data set, the landscape played a vital role in<br />

the ultimate location of the body. Also, the local taphonomic processes<br />

impacted the body’s discovery and recovery. Variables considered in these<br />

analyses included season of the year, setting (urban, rural, or suburban),<br />

vegetation cover, easiest access to site, natural or manmade barriers, and<br />

the effect of scavenging animals.<br />

The results of various statistical tests and spatial analysis on the<br />

subset of 32 cases demonstrate no statistically significant relationship<br />

between time since death and dispersal distance. Also, analysis shows that<br />

the circular variance, i.e., the direction of dispersal around the original<br />

dumpsite, appears to be random with respect to postmortem interval. On<br />

the other hand, a significant negative relationship exists between circular<br />

* Presenting Author<br />

variance and distance, but, due to a small sample size, this result needs to<br />

be interpreted with caution.<br />

To summarize, the results of this research clearly show that modern<br />

technology can provide forensic scientists with the tools needed to more<br />

accurately and efficiently interpret the landscape’s role in the investigation<br />

of dumpsites.<br />

Dumped Bodies, Geographic Analysis, Anthropology<br />

H33 The Role of Textiles in Determination<br />

of Postmortem Interval<br />

Kellie M. Gordon, BA*, and Mary H. Manhein, MA, Department of<br />

Geography and Anthropology, Louisiana State University, 227 Howe<br />

Russell Geoscience Complex, Baton Rouge, LA<br />

The goal of this presentation is to assess the deterioration of a<br />

decedent’s clothing to assist in determining postmortem interval (PMI) of<br />

a forensic case. Preliminary results have provided 88% accuracy in PMI<br />

estimation.<br />

One of the most critical problems to be solved in the medicolegal<br />

field of forensic science is time since death, or postmortem interval (PMI).<br />

Determination of PMI typically falls upon the forensic pathologist, but in<br />

advanced cases of decomposition, a forensic anthropologist is often consulted.<br />

Accurate assessment of PMI is important because investigators can<br />

narrow the time frame of events for a case, a crucial step for law<br />

enforcement in forensic analysis. However, as PMI increases, the<br />

accuracy of determination of PMI often decreases. Rarely in a forensic<br />

case can PMI be determined based on one taphonomic variable. Yet, an<br />

investigator can aspire to having a basic understanding of the various<br />

effects that each variable may bring to the deterioration rate of a body to<br />

form a more comprehensive evaluation of PMI. This study offers forensic<br />

investigators another reliable method of determining PMI by analyzing the<br />

deterioration rates of various fabric types associated with actual forensic<br />

cases.<br />

An analysis was completed based on a comparative evaluation of<br />

clothing curated by the Louisiana State University Forensic Anthropology<br />

and Computer Enhancement Services (FACES) Lab. A total of 17 forensic<br />

cases were examined. The clothing from each case is stored separately<br />

from the associated skeletal remains; therefore, assessments of PMI were<br />

based solely on a visual evaluation of the fabric and not on skeletal<br />

evidence. Also, the estimations were made without any previous<br />

knowledge of the history of the case, including the environment in which<br />

the decedent was found.<br />

Only items of cotton, polyester/cotton blend, or polyester were<br />

examined. Shoes, belts, and leather goods were not considered. On some<br />

items, the tag on the clothing could still be read and the exact fabric<br />

composition was recorded. In cases where no tag was present, estimation<br />

was made as to the composition of the clothing based on its appearance,<br />

weave pattern, and texture. As the items were examined, a number of<br />

recurring characteristics presented themselves. Items with extensive<br />

insect activity, series of small (1-2) mm holes as well as the presence of<br />

larva cases, were generally assessed to be associated with a longer PMI<br />

than items with little or no evidence of insect activity. Overall insect<br />

activity was judged on the percentage of the item’s surface area that<br />

featured evidence of such activity. Fading of the materials, as well as relative<br />

stiffness or fragility, was attributed to cases with longer perceived<br />

exposure to the elements. Polyester/cotton blends exhibited vertically<br />

aligned runs in the fabric and transparency, both becoming more prevalent<br />

with increased deterioration. The presence of adipocere was also<br />

considered in forming an estimation of PMI.<br />

Once all of the clothing was evaluated in this blind test and a PMI<br />

estimation was made for each case, the official case files were then<br />

examined to determine the accuracy of the estimations. In 15 of the 17<br />

548


cases considered, the PMI estimation either fell into the range previously<br />

assessed by the forensic anthropologist or hit exactly on the actual PMI of<br />

the case, providing 88% accuracy. Overall, an accuracy of 88% shows<br />

promise in the evaluation of the deterioration of clothing in relation to<br />

determining PMI of a forensic case. In addition, coupled with the analysis<br />

of the human remains, a more accurate assessment of PMI will be made.<br />

Postmortem Interval, Fabrics, Forensic Anthropology<br />

H34 It Came Out of the Sky:<br />

Cremains as an Aerial Hazard<br />

John A. Williams, PhD*, University of North Dakota, Box 8374,<br />

Grand Forks, ND<br />

The goals of this presentation are to present to forensic anthropologists<br />

and others a unique situation involving human cremains as a<br />

destructive force.<br />

Shortly before the end of 2001 a homeowner in the city of Grand<br />

Forks, North Dakota discovered a large hole in his backyard deck.<br />

Inside the hole were a ruptured paper bag and a whitish granular<br />

material. The material was subsequently identified as human cremains.<br />

The origin of the cremains remained a mystery for several months. An<br />

attorney eventually contacted the parties involved and related that family<br />

members had arranged to have the cremains of a relative spread over the<br />

city. The family of the deceased refused to provide any information<br />

regarding the deceased or the events surrounding the “dumping” of the<br />

cremains.<br />

A shop vacuum was used to recover the cremains from under the<br />

deck surface. In doing so a large quantity of “pea gravel” was recovered<br />

as well. This gravel was manually sorted from the cremains. The cremains<br />

were then sorted by size into three categories: large 2-17 mm,<br />

small ca 1-2 mm, and dust. Respectively these weighed 1029 grams,<br />

332.6 grams, and 1090.8 grams, for a total weight of 2452.4 grams (5.4<br />

lbs). Not all the cremains could be economically or practically<br />

recovered (some cremains were scattered under the deck beyond reach).<br />

A rough estimate of 10% loss places the actual weight at around 2700<br />

grams (5.9 lbs).<br />

Many of the larger pieces had a visible red stain. Under microscopic<br />

examination this stain had a glass-like appearance and was fused<br />

to the bone surface, an artifact of the cremation process. The larger<br />

pieces also retained an intact periosteal surface. No fragments were<br />

large enough to identify. Otherwise the cremains are unremarkable.<br />

Various non-organic items were sorted out from the cremains. These are<br />

primarily metallic and represent clothing items or fasteners associated<br />

with the box within which the body was contained during the cremation<br />

(grommets, staples, twisted wire).<br />

The deck that was struck by the bag of cremains was of standard<br />

construction using green treated lumber, 1 x 6 decking on two foot joist<br />

centers. The deck is approximately square measuring 5.5 m (18 feet) by<br />

6.2 m (20 feet). The opening is ovoid 30.5 cm by 60.9 cm with the long<br />

axis running parallel to decking centered between two joists.<br />

The terminal velocity of the bag of cremains was calculated to be<br />

between 31and 49 m/s (102 - 160 f/s) which would have been attained<br />

within 3 to 5 seconds after release at a minimum distance of between 49<br />

and 122 m (160 - 400 feet). This yielded a kinetic energy at terminal<br />

velocity of between 1297 J and 3241 J (949 - 2371lbf).<br />

Cremains, Kinetic Energy, Forensic Anthropology<br />

H35 The Effect of Human Body Mass<br />

on the Rate of Decomposition<br />

Jaime Stuart, MA*, Department of Anthropology, University of<br />

Tennessee, 250 South Stadium Hall, Knoxville, TN<br />

The attendee can expect to come away from this presentation understanding:<br />

1) differences in soft tissue removal rates for varying body compositions,<br />

2) during which stage of decomposition there is a significant<br />

reduction in body mass, and 3) the relationship between internal body temperature<br />

and ambient air temperature relative to body mass.<br />

All vertebrate organisms, given equal opportunity at death, will<br />

proceed through the same stages of decomposition. However, the rate at<br />

which individual organisms move through the stages of soft tissue and<br />

osseous destruction is dependent on a myriad of variables, including body<br />

mass. Previous studies examining the relationship between body mass and<br />

rate of decomposition are few. Hewadikaram and Goff (1991), using two<br />

domestic pig carcasses (Sus scrofa L.), provide the only systematic<br />

analysis of the effect of body mass, as well as the patterns of insect succession<br />

on the rate of decomposition. The authors found that there was a<br />

difference in the rate of decomposition, but not in insect succession, relative<br />

to the size of the carcasses. Their study showed that a greater number<br />

of adult flies were attracted to the larger carcass (15.1 kg. Vs. 8.4kg)<br />

resulting in larger maggot masses and more rapid removal of soft tissue.<br />

Ongoing experiments in body mass and rate of decomposition are<br />

being conducted at the Anthropological Research Facility (ARF) located<br />

at the University of Tennessee using donated human bodies. To estimate<br />

relative body fat, skinfold measurements are recorded for each donated<br />

specimen upon arrival at ARF. Body mass, gross morphological changes,<br />

internal body temperature, external ambient temperature, and humidity are<br />

recorded daily for 30 days, followed by every third day for two weeks.<br />

Linear regression analysis is employed to measure the association between<br />

body mass, time, and temperature. Preliminary observations show that in<br />

the warmer months the most significant reductions in body mass occur<br />

during the bloat stage, and that a specimen can lose up to one quarter of its<br />

mass within a 24-hour period. Additionally, while specimens of various<br />

body compositions may lose up to a quarter of their mass in one day, those<br />

with greater relative body fat measures (i.e., greater fat mass) tend to lose<br />

mass more rapidly. However, further research is needed to confirm and<br />

expand initial results.<br />

Previous studies documenting rates of decomposition in relation to<br />

body mass are few. This presentation will provide baseline regional information<br />

on rates of human soft tissue removal relative to body mass.<br />

Additionally, data derived from this project may aid the forensic anthropologist<br />

and forensic pathologist in estimates of time since death in the<br />

early stages of the postmortem interval.<br />

Hewadikaram, Kamani A., and M. Lee Goff (1991) Effect of Carcass Size<br />

on the Rate of Decomposition and Anthropod Succession Patterns. The<br />

American Journal of Forensic Medicine and Pathology. 12(3):235-240.<br />

Body Mass, Decomposition, Forensic Anthropology<br />

H36 Understanding Rib Fracture Patterns<br />

Jennifer C. Love, PhD*, and Steven A. Symes, PhD, University of<br />

Tennessee, Memphis, Regional Forensic Center, Memphis, Memphis, TN;<br />

and Chantal Ferraro, PhD, Long Island University, Long Island<br />

University, Brookville, NY<br />

During this presentation the dynamics of rib fractures will be<br />

discussed while introducing a new method for accurately describing the<br />

location of rib fractures. The ultimate goal is to test the predictive value<br />

of blunt force rib fractures.<br />

Anthropologists face three challenges when analyzing blunt force rib<br />

fractures: first, understanding the mechanics of rib fractures; second,<br />

549 * Presenting Author


describing the location of the fracture; and third, estimating the direction<br />

of the impact force. Galloway [1] states that rib fractures rarely occur at the<br />

point of compression. This behavior is seen because the rib is a single<br />

component in a closed system, which includes the paired ribs, vertebra,<br />

sternum, and costal cartilage. Force applied at any position or direction to<br />

the system is transmitted throughout the system. As the stresses are<br />

distributed through the system the weakest point fractures, which is not<br />

necessarily the point of impact.<br />

Structural variation found within the rib further complicates rib<br />

fracture mechanics. The head of the rib is formed by relatively thick<br />

cortical bone. By comparison the sternal end is primarily composed of<br />

trabecular bone bound by a very thin shell of cortical bone. As a result the<br />

head of the rib fractures in both oblique and butterfly patterns, failing in<br />

tension before compression, while the sternal end of the rib often buckles,<br />

failing in compression before tension. Furthermore, the medial portion of<br />

the shaft often fractures in a transverse pattern that fails to indicate the<br />

direction of tension and compression forces. The first goal of this study is<br />

to understand the vast variation of rib fracture morphology and organize<br />

this variation into standardized categories.<br />

White [2] identifies eight landmarks on the rib: head, neck, tubercle,<br />

angle, shaft, sternal end, costal groove, and cranial edge. Most of these<br />

landmarks are located in the posterior region of the rib enabling precise<br />

description of fracture location. However, the majority of the rib is identified<br />

as the shaft, creating a large wasteland of nondescript area. This lack<br />

of features makes communicating the location of a fracture difficult. In<br />

light of this, the second goal is to develop a method to accurately locate<br />

fracture lines throughout the rib. Conceptualizing the rib as one segment<br />

of a circle lends to viewing the system as a clock face. This enables<br />

breaking the cross sectioned thorax into twelve segments. Several<br />

numbers of the clock are assigned to landmarks and the nondescript areas<br />

between are divided in to segments by the numbers between those<br />

assigned. The method can be used to quickly and relatively accurately<br />

describe the fracture location.<br />

The ultimate goal of the study is to determine the predictability of rib<br />

fracture patterns. This is accomplished through a database using the<br />

fracture patterns of victims when the direction of the traumatic force was<br />

known. The fracture patterns are coded and statistically compared for<br />

regularity. The final step of the study is a blind comparison of rib fracture<br />

patterns to the database in order to estimate the direction of force.<br />

The extensive bone trauma evidence archived at the Regional<br />

Forensic Center, Memphis is used in this study. The bone is harvested<br />

during autopsy and retained for medico-legal purposes. The evidence<br />

includes males and females of all ages.<br />

1. Galloway, A fracture pattern and skeletal morphology: the axial<br />

skeleton. In: Alison Galloway editor Broken Bones: Anthropological<br />

Analysis of Blunt Force Trauma. Illinois. Charles C Thomas 2000, 81-112.<br />

2. White TD. Human Osteology. New York. Academic Press. 2000.<br />

Forensic Anthropology, Rib Fractures, Blunt Force Trauma<br />

H37 Features of Preexisting Trauma<br />

and Burned Cranial Bone<br />

Elayne J. Pope, MA*, University of Arkansas, 330 Old Main,<br />

Fayetteville, AR; and O’ Brian C. Smith, MD, Regional Forensic Center<br />

of the University of Tennessee, 1060 Madison Avenue, Memphis, TN<br />

After this presentation, the attendee will be able to: 1) recognize<br />

problems associated with analyzing burned human cranial remains,<br />

2) establish expectations of normal artifacts from fire trauma, and 3) identification<br />

of aberrant features that may indicate preexisting trauma.<br />

The majority of accidental fire deaths occur in homes or vehicles, but<br />

some are set to intentionally obliterate homicidal acts, personal identity, or<br />

incriminating evidence. Recognizing these is compounded when burning<br />

* Presenting Author<br />

destroys the soft and hard tissues of the human body. With respect to the<br />

head, identity and injuries are readily obscured because of its structural<br />

vulnerability as protective layers of skin and muscle are quickly burned<br />

away, exposing bone to rapid organic degradation from heat. Absence of<br />

organic components leaves thin cranial bone fragile and susceptible to<br />

additional heat fracturing, mechanical fractures, deformation, and delamination<br />

(separation of tables). Within limits, these are expected to occur in<br />

thermally stressed cranial bone, but the danger lies when they either mimic<br />

or obscure antecedent traumatic features.<br />

This problem is explored using a sample of 15 unembalmed human<br />

heads from anatomical gift donations, fully fleshed and preserved by<br />

freezing. Prior to and following placement of known trauma, each head<br />

was documented with lateral and anterior-posterior radiographs. Once<br />

fracture patterns and sites of impact were visualized on X-ray, each head<br />

was burned under controlled conditions while photographically recording<br />

soft tissue reactions of traumatized areas, followed by burn patterns in<br />

cranial bone. Experiments varied from partial to full cremation in order to<br />

appreciate the range of thermal degradation of traumatic stigmata and<br />

identifying characteristics. The fragmentary cranial remains were<br />

recovered, processed, and reconstructed to differentiate between trauma<br />

and the expected alterations of thermal destruction. In addition, known<br />

cases of homicide-related fires with trauma to the head were included in<br />

the study. All specimens were examined grossly and microscopically for<br />

patterns associated with trauma.<br />

It is important to recognize the expected heat-related fractures in<br />

cranial bone prior to discussion of traumatic characteristics. Fleshed<br />

human crania burn according to the anatomically distributed insulative<br />

covering of soft tissue. Usually the superficial bony areas under the thin<br />

uniform scalp and forehead burn first followed by the thick muscular areas<br />

of the lower face. Heat dehydrates, shrinks and splits the to expose underlying<br />

muscle and bone. Heat destroys the organic composition, expressed<br />

through a progressive color range of buff (initial organic degradation),<br />

black (carbonized organic destruction), and white/gray (calcined inorganic<br />

structure). Aggressive interactions among rapid heating, vigorous<br />

shrinking of soft tissue including periosteum, and organic loss from the<br />

bone are responsible for initial creation of heat fractures in all stages of<br />

color, especially calcination.<br />

A multitude of these may be present in the external table as small<br />

surface tensile cracks or superficial sites of delamination where the outer<br />

layer shrinks, separates and exposes the diploe. In several experimental<br />

crania, this produces a beveled appearance mimicking ballistic and blunt<br />

trauma. Advanced incineration or impacts while burning may produce<br />

fractures extending into the inner table. In calcined bone, sites such as<br />

these or open sutures may have a deep black outline around the breach<br />

from pressurized venting of organic materials within the vault.<br />

Examination of this feature is important since it was present in both known<br />

traumatized and non-traumatized (sutures and full thickness heat<br />

fractures) sites of the skull.<br />

Linear fractures seen in a burned skull initially fall into a gray area<br />

since they have features of either heat or pre-existent trauma. These can<br />

occur during the earliest stage of burning as organic material undergoes<br />

destruction causing shrinking and splitting of bone. In areas of prolonged<br />

heat exposure, they may also radiate out from charred black areas into<br />

buff-colored bone freshly undergoing initial thermal alteration. However,<br />

they should not extend into green (unburned bone), as this is a feature of<br />

a preexisting fracture. Deep linear fractures sectioning all tables of cranial<br />

bone should be examined for morphologies along corresponding margins.<br />

Well-defined sharp margins are incurred in advanced calcined bone from<br />

thermal or mechanical fractures, possibly accompanied with deformation<br />

and shrinkage. Traumatic fractures have blunted deformed or even<br />

warped margins from thermal alteration. The difference becomes obvious<br />

following reconstruction, since heat fractures communicate more perfectly<br />

than traumatic fractures distorted by heat.<br />

Features of traumatic injuries were easily evaluated during early<br />

stages of burning. Any compromise in skin integrity over the cranium<br />

550


prematurely exposed bone to thermal destruction. Sites of cut marks or<br />

lacerations opened quickly and accelerated damage much like the effects<br />

of advanced decomposition around an open perimortem injury. Partial<br />

incineration provided an opportunity to observe the progressive effects of<br />

heat on the blunt, sharp, and ballistic trauma in cranial bone. Pre-existent<br />

linear fractures undergo little change through the ranges of unburned,<br />

initial buff, charred; calcined fractures become difficult to assess as<br />

margins gradually become beveled, ragged, blunted, or deformed.<br />

Suspected features should be closely examined and visually compared<br />

with a multiplicity of known dry postmortem heat or mechanical fractures<br />

surrounding the area.<br />

Several distinct characteristics of blunt, ballistic, and sharp trauma do<br />

survive varying degrees of thermal destruction. With careful recovery and<br />

reconstruction techniques areas of inwardly crushed bone, ballistic and<br />

blunt beveling, features of impact sites, and sharp margins from edged<br />

weapons are preserved. Unfortunately dynamics of the burning<br />

environment, extinguishment methods, collapse of debris, and improper or<br />

incomplete recovery techniques can destroy these features. Therefore the<br />

likelihood of finding obvious signatures diminishes and less discernible<br />

than in unburned bone. Exercise extreme caution when looking for preexisting<br />

trauma and strive to use multiple indicators as supportive evidence.<br />

A variety of traumatic and non-traumatic features in burned cranial bone<br />

will be illustrated along with their forensic applications for evaluating<br />

burned bodies and bones.<br />

Skeletal Trauma, Burned Bone, Fire investigation<br />

H38 Burning Extremities: Patterns of<br />

Arms, Legs, and Preexisting Trauma<br />

O’ Brian C. Smith, MD, Regional Forensic Center of the University of<br />

Tennessee, 1060 Madison Ave, Memphis, TN; and Elayne J. Pope, MA*,<br />

University of Arkansas, 330 Old Main, Fayetteville, AR<br />

After viewing this presentation, the attendee will be able to: 1) recognize<br />

soft tissue changes of fleshed arms and legs, 2) understand of the<br />

dynamics of pugilistic posture, 3) observe the progression of burning<br />

evidenced by color and heat-induced fractures in bone, and 4) identify<br />

effects of preexisting trauma.<br />

Analysis of burned victims begins long after dramatic events of<br />

burning occur to soft and hard tissues of the body. What is seen at the<br />

medical examiner’s office is an arrested phase of extremely dynamic<br />

processes involving heat, combustion, organic degradation and alteration<br />

of the body position. Little attention has been given to understanding<br />

processes creating burned trauma simply because it has not been directly<br />

observed. There are many clinically based theories about what happens to<br />

a burning body, and these misconceptions even make their way into well<br />

accepted forensic texts until disproved experimentally<br />

A sample of 16 fully fleshed unembalmed human arms, legs, and<br />

torsos from anatomical gift donations were used in order to document<br />

changes during burning events. Several limbs were completely disarticulated<br />

at the humeral and femoral mid shafts while others remained anatomically<br />

intact. Conditions and activities of each experiment were<br />

documented with written notes, digital pyrometer, 35mm slide film, and<br />

digital camera based on timed intervals. These methods identified predictable<br />

sequences of burning for unobstructed extremities of the body,<br />

delineated phases of the pugilistic posture and established burning patterns<br />

for soft and skeletal tissue through all stages of burning events illustrated<br />

below.<br />

Once placed in the context of heat, skin becomes waxy, glossy,<br />

tightens, blackens from charring, and begins to split into transverse,<br />

longitudinal, and stellate patterns. These windows expose underlying<br />

musculature, tendons, and finally bone. Shortening of tissues causes<br />

curling and abduction of fingers and toes, sequentially followed by<br />

gradual flexion of the wrist and ankles, contraction of elbow and knee, and<br />

finally localized tightening of the hip and shoulder. Bones become<br />

predictably exposed on the distal phalanxes, metacarpals, ulna, and radius<br />

as skin splits and burns away. Muscles and tendons from the proximal<br />

wrist quickly burn, disarticulate, mushroom at the margin, and recede distally<br />

to join the collective mass of tissue around the anterior surface of the<br />

elbow, while posterior effects expose the ulna, radius, and humerus. This<br />

is followed by gradual antero-medial rotation of the shoulder positioning<br />

the arm over the chest. Toes mimic fingers, splay and curl around the ball<br />

of the foot, while the ankle rotates medially, followed by a slow contraction<br />

of the knee and finally hip into the pugilistic posture. Superficial<br />

soft tissue protection around the knee and shin quickly expose bone followed<br />

by gradual destruction of musculature along the shaft. Unconfined<br />

arms and legs react in a sequential fashion as heat increases the severity of<br />

damage in direct proportion to time and temperature.<br />

Prior to burning, several of the long bones were subjects of surgical<br />

practices and exhibited a variety of artifacts such as screws, plates, steel<br />

rod implants, and surgical cuts to skin and bone. All were easily identifiable<br />

during the post burn analysis, but observation revealed their<br />

influence in soft tissue and bone during the burning process. Superficial<br />

incisions in the skin were instantly affected by heat, tightening skin, with<br />

additional tensile forces from contracting muscle. Cut or traumatized soft<br />

tissues bulge and mushroom initially through surgical openings, resulting<br />

in premature exposure of underlying bone as soft tissue contracts and<br />

burns away. In a forensic setting, these results may indicate perimortem<br />

trauma to soft tissue or bone.<br />

After bone is exposed, direct application of heat destroys the organic<br />

composition, expressed through progressive color changes of buff<br />

(exposure margin of initial organic degradation), black (charred bone<br />

undergoing organic destruction), and white/gray (calcined inorganic<br />

structure). Interpretation of these colors accurately reconstructs location,<br />

direction and extent of burning activity. Absence of color in advanced<br />

stages of incineration indicates complete loss of organic material, leaving<br />

stress signatures of longitudinal, transverse, curved transverse, and crazing<br />

heat-induced fractures in calcined bone. A variety of these may be present<br />

and by aiding interpretation of how and where soft tissue reduction<br />

occurred, help reconstruct events. One unique heat fracture identifies<br />

tissue regression as muscle tightens and pulls away, leaving a curving<br />

transverse defect as a watermark of gradual burning. Correlation of soft<br />

tissue burning and post fire fracture analysis further illustrates how tissue<br />

regression fractures are indicative of orientation and progression of<br />

burning in fleshed remains. The same is true for articular surfaces protected<br />

by soft tissue and cartilage, where stacked arcs of curved transverse<br />

fractures permanently illustrate the progression in burning and soft tissue<br />

reduction.<br />

Fractured, cut, or compromised bone exhibits interesting patterns<br />

during the burning phases of soft and hard tissues. For example, one of<br />

the fleshed lower legs had been transected across the proximal mid shaft<br />

of the tibia and fibula with minimal surgical invasion in the overlying soft<br />

tissue on the posterior surface. Early in the firing, the powerful<br />

contraction of the leg muscles shortened and pulled the bone wide apart<br />

like a hinge; splitting skin, exposing muscle, and finally bone along the<br />

anterior surface, long before the knee drew up into the pugilistic posture.<br />

Post burn analysis of this specimen demonstrated the prolonged thermal<br />

effects due to the early exposure and even the calcined bone retained tool<br />

marks at sectioned surfaces and drill holes. These characteristics should<br />

be considered indicative of preexisting trauma since the mid shaft is an<br />

abnormal site for early burning to occur in most long bones. All features<br />

described above will be illustrated during this presentation.<br />

Skeletal Trauma, Burned Bone, Fire Investigation<br />

551 * Presenting Author


H39 The Influence of Behavior on Free Fall<br />

Injury Patterns: Possible Implications<br />

for Forensic Anthropological Investigations<br />

Angi M. Christensen, MA*, Department of Anthropology, The University<br />

of Tennessee, 250 South Stadium Hall, Knoxville, TN<br />

The goal of this presentation is to present the forensic community the<br />

results of an investigation into the influence of behavioral response<br />

(or lack thereof) on skeletal injury patterns in cases of falls from heights.<br />

Victims of falls from heights tend to sustain a pattern of injury that is<br />

predictably different from injuries associated with other types of blunt<br />

trauma. Many studies have examined resulting injury patterns (particularly<br />

skeletal fractures) in attempts to reveal relationships between these<br />

patterns and various other factors such as body position, height of the fall,<br />

age, pre-existing medical conditions, etc. However, few have pondered<br />

the possibility of an association between skeletal injury pattern and cause<br />

or motivation of the fall.<br />

Motivation or circumstances of a fall from a height can be a key piece<br />

of information in forensic contexts where it may be useful in assessing<br />

whether a victim’s death resulted from a suicide, an accidental fall, a<br />

homicidal push, or whether death occurred prior to the fall. The patterns<br />

of skeletal injury may be of particular importance in cases where bodies<br />

are not discovered until some later time and soft tissue injuries are no<br />

longer observable, leaving a skeletal trauma analysis the only means of<br />

arriving at clues regarding the manner of death.<br />

A key difference in these cases is the mental state of the deceased<br />

before and during the fall and their resulting behavioral response (or lack<br />

thereof). Victims of accidental falls and homicidal pushes do not<br />

consciously want the falling action to occur and will spontaneously, as a<br />

defense mechanism, attempt to interfere with and manipulate the physical<br />

forces acting upon them. They will attempt to protect their heads from<br />

impact with the ground, and/or extend appendages to brace themselves for<br />

impact. Suicidal persons, on the other hand, initiate purposeful action and<br />

may actually enjoy and welcome the fall, resulting in less preparation for<br />

impact. Studies indicate, in fact, that suicidal, psychotic, and inebriated<br />

individuals (who have been termed “abnormally relaxed”) have a disproportionate<br />

survival rate among free falls of extreme distances as a result of<br />

their relaxed state. Similarly, severely incapacitated individuals or dead<br />

bodies (the extreme cases of “abnormally relaxed”) would have no<br />

defensive response to the fall and impending impact. They are thus<br />

subject exclusively to the physical forces acting upon them.<br />

This study examines the effect of these mechanical forces on the<br />

human body form in free fall in the absence of interference by human<br />

behavioral response. The hypothesis is that “abnormally relaxed” individuals<br />

will fall in a predictably different fashion than alert individuals due<br />

to the absence of a behavioral defense response, and that this will result in<br />

a distinct pattern of orientation at impact. Indeed, a review of case studies<br />

of free fall injuries indicated that most falls from heights result in lower<br />

extremity, pelvic and vertebral fractures, due largely to the fact victims of<br />

accidental falls tend to land in a feet-first orientation, a pattern that is<br />

notably different from studies of suicidal jumpers in which horizontal<br />

impacts and associated thoracic injuries and rib fractures are predominant.<br />

The investigation was undertaken by observing experimental free fall<br />

drops of an anthropomorphic dummy (representing the “abnormally<br />

relaxed” state) from a height of about 75 feet. Nine total drops were performed,<br />

using three different starting orientations; three falls began in a<br />

feet-first orientation, three began in a horizontal orientation, and three<br />

began in a headfirst orientation. All nine drops resulted in impact orientations<br />

that were roughly horizontal. Even over this relatively short fall,<br />

there was a distinct tendency for the dummy to rotate toward (or maintain)<br />

a horizontal orientation.<br />

These results suggest that in the absence of a behavioral response,<br />

physical laws naturally orient the human form horizontally, probably<br />

because this is more stable position, maximizing drag forces. In light of<br />

* Presenting Author<br />

these results, a review of a case study of a possible suicidal jump from 100<br />

feet investigated by the University of Tennessee Forensic Anthropology<br />

Center was reanalyzed in an attempt to elucidate the possible circumstances<br />

of the fall. The pattern of skeletal injuries, which were primarily<br />

thoracic and axial, suggests a victim in a relaxed state at the time of the<br />

fall, lending support to suspicions that the victim was suicidal. The pattern<br />

of feet first injuries so pronounced in case studies could therefore be a<br />

result of the instinctive reaction of conscious humans to attempt to prepare<br />

for or resist impact. This information could be applied in forensic contexts<br />

by providing potential insight into the circumstances of a fall, particularly<br />

where skeletal fracture patterns are among the only clues.<br />

Forensic Science, Forensic Anthropology, Falls From Heights<br />

H40 Numerical Simulation of Fracture<br />

Propagation in a Test of<br />

Cantilevered Tubular Bone<br />

John F. Berryman*, University of Tennessee, Lebanon, TN; Hugh E.<br />

Berryman, PhD, Metropolitan and Davidson County <strong>Medical</strong> Examiner’s<br />

Office, Lebanon, TN; Robert A. LeMaster, PhD, PE, Department of<br />

Engineering, College of Engineering and Natural Science, Martin, TN;<br />

and Carrie Anne Berryman, MA, Vanderbilt University, Nashville, TN<br />

The objective of this paper is to present a new method for computing<br />

the geometry of fracture surfaces of bone.<br />

Anthropologists recognize and use the fact that tubular bone fractures<br />

in a predictable way when cantilevered. Fracture orientation and surface<br />

morphology provides a means of establishing the mechanics involved in<br />

its production. The fracture typically propagates toward the cantilevered<br />

end, and a breakaway spur forms on the compression side of the<br />

cantilevered end. Although this pattern is recognized, the physics responsible<br />

for its production has never been demonstrated. A clear understanding<br />

of the physics involved in simple fracture production, as<br />

presented here, is an essential first-step toward the understanding of the<br />

factors affecting the formation of more complex fractures in tubular as<br />

well as flat bone.<br />

This paper discusses the application of engineering fracture<br />

mechanics to the analysis of fracture formation in tubular bone specimens.<br />

The immediate objective is to present a new approach for the study of<br />

bone fracture—the Element-Free-Galerkin method coupled with a<br />

J-integral based crack propagation criteria. The Element-Free-Galerkin<br />

method was first introduced ca. 1994 by Belytschko, et al. The method is<br />

based on a generalization of the finite element method commonly used to<br />

compute the stress and deformation states in mechanical and human<br />

skeletal systems. The numerical method is general in scope and can be<br />

applied in principle to other bone morphologies.<br />

In 1995, Belytschko applied the Element-Free-Galerkin method to<br />

the analysis of two-dimensional static and dynamic fracture problems. All<br />

of the problems considered by Belytschko used linear elastic fracture<br />

mechanics theory and concerned crack propagation in flat plates. It was<br />

shown that the Element-Free-Galerkin method was uniquely suited to<br />

crack propagation calculations because it is not necessary to regenerate the<br />

computational mesh as the crack propagates. Methods that require the<br />

regeneration of the computational meshes are computationally intensive,<br />

inherently slow, and often require user interaction. This first application<br />

of the Element-Free-Galerkin method to crack propagation was limited to<br />

linear materials that are brittle in nature and experience only small<br />

amounts of “blunting” (i.e., permanent deformation) at the crack tip. Cast<br />

iron is an example of an engineering material that demonstrates these<br />

properties.<br />

In this study, the Element-Free-Galerkin method is extended to the<br />

fracture of tubular bone. A non-linear fracture mechanics approach, based<br />

on the J-integral fracture parameter, is used to control the crack growth<br />

rate and propagation direction. The J-integral was initially developed for<br />

552


elastic-plastic materials, but has been shown to work well with other nonlinear<br />

materials. The ultimate goal of this research is to develop a<br />

computer program that can compute fracture surface geometry based on<br />

bone morphology and loading data. For this study, the fracture<br />

morphology commonly seen in the fracture of cantilevered tubular bone<br />

(i.e., an angled fracture with a breakaway spur) is compared to simulation<br />

results. Areas in which the simulation results agree/disagree with the<br />

experimental data are discussed. The results of this study contribute<br />

significantly to the understanding of how engineering fracture mechanics<br />

theories and computational methods can be used to explain specific<br />

fractures. Eventually, virtual models of various bones in three-dimension<br />

may be used to facilitate an understanding of the mechanics involved in<br />

the production of butterfly, spiral and other fractures commonly seen in<br />

tubular bone. In addition, the affects of the cross-sectional shape of bone<br />

(e.g., femur versus tibia) and bone buttressing on fracture morphology<br />

may be examined with this approach. This approach will also allow the<br />

investigation of varying intrinsic qualities (e.g., bone brittleness and<br />

elasticity), as well as extrinsic factors (e.g., rate of loading, area of application,<br />

and impulse).<br />

Although the methods used in this study are highly mathematical and<br />

use advanced simulation methods, the purpose of this paper is to provide<br />

the forensic community with an overview of a new simulation method and<br />

the results of a research study without dwelling on the mathematical detail.<br />

Computer generated images and graphs will enable the results to be<br />

understood.<br />

Bone Trauma, Finite Elements, Fracture Mechanics<br />

H41 An Evaluation of the Relationship Between<br />

Human Pelvic Size and Shape and the<br />

Distribution, Type, and Severity of<br />

Vertebral Degenerative Disease in<br />

Archaeological Material<br />

Linda O’Connell, BM, MSc*, School of Conservation Sciences,<br />

Bournemouth University, Poole, Dorset, United Kingdom<br />

The goal of this presentation is to determine if there is association<br />

between pelvic size and shape and the distribution, type and severity of<br />

vertebral degenerative disease. The latter included osteophytosis,<br />

osteoarthritis, and intervertebral disc degeneration. Initial analysis of the<br />

data has confirmed current concepts regarding differences in size and<br />

shape of the female and male pelvic girdles. Evaluation of the effects of<br />

the pelvis on the site, severity, and distribution of vertebral degenerative<br />

disease are currently being undertaken and it is hoped that the results of<br />

this analysis will be presented.<br />

In order to adopt an efficient bipedal posture and method of locomotion,<br />

the human skeleton has evolved a curved vertebral column and a<br />

stable, compact male pelvic girdle. The adaptive vertebral curves are most<br />

marked in the areas of C4-C6, T8-T10, and L3-L5 and the habitual force<br />

of gravity upon this configuration renders it susceptible to injury and<br />

degenerative disorders, such as osteophytosis, osteoarthritis, and intervertebral<br />

disc degeneration.<br />

This research aimed to determine if there is any association between<br />

pelvic size and shape and the distribution, type, and severity of vertebral<br />

degenerative disease. As a compromise has been reached between efficient<br />

upright posture/bipedal locomotion and the size and shape of the<br />

female pelvis in relation to its role in parturition, a difference between the<br />

rates of degenerative disease was expected between the two sexes. Very<br />

little research to date has been conducted on the pelvic girdle and its relationship<br />

with other anthropological and palaeopathological parameters, so<br />

it is hoped that this study will help establish whether the actual size and<br />

shape of the pelvis alone bears any relation to the distribution of degenerative<br />

disease in the vertebral column.<br />

A total of 103 documented individuals were examined form four<br />

British archaeological sites, spanning the 17th to the 19th century. The<br />

sites comprised, Christ Church, Spitalfields, London; St. Brides, Fleet<br />

Street, London; Kingston Quaker Burial Ground, Kingston Upon Thames,<br />

London; and St. Nicholas, Sevenoaks, Kent. The sex and age of these<br />

individuals is known from associated documented biographical data, and<br />

the sample represented a northwest European, middle class, population.<br />

The sample consisted of 62 females (aged 17-87 years, mean = 52.08, SD<br />

= 18.24) and 41 males (25-75 years, mean = 52.66, SD = 14.77).<br />

Collected were 62 measurements from the pelvic girdle and its<br />

separate components were collected, together with an assessment of pelvic<br />

shape. A working system for recording the distribution and degree of<br />

severity of degenerative change in the vertebral column was established<br />

for 24 vertebrae (7 cervical, 12 thoracic, and 5 lumbar) in addition to the<br />

first sacral vertebra and occipital condyles. Recognized recording<br />

standards were adopted, and in the case of osteophytosis and osteoarthritis,<br />

included detailed assessment of osteophytes, extent of circumference<br />

affected by lipping, degree of surface porosity, extent of surface affected<br />

by porosity, degree of eburnation, and extent of surface affected by eburnation.<br />

These attributes were also ascribed, when present, to the costal<br />

facets in the case of the thoracic vertebrae.<br />

Schmorl’s nodes were described according to four parameters: their<br />

status, position, greatest depth, and shape. Aside from noting the presence<br />

or absence of a node, there exists no standardized method for recording<br />

these entities. A scheme for indicating the position of a node on the<br />

vertebral surface has been published in the literature and this approach was<br />

adopted for documentation of this parameter. Measurement of the greatest<br />

depth was achieved by employment of the depth measurer on the digital<br />

sliding calipers. New strategies were developed to allow status and shape<br />

of the node to be recorded.<br />

Initial analysis of the data has confirmed current concepts regarding<br />

differences in size and shape of the female and male pelvic girdles. Age<br />

was found to have no significant effect upon the measurements recorded.<br />

Strong correlations have also been identified between certain individual<br />

measurements and reasons for this have been suggested. Evaluation of the<br />

effects of the pelvis on the site, severity and distribution of vertebral<br />

degenerative disease are currently being undertaken and it is hoped that<br />

the results of this analysis will be presented. Final results should enhance<br />

understanding of this particular pathological process and the factors<br />

responsible for its development, thus determining whether pelvic shape<br />

and size does play a role in its occurrence.<br />

Bipedal Adaptation, Pelvic Shape, Pelvic Dimensions<br />

H42 Assessment of Muscular-Skeletal<br />

Robusticity in Personal Identification<br />

of Human Remains<br />

Kenneth A.R. Kennedy, PhD*, Department of Ecology and Evolutionary<br />

<strong>Bio</strong>logy, Corson Hall, Cornell University, Ithaca, NY<br />

The goal of this presentation is to present to the forensic community<br />

a critique of various morphometric procedures used by forensic anthropologists<br />

in measuring degrees of muscular-skeletal development in<br />

human remains.<br />

This study adds to the standard protocol used by forensic anthropologists<br />

in determining personal identification of human remains: the<br />

assessment of degrees of muscular-skeletal robusticity. In cases where<br />

anatomical soft tissue structures are taphonomically degraded, as at scenes<br />

of mass disasters or under certain conditions of interment, the investigator<br />

may be able to reconstruct the massiveness of the skeleton which is a<br />

measure of the degree of strengthening or structural buttressing of bones<br />

by augmentation of osseous tissue ¾ a response to high mechanical<br />

loading. This condition, called “robusticity,” has the potential to<br />

supplement other morphometric data by providing a profile of general<br />

553 * Presenting Author


ody form in life and specific characteristics of bones for reconstruction<br />

of those agents conducive to varying intensities of muscular-skeletal<br />

development. Gracile body forms and skeletal elements reflect reduction<br />

of factors contributing to robusticity, but are equally relevant to positive<br />

identifications of individuals.<br />

Two questions are addressed: (1) how has muscular-skeletai robusticity<br />

been accounted for by anthropologists and anatomists? and, (2) how<br />

can this variable be measured?<br />

Answers to the first issue invoke agents played by genetic inheritance,<br />

climatic conditions, and changes, geography with an emphasis upon<br />

latitudes, lifeways and individual behavior patterns. The latter category<br />

would involve skeletal changes related to markers of occupational stress<br />

(MOS), athletic activities, demands of different socioeconomic patterns,<br />

and stresses imposed upon locomotion by the terrain. Geographical and<br />

climatic explanations favor hypotheses that in hot tropical regions<br />

muscular-skeletal robusticity is low or absent in the postcranial skeleton<br />

(but not necessarily in cranial structures) and body builds are linear; in<br />

regions of cold stress conditions, more massive body forms are<br />

accompanied by high muscular-skeletal robusticity.<br />

The present investigator proposes that no single cause accounts for<br />

degrees of muscular-skeletal robusticity found in ancient and modern<br />

populations or individuals. This was tested by comparing values of the<br />

“Robusticity Index” (ratios of femoral lengths of mid-diaphyseal diameters<br />

or circumferences) in three human skeletal samples (modem South<br />

Asians, Mesolithic South Asians, a modem series from France). Bivariate<br />

and multivariate statistical analyses indicate that comparative values of the<br />

Robusticity Index are insignificant given the slight differences between<br />

them. The high degree of robusticity represented in the prehistoric Indian<br />

series was exhibited in their femora, as well as in their other postcranial<br />

bones, by pronounced markers of occupational stress. Parallel markers of<br />

occupational stress were present in the French sample where individuals<br />

gave evidence of labor-intensive lifeways.<br />

It is concluded that hypertrophy of MOS, rather than the Index<br />

of Robusticity, is a superior measure for reconstructing degrees of muscular-skeletal<br />

robusticity in the postcranial skeleton. Thus forensic anthropologists<br />

stand to gain a new approach to their practice of personal identification<br />

of human skeletal remains.<br />

Definitions of Muscular-Skeletal Robusticity, Personal Identification<br />

of Human Remains, Methodologies in Forensic Anthropology<br />

H43 Body Weight Estimation<br />

in Forensic Anthropology<br />

Phoebe R. Stubblefield, MA*, CA Pound Human Identification<br />

Laboratory, P.O. Box 112545, University of Florida, Gainesville, FL<br />

The goals of this presentation are to explore the role of body weight<br />

prediction in the biological profile and to examine techniques of body<br />

weight prediction from skeletal remains.<br />

Although estimates of stature, age, ancestry, and sex are assumed<br />

components of the biological profile, estimation of body weight is not.<br />

Investigators at a crime scene will ask for body weight but this author has<br />

never formally addressed the request within the report of the osteological<br />

examination. Searches of the forensic literature reveal very few references<br />

to body weight estimation. The purpose of this presentation is to explore<br />

the role body weight estimation has in the biological profile, if any, and to<br />

examine techniques for estimating body weight.<br />

Body weight has several features that make it an undesirable<br />

component for a biological profile. The purpose of the biological profile<br />

is to recover details from the skeletonized decedent that can be compared<br />

to a persistent record, such as photographs, identification cards, and<br />

medical records and films. In American society body weight is recorded<br />

in medical records and more infrequently for identification cards, so the<br />

possibility of identification is dependent on limited records. Weight is<br />

* Presenting Author<br />

such a sensitive issue that, like stature, it is broadly subject to inaccuracy<br />

when self-reported. Weight differs from stature in that a witness might<br />

easily reconstruct the latter by comparing an individual to his or her<br />

height, but be reluctant to perform the same analysis for weight with any<br />

precision. The most detracting feature is that weight defies record keeping<br />

by being capable of dramatic change over relatively short periods.<br />

Despite that body weight is a component of the identity of the<br />

deceased, the handicaps make it seem inappropriate for analysis. Yet at the<br />

very least the anthropologist would be providing information that helps the<br />

investigator refine a search image. Also, while the relationship between<br />

body weight and biological parameters such as life span or feeding<br />

behavior is understood on the species level for many animals, its effect on<br />

individual humans in a forensic context is not well explored. Knowledge<br />

of individual body weight could inform patterns of degenerative joint<br />

disease and cardiovascular disease, body transport and disposal and other<br />

taphonomic processes. The objection that weight is too nebulous to define<br />

is countered with the fact that given sufficient skeletal material (a<br />

restriction that applies to all components of the biological profile) a<br />

minimum range of weights would be obtainable simply from standards of<br />

weight for height. Then additional observations may be applied, such as<br />

clothing size if available, the trend to gain weight with age, or the circumstances<br />

of body disposal, to suggest an upper limit.<br />

If body weight is included in the biological profile, how can it be<br />

reconstructed from human skeletal remains? Several options, most<br />

derived from palaeoanthropology, seem available. Palaeoanthropology<br />

and forensic anthropology both cope with the winnowing effect time and<br />

nature have on skeletal material, but the former subfield’s focus on reconstructing<br />

the biology of extinct species has generated a larger toolkit for<br />

estimating body weight. However only a few of the techniques are<br />

applicable to modern humans. An early study by Baker and Newman<br />

(1957) 1 suggested dried bone weight be used to estimate body weight, but<br />

arriving at a standardized level of bone dryness made this technique difficult<br />

to apply. For measurements of several long bones and vertebrae<br />

McHenry (1992) 2 and Hartwig-Scherer (1994) 3 showed strong relationships<br />

(suggesting good predictive power) to body weight for modern<br />

humans. Aiello and Wood (1994) 4 and Gauld (1996) 5 have shown similarly<br />

strong relationships between measurements of the cranium and body<br />

weight. This study will focus on the cranial studies in order to illustrate<br />

the considerations involved in estimating body weight from skeletal measurements.<br />

Aiello and Wood and Gauld both demonstrated high (r > .90) correlations<br />

between some cranial measurements and body weight in mixed<br />

primate (human and nonhuman) samples. Aiello and Wood focused on<br />

external measurements of the face and vault, while Gauld used vault<br />

thickness measurements. In addition to having a mixed primate sample<br />

these authors also relied on predictions for specimens not having recorded<br />

weights. Results were not reported for the strictly human parts of their<br />

samples, so this author designed a study with applicability to modern<br />

humans. One hundred forty-seven adults of recorded body weight (100<br />

drawn from the Terry collection at the Smithsonian National Museum of<br />

Natural History and 47 from recent autopsies) were sampled for nine<br />

ectocranial and seven cranial vault thickness measurements. No prior<br />

effort was made to exclude emaciated individuals from the Terry collection;<br />

rather individuals were sorted during the analysis. Effort was<br />

made to adjust for fatness in the autopsy sample using triceps and subscapular<br />

skinfold measurement to estimate lean body weight. The correlation<br />

coefficient (Pearson’s r) was calculated for each measurement and<br />

body weight.<br />

The results of this study did not resemble those from Aiello and<br />

Wood or Gauld. Whether considered as separate samples (autopsy or<br />

skeletal) or one combined sample, none of the cranial measurements produced<br />

correlation coefficients higher than .6. The results did not improve<br />

when individuals below 100 pounds were removed from the Terry sample.<br />

The cranial thickness measurements were particularly poorly correlated to<br />

body weight, such that only one of the seven measurements (at lambda)<br />

554


produced a significant correlation. These contrasting results are likely the<br />

product of 1) having a strictly human reference sample, 2) incomplete<br />

replication of the cranial measurements between this and the previous<br />

studies, and/or 3) using only measured not predicted body weights. This<br />

current study indicates that while resources are available for estimating<br />

body weight from postcranial material, more research is needed into the<br />

feasibility of using cranial measurements.<br />

1 Baker, PT and Newman, RW (1957) The use of bone weight for human<br />

identification. Am. J. Phys. Anthropol. 15:601-618<br />

2 McHenry HM (1992) Body size and proportions in early hominids. Am.<br />

J. Phys. Anthropol. 87: 407-431.<br />

3 Hartwig-Schere S and Martin RD (1992) Allometry and prediction in<br />

hominoids: a solution to the problem of intervening variables. Am. J.<br />

Phys. Anthropol. 88:37-57.<br />

4 Aiello LC and BA Wood (1994) Cranial variables as predictors of<br />

hominine body mass. Am. J. Phys. Anthropol. 95:409-426.<br />

5 Gauld SC (1996) Allometric Patterns of Cranial Bone Thickness in<br />

Fossil Hominids. Am. J. Phys. Anthropol. 100: 411-426<br />

Body Weight, <strong>Bio</strong>logical Profile, Craniometrics<br />

H44 Radiographic Human Identification Using<br />

Bones of the Hand: A Validation Study<br />

Michael G. Koot, BA*, Department of Anthropology, Michigan State<br />

University, Department of Anthropology, Michigan State University,<br />

East Lansing, MI<br />

Attendees will discover how to utilize posterior-anterior radiographs<br />

of the hand to make a positive identification of unknown human remains<br />

and learn the results of a validation study testing this method.<br />

This paper has 3 objectives: (1) to demonstrate how forensic scientists<br />

can utilize posterior-anterior hand radiographs for positive human<br />

identification, (2) to disseminate the results of a validation study testing<br />

this method, and (3) to explain which anatomical criteria proved to be the<br />

most useful and least beneficial to the examiners in the identification<br />

process.<br />

Positive identification of unknown human remains is a critical part of the<br />

medic-legal investigation. Common methods of obtaining a positive identification<br />

include DNA, fingerprints, dental radiographs, and other radiographic<br />

comparisons such as frontal sinus pattern. A recent Supreme<br />

Court ruling from 1993, Daubert v. Merrell Dow Pharmaceuticals, Inc.,<br />

requires that the standard for scientific evidence in a federal court is the<br />

reasoning or methodology underlying the expert's testimony must be scientifically<br />

valid. The Daubert test of scientific evidence relies on a preliminary<br />

ruling by the judge on whether the scientific theory or technique<br />

is scientifically valid based on "widespread acceptance", peer review, publication,<br />

testing, rates of error, and the existence of standards. Validation<br />

studies, as noted by previous publications and papers at American<br />

Academy of Forensic Sciences meetings, therefore, are important for each<br />

discipline in the American Academy of Forensic Sciences because scientists<br />

need to be able to prove that their scientific testimony is supported by<br />

the Daubert test. It should be noted that Daubert is a federal court<br />

requirement for evidence, but many states have accepted it for their evidence<br />

standards.<br />

In order to investigate the validity of posterior-anterior radiographs of<br />

the hand for human identification purposes, a series of radiographs was<br />

taken on human cadavers that are part of the Willed Body Program<br />

directed by Michigan State University, Department of Radiology, Division<br />

of Anatomy. In an effort to approximate antemortem x-rays, radiographs<br />

of 50 left hands were taken in the Michigan State University Gross<br />

Anatomy Lab using a General Electric Amx2 portable x-ray unit. The<br />

radiographs were taken in a manner to replicate the standards employed by<br />

radiographic technicians for posterior-anterior hand radiographs of living<br />

patients in clinical situations. The distance between the x-ray source and<br />

the film cassette was maintained at 40 inches, while the central ray was<br />

directed perpendicular to the film at the third metacarpophalangeal joint.<br />

The settings on the x-ray machine were set at 50 kVp, while mAs varied<br />

from 8-10 mAs for the antemortem radiographs, and 50 kVp and 3 mAs<br />

for the skeletal postmortem radiographs. A large, square piece of plexiglass<br />

was used to force the hands of the cadavers to remain flat on the radiographic<br />

film.<br />

Taking radiographs of 10 of the hands from 40 of the above individuals<br />

generated the "postmortem" sample. These hands were removed<br />

from the body and processed at the Michigan State University Forensic<br />

Anthropology Lab into bony specimens by removing all the soft tissue.<br />

The specimens were then re-articulated using a low temperature hot glue<br />

gun. Care was taken to orient the bones in an orientation that was similar<br />

to the antemortem radiograph. A radiograph was then taken of these<br />

reconstructed hands, in essence mimicking a skeletal postmortem radiograph.<br />

The validation component of this study examined the accuracy of<br />

making positive identifications between antemortem and postmortem<br />

radiographs of the hand. Participant examiners, one forensic anthropologist,<br />

four forensic anthropology graduate students, and two forensic<br />

pathologists received 50 radiographs from 40 different individuals. They<br />

compared 40 antemortem radiographs of fleshed hands from known<br />

individuals to 10 postmortem radiographs of bony hands from unknown<br />

individuals. No more than one individual represented each one of these 10<br />

postmortem radiographs from the group of the original 40. The participants<br />

worked independently, without assistance from others, to match the<br />

correct postmortem radiograph to its appropriate antemortem match. The<br />

participants were also asked to note on a data sheet which specific<br />

anatomical and morphological features were used for identification<br />

purposes.<br />

Nine participant examiners were involved in the validation study,<br />

with eight completing the study. One individual did not complete the<br />

study due to a lack of radiological identification training, thus the individual<br />

was not comfortable assigning any positive identifications. Of<br />

those who completed the study, results varied. In general, profession,<br />

experience level and specific training in radiological identification had a<br />

drastic effect on not only the ability to complete, but also perform well in<br />

the study. Three forensic anthropologists and three experienced forensic<br />

anthropology graduate students had a perfect score in positively identifying<br />

the 10 postmortem hand radiographs, which included one radiograph<br />

that did not have a corresponding antemortem match. The participants<br />

with the most experience and training in radiological identifications<br />

had higher accuracies when compared to those with less experience and<br />

specific training. Participant examiners noted trabecular patterns of the<br />

proximal and middle phalanges, distinguishing radiopaque and radiolucent<br />

features, and degenerative changes as the anatomical features that<br />

aided their identification. Distal phalanges and carpals were most frequently<br />

noted as the skeletal features that were least helpful in the identification<br />

process.<br />

This study demonstrates that the comparative analysis of hand radiographs<br />

is an appropriate method for positive identification. When experienced<br />

forensic anthropologists completed the exercise, their accuracy<br />

was 100%. The study also illustrates that examiners with less experience<br />

and training may not be qualified to perform comparative radiographic<br />

analyses. Further research is intended to expand the pool of expert examiners<br />

in order to provide a sufficient sample for statistical validation.<br />

Human Identification, Hand Radiographs, Validation Study<br />

555 * Presenting Author


H45 Using Amplification of Bacteriophage<br />

Lambda DNA to Detect PCR Inhibitors<br />

in Skeletal DNA<br />

Krista E. Latham, BS*, Department of <strong>Bio</strong>logy, University of<br />

Indianapolis, 1400 East Hanna Ave, Indianapolis, IN<br />

The goals of this presentation are to present to the forensic anthropological<br />

community a technique to detect the presence of PCR inhibitors in<br />

skeletal DNA. Using a mixture of a small amount of concentrated skeletal<br />

DNA and dilution of bacteriophage lambda DNA, the analyst can<br />

successfully detect PCR inhibitors early in the process and add additional<br />

purification steps to remove them from the skeletal DNA.<br />

The analysis of DNA from skeletal remains is becoming a useful tool<br />

for forensic anthropologists. Genetic analysis complements the osteological<br />

examination and aids in the identification process. However,<br />

analysis of DNA samples obtained from bone may be challenging due to<br />

the presence of contaminating molecules that can later interfere with the<br />

process of DNA fingerprinting. These inhibitory substances may not be<br />

removed with conventional methods used to extract purified skeletal<br />

DNA. The cause of PCR inhibition may vary among samples because the<br />

different taphonomic forces that effect bone degradation also have an<br />

affect on skeletal DNA. Soil components, such as iron or tannins, may<br />

leach into the bone tissue during diagenesis and co-purify with the DNA<br />

contained within the skeletal remains. PCR inhibitors may also be the<br />

maillard products of sugar reduction or humic acids, which are a mixture<br />

of substances produced by the decay process. In the case of PCR analysis,<br />

the presence of these inhibitory molecules may result in a failure to<br />

amplify a decedent’s DNA sequence needed for identification. Genetic<br />

analysis is expensive, time consuming, and destructive to the skeletal<br />

remains. If PCR inhibitors can be detected early in the process of genetic<br />

analysis, it can reduce the amount of skeletal remains lost to unsuccessful<br />

amplification. This paper will present a simple technique that can be used<br />

to detect PCR inhibitors in skeletal DNA.<br />

A series of dilutions were performed using lambda DNA in order to<br />

find a concentration that would be both sensitive and not saturating to the<br />

inhibitors. A preliminary amplification of lambda DNA was then used as<br />

a quality control indicator for the skeletal DNA. The lambda DNA was<br />

mixed with a small amount of concentrated bone DNA and lambda<br />

specific primers. The mixture was then subject to 35 rounds of PCR at<br />

95°C for one minute, 62°C for one minute, and 72°C for one minute.<br />

Inhibitors carried through the DNA purification process may block the<br />

amplification of the lambda DNA, and a failure to amplify the lambda<br />

DNA from the mixture indicates the presence of inhibitors in the skeletal<br />

DNA samples. Bacteriophage lambda DNA was chosen for this study<br />

because it is inexpensive and abundant in molecular laboratory facilities.<br />

The DNA tested for the inhibitors was extracted from the femora of 6 different<br />

historic human skeletal specimens. These DNA samples previously<br />

failed as templates for PCR using human specific primers. As a control,<br />

DNA from a human skeletal specimen that previously was successfully<br />

subjected to PCR analysis for human specific DNA fragments was also<br />

analyzed.<br />

Sampling of bone tissue for genetic analysis is becoming an<br />

important aspect of the identification process in forensic anthropology.<br />

The skeletal material is valuable to the anthropologist and a minimal<br />

amount should be destroyed in the DNA extraction process.<br />

Contaminating molecules introduced into the skeletal remains during<br />

decomposition may complicate genetic analysis. With the early detection<br />

of inhibitors, additional purification steps may be added to remove them<br />

from the sample and save valuable amounts of skeletal DNA from loss due<br />

to fruitless PCR amplification. The results of this experiment show a concentration<br />

that is effective in detecting the PCR inhibitors found in some<br />

skeletal DNA samples.<br />

Skeletal DNA, PCR Inhibitors, Lambda DNA<br />

* Presenting Author<br />

H46 Nuclear DNA Preservation in<br />

Soft and Osseous Tissues<br />

Elias J. Kontanis, BS, BA*, Department of Ecology & Evolutionary<br />

<strong>Bio</strong>logy, Cornell University, Corson Hall, Ithaca, NY<br />

The goals of this presentation are to further elucidate the relationship<br />

between gross tissue condition and nuclear DNA preservation.<br />

Participants will learn about the utility of organic vs. inorganic DNA<br />

extraction techniques as well as troubleshooting failed PCR amplification<br />

attempts when dealing with degraded DNA. Furthermore, environmental<br />

and laboratory contamination prevention and detection will be addressed.<br />

During the previous decade, forensic investigators have witnessed a<br />

paradigm shift to an increased reliance on DNA based decedent identification<br />

techniques. The benefits of DNA evidence include relatively high<br />

discriminatory powers as well as the capability of providing a match probability<br />

and likelihood estimate for each comparison. However, DNA identification<br />

has several limitations. Of primary concern is the ability to<br />

obtain authentic DNA from the decedent remains. This limitation has<br />

prompted research on biotic and abiotic variables affecting postmortem<br />

DNA degradation. In the laboratory, investigators have subjected isolated<br />

teeth, ribs, and bloodstains to a range of temperatures, pH, UV irradiation,<br />

soil types, and humidity levels for varying amounts of time (1,2,3,4) .<br />

Relatively few investigators have explored the possible correlation<br />

between tissue preservation and DNA survival under actual rather than<br />

laboratory conditions (5,6,7) . This study will refine the current understanding<br />

of postmortem nuclear DNA degradation by sampling a range of<br />

tissues under natural conditions from individuals with documented<br />

taphonornic histories. The following questions will be addressed:<br />

(a) Which DNA extraction method (phenol chloroform vs. silica) appears<br />

to be most effective for each tissue and postmortem sampling interval?<br />

(b) Is there a positive correlation between locus size and postmortem<br />

interval as measured by total body score and accumulated degree-days?<br />

(c) Are there variations in DNA quantity and quality when comparing a<br />

range of soft and osseous tissues? What are some potential reasons for<br />

these variations in DNA preservation? (d) Can DNA degradation and PCR<br />

inhibition be distinguished when presented with a failed amplification?<br />

Which PCR inhibitor prevention strategies work best given the<br />

taphonornic history of the samples?<br />

Weighing between 45 and 60 pounds, 28 pigs (Sus scrofa) were<br />

stunned using a captive-bolt gun and exsanguinated on June 8, 2001. The<br />

pigs were then deposited, 14 in each of two environments: tree cover<br />

surface and pond shore. These environments were located adjacent to<br />

each other within the Cornell University Experimental Ponds facility in<br />

Ithaca, New York. Tissues were collected on a scheduled basis beginning<br />

several hours postmortem, continuing on a biweekly, monthly, and<br />

bimonthly basis for 20 months. During this time, tissues were harvested<br />

from each pig twice, once in the first 10 months and once in the second<br />

half of the experiment. This schedule minimized anomalous tissue<br />

exposure in the early postmortem period, which would compromise the<br />

“natural” degradation process. When present, lung, liver, spleen, psoas<br />

muscle, adipocere, skin, and hair samples were collected. Additionally,<br />

ribs, lumbar vertebrae, femoral shafts, and parietal bones were collected at<br />

each sampling period. All samples were placed in a -20°C freezer upon<br />

procurement to minimize further DNA degradation. At each sampling<br />

event, gross decomposition was quantified and accumulated degree days<br />

were calculated as described by Megyesi (8) . This method results in a representation<br />

of decomposition state that will potentially reduce the subjective<br />

nature of qualitative descriptions, allowing a proper assessment of<br />

the relationship between gross preservation of sampled tissues and DNA<br />

preservation.<br />

For comparative purposes, each tissue sample was extracted using an<br />

organic (phenol-chloroform) and inorganic (silica) protocol. Following<br />

extraction, the DNA was quantified using slot-blot hybridization with a<br />

porcine specific radioactive probe. PCR amplification of four short<br />

556


tandem repeat (STR) loci varying in size was then utilized to assess DNA<br />

degradation by measuring allele dropout. Five percent of the samples<br />

were then sequenced to assure amplification of the target loci. In situations<br />

where repeated amplification attempts failed, several methods were<br />

employed to overcome PCR inhibition. These include the addition of<br />

more DNA polymerase to the amplification reaction, which might<br />

overcome a potential inhibitor, the addition of bovine serum albumin<br />

(BSA), and the addition of sodium hydroxide. Each of these methods is<br />

compared for their effectiveness in resolving PCR inhibition.<br />

Contamination issues, which are of primary concern when dealing with<br />

degraded samples, are also addressed through the use of positive and negative<br />

controls throughout the study.<br />

The ability to use a rapid, non-invasive screening process to assess<br />

potential DNA yield from various tissues allows for the optimization of<br />

sampling protocols in cases where limited sample is available. Optimizing<br />

tissue sampling for DNA analysis is also of keen interest to the mass<br />

fatality incident investigator who is charged with the identification of<br />

numerous decedents whose remains are often highly fragmented and<br />

degraded due to thermal and/or decomposition processes.<br />

References:<br />

1. Frank WE, Llewellyn BE. 1999. A time course study on STR profiles<br />

derived from human remains. Paper presented at the 51st annual<br />

meeting of the American Academy of Forensic Sciences, Orlando.<br />

2. McNally L, Shaler RC, Baird M, Balazs 1, De Forest P, Kobilinsky<br />

L. 1989. Evaluation of deoxyribonucleic acid (DNA) isolated from<br />

human bloodstains exposed to ultraviolet light, heat, humidity, and soil<br />

contamination. Journal of Forensic Sciences 34(5):1059 1069.<br />

3. Schwartz TR, Schwartz EA, Mieszerski L, McNally L, Koblinsky L.<br />

1991. Characterization of deoxyribonucleic acid (DNA) obtained from<br />

teeth subjected to various environmental conditions. Journal of Forensic<br />

Sciences 36(4):979-990.<br />

4. Smuts A, Pogue P, Gill-King H, Ingraham MR, Peacock EA, Planz<br />

JV. 1999. Mitochondrial DNA recovery and sequence analysis from<br />

human bone exposed to controlled thermal loading. Paper presented at<br />

the 51st annual meeting of the American Academy of Forensic Sciences,<br />

Orlando.<br />

5. Damann FE, Leney M, Bunch AW. 2002. Predicting mitochondrial<br />

DNA (mtDNA) recovery by skeletal preservation. Paper presented at the<br />

54th annual meeting of the American Academy of Forensic Sciences,<br />

Atlanta.<br />

6. Haynes S, Searle JB, Bretman A, Dobney KM. 2002. Bone preservation<br />

and ancient DNA: the application of screening methods for predicting<br />

DNA survival. Journal of Archaeological Science 29:585-592.<br />

7. Leney M. 2002. Factors that affect mtDNA recoverability from<br />

osseous remains. Paper presented at the 54th annual meeting of the<br />

American Academy of Forensic Sciences, Atlanta.<br />

8. Megyesi MS. 2002. The effects of temperature on the decomposition<br />

rate of human remains. Paper presented at the 54th annual<br />

meeting of the American Academy of Forensic Sciences, Atlanta.<br />

Nuclear DNA Preservation, Taphonomy, Decomposition<br />

H47 The University of Tennessee/<br />

FBI Human Remains Recovery School<br />

Murray K. Marks, PhD*, The University of Tennessee, Knoxville, TN<br />

The goals of this presentation are to inform the audience of class<br />

objectives and what agents learn about recovery of human remains.<br />

Since 2000, the Federal Bureau of Investigation has sponsored the<br />

Human Remains Recovery School designed by the Forensic Anthropology<br />

Center at the University of Tennessee. During a week each spring, 40<br />

Evidence Response Team agents attend this course to gain training in<br />

clandestine-grave discovery and excavation. The Forensic Anthropology<br />

Research Facility provides the unique opportunity for this training with<br />

decomposing/skeletal remains in a variety of mortuary settings. This is a<br />

modified sister version of a course long offered by W.C. Rodriguez and<br />

W.D. Lord at the FBI Training Facility at Quantico, VA.<br />

The course involves lecture for 2.5 days on introductory anthropology<br />

(including bone trauma), pathology, odontology, entomology, and<br />

botany with detailed presentations on clandestine grave discovery,<br />

mapping, excavation, and recovery. This is followed by 2.5 days in the<br />

field recognizing surface anomalies and excavating decomposing/skeletal<br />

remains.<br />

Annually, the Bureau performs recovery operations without the services<br />

of a board-certified forensic anthropologist experienced in forensic<br />

mortuary site archaeology. The purpose of the class is not to transform<br />

Bureau agents into anthropologists, pathologists, or dentists, but to make<br />

them cognizant of clandestine grave evidence. In the class, agents become<br />

familiar with the complexities of discovery and recovery. The training<br />

makes them aware that the quality of their field abilities affects the quality<br />

of the remains and the information that can be discerned from the remains.<br />

Forensic Anthropology, Forensic Mortuary Site Archaeology,<br />

Continuing Education<br />

H48 Presenting Forensic Anthropology Training<br />

Seminars and Workshops to Forensic<br />

Science, Medico-Legal, and Law<br />

Enforcement Professionals: Consequences<br />

for Death Investigations Involving<br />

Decomposed, Skeletal, and Burned<br />

Human Remains<br />

Susan M.T. Myster, PhD*, Department of Anthropology, Hamline<br />

University, St. Paul, MN<br />

The goals of this presentation are to encourage and engage those<br />

attending to consider and discuss the benefits and consequences of providing<br />

training seminars and workshops in Forensic Anthropology to<br />

medico-legal, forensic science, law enforcement, and legal professionals.<br />

This presentation will discuss the content and target participants of<br />

Forensic Anthropology workshops presented to various medico-legal,<br />

forensic science, and law-enforcement agencies. These lectures and<br />

training workshops have had both positive and negative effects on the<br />

investigation and litigation of cases involving skeletal, burned, and<br />

decomposed human remains.<br />

Training seminars and workshops in Forensic Anthropology are a relatively<br />

recent occurrence in Minnesota. This is largely due to the infrequent<br />

and informal nature of local forensic anthropological consultation<br />

on cases involving skeletal, burned, and decomposed remains before<br />

1991, as well as a lack of awareness by local medico-legal, law<br />

enforcement, and legal professionals of exactly what a forensic anthropologist<br />

could contribute to a death investigation. Prior to 1991, the few cases<br />

that were perceived to warrant the expertise of a forensic anthropologist<br />

were sent to the Smithsonian Institution or to other anthropologists outside<br />

of the state. Since 1991, the author has been invited to participate in an<br />

ever-increasing number of seminars centering on death investigation and<br />

the different areas of expertise relevant to such investigations. These presentations<br />

have resulted in an increased and more widespread awareness<br />

by state, city, and county law enforcement, forensic science, and medicolegal<br />

agencies of the significant contributions by anthropologists to death<br />

investigations. Since 2000, the author has been providing one- to threeday<br />

workshops to a small number of city and county agencies, as well as<br />

opening up a limited number of spaces in a semester-long, undergraduate<br />

course in forensic anthropology. The focus of each workshop varies<br />

according to the agency requesting the training. The workshop presented<br />

557 * Presenting Author


to the Hennepin County <strong>Medical</strong> Examiner’s Office, for example, emphasized<br />

the information possible to determine from the analysis of skeletal<br />

remains and another, presented to the Hennepin County Sheriff’s Office,<br />

on the location, documentation, and collection of surface-deposited<br />

remains. Each workshop provides the participants with hands-on opportunities<br />

to apply the methods/protocols they are introduced to.<br />

Additionally, a two-day workshop on the investigation of clandestine<br />

graves, jointly organized by the author and the Minnesota Bureau of<br />

Criminal Apprehension, the state crime laboratory, is scheduled for the<br />

summer of 2003.<br />

It is the opinion of the author that the presentation of the lectures and<br />

training workshops on various aspects of Forensic Anthropology has had,<br />

overall, a positive effect on death investigation in Minnesota. It is<br />

apparent that the cornerstones of the U.S. criminal justice system are law<br />

enforcement, the legal system, and forensic science. Each of these is inextricably<br />

linked to the other two and justice requires communication and<br />

interaction between them. The workshops and presentations have worked<br />

to establish such communication and interaction and have resulted in an<br />

increased understanding by the law enforcement, legal, and larger forensic<br />

science communities of the contribution of forensic anthropologists to<br />

death investigation. A greater understanding and appreciation by the<br />

anthropologist of the roles, responsibilities, and procedures employed by<br />

different agencies in these situations has also occurred. Specific benefits<br />

from these training opportunities include establishing a relationship for<br />

future cooperation in relevant cases, clarifying the role of the forensic<br />

anthropologist in such cases, and informing crime scene personnel of<br />

established protocol for location, documentation, collection, and<br />

packaging of human remains resulting in more thorough scene processing.<br />

However, there are opportunities for the information and experiences<br />

presented in training workshops to be misused. A little knowledge can be<br />

dangerous and there have been instances where, after a short workshop or<br />

semester-course, a participant decides they are qualified to analyze human<br />

skeletal remains. This is, of course, potentially harmful for the case, as<br />

well as for the reputation of Forensic Anthropology as a legitimate and<br />

respected forensic science. Such misuse of the information presented in<br />

a training workshop may be avoided by clearly stating the objectives of the<br />

workshop, defining the educational and experiential qualifications<br />

necessary to be a practicing forensic anthropologist, and discussing the<br />

consequences of going beyond one’s area of expertise.<br />

It is likely that the short seminars and training workshops in Forensic<br />

Anthropology will continue and, in fact, occur more regularly in<br />

Minnesota. The effect of such educational opportunities on death investigation<br />

is still being assessed; however, it is the author’s opinion that the<br />

effect has been primarily positive, resulting in a better understanding by<br />

the legal, law enforcement, medico-legal and forensic science communities<br />

of what forensic anthropology is, when the involvement of a<br />

forensic anthropologist is warranted, and what the contributions of<br />

forensic anthropology are in investigations involving skeletal, decomposed,<br />

or burned human remains.<br />

Forensic Anthropology, Education, Short-Courses<br />

H49 Fifteen Years of Forensic Anthropology<br />

Short Courses at the National Museum<br />

of Health and Medicine/AFIP<br />

Lenore T. Barbian, PhD*, and Paul S. Sledzik, MS, National Museum<br />

of Health and Medicine, Armed Forces Institute of Pathology,<br />

Washington, DC<br />

The goal of this presentation is to describe the development of the<br />

curriculum of a forensic anthropology course and present a demographic<br />

profile of the course participants.<br />

The National Museum of Health and Medicine, Armed Forces<br />

Institute of Pathology (NMHM/AFIP) has offered a short course in<br />

* Presenting Author<br />

forensic anthropology for the past 15 years. As the only forensic anthropology<br />

course offered in the U.S. to carry CME credit hours, it must meet<br />

the Essential Areas and Policies of the Accreditation Council for<br />

Continuing <strong>Medical</strong> Education (ACCME). From the beginning, the<br />

course was designed to present the basic tenets of forensic anthropology<br />

to military and civilian medical examiners, coroners, law enforcement<br />

personnel, forensic odontologists and other medico-legal investigators.<br />

In February 1988, the first annual forensic anthropology course was<br />

offered by the NMHM/AFIP. Since then, nineteen courses have been<br />

successfully conducted including courses held in Albuquerque, New<br />

Mexico; Mexico City, Mexico; and Bradford, England. Currently, the<br />

annual course is held each spring in Bethesda, Maryland at the Uniformed<br />

Services University of the Health Sciences (USUHS) and is accredited for<br />

a maximum of 30 hours in Category 1 credit towards the AMA Physician’s<br />

Recognition Award.<br />

The format of the course has essentially remained the same over the<br />

years with morning lectures by the faculty and afternoon hands-on lab<br />

stations. The lectures provide the methological basis of the osteological<br />

techniques that will be covered in the afternoon lab session. Lectures also<br />

introduce additional applications of the field that vary each year dependent<br />

upon the expertise of the visiting faculty. Core topics covered include age,<br />

sex, stature, and ancestry assessment of skeletal remains; distinguishing<br />

forensic from non-forensic remains; body search and recovery techniques;<br />

forensic taphonomy; forensic odontology; and trauma analysis. From the<br />

beginning, the course has covered the special application of forensic<br />

anthropology in mass disasters. This continues today with the inclusion of<br />

topics such as media relations during mass fatality incidents, deployments<br />

of the Disaster Mortuary Operational Response Teams, and the role of the<br />

National Transportation Safety Board.<br />

The afternoon lab sessions are a hallmark of the course and provide<br />

an opportunity for the participants to interact one-on-one with the faculty.<br />

The lab session give the participants an opportunity to practice the<br />

osteological techniques discussed in the lectures and to view actual<br />

examples of skeletal pathology and trauma. Over 100 museum skeletal<br />

specimens are used in the lab stations, and often faculty will bring<br />

examples from actual forensic cases. The USUHS Anatomy Teaching Lab<br />

provides additional support by allowing access to their articulated and<br />

disarticulated study skeletons and anatomical models. In recent years, the<br />

final lab session has consisted of six simulated forensic cases that the<br />

course participants must analyze and identify from a list of missing<br />

persons.<br />

The course has been marketed through a variety of avenues including<br />

the AFIP newsletter, a course brochure, and advertising in medical<br />

journals. Since the late 1990s, the AFIP has maintained a web site through<br />

which potential participants can not only access the course syllabus but<br />

also register directly on line. The web site has become an increasingly<br />

important marketing venue, accounting for over 20% of the registered participants<br />

in the most recent course. The board based marketing approach<br />

has resulted in a diverse participant profile. Civilian, military, and other<br />

federal employees attend the course. Scientific disciplines are well represented<br />

with pathologists, dentists, archaeologists, and physical anthropologists<br />

representing the bulk of the participants over the years. Other, less<br />

traditional, professions have also been served by course including writers<br />

and high school science teachers.<br />

From the beginning, the NMHM/AFIP forensic anthropology course<br />

has been well received. Course evaluations indicate high level of satisfaction<br />

with the course content and the quality and professionalism of the<br />

faculty. The evaluations have played an important role in the development<br />

of the course curriculum. Comments from the course participants have<br />

directly impacted the structure and content of the course. The 1993 course<br />

held in Albuquerque, New Mexico included in a mock field recovery<br />

exercise as a result of comments from the 1991 and 1992 students.<br />

Similarly, lectures on DNA forensic identification have become a core<br />

topic since 1992. Student evaluation has also influenced the inclusion of<br />

occasional lectures in radiographic identification, forensic anthropology in<br />

558


the courtroom, and human rights cases, among other topics. In addition,<br />

the organization of the course manual has been modified and improved<br />

due to the input of the participants.<br />

Education, Participant Demographics, Forensic Anthropology<br />

H50 Forensic Anthropology for Sale:<br />

A Perspective From Law Enforcement<br />

Lauren Rockhold Zephro, MA*, Monterey County Sheriff’s Department,<br />

1414 Natividad Road, Salinas, CA<br />

The goal of this presentation is to present the forensic anthropological<br />

community with issues concerning specialized training in forensic<br />

anthropology for law enforcement personnel and forensic anthropological<br />

consultants.<br />

With the introduction short courses, forensic anthropology has<br />

entered into the training arsenal of law enforcement. This paper outlines<br />

the role of short courses in law enforcement, the types of personnel<br />

trained, and current issues in forensic training. In addition, this paper will<br />

specifically address what short courses in forensic anthropology should<br />

cover.<br />

Civilian or sworn personnel with specialized crime scene training<br />

typically process major crime scenes, including homicides. Depending on<br />

the department size, resources, and frequency of major crimes, crime<br />

scene personnel may be available in-house or through an agreement with<br />

another agency or state crime laboratory. Less frequently, crime scene<br />

assistance will be requested of experts outside the criminal justice system,<br />

in areas such as forensic anthropology, odontology, and entomology. Law<br />

enforcement personnel with crime scene training largely originate from<br />

two pools: 1) individuals hired and trained as sworn peace officers that<br />

rotate into a crime scene investigation unit and 2) individuals hired as<br />

civilian support personnel who have education in the sciences, forensic<br />

sciences, or evidence technology. In many police departments and crime<br />

laboratories, forensic training is provided solely through on-the-job<br />

training and specialized training available through short courses.<br />

For law enforcement personnel, short courses provide a valuable<br />

educational resource. These courses prepare employees for specific<br />

situations, court presentation, and expert testimony. In addition, specific<br />

training is often mentioned during qualification as an expert witness in<br />

court to establish expertise. Short courses may also help fulfill<br />

certification requirements in a specific area, such as the certification tracks<br />

provided through the International Association for Identification. There is<br />

a legitimate expectation on behalf of the funding agency that the information<br />

provided in short courses will be relevant to an individual’s daily<br />

work assignment and in specific crisis situations. In most law<br />

enforcement departments, money is tight and training expenses are<br />

considered carefully with regard to cost versus benefit.<br />

Short courses in forensic science are often geared towards different<br />

tracks. For example, classes may be geared towards the recognition,<br />

documentation and collection of particular types of evidence (for crime<br />

scene technicians) and / or positive identification, analysis and interpretation<br />

(for specialized experts).<br />

For non-anthropologists, including crime scene technicians and<br />

criminalists, forensic anthropological training should be geared towards<br />

how to document a crime scene for future analysis by a trained forensic<br />

anthropologist. Training for non-anthropologists could include<br />

recognition of bone (not the distinction of human versus animal but rather<br />

bone from non-bone), photography, videography, exhumation and surface<br />

recovery strategies, sketching, evidence collection, storage and<br />

preservation of anthropological evidence, court presentation of crime<br />

scene recovery, ethics, and how and when you need to find an expert in<br />

forensic anthropology.<br />

For graduate level anthropologists with advanced training in<br />

osteology and human variation, forensic anthropology short courses<br />

potentially offer an excellent opportunity to supplement academic<br />

education and could provide training on how to successfully interface with<br />

the criminal justice system. Short courses for physical anthropologists<br />

should include training on recovery of human remains from a forensic<br />

context combined with general techniques of crime scene investigation,<br />

forensic photography, videography, trauma analysis, positive identification,<br />

determination of interval since death, recognition of non-biological<br />

evidence, collection and preservation of evidence, report preparation, and<br />

chain-of-custody. Training for consultants should also include discussion<br />

on ethics, professional conduct, and court testimony / presentation.<br />

In addition to concerns over appropriate training topics in forensic<br />

anthropology, the lack of standards in the field is highly problematic,<br />

especially as training becomes more accessible. In many specialized areas<br />

of forensic science, scientific working groups have been formed and these<br />

groups are producing documents that specifically address definitions,<br />

standards, proficiency testing and guidelines for training and practice.<br />

These documents are largely in response to growing court challenges that<br />

have attacked the validity of forensic science and it’s practitioners.<br />

The current position of forensic anthropology contrasts with trends in<br />

the forensic community. In forensic anthropology, there is no scientific<br />

working group or document, no certification program or proficiency<br />

testing for crime scene investigation at any level, and no certification<br />

program for graduate level trained forensic anthropologists under the PhD<br />

level. Of special concern is that many forensic anthropology short course<br />

instructors and practicing forensic anthropologists are not eligible for<br />

certification or any other type of periodic proficiency testing. In addition,<br />

there are no guidelines in forensic anthropology for validation of results<br />

while in other forensic sciences; peer review and independent verification<br />

are an integral part of a final report. As forensic anthropology expands out<br />

of academia, stringent and concise guidelines for the practice and training<br />

of forensic anthropology must be established to place it in line with other<br />

forensic sciences.<br />

Forensic Anthropology, Law Enforcement Training, Certification<br />

H51 Supply and Demand: Trends and<br />

Training in Forensic Anthropology<br />

Joanne L. Devlin, PhD*, and Michelle D. Hamilton, MA, Department<br />

of Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

This presentation will address patterns in forensic anthropology<br />

casework over the last decade and reflect on training programs.<br />

The year 2001 marked the thirtieth anniversary of the Physical<br />

Anthropology section of the American Academy of Forensic Sciences, and<br />

the twenty-fifth anniversary of the founding of the American Board of<br />

Forensic Anthropology. A review of the past three decades since Forensic<br />

Anthropology was accepted within the Academy shows the evolution of<br />

the discipline, with key advancements in analytical techniques, and a new<br />

and increasing popularity of the field in both academic and popular arenas.<br />

The 1970s were characterized by the development and refinement of<br />

approaches to determine the age, sex and ancestry of decedents. The<br />

following decade saw an increase in the application of these techniques, as<br />

forensic anthropologists became integral players in the medico-legal field.<br />

During this time several universities created and supported centers that<br />

specialized in the training of future section members. The 1990’s reflected<br />

an ever-increasing commercial popularity of the field, coupled with a<br />

reduction in the influence of major research universities.<br />

A presentation in 1994 at the Academy meetings in San Antonio<br />

recorded the patterns in casework during the 1980s at The University of<br />

Tennessee Knoxville. During that decade, the number of cases steadily<br />

increased with a large percentage involving field recovery by forensic<br />

anthropologists. A review of cases in the 1990s demonstrates a reversal in<br />

this trend, with fewer requests for field assistance in the latter half of the<br />

559 * Presenting Author


1990s. The majority of cases during that period were conducted at the<br />

request of the medical examiner within the morgue setting, reflecting a<br />

change in the focus of cases from field recovery to morgue-based analyses.<br />

To investigate whether this trend is a Knoxville phenomenon or a<br />

pattern noted by other anthropologists as well, a questionnaire was<br />

distributed to members and diplomates. The focus of the questionnaire<br />

was twofold: to ascertain patterns in casework and to address the issue of<br />

training. Specifically, respondents were asked about the nature of their<br />

casework, including whether the majority of cases were field recoveries by<br />

anthropologists, cases transported to the anthropologist by law<br />

enforcement personnel, or medical examiner requests. An additional line<br />

of inquiry addressed what training these members and diplomates provide<br />

to students, law enforcement agents, and the general public in the form of<br />

classes, short courses, seminars, or field schools.<br />

This presentation will discuss the results of these questionnaires, and<br />

trends and patterns in case work during the three decades of the Physical<br />

Anthropology section will be reviewed. The information provided will<br />

illuminate the new and changing role of the forensic anthropologist in the<br />

medico-legal setting, and may help to better train members of the agencies<br />

forensic anthropologists interact with.<br />

Forensic Anthropology, Case Reviews, Training Programs<br />

H52 Teaching Forensic Archaeology to the<br />

Masses: The Death Scene Course at<br />

Mercyhurst College After a Decade<br />

Dennis C. Dirkmaat, PhD*, Departments of Anthropology and Applied<br />

Forensic Science, Mercyhurst College, Erie, PA; and Michael Hochrein,<br />

BS, Federal Bureau of Investigation, St. Louis, MO<br />

Attendees can expect to learn more about courses offered in the field<br />

of forensic archaeology. Curricula offered, justification and objectives of<br />

these courses, faculty, and primary audiences will be detailed.<br />

For the past 11 years, on an annual basis, the Mercyhurst<br />

Archaeological Institute (MAI), Mercyhurst College, Erie, PA, has<br />

presented an annual 6 day short course in forensic archaeology entitled<br />

“Death Scene Archaeology: Field Methods in the Location, Recovery and<br />

Interpretation of Human Remains from Outdoor Contexts.“ As currently<br />

configured, the short course represents the only international multi-day<br />

seminar devoted exclusively to the presentation of current methods in the<br />

field of forensic archaeology. In this presentation, an overview of the short<br />

course will be given along with a discussion of original goals and objectives,<br />

prospective audience, faculty, curriculum, and offspring courses.<br />

Goals and Objectives of the Course: The primary objective of this<br />

introductory course is to expose participants to the field of forensic archaeology<br />

by describing the range of activities typically involved in the<br />

discipline, explain the basic principles and methods of the field, and<br />

present—through case studies—the benefits derived from employing<br />

these techniques in terms of maximizing physical evidence location,<br />

documentation and collection. This is accomplished through lecturebased<br />

presentations that are strongly supplemented with hands-on<br />

opportunities to experience some of the techniques discussed. It should be<br />

noted that a small percentage of the participants, especially active law<br />

enforcement investigators, can immediately incorporate some of these<br />

methods into their everyday work (or at least know where to find<br />

expertise); however, most participants require much more education and<br />

training in archaeology, forensic anthropology, and forensic science and/or<br />

law enforcement. At the beginning of each short course it is strongly<br />

emphasized that these and other short courses and seminars provide one of<br />

a multitude of contributions to the entire educational package of the<br />

forensic anthropologist.<br />

Audience: The participants typically include advanced undergraduate<br />

and graduate students in anthropology departments throughout<br />

North America and Canada, law enforcement officials at the local, state,<br />

* Presenting Author<br />

and federal agencies, coroners, medical examiners and their deputies,<br />

forensic pathologists, and administrators from public and non-profit<br />

research foundations. To date individuals from 39 states, Puerto Rico,<br />

Spain, the Netherlands, South Africa, and Columbia, have participated.<br />

There are currently only a very limited number of forensic anthropology<br />

courses available to undergraduates beyond an introductory course, and<br />

even fewer, programs of study in the field. For the advanced undergraduate<br />

student, this course offers a rare opportunity to gain insight into<br />

an area of anthropology that has recently generated much interest. At the<br />

graduate student level, few graduate programs provide courses or a portion<br />

of the curriculum to forensic archaeology. Individuals in law enforcement<br />

are particularly interested in courses that will improve their data collection<br />

methods at outdoor scenes, areas of investigation that are typically not<br />

addressed adequately during basic training regimes.<br />

Curriculum and Faculty: The curriculum focuses on the location and<br />

processing of a variety of outdoor scenes including surface scatters of<br />

human remains, buried body features, fatal fire scenes and mass fatality<br />

localities. The faculty includes board-certified forensic anthropologists,<br />

an FBI agent who also heads an evidence response team, professional<br />

archaeologists, a board-certified forensic entomologist, and crime scene<br />

specialists. Following an introduction to the subject of forensic anthropology,<br />

more detailed lectures regarding archaeological principles as they<br />

apply to the crime scene are presented. This is followed by lectures and<br />

demonstrations relevant to the search for unlocated crime scenes,<br />

addressing topics such as the role of the cadaver dog, probing techniques,<br />

and pedestrian searches. Next, techniques used to create precise<br />

topographic, plan-view and profile maps are discussed followed by<br />

practical exercises that require the mapping of the surface distribution of<br />

physical evidence. Forensic entomological lectures and demonstrations of<br />

proper insect collection methods using white-tailed deer carcasses are also<br />

emphasized at this time.<br />

The remaining three days of the course are devoted to the proper<br />

excavation of the buried body feature, which in this case, involves mock<br />

burials containing plastic human skeletal elements and other physical<br />

evidence arranged in a particular burial context scenario. More sophisticated<br />

methods of burial location involving geophysical instrumentation<br />

such as the EM-31 and ground-penetrating radar have recently been added<br />

to the curriculum. Following brief experimentation a few years ago with<br />

human cadavers and animal carcasses, it was determined that attention had<br />

shifted to the repulsive factor of the physical evidence, and away from the<br />

intended primary focus; the employment of exacting excavation methods<br />

that maximize evidence documentation and collection procedures. The<br />

use of decomposing biological specimens in the grave feature was<br />

abandoned.<br />

Offspring Courses: Recently, two programs were added to the<br />

Mercyhurst training repertoire that represent direct descendants of the<br />

Death Scene course; a week-long short course in Death Scene<br />

Investigation presented in the town of Taramundi, Asturias, northern<br />

Spain, covering the basics of forensic anthropology, and a two-week<br />

intensive field school in forensic archaeology which expands the<br />

complexity of recovery scenarios as compared to the week-long course<br />

and also requires a written report of activities.<br />

In 1998, the Federal Bureau of Investigation’s St. Louis Division<br />

Evidence Response Team first sponsored a five-day short course modeled<br />

after that developed by MAI. “Crime Scene Archaeology: A Field<br />

Training Program in Forensic Archaeology and the Recovery of Human<br />

Remains,” was offered exclusively to medico-legal death investigators as<br />

advanced training. Recently, the course was accredited by the Missouri<br />

Police Officers Standards and Training (POST) board and the American<br />

Board of Medicolegal Death Investigators for continuing education<br />

certification. Attendees for the tuition-free course are selected, in part, on<br />

the basis of years experience in crime scene investigation.<br />

Like the Mercyhurst course, the St. Louis seminar serves to<br />

introduce investigators to the wide array of disciplines required for a<br />

thorough examination and reconstruction of outdoor crime scenes.<br />

Divided into two days of lectures, one day of round-robin format mapping<br />

560


exercises, and two days of recovery practicals, the course was designed to<br />

mimic as closely as possible true crime scene investigations. Federal,<br />

state, and local public safety and private resources such as helicopters, fire<br />

department aerial platforms, cadaver dog teams, total station mapping<br />

teams, and geophysical engineers were incorporated into a multiple<br />

homicide/buried body scenario addressed by half the class and a small airplane<br />

crash scenario addressed by the other half. The course intentionally<br />

includes long hours, night sessions, and mandatory team assignments<br />

which mixed investigators from different departments, in order to create<br />

an atmosphere much like that encountered during a true major case-task<br />

force type investigation. One noted benefit of the course has been the tendency<br />

for attending departments to call on outside expert assistance in real<br />

cases while conducting appropriate site preparations prior to the arrival of<br />

that assistance.<br />

Another offspring course closely modeled after the Mercyhurst<br />

Death Scene course is presented by the York Regional Police Department<br />

in York, Ontario. Like the FBI course described above, the primary<br />

intended audience is local and regional law enforcement investigators and<br />

serves to introduce the discipline and raise the level of expertise brought<br />

to bear on outdoor crime scenes in the region.<br />

All of these courses have had a significant impact relative to<br />

exposing this under appreciated discipline to a wide audience both within<br />

anthropology/forensic anthropology and within the law enforcement community<br />

at the local, state and federal levels.<br />

Forensic Archaeology, Training Opportunities, Teaching<br />

H53 The National Forensic Academy<br />

Arpad A. Vass, PhD*, Oak Ridge National Laboratory, P.O. Box 2008,<br />

Oak Ridge, TN<br />

The goal of this presentation is to educate the general public of the<br />

courses available in the forensic arena.<br />

The National Forensic Academy is an intensive 10-week training<br />

program designed to meet the needs of law enforcement agencies in the<br />

areas of evidence identification, collection, and preservation. The goal of<br />

the academy is to prepare the forensic practitioner to recognize key elements<br />

at a crime scene and to improve the process of evidence recovery.<br />

Participants are challenged in over 25 disciplines through classroom<br />

instruction, lab activities, and field practicums. Investigative scenarios<br />

include, but are not limited to, burned houses and buildings, exploded<br />

vehicles, and an in-depth study of forensic anthropological techniques in<br />

conjunction with the University of Tennessee’s Forensic Anthropological<br />

Research Facility. Access to this unique facility allows students to study<br />

human decomposition, utilize anthropological and archaeological skills to<br />

excavate clandestine graves, recover surface scattered human remains, and<br />

perform TSD techniques used at crime scenes. Classroom activities in this<br />

discipline will instruct students in basic skills necessary to identify skeletal<br />

elements and evaluate bone trauma. The entire academy consists of over<br />

400 hours of training, 170 hours of in-class work, and over 220 hours of<br />

field practicum.<br />

National Forensic Academy, Forensic Courses, Training Programs<br />

H54 Advances in Surveying and Presenting<br />

Evidence From Mass Graves, Clandestine<br />

Graves, and Surface Scatters<br />

Ian Hanson, MSc*, School of Conservation Sciences, Bournemouth<br />

University, United Kingdom<br />

This presentation will describe methods of surveying complex graves<br />

and associated environments and demonstrate advances in the visual<br />

display of this surveyed data developed during field operations for UN<br />

ICTY 1997-2000.<br />

Mass graves, clandestine graves, and surface scatters consist of<br />

numerous, complex, and layered pieces of evidence which are often<br />

distributed in their environment in a way that limits conventional photography<br />

and planning of all associated relationships. Use of electronic<br />

surveying equipment and computer software allows a variety of<br />

explanatory images to be produced from one data set for report,<br />

courtroom, and non-expert use showing evidence association in two and<br />

three dimensions.<br />

Use of electronic surveying equipment, such as EDM’s (electronic<br />

distance meters) for surveying and mapping archaeological excavations<br />

has increased greatly in the last ten years. Their application to police work<br />

developed in many agencies worldwide through automobile accident<br />

survey. Their use in war crimes and human rights work developed in<br />

Rwanda and the Former Yugoslavia with PHR. The use of EDM’s and<br />

computer software to map graves and crime scenes for ICTY field<br />

investigations continued from 1997. Accuracy, speed, large area coverage,<br />

non-interference with other site activity, and flexibility of data use are<br />

main factors that make such survey suitable for these types of excavations.<br />

Excavation of mass graves in Bosnia revealed the need to plan<br />

evidence and map locations from several different perspectives:<br />

1. Two-dimensional area plans to allow site location of a grave or<br />

crime scene on published maps, aerial photographs, and within a<br />

given physical locality.<br />

2. Two-dimensional contour plans to show the topographical features<br />

of a site area and topographical properties of graves.<br />

3. Two-dimensional plans to show distribution of different evidence<br />

types across a grave/crime scene.<br />

4. Three-dimensional contour plans showing the topographical<br />

properties of graves and crime scenes.<br />

Images showing the distribution and association of evidence in three<br />

dimensions.<br />

A single set of survey points taken on topographical features such as<br />

houses and roads, on ground surfaces, and on evidence locations can be<br />

used to produce different plans which can be viewed from any direction.<br />

Many gravesites in Bosnia were also execution sites. Hundreds of<br />

pieces of surface evidence such as fragmentary bone and tissue can rapidly<br />

be mapped using an EDM in a single day. This is particularly useful when<br />

the evidence may be layered or cannot be located and collected at one time<br />

such as densely distributed shell casings in grass and topsoil.<br />

Excavation of complex mass graves has often necessitated the<br />

removal of grave walls to allow access to bodies. Survey of visible grave<br />

dimensions before destruction allows plan reconstruction of the grave<br />

topography in three dimensions including areas ‘lost’ to removal.<br />

Mass graves excavated in Bosnia and elsewhere often contain<br />

multiple intertwined bodies. Photography cannot show the relationship<br />

and position of these bodies because complete exposure of all remains at<br />

one time is usually impossible. Conventional planning from a base line or<br />

fixed grid is slow and interferes with other site operations such as<br />

movement of heavy machinery. Use of EDM survey allows recording of<br />

a body position even when all of a body is not visibly exposed at one time.<br />

The surveyed points of a single body taken at different times can be<br />

reunited on computer.<br />

For ICTY exhumations bodies were mapped by recording points on<br />

the head and joint locations to produce a simple ‘stick man’ image. The<br />

data collected was processed through a series of software programs called<br />

Bodrot developed by Professor Richard Wright. This allowed the position<br />

of all bodies in a grave to be displayed as a rotatable three-dimensional<br />

image in a software program called Rotate developed by Marijke van<br />

Gans. Viewing grave contents in this simple form helps to understand its<br />

complexity in a variety of ways:<br />

1. Revealing the method of disposal of bodies.<br />

2. Demonstrating separate episodic disposal events, resulting in<br />

spatial separation between layers of bodies.<br />

3. Revealing the pattern of arrangement of bodies that may indicate<br />

disposal methods such as bulldozing a mass of bodies to the end<br />

of a trench or dumping batches of bodies from trucks.<br />

561 * Presenting Author


4. Demonstrating that shell cases, and other objects, are uniformly or<br />

non-uniformly distributed among the bodies in a grave or on sur<br />

faces.<br />

5. Supporting evidence that there has been tampering with a grave,<br />

with partial removal of bodies, demonstrating the association of<br />

incomplete bodies and body parts with disturbed areas that intrude<br />

into the original grave.<br />

Rotate images are small, computer files that are simple to operate and<br />

can be attached to documents on floppy disks or CDs for distribution. The<br />

various types of plans and images described have been used in reports and<br />

as courtroom evidence of exhumations and surface scenes in successful<br />

prosecution cases for ICTY. The use of EDM survey and threedimensional<br />

images may have wider applications for evidential viewing in<br />

police work, mass disaster or terrorist events such as air crashes and<br />

explosions.<br />

Survey, Mass Graves, Visual Imagery<br />

H55 Cervical Smears as an Alternate Source<br />

of DNA in the Identification of Human<br />

Skeletal Remains<br />

Carla R. Torwalt, BSc*, Thambirajah Balachandra, MBBS, and Janice<br />

Epp, RN, HBScN, Office of the Chief <strong>Medical</strong> Examiner, 210-1 Wesley<br />

Avenue, Winnipeg, Manitoba, Canada<br />

The goal of this presentation is to increase the forensic<br />

community’s awareness of alternate sources of DNA in the process of<br />

identifying human skeletal remains.<br />

In May 1978 a 35-year-old female and her male companion went<br />

missing while boating on Lake Winnipeg in Manitoba, Canada.<br />

Although the man’s body was recovered during the ensuing search, the<br />

woman’s body was never found. In April 1999 a property owner, who<br />

was clearing a swampy area of land that bordered Lake Winnipeg,<br />

recovered a skull. Anthropological examination established that the<br />

skull belonged to a Caucasian female between the age of 34 and 50<br />

years. When a check of police Missing Persons files revealed similarities<br />

in criteria (age, sex, locale, etc.) between the skull and the woman<br />

who had disappeared 21 years earlier, attempts to confirm the skull’s<br />

identity continued. Dental analysis failed to positively include or<br />

exclude the skull as belonging to the missing woman. However the<br />

medical examiner’s office was able to locate and review her old hospital<br />

records. The medical chart, which contained results of both cervical<br />

smears and biopsies, revealed she had dysplasia. As the hospital’s policy<br />

was to retain slides of cervical smears and paraffin blocks for at least 25<br />

years in all patients with dysplasia and cancer, slides from her cervical<br />

smears, including one taken in March 1978, were obtained. In<br />

September 2000 the medical examiner’s office submitted these slides,<br />

together with teeth and a temporal bone cross-section from the skull, for<br />

DNA testing to the Armed Forces Institute of Pathology (AFIP) in<br />

Rockville, MD. Following comparison of the DNA material, the AFIP<br />

confirmed the skull belonged to the 35-year-old woman in question. The<br />

probability of observing another individual in the general population<br />

with an identical profile was estimated at 1 in 12.4 trillion. This case is<br />

unique, as the DNA from the 22-year-old cervical smear slide was the<br />

oldest DNA sample successfully retrieved and used from slides of this<br />

type by the AFIP.<br />

Cervical Smear, Human Skeletal Remains, DNA<br />

* Presenting Author<br />

H56 Unusual Sharp Force/Penetrating<br />

Trauma Pattern on a Cranium;<br />

Cooperative Examination and<br />

Evaluation by the Forensic Pathologist<br />

and Forensic Anthropologist<br />

Vincent H. Stefan, PhD*, Department of Anthropology, Lehman College -<br />

CUNY, 250 Bedford Park Boulevard, West, Bronx, NY; and Patricia J.<br />

McFeeley, MD, Office of the <strong>Medical</strong> Investigator, University of New<br />

Mexico School of Medicine, Albuquerque, NM<br />

After attending this presentation, the participant will become familiar<br />

with a case with unusual sharp force/penetrating trauma patterns seen on a<br />

cranium and should have renewed respect for the value of combined<br />

pathology and anthropology examination of decomposed remains.<br />

Background: The assessment of sharp force and penetrating trauma<br />

can at times be quite difficult. Yet, through the combined efforts of the<br />

forensic pathologist and anthropologist, sharp force and penetrating traumas<br />

can be located and correctly identified, and in many cases the type of<br />

weapon or tool utilized to inflict the trauma can be ascertained.<br />

Case History: The severely decomposed partially clad body of a young<br />

adult female was discovered in a desert area of New Mexico approx. 2 ½<br />

months after having disappeared. The cause of death was determined to be<br />

multiple stab/cutting wounds of the head, neck, chest and back. There were<br />

cutting injuries of the neck with probable transection of a carotid and other<br />

vessels, perforating stab wounds of the chest, abdomen, and back, some of<br />

which left clear impressions of a knife in cartilage, and cutting/stabbing<br />

wounds of the cranium some of which were sharp and others of which had<br />

characteristics of more blunt impacts.<br />

Pathological/Anthropological Assessment: A total of 14 defects were<br />

present and noted on the cranium, located on the left temporal and left<br />

greater wing of the sphenoid. Combined evaluation of the skin and soft<br />

tissue defects along with the bone impacts and penetrations revealed at least<br />

two different instruments. Three of the defects were complete perforations<br />

of the cranium: measuring - 10mm x 5mm, 7mm x 3mm, and 6mm x 4mm.<br />

Radiating fractures connected two of the perforation defects. Ten defects<br />

had the appearance of “divots,” running from posterior to anterior, indicating<br />

that the tip of the weapon was held at an angle or the trajectory of the blow<br />

was tangential to the surface the cranium. Of those “divots,” four were<br />

partial penetrations of the crania with resultant displacement and hinged<br />

fracturing of the inner table. All of the “divots” had a characteristic width<br />

of 1.5mm. Several of the defects appeared to be perpendicular blows to the<br />

cranium, producing patterned marks reflecting the physical appearance of<br />

the tip of the weapon or tool. These defects had an oval outline, measuring<br />

1.5mm x. 3mm. One small projection was observed on each side of the<br />

oval, but on opposite ends, projecting laterally, producing a pattern similar<br />

to a “hurricane” symbol. Though the exact type of weapon or tool utilized<br />

to make these defects is not known, it is hypothesized that these defects were<br />

produced with the tip of a pair of very small needle-nose pliers.<br />

A more traditional sharp force trauma defect was observed with a 5mm<br />

cut of the superior margin of the left zygomatic arch, through the root of the<br />

zygomatic arch into the squamous of the temporal. A 3mm x 2mm triangular<br />

piece of metal was found lodged in the temporal squamous, possibly<br />

a knife tip. The cut sliver of zygomatic arch was still attached posteriorly to<br />

the arch at the time of examination. A smooth, single edged knife was the<br />

most likely weapon utilized to produce this defect.<br />

Conclusions: Photographs of the wounds and suggested tool(s) were<br />

presented in court by both the pathologist and anthropologist and were<br />

instrumental in the jury’s understanding of the wounds and how they were<br />

inflicted. Although the defendants who were convicted at trial did not<br />

confirm the specific instruments, circumstantial and associated evidence<br />

suggested that the interpretations of the wounding instruments were<br />

substantially correct.<br />

Sharp Force Trauma, Penetrating Trauma, Unusual Patterned<br />

Trauma<br />

562


H57 Gunshot Wounds and Other Perimortem<br />

Trauma to the Sub-Adult Skeleton<br />

Ambika Flavel, MSc*, 52 Ninth Avenue, Maylands, WA<br />

The goal of this presentation is to expose the forensic community to<br />

several specific examples of gunshot and blunt force trauma to sub-adult<br />

skeletons recovered from mass burials.<br />

The information in this poster has been collected from investigations<br />

of killings from Guatemala, Central America, dating to the early 1980s.<br />

The seven case studies provide examples of the effects of gunshot wounds<br />

and blunt force trauma to the skeletal remains of individuals aged between<br />

two months and 16 years. One case in particular shows the erosion<br />

damage resulting from over 20 years of burial and the difficulty in determining<br />

the cause and manner of the trauma. In other cases preservation is<br />

much more complete and erosion plays a less drastic role in the analysis<br />

process.<br />

All seven of the following cases provide the age and sex (if known)<br />

and details of the perimortem trauma observed. The samples were taken<br />

from skeletonised remains exhumed by the Foundacion de Antropologia<br />

Forense de Guatemala (FAFG) from 20 year old mass graves during 2001<br />

and 2002. The individuals were all buried a short time after a violent death<br />

resulting from the conflicts in Guatemala between 1981-1982. In several<br />

cases relatives have identified the remains based on clothing and grave<br />

goods, these identifications are often confirmed with results of laboratory<br />

analysis where biological sex and age are determined through osteological<br />

analysis.<br />

Case 1: a gunshot wound was identified in the cranium of a probable<br />

female aged 2-6 months. The entry appears as a circular orifice 6mm in<br />

diameter with internal beveling located in the left parietal. Radiating<br />

fractures affect the frontal, parietals, right temporal and sphenoid. The exit<br />

hole is not observable due to loss of bone tissue. Radiographs show no<br />

evidence of radiopaques, no ballistics were recovered either in the field or<br />

in the laboratory.<br />

Case 2: the vertebrae and ribs of a probable female aged 7-9 years<br />

display trauma compatible with a gunshot wound to the abdominal region.<br />

Two right ribs (#9 and #11) exhibit complete fractures and plastic deformation;<br />

and six vertebrae (D11-L4) have comminute fractures, plastic<br />

deformation and loss of bone tissue. The left ulna has multiple fractures.<br />

The radiographs of vertebrae show evidence of radiopaques and fragments<br />

of projectile were recovered during excavation associated with lumbar<br />

vertebrae. A projectile was recovered in the laboratory from the clothing<br />

and a metal fragment with green oxidation was recovered in the area of the<br />

right scapula.<br />

Case 3: the mandible of this probable male aged 8-12 years has<br />

undergone blunt force trauma (probably secondary to a gunshot wound to<br />

the cranium). The cranium (not displayed) also had multiple fracturing;<br />

however, erosion and loss of bone tissue prevents identification of the<br />

cause of trauma. The radiographs of thorax en bloque shows evidence of<br />

radiopaques. Metal fragments and a projectile were recovered from the<br />

thorax region during excavation. A projectile was recovered from the<br />

thorax in the laboratory.<br />

Case 4: the cranium of this female aged 14-16 years, shows trauma<br />

to the cranium affecting the parietals and occipital. It is probable that blunt<br />

force trauma caused these fractures. Radiographs show no evidence of<br />

radiopaques, no ballistics were recovered either in the field or in the laboratory.<br />

Case 5: the cause of the trauma as well as the sex of this individual<br />

aged 5-7 years is not determined. The cranium has simple fractures in the<br />

right parietal and occipital. Plastic deformation and loss of bone tissue as<br />

well as erosion prevents more accurate descriptions. Radiographs show<br />

no evidence of radiopaques, no ballistics were recovered either in the field<br />

or in the laboratory.<br />

Case 6: this male aged 12-13 years suffered three gunshot wounds.<br />

The first in the proximal third of the right femur has an entrance wound<br />

6x7.3mm on the anterior-lateral surface, and an exit hole measuring<br />

6x8mm with beveling 34x17mm on the posterior and medial surface. The<br />

left femur has two gunshot wounds in the distal third of the diaphysis. The<br />

entrance, on the posterior and medial surface, measures 12x12mm, five<br />

fractures radiate from this, there is no evident exit hole. The second<br />

entrance hole is on the anterior and medial surface, below the first, and<br />

measures 9x9mm, two fractures radiate from this and are interrupted by<br />

fractures radiating from the first entrance hole, the is no evident exit hole.<br />

The radiographs of the femurs show evidence of radiopaques, ballistics<br />

were recovered during excavation from the femora, and in the laboratory<br />

ballistics were recovered from the trousers.<br />

Case 7: the cranium and thorax of this probable female aged between<br />

13-16 years suffered gunshot wounds and fractures secondary to these. In<br />

the skull there is extensive loss of bone tissue in the right frontal, parietal,<br />

and sphenoid, and polifragmentation of the left temporal and parietal<br />

featuring multiple radiating and concentric fractures as well as several<br />

diastastic fractures (parieto-frontal, parieto-termporal, tempero-occipital,<br />

and tempero-zygomatic). Thoracic vertebrae #3, 4 and 7 have complete<br />

and infraccion fractures in the arc and body compatible with firearm<br />

damage which also caused the damage to the right 4th rib and the left 6th<br />

and 7th ribs. Lumbar vertebrae #2-3 suffered blunt force trauma. The<br />

radiographs show evidence of radiopaques and ballistics were recovered<br />

during the excavation phase.<br />

These seven cases are a preliminary demonstration of the damage<br />

caused by firearms and other weapons to the sub-adult skeleton. This<br />

sample is by no means representative of all the cases seen by anthropologists<br />

at the FAFG, instead, these cases were chosen to provide a variety<br />

examples with differing variables such as trauma location, trauma type,<br />

taphonomic effects and age that effect the analysis of trauma to the<br />

skeleton.<br />

Gunshot And Blunt Force Trauma, Sub-Adult Skeletons, Burials<br />

H58 The “Next Utility” in Field Recovery<br />

of Scattered Human Remains<br />

Ginesse A. Listi, MA*, Mary H. Manhein, MA, and Michael Leitner, PhD,<br />

Department of Geography and Anthropology, Louisiana State University,<br />

227 Howe-Russell, Baton Rouge, LA<br />

The goals of this presentation are to discuss and illustrate the<br />

technology and applicability of GPS and GIS in forensic anthropology for<br />

research and field recovery of scattered human remains.<br />

Field recovery of human remains is an essential role of the<br />

anthropologist in forensic investigation. Sites are often mapped and<br />

photographed to create a scaled depiction of the remains for study or<br />

medico-legal purposes. In situations where remains are widely scattered<br />

through animal activity or other processes, or where the landscape is topographically<br />

varied, hand drawn maps, even with the help of total stations,<br />

can be difficult to complete. In such instances, the Global Positioning<br />

System (GPS) can be a useful tool.<br />

In the U.S., the GPS was first developed by the Department of<br />

Defense (DoD) to enable accurate navigation and positioning across the<br />

globe. Though available to the general public in 1983, GPS was declared<br />

fully operational by the DoD in 1995. Since then, its applications have<br />

proven useful in a wide variety of professions, including anthropology, for<br />

locating and mapping archaeological sites. Recently, anthropologists at<br />

the Louisiana State University Forensic Anthropology and Computer<br />

Enhancement Services (FACES) Laboratory have begun to use GPS and<br />

Geographic Information Systems (GIS) for research and to assist with<br />

mapping forensic cases recovered in the field.<br />

As a powerful data collection tool, GPS in combination with GIS,<br />

offers benefits to field recovery, such as creating accurate site maps,<br />

particularly in cases where remains are widely distributed. Also, each site<br />

can be provided with a unique global address, enabling law enforcement<br />

563 * Presenting Author


to navigate back to the scene should further search be necessary.<br />

Additionally, GPS data collected in the field can be used for research<br />

purposes. Using GIS techniques and software, analyses of data may<br />

elucidate patterns of distribution when variables such as time since death,<br />

topography, environment, and seasonality are considered.<br />

Despite the benefits of GPS for data collection, inherent within the<br />

system are certain limitations to its practicality for field recovery that<br />

should be considered. Such drawbacks include the inability to receive<br />

data from the satellites in certain environments (e.g., inside<br />

structures/buildings or beneath heavy tree cover), and the “peak time” to<br />

use the system (i.e., when satellite positioning is ideal) may not coincide<br />

with the time of retrieval.<br />

Advances in GPS technology allow the collection of both code- and<br />

carrier-phase data with relatively inexpensive hand-held units. Such data<br />

can further be differentially corrected either in real-time (using a beacon)<br />

and/or through post-processing in order to increase the positional accuracy<br />

of the data. The most accurate positions can be recorded, if carrier-phase<br />

data are corrected in both real-time and through post-processing. But,<br />

such accuracy may not be sufficiently high for cases where remains do not<br />

move far from the site of original deposition. In such circumstances, the<br />

exact position of some individual skeletal elements may not be<br />

distinguishable.<br />

A clear trade off exists between accuracy and the price of GPS<br />

receivers. Because law enforcement agencies and anthropologists<br />

involved in the field recovery of human remains have limited financial<br />

resources, they cannot purchase and use highly accurate, surveying-grade<br />

GPS receivers with a price tag of tens of thousands of dollars. For this<br />

reason, the discussion presented in this poster focuses on GPS technology<br />

that is reasonably priced and can be acquired and used by any law<br />

enforcement agency or anthropologist involved in the field recovery of<br />

human remains.<br />

In conclusion, the use of GPS does not preclude the necessity for<br />

hand drawn site maps, especially in cases where remains have not been<br />

widely scattered. However, GPS is a valuable tool in providing a fast and<br />

effective means of pinpointing site locations, and in combination with<br />

GIS, creating accurate and reliable maps where remains are widely<br />

distributed.<br />

Field Recovery, GPS, Anthropology<br />

H59 Age Progression: How Accurate Is It?<br />

Joanne L. Devlin, PhD, and Murray K. Marks, PhD*, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

This presentation will examine the accuracy of age progressed<br />

photographs.<br />

The creation of the National Center for Missing and Exploited<br />

Children (NCMEC) in 1984, coupled with the National Child Search<br />

Assistance Act of 1990, greatly improved the recovery rate of abducted<br />

children throughout the last decade. In the U.S., approximately 725,000<br />

missing children reports were filed with the National Crime Information<br />

Center (NCIC) during 2001, averaging more than two thousand reports<br />

per day. The great majority of these cases were resolved with the child<br />

returned unharmed. The NCMEC reports that currently over 90% of<br />

missing and endangered children are recovered, an increase of nearly 30%<br />

over the last decade. One in six of these successful recoveries is credited<br />

to the practice of immediately distributing photographs of the missing<br />

child to law enforcement officials, the media, and the public; demonstrating<br />

the importance of visual photographic images in the discovery of<br />

missing children.<br />

As a recovery tool the use of photographs is undeniably successful.<br />

In situations where the child has been missing for at least two years,<br />

NCMEC oversees computer manipulation of a photograph as a means to<br />

* Presenting Author<br />

demonstrate the present age-progressed appearance of the missing child.<br />

The standard technique of age progression/enhancement involves<br />

computer-graphically stretching a photograph to reflect the increase in<br />

overall size of the face. This image is then enhanced with facial features<br />

drawn from siblings and parents at the corresponding age. Although the<br />

NCMEC reports that such computer images have resolved approximately<br />

275 abduction cases, this approach and specific techniques remain<br />

untested with reference to actual craniofacial growth patterns in children.<br />

The purpose of this presentation is to assess the accuracy of standard<br />

age progression techniques, and to identify new methods that may further<br />

improve this approach and aid in the resolution of more cases. To test the<br />

accuracy of age progression images, three adult females were assessed,<br />

using a chronological series of school photographs (kindergarten through<br />

twelfth grade). For each subject, the school photographs were<br />

standardized for size, and measurements incorporating standard anthropometric<br />

landmarks were taken on each photo. These were then analyzed to<br />

assess the craniofacial development of each subject with respect to age.<br />

Additionally, for each participant a photograph was randomly selected and<br />

subjected to an age progression. The age enhanced images were then<br />

compared to the photograph of the subject at that age. Without a doubt,<br />

the practice of age progressing photographs of missing children has<br />

proven successful. However, this present examination indicates that this<br />

technique can be enhanced, potentially serving to further improve the<br />

recognition and recovery rate of missing children.<br />

Age Progression, Craniofacial Growth, Computer Imaging<br />

H60 Three-Dimensional Digital Data<br />

Acquisition: A Test of Measurement Error<br />

Denise To, MA*, Department of Anthropology, Arizona State University,<br />

Box 87-2402, Arizona State University, Tempe, AZ<br />

The goal of this research project is to present to the forensic<br />

community the results of a study that compared linear measurements taken<br />

with 3D digital techniques with those taken on dry bone by hand.<br />

The use of 3-dimensional (3D) digital technology is a growing<br />

method for acquiring and processing scientific data among the many<br />

subfields of forensics, including physical anthropology. This poster<br />

presents the results of a study that questioned the comparability of<br />

measurements taken of skeletal material through the traditional method of<br />

inspecting bones by hand with calipers with a new method of analyzing<br />

bones virtually on a computer. Three-dimensional digital data acquisition<br />

of human skeletal material, captured either by computed tomography,<br />

magnetic resonance imaging, ultrasound, or laser assisted stereo modeling<br />

creates a quasi-permanent virtual record of the bone for which many types<br />

of analyses can be performed. This includes measurements of simple variables<br />

such as length, width, and circumference, but also permits<br />

researchers to study those that have been nearly impossible to obtain in the<br />

past (or at least not without great difficulty), such as surface area, volume,<br />

degree of angle, and curvature. One question that arose with the increased<br />

practice of taking digital measurements was whether those taken through<br />

the digital medium were comparable to those taken manually on dry bone.<br />

The null hypothesis that there is no significant difference in measurement<br />

is a crucial assumption for many 3D data research designs.<br />

Twenty femora were used from Arizona State University’s (ASU)<br />

archaeological collection of Nubian skeletons. Each skeleton was selected<br />

randomly (though bones with poor preservation were omitted). For each<br />

femur, three linear measurements were taken macroscopically by the<br />

author with digital calipers and an osteometric board. They were the<br />

maximum head diameter (mhd), the maximum mid-shaft circumference<br />

(msc), and the maximum length (ml). After macroscopic evaluation, each<br />

femur was then digitally analyzed at ASU’s Partnership for Research in<br />

Stereo Modeling (PRISM) laboratory. This was done by first scanning the<br />

bone with a Cyberware Model 15 high-resolution laser scanner that<br />

564


captured cortex data with a high-density “wire” mesh of triangles. Each<br />

triangle was generated at 300 microns enabling extreme detail of the bone<br />

surface to be digitally rendered. The wire mesh is then modeled by adding<br />

topography to create a 3D virtual replica. This digital model was saved in<br />

an .xml format, creating a permanent duplicate of the bone (barring loss of<br />

the digital file). Using research software developed at the PRISM<br />

laboratory, the same three measurements were once again taken on each<br />

bone by selecting beginning and end points on its virtual replica. To<br />

further test error, both measurement trials were repeated one month later<br />

by author, making a total of four trials. This study was conducted “blind”<br />

with each femur labeled with different catalogue numbers so no bias of<br />

memory could influence measurement.<br />

All measurements were entered and statistically processed with the<br />

Statistica software program. Each femur had three independent observations<br />

taken during four separate trials. If the 3D imaging created an exact<br />

virtual replica, then the specific observation for each measurement should<br />

be identical for all four trials. To test the null hypothesis that there is no<br />

statistical difference in both measurement techniques (H0 : µ 1 = µ 2 ), the<br />

mean score of the manual trials was compared with the mean score of the<br />

computed trials using a paired t-test (at an alpha level of 0.05). Separate<br />

tests were conducted for each of the three measurements. In addition to<br />

the t-test, a one – way ANOVA was conducted using the scores of all four<br />

trials, with a subsequent Scheffe’s test to identify the significantly different<br />

trial. Again, separate tests were conducted for each of the three<br />

measurements.<br />

The results of this study are important, as 3D knowledge becomes<br />

more valuable and accessible to researchers. A similar focus was generated<br />

decades ago with the increasing use of radiographic technology. In<br />

physical anthropology, studies of skeletal maturation, morphological<br />

change, and sex determination have been conducted using measurements<br />

of bones from radiographs with the goal of creating aging and sexing standards<br />

to be used with dry bones. With the knowledge that radiographs<br />

increase the magnitude of a subject by approximately 5%, studies<br />

employing radiographs allowed researchers access to a revolutionary way<br />

to study human biology. Three-dimensional knowledge may follow radiographic<br />

technology in a similar manner, and perhaps with even greater<br />

applications. While this study focused only on quantitative data from<br />

skeletal material, researchers at PRISM are currently using 3D stereo<br />

modeling of quantitative and qualitative data on a wide array of materials<br />

such as archaeological artifacts, intra-cellular organisms, diatoms, and<br />

fossils. In forensics, 3D knowledge may have many applications not just<br />

in physical anthropology, but also in criminalistics, engineering science,<br />

and pathology / biology. Testing the comparability of measurements taken<br />

through the computer with those taken the old fashion way is crucial in<br />

fostering a new generation of research.<br />

3-Dimensional Digital Data Analysis, PRISM, Physical Anthropology<br />

H61 In Search of Floyd Britton: Investigations<br />

of Human Rights Issues on the Island of<br />

Coiba, Republic of Panama<br />

Ann H. Ross, PhD*, C.A. Pound Human Identification Laboratory,<br />

P.O. Box 112545, Gainesville, FL; and Bruce Broce, MA*, Comision de<br />

la Verdad de Panama, Edificio No. 37, Panama,<br />

The purpose of this paper is to discuss how physical anthropologists<br />

apply their skills in working with Truth Commissions and taphonomic<br />

variables affecting recovery of skeletal remains in a tropical environment.<br />

The task of investigating human rights issues is sometimes<br />

complicated by ill perceived and misguided “territorial” claims by some<br />

colleagues. Unfortunately, this is not an atypical phenomenon in the<br />

forensic realm, in particular among forensic anthropologists working in<br />

human rights (e.g., Bosnia, Kosovo, Panama, etc.). The role of forensic<br />

practitioners is to investigate, provide the most accurate and parsimonious<br />

interpretation of the evidence, provide unbiased testimony, and ultimately<br />

closure to the victims families.<br />

The island of Coiba (positioned between 7° 10’N and 81°32’ - 81°<br />

56’ W) is Panama’s largest island in the Pacific, which is administered by<br />

the Veraguas province. Coiba is located 24 km offshore and is separated<br />

from the mainland on the east by the Gulf of Montijo and on the northwest<br />

by the Gulf of Chiriquí. It has an area of 494 sq km and a maximum<br />

elevation of 425 m. The island has served as a penitentiary since 1919 and<br />

was declared a national park on 17 December 1991.<br />

Floyd Britton was a leftist university student leader who was arrested<br />

on October 12, 1968 and sentenced by the military government of Omar<br />

Torrijos (1968-1981) to the Penal colony on the island of Coiba on<br />

November 3 of the same year. He died in November of 1969, allegedly<br />

beaten to death by prison guards under direct orders of General Omar<br />

Torrijos. His body was flown to Panama City for an autopsy and his death<br />

was determined to be of natural causes. Purportedly, his body was then<br />

sent back to Coiba and interred at the “Marañon” Cemetery. Was the<br />

autopsy report legitimate? Why return the body of Floyd Britton to Coiba<br />

and not release it to family members or bury him in Panama City?<br />

Previous attempts to locate Floyd Britton occurred in May of 1991<br />

and then again in 2001. The first excavation was concentrated in the<br />

northeast sector of the cemetery. New eyewitness testimonies led to<br />

another exhumation on August 2 and 3, 2001, by the Comisión de la<br />

Verdad de Panamá (Panamaian Truth Commission) and another team of<br />

U.S. forensic anthropologists. Skeletal remains were recovered from four<br />

burials on the northwest sector of the cemetery. During this phase, two of<br />

the burials were only partially excavated.<br />

Continued efforts to locate Floyd Britton during a third excavation<br />

and exhumation phase took place between February 26 and March 6,<br />

2002, by field crew members from both the University of Florida and<br />

Panamanian Truth Commission. Three burials were identified for excavation<br />

from information derived by la Comisión de la Verdad de Panamá<br />

from several eyewitness accounts and the remains of the three burials were<br />

transported to the C.A. Pound Human Identification Laboratory for<br />

analysis. Because of various taphonomic processes, for example, soil<br />

acidity, insect activity, and bacterial activity, roots, humidity, etc., the conditions<br />

are not conducive to good skeletal preservation and therefore the<br />

remains sustained considerable postmortem damage. However, the biological<br />

profile determined from the remains of burial 3 were consistent<br />

with biological information made available for Floyd Britton, two molars<br />

were sent out for mtDNA testing. The mtDNA results will be presented to<br />

confirm identity. In addition, excavation protocols and taphonomic<br />

processes in a tropical environment are discussed.<br />

Physical Anthropology, Taphonomy, Central America<br />

H62 Reconstructing Facial Freeform<br />

Images Using FREEFORM Software<br />

Ann Marie W. Mires, PhD*, Chief <strong>Medical</strong> Examiner, 720 Albany Street,<br />

Boston, MA; Mary H. Manhein, MA, Louisiana State University, FACES<br />

Laboratory, Baton Rouge, LA; Greg Mahoney, Boston Crime<br />

Laboratory, 720 Albany Street, Boston, MA; and Eileen Barrows,<br />

Louisiana State University, Faces Laboratory, Baton Rouge, LA<br />

This presentation introduces the participant to a software package<br />

that has applications to facial imaging, useful to law enforcement or<br />

medical examiner personnel.<br />

Reconstruction of facial images can be facilitated through a number<br />

of different techniques. This poster will present the adaptation of a<br />

sculpting software program entitled FREEFORM, to the task of facial<br />

reconstruction, superimposition and image progression. Designed for the<br />

character animation industry, this package offers technology that allows<br />

the “reconstructionist” to fully interact with the image via the sense of<br />

touch through a stylus.<br />

565 * Presenting Author


In a cooperative research venture between SensAble Technologies,<br />

the Office of the Chief <strong>Medical</strong> Examiner, Boston Crime Lab, and the<br />

Louisiana State University FACES Laboratory, this product has be applied<br />

to the task of facial imaging and reconstruction. Libraries of populationspecific<br />

average tissue depths and anatomical facial features and landmarks,<br />

have been developed to provide the artist with a series of options<br />

to select from in the reconstruction process.<br />

Skeletal and live facial images were captured utilizing a Polhemus,<br />

Fastscan 3-D imaging wand. These images were downloaded directly as<br />

3-D “clay” images, fully interactive in a digital format. Through the use<br />

of a stylus, the artist can manipulate the raw image manually or refer to<br />

libraries of marker templates that can be applied directly to the skull<br />

image. Again through manual manipulation, the artist can add tissue<br />

depth, dimension and form to the image, thus modeling a facial likeness.<br />

Through the use of the libraries, the artist may select several different eye<br />

shapes for instance, to render multiple likenesses from the same skull<br />

template.<br />

The application of sculpting software to the techniques of facial<br />

reconstruction can expedite the accuracy, variety, and distribution of facial<br />

images for both law enforcement and medical examiner systems. Having<br />

these types of technologies available can facilitate the identification<br />

process and be applied to other forensic tasks.<br />

Facial Reconstruction, Digital Modeling, Virtual Clay<br />

H63 Operacion Eagle: Clandestine Graves<br />

and a Taphonomy of Tyrants — Part 1:<br />

The Truth Commission of Panama,<br />

Witness Testimony, and Searches in<br />

Western Panama<br />

Frank P. Saul, PhD*, Lucas County Coroner’s Office, 2595 Arlington<br />

Avenue, Toledo, OH; Sandra Anderson, Canine Investigation Consultant,<br />

913 East Price Road, Midland, MI; and Julie M. Saul, BA, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue, Toledo, OH<br />

After attending this presentation, participants should be better able to<br />

use death investigation dogs and forensic anthropologists to search for<br />

clandestine graves.<br />

While passing through the Miami airport, a U.S. lawyer working in<br />

Panama purchased the September/October 1999 issue of Archaeology<br />

Magazine featuring a story on the role of a dog named Eagle in locating a<br />

“lost” historic cemetery in Monroe, MI. Eagle is a Doberman<br />

Pinscher/German Shorthair Pointer mix that was trained by Sandra<br />

Anderson to find only human remains ranging from intact bodies on<br />

through skeletal fragments and human trace evidence (blood, etc). This<br />

includes fresh, decomposed, burned, as well as recent and ancient remains<br />

(Saul, JM, Anderson, S, and Saul, FP, Proceedings of the AAFS 2001:247)<br />

Brought to the attention of the Panamanian Truth Commission,<br />

members quickly recognized the potential value of such an “investigator”<br />

in their search for the remains of political opponents and others who were<br />

secretly “disappeared’ during the military regimes of Generals Torrijos and<br />

Noriega (1968-1989). The Commission had accumulated a great quantity<br />

of witness and other testimony concerning potential gravesites that needed<br />

to be explored quickly, as the Commission’s mandate was scheduled to<br />

expire soon.<br />

The Commission’s invitation was accepted on a volunteer basis by<br />

Anderson and her anthropologist associates, Julie and Frank Saul, who<br />

formed the U.S. nucleus of a joint Panamanian-U.S. team that was coordinated<br />

and overseen by Bruce Broce, an anthropologist who holds both<br />

Panamanian and U.S. citizenship. They were accompanied in the field by<br />

additional personnel from the U.S. and Panama. These included<br />

anthropologists and archaeologists, lawyers, law enforcement/crime scene<br />

specialists (Policía Tecnica Judicial de Panama, or PTJ) and members of<br />

the Panamanian Presidential Guard. The latter provided security with the<br />

* Presenting Author<br />

help of the PTJ. The PTJ and lawyers witnessed and maintained the chain<br />

of evidence for each find. The President of the Truth Commission,<br />

Licenciado Alberto S. Almanza, constantly supported efforts by his<br />

presence and actions while also maintaining continuity with both the<br />

President of the Republic of Panama, Mireya Moscoso, and the families of<br />

the “Disappeared Ones.”<br />

In preparation for work in this new environment, Eagle was introduced<br />

to non-human primate remains and trained to ignore them. The<br />

Sauls’ years of experience living and working in Central American jungles<br />

excavating ancient Maya remains also proved to be helpful - sometimes in<br />

unexpected ways, such as understanding the root and vine systems of<br />

tropical vegetation and their potential role in transporting the scent of<br />

human remains.<br />

Due to time constraints, the Truth Commission charged the team to<br />

quickly check as many potential disposal sites as possible (as indicated by<br />

witness testimony), and where indications by Eagle were positive for<br />

human remains, to attempt to recover at least one portion of human<br />

remains as proof and for future DNA analysis. Complete recovery was not<br />

possible nor was it desired at this time. Others carried out subsequent<br />

excavations in several locations after Eagle and preliminary recovery of<br />

remains confirmed the presence and location of human remains.<br />

Eagle’s special abilities, and the results achieved as a consequence,<br />

proved to be an inspiration to the people of Panama. For reasons of<br />

security the authors had hoped to come and go quietly in Panama, but the<br />

President of Panama decided to surround the team with media as a means<br />

of protecting them (in addition to providing them with members of the<br />

Presidential Guard and the PTJ). This seems to have worked well and as<br />

a byproduct of this constant media attention, new witnesses, who had<br />

previously considered the situation hopeless, were encouraged to come<br />

forward. Eagle became a national hero with full-page photographs as well<br />

as editorial cartoons in the newspapers. The extent of this public approval<br />

is suggested by an incident while searching for remains on the grounds of<br />

a maximum-security prison. As the heavily guarded group (including<br />

three women) passed a few hundred feet from a razor wire fence<br />

surrounding a prison yard filled with male prisoners, shouting was heard<br />

that was at first assumed to be obscenities but turned out to be cries of<br />

“Eagle! Find our dead!”<br />

The Province of Chiriqui and city of David, Noriega’s home province<br />

and initial power base, provided the team with a number of very different<br />

settings for disposal of single and multiple victims. In addition, as in other<br />

areas, witness testimony needed to be related to changes to the crime scene<br />

brought about by human and/or natural agencies over time. For instance,<br />

stories of “animal” remains encountered during relocation of a rural road<br />

brought the team to a hillside near the road that produced human remains<br />

from both the steep cliff over which the “animal remains” had been tossed<br />

and the bottom of the rapidly flowing river below. This difficult recovery<br />

took place during a cold rain, making the cliff face treacherous and<br />

causing the water to rise during the search. Nevertheless, several bones<br />

and bone fragments were recovered, with an MNI of two individuals indicated<br />

by the recovery of duplicating portions of two right tibiae. One of<br />

these individuals would probably have walked with a limp, as the right<br />

patella recovered bore signs of severe osteoarthritis.<br />

Eagle investigated another cliff below a mountain roadside winery<br />

after witnesses told the team that bodies were disposed of by throwing<br />

them over the cliff. Eagle indicated that human remains were indeed<br />

present in several locations on the cliff face and its drainages, and the team<br />

was able to recover the distal half of a human tibia showing signs of<br />

burning. This again was a fairly difficult recovery - the drainage was steep<br />

and full of slippery rocks, vegetation and trash. There was insufficient<br />

time to recover more.<br />

Rumors of an individual tortured and buried to his waist, presumably<br />

while still alive, produced one metacarpal buried in the rumored gravesite<br />

with a sacrum and several rib fragments found scattered in the dense vegetation<br />

of surrounding jungle. Subject to confirmation by DNA these finds<br />

are consistent with partial burial followed by scavenger scattering (surface<br />

bones show evidence of animal activity). Or, in this case as in many<br />

566


others, possibly some remains such as the skull and the perpetrators<br />

surreptitiously removed recognizable long bones in order to prevent<br />

recovery and identification. Although the sacrum and rib fragments<br />

appear to be consistent with being from one individual, the metacarpal<br />

may be from a different individual.<br />

A search of an isolated area indicated by witnesses failed to yield<br />

anticipated burials. However, Eagle was attracted to a large tree with<br />

embedded barbed wire that was located some distance away, at the edge<br />

of the forest. His indications on the trunk of this tree produced several<br />

small bone fragments imbedded in the bark at about 34 inches above<br />

ground level, including a circular 9 mm diameter human bone fragment.<br />

This is consistent with the possibility that this may have been a “killing<br />

tree” to which victims were bound and then executed.<br />

Several other potential sites within this province were investigated<br />

with both negative and positive results. These included the Cuartel, the<br />

regional police station/jail where a witness said that he had dug (with a<br />

bulldozer) a large excavation for a “swimming pool” into which many<br />

bodies were later thrown. Eagle’s indication began inside one end of the<br />

current office building and lead the team through the building to the floor<br />

at the other end, resulting in an excavation under that floor that produced<br />

a mix of human and animal bone fragments but no mass burial as yet<br />

(excavations are continuing). Eagle confirmed a now unused well in the<br />

town of Volcan, rumored to be a body disposal site. Excavations by<br />

Panamanian archaeologists and local firemen yielded large quantities of<br />

non-human bone plus small fragments of probable human bone, but were<br />

halted due to concerns for the health of excavators, who were working<br />

deep in the well with hazardous breathing conditions.<br />

As the authors continue to review some of the findings from the three<br />

search missions of Operación Eagle to date (August 2001, October-<br />

November 2001 and January-February 2002) it must be emphasized that<br />

the search and recovery procedures utilized and the resultant finds were<br />

directly related to Eagle’s abilities as he enabled the team to rapidly check<br />

witness testimony in a large number of unusual and frequently difficult<br />

settings. It must also be noted that the starting points for Eagle’s investigations<br />

were based on the witness testimony gathered with great skill and<br />

effort by the various investigators employed by the Truth Commission of<br />

Panama.<br />

Skeletal Identification, Death Investigation Dogs, Taphonomy of<br />

Clandestine Graves<br />

H64 Operacion Eagle: Clandestine Graves<br />

and a Taphonomy of Tyrants — Part 2:<br />

Searches on Coiba Island, Panama City,<br />

and Vicinity<br />

Julie M. Saul, BA*, Lucas County Coroner’s Office, 2595 Arlington<br />

Avenue, Toledo, OH; Sandra Anderson, Canine Investigation Consultant,<br />

913 East Price Road, Midland, MI; and Frank P. Saul, PhD, Lucas<br />

County Coroner’s Office, 2595 Arlington Avenue,<br />

Toledo, OH<br />

After attending this presentation participants should be better able to<br />

use death investigation dogs and forensic anthropologists to search for<br />

clandestine graves.<br />

The cemetery of the penal colony located on the island of Coiba<br />

presented an unusual problem. Witness testimony indicated that selected<br />

political prisoners were brought to the island for “special treatment”<br />

followed by burial in unmarked graves within or near the prison cemetery<br />

that had been in use since the 1920s. One individual in particular was said<br />

to have been tortured, killed, and disposed of at this site, and his brother,<br />

also an activist, accompanied the authors to Coiba. Witnesses provided<br />

possible locations within the cemetery and Eagle indicated that human<br />

remains were present in several unmarked places within those general<br />

locations. As time allocated by the Truth Commission for this site was<br />

short (one day only) a small group of prisoners were paid to assist by<br />

removing earth until the level approaching remains or coffins was reached.<br />

Dr Murray Marks excavated and recovered two sets of well-preserved<br />

remains found in coffins (one without a lid), while the Sauls concentrated<br />

on fragmentary remains in two other graves. One of these yielded badly<br />

deteriorated cranial and upper body remains. The remainder of that burial<br />

had to be left in situ for future excavation, as were the poorly preserved<br />

and even more fragmentary remains found in an adjacent grave, due to the<br />

Truth Commission’s desire for the team to explore several other sites<br />

before the scheduled time in Panama ran out.<br />

The two individuals in the coffins were later determined to be victims<br />

of blunt force trauma. Remarkably, a cut posterior arch of the first cervical<br />

vertebra was found associated with the fragmentary cranial remains<br />

recovered from one of the other two graves. This grave also contained an<br />

apparently clandestine marker consisting of two large nails fused in the<br />

form of a cross and placed upright beside the head. These nails may have<br />

been originally tied together but were now held together by rust. Rotted,<br />

blackened wood fragments were located under the cranial fragments and<br />

later excavation by Dr Ann Ross found that, based on the presence and<br />

arrangement of other nails, a coffin (or partial coffin) had once been there.<br />

While the above excavations were underway, Anderson used Eagle to<br />

check on the possibility of additional unmarked graves. Eagle methodically<br />

indicated in less than an hour that although there were 29 crosses<br />

present he believed that there were actually 129 graves within the<br />

cemetery confines.<br />

A series of possible gravesites located in or around Panama City,<br />

including Tocumen SAN, the major airport for Panama City, and Panama<br />

Viejo were investigated following witness information. Tocumen SAN<br />

includes a large (football field size) pit created by extensive searches with<br />

bulldozers after four fairly intact sets of remains were found in 1999 and<br />

2000, a runway, a firing range and the former “House of Pilots.” Each<br />

locale presented its own challenges, but the Tocumen pit is perhaps the<br />

most disconcerting inasmuch as it is suspected that the buried isolated<br />

bones and fragments found by Eagle might have originally been part of<br />

intact burials that were scattered by the intensive bulldozing that took<br />

place during earlier excavations. Recovery efforts were complicated by<br />

the adherent nature of the red clay itself, heavy rains and the huge area<br />

involved. Nevertheless the numerous scattered and fragmented bones and<br />

teeth recovered yielded an MNI of two individuals represented by bone<br />

and an MNI of three individuals represented by dentition.<br />

Other witness testimony suggested that remains were located under a<br />

peripheral runway area. Small holes were drilled to provide olfactory<br />

access. When Eagle returned the next day he indicated between two of the<br />

holes that had been drilled. Water was used in the process of drilling a new<br />

hole, and the team soon realized that Eagle was indicating on small bone<br />

fragments brought to the surface by the water. An excavation unit in this<br />

location yielded several burned bone and tooth fragments from the gravel<br />

just beneath the pavement. Burning may have been due to the heat of the<br />

macadam during construction.<br />

Checks of witness testimony regarding the area in front of the “House<br />

of Pilots” yielded surface finds of three tooth fragments plus a portion of<br />

fibula that appeared to have had its distal portion severed perimortem (the<br />

cut was old with possible blood staining and no signs of healing) through<br />

a collar of reactive bone that might have been the result of trauma produced<br />

by shackles (there are reports of people tortured by being suspended<br />

by bound wrists or ankles for long periods of time). The other end of this<br />

fragment had been recently broken. Two tibia fragments were found at an<br />

animal burrow entrance behind the firing range targets.<br />

Reports that skeletal remains were encountered during construction<br />

of a building at historic Old Panama and then “put into the wall” brought<br />

the authors to a one-story office building. Holes were drilled in the<br />

sidewalk and juncture of sidewalk and wall to facilitate scent access.<br />

Eagle indicated scent at the bottom of the wall and then stood up to tap on<br />

the outer wall surface. When allowed to enter the building he led the team<br />

567 * Presenting Author


immediately to the other side of the wall, again standing up to touch the<br />

wall. Excavations by Panamanian archaeologists resulted in the finding of<br />

human teeth, small bones and bone fragments both within the wall and<br />

under the sidewalk at the wall’s base.<br />

Altos de Miraflores sits on the highest hill in Panama City. The splitlevel<br />

house there had become known as the “House of Torture.” During<br />

the time when it was leased to the military, it was rumored that political<br />

prisoners were brought to the house, tortured, and then “disposed of.” The<br />

house has since been unoccupied, except for a caretaker in the lower level.<br />

During his first visit Eagle indicated the presence of blood spatter in the<br />

house (later confirmed by the Technical Police [PTJ]) and the presence of<br />

surface remains in the adjacent yard. A cranial fragment was recovered<br />

just beneath the soil surface beside the house. Metatarsals and phalanges<br />

were found scattered in the grass a short distance away. During subsequent<br />

visits, Eagle indicated the presence of additional human remains in<br />

several locations on the hillside below the house as well as more buried<br />

remains near the house. These locations were scheduled for future<br />

attention. Upon return, the team discovered that some of these “positive”<br />

locations were now “negative” locations and new areas were “positive.”<br />

Bones seemed to be moving around. It became apparent that the team’s<br />

recoveries were followed by clandestine attempts to move and destroy<br />

remaining skeletal evidence. A field that was scheduled to be examined<br />

was burned and traces of accelerant were found after the local fire<br />

department hosed it down. Fortunately, Eagle finds burned human bone,<br />

especially when wet, and Eagle located several bone fragments, some of<br />

which had been cut or fractured both in the past and recently. The property<br />

owner initially gave permission for searches but became increasingly<br />

hostile as human bone was found. However, these finds provided the PTJ<br />

with a basis for continued access to the property.<br />

Perhaps the most meaningful information comes from a foul smelling<br />

culvert down the hill that became known to the team as “Lower Purgatory”<br />

in relation to the house at the top of the hill (“Upper Purgatory”).<br />

Indications by Eagle and subsequent excavations in the culvert yielded<br />

two separated but articulating maxillary fragments with teeth and an<br />

unusual dental restoration. Also recovered in this evil smelling place were<br />

two projectiles and rotting fabric with remnants of elastic similar to that of<br />

men’s under shorts. In addition, a portion of femur shaft found lying<br />

within the drainage pipe was later joined to a smaller fragment that was<br />

excavated from the yard adjacent to the house at the top of the hill, thus<br />

physically linking “Upper” and “Lower Purgatory.”<br />

Adding to the taphonomy of the “migrating” remains is a virtually<br />

intact and unburned fibula that Eagle found standing on end in the tall<br />

grass above and adjacent to the culvert as if it had been tossed there from<br />

the culvert below, perhaps during a hasty attempt to remove remains. This<br />

location had been searched a few days before.<br />

In conclusion, Eagle’s ability to find very small units of remains<br />

(surface, buried and under water) both complicated and enhanced the<br />

investigation. Shallow burials or surface deposition allow access for carnivores<br />

and other scavengers, and the tropical climate not only quickly<br />

reduces the human body to skeletal remains but torrential tropical rains<br />

and rapidly growing vegetation combine to scatter remains. The initially<br />

disturbing fact that mainly bone fragments, teeth and small bones were<br />

being found, with few larger bones, skulls or mandibles, also suggests that<br />

remains may have been systematically removed to new and possibly multiple<br />

locations after skeletonization in order to “disappear” the victims.<br />

During such a procedure, more easily located and recognized bones are<br />

collected, while less easily located and recognized small bones, fragments<br />

and individual teeth are left behind. In some cases, this may be followed<br />

by dispersal of the collected remains in several different (and possibly<br />

widely separated) locations.<br />

Eagle’s special talents have provided insights into an unfortunate<br />

taphonomy of clandestine body disposal patterns – a “taphonomy of<br />

tyrants.”<br />

Skeletal Identification, Death Investigation Dogs, Taphonomy of<br />

Clandestine Graves<br />

* Presenting Author<br />

H65 Utilizing Ground Penetrating Radar<br />

and Three-Dimensional Imagery to<br />

Enhance Search Strategies of Buried<br />

Human Remains<br />

Michelle L. Miller, BS, MA*, The University of Tennessee,<br />

Knoxville, TN<br />

The purpose of this paper is to present to the forensic community the<br />

advantages of a collaborative approach when searching for buried human<br />

remains.<br />

Locating the clandestine burial of human remains has long perplexed<br />

law enforcement officials involved in crime scene investigations, and continues<br />

to bewilder all the scientific disciplines that have been incorporated<br />

into their search and recovery. Many notable forensic specialists and law<br />

enforcement agencies, in an effort to alleviate some of the bewilderment<br />

that commonly accompanies the search for a buried body, suggest that<br />

multidisciplinary search efforts are becoming more of a necessity, and less<br />

of an option.<br />

Research at the University of Tennessee’s Anthropological Research<br />

Facility (ARF) in Knoxville supports this theory through a collaborative<br />

research effort directed toward the development of more efficient and<br />

effective methods in the search for, and detection of, buried human<br />

remains. The Department of Anthropology, in conjunction with the<br />

University’s Department of <strong>Bio</strong>systems Engineering and Environmental<br />

Science, has coupled the use of ground penetrating radar (GPR) with<br />

3-dimensional imagery programs to better detect buried human targets.<br />

Two different ground penetrating radar systems, the SIR-20 and the<br />

GPR-X, were employed to obtain 27 designated scans over six constructed<br />

grave plots. This procedure was replicated every 4-6 weeks, over an eightmonth<br />

period. Two and three dimensional imagery programs were then<br />

applied to the acquired images, which in turn were compared by GPR<br />

system used, and overall changes that occurred within the graves over<br />

time.<br />

The results of this research support and acknowledge that GPR is<br />

capable of enhancing field methods in the search for clandestine burials,<br />

and when coupled with target-specific geophysical imagery software, contributes<br />

valuable working knowledge in regards to the contents of the<br />

burial itself. Hence, such resources can only be seen as beneficial to a<br />

search team’s endeavors.<br />

Buried Human Remains, Ground Penetrating Radar, 3-Dimensional<br />

Imagery<br />

H66 Location, Identification, and Repatriation<br />

of Remains of Victims of Conflict:<br />

Implications for Forensic Anthropology<br />

Shuala M. Drawdy, MA*, Department of Anthropology, University of<br />

Florida, Gainesville, FL<br />

The objective of this presentation is to inform the forensic<br />

community of the current standing of positive identification of victims of<br />

conflict and the role of forensic anthropology in humanitarian efforts of<br />

victim identification.<br />

The Declaration on the Protection of all Persons from Enforced<br />

Disappearances calls for protection from acts committed by, or with the<br />

acquiescence of, national governments depriving individuals of the basic<br />

human rights of life, liberty, and security of person. The Working Group<br />

on Enforced or Involuntary Disappearances, established in 1980 by the<br />

Commission on Human Rights, provides assistance to family members<br />

seeking information on the fate and whereabouts of missing relatives<br />

when disappearances are the result of domestic affairs. In international<br />

armed conflict, the International Committee of the Red Cross (ICRC)<br />

568


serves to aid in the location of missing family members. The work of the<br />

two preceding groups ends when living relatives are located or the missing<br />

family member is presumed dead. The International Criminal Tribunals<br />

for the Former Yugoslavia (ICTY) and Rwanda (ICTR) provide for<br />

judicial action against those guilty of international crimes such as<br />

disappearances and extra-judicial executions in an effort to promote the<br />

restoration of peace and security. The International Criminal Court (ICC)<br />

will serve similar purposes in years to come, both for international and<br />

internal armed conflicts. Therefore, it is clear that persons are protected<br />

from disappearances by international law, and guilty parties are not free<br />

from prosecution. However, positive identification of victims of conflict<br />

remains a secondary emphasis.<br />

This paper explores the current lack of emphasis on positive identification<br />

of victims of conflict. Recognized international human rights such<br />

as the right to family, the right to information and the right to be free from<br />

torture, as established by the Universal Declaration of Human Rights and<br />

the international covenants (ICCPR and ICESCR), are reviewed as bases<br />

for the establishment of stricter mandates securing rights and privileges for<br />

surviving relatives in the positive identification of family members. The<br />

disparity in emphasis and allocation of funding between missions aimed at<br />

the prosecution of perpetrators of extra-judicial executions and those<br />

established for the identification of victims is highlighted, as well as the<br />

role of forensic science in the exhumation and analysis of remains.<br />

Current efforts towards identification of missing persons in Kosovo are<br />

discussed as mandated by the FRY Agreement and administrated by the<br />

Office of Missing Persons, established by the United Nations Mission in<br />

Kosovo (UNMIK). Finally, current difficulties in establishing anthropological<br />

standards and identifying individuals from non-Western populations<br />

are addressed, as well as the future role of forensic anthropology in<br />

humanitarian efforts of positive identification.<br />

Forensic Anthropology, Human Rights, International Law<br />

H67 This Grave Speaks: Forensic<br />

Anthropology in Guatemala<br />

Adriana Gabriela Santos Bremme, BS*, Fundación de Antropología<br />

Forense de Guatemala-Universidad de San Carlos de Guatemala,<br />

Apartado Postal 01901 1830 correo central Guatemala C.A.<br />

The goal of this presentation is to present the forensic community the<br />

results of the work done by forensic teams for a decade in the fields in<br />

Guatemala. These results seen in photographs and in several graphics<br />

show and demonstrate individual and mass graves with different patterns<br />

of inhumations. Inhumations performed by relatives, soldiers and<br />

paramilitaries in the decade of the 80s.<br />

Forensic investigations provide key points of substantiation of<br />

physical and testimonial evidence in the reconstruction of the scene, it is a<br />

job for the multidisciplinary team who focuses in the exhumations in<br />

Guatemala.<br />

Exhumations performed due the violent acts occurred in the 80s,<br />

during a period of several military governments; in which more of the civil<br />

population was affected. Over 80% of the victims were Maya indigenous<br />

people.<br />

Some of these cases are now following a national and international<br />

legal process. These processes came about as a desire to denounce these<br />

acts for human rights violations by the families of these victims; who want<br />

to know where relatives are.<br />

This investigation compiles the mechanisms of inhumation from<br />

clandestine graves. Individual and mass graves were found in which from<br />

one to twenty, thirty, sixty, or more skeletonized individuals could be seen.<br />

The way to order the bodies, the different positions in which they are<br />

found, one behind the other, one thrown above others, gives clues to find<br />

which group performed the inhumation process.<br />

In these regions (different counties, mountainous areas) the skeletons<br />

of individuals from different ages, sexes and conditions, articulated and<br />

disarticulated bodies, have been found.<br />

In fact, because of the acts that occurred, relatives bury these dead<br />

persons and several bodies where also buried by military and paramilitary<br />

elements. In the first case it becomes easy to find these places because the<br />

relatives are witnesses. In some occasions a wood box was improvised<br />

and introduce personal things in a way as to offer them the other life; the<br />

things the people most commonly used daily.<br />

In the cases where the army forces buried them, bodies can be found<br />

disposed in dramatic patterns, showing some ways of torture and the<br />

strategies of murder.<br />

These places show diversity in the execution strategies: to behead,<br />

decapitate, hang, patterns of gunshot. In some places there are houses that<br />

have been burned with children and women inside; caves where the men<br />

were first stabbed and then throw.<br />

In other cases like the ones where military detachments operated near<br />

the communities during these violent years, it has been necessary to use<br />

geophysical methods in the search for graves. The recovered evidence<br />

shows lassos round the neck, hands, and the faces covered.<br />

In other cases bones, rope, and lassos are still found on the surface,<br />

near the roads, after 20 years these items stand as silent witnesses.<br />

Graves, Patterns of Inhumation, Strategies of Murder<br />

H68 The Role of Anthropology During the<br />

Identification of Victims From the<br />

World Trade Center Disaster<br />

Amy Zelson Mundorff, MA*, Office of Chief <strong>Medical</strong> Examiner, New<br />

York City, New York, NY<br />

After attending this presentation, the participant will become familiar<br />

with all of the different roles and contributions made by forensic anthropologists<br />

during the recovery and identification process of the World<br />

Trade Center Disaster.<br />

This presentation has three objectives: (1) to illustrate where anthropological<br />

assistance was called upon and why, including how many<br />

anthropologists participated in NYC, their roles at Ground Zero, The<br />

Staten Island Landfill and at the <strong>Medical</strong> Examiner’s Office, (2) a general<br />

overview of how the remains were processed from recovery to identification,<br />

including which traditional anthropological techniques were<br />

employed and which ones were obsolete due to the population size and the<br />

physical characteristics of the specimen received, and (3) to highlight<br />

some lessons learned during such an evolving and fluid situation.<br />

Protocols were modified and changed based on 10 months of feedback and<br />

simultaneous processing.<br />

On the morning of September 11th, two fully fueled airliners were<br />

flown into the World Trade Center buildings in downtown Manhattan.<br />

Hundreds were killed instantly upon impact and thousands more perished<br />

when the two towers and five other commercial buildings collapsed.<br />

Subsequent to the collapses, fires continued to burn at over 1500 degrees<br />

for more than twelve weeks within the destruction site. The area of<br />

destruction covered over 16 acres and was piled over 70 feet tall, later to<br />

be excavated over 70 feet deep. The uncertainty in the initial number of<br />

reported missing and presumed dead prompted the Office of Chief<br />

<strong>Medical</strong> Examiner, New York City, to call upon the assistance of DMORT,<br />

the National Disaster Mortuary Operation Response Team, to provide<br />

ancillary staff of all types to assist with the disaster. In addition, assistance<br />

in the identification process was also provided by the New York City<br />

Police Department, the New York Port Authority, the New York Fire<br />

Department, the Department of Corrections, and the FBI. Specific to this<br />

presentation will be the role of the 30+ forensic anthropologists that came<br />

to assist in the recovery and identification process.<br />

The recovery operation was very slow and difficult, and often very<br />

569 * Presenting Author


dangerous. Along with the danger of the fires and the constant watering,<br />

there were large pockets and void areas always threatening to collapse.<br />

The searches and excavations were done by hand and bucket brigades, as<br />

well as by huge grapplers, cranes, and other types of heavy machinery.<br />

Steel beams weighing many tons criss-crossed the entire site. The amount<br />

of destruction and pulverization was so extensive, that no piece of recognizable<br />

office furniture was found.<br />

Anthropologists were assigned to work at the temporary morgue set<br />

up next to the recovery operation, the medical examiners office where all<br />

of the identifications were done, and at the Staten Island landfill where<br />

over 1.6 million of tons of debris from Ground Zero were transported and<br />

sifted manually and mechanically for human remains. The actual role of<br />

the anthropologists varied greatly from site to site. At the temporary<br />

morgue, the anthropologist helped sort out civilian and Member of Service<br />

remains, and later were called upon to assist in difficult recoveries of<br />

burned and commingled remains. At the landfill, the primary role of the<br />

anthropologist was to sort out human from non-human remains. The role<br />

of the anthropologist at the medical examiners office ranged from triage to<br />

bone identification. The anthropologist was the beginning of the assembly<br />

line, processing each case, sorting out commingled remains, labeling bone<br />

identifications and adding anthropological analysis when pertinent. In<br />

addition, anthropologists were later added at the end of the assembly line,<br />

rechecking links made by DNA to verify that the pieces can and did belong<br />

together. These roles also evolved over time as the operation changed.<br />

After recovery at Ground Zero was complete, the role of the forensic<br />

anthropologist changed yet again, due to retrospective evaluations and the<br />

fact that the unidentified and unclaimed remains were to be dried and<br />

sealed in bags that were non-transparent. An anthropological verification<br />

protocol was established to recheck and provide more detail of the cases,<br />

once the sense of urgency settled. In addition, this verification program<br />

allowed reevaluation of cases that might have been commingled, needed<br />

resampling or where details were overlooked during the initial processing.<br />

The lessons which initiated the verification protocol are most valuable for<br />

the documentation and instructions needed in the future should another<br />

disaster of this magnitude or larger occur.<br />

Mass Fatality, Forensic Anthropology, Identification<br />

H69 Anthropology at Fresh Kills:<br />

Recovery and Identification<br />

of the World Trade Center Victims<br />

Michael W. Warren, PhD*, Department of Anthropology, University of<br />

Florida, Gainesville, FL; Leslie E. Eisenberg, PhD, Wisconsin Historical<br />

Society, 816 State Street, Madison, WI; Heather Walsh-Haney, MA,<br />

University of Florida, C.A. Pound Human Identification Laboratory,<br />

University of Florida, Gainesville, FL; and, Julie Mather Saul, BA,<br />

Lucas County <strong>Medical</strong> Coroner’s Office, 2595 Arlington Avenue,<br />

Toledo, OH<br />

The purpose of this paper is to review the role that anthropologists<br />

played in the recovery and identification of the victims of the September<br />

11th attack and discuss flexibility in the application of methodologies in<br />

dynamic field conditions.<br />

The terrorist attacks of September 11, 2001, initiated an unprecedented<br />

challenge for forensic scientists. The massive scale and scope of<br />

the recovery and identification effort, the force and uniqueness of both the<br />

traumatic and taphonomic mechanisms, and the psychological stress of<br />

working in such an emotional environment, combined to make the events<br />

of September 11th a powerful and lasting experience for all involved.<br />

Forensic anthropologists deployed to New York’s World Trade Center by<br />

the U.S. Public Health Services’ Disaster Mortuary Operational Response<br />

Team (DMORT), working at the behest of the Office of Chief <strong>Medical</strong><br />

Examiner, were integrated into the operation at three primary arenas of<br />

* Presenting Author<br />

action: the New York City <strong>Medical</strong> Examiner’s Office, the on-site staging<br />

areas on Trinity and Vesey Streets, and the Fresh Kills landfill on Staten<br />

Island. This paper will discuss the anthropologist’s role at the Fresh Kills<br />

site and describe the conditions and challenges that confronted the team.<br />

The Fresh Kills (Fresh stream; Dutch) landfill on Staten Island<br />

opened in 1948 and was, at one time, the largest human-made object on<br />

earth. Fresh Kills received its last barge of New York City garbage in<br />

March of 2001, after which the mountain of refuse was capped.<br />

Immediately after the events of September 11th, the landfill was re-opened<br />

to serve as a repository for the massive amounts of debris transported from<br />

the World Trade Center complex. Additionally, the Fresh Kills site was the<br />

final stage of recovery for the World Trade Center victims. After the initial<br />

on-site search and recovery failed to discover human remains, the structural<br />

debris was removed by heavy equipment to barges and ferried across<br />

the bay to Staten Island. During the early weeks of the operation the debris<br />

was sifted, sorted and recovered by law enforcement officers and additional<br />

personnel. Material suspected to represent human remains, as well<br />

as additional material thought to have evidentiary value, was brought to<br />

on-site staging areas operated by the New York Police Department<br />

(NYPD) Crime Scene Unit and the Federal Bureau of Investigation. The<br />

anthropologists were stationed with the NYPD crime scene unit, where<br />

possible human remains were examined and, if found to be human, were<br />

given identification numbers, photographed, and stored for transport to the<br />

Office of Chief <strong>Medical</strong> Examiner in Manhattan. As time passed, the<br />

operation became more mechanized, with the use of large sifters and conveyor<br />

belts that provided searchers examining passing material some protection<br />

from the inclement winter weather.<br />

The decision by the <strong>Medical</strong> Examiner’s Office to depend heavily on<br />

genetic testing of specimens to establish positive identification meant that<br />

many of the usual techniques employed by DMORT anthropologists, such<br />

as determining group and individual skeletal characteristics, would not be<br />

utilized. As a consequence, the primary role of the anthropologists stationed<br />

at the Fresh Kills site was to differentiate organic material from<br />

various types of debris, and then identify human from non-human<br />

remains. The contribution of the Fresh Kills teams was ultimately to<br />

increase the efficiency, and decrease the expense, of genetic testing by<br />

excluding non-human specimens from entering into the chain of evidence.<br />

On a more immediate basis, the examination and triage of potential human<br />

remains by the Fresh Kills teams greatly reduced the numbers of items<br />

requiring photographic and written documentation by overworked NYPD<br />

crime scene personnel.<br />

The anthropologists encountered a singular taphonomic phenomenon<br />

in terms of the magnitude of forces resulting from the aircraft impact,<br />

burning, and collapse of the World Trade Center’s twin towers. These<br />

same taphonomic forces (extreme heat, compression, torsion, commingling,<br />

etc.) created unique “pseudo human remains” from construction and<br />

other material that often confounded the law enforcement personnel collecting<br />

the evidence – almost all of whom were untrained in the recognition<br />

of fragmented human remains. Additional circumstances that complicated<br />

the recovery process were the incredible amount of organic<br />

material already within the landfill, including an unexpected amount of<br />

non-human organic material from the large number of restaurants in the<br />

World Trade Center complex and surrounding streets. The debris, massive<br />

amounts of organic material and associated methane gas produced a hazardous<br />

and confusing condition for the cadaver dogs, many of whom had<br />

not been trained to avoid indicating (or alerting) on food or dead animal<br />

remains.<br />

The identification effort at the Fresh Kills site can be considered a<br />

model that demonstrates the essence of the DMORT mission statement.<br />

Each deployment is unique in that each scenario may require that the<br />

DMORT experts demonstrate flexibility in the application of their methodologies<br />

contingent upon the needs and desires of the requesting <strong>Medical</strong><br />

Examiner’s Office or other agencies.<br />

Forensic Anthropology, Human Identification, Terrorism<br />

570


H70 Scene Recovery Efforts in Shanksville,<br />

Pennsylvania: The Role of the Coroner’s<br />

Office in the Processing of the Crash Site<br />

of United Airlines Flight 93<br />

Dennis C. Dirkmaat, PhD*, Departments of Anthropology and Applied<br />

Forensic Science, Mercyhurst College, Erie, PA; and Wallace Miller, BS,<br />

Somerset County Coroner, Somerset, PA<br />

Attendees can expect to learn about new techniques, based upon<br />

contemporary archaeological methods, employed during the recovery of<br />

large aircraft mass fatality sites in general, and specifically, with regards to<br />

the recovery of the United Flight 93 crash. The role played by the coroner<br />

of a rural county is also explored at length.<br />

On September 11, 2001, at 10:10 AM, a Boeing 757 (United Airlines<br />

Flight 93) crashed in an open field near the small town of Shanksville in<br />

Somerset County, PA. All 44 individuals aboard were killed. It was clear<br />

from the start that terrorists who intended to use the plane as an instrument<br />

of suicide and mass homicide had hijacked the plane. In this presentation,<br />

issues related to the role of the coroner’s office during the forensic<br />

processing and subsequent mitigation of the scene will be discussed.<br />

Following the initial response by local fire and law enforcement<br />

agencies to put out the fires and search for survivors, the Somerset County<br />

Coroner (WM) was summoned to assess the crash scene and determine<br />

how best to recover and identify the human remains. Part of the coroner’s<br />

response was to assemble a team of advisors (including other coroners,<br />

funeral directors, and forensic anthropologists) and support personnel.<br />

The crash site included two forensic features: a vehicle impact crater and<br />

a large fan-shaped debris-splash area emanating from the crater. The plane<br />

impacted the ground at a steep angle near the edge of a reclaimed strip<br />

mine. Since the ground was rather soft, much of the plane imbedded into<br />

the ground, creating a pit about 10 feet deep and 15-20 feet wide with an<br />

associated mounded pile of dirt opposite the initial impact point. A portion<br />

of the plane sheared off upon impact and fell into the adjacent forested<br />

area, scattering in an approximately 70-acre fan-shaped debris field. A<br />

concentration of debris and jet fuel landed in the forest near the crater and<br />

significantly charred the trees in this area.<br />

Phase 1 Recovery. The first step in the recovery process required the<br />

formulation of a successful strategy for locating, documenting, and<br />

removing the associated physical evidence. This process involved<br />

consideration of jurisdictional matters, personnel, equipment, and a<br />

myriad of other issues. It was decided at the outset that the recovery<br />

strategy should provide a balance between the rapid recovery and documentation<br />

of potentially forensically significant physical evidence (e.g.,<br />

voice and flight data recorders, important mechanical parts of the vehicle,<br />

items related to the cause of the crash such as explosive devices and<br />

residue, weapons, and personal effects of terrorists) with maximal<br />

recovery of the biological and personal effects of the victims. The coroner<br />

suggested using a new search, documentation, and recovery protocol,<br />

recently developed by the first author, which included sequential and concurrent<br />

stages involving thorough and meticulous searches, sectioning of<br />

the scene into manageable grid sections, and the use of an electronic total<br />

station to precisely document significant physical evidence location. The<br />

protocol had been tested at a mock crash scene during an FBI training<br />

short course in St. Louis and successfully implemented during the<br />

recovery efforts of the plane crash involving Melvin Carnahan, Governor<br />

of Missouri.<br />

Given the context of the crash relative to other national events of<br />

September 11, and since it was immediately clear that the crash involved<br />

criminal activity, the FBI assumed responsibility for recovery of the forensically<br />

significant physical evidence (and larger fragments of human<br />

remains) from both the impact crater and the forested area impacted by the<br />

crash debris. FBI and Pennsylvania State Police personnel completed<br />

these efforts. Approximately 500 pounds of human tissue was recovered.<br />

During this time, civilian efforts were focused on the documentation and<br />

identification of the human remains at the temporary morgue as part of the<br />

DMORT operation.<br />

Phase 2 Recovery Efforts. Federal authorities released the scene two<br />

weeks later. Due to the tremendous forces imparted upon the aircraft and<br />

associated materials during a crash of this nature, a nearly overwhelming<br />

volume of debris was created and deposited on the scene. Much of this<br />

material—deemed non-forensically significant and including, primarily,<br />

plane debris and small fragments of human remains—remained on the<br />

scene. The decision was made by the coroner to comprehensively (i.e., as<br />

close to 100 percent as possible) recover and remove this material from the<br />

scene prior to the final release of the scene to the public. The coroner’s<br />

office, Mercyhurst Archaeological Institute personnel, and Pennsylvania<br />

Emergency Management Agency officials organized recovery efforts utilizing<br />

forensic archaeological methods during two subsequent weekends<br />

involving approximately 200 volunteers (firemen, funeral directors). The<br />

entire 70 acres of crash debris field was searched using pedestrian in-line<br />

shoulder-to-shoulder visual scanning methods. Teams of 10-12 individuals<br />

were assembled and coordinated by a team leader who set the<br />

direction and pace of the search. In the areas most distant from the impact<br />

crater, pedestrian search sufficed because debris was widely scattered and<br />

not abundant. In areas closer to the impact crater, the searchers performed<br />

the recovery efforts on hands and knees since much of the remaining<br />

debris was hidden under leaf litter and natural forest debris.<br />

Approximately 100 pounds of highly fragmented human tissue was<br />

recovered.<br />

In the following three months, additional site mitigation efforts by an<br />

independent company hired by the airline resulted in the location of<br />

additional human remains, personal effects, and plane debris, especially<br />

during removal of charred trees in the burn zone. In May of 2002, another<br />

100 volunteers resulting in nearly complete recovery of site crash debris<br />

conducted a final search of the crash site.<br />

Mass Fatality Recovery, Forensic Archaeology, United Flight 93<br />

H71 Roles of the <strong>Bio</strong>logical Anthropologist<br />

in the Response to the Crash of United<br />

Airlines Flight 93<br />

Marilyn R. London, MA, and Dawn M. Mulhern, PhD, Smithsonian<br />

Institution, Washington, DC; Lenore T. Barbian, PhD, and Paul S.<br />

Sledzik, MS, National Museum of Health and Medicine, Armed Forced<br />

Institute of Pathology, Washington, DC; Dennis C. Dirkmaat, PhD,<br />

Mercyhurst College, Erie, PA; Laura Fulginiti, PhD, <strong>Medical</strong><br />

Examiner’s Office, Phoenix, AZ; Joseph T. Hefner, BS, University of<br />

Florida, Gainesville, FL; and Norman J. Sauer, PhD, Michigan State<br />

University, East Lansing, MI<br />

The goal of this presentation is to examine the multiple roles filled by<br />

anthropologists during the recovery and identification of the victims<br />

following the crash of United Airlines Flight 93 and to explore the training<br />

and skills that allowed the anthropologists to play such diverse roles.<br />

Traditionally, medical examiners and law enforcement agencies have<br />

consulted biological anthropologists in the investigation of crimes,<br />

accidents, and mass disasters. Conventional training in biological<br />

anthropology provides the professional with a background in human<br />

anatomy and physiology, growth and development, epidemiology,<br />

genetics, and the scientific method. <strong>Bio</strong>logical anthropologists who<br />

specialize in skeletal biology have a unique suite of skills that is applicable<br />

to certain types of forensic investigations. An extensive knowledge of<br />

human and nonhuman bones is utilized to recognize and identify skeletal<br />

fragments and human remains and to collect biological information from<br />

those remains and fragments. In addition, anthropologists have the skills<br />

to collect biological and other evidence at scenes, using field and<br />

571 * Presenting Author


archaeological methods. On September 11, 2001, terrorists took control of<br />

United Airlines Flight 93, a Boeing 757 flying from Newark to San<br />

Francisco. Passengers and crew on the flight learned through telephone<br />

calls that other flights had been used to attack the World Trade Center and<br />

the Pentagon earlier that morning, and were able to thwart the terrorists’<br />

plans. However, the plane crashed into an open field in Somerset County,<br />

PA, and all those aboard (40 passengers and crew and 4 terrorists) were<br />

killed.<br />

On September 13, the U.S. Department of Health and Human<br />

Services DMORT Region III team was activated to respond to the crash<br />

site. This team deployed six anthropologists, including the team<br />

commander, and other Regions loaned two additional anthropologists.<br />

Several of the team’s anthropologists had responded to other air crashes<br />

and terrorist attacks (e.g., EgyptAir Flight 990, Executive Air, Korean Air<br />

Flight 801, Oklahoma City Murrah Building) and were thus experienced<br />

in working on mass fatality incidents with the National Transportation<br />

Safety Board and other disaster response agencies. However, due to<br />

several unusual circumstances, the anthropologists found themselves<br />

filling new roles in this response.<br />

First, the Flight 93 crash site was considered to be a crime scene and<br />

was under the control of the Federal Bureau of Investigation; a situation<br />

the team had not dealt with previously. Prior to deployment, several of the<br />

team’s anthropologists were involved in the initial recovery at the crash<br />

site. This cooperation facilitated later morgue operations by providing<br />

information about recovery strategies and the organization of remains.<br />

Collaboration between FBI and DMORT personnel in the morgue was<br />

necessary to maintain continuity throughout the processing of remains and<br />

evidence. An anthropologist assumed the role of morgue manager to<br />

assure smooth operation in the facility and to supervise protocol<br />

development for each area of activity within the morgue. These activities<br />

included triage, admitting, radiography, photography, anthropology,<br />

pathology, odontology, and DNA sampling. Protocols were written based<br />

on previous experiences and modified during the September 11 incident to<br />

reflect the medico-legal aspects of the situation. With written instructions,<br />

team members were able to work confidently in their areas, and turnovers<br />

in staffing were smooth. These standardized protocols will be made<br />

available to other disaster response teams through the DMORT website.<br />

They can be modified to reflect the circumstances of future responses.<br />

Second, anthropologists were involved in aspects of the recovery<br />

operation and were fully integrated into the morgue operation. In addition<br />

to the initial recovery at the crash site, anthropologists visited the site to<br />

monitor the recovery of human remains. In the months following the<br />

crash, anthropologists volunteered to return to Pennsylvania several times<br />

to help recover more remains and clear the site. Anthropologists analyzed<br />

these newly recovered remains and assured that the analysis of these<br />

remains proceeded according to the protocols developed during the<br />

DMORT deployment, including triage of the remains and DNA sampling.<br />

Anthropologists further assisted the local coroner in the final reassociation<br />

of the positively identified remains. The anthropologists were able to<br />

combine electronic data from several different data sources, manipulate<br />

the data to a consistent format, and generate a final data table to facilitate<br />

the reassociations.<br />

Third, anthropologists were assigned to staff the triage station and<br />

played a key role in the triage selection strategy. The training of the<br />

physical anthropologists in both skeletal biology and human anatomy<br />

enabled them to readily identify the fragmentary remains and make appropriate<br />

decisions regarding the processing of remains through the morgue<br />

stations. Given the high fragmentation level associated with the UA 93<br />

crash, the majority of remains processed through the triage station were<br />

composed of fragmentary bone with some associated soft and connective<br />

tissue. The ability of the anthropologists to correctly identify these<br />

remains and assess their identification potential helped ensure that the<br />

morgue processed the human remains in a timely and efficient manner.<br />

The positions and responsibilities of DMORT anthropologists for the<br />

Flight 93 response included team commander, morgue management,<br />

* Presenting Author<br />

triage, anthropological analysis, DNA sampling, protocol development,<br />

site recovery, database management, and data verification. In addition, the<br />

anthropologists were able to communicate effectively with pathologists,<br />

dentists, radiological technicians, coroner’s staff, law enforcement agents,<br />

DNA specialists, and other team members. The anthropologists’ training<br />

and experience made them valuable and flexible members of the disaster<br />

response team.<br />

United Airlines Flight 93, Forensic Anthropology, Victim<br />

Identification<br />

H72 Attack on the Pentagon: The Role of<br />

Forensic Anthropology in the Examination<br />

and Identification of Victims and Remains<br />

of the ‘9/11’ Terrorist Attack<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, Armed Forces Institute of Pathology, Washington, DC<br />

The learning objective of this presentation is to present the forensic<br />

science community with an overview of the role of the crucial role<br />

forensic anthropology played in the processing of remains recovered form<br />

the 9-11 terrorist attack on the Pentagon.<br />

On September 11, 2001, at approximately 9:43 am, just 26 minutes<br />

after a second hijacked plane struck the South Tower of the World Trade<br />

Center in New York, American Flight 77 out of Washington – Dulles<br />

crashed into the Pentagon. American Fight 77, whose destination was Los<br />

Angles, was hijacked by five Islamic terrorists who took control of the<br />

cockpit and crashed the airliner into the Pentagon. The crash resulted in<br />

the death of 189 people, which included all 64 individuals on Flight 77 and<br />

125 individuals on the ground in the Pentagon. A second terrorist attack<br />

on Washington, DC, was thwarted by passengers aboard United Flight 93,<br />

resulting in the airliner crashing just 125 miles outside Washington, in<br />

Somerset County, PA. Shortly after the Pentagon attack all federal<br />

buildings in the capitol were evacuated, and the various local state and<br />

federal entities went into action.<br />

Being that the jurisdiction for the Pentagon is federal, the FBI and<br />

military were tasked with the lead role investigation and recovery efforts.<br />

A temporary morgue was established on the Pentagon grounds which<br />

served as an initial collection and processing site for the bodies and<br />

remains of the victims. Each body or portion of human remains recovered<br />

at the crash site was assigned an evidence number that correlated to their<br />

respective recoveries. The bodies and remains were then photographed at<br />

the temporary morgue and then transported directly by helicopter to the<br />

Dover Air Force Base Port Mortuary in Dover, Delaware. Processing of<br />

the bodies and remains was conducted by the Office of the Armed Forces<br />

<strong>Medical</strong> Examiner. The Dover port mortuary was staffed around the clock<br />

by multiple military and federal personnel. Personnel assisting in the<br />

processing of victims included the forensic pathologists, anthropologists,<br />

odontologists, radiologists, federal and military investigators, and an<br />

enormous staff of medical support personnel.<br />

Processing the bodies and remains involved passing them through a<br />

complete network of stations in were they were radiographically screened<br />

for evidence and hazardous materials, photographed, entered into a<br />

computer data base, fitted with a secure numerical and bar-coded identification<br />

tag, fingerprinted, received full body x-rays, postmortem odontological<br />

exam, postmortem autopsy and anthropological exam, DNA<br />

collection, then embalmed and casketed awaiting confirmation of positive<br />

identification. The explosive forces of the crash and ensuing fire resulted<br />

in the burning, fragmentation and commingling of a number of the<br />

victims. Forensic anthropological examination was utilized extensively to<br />

deal with the burnt and fragmented remains as well as intact remains in<br />

which there was a question of approximate age, skeletal injury or reassociation.<br />

572


In order to deal with anthropological requirements the assistance of<br />

eight forensic anthropologists were employed. The forensic anthropologists<br />

who volunteered to assist included those from the Armed Forces<br />

Institute of Pathology, the U.S. Army Central Identification Lab in Hawaii,<br />

and the Department of Anthropology - Smithsonian Institution,<br />

Washington, DC. Forensic anthropological examination of the remains<br />

were divided into two areas, one being examination at the initial triage of<br />

remains as they arrived and at autopsy in conjunction with the forensic<br />

pathologists examinations. During triage the incoming specimen was<br />

examined to determine if the remains were human, non-human, or crash<br />

debris. Those specimens determined to be human tissue were examined<br />

to ascertain their anatomical origin, then were re-packaged with a<br />

specimen tag and brief description of the specimen. During triage<br />

specimens were also evaluated as to suitable for identification by DNA<br />

analysis. In the autopsy area forensic anthropologists provided assistance<br />

to the forensic pathologists by identifying skeletal elements, providing<br />

biological profiles based on skeletal morphology, reconstructing skeletal<br />

anatomy, conducting radiographic comparisons in reference to positive<br />

identification, conduct separation and re-association of commingled<br />

remains, and provide consultation on skeletal injuries.<br />

The role of forensic anthropologists in the Pentagon mass disaster<br />

was extremely important, as were the roles of the other forensic scientist<br />

and investigators who were involved. The teamwork of the forensic<br />

anthropologists and their scientific colleges lead to an extremely high level<br />

of identification of the victims and remains recovered from the Pentagon.<br />

The tremendous loss of lives will not be forgotten, but through the<br />

dedication of the forensic sciences families of the victims can find comfort<br />

and closure to the families of the victims.<br />

Forensic Anthropology, Identification, Mass Disasters<br />

573<br />

* Presenting Author


H1 Falls From Cliffs: Reconstructing<br />

Individual Death Histories From a<br />

Perimortem Fracture Pattern<br />

Todd W. Fenton, PhD*, Department of Anthropology, 354 Baker Hall,<br />

Michigan State University, East Lansing, MI; Walter H. Birkby, PhD,<br />

and Bruce E. Anderson, PhD, Forensic Science Center, Pima County,<br />

Tucson, AZ; and David R. Rankin, MA, U.S. Army Central Identification<br />

Laboratory, Hickam Air Force Base, Honolulu, HI<br />

The attendee will become familiar with a diagnostic pattern of fractures<br />

associated with feet-first falls from heights. This poster has four<br />

objectives: (1) to present three unusual cases in which skeletonized<br />

human remains were found at the bases of cliffs; (2) to display the<br />

observed perimortem fractures in these cases and discuss the reconstruction<br />

of impact sequence from these fractures; (3) to suggest a diagnostic<br />

“suite of fractures” consistent with these vertical impacts; and (4) to<br />

approximate the impact velocities experienced by the victims in these<br />

cases.<br />

In the following cases, skeletonized human remains were recovered<br />

from remote areas and submitted to the anthropologists. A primary goal<br />

of the skeletal analyses was to assess the perimortem fractures in order to<br />

reconstruct the individual death histories. The observed patterns of blunt<br />

trauma were consistent with known vertical deceleration injuries.<br />

Therefore, the likely etiology of the traumata in each of these cases was an<br />

impact following a fall from a cliff.<br />

Case 1: In July of 1993, the skeletonized remains of an adult male<br />

were recovered by the FBI from the base of a bluff in the village of San<br />

Carlos, AZ. This bluff was estimated to be approximately 60 feet high.<br />

Extensive perimortem fractures were observed in the areas of the ankle,<br />

knee, pelvis, chest, elbow, and shoulder. The death was believed to be<br />

accidental.<br />

Case 2: In November of 1993, while in the Superstition Mountains<br />

just north of Phoenix, AZ, hikers discovered the skeletonized remains of<br />

an adult female lying face down beside the trail at the base of an<br />

escarpment that was estimated to be 100 feet high. Because of the<br />

remoteness of the area, the Pinal County Sheriff’s Office employed the<br />

police helicopter in the recovery. The most striking aspect of these incomplete<br />

remains was the presence of numerous perimortem fractures in the<br />

areas of the foot, ankle, knee, pelvis, chest, and shoulder. The death was<br />

considered an accident.<br />

Case 3: In October of 1993, the partial skeleton of an adult male was<br />

recovered from the ledge of a cliff in a remote part of the Waihee Valley<br />

on the island of Maui. The skeletal remains were submitted to the Army<br />

Central Identification Laboratory. The cliff was 2,300 feet high and the<br />

ledge where the remains were discovered was approximately 1,700 feet<br />

high. The total distance of the fall was estimated to be 600 feet.<br />

Perimortem fractures were displayed in the regions of the knee, pelvis,<br />

thorax, and head. The death was ruled a suicide.<br />

By analyzing the perimortem fractures in each of these cases, it was<br />

possible to reconstruct the impact sequence including how the victim<br />

landed and which leg took most of the impact. The pattern of fracturing<br />

suggested that all three individuals impacted feet first, as evidenced by the<br />

numerous compression fractures displayed in the ankle, knee and hip. The<br />

leg that received the most vertical force exhibited a greater amount of fracturing<br />

in these areas. This distinctive pattern of fracturing was predictably<br />

different than the pattern displayed by the other leg.<br />

Furthermore, a primary “suite of fractures” consistent with feet-first<br />

falls from heights was identified from these cases. This suite included the<br />

following: a fracture of the talus referred to as “aviator’s astragalus,” a<br />

“pilon fracture” of the distal tibia, a “plateau fracture” of the proximal tibia<br />

* Presenting Author<br />

Physical Anthropology<br />

and fibula, subtrochanteric spiral fracture of the femoral shaft and a complete<br />

fracture of the femoral neck, a T-fracture of the acetabulum coined<br />

the “exploding acetabulum,” a transverse compression fracture of the<br />

sacrum, and a compression fracture of a vertebral body.<br />

A secondary suite of fractures observed in these cases provided evidence<br />

of the side of the body to which the victim fell after initially<br />

impacting feet-first. This suite included transverse fractures of the ulna,<br />

an oblique fracture of the medial humeral condyle, a Hill-Sachs fracture of<br />

the proximal humerus, numerous rib fractures, and fractures in the<br />

cranium and mandible.<br />

Finally, the severity of fracturing displayed by these skeletal remains<br />

can be attributed to the heights of the cliffs, which were estimated to be<br />

60, 100, and 600 feet high. The maximum velocities of the victims at<br />

impact were approximately 42, 55, and 134 miles per hour, respectively.<br />

<strong>Bio</strong>mechanically, these are considered high-speed accident scenarios.<br />

Falls From Heights, Fracture Patterns, Impact Sequence<br />

H2 A Semi-Circular Argument: Patterned<br />

Injuries Explained by an Unusually Large<br />

Murder Weapon and Its Method of Use<br />

Christopher M. Casserino, MA*, University of Oregon Deptartment of<br />

Anthropology, 1650 Arthur Street, Eugene, OR<br />

The goal of this research project is to present a homicide case where<br />

patterned injuries were produced by a very large weapon that was used in<br />

an atypical manner.<br />

While patterned injuries and homicidal deaths due to blunt-force<br />

trauma are neither rare nor unusual, a case is presented where the murder<br />

weapon left patterned injuries that would later be explained by its seemingly<br />

unwieldy size and the unusual manner in which it was utilized. This<br />

poster chronicles a case from March 2001 where the victim suffered bluntforce<br />

trauma to the head and face from an assailant who utilized an<br />

unusually long piece of metal pipe as a murder weapon. The man who was<br />

a known transient in the Spokane, WA area, was found lying under a<br />

freeway overpass where acquaintances of the victim said he usually slept.<br />

The victim was discovered severely beaten but still alive in the early<br />

morning hours by some passers-by only moments after the attack. He died<br />

minutes before paramedics arrived at the scene. He had been struck in the<br />

head and face multiple times with a blunt object. It appeared that the<br />

victim had been attacked while he lay sleeping, as he was found lying on<br />

a makeshift bed of flattened cardboard boxes, and his body and face were<br />

covered with blankets. One of the blankets recovered at the scene, which<br />

was covering the decedent’s face, displayed semi-circular cut patterns,<br />

suggesting to police that a piece of pipe had been used in the attack,<br />

though none was found at the scene.<br />

At autopsy, arced and semi-circular patterned injuries sustained by<br />

the victim further substantiated the suspicion that the weapon might have<br />

been a piece of pipe. These injuries were similar in appearance to the<br />

defects noted on the blanket recovered at the scene. One well-defined,<br />

semi-circular injury was apparent on the left cheek. If this semi-circular<br />

injury were completed into a circle, it would have formed a circle with a<br />

diameter of two inches.<br />

Several days later, police discovered an approximately seven-foot<br />

long, two-inch diameter piece of pipe commonly used in the construction<br />

of cyclone or chain-link fencing. This was found approximately one city<br />

block east of the murder scene. Apparently, prior to the commission of the<br />

crime, the pipe had been removed from a temporary fencing barricade surrounding<br />

a construction site that was located a short distance away from<br />

574


the murder scene. This pipe contained traces of blood and tissue, both of<br />

which matched that of the decedent. Thus, this was determined to be the<br />

murder weapon.<br />

In light of the fact that the pipe was too long and awkward to be<br />

swung back-and-forth, effectively clubbing the victim to death, it was surmised<br />

that it had to have been held with both hands by the assailant in front<br />

of his body in a vertical orientation, and used in an up-and-down plunging<br />

motion. This helped to explain the patterned injuries observed on the<br />

decedent and the defects to the blanket. As the end of the pipe was coming<br />

into contact with the victim, the curved and semi-circular patterning<br />

resulted rather than flat defects that would have resulted from impacts<br />

from the side of the pipe.<br />

Homicide Investigation, Patterned Injuries, Blunt-Force Trauma<br />

H3 Hyperextension Trauma of<br />

Upper Cervical Vertebrae<br />

Amy Zelson Mundorff, MA*, and Corinne Ambrosi, MD, Office of<br />

Chief <strong>Medical</strong> Examiner, 520 1st Avenue, New York, NY; and Jason<br />

Wiersema, MA, Department of Anthropology, Texas A&M University,<br />

1602 Rock Cliff Road, Austin, TX<br />

The participant will become familiar with an unusual upper cervical<br />

fracture and the possible circumstances that could have caused the damage<br />

observed.<br />

This poster has three objectives: (1) to present a case involving upper<br />

cervical fractures in an individual who was found dead in a park with no<br />

ready mechanism to explain the trauma, (2) to provide a scenario that<br />

could explain the mechanism causing the fractures observed, and (3) to<br />

illustrate the importance of an interdisciplinary approach to autopsies,<br />

including the forensic pathologist, neuropathologist, and anthropologist<br />

and a scene visit, to accurately interpret the trauma.<br />

Case History: On the morning of March 25, 2001, a yet to be identified<br />

white man was found face down and unconscious in a park on 108th<br />

Street and 51st Avenue in Queens, NY by a passerby who called EMS.<br />

EMS responded to find the man in cardiac arrest. Advanced Cardiac Life<br />

Support was initiated and he was transported to a nearby hospital where he<br />

was subsequently pronounced dead. The scene detectives or emergency<br />

department staff noted no visible injury or trauma. The decedent was<br />

identified as a 58-year-old man who was known to drink approximately 5<br />

to 6 ‘large’ beers a day. According to his roommates, the decedent usually<br />

returned home every evening; however, on the morning before the above<br />

stated date, the decedent left his residence but did not return.<br />

Autopsy and Neuropathology Examination: There was a 1” abrasion<br />

above the lateral aspect of the left knee and two small superficial abrasions<br />

below the left knee. A 1 1/3” laceration without surrounding contusion<br />

was located over the right posterior parietal scalp. There was a ½” x 3/16”<br />

superficial abrasion at the vertex, with a small underlying patch of<br />

subscalpular hemorrhage. A 1 ½” x 1 1/4” circular patch of scalpular and<br />

subscalpular hemorrhage was in the left occipital region. There was slight<br />

to moderate hemorrhage of the anterior paraspinal muscles in the region of<br />

the high cervical vertebrae. There were no hemorrhages in the muscles of<br />

the posterior neck. Four fractures were noted in the first cervical vertebra<br />

(atlas), and the odontoid process was detached from the second cervical<br />

vertebra. There was moderate posterior paraspinal soft tissue hemorrhage<br />

(right greater than left). There were no skull fractures, and there was no<br />

intracranial, subdural or epidural hemorrhage. The remainder of the<br />

autopsy described no injury of the trunk or thoracic and abdominal<br />

viscera. The subclavian blood alcohol concentration was 0.29 g%.<br />

The cervical and upper thoracic spinal cord as well as the brain were<br />

fixed in formalin for further examination. The brain had no recent trauma.<br />

The spinal cord, from the upper cervical to thoracic levels, had focal<br />

epidural hemorrhage of the dorsal rostral one third of the cervical cord.<br />

Anthropology Examination: The first cervical vertebra as well as the<br />

odontoid process of the second cervical vertebra were removed during<br />

autopsy and submitted to anthropology for fracture analysis. The specimens<br />

were cleaned of soft tissue. The first cervical vertebra was fractured<br />

in five locations: (A) There was a fracture to the posterior edge of the left<br />

superior articular facet for the occipital condyle. This fracture is consistent<br />

with being crushed from the occipital condyle rocking forcefully back<br />

onto the facet during hyperextension. (B) There was a wedge fracture at<br />

the midline of the anterior arch, with the wedge being displaced superiorly.<br />

Anterior arch fractures can be produced by hyperextension when the arch<br />

of C1 abuts the dens of C2, because the atlantoaxial joint is fixed. (C) The<br />

posterior arch was fractured in three places, at midline and on the right and<br />

left sides of the arch where it joins the lateral masses. These fractures are<br />

consistent with injuries usually seen with hyperextension of the head and<br />

neck. The posterior portion of C1 is compressed between the occipital and<br />

the arch/spinous process of C2. The dens, or odontoid process of C2 was<br />

fractured at the isthmus, or waist, posteriorly. Posterior displacement of<br />

the dens is consistent with hyperextension and displacement of C1<br />

posteriorly.<br />

The fractures of C1 and C2 are consistent with hyperextension of the<br />

head and neck, forcing the occipital condyle down onto the superior facet<br />

of C1, lifting the anterior arch of C1 up against the dens and fracturing the<br />

arch and the dens posteriorly, while forcing the posterior arch of C1 down<br />

onto C2 and fracturing the posterior arch of C1. These findings also are<br />

consistent with the anterior cervical hemorrhage found during autopsy<br />

Scene Investigation: For a more accurate interpretation of the positioning<br />

of the victim, the <strong>Medical</strong> Examiner was escorted back to the<br />

location where the decedent was found. The small neighborhood park is<br />

well maintained with many park benches and small sections with<br />

vegetation. The areas of vegetation are sectioned off with wooden beams;<br />

perpendicular to the wooden beams are multiple curved segments of metal<br />

bars to create a fence-type border/barrier. The metal bars vary in height,<br />

with the highest approximately 12-14” off the ground. The decedent was<br />

found face down with his head near a tree and the lower part of his lower<br />

extremities draped over the fence. The fence was lightly painted white and<br />

has a chalky, white-washed appearance. There was faint, chalky white<br />

material found on the lower part of the back of the hood, above where the<br />

hood meets the neck of the jacket. There were also smudges of black<br />

material on the back left side of the jacket. White chalky material was also<br />

noted on the right upper back. From the description of the scene, the<br />

decedent’s high blood alcohol concentration, the patterns found on the<br />

jacket and the extent of the hyperextension injuries, the most likely reconstruction<br />

of events is that the man fell backwards and hit the back of his<br />

neck along the fence causing the extreme hyperextension trauma and<br />

scalpular abrasion and contusions.<br />

Hyperextension, Cervical Vertebrae, Neuropathology<br />

H4 Can Sharp Force Trauma to Bone Be<br />

Recognized After Fire Modification?<br />

An Experiment Using Odocoileus<br />

virginianus (White-Tailed Deer) Ribs<br />

Paul D. Emanovsky, BS*, University of Indianapolis Archeology and<br />

<strong>Forensics</strong> Laboratory, 1400 East Hanna Avenue, Indianapolis, IN;<br />

Joseph T. Hefner, BS, and Dennis C. Dirkmaat, PhD, Mercyhurst<br />

Archaeological Institute, Mercyhurst College, 501 East 58th Street,<br />

Erie, PA<br />

The goals of this research project are to: 1) define and illustrate<br />

morphological characteristics associated with sharp force trauma on<br />

White-Tailed Deer ribs, and examine the preservation of such features following<br />

exposure to intense heat; 2) offer criteria for differentiating<br />

between postmortem heat alterations and perimortem trauma on bone; and<br />

575 * Presenting Author


3) reaffirm the benefits of proper recovery and curation protocols<br />

concerning fire-modified bone.<br />

During the course of their analyses, forensic anthropologists<br />

routinely face the task of identifying and interpreting taphonomic events<br />

surrounding the death of an individual. At times they are called upon to<br />

analyze remains that have been modified by fire. Fire modification of<br />

bone can obviously hinder the analysis of the remains. Trauma analysis in<br />

particular is often rendered more difficult. Diagnostic characteristics of<br />

perimortem trauma can become obscured or even destroyed by fire-related<br />

changes in bone morphology. These changes also make it difficult to distinguish<br />

perimortem from postmortem trauma. Although this is a common<br />

conundrum faced by forensic anthropologists, research on the topic is<br />

limited and has only recently been investigated.<br />

All categories of trauma to bone have the potential to become<br />

obscured by fire modification; however, this poster will focus primarily on<br />

sharp force trauma (SFT). Sharp force trauma is often characterized by<br />

subtle marks left on the bone that even experienced analysts may have difficulty<br />

identifying. If postmortem destruction of the bone occurs, then<br />

those subtleties are even more likely to remain undiscovered.<br />

Using both experimental data as well as case studies, the characteristics<br />

of sharp force wounds such as up-curling, notching, shaving,<br />

puncture marks, cutmarks, and linear incisions that sever the bone, are<br />

defined and illustrated. An experimental model for testing the preservation<br />

of these perimortem sharp force wound characteristics after<br />

exposure to fire was designed and implemented using Odocoileus virginianus<br />

(White-Tailed Deer) ribs. Grossly, Odocoileus virginianus ribs<br />

are similar in size and morphology to human ribs, and therefore represent<br />

a valid model for anthropological research. In an effort to inflict a variety<br />

of SFT types, the torso of a recently deceased (PMI of 1 to 2 days) adult<br />

deer was stabbed multiple times at a variety of angles with a large, sharp,<br />

non-serrated kitchen knife. Each of the affected ribs exhibiting SFT<br />

defects was then dissected out of the torso, and adhering soft tissue was<br />

removed manually. The traumatic lesions were comprehensively<br />

described and thoroughly documented using digital photography. Next,<br />

the ribs were burned in semi-controlled, outdoor wood fires. The fire was<br />

ignited in a shallow pit, the floor of which was comprised of a sandy soil.<br />

Small dry sticks fueled the fires; the ribs were laid on top of a small bed<br />

of sticks and additional sticks were occasionally added on top of the bone<br />

as the fuel was consumed. Firewood was added until the bone was partially<br />

calcined, a process which typically required approximately 30<br />

minutes. The remains were then carefully removed from the fire pit, and<br />

observations made concerning the survival and possible modified SFT<br />

wound characteristics. Taphonomic observations concerning the overall<br />

condition of the bone after burning (i.e., warpage, fracturing, discoloration,<br />

etc.) will be presented.<br />

Diagnostic perimortem SFT characteristics were found to remain<br />

visible after being subjected to an intense fire. Relatively shallow cutmarks,<br />

for example, persist even on the calcined cortical surfaces and can<br />

be differentiated (both macroscopically and under low-power magnification)<br />

from transverse and longitudinal fractures created during the<br />

burning process. Cutmarks are characterized by V-shaped cross sections<br />

with the occasional uplifting of a thin layer of cortical bone adjacent to the<br />

groove. Whereas fractures created by heat alteration are characterized by<br />

jagged, more irregular defect walls.<br />

In some instances the trauma was completely destroyed, while in<br />

other cases it was obscured and only became visible following careful laboratory<br />

reconstruction of the bone remains. For example, wounds that<br />

completely transect the bone or result in the significant removal of bone<br />

(such as shaving or notching type events), are often subject to further separation<br />

and fragmentation during the course of the burning process. This<br />

may be due to the fact that the biomechanical integrity of the bone has<br />

been compromised and fractures are more easily propagated at those<br />

locations.<br />

In order to preserve the potential evidence of this nature, it is<br />

necessary that careful recovery, documentation and curation techniques be<br />

* Presenting Author<br />

employed. When remains are extremely fragmentary, the bone (and any<br />

additional evidence) should be collected from smaller subunits within<br />

each unit. For example, a traditional 1 by 1 meter unit can be demarcated<br />

into 10cm by 10cm units. This enables more exact provenience data to be<br />

collected for each fragment and thus facilitates subsequent conjoining<br />

efforts.<br />

It is imperative that proper handling protocols are followed to ensure<br />

that further damage does not occur. In some cases it may be appropriate<br />

to apply a consolidation agent (i.e., water diluted polyvinyl acetate) before<br />

attempting to move the remains. Additionally, remains must be properly<br />

packaged for transportation. This may involve wrapping individual bones<br />

in paper or foam and placing them in boxes or rigid containers. While this<br />

will take additional time in the field, it will greatly reduce the chance of<br />

losing or destroying small fragments that may contain evidence of trauma.<br />

This study suggests that evidence of sharp force trauma<br />

experimentally created on deer ribs can be preserved after exposure to fire.<br />

However, evidence of these wounds are extremely transient and are easily<br />

destroyed or overlooked if proper documentation, recovery and curation<br />

efforts are not undertaken.<br />

Taphonomy, Sharp-Force Trauma, Forensic Archaeology<br />

H5 A Comparison of the Cranial Wounding<br />

Effects of .22 and .38 Caliber Bullets<br />

Maureen Schaefer, MA*, 8549 Wuest Road, Cincinnati, OH<br />

The goals of this research project are to recognize variation in the<br />

cranial wounding effects of .22 and .38 bullets from contact and/or close<br />

contact shots.<br />

This presentation compares the cranial wounds created by .22 and .38<br />

caliber bullets by examining the size of the entrance defect and the fracture<br />

types located on the cranium of suicide victims. Thirty calottes exhibiting<br />

gunshot trauma were obtained for analysis from the William F.<br />

McCormick skeletal collection located at the University of Tennessee.<br />

The sample consisted of eleven .22s and sixteen .38s. In order to be considered<br />

for this study, the entrance wound along with an overall image of<br />

the fracture pattern must have been observable from the calotte alone. In<br />

addition, because distance of shot and location of the entry are factors<br />

known to affect wound formation, only subjects who committed suicide<br />

with the bullet entering along or near the squamosal suture (that is, on the<br />

temporal bone above the zygomatic process, on the parietal bone inferior<br />

to the temporal line, or on the sphenoid) were used in this study.<br />

An ANOVA procedure found a strong correlation between caliber<br />

and minimum diameter of the entrance defect (F=37.96; p


caliber bullets. The results show that given a cranium shot at contact/close<br />

contact range that exhibits a primary fracture on or near the squamosal<br />

suture, the maximum probability that a .22 could create the wound is 0.14,<br />

while the maximum probability that a .38 could create the wound is 0.10.<br />

Given a cranium that exhibits secondary fractures, the maximum probability<br />

that a .22 created the wound is 0.99, and 0.95 for .38 calibers. A<br />

major difference between the wounding effects of .22 and .38 caliber<br />

bullets is observed when considering the presence of tertiary fractures. If<br />

tertiary fractures are present on a skull, the maximum probability that a .22<br />

created the wound is 0.23 while the maximum probability that a .38<br />

created the wound is 0.87.<br />

This study reinforces past research on the correlation between caliber<br />

and size of entrance wound and also examines the effects of caliber on<br />

fracture type to aid the forensic anthropologist with the interpretation of<br />

cranial gunshot trauma.<br />

Forensic Anthropology, Terminal Ballistics, Cranial Gunshot Trauma<br />

H6 Forensic Anthropology and Fire<br />

Investigation: Learning About<br />

Burning Using Non-Human Models<br />

Eric J. Bartelink, MA*, 611 Domink, College Station, TX; Turhon A.<br />

Murad, PhD, Department of Anthropology, California State<br />

University, Chico, CA; and Sarah Collins, MSc, 401 San Diego<br />

Avenue, Daly City, CA<br />

By attending this poster presentation, the participant should expect to<br />

learn: 1) the value of collaborative research with investigators; 2) about<br />

the challenges involved in identifying trauma on burned remains; and<br />

3) the importance of reconstructing burned bone for interpretation of<br />

perimortem versus fire-related trauma.<br />

Training courses involving forensic anthropologists and investigators<br />

provide an opportunity for exploring issues regarding fire-related death<br />

scenes. As it is not uncommon for arson to be used to conceal evidence of<br />

a homicide, the close examination of the death scene becomes increasingly<br />

important. Fire and death scene investigators are often responsible for the<br />

recovery and collection of evidence, although many are not trained in<br />

recognizing calcined and highly fragmented remains. Contextual<br />

information is lost when burned elements are disturbed at the scene,<br />

information which often cannot be later recovered. Poor recovery methods<br />

and documentation also hinder attempts at personal identification. For<br />

example, fragmentary elements missed during recovery may prevent the<br />

accurate determination of sex, age, ancestry, stature, and trauma.<br />

While the forensic anthropologist can offer assistance at the fire<br />

scene, many only become involved after the skeletal elements and/or calcined<br />

bones are collected by investigators. Limited financial resources,<br />

personnel availability, and a lack of experience with forensic<br />

anthropologists have been cited as reasons for the non-involvement of<br />

anthropologists at the initial stages of the investigation. Fire training exercises<br />

can provide an opportunity for investigators to observe the effects of<br />

fire to non-human carcasses, and to aid investigators in the recognition of<br />

highly fragmented and calcined skeletal elements. Additionally,<br />

anthropologists can use these exercises as an opportunity to perform<br />

experimental research to aid in understanding the effects of fire to human<br />

remains.<br />

This study reports on two pigs (Sus scrofa) that were burned in a<br />

single-story structure fire as part of a fire-fighting training exercise in<br />

Northern California. A forensic anthropologist and graduate students from<br />

CSU Chico provided the pig carcasses to simulate intact human bodies.<br />

Fire-fighters, fire scene investigators, and law enforcement personnel participated<br />

in various aspects of the training exercise. Because experimental<br />

research on burned bodies is logistically difficult, this exercise served as a<br />

means to study whether evidence of perimortem trauma would survive a<br />

thermal event.<br />

Pig #1 was placed on a couch in a room toward the back of the<br />

structure. Similarly, Pig #2 was placed on a bed in a front room of the<br />

structure. Both pigs were struck several times (prior to the fire) using an<br />

ax, a machete, and a knife. The structure was then set afire with the aid of<br />

accelerants and was allowed to burn for approximately 25 minutes before<br />

being put out by firefighters. The pigs were externally examined for fire<br />

damage by participants, and then were recovered from the burned<br />

structure using standard archaeological techniques.<br />

The burned carcasses were bagged separately and delivered to the<br />

CSU Chico Physical Anthropology Human Identification Laboratory<br />

(PAHIL) for analysis. Each carcass was defleshed of soft tissue and all<br />

skeletal elements were examined for signs of trauma. Mikrosil forensic<br />

casting material was used to make impressions of potential trauma sites.<br />

Gross morphology and microscopic analyses were used to categorize<br />

trauma as being perimortem or from fire-induced checking.<br />

Pig #1 exhibited signs of sharp-force trauma at the left occipital<br />

condyle, the inferior portion of both left and right mandibular bodies, the<br />

costal groove of a left rib, on four unsided rib fragments, and on an unidentified<br />

bone fragment. Suspicious sharp-force trauma sites on pig #2 were<br />

observed on the right femoral midshaft, right innominate, and on the<br />

inferior body of the right mandible. Additionally, an unsided rib exhibited<br />

a typical butterfly fracture, while the right petrosal portion of the temporal<br />

bone showed signs of fracture. The majority of these injuries occurred to<br />

unburned bone or portions of bone that were protected by adjacent soft<br />

tissue. Some abnormal burn patterns were observed in areas affected by<br />

trauma, most likely due to direct exposure of bone to the fire. This preliminary<br />

study shows that in instances where remains are incompletely<br />

burned, trauma can often be easily identified on non-burned portions of<br />

bone. Although many fires are unsuccessful in destroying evidence of a<br />

homicide, injuries to heavily charred and calcined portions are generally<br />

the most difficult to identify and reconstruct.<br />

Since 1997, TAM (author #2) has accepted seven cases involving<br />

burned human remains at the PAHIL. Vehicular fires accounted for four<br />

of these cases, with only one representing a house fire. Additional cases<br />

involved an individual found in an unusual burned out residence<br />

(a redwood tree stump), and one cremains case involving several commingled<br />

individuals. With the exception of the cremains case, all involved<br />

suspicious circumstances surrounding the death scene. In only three<br />

instances did forensic anthropologists participate in the recovery, and only<br />

after investigators processed the initial scene.<br />

These case studies will be used to address the limitations of<br />

osteological analyses in instances where remains were disturbed or incompletely<br />

recovered from the scene. The challenges of reconstructing<br />

evidence of trauma in calcined remains is further addressed using these<br />

examples.<br />

Fire training exercises are one method in which anthropologists and<br />

investigators can work together to understand the effects of fire to human<br />

remains. These exercises open further opportunities for experimental<br />

taphonomic research involving the alteration and destruction of bone in a<br />

fire. Preliminary research from this study and from the presented case<br />

studies indicates that trauma can often be identified and reconstructed in<br />

charred and calcined bone.<br />

Anthropology, Fire Deaths, Sharp-Force Trauma<br />

H7 The Effects of Temperature on the<br />

Decomposition Rate of Human Remains<br />

Mary S. Megyesi, BA*, University of Indianapolis, East Lansing, MI<br />

The goals of this research project are to test the success of a new<br />

method of estimating the postmortem interval from decomposing human<br />

remains using accumulated degree-days and a quantified, point system<br />

approach of scoring decomposition.<br />

577 * Presenting Author


Forensic anthropologists are frequently called upon to assist in the<br />

recovery and analysis of recently dead individuals. Estimating the postmortem<br />

interval, or PMI, is an important part of a forensic anthropologist’s<br />

job. The PMI is important for a number of reasons. Estimating the PMI<br />

can narrow down the potential pool of missing persons and ultimately help<br />

identify the remains. The PMI can help with interpreting the scene.<br />

Knowing approximately how long remains have been in situ can help<br />

establish a timeline of other events that may have affected the remains.<br />

There are many methods from the disciplines of botany, entomology,<br />

and biochemistry to estimate the PMI, but the decay and decomposition of<br />

soft tissues is perhaps the most used body of data by forensic anthropologists<br />

for estimating the PMI. Forensic anthropologists rely on a general<br />

knowledge of the decompositional process as well as experience with<br />

decomposing human remains in their specific geographic region to<br />

estimate the PMI. Qualitative “stages” of decomposition generally correspond<br />

to the PMI and have served as a guide for most PMI estimates made<br />

by forensic anthropologists. Forensic anthropology could benefit from<br />

applying quantitative methods to the study of decomposition to understand<br />

the relationship between decomposition, temperature, and the PMI.<br />

Forensic entomologists use insects attracted to decomposing remains<br />

to determine the time since death. Fly larvae (maggots) associated with<br />

decomposing remains grow and develop in increments or “instars.”<br />

Maggot development is almost entirely dependent on ambient air temperature.<br />

Accumulated degree-days (ADD) and accumulated degree-hours<br />

(ADH) are heat unit values calculated from ambient air temperatures.<br />

Forensic entomologists use ADD and ADH to measure the energy requirements<br />

of developing maggots. Could forensic anthropologists use ADD to<br />

measure the energy requirements needed to propel decomposition? Do<br />

quantified stages of decomposition correlate with ADD? Is this method a<br />

reliable alternative to qualitative assessments of decomposition?<br />

Alternatively, is it possible to quantify soft tissue decomposition in a<br />

fashion that would allow for better estimates of PMI without going<br />

through the process of calculating ADD? The results of this research will<br />

enable forensic anthropologists to supplement current strategies of estimating<br />

the PMI with a new method utilizing a quantitative approach to<br />

soft tissue decomposition.<br />

From March until June of 2001, the author selected human remains<br />

cases to be used in this study from the case files of Dr. Stephen Nawrocki,<br />

a forensic anthropologist at the University of Indianapolis, and from the<br />

case files of Dr. Neal Haskell, a forensic entomologist at St. Joseph’s<br />

College in Rensselaer, IN. Seventy-two human remains cases were<br />

selected for this study. Cases were selected based on number of criteria<br />

such as no burned, buried, or submerged remains were used and all<br />

remains were complete with no missing body parts. All cases had a known<br />

PMI. Other variables analyzed in this study included month of death,<br />

average temperature throughout the entire postmortem period, latitude in<br />

which the remains were recovered, and details of the recovery site such as<br />

sun exposure.<br />

All cases used in this study had adequate photographs of the remains<br />

in situ. Decomposition was scored from photographs using a point-based<br />

scoring method. Stages of decomposition were developed to reflect the<br />

sequential process of decomposition. Each stage of decomposition was<br />

given a point value so that decomposition could be expressed numerically.<br />

Decomposition was scored independently for three areas of the body: the<br />

head and neck, the thorax, abdomen, and pelvis, and the limbs including<br />

hands and feet. The decompositional scores of the three anatomical<br />

regions were combined to produce a total body score (TBS).<br />

Accumulated degree-days were calculated from average daily<br />

temperatures recorded by the National Weather Service Station nearest to<br />

where the remains were recovered. When D = average daily temperature<br />

C°, the equation used to calculate ADD is (D-0°) + (D-0°) + (D-0°) for all<br />

days from death until discovery. Zero degrees Celsius (0°) is the base<br />

temperature or temperature at which decomposition essentially stops.<br />

Although subtracting 0°C from the average daily temperature did not<br />

substantially affect the calculation, a base temperature is essential for<br />

* Presenting Author<br />

calculating ADD. Accumulated degree-days are a measure of heat units<br />

necessary to propel decomposition and only temperatures above 0°C were<br />

used to calculate ADD. Temperatures below 0°C did not affect ADD (i.e.,<br />

negative temperatures are not subtracted from the ADD calculation).<br />

Forensic entomologists also subtract a base temperature from ADD<br />

calculations depending on the temperature below which maggots cease to<br />

develop.<br />

The TBS was analyzed for its ability to predict the PMI. In addition,<br />

ADD were analyzed for their ability to predict the TBS. Statistical procedures<br />

performed included correlation, regression, ANOVA, and<br />

ANCOVA. Preliminary results indicate a strong positive correlation<br />

between ADD and TBS (r-value = 0.72) and a strong positive correlation<br />

between PMI and TBS (r-value = 0.67) significant at the p = 0.05 level.<br />

Regression analysis indicates that TBS is good predictor of PMI.<br />

Regression analysis also indicates that ADD is a good predictor of TBS,<br />

and further tests will conclude if using ADD to estimate PMI based on the<br />

TBS would be better than estimating PMI based on the TBS alone. The<br />

TBS appears to be good indicator of the PMI, and this method of quantifying<br />

soft tissue decomposition is a reliable alternative to qualitative<br />

methods of assessing decomposition and estimating the time since death.<br />

Decomposition, Postmortem Interval, Accumulated Degree-Days<br />

H8 Forensic Applications of Ground<br />

Penetrating Radar in Florida<br />

John J. Schultz, MS*, C.A. Pound Human ID Laboratory, University of<br />

Florida, PO Box 112545, Gainesville, FL<br />

The goals of this research project are to familiarize the audience<br />

with the utility of using ground-penetrating radar for forensic<br />

applications. Participants will gain an understanding of the general<br />

characteristics of ground penetrating radar anomalies and how grave<br />

anomalies change over time.<br />

The application of geophysical methods in the search for clandestine<br />

graves has become a valuable tool for forensic investigators. This has led<br />

to actualistic research that tests the efficacy and applicability of different<br />

geophysical technologies under controlled conditions in the detection of<br />

buried bodies and crime paraphernalia. Overall, it has been concluded that<br />

ground penetrating radar (GPR) was the most important geophysical<br />

method used to delineate graves under controlled conditions (France et al.,<br />

1997). This study tests the applicability of using GPR in Florida to detect<br />

buried bodies and crime scene paraphernalia. The following four questions<br />

were addressed: (1) How does the GPR anomaly of a pig burial<br />

change over time due to decomposition of the body and compaction of the<br />

backfill? (2) Is soil type a factor in the efficacy of producing a distinctive<br />

grave anomaly? (3) How does pig cadaver size affect the grave anomaly?<br />

(4) Are relatively high-resolution antennae, such as 900-MHz, useful for<br />

locating forensic burials and other crime scene paraphernalia?<br />

A total of twenty-four pig cadavers were monitored on a monthly<br />

basis. Pigs of two average weights (65 and 140 lbs.) were buried at one of<br />

two depths (50-60cm or 100-110cm) for up to 21 months. Twelve control<br />

burials were also constructed. The majority of these pits consisted of<br />

backfill in order to determine the contribution of the disturbed soil to the<br />

grave anomaly. Two different soil types were utilized in this study: one<br />

soil type was comprised solely of stratigraphic horizons made up of sand,<br />

and the other was comprised of clay horizons that began at a depth of<br />

approximately 94cm. Furthermore, additional forensic targets that are<br />

representative of typical crime scene paraphernalia (e.g., knives and<br />

clothing) were also buried and monitored with the GPR to determine if<br />

they could be detected.<br />

GPR surveys were performed on a monthly basis by profiling the<br />

length and width of the graves with both the 900- and 500-MHz antennae<br />

using the Subsurface Interface Radar (SIR) 2000 that is manufactured by<br />

Geophysical Survey Systems, Inc. This unit is powered by a 12-volt<br />

578


attery and consists of a digital control unit and keypad, a VGA color<br />

monitor, and an internal hard drive. The hard drive stores the data (realtime)<br />

for either immediate playback in the field or further computer<br />

processing in the lab using RADAN.<br />

Preliminary results indicate that the anomaly produced by only a<br />

buried body in a grave may be initially comprised of three components:<br />

the decomposing body or skeletal remains, the disturbed backfill, and the<br />

distinctive outline of the grave feature. For the duration of this study, the<br />

grave anomaly became less distinctive over time due to decomposition of<br />

the body and compaction of the backfill. Soil type and antenna were both<br />

major factors in this study. As the anomaly became less distinctive over<br />

time, it became more difficult to recognize the deep burials that were<br />

within clay using a 500-MHz antenna. Conversely, due to the greater<br />

detail produced by a 900-MHz antenna, graves were periodically more<br />

discernable in clay using this antenna. Although there were also changes<br />

to the burials that were in sandy soil, they were recognizable during the<br />

duration of the study using both antennae. Pig size was not a factor in this<br />

study. The anomaly that was produced from a child- size pig cadaver had<br />

the same general characteristics and was detected for the same duration of<br />

time as a larger pig cadaver. In addition, it was possible to detect buried<br />

crime scene paraphernalia such as knives and clothing with both antennae.<br />

Unfortunately, due to the small size of the knives, these items easily can<br />

be missed during a GPR survey if a tight grid is not utilized.<br />

Geophysical Methods, Ground Penetrating Radar, Anomaly<br />

H9 Predicting Mitochondrial DNA (mtDNA)<br />

Recovery by Skeletal Preservation<br />

Franklin E. Damann, MA*, Mark Leney, PhD, and Ann W. Bunch, PhD,<br />

U.S. Army Central Identification Laboratory, Hawaii, 310 Worchester<br />

Avenue, Hickam Air Force Base, Honolulu, HI<br />

Those attending this presentation can expect to learn about the<br />

relation between gross skeletal preservation and mtDNA recovery. In<br />

addition, the prediction of mtDNA recovery based on macroscopic observation<br />

of human skeletal remains is discussed.<br />

Development of the Polymerase Chain Reaction (PCR) has influenced<br />

many scientific disciplines because of its ability to amplify trace<br />

amounts of biomolecules. Of particular interest to the U.S. Central<br />

Identification Laboratory, Hawaii (CILHI) is the application of PCR-based<br />

mitochondrial DNA analysis from skeletal remains recovered throughout<br />

the world. Over the last decade the CILHI has used mtDNA analysis performed<br />

by the Armed Forces DNA Identification Laboratory (AFDIL) to<br />

complement odontological and anthropological identifications of unidentified<br />

U.S. service members. Last year alone 58% of all CILHI individual<br />

identifications were assisted by mtDNA sequence data.<br />

MtDNA extraction from osseous material is not entirely new and has<br />

been applied previously to many archaeological, museum, and forensic<br />

specimens. Some researchers suggest that osseous material is an important<br />

source of DNA due to the physical durability of bone and the ability of<br />

hydroxyapatite to bind DNA, thus protecting DNA from degradation.<br />

Despite advances in forensic research by interfacing anthropology and<br />

molecular biology, the extraction of endogenous human mtDNA from<br />

bone is far from routine given myriad factors that influence both gross<br />

osseous preservation and mtDNA recoverability. Few studies have begun<br />

to explore mtDNA recovery from varied states of preserved skeletal<br />

material. In these, however, the equable and small sample sizes restrict<br />

conclusions about the relation between bone and mtDNA preservation and<br />

thus warrant continued research.<br />

Current practice at the CILHI dictates a visual inspection of all<br />

skeletal remains turned over to the laboratory. It is recommended that<br />

preliminary analysts indicate potential for mtDNA recovery. To an anthropologist,<br />

gross preservation of bone depends on its completeness and<br />

overall weathered characteristics. The qualitative measure of how bones<br />

look to determine mtDNA recovery potential is not well defined. At the<br />

CILHI, skeletal samples subject to varying depositional environments in<br />

various preserved states have been sampled for mtDNA analysis. Given<br />

the data shared between the AFDIL and the CILHI, there is a unique<br />

opportunity to provide significant information to ancient DNA studies.<br />

This paper presents findings on the relation between gross skeletal<br />

preservation and mtDNA recovery as well as the ability to predict mtDNA<br />

recovery potential by macroscopic observation. The percentage of<br />

mtDNA base pairs obtained per sample is regressed against gross skeletal<br />

preservation as indicated on an ordinal scale.<br />

Skeletal Preservation, mtDNA, CILHI<br />

H10 Masking Identity: The Effects of<br />

Corrosive Household Agents on Soft<br />

Tissue, Bone, and Dentition<br />

Tosha L. Dupras, PhD*, Joy E. Lang, and Heather L. Reay, Department<br />

of Sociology and Anthropology, University of Central Florida, Orlando,<br />

FL; John J. Schultz, MS, and Anthony B. Falsetti, PhD, C.A. Pound<br />

Human Identification Laboratory, University of Florida, Gainesville, FL;<br />

and Noel A. Palma, BS, MD, <strong>Medical</strong> Examiner’s Office, Pinellas-Pasco<br />

County, West Palm Beach, FL<br />

The goals of this research project are to familiarize the audience with<br />

the affects of common household corrosive substances (Both acids and<br />

bases) on soft tissues, bones and dentition. Participants will gain insight<br />

into the criminal use of corrosive substances utilized with the intention of<br />

masking identity or destroying evidence.<br />

Short of making a body disappear with its DNA, disintegrating a<br />

corpse or portions of one in acid can be one of the most thorough and<br />

seemingly foolproof methods of body disposal. A recent forensic case<br />

from Florida exhibited what appeared to be evidence of corrosive postmortem<br />

modification. Dark discoloration was noted on the right frontal<br />

and zygomatic bones. Also noted was substantial erosion of the maxilla<br />

and mandible, resulting in the exposure of tooth roots. Both maxillary and<br />

mandibular dentition exhibited varied degrees of staining, in conjunction<br />

with significant erosion and pitting of the enamel on the anterior dentition.<br />

A literature search yielded only three published cases with information<br />

regarding the use of corrosive substances on human bone as a potential<br />

masking tool. One of the sources does not specify the corrosive substance<br />

used while the remaining two publications present the use of sulfuric acid<br />

as the corrosive agent used to destroy the remains. However, sulfuric acid<br />

is not readily available to the common consumer. The purpose of this pilot<br />

study is to determine which of the readily available household corrosive<br />

agents are capable of destroying skeletal and dental features.<br />

Four complete adult pig heads (including all soft tissue) obtained<br />

from the local butcher were used for this project because of the similarity<br />

between human and pig tissue structure. All four pig heads weighed<br />

between 25 and 35 pounds. Each pig head was assigned to a ten-gallon<br />

bucket. Four household products were purchased from the local home<br />

improvement store. These included two acidic products (muriatic acid and<br />

an industrial strength toilet bowl cleaner, both popular hydrochloric acids)<br />

and two alkaline products (oven cleaner and plumbing clog remover). The<br />

molar concentrations of the acidic products were different, and the<br />

chemical compositions of the alkaline solutions were also different (both<br />

chosen for their different effect on proteins). Each product was poured<br />

into a bucket to a level that covered the anterior portion of the pig’s head.<br />

In order to quantify corrosion over time, four initial craniometric<br />

measurements were taken with sliding calipers, and tissue depths were<br />

documented using a 22-gauge needle. Additional measurements were<br />

taken five times over a period of seven hours to assess the amount of<br />

corrosive activity. Qualitative data was also obtained through photographs<br />

and written observations at every measurement interval.<br />

579 * Presenting Author


Although all the chemicals tested demonstrated some level of tissue<br />

corrosion, the muriatic acid (hydrochloric acid, commonly used for<br />

cleaning pools) was clearly the most effective and efficient in soft and hard<br />

tissue destruction. After the first hour of submersion the pig head in the<br />

muriatic acid showed significant tissue destruction, exposing bone and<br />

dentition. By the end of the experiment the dentition exhibited substantial<br />

enamel and dentin erosion, with only small sharp protrusions of dentin<br />

remaining. Based on metric analysis and visual observation the oven<br />

cleaner (an alkaline solution) displayed the least amount of tissue damage.<br />

The alkaline solutions tested in this experiment had mostly soft tissue<br />

effects whereas the acids (even in small concentrations) contributed to<br />

both soft and hard tissue erosion. Based on this pilot study the corrosive<br />

lesions occurring on bone and destruction of the dentition resultant from<br />

exposure to muriatic acid most closely resembled the postmortem modifications<br />

noted on the aforementioned forensic case.<br />

Corrosive Substance, Taphonomic Modification, Masking Identity<br />

H11 Excavation and Analysis of Four<br />

Homicide Victims From Shallow<br />

Graves in Bartholomew County, IN<br />

Stephen P. Nawrocki, PhD*, Matthew A. Williamson, PhD, Christopher<br />

W. Schmidt, PhD, Heather A. Thew, MS, and Gregory A. Reinhardt, PhD,<br />

University of Indianapolis Archeology and <strong>Forensics</strong> Laboratory,<br />

1400 East, Hanna Avenue, Indianapolis, IN<br />

This poster underscores the importance of controlled archeological<br />

excavation methods at the crime scene.<br />

In mid-September of 1998, local authorities discovered the shallow<br />

graves of four individuals buried along the East Fork of the White River<br />

in Waynesville, Bartholomew County, in central Indiana. The victims had<br />

last been seen a month previously and were thought to have been planning<br />

a camping trip to the approximate area where their remains were eventually<br />

located. The four individuals included a young adult female, her<br />

two children aged 8 months and 2 years, and a family friend, a female aged<br />

12 years. Personnel at the University of Indianapolis Archeology &<br />

<strong>Forensics</strong> Laboratory were contacted to conduct the recovery effort, which<br />

took the better part of three days.<br />

The remains were located at the intersection of a fallow field and a<br />

wooded strip that borders the river. While camping was common in the<br />

area, the scene is fairly remote and was shielded from view by passersby,<br />

being separated from the main road by cornfields. Three of the victims,<br />

the mother and her two children, were buried in three separate graves that<br />

lay within a few meters of each other, just outside the tree line. The grave<br />

of the adolescent lay about 25 meters west of the others, within the woods.<br />

Miscellaneous evidence, including personal effects and portions of<br />

remains scavenged by carnivores, were found strewn in the fields and<br />

woods surrounding the burials.<br />

A standard baseline and two primary excavation grids were established<br />

to ensure proper archeological control. A transit was erected over<br />

the datum point to allow for detailed mapping of dispersed evidence.<br />

Excavation proceeded first by cleaning the area of vegetation and plant<br />

debris. From there, excavators began to map and then remove the “halo”<br />

of disturbed subsoil matrix that was scattered on the ground surface surrounding<br />

each grave. Soil within the graves was then removed to uncover<br />

the remains, leaving the boundaries of the original grave shafts intact. The<br />

maximum depth of any of the graves was 34 cm to the bottom (the adolescent),<br />

and that of the adult was so shallow at the foot end that the toes<br />

of her boots protruded. Mounds of soil were clearly evident over the<br />

graves of the adult and the adolescent.<br />

* Presenting Author<br />

From an archeological standpoint, this case presents a number of<br />

“classic” or textbook examples of how careful recovery methods can maximize<br />

evidence and information retrieval at the scene. For example, items<br />

found within the halos included pocket change presumably dropped by the<br />

assailant while digging the graves. Numerous toolmarks were noted in<br />

each grave, allowing identification of the class of instrument used and its<br />

tentative association with a shovel found in the defendant’s possession.<br />

The direction that the assailant was facing when digging could be reconstructed<br />

for each toolmark in each grave. A number of “false-starts” were<br />

identified where the assailant began digging a grave but then changed his<br />

mind and relocated to a different spot. A “borrow pit” was identified<br />

immediately adjacent to the adult’s grave, where the assailant removed<br />

soil to cover the victim after it became obvious that the original hole was<br />

not deep enough to conceal the body. A cloth impression was discovered<br />

at the side of the adolescent’s grave, probably where the assailant kneeled<br />

at its side. An intact shell of soil was found surrounding the outline of the<br />

adolescent’s limbs even though the soft tissues had decomposed and<br />

pulled away from the soil. Preservation of these types of ephemeral evidence<br />

was facilitated by the fact that the clay soil was slightly wet when<br />

the burials were constructed and it had not rained in the ensuing month<br />

before recovery. Soil samples taken from the defendant’s shovel matched<br />

soil collected at the scene but not soil from the defendant’s yard. Finally,<br />

a fiber found on an infant blanket recovered from the scene matched fibers<br />

from the defendant’s vehicle.<br />

All of the graves had been disturbed by carnivores to varying<br />

degrees, and at least some of the remains had been pulled from the ground<br />

in each. Those of the young children were affected the most, and no bones<br />

were still in situ for the youngest individual. The two-year-old was buried<br />

face-down and was undisturbed above the waist. The adult was intact<br />

below the waist but the torso, arms, and head had been pulled up out of the<br />

grave, and most bones of the arms and hands were scattered or missing.<br />

The adolescent was disturbed the least, with only her right leg having been<br />

pulled up from the grave. According to the police, buzzards had been<br />

chased from the scene upon discovery. All individuals displayed an<br />

advanced state of decomposition, although preservation was better for the<br />

adolescent because her grave was deeper and was better shaded than the<br />

others. Mummified skin and muscle was present on each, although no<br />

internal organ tissues remained. Both live and preserved insect evidence<br />

was collected, although no active maggot masses were present.<br />

<strong>Bio</strong>logical profiles generated during the laboratory analysis of the<br />

remains assisted in the identification of the victims. At least some<br />

carnivore damage was noted on bones from each individual and had to be<br />

distinguished from perimortem blunt force trauma, which was present on<br />

the two youngest individuals. Sharp force trauma was identified on all but<br />

the youngest of the victims. The adult displayed at least three knife stab<br />

wounds to the back of the thorax. The adolescent had a single plunging<br />

knife wound to the neck that split the first two cervical vertebrae. The<br />

older child had a single knife wound that completely separated the left<br />

temporal bone from the cranium, bisecting the external auditory meatus<br />

and severing the left sigmoid sinus. Unfortunately, the weapon that<br />

created these wounds was not recovered.<br />

Complex cases such as this underscore the degree to which forensic<br />

anthropologists can assist the medicolegal system in both field and laboratory<br />

situations. Clearly, thorough training in archeological techniques is<br />

critical for the collection of evidence from burial scenes and to the reconstruction<br />

of assailant activities in the immediate postmortem interval.<br />

Documentation of the original positions of the body and of all postmortem<br />

disturbances to the grave can significantly aid in the interpretation of<br />

skeletal trauma later in the lab. Knowledge of farming practices, botany,<br />

soil science, erosion, site formation processes, and carnivore behavior all<br />

contributed significantly to the successful mitigation of this scene and to<br />

the presentation of the resulting evidence in court.<br />

Forensic Archeology, Taphonomy, Sharp-Force Trauma<br />

580


H12 Homicide for the Holidays: Linkage<br />

Through Multidisciplinary Teamwork<br />

Frank P. Saul, PhD*, Regional Commander, USPHS DMORT 5, and<br />

Julie Mather Saul, BA, Lucas County Coroner’s Office, 2595 Arlington<br />

Avenue Toledo, OH; Sandra Anderson, Canine Solutions International,<br />

PO Box 50, Sanford, MI; Steven A. Symes, PhD, Forensic<br />

Anthropologist, Regional Forensic Center, 1060 Madison Avenue<br />

Memphis, TN; Cheryl L. Loewe, MD, Wayne County <strong>Medical</strong> Examiner’s<br />

Office, 1300 Warren, Detroit, MI; James R. Patrick, MD, Lucas County<br />

Coroner’s Office, 2595 Arlington Avenue Toledo, OH; and Steven K.<br />

Lorch, PhD, Michigan State Police Laboratory, 42145 West Seven Mile<br />

Road, Northville, MI<br />

After viewing this presentation participant should be better able to<br />

team specialist such as forensic anthropologists and dog handlers with<br />

traditional forensic investigators in order to link multiple complicated<br />

crime scenes.<br />

Just before Christmas 1999, an A&W employee discovered plastic<br />

bags that did not belong in his “grease only” dumpster in Dearborn, MI.<br />

The bags contained right and left upper and lower extremities that were<br />

then brought to the Wayne County <strong>Medical</strong> Examiner’s Office in Detroit,<br />

MI, where Dr. Cheryl Loewe determined that the remains were human.<br />

Dr. Loewe further stated “In consideration of the autopsy findings and<br />

circumstances surrounding death, the manner of death is a homicide.”<br />

Around New Year’s Day 2000, a headless, limbless torso was found<br />

in a field in Ottawa County, OH, and was brought to the Lucas County<br />

Coroner’s Office in Toledo, OH (60 miles south of Detroit) where Dr.<br />

James Patrick determined that the remains were that of a human female<br />

and the manner of death was “homicide - by undetermined violent means.”<br />

Inasmuch as these finds might be related, and Frank and Julie Saul<br />

are forensic anthropology consultants for both offices, the extremities<br />

were brought to Lucas County so that they could be directly compared.<br />

The Sauls created separate biographic profiles for the Michigan<br />

extremities and for the Ohio torso that were essentially the same<br />

(a “white” female in her mid to late 30s, somewhat overweight). A direct<br />

comparison of the “cut” surfaces of the humerii and femora of the<br />

extremities with the “stumps” of the equivalent bones of the torso revealed<br />

equivalent cortical bone thickness and shape, cross-sections, saw striae<br />

and hesitation kerfs.<br />

The Sauls prepared the cut surface specimens for submission to<br />

Dr. Steven Symes, a specialist in tool marks on bone (especially saw and<br />

other sharp force), to see if he could provide more information on the tool<br />

used for dismemberment as well as the dismemberment process itself.<br />

The Sauls also suggested that since Lt. Wayne Carroll (Plymouth)<br />

and D/Sgt. Paul Keiper (Dearborn) thought that the unknown victim<br />

seemed to fit the description of a missing Plymouth, MI, woman, they<br />

might consider using Sandra Anderson and her death investigation dog,<br />

Eagle, to find the primary crime scene (in the home from which she had<br />

gone missing).<br />

The authorities had no basis for a search warrant, as the remains were<br />

not yet positively identified, but were given permission by Dr. Azizul Islam,<br />

a chemist, to enter his (and the missing estranged wife’s) home. Dr. Islam<br />

also gave permission for Eagle and Sandra to enter providing the dog did<br />

no damage to the premises. Immediately upon entering, Eagle ran downstairs<br />

to the basement which was filled with strong bleach and paint fumes<br />

associated with patches of recently painted floor. Eagle methodically indicated<br />

that he had human death scent on a paint roller and tray as well as<br />

other locations now covered with paint. Eagle’s indication is a “down”<br />

followed by a “woof” with no disturbance of the “remains.” While Eagle<br />

was indicating the presence of human remains in the basement, Lt. Carroll<br />

was having an initially calm conversation with Dr. Islam upstairs. Lt.<br />

Carroll told us that Dr. Islam was very startled (“he jumped out of his<br />

chair”) by Eagle’s first indication and was increasingly disconcerted and<br />

sweating (in January) by subsequent indications from below.<br />

Eagle’s indications enabled the investigators to obtain a full search<br />

warrant, and technicians from Dr. Steven Lorch’s Michigan State Police<br />

Laboratory collected specimens (blood) that verified Eagle’s indications.<br />

Although the Sauls attempted to positively identify the victim using<br />

antemortem chest films, the films proved to be inadequate and supported<br />

only a strong presumptive identification. Positive DNA identification was<br />

made using blood samples from the victim’s children. The blood samples<br />

from the basement were also determined to be those of the victim.<br />

Dr. Islam was arrested and subsequently brought to trial in Wayne<br />

County Michigan in October 2000. The blood evidence together with<br />

strong circumstantial evidence resulted in his conviction.<br />

It is interesting to note that Dr. Islam’s defense attorneys kept police<br />

investigators on the stand for exceedingly long periods by questioning<br />

every bit of documentation of the chain of evidence. However, testimony<br />

concerning the linkage of the sets of remains by Dr. Frank Saul and the<br />

identification of the cutting tool as a small dovetail hand saw by Dr. Steven<br />

Symes caused the defense attorneys to attempt to rapidly stipulate findings<br />

that they had refused to stipulate for several months. The judge allowed<br />

the prosecutors to proceed as planned, and the Saul and Symes testimony<br />

demonstrated for the jury how “up close and personal” the dismemberment<br />

procedure must have been.<br />

It is said that other prisoners “woof” at Dr. Islam in prison as if to<br />

remind him of how he got there.<br />

Dismemberment, Death Investigation Dogs, Primary Crime Scene<br />

Detection<br />

H13 The Impact of Daubert on Testimony<br />

and Research in Forensic Anthropology<br />

Angi M. Christensen, MA*, and Murray K. Marks, PhD, University of<br />

Tennessee Department of Anthropology, 250 South Stadium Hall,<br />

Knoxville, TN<br />

The goals of this research project are to present the forensic anthropological<br />

community with a summary of important rulings regarding the<br />

admissibility of scientific testimony (particularly Daubert V. Merrell Dow<br />

Pharmaceuticals, Inc. 125 L. Ed. 2d 469 1993) and the impact of these<br />

rulings on anthropological testimony and research.<br />

The pursuits of forensic scientists differ from those of academic<br />

physical anthropologists in that, in addition to performing scientific<br />

research and acquiring knowledge as an end unto itself, the application of<br />

our science to legal matters must be considered. One important way that<br />

physical anthropological knowledge enters the legal system is through<br />

expert witness testimony. Although forensic anthropology is a relatively<br />

young discipline, testifying as an expert witness has become an important<br />

and increasingly accepted role. One must remain acutely aware of how<br />

methods and techniques are viewed by the legal system in order to ensure<br />

that they are admissible in a court of law.<br />

In 1923, the first ruling of admissibility was granted to an expert<br />

witness. The case was Frye v. United States, and the court rendered a<br />

2-pronged ruling stating that the information in the testimony must be<br />

(1) beyond the general knowledge of the jurors, and (2) based on scientific<br />

techniques that are generally accepted as reliable within the relevant<br />

scientific community. The “Frye Rule,” as this general acceptance test<br />

came to be known, became the dominant standard for determining admissibility<br />

of evidence in the majority of courts. However, over time and with<br />

the advancement of science, many courts began to modify or ignore the<br />

standard. Furthermore, new scientific evidence, though sound, often<br />

failed to survive the Frye standard.<br />

In 1975, Congress enacted the Federal Rules of Evidence, which was<br />

the first modern and uniform set of evidentiary rules for the trial of civil<br />

and criminal cases in federal courts. Rule 702 specifically addressed<br />

expert witness testimony, stating that “If scientific, technical or other<br />

specialized knowledge will assist the trier of fact to understand the<br />

581 * Presenting Author


evidence or to determine a fact in issue, a witness qualified as an expert by<br />

knowledge, skill, experience, training or education may testify thereto in<br />

the form of an opinion or otherwise.” This rule addresses two important<br />

issues: relevance (the information must facilitate an understanding of the<br />

facts) and reliability (the testimony must be based on a reliable foundation<br />

of knowledge). However, rather than clarifying the issue of admissibility,<br />

the Rules appeared to only raise more questions including: To what<br />

degree must the testimony assist the jury? Who is considered qualified as<br />

an expert? And, perhaps most important, what is considered scientific<br />

knowledge? Furthermore, the Rules did not address the Frye standard,<br />

leading to a mixed use of Frye, the Rules or some hybrid.<br />

In the case of Daubert v. Merrell Dow Pharmaceuticals, Inc., the<br />

Court was called upon to determine the standard for admitting expert<br />

scientific testimony in a federal trial. The Court ruled that what was<br />

needed was an assessment of reliability rather than general acceptance,<br />

and thus the Federal Rules of Evidence supplant Frye and provide the<br />

standard. They went further, providing an interpretation of Rule 702 in the<br />

form of four guidelines for judging the validity of scientific testimony<br />

placing a “gatekeeping” role on the Court who must assess whether the<br />

guidelines are met. These guidelines state that the content of the testimony<br />

must: (1) involve testing via the scientific method, (2) be subject to peer<br />

review, preferably in the form of publication in peer-reviewed literature,<br />

(3) provide known or potential error rates, and (4) be generally accepted<br />

within the relevant scientific community (essentially the Frye Rule). The<br />

Court indicated that the “rigid and absolute general acceptance” test<br />

should not be the standard in order that a reasonable minority opinion may<br />

be admitted into evidence, usually in the form of new and emerging<br />

research based on reliable, well-designed studies.<br />

Many state courts have adopted the Daubert standard, though some<br />

have rejected it, continuing to stick to the Frye Rule, or other state test.<br />

However, given that this is the current standard for federal courts, it<br />

provides the most appropriate guideline for research. Given the relative<br />

nascency of the field coupled with the rate of scientific progress in general,<br />

many techniques testified to by anthropologists may, indeed, fall under the<br />

category of “new and emerging information.” One must therefore be particularly<br />

cautious that studies are well-designed and adhere stringently to<br />

the scientific method. This is not to say that anthropological research has<br />

been or is lacking in scientific rigor, but forensic anthropology has<br />

frequently not met the Daubert test. Daubert standards should thus be<br />

consciously considered when designing and conducting research when the<br />

potential exists for the resulting technique to reach the ears of the federal<br />

court.<br />

Expert Witness Testimony, Daubert, Forensic Anthropology<br />

H14 Challenges of the Haitian Courtroom<br />

Karen Ramey Burns, PhD*, Department of Anthropology, University of<br />

Georgia, 105 Tamarack Drive, Athens, GA<br />

The goal of this presentation is to offer a view of unique solutions<br />

designed for presenting evidence in an unusual Haitian courtroom.<br />

Flexibility is requires on an expert witness.<br />

The Raboteau trial was the largest and most complicated in Haitian<br />

history. It was the first time military leadership had been tried for human<br />

rights violations and the first time that physical evidence was brought into<br />

serious consideration. The slide presentation gives an overview of the<br />

investigation leading to the trial and a closer look at the trial itself. The<br />

work was begun with the Haitian Truth Commission and completed with<br />

the aid of the United Nations.<br />

The trial was the culmination of events beginning on September 30,<br />

1991, when the Haitian army ousted Jean-Bertrand Aristide, Haiti’s first<br />

democratically-elected president. Tens of thousands of Haitians demonstrated<br />

for democracy and demanded the return of Aristide, but the<br />

military maintained a reign of terror. They quelled demonstrations and<br />

* Presenting Author<br />

kept the people suppressed by shooting into unarmed crowds and killing<br />

hundreds of people at a time. Families were not permitted to collect the<br />

dead, and most were discarded by truck loads in city dumps where they<br />

were scavenged by dogs, pigs, and other animals.<br />

The fishing village of Raboteau was undeterred. They were known<br />

for their resistance even during the Duvalier dictatorship. The military<br />

planned and carried out a major massacre on 22 April 1994. People fled<br />

to the sea to escape by boat, but the soldiers blocked the escape route and<br />

shot the people in the water. As before, the military prevented relatives<br />

from claiming the bodies; however, several were buried by paramilitaries<br />

in shallow graves on the beach. These bodies made the difference in the<br />

trial that followed six and a half years later.<br />

The individuals buried at the water’s edge were exhumed and<br />

described in 1995 by an international team of investigators documenting<br />

war crimes. Two more trips and several years were required to obtain<br />

sufficient evidence from informants. Two individuals were positively<br />

identified by means of mt-DNA. Location of wounds, description of<br />

clothing, and ropes used to bring the floating bodies to shore were<br />

consistent with verbal testimony. A key was found in the pocket of one<br />

victim. Metal oxide from the key stained both the clothing and the femur<br />

beneath. One of the disappeared was known to be using a seaside house<br />

for hiding, and the key fit the lock.<br />

The official proceedings took place in French, but the anthropological<br />

testimony was given in English so that it could be translated into<br />

Creole for the jury. It was impossible to display slides, so the bones of the<br />

deceased were brought into the courtroom. Gunshot wounds and other<br />

evidence were shown directly to the judge and jury. The door of the house<br />

was also displayed in the courtroom so that the key could be taken from<br />

the stained femur and clothing to the lock where it functioned normally.<br />

Of the twenty-two former soldiers and paramilitaries in custody,<br />

sixteen were convicted. Thirty-seven were convicted in absentia,<br />

including the leaders of Haiti’s 1991-94, military dictatorship and the<br />

heads of the paramilitary. The Haitian justice system is continuing to<br />

pursue those convicted in absentia.<br />

The Raboteau case demonstrates that justice can be accomplished in<br />

spite of enormous obstacles, and the techniques of the forensic sciences<br />

can be used to facilitate democratic transition.<br />

Skeletal Identification, Human Rights, Expert Witness<br />

H15 The Effective Forensic Investigation<br />

of Human Rights Violations: A Model<br />

for Training<br />

Jose Pablo Baraybar, MSc*, Carlos Bacigalupo, BA, Aldo F. Bolanos,<br />

Carmen C. Cardoza, BA, and Juan C. Tello, BA, Equipo Peruano de<br />

Antropologia Forense (EPAF), Calle 2, #369, Monterrico Norte, Lima,<br />

Peru, South America<br />

By attending this presentation, forensic scientists will understand<br />

how to proceed in the forensic investigation of violations against<br />

International Humanitarian Law and how to present the evidence to Court.<br />

This example also serves as a model for institutions engaged in training for<br />

the forensic science community.<br />

After the collapse of the last civilian dictatorship of the South<br />

American continent, Peru faces the investigation of human rights abuses<br />

committed over the last twenty years. Current calculations estimate that<br />

the number of dead after twenty years of counter-subversive activities may<br />

be close to 30,000 while the number of “missing” people is between 4,000<br />

– 6,000. Most of the remains of the “missing” are thought to have been<br />

disposed of into mass graves.<br />

The newly created Peruvian Forensic Anthropology Team (Equipo<br />

Peruano de Antropologia Forense-EPAF) organized a workshop for Public<br />

Prosecutors, the Office of the Ombudsman, and human rights activists<br />

(Lima, Peru, 18-21 February 2001). This paper discusses the<br />

582


achievements of such a unique activity as well as its potential in creating<br />

awareness of the importance of forensic archaeology and anthropology in<br />

the investigation of human rights violations. The objective of the<br />

workshop was to introduce to those who would be involved in the investigation<br />

of human rights violations the do’s and don’ts of forensic recovery<br />

of human remains (i.e., mass graves) and the interpretation of the evidence<br />

to be presented to Court as part of a case. The workshop consisted of three<br />

parts, namely the introduction to forensic sciences and its applications to<br />

human rights investigations, crime scene recovery and reconstruction, and<br />

the presentation of evidence to Court.<br />

To that purpose, five identical “mass graves” were prepared. Each<br />

contained two layers of “bodies” (life-size dummies) representing two<br />

interment events. The bottom layer had been “finished off” in the grave<br />

with a 9mm pistol while the second layer had been shot outside the grave<br />

with an AKM assault rifle. At the end of the theoretical and practical<br />

modules, all five groups were merged and divided into Defense and<br />

Prosecution teams. A mock-trial with three judges was prepared and each<br />

group accredited six delegates to the Prosecution and Defense<br />

respectively.<br />

The “defendant,” a former police lieutenant, was charged with the<br />

forceful abduction of 50 people from a party and the execution in the field<br />

where the bodies were found. The charges were listed as kidnapping,<br />

torture, extra-judicial executions, and illegal burial of human remains.<br />

Both Prosecution and Defense had each between 20 and 30 minutes to<br />

present their arguments.<br />

In forensic terms the Prosecution demonstrated that people disposed<br />

of into the grave were killed with two different kinds of weapons (pistol<br />

and rifle). The Prosecution also demonstrated that the graves were dug by<br />

hand, and that a ticket from the party found in one of the graves established<br />

the link between the place from where the victims were kidnapped<br />

and where they were killed. Interestingly, the finding of the ticket was<br />

completely fortuitous but helped to expand and reinforce the narrative of<br />

the case.<br />

The Prosecution failed on two points that were swiftly picked up by<br />

the Defense. First, the defendant was referred to as Captain instead of<br />

Lieutenant, and second, the element of time was an issue. This was due to<br />

the fact that two layers of people were disposed in the grave. Considering<br />

that the first layer of victims was “finished off” with pistol rounds implied<br />

that they were brought alive to the site and then killed in situ. However,<br />

the total number of people killed in this fashion was 25 and not 50 as<br />

claimed by the Prosecution. While both Prosecution and the Defense<br />

reconstructed the narrative of the events as accurate as the perpetrators<br />

(i.e., organizers of the workshop), the “defendant” was not charged with<br />

all counts of murder (i.e., 50 people), but only for 25 cases.<br />

The goals of the workshop were met, namely, the understanding of<br />

recovery and analysis of a crime scene which involves multiple human<br />

remains, it is a complex process that takes time, and a number of inferences<br />

can be drawn from the proper recording and recovery of those<br />

contexts.<br />

Human Rights, Mass Graves, Training<br />

H16 Confronting the Past in Guatemala:<br />

A Challenge for Forensic Science<br />

Adriana Gabriela Santos Bremme, BS*, Apartado postal 01901-1830<br />

Correo Central, Guatemala, Central America<br />

The goals of this research project are 1) to teach the forensic community<br />

how society must accept the responsibility for the victims of a civil<br />

war, by devolving to its governmental agencies appropriate means in the<br />

recovery of human remains, from individual and mass graves in the<br />

aftermath of war in the 80s in Guatemala; and 2) to emphasize the cultural<br />

characteristics that are involved in such a recovery.<br />

In 36 years of civil war in Guatemala more than 200,000 persons<br />

disappeared due to actions of both the Guatemalan Army and the<br />

Guatemalan “guerrillas.” After a Peace Treaty was signed in December<br />

1996, a period of solidarity was established and the search for historical<br />

truth began. It is also at this point where the forensic community was<br />

called upon to play an important role.<br />

This presentation will focus on the multidisciplinary work in<br />

Guatemala since 1996 performed by social anthropologists, forensic<br />

anthropologists, and forensic archaeologists in the recovery of evidence; it<br />

also will reference one of the most important key factors of success in<br />

accessing this underground world.<br />

Finding the hidden cemeteries was an arduous task. Once found, the<br />

forensic experts attempted to recover the skeletal remains (articulated,<br />

disarticulated, cremated). Their work involved the archaeological<br />

methodologies of excavation (with the appropriate photographic<br />

documentation); the handling of the evidence; the collecting of human<br />

bones, personal artifacts, bullets, lassos (one of the methods of torture); the<br />

identification of sex, age, stature, physical and pathological characteristics<br />

of the remains; the causes and manner of death; and, a reconstruction of<br />

perimortem and postmortem events.<br />

Acts of violence, whether directed at entire communities because of<br />

religious or ethnic implications, or toward women, children, and old<br />

persons, resulted in extra-judicial executions, death as results of persecution,<br />

massacres, sexual assaults, tortures, and so forth.<br />

In the process of anthropological forensic investigations in the early<br />

years of the 90s, fear decreased and, after 18-20 years living in a state of<br />

terror, survivors felt secure enough to begin to do the following: to<br />

recover their children, fathers, and mothers; to learn what happened to<br />

their loved ones; to ascertain that these family members did indeed die; to<br />

place blame on the culpable; and, to establish a precedent that this kind of<br />

horror never happen again.<br />

Moreover, it is to the forensic team where praise is given; their<br />

challenge was considerable as they set about in identifying human remains<br />

and giving to each a name.<br />

This investigation will present the process of excavation, recovery of<br />

physical evidence from graves, and the ritual that is involved in the final<br />

inhumation of the victims.<br />

Forensic Anthropology, Ritual, Social Anthropology<br />

H17 Human Remains Sold to the Highest<br />

Bidder! A Snapshot of the Buying and<br />

Selling of Human Skeletal Remains<br />

on eBay®, an Internet Auction Site<br />

Angie Kay Huxley, PhD*, Pima Community College West Campus,<br />

Division of Science and Technology, Department of <strong>Bio</strong>logy, PO Box<br />

1136, Pomona, CA<br />

The primary purposes of this paper is to inform the forensic<br />

community of the selling of human skeletal remains - old and new - on the<br />

eBay internet auction site, as well as to advise forensic scientists that this<br />

site does not, to the best of the author’s knowledge, utilize a forensic<br />

anthropology advisor to assess the pictures of skeletal materials posted for<br />

subsequent sale to the general public.<br />

This paper addresses several different types of skeletal materials—<br />

older recovered prehistoric, historic, commercial and perhaps even<br />

modern forensic materials—skeletal materials sold on eBay. The purpose<br />

of this paper is to inform forensic anthropologists and other forensic specialists<br />

about the buying and selling of human cranial and postcranial<br />

skeletal materials every day on eBay. While these materials may be old<br />

from prehistoric and historic contexts, it is also possible that some may be<br />

new, and of forensic significance. Moreover, it is important to state that it<br />

is unknown if eBay employs a forensic anthropology advisor, or if the sale<br />

583 * Presenting Author


of human skeletal materials is considered to be an issue. In all cases, if<br />

one desired to evaluate skeletal materials, one would have to do so from<br />

the pictures posted to the site. Direct examination would require purchase<br />

of the human skeletal materials, or their seizure by law enforcement<br />

personnel acting under warrants.<br />

As there are no rules on eBay governing the sale of human skeletal<br />

remains for instructional purposes, all materials are posted for instructional<br />

use only. According to eBay rule #42020018 regarding prohibited<br />

items, including human parts and remains, “Items that contain human hair<br />

(e.g., lockets) as well as skulls and skeletons that are used for educational<br />

purposes may be listed on eBay.” Moreover, the only rules or laws that<br />

eBay enforces are the following: “eBay does not permit the sale of Native<br />

American skulls, bones, or other Native American grave related items, as<br />

the sale of such items may violate federal law. For more information on<br />

eBay’s rules regarding the sale of such items and the Native American<br />

Grave Protection and Repatriation Act (NAGPRA)....” [1]<br />

As human skeletal materials of any kind—old or new—can sell at<br />

auction for 500 - 2000 U.S. Dollars or more, an enterprising person could<br />

advertise these remains as modern whether they were or not. For example,<br />

one particular skull was advertised with a bullet hole through the zygomatic<br />

bone (i.e., “> REAL Bone Human Skull w/ Bullet Hole


three centimeter defect over the temporal portion of the brain. The cause<br />

of death was certified as being due to craniocerebral injuries and the<br />

manner of death as homicide.<br />

Anthropology: Evidence of healed antemortem trauma was observed<br />

on the right side of the cranium, where a surgically repaired, roughly<br />

circular plaque of bone involved portions of the right temporal and parietal<br />

bones. This plaque measured approximately 55 mm anterio-posterior and<br />

53 mm superior-inferior, and exhibited healed margins around its circumference.<br />

Perimortem trauma was observed within this plaque of bone. At least<br />

one blunt force impact site resulted in three linear fractures. The margins<br />

of these fractures displayed no evidence for osteogenesis or healing.<br />

Cranial evidence of recent neurosurgical intervention included the<br />

following: four titanium Synthes plates and screws that attached the<br />

plaque of bone to the surrounding bone; newly drilled holes adjacent to the<br />

margins of the temporoparietal plaque for surgical sutures to tack down the<br />

dura; an arching, semi-circular craniotomy connecting two burr holes<br />

which were 96 mm apart; and two more Synthes plates that stabilized one<br />

of the fractures.<br />

<strong>Bio</strong>mechanical Analysis: The etiology of the perimortem blunt force<br />

traumata was a key element during the trial of the assailant. The victim had<br />

been witnessed getting punched with a fist. Therefore, a primary question<br />

in the case was whether the temporoparietal fractures could have been produced<br />

by a punch to the victim’s head as he lay against the asphalt surface.<br />

To test the hypothesis that the assailant could have produced the injury<br />

with his fist, biomechanical data were gathered from a number of sources<br />

and various assumptions were made concerning the potential blows to the<br />

victim’s right temporoparietal region. Data on the force required to<br />

fracture the skull via blunt impact was the starting point. It has been<br />

experimentally shown that a linear skull fracture in the temporoparietal<br />

region will occur at forces ranging from 2,110 - 5,200 N (mean = 3,630<br />

N). To determine the potential for fracture of the temporoparietal region<br />

from a single blow, experimental data were gathered on the range of velocities<br />

of various punches thrown by amateur boxers. Another important<br />

piece of data was an estimation of the mass of the arm and hand.<br />

In order to estimate the range of forces that could have been produced<br />

in a punch to the head, rigid-body mechanics were employed. During the<br />

impact event, the momentum (mass times velocity) of the upper extremity<br />

changes from a maximum at the peak velocity (near contact with the head)<br />

to zero at the end of the event. Using the concept of impulse-momentum,<br />

and assuming the force-time pulse from other experimental data, the peak<br />

contact force was estimated to be approximately 3,160 N for a “jab”, and<br />

4,930 N for a “hook.” These peak forces fell within the range required to<br />

fracture the temporoparietal region of a normal skull under blunt impact<br />

conditions.<br />

Individual Life History: Approximately 10 years before his death, the<br />

decedent had been in a motor vehicle collision resulting in the need for a<br />

craniotomy. As a result, the thickness of the right temporoparietal region<br />

was half that of the non-injured left temporoparietal. <strong>Bio</strong>mechanical<br />

studies report that a thinner than normal skull increases the potential for<br />

fracture. Therefore, it is believed that the decedent’s medical history<br />

further predisposed him to sustaining the fatal, depressed fracture.<br />

Conclusion: Severe blows to the head with blunt instruments are<br />

known to cause depressed skull fractures with associated fracture lacerations<br />

of the brain, cerebral contusions typically most severe beneath the<br />

location of the blow, and occasionally intracerebral hemorrhage, as seen in<br />

this case. Typically, blows resulting in these injuries are delivered with an<br />

object other than a fist. Although a depressed skull fracture is not “diagnostic<br />

of” a punch from a fist, it was determined in this case that the<br />

trauma was “consistent with” a punch from a fist. The biomechanical<br />

data, in combination with the individual’s life history, suggested that a<br />

single punch to the rigidly supported head of the victim could have<br />

generated the fractures observed in the right temporoparietal.<br />

Punch, Skull Fracture, <strong>Bio</strong>mechanics<br />

H20 Fracture Pattern Interpretation<br />

in the Skull: Differentiating Blunt<br />

Force From Ballistics Trauma<br />

Gina O. Hart, BA*, 933 Anchor Lake Road, Carriere, MS<br />

The goal of this research project is to illustrate an alternative<br />

technique of determining the mechanism of trauma to the skull by fracture<br />

patterning. The research discussed verifies that blunt force and ballistics<br />

trauma can be significantly differentiated by the beveling direction of<br />

concentric fractures.<br />

This presentation will demonstrate that the mechanism of trauma to<br />

the skull can be diagnosed by fracture patterns. Specifically, this study will<br />

examine the direction of beveling in concentric fractures to the skull in<br />

order to differentiate blunt force from ballistics trauma. An in depth<br />

analysis of tertiary (concentric) fractures will allow for an easier determination<br />

of the mechanism of trauma when the impact site is missing due to<br />

taphonomic or other processes. This research is important to osteological<br />

studies, because fracture patterns in blunt force and ballistics trauma have<br />

similar appearances. This presentation will provide essential information<br />

to the genre of fracture interpretation, in turn enabling researchers to<br />

differentiate between these two mechanisms of trauma with comfort.<br />

Concentric fractures to the skull form if the linear fractures do not<br />

provide enough relief from the kinetic energy produced by the striking<br />

object. These fractures are semicircular and form perpendicular to the<br />

radiating fractures, which gives the injury a spider web-like appearance.<br />

In some cases, concentric fractures may form in the absence of radiating<br />

fractures. These fractures are created before a projectile has an opportunity<br />

to exit, as in the case of gunshot wounds.<br />

Blunt force and ballistics trauma produce concentric fractures in<br />

dissimilar ways causing the bone to break or bevel in variant directions. In<br />

concentric fractures produced by blunt force trauma, tensile forces<br />

increase on the outer table while compressive forces increase on the inner<br />

table. Since bone is weaker in tension than compression, the bone will<br />

fracture on the outer table first and travel to the inner table, creating an<br />

internally beveled appearance.<br />

In concentric fractures produced by gunshot wounds, intercranial<br />

pressure is greatly increased. The increased pressure causes the inner<br />

surface of the skull to be under increased tension while the outer surface<br />

is under increased compression. The plates of bone formed by the radiating<br />

fractures are then elevated, causing the fractures to begin on the inner<br />

surface and travel outward, thus producing externally beveled concentric<br />

fractures in both entrance and exit wounds.<br />

For this presentation, skulls exhibiting blunt force and ballistics<br />

trauma were examined for concentric fracture patterns. The concentric<br />

fractures were morphologically analyzed to determine the direction of<br />

beveling. In total, 211 injuries were inspected. External beveling included<br />

any cases where more of the outer table than the inner of the fracture<br />

surface was present, while internal beveling was judged as the opposite of<br />

this. Undetermined beveling included cases that were ambiguous or did<br />

not exhibit any trace of beveling. Fractures exhibiting internal beveling<br />

were classified as blunt force trauma and those which were externally<br />

beveled were classified as ballistics trauma. Furthermore, measurements<br />

to both the inner and outer fracture surfaces were made in order to<br />

determine if direction of beveling may be metrically determined.<br />

The data set used included specimens from the following institutions:<br />

(1) the Regional <strong>Forensics</strong> Center in Memphis, Tennessee; (2) the<br />

National Museum of Health and Medicine (NMHM), which is affiliated<br />

with the Armed Forces Institute of Pathology in Washington, DC; and<br />

(3) the Smithsonian Institution’s National Museum of Natural History in<br />

Washington, DC. The collection housed at the Regional Forensic Center<br />

consists of evidence retained from autopsies in the Memphis area and<br />

surrounding counties. The three collections used from the NMHM consist<br />

of the Milton Helpern, MD, New York City <strong>Medical</strong> Examiner Collection<br />

(1940-1970), the Indian Wars collection which includes the U.S. Army<br />

585 * Presenting Author


soldiers at U.S. forts during the Indian Wars (1866-1900), and the Civil<br />

War collection (1862-1865). Additionally, several collections from the<br />

Smithsonian were used, including the Terry, Peruvian and Native<br />

American collections.<br />

Chi-square tests were run on SPSS 9.0 to determine if there was a<br />

relationship between the direction of beveling and the mechanism of<br />

trauma. Then, contingency coefficient tests were run on the same statistical<br />

package to determine the strengths of this relationship. All tests indicated<br />

a highly significant relationship between the two factors.<br />

Discriminant analysis was performed on the measurements, which also<br />

displayed a statistical significance.<br />

The research conducted in this study illustrates that mechanism of<br />

trauma may be determined in the absence of impact site. Further research<br />

is needed to fully explore the complete importance of fracture interpretation.<br />

The complete relevance and details of these findings will be<br />

discussed in depth in the presentation.<br />

Ballistics Trauma, Blunt Force Trauma, Concentric Fractures<br />

H21 Determining Direction of Fire:<br />

An Anthropological Analysis of<br />

Gunshot Wounds to the Chest<br />

Natalie R. Langley, MA*, 357 South Curson Avenue, Los Angeles, CA<br />

The goal of this research project is to present the forensic community<br />

with information that can be obtain by an anthropological evaluation of<br />

gunshot wounds to the chest. Specifically, this presentation will show that<br />

gunshot wounds to the chest frequently leave distinctive marker on the<br />

bones that indicate the direction of fire.<br />

Traditionally, the primary task of forensic anthropologists has been to<br />

establish a biological profile of a decedent. However, increasingly they<br />

are being called upon to provide expert opinions about skeletal trauma. If<br />

remains are severely decomposed or skeletonized, soft tissue analysis is<br />

difficult, if not impossible. In such cases the forensic anthropologist’s<br />

expertise in human osteology is a valuable investigative tool.<br />

Nonetheless, even in cases where soft tissue is available for diagnosis, the<br />

anthropologist’s evaluation of skeletal trauma can provide additional,<br />

useful information to the medical examiner’s report. Consequently,<br />

forensic anthropologists should possess a thorough understanding of<br />

trauma in all areas of the skeleton.<br />

The primary objectives of this study were to: (1) determine if there<br />

are distinct and/or patterned fractures associated with gunshot wounds to<br />

the thoracic region, and (2) ascertain whether or not the direction of fire<br />

can be established from skeletal evidence alone. In order to answer these<br />

questions, the researcher used only those cases that were clearly documented<br />

by the medical examiner. Fifty-three cases with gunshot wounds<br />

to the thorax were selected for analysis from the evidentiary archives at the<br />

Regional Forensic Center in Memphis, TN. Additionally, one case from<br />

the Louisiana State University forensic anthropology laboratory was<br />

examined, thus making a total of 54 cases. Some of these individuals had<br />

received only a single gunshot wound to the chest, whereas others had<br />

multiple gunshot wounds. In all, 85 gunshot wounds were analyzed in this<br />

study, and 130 bones had bullet injuries: five scapulae, six clavicles, 11<br />

sterna, 10 thoracic vertebrae, one lumbar vertebra and 97 ribs. Because<br />

the ribs were the most frequently injured bones, this analysis concentrates<br />

on the characteristics of gunshot wounds in the ribs.<br />

Of the 85 gunshot wounds in this study, 38 involved only one bone,<br />

29 involved two bones, five involved three bones, one injured six bones,<br />

one injured 13 bones, and 11 did not strike any bone. A .308 caliber rifle<br />

inflicted the injury involving 13 bones. The weapon that injured six bones<br />

was not reported in the autopsy protocol. The bilateral distribution of the<br />

gunshot wounds was almost even, with 52 on the right side of the body<br />

(54%) and 45 on the left side (46%). The sixth rib and the eighth rib were<br />

* Presenting Author<br />

hit more frequently than any other ribs. The twelfth rib, on the other hand,<br />

was not injured in any of the cases in this study, and the eleventh rib was<br />

hit only three times. The researcher also documented the vertical distribution<br />

of the gunshot wounds. In order to do so, the thoracic cage was<br />

divided into three equal sections as follows: the upper section consisted of<br />

ribs 1-4, the middle section included ribs 5-8, and the lower section was<br />

comprised of ribs 9-12. The middle section received the most damage<br />

(42% of all injuries), followed by the upper section (36%). Finally, the<br />

lower section suffered the least damage (22%).<br />

Microscopic examination of the entrance and exit defects on each rib<br />

revealed several reoccurring features that indicate the direction of fire.<br />

The entrance defect exhibited one or more of the following characteristics:<br />

a typically round defect with a sharply defined rim, radiating fracture<br />

lines, depressed fractures of the bone surrounding the defect, and/or bone<br />

splinters displaced in the direction of fire. The exit defect was usually<br />

larger than the corresponding entrance defect. Other exit-associated characteristics<br />

included radiating fracture lines, trabecular bone exposed<br />

around the defect (i.e., beveling), and out-bent bone fragments. Note that<br />

these characteristics are similar in many respects to those associated with<br />

the flat bones of the cranial vault. The best way to determine which of<br />

these characteristics is present at the site of trauma is to examine the defect<br />

closely under an operating scope. In some cases, reconstruction of the rib<br />

with Superglue® or Duco® cement facilitates more complete inspection.<br />

In summary, this study has shown that gunshot wounds to the chest<br />

can leave evidence on the bones that indicate the direction of fire. The<br />

bones that are hit most frequently in gunshot wounds to the thoracic region<br />

are the ribs. Accordingly, this analysis focused on the characteristics associated<br />

with entrance and exit defects on ribs. This researcher observed<br />

several characteristics that could aid the forensic anthropologist in evaluating<br />

gunshot trauma in ribs, including depressed fractures, displacement<br />

of bone fragments in the direction of the bullet’s path, and beveling.<br />

Although the forensic anthropologist can ascertain the direction that a<br />

bullet traveled through a given rib, (s) he should use caution and should<br />

not extend her interpretations past their limit of validity. A number of<br />

factors can affect a projectile’s behavior in the body (e.g., velocity of the<br />

bullet at the point of entrance, the distance between muzzle and target, the<br />

position of the body at the time of impact, bullet tumbling, etc.). These<br />

variables plus, in some cases, the absence of soft tissue evidence, make<br />

gunshot wound evaluation especially challenging for forensic anthropologists.<br />

Even when soft tissue is present, the forensic anthropologist should<br />

be called in to inspect bone trauma carefully. By combining their<br />

expertise, forensic anthropologists and forensic pathologists can provide a<br />

more complete picture of the events surrounding a victim’s death.<br />

Forensic Anthropology, Gunshot Wounds, Thorax<br />

H22 Burning Observations of the Head:<br />

An Experimental Model<br />

Elayne J. Pope, MA*, University of Tennessee, 252 South Stadium Hall,<br />

Knoxville, TN; Steven A. Symes, PhD, and O’Brian C. Smith, MD,<br />

Regional Forensic Center, 1060 Madison Avenue, Memphis, TN<br />

After attending this presentation participant will understand:<br />

1) normal destruction to the fleshed cranial vault in a fire, and<br />

2) progressive stages of thermal destruction to both the soft and hard<br />

tissues of the head.<br />

Traditionally, the concept that an intact skull ‘explodes’ into<br />

miniature-sized bone pieces when subjected to heated gases has served as<br />

a standard anthropological theorem. Compromise of the structure by<br />

either ballistic or blunt force trauma is believed to react differently than an<br />

intact vault. Fractures or openings provide areas of stress relief for the<br />

venting of moisture, gases, and internal pressures of the brain. However,<br />

it is claimed to explode and project into numerous fragmentary pieces due<br />

to the release of these pressures if the vault remains a closed system (no<br />

586


trauma). This assumption may discourage further investigation of trauma<br />

if one assumes that the skull fragments indicate the absence of preexisting<br />

trauma.<br />

In an effort to observe normal stages of skull destruction from fire,<br />

different theories were tested through a series of actualistic studies that<br />

used combinations of human and non-human crania in controlled fire<br />

environments. Special measures were taken to accurately simulate and<br />

document some of the variables typically encountered in structural or<br />

vehicular fires. Controlled simulations of fires made it possible to observe<br />

and document progression of thermal destruction to soft and hard tissues<br />

of the head to understand the thermal processes that create fragmentation<br />

and eventual destruction of the skull.<br />

In order to accurately reproduce fire victim situations, researchers<br />

utilized fully fleshed, unembalmed human cadaver heads formerly preserved<br />

at –10 degrees Fahrenheit. Soft tissues were thoroughly thawed<br />

and placed in a variety of thermal events controlling for time, temperature,<br />

intensity, duration, materials, and other variables encountered in fires<br />

(accelerants, wood, fibers, water, natural gas). Progressive stages of<br />

thermal destruction to soft and hard tissues were documented with 35mm<br />

slides, digital, video, and written observations at timed intervals.<br />

Variations of temperature and materials influenced the time and rate<br />

of burning for each experiment. Independent of rate and intensity of each<br />

fire, thermal destruction followed a consistent pattern based on protective<br />

and insulating properties of soft tissue (skin, fat and muscle) on the face<br />

and head. Duration of experiments ranged from 10 minutes to 60 minutes<br />

in order to express the full range of thermal destruction that could be<br />

expected in a burn victim.<br />

A continuum of change occurs as follows:<br />

• Skin becomes glossy with moisture, skin and facial features<br />

become tight, skin begins to darken, lips retract, tongue forms a plug<br />

in the lips.<br />

• Exposed anterior teeth begin to darken, skin quickly becomes<br />

blackened, skin splits in multiple areas, face begins to bloat and<br />

bubble grease, skin of the forehead splits and retracts, exposed bone<br />

darkens, and then begins to blacken from charring.<br />

• Charring of bone progresses over exposed areas, heat fractures<br />

become visible in charred bone, skin continues to burn away on the<br />

face, charred areas become calcined (white, gray), outer table begins<br />

to fragment and burn away to expose diploe, inner table and brain in<br />

some cases.<br />

• The brain experiences a variety of reactions from heat that included<br />

shrinking, expansion and fungates, or oozes from preexisting<br />

openings.<br />

Firings ranged from incomplete to complete incineration, with an<br />

emphasis on the window of time between early charring (black) and<br />

calcination (white). Organic degradation from heat makes bone brittle and<br />

eventually shrinks, typically producing heat-induced fractures and<br />

deformation. Of particular interest were heat-induced fractures and<br />

delamination. This widespread application of heat over a large area of<br />

exposed bone creates separation and destruction of the outer table,<br />

exposing diploe, inner table, and brain.<br />

In all of the firings, areas of the vault simply fragmented and delaminated<br />

from gradual destruction of heat with pieces dropping directly<br />

below their point of origin or pulled away by muscle. Introduction of<br />

water, handling, and removal of burned bone increased fragmentation of<br />

this brittle structure and may account for some of the shattered appearance<br />

when removed from the fire scene context. However, abundant heat<br />

fractures should not dissuade the investigator from making assumptions<br />

about the presence or absence of trauma.<br />

The goal of this research is to signal caution to those who investigate<br />

fire-related deaths and create an awareness of normal burning patterns in<br />

order to recognize deviations in these patterns as may be caused by malicious<br />

intentions to destroy a body or by preexisting trauma. Belief in the<br />

exploding skull concept is an invitation to error. If fragments of the skull<br />

are distant from the head, then another process must explain the finding.<br />

Either trauma or some other event within or following the fire caused<br />

fragments to be displaced. Observation and documentation of these<br />

studies will be presented to illustrate progressive stages and variations of<br />

thermal destruction to the head.<br />

Fire Investigation, Burned Bone, Cremation<br />

H23 Age Estimation of the Immature<br />

Individuals Starting From the Ratio<br />

Epiphysis Width/Diaphysis Width of<br />

the Bones of the Hand and the Wrist<br />

Norbert Telmon, MD*, Service de Medecine Legale, CHU Toulouse,<br />

1 av J. Poulhes, Toulouse Cedex, France; Loic Lalys, Pascal<br />

Adalian,and Marie D. Piercecchi, Universite de la Mediterranee,<br />

Faculte de Medecine, Unite d’ Anthropologie, UMR 6578, 27 Bd J.<br />

Moulin, Marseille Cedex 05, France; Olivier Dutour, Universite<br />

de la Mediterranee, Faculte de Medecine, Unite d’ Anthropologie,<br />

CHU Toulouse, 1 av J. Poulhes, Marseille Cedex 05, France; Daniel<br />

Rouge, MD, Service de Medecine Legale, CHU Toulouse, 1 av J.<br />

Poulhes, Toulouse Cedex, France; and Georges Leonetti, MD, PhD,<br />

Universite de la Mediterranee, Faculte de Medecine, Unite d’<br />

Anthropologie, UMR 6578, 27 Bd J. Moulin, Marseille Cedex 05,<br />

France<br />

The goal of this presentation is to introduce a new method for age<br />

estimation.<br />

The authors introduce a method of age estimation of immature<br />

individuals starting from the measurement of the ratio: epiphysis width/<br />

shaft width of metacarpals, ulna and radius. This approach was developed<br />

on a study of x-rays of the hand of individuals of known sex and age<br />

between 1 and 18 years. The widths of the epiphyses and the diaphyses<br />

were measured for each osseous element. These measurements are<br />

possible from the appearance of the cores of ossification of the epiphyses<br />

of the metacarpals and of the radius towards 1-2 years up to complete<br />

fusion epiphysis-diaphysis of radius around 18 years.<br />

The results highlight a correlation between the ratio epiphysis width<br />

/ shaft width and age. This ratio increases with age. The r2 of each<br />

measurement are between 0.65 and 0.85. The correlations with age are<br />

more significant of men. The use of all measurements makes it possible to<br />

obtain a coefficient of correlation with a r2 = 0.89 in male sampling. This<br />

method appears interesting notably in forensic medicine for age estimation<br />

of the young individuals whose date of birth is dubious.<br />

Estimation, Metacarpals, Radius<br />

H24 Contribution of Numeric Measurements<br />

to Fetal Sex Determination<br />

Pascal Adalian*, and Marie D. Piercecchi, Universite de la<br />

Mediterranee, Faculte de Medecine, Service de Medecine Legale, 27 Bd<br />

J. Moulin, Marseille Cedex 05, France; Norbert Telmon, MD, Service de<br />

Medecine Legale, CHU Toulouse, 1 av J. Poulhes, Toulouse Cedex,<br />

France; and Loic Lalys, Yann Ardagna, Michael Signoli, Olivier Dutour,<br />

and Georges Leonetti, MD, PhD, Universite de la Mediterranee, Faculte<br />

de Medecine, Unite d’ Anthropologie, 27 Bd J. Moulin, Marseille Cedex<br />

05, France<br />

Sex estimation is one of the most frequently encountered issues in<br />

forensic medicine. While in the case of adults, this determination is<br />

essentially based on iliac bones and provides a rather reliable classification.<br />

There are fewer studies conducted on fetuses and the results are<br />

often contradictory.<br />

587 * Presenting Author


Therefore, the authors examined 83 pairs of fetal iliac bones in the<br />

Hungarian collection of Fazekas and Kosa and searched for metric criteria<br />

that can best be applied for determining sexual dimorphism. During this<br />

research, methods were tested for fetal iliac bones and others used particularly<br />

in the case of adults.<br />

For this reason, the authors set up and validated a protocol of taking<br />

photographs, as well as a measurement technique developed for numeric<br />

pictures with the help of two software programs: Adobe Photoshop 6®<br />

and SigmaScan Pro 5® (SPSS).<br />

The results showed an excellent reliability and an excellent correlation<br />

between real size and numeric measurement. Therefore, more than<br />

providing very reliable measurements that can be applied on previously<br />

published sex determination formulae, this methodology will allow the<br />

investigation of new measurements, such as area and perimeter.<br />

Fetus, Sex, Ilium<br />

H25 Modern Oral Piercings: The Application<br />

of Their Dental Wear Patterns for<br />

Forensic Anthropology<br />

Kristen M. Hartnett, BA*, and Denise To, MA, Department of<br />

Anthropology, Arizona State University, PO Box 872402, Tempe, AZ<br />

The goals of this research project are: 1) identify the variety of oral<br />

piercing among modern pop sub-culture, 2) illustrate patterns of dental<br />

wear and/or chipping associated with these oral piercings, and 3) provide<br />

a starting point for future research to develop standards to be used in<br />

forensic identification.<br />

The growing trend of body ornamentation in modern-day pop culture<br />

calls for research on the effects of these decorations on the hard tissues of<br />

the human body. In this study, the effects of modern oral piercings on the<br />

dentition are evaluated in a context that could be utilized in the future to<br />

assist in identification.<br />

In forensic anthropology, the teeth are of great importance in identification<br />

for several reasons. First, the enamel that forms the outermost<br />

layer of the tooth crown is the hardest substance in the body. The durability<br />

of the dentition owes to the microscopic structure of enamel. The<br />

heavily mineralized, non-cellular enamel is deposited in layers of prisms<br />

by cells called ameloblasts in a process known as amelogenesis. Thus, the<br />

combination of the structure of enamel and its mineral components often<br />

makes teeth the best preserved part of a decomposed or destroyed body.<br />

Another important characteristic of enamel tissue is that it does not regenerate<br />

like other tissues in the body. Enamel is laid down when the crowns<br />

of the teeth are formed and will not be replaced once worn off or broken<br />

off. Thus, any wear patterns left from idiosyncratic behaviors are<br />

permanent.<br />

In addition, the dentition is important in positive identification of<br />

individuals because antemortem dental records are more common than<br />

skeletal radiographic records. Thus, a great deal of attention is given to<br />

the dentition in forensic cases. Peculiar wear patterns from bruxism, occupational<br />

activity, overbites, underbites, or even wear from oral ornamentation<br />

may be noted in these records and could be useful in leading to a<br />

positive identification.<br />

The authors using interviews and visual examinations of living<br />

subjects conducted research focusing on modification of the oral cavity<br />

through piercings. Morphological modifications of teeth, (e.g., inlays,<br />

sharpening, cross-hatching, grooving, ablation, etc.), and surgical modification<br />

of soft tissue (e.g., bifurcation and lengthening of the tongue, etc.)<br />

were not included.<br />

The variety of modern oral piercings can be grouped into two types:<br />

fixed and non-fixed. Fixed oral piercings have a position in the oral cavity<br />

* Presenting Author<br />

where its relation to the dentition is fairly constant. More common fixed<br />

piercings include scrumpers and lowbrets. The teeth affected by fixed<br />

piercings are usually limited to those in immediate contact with the<br />

piercing. A scrumper, also known as a smiley, is a piercing that passes<br />

through the central webbing between the upper lip and the alveolar soft<br />

tissue just above the upper incisors. A scrumper through the lower lip<br />

webbing is called a frowny. Jewelry commonly used for scrumpers are<br />

rings with a small ball centered between the incisors. Dental wear associated<br />

with scrumpers is grooving of the labial surface of the upper central<br />

incisors caused by the ball. The grooving is circular, and in cross-section,<br />

is U-shaped. Another common fixed piercing is the lowbret, a studded<br />

jewel or barbell placed from the internal aspect of the oral cavity through<br />

the exterior soft tissue above the mental eminence. Its low position makes<br />

this piercing relatively immobile and usually results in abrasion of the<br />

lower incisors.<br />

More common than fixed piercings are non-fixed piercings; these<br />

have a position in the oral cavity where the relation to the dentition is<br />

movable as a result of the flexibility of the soft tissue in which the piercing<br />

is located. The teeth affected by non-fixed piercings are not limited to<br />

those immediately in contact with the piercing and are affected by the individual’s<br />

penchant for moving the piercing around the mouth. The most<br />

common non-fixed piercing is a barbell stud through the center of the<br />

tongue. Less common tongue piercings are located anteriorly/superiorly<br />

and horizontally. Ring piercings through the tongue are usually placed at<br />

the anterior tip. Given the wide range of motion of the tongue within the<br />

mouth, dental abrasion and chipping caused by these piercings can effect<br />

almost every tooth in the arcade, including the molars. The lingual and<br />

occlusal surfaces, however, tend to be the most commonly affected. The<br />

second most popular non-fixed piercing is a lip ring, a single-hole piercing<br />

through the upper and lower lip. Though the dentition immediately<br />

internal to the piercing is most susceptible to abrasion and chipping, the<br />

flexibility of the lip results in wear to both upper and lower teeth, as well<br />

as to those within a two or three tooth-distance from the piercing. Finally,<br />

a well-known prehistoric piercing popular today is the labret. Similar to<br />

the lowbret, a labret is placed just below the lower lip, although it is higher<br />

and therefore more movable than the lowbret. Variations to its vertical<br />

and/or horizontal position are common. Given that ornamentation of the<br />

labret is external, the internal aspect is usually a simple stud or fishtail<br />

hook. This piercing results in general abrasion of the labial surface of the<br />

lower anterior teeth.<br />

Types and severity of dental wear are described in greater detail in the<br />

poster presentation, as well as other types of oral piercings. The following<br />

are the more influential variables that can affect the type and severity of<br />

dental wear: 1) the length of time since the initial piercing, 2) the type of<br />

jewelry (e.g., barbells, barbell studs, safety pins, paper clips, etc.), 3) the<br />

complexity of the piercing (e.g., a single piece of jewelry connecting two<br />

or more piercings, or a single piercing with several exit holes), 4) the size<br />

of the piercing and jewelry, 5) the degree to which the individual moves<br />

the jewelry within his/her mouth, 6) the material of the jewelry (organic<br />

vs. forged metal), 7) sudden physical pressure that may lead to extreme<br />

dental trauma such as a blow to the chin, and 8) rejection of the piercing,<br />

which may lead to shifting or even expulsion of the jewelry.<br />

Directions for further research on this subject include a longitudinal<br />

study that would follow individuals through time just prior to the piercing<br />

event. This would provide a timeline for the development and degree of<br />

wear observed on the dentition over time with different types of piercings<br />

as well as further understanding of the variables that effect severity and<br />

types of wear.<br />

In modern popular culture, body decorations such as oral piercings<br />

have broken out from an underground sub-cultural practice to become a<br />

more commonplace fad resulting in a greater number of people with possible<br />

physical alteration to their teeth. In turn, this creates an increased<br />

potential for the use of dental modification produced by oral piercings in<br />

forensic anthropology.<br />

Forensic Anthropology, Dental Wear, Oral Piercing<br />

588


H26 Robber’s Personal Identification by<br />

Morphometric Analysis of Recorded Images<br />

Francesco Introna, MD, University of Bari, Italy, Istituto di Medicina<br />

legale, Policlinico., Bari, Italy<br />

The goal of this research project is to have participant follow a<br />

guideline for a correct personal identification of living person by the<br />

analysis of recorded images.<br />

The author describes an objective technique for personal identification<br />

of living persons using morphometric analysis of images recorded<br />

both on files and on videotape of bank or store robbers.<br />

The complete technique involves three steps: The PREPARATORY<br />

PHASE is necessary to study and to improve the robbery recorded images.<br />

The images showing a sharp location of the thief in the robbery place are<br />

selected and objectively improved. Then images showing a close up of the<br />

face of the robber are researched and, if available, are objectively treated<br />

and enlarged.<br />

The SUPERIMPOSITION PHASE is the second step. It must be<br />

performed in the place where the robbery took place. The suspect must be<br />

cooperative. In this phase the suspect must be located exactly in the same<br />

place and with the same posture of the robber in the compared image. To<br />

carry out this second phase it is necessary to have complete access of the<br />

location where the robbery occurred and to use the same TV cameras that<br />

filmed the robbery. The TV camera must be placed exactly in the same<br />

position present as at the time of the robbery. Then the suspect can be<br />

filmed in the same location, position, and attitude of the robber in the frame<br />

analyzed. Thanks to a continuous mixing video, the image of the robber<br />

and the on time image of the suspect can be mixed, superimposed, and<br />

recorded. The suspect must be moved as a dummy to let him assume the<br />

same spatial attitude of the robber in comparison. The goal is to prove at<br />

first the somatic correspondence between the robber and the suspect. Then,<br />

if positive, the superimposition between the robber and the suspect facial<br />

images (if available) can be performed. Only in this way will it be possible<br />

to document an objective correspondence or a definite discrepancy. Limits<br />

and peculiarities of this phase are then described in detail.<br />

The METRIC IMAGE ANALYSIS is the third step. It can be performed<br />

on the best output of the superimposition phase. Quantitative<br />

comparison can be done between the image of the robber’s face and the<br />

image of the suspect’s face. To perform this step it is necessary to clearly<br />

recognize at least five reference points on the robber’s face using a suitable<br />

calculation program. The same points are marked on the image of the<br />

suspect’s face obtained at the end of the best superimposition. The<br />

absolute and relative distances between the marked points, the perimeters<br />

and the areas of the triangles obtained by connecting the points and the<br />

compactness indices are automatically calculated on both images in<br />

analyses. So two series of five sets of numerical parameters can be<br />

obtained (absolute distance, relative distance, areas and perimeters of<br />

triangles, indices of compactness from both the faces of the robber and the<br />

suspect). The five sets are then compared to calculate the correlation<br />

coefficients. If the values of all the four correlation coefficients is > 0.99<br />

a personal identification can be formulated on a mathematical basis<br />

between the suspect and the robber. When the numerical comparison<br />

phase cannot be carried out (i.e. when the robber’s face is not so sharp to<br />

allow to mark the reference points), no sure and objective personal identification<br />

results can be lay out. A superimposition correctly conducted is<br />

essential for the following metric analyses of compared images.<br />

The technique described is objective, repeatable, and not destructive.<br />

It is a necessary technical skill; no improvisation can be allowed.<br />

The results obtained by the straight application of the described<br />

technique are considered as a proof by Italian Courts.<br />

The author will report the results of 140 investigations on bank<br />

robberies carried out between 1991 and 2001.<br />

Bank or Store Robbers Recorded Images, Forensic Image Analysis,<br />

Personal Identification<br />

H27 Comparison of CT and MR<br />

Imaging Techniques to Traditional<br />

Radiographs in Human Identification<br />

S. Taylor Slemmer, MA*, and Murray K. Marks, PhD, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium Hall,<br />

Knoxville, TN<br />

The participant will have a better understanding the protocol and<br />

utility of three non-invasive imaging techniques: traditional radiography<br />

(x-ray), computed tomography (CT), and magnetic resonance imaging<br />

(MR). The goal is to demonstrate that the application of these techniques<br />

in establishing positive identification may vary when the investigator is<br />

presented with isolated bony elements compared to a situation in which<br />

the remains are fully fleshed or even partially decomposed.<br />

Over time, there has been an increased likelihood that forensic investigators<br />

will encounter traditional radiographic images (x-ray) as well as<br />

images from more advanced imaging techniques, i.e., CT and MR, in the<br />

antemortem record. Therefore, it is imperative that the forensic investigator<br />

has an understanding of these image types, is able to recognize their<br />

antemortem and postmortem signatures, and can incorporate these images<br />

in their investigation. In a previous work by Slemmer and Marks (2000),<br />

a three-way comparison of imaging techniques was performed on isolated<br />

skeletal elements to identify inter-imaging techniques for estimating positive<br />

identification. A comparison of the antemortem and postmortem<br />

record generated from each imaging technique (x-ray, CT, and MR)<br />

revealed that of the three methods, x-ray provided the most accurate and<br />

simple means of estimating positive identification. Thus, postmortem<br />

imaging should not be more advanced than antemortem imaging when<br />

determining identification from isolated bony cranial and postcranial<br />

elements.<br />

However, the forensic anthropologist is oftentimes presented with a<br />

fully fleshed or partially decomposed individual for identification. This<br />

situation may permit the investigator to utilize imaging techniques that<br />

better reveal soft tissue landmarks rather than bony or dental landmarks.<br />

In conjunction with the efforts of the medical examiner and law<br />

enforcement, the forensic anthropologist may find that in such cases, CT<br />

or MR operates with greater efficacy than traditional radiographs.<br />

This study examines five fully fleshed and five partially decomposed<br />

individuals donated to the Forensic Anthropology Center at the<br />

Department of Anthropology of the University of Tennessee. An antemortem<br />

record for each individual was created at the University of<br />

Tennessee <strong>Medical</strong> Center in Knoxville using MR, CT, and x-ray images<br />

of the frontal sinus, dentition (root development and restorations), the knee<br />

(trabecular bone patterning), and at the location of any orthopedic therapies.<br />

A comparative framework of both soft tissue and bony structures<br />

was generated to correlate signatures across techniques. Next, the donated<br />

individuals were transported to the Anthropological Research Facility of<br />

the Department of Anthropology at the University of Tennessee for<br />

decomposition. Following this, a postmortem record was created for each<br />

individual by taking x-ray, CT, and MR images in the anatomical regions<br />

previously selected. An effort was then made to correlate bony structures<br />

across image types. Finally, imaging signatures in the antemortem and the<br />

postmortem records were compared.<br />

Despite the limitations of traditional radiography, this image type<br />

again proved most useful in establishing identification from dental<br />

material and trabecular bone patterning when comparing the antemortem<br />

and postmortem records. This observation corroborates findings discussed<br />

in the clinical and academic literature. As a series of x-rays at specific<br />

intervals, computed tomographic images may be easily interchanged<br />

with traditional radiographic images in some cases. However, artefact<br />

glare from dental restorations and other therapies in CT images can significantly<br />

compromise image quality. Due to its very nature, MR may<br />

have the most limitations in a forensic setting. Magnetic resonance<br />

589 * Presenting Author


imaging provides excellent detail in the areas where bone and soft tissue<br />

interface, but it is not well suited for use with skeletonized remains. With<br />

the increased commonality of non-invasive imaging techniques in the<br />

antemortem record, and their proven utility in a forensic investigation, a<br />

familiarity with both simple and more advanced imaging methods is<br />

essential for the forensic investigator.<br />

Computed Tomography, Magnetic Resonance Imaging, Human<br />

Identification<br />

H28 A Comparison of Facial Approximation<br />

Techniques, Part 2<br />

Norman J. Sauer, PhD*, Department of Anthropology, Michigan State<br />

University, 354 Baker Hall, East Lansing, MI<br />

This study is an attempt to compare the different techniques for<br />

approximations, including drawings and computer-generated faces in two<br />

dimensions and models in three dimensions. These approximations<br />

include various techniques of artists from countries other than the United<br />

States.<br />

After most methods for attributing personal identity to a set of<br />

remains have been exhausted, the most common final attempt is to manufacture<br />

an approximation of the face either in two- or in three dimensions.<br />

These approximations are then broadcast to the public over television and<br />

newspapers in an attempt to trigger recognition and clues to identity.<br />

Identical plastic skull replicas of an identified individual were sent to<br />

volunteer artists, or were handed to them at the 2001 Academy meetings.<br />

The standard forensic anthropological parameters of the individual represented<br />

by the replica (age range, sex, ancestry) have been supplied to the<br />

artists, though the antemortem photographs will be withheld until the<br />

Academy meetings. The artist has been asked to use the technique most<br />

familiar to him or her. The approximations will be displayed at this year’s<br />

meetings, and general attendees will be asked to complete a short<br />

questionnaire concerning the techniques used.<br />

Facial Approximation, Human Identification, Facial Reconstruction<br />

H29 A Comparative Study of<br />

Mammalian Cortical Bone<br />

Harald Horni, BA*, and Robert R. Paine, PhD, 112436, Texas Tech<br />

University Department of Sociology, and Social Work, Box 41012,<br />

Lubbock, TX<br />

The objective of this research is to present any potential statistical<br />

differences in the histological features of mammalian cortical bone.<br />

The poster presentation will document the research done by Harald<br />

Horni for his Master’s Thesis in Anthropology. This ongoing yearly,<br />

research is an attempt to increase the available methods that can be used<br />

in identifying human remains. This study pertains to the forensic cases in<br />

which there is so little skeletal evidence (i.e., potential human remains)<br />

that identification of the remains cannot readily be done in the field.<br />

Mammals found in the surrounding area of Lubbock, Texas were<br />

used in this study and include armadillos, cats (domesticated), coyotes,<br />

deer, goats, and pigs. In addition, human samples were also collected.<br />

Samples from all the major long bones, the humerus, the ulna, the radius,<br />

the femur, and the tibia, were used. These bones were used as they have<br />

a substantial amount of cortical bone cross-sectionally. The fibula was<br />

excluded. Teeth were also excluded, as their gross and microscopic morphologies<br />

are quite distinct from that of all other skeletal material. Though<br />

teeth last longer when exposed to the elements, the cortical bone was<br />

utilized as the research material as both human and non-human cortical<br />

bone is very similar at the gross morphological level. Thus, the distinction<br />

between human and non-human bone can be made.<br />

* Presenting Author<br />

These bones were cut into thin sections, using a standard bone cutting<br />

saw, and ground on a rotating polishing/grinding table. When the desired<br />

thickness of the thin-slides was achieved the samples were mounted onto<br />

microscopic slides for microscopic viewing. Under the microscope,<br />

histological features of the bone were studied. These features include the<br />

Haversian canals, osteons (primary and secondary), and the osteocytes. In<br />

an attempt to create a life-like scenario, as remains found in the field will<br />

be of unknown origin, sample areas were collected randomly from crosssectional<br />

areas from all the long bones. These randomly selected areas,<br />

such as osteon densities, Haversian canal densities, and the osteocyte<br />

densities in all the respective mammalian samples were used in the data<br />

collection. Additionally, in cases where plexiform bone (which appears<br />

like stacked layers) was found, it was noted in which species it appeared,<br />

and a new random location was selected. This was done in order to assure<br />

human-like conditions throughout the samples, as plexiform bone does not<br />

appear in human bone.<br />

The data collected from each species were then calculated, averaged,<br />

and standardized. The results of the non-human animal species were<br />

comprised into one average (± the standard deviation), as it was not the<br />

purpose of this study to calculate species-specific values from the nonhuman<br />

samples. Once this average was calculated, the non-human<br />

mammalian species were compared to the averages from the human data.<br />

The method of statistical differentiation can then be applied to the identification<br />

process using only limited amounts of bone. Hence, when in<br />

doubt about whether or not bones that are found are human, and, in<br />

association with a forensic/homicide case (as well as in archaeological<br />

scenarios), the bones can potentially be told apart using histological<br />

features. The histomorphological technique mentioned can be used to<br />

determine the difference between a potential legal investigation and that of<br />

a natural deposition of animal bone.<br />

Bone Histomorphology, Human/Non-Human Identification,<br />

Human Remains<br />

H30 Ankylosing Spondylitis in<br />

Three Forensic Cases<br />

John J. Schultz, MS, Heather Walsh-Haney, MA*, Suzanne Coyle, MA,<br />

and Anthony B. Falsetti, PhD, C.A. Pound Human ID Laboratory,<br />

University of Florida, PO Box 112545, Gainesville, FL<br />

The goals of this research project are to present the osteological<br />

marker of ankylosing spondylitis and the degree of variability noted in<br />

three forensic cases from the C.A. Pound Human Identification Laboratory.<br />

Ankylosing spondylitis (AS) is the most clinically studied disease of<br />

all spondyloarthropathies (Ascari et al., 2001; Yacyshyn & Cohen 1999).<br />

Genetic studies have revealed that nearly 300,000 Americans exhibit AS<br />

with the HLA-B27 antigen being present in approximately 10% of healthy<br />

white Americans and nearly 3% of healthy black Americans (Laval et al.,<br />

2001; Ascari et al., 2001). Clinical studies have shown that males develop<br />

the disease two to three times more often than females and that males typically<br />

exhibit the most severe forms of the disease (Ascari et al., 2001;<br />

Yacyshyn & Cohen 1999). Ankylosing spondylitis usually begins during<br />

adolescence or young adulthood and rarely begins after 40 years of age<br />

(Yacyshyn & Cohen 1999).<br />

Ankylosing spondylitis is characterized by inflammation and calcification<br />

of the axial skeleton and sacroiliac (SI) joints (Yacyshyn & Cohen<br />

1999; Aufderheide & Rodriguez-Martin 1998). Hallmarks of this disease<br />

are unilateral or bilateral fusion of the SI joint (Ascari et al., 2001;<br />

Yacyshyn & Cohen 1999), calcification of the longitudinal ligaments, and<br />

bridging vertebral syndesmophytes (Aufderheide & Rodriguez-Martin<br />

1998; Ortner & Putschar 1985). The latter two characteristics produce<br />

“squaring off” or “flaring” of the vertebral bodies, which give the spine the<br />

appearance of bamboo (Ortner & Putschar 1985). Spinal mobility<br />

becomes severely limited, being most evident as a decrease in extension<br />

and lateral flexion, loss of lumbar lordosis, thoracic kyphosis, and atlanto-<br />

590


axial subluxation (Yacyshyn & Cohen 1999). Secondary manifestations<br />

of AS include diarthrodial fusion of rib heads to their adjacent vertebra,<br />

calcification of the costosternal junctions and roughening of the iliac<br />

crests, ischial tuberosities, and spinous processes (Yacyshyn & Cohen<br />

1999).<br />

From July 2000 through May 2001, three of ninety-six skeletal cases<br />

examined at the C.A. Pound Human Identification Laboratory exhibited<br />

either calcification of the axial skeleton, fusion of the SI joint(s), and/ or<br />

diarthrodial fusion of the ribs. All three cases were of elderly males, two<br />

being of European ancestry and the other being of African ancestry. The<br />

skeletal pathologies noted on these three individuals are characteristics<br />

consistent with the clinical and paleopathological markers of AS.<br />

The first case was of an elderly black male who exhibited bilateral<br />

sacroiliac fusion and yet presented the least severe form of ligament<br />

calcification. Although no vertebral or rib ankylosing was noted,<br />

extensive calcification of the apophyseal joints of the lumbar vertebra and<br />

many of the other vertebral bodies was present. There was an absence of<br />

rib head to vertebra fusion. Secondary AS characteristics included marked<br />

roughening of the iliac crests and ischial tuberosities.<br />

The second case was of an elderly white male who displayed the<br />

prototypical “bamboo-like” spine as a result of the nearly complete fusion<br />

of his spinal column. Extreme vertebral kyphosis was also present as was<br />

unilateral fusion of the SI joint, pronounced calcification of the thoracic<br />

supraspinous ligament and diarthrodial fusion of the left 12th rib.<br />

Interestingly, complete calcification of the transverse ligament for C1 led<br />

to ankylosing of this vertebra to the axis. Additional AS characteristics<br />

included associated changes to the ischial tuberosities and iliac crests.<br />

Proliferative calcification of the costal cartilage with fusion of two true<br />

ribs was also observed. Pronounced arthritic lipping, macroporosity, and<br />

deep grooves were present on the zygapophyses of L5 and S1. Such<br />

arthritic changes were possibly due to the AS induced spinal fusion.<br />

The third case was also of an elderly white male. In this instance,<br />

however, the spine exhibited profuse vertebral fusion and “bamboo-like”<br />

spine. Marked kyphosis, scoliosis, and calcification of the thoracic<br />

segment’s supraspinous ligament were also observed. Extensive rib head<br />

to vertebra fusion (right ribs 6-10 and left ribs 8-10) and calcification of<br />

the costosternal cartilage were present. Of note was the absence of ankylosing<br />

spondylitis’ hallmark characteristic of sacroiliac joint fusion.<br />

Secondary AS characteristics included roughened ischial tuberosities and<br />

iliac crests. In addition, the odontoid process was fractured and did not<br />

unite to C2. The trauma to this bone may have been due to AS.<br />

These three cases have presented a unique opportunity to observe the<br />

various skeletal manifestations of AS in a modern forensic sample.<br />

Ankylosing Spondylitis, Bamboo Spine, Sacroiliac Fusion<br />

H31 Forensic Anthropology in Portugal:<br />

The State of Knowledge<br />

Eugénia Cunha, PhD*,Universidade de Coimbra, Departmento de<br />

Anthopologia, Universidade de Coimbra, Portugal and Maria Cristina<br />

de Mendonça, PhD, Departmento de Anthropologia, Universidade de<br />

Coimbra/Instituto Nacional de Medicina Legal, Coimbra, Portugal<br />

The goals of this research project are to present to the forensic<br />

community the state of knowledge of forensic anthropology in Portugal.<br />

With the recently creation of the National Institute of Legal Medicine<br />

in Portugal, forensic anthropology is witnessing an important new development.<br />

In the present paper we present how their service is organized,<br />

highlighting the most relevant cases analyzed. We are creating a forensic<br />

laboratory, and adopting standard protocols for the analysis of every set of<br />

non-identified human remains. The examples provided, namely three<br />

cases of positive identification, show the importance of the interdisciplinary<br />

work is in the field of forensic anthropology.<br />

Forensic Anthropology, Positive Identification, Portugal<br />

H32 Thousands Dead: The Use of Stature<br />

in Individual Identification<br />

Jose Pablo Baraybar*, MSc, ICTY, Churchillplein 1, Den Haag<br />

Netherlands, and Erin H. Kimmerle, MA, University of Tennessee,<br />

Knoxville, TN<br />

Upon completion of this presentation, the participant will understand<br />

the problems underlying the usefulness of stature in human identification<br />

in mass fatalities, such as those originated in cases of violations to<br />

International Humanitarian Law.<br />

The role of forensic anthropology in the investigation of violations<br />

against International Humanitarian Law has become increasingly<br />

prevalent and important since the International Criminal Tribunals were<br />

established. Since 1996 the International Criminal Tribunal for Rwanda<br />

and that for the former Yugoslavia have examined thousands of cases representing<br />

approximately 5000 people from Rwanda, Bosnia and<br />

Herzegovina, Croatia and Kosovo. The role of anthropologists in these<br />

missions have ranged from the recovery to the analysis of human remains,<br />

and, in some cases, to the collection of antemortem (AM) information to<br />

be compared with AM and postmortem (PM) records. Some of the parameters<br />

usually compared include basic elements of the biological profile<br />

of the victim, such as age, sex and stature. The value of stature as a cornerstone<br />

of the biological profile of an individual rests on the assumption<br />

that there is a record against which an estimation of that stature can be<br />

compared. It has been shown, however, that the records generally do not<br />

accurately reflect the real stature of an individual (Snow and Williams<br />

1971, Willey and Falsetti 1991). Moreover, if the self-perception of<br />

stature is potentially biased, how unbiased is the perception of an individual’s<br />

stature by others? In contexts outside the US, in the so-called<br />

Third World, for example, where all violations against International<br />

Humanitarian Law take place, the existence of documents of the deceased<br />

is more than often scarce and if present, serious doubts regarding the<br />

recorded stature should be cast. In these situations, the AM information is<br />

collected from survivors or relatives of the victims. For example, the<br />

relative being interviewed may say, “My father was as tall as you are.” In<br />

that case, the interviewer will make an estimate of the stature being<br />

referred to and write it down as such. The remains of the victims that we<br />

examine may carry ID papers; however, it is not certain whether those<br />

papers belong to that individual, the information in those papers varies and<br />

may or may not include stature, and most often victims of Human Rights<br />

violations have their identity papers taken from them.<br />

The sample consists of cases from throughout Kosovo who were<br />

killed during the conflict between 1998-1999 (n= 83). Data was collected<br />

by international organizations from relatives or friends of the victims. The<br />

stature of each individual was calculated from the length of the femur and<br />

using three different stature formulae, including two that have been<br />

derived from population samples in the Balkans and one from an<br />

American Caucasoid sample. The mean stature derived from each<br />

formula was compared against the reported stature using one-sample<br />

t-tests. All three anthropological stature estimates differ significantly from<br />

the reported antemortem stature (p =


outlined first (i.e., discriminating the very tall from the very short) and<br />

from where individual identification can start using other parameters that<br />

relate more directly to witness statements (i.e., old trauma, clothing, etc.).<br />

This would mean first creating group identification (i.e., younger aged<br />

males, between such-and-such age and height) and later individual identification.<br />

The views expressed herein are those of the authors above and<br />

do not necessarily reflect the views of the ICTY or the UN in general.<br />

Stature, Mass Graves, Identification<br />

H33 The Analysis of Ancestry From Skeletal<br />

Remains and the Treatment of the Race<br />

Concept by British Forensic Scientists<br />

Robert F. Pastor, PhD*, The Calvin Wells Laboratory, and Jacinta N.<br />

Daines, BSc, Department of Archaeological Sciences, University of<br />

Bradford, West Yorkshire BD7 1DP, Bradford, United Kingdom<br />

This presentation reviews the treatment of the concept of human<br />

races, the analysis of morphological variation, and the use of principle<br />

division of racial variation and ancestral affiliation among British forensic<br />

scientists. Data concerning these issues were obtained from responses to<br />

questions on a questionnaire survey administered during early 2001. The<br />

discussion will also provide insight on the evolving role of forensic<br />

anthropology in medical-legal casework in the United Kingdom.<br />

The concept of race as a taxonomic reflection of human biological<br />

variation has been abandoned by many anthropologists, including but not<br />

exclusively by anthropologists involved in teaching or research in human<br />

identification of forensic remains. Critical discussion of the validity of the<br />

race concept has been focal to American forensic anthropology, while it<br />

has been relatively ignored by British and Continental forensic scientists.<br />

This undoubtedly stems at least in part from the Eugenics movement in<br />

Europe in the early twentieth century, and as a result of the holocaust and<br />

other atrocities committed during the Second World War. However, since<br />

the 1950s the United Kingdom has experienced an influx of immigrants<br />

from former colonies of the British Empire, especially from the Indian<br />

subcontinent and Africa, and more recent immigration from the Caribbean<br />

and the former Yugoslavia. This has lead to an increased use of racial and<br />

ethnic identifiers by the British Foreign and Home Office, Police and the<br />

public in general. As Kennedy (1995) and Sauer (1992) have pointed out,<br />

scientists involved in forensic identification are required to use biological<br />

characteristics of unidentified skeletal remains to derive a race term or designation<br />

that was culturally applied by friends, relatives and others to a<br />

missing person in life.<br />

The current study consisted of a questionnaire survey completed by<br />

the University of Bradford Department of Archaeological Sciences in early<br />

2001. The study consisted of a series of 16 direct and interpretative questions<br />

in a yes/no and multiple-choice format. The questionnaire was sent<br />

via e-mail and mailed to 50 University lecturers and professors in the<br />

United Kingdom (England, Scotland and Wales) and to a small number of<br />

privately employed osteologists and biological anthropologists. University<br />

lecturers were targeted primarily in departments offering biological anthropology<br />

or osteology courses. A small number of forensic pathologists and<br />

odontologists were also included in the survey. Responses were received<br />

from 20 of the 50 scientists surveyed, yielding a 40% return rate. While<br />

this is not ideal, it is an acceptable rate of response for mail questionnaires<br />

among specialist populations (Moser and Kalton 1997).<br />

Results of the study were mixed since not all respondents chose to<br />

answer every question on the questionnaire. For example, the third<br />

question “Do races exist (e.g., as a reflection of the biological variation in<br />

human populations)?” was answered by less than half (45%) of respondents.<br />

To this question, approximately 77.8% of the scientists said yes,<br />

while 22.2% said no. On the other hand, 85% of respondents chose to<br />

answer question 8a “Do you think racial/ancestral assessment of uniden-<br />

* Presenting Author<br />

tified skeletal remains is a scientifically useful concept?” To this question,<br />

approximately 53% of scientists said yes, approximately 29% said no,<br />

while 18% of the scientists remained neutral. The second part of this<br />

question “Do you feel it (race/ancestry assessment) is necessary as part of<br />

your analysis of unidentified skeletal remains?” was answered affirmatively<br />

by approximately 57% of the scientists, negatively by 11%, while<br />

32% answered neutral. A majority (58%) of the scientists stated that they<br />

had undertaken forensic casework for the police or other medical-legal<br />

agencies, while 42% had no experience. Of the 45% of scientists who<br />

answered question 5a, approximately 55.6% stated that they relied principally<br />

on the cranial skeleton for racial assessment in forensic casework,<br />

while approximately 44.4% of scientists relied on both the cranial and<br />

postcranial skeleton. However, only 25% of the scientists chose to answer<br />

question 5b on the specific features or traits of cranial remains most relied<br />

upon. For question 5c “In your analysis of racial variation and/or ancestral<br />

affiliation, do you emphasize three or more principle divisions?” approximately<br />

44.4% of scientists use the three principle divisions Mongoloid<br />

(southeast Asian), Caucasoid (White), Negroid (African/Black) in forensic<br />

casework, while 55.6% used more than three racial subdivisions.<br />

In answer to Question 6a “In your teaching do you emphasize the<br />

concept of biological variation by race and/or ancestry?” approximately<br />

65% of scientists answered yes, while approximately 35.3% answered no.<br />

Of those scientists who teach the race concept, approximately 28.6%<br />

emphasize the three principle racial divisions while 71.4% emphasize a<br />

greater number of subdivisions. However, only a minority of respondents<br />

(35%) chose to answer this question. Finally, question 7 “Do you think<br />

the use of principle racial and/or ancestral divisions is beneficial to the<br />

analysis of skeletal remains (e.g., for the determination of a biological<br />

profile)?” was answered affirmatively by approximately 58.8% of<br />

scientists, while approximately 11.8% answered no and 29.4% answered<br />

neutral.<br />

These results are preliminary because of the relatively small sample<br />

of scientists who participated in the survey. However, the results suggest<br />

that, of the respondents to the questionnaire, the majority of British<br />

scientists teach some form of the race concept within the field of human<br />

biological variation. A smaller majority of these scientists assess the race<br />

or ancestry of unidentified skeletal remains in their forensic casework,<br />

although even fewer of these scientists consider the concept of human<br />

races to be scientifically valid. This study may prove useful as a baseline<br />

for a more detailed future questionnaire survey, with increased sample size<br />

and response rate, and for comparison with the larger American forensic<br />

anthropology community.<br />

Forensic Anthropology, Race Concept, Questionnaire Survey<br />

H34 Differences in the Os Coxa<br />

Between Blacks and Whites<br />

Jennifer A. Synstelien, MA*, Department of Anthropology, 250 South<br />

Stadium Hall, University of Tennessee, Knoxville, TN<br />

Attending this presentation the participant will: 1) achieve a greater<br />

appreciation for racial variation in the size and shape of the os coxae<br />

between blacks and whites through the use of measurements previously<br />

applied in studies of sexual dimorphism, and 2) explore logistic regression<br />

modeling as an alternative approach to traditional discriminant function<br />

analysis in predicting group membership.<br />

Literature review of the anatomical and sports and exercise science<br />

journals presented evidence of musculature size and/or distribution differences<br />

between blacks and whites. Based on a specific research finding of<br />

increased cross-sectional area of the psoas major muscle in blacks when<br />

compared to whites and an understanding of the relationship between the<br />

pelvic musculature and the os coxa, a hypothesis was presented that the os<br />

coxae of black individuals will display greater depth and/or distance<br />

592


measurements along select points of the anterior border and iliac fossa<br />

while taking into account racial size differences in the os coxa.<br />

The psoas major muscle originates from the transverse processes,<br />

bodies, and intervertebral discs of the twelfth thoracic through the fifth<br />

lumbar vertebra. The iliacus muscle originates from the iliac fossa and is<br />

closely related functionally to the psoas major muscle. The fibers of the<br />

iliacus and psoas major muscles join together to pass under the inguinal<br />

ligament and over the anterior border of the os coxa to become the<br />

iliopsoas muscle, and inserting by way of a common tendon onto the lesser<br />

trochanter of the femur.<br />

To test the hypothesis, the os coxae of 41 modern American black<br />

males and 61 white males from five separate donated and forensic collections—the<br />

William M. Bass Donated and Forensic Skeletal Collections at<br />

the University of Tennessee, Knoxville; and the skeletal collections<br />

housed at the Hamilton County Office of the <strong>Medical</strong> Examiner in<br />

Chattanooga, Tennessee, the FACES Laboratory at Louisiana State<br />

University, Baton Rouge, and the Office of the Chief <strong>Medical</strong> Examiner in<br />

Chapel Hill, North Carolina—were analyzed for racial differences.<br />

Nineteen length and depth measurements were taken with a coordinate<br />

caliper or osteometric board and eight indices computed. The nineteen<br />

measurements were subjected to discriminant function analysis and the<br />

total canonical function evaluated for overall os coxa shape differences.<br />

The twenty-seven variables were then subjected to t-tests on the means<br />

and variable selection techniques to obtain an optimal model for group<br />

separation. Two separate methods of functional modeling were employed<br />

for classification—discriminant function analysis and logistic<br />

regression—and the cross-validation classification of the two functions<br />

were compared to see which form of modeling produced the greatest<br />

accuracy.<br />

The statistical results of this study reflect both size and shape differences<br />

in the os coxa between blacks and whites. Overall increases of size<br />

and robusticity of the white pelvis, compared to the black, have been<br />

reported by several researchers. This was verified by the statistically<br />

significant size increases in white males for fourteen of the nineteen<br />

variables. Variables that showed nonsignificant increases were the<br />

distance from, and the depth of the notch between, the anterior inferior<br />

iliac spine to the iliopectineal eminence (p=0.7085 and p=0.9119, respectively),<br />

and the depth of the notch between the anterior superior iliac spine<br />

and the iliopectineal eminence (p=0.4673). A nonsignificant decrease was<br />

found in the distance between the anterior inferior iliac spine and the<br />

iliopubic eminence (p=0.9383) and a small, however nonsignificant,<br />

decrease was found in the depth of the notch between the anterior superior<br />

and inferior iliac spines (p=0.0803). With the exception of the depth of the<br />

notch between the anterior superior and inferior iliac spines, these<br />

measurements all lie in the central portion of the os coxa where the<br />

iliopsoas muscle passes over the anterior pelvic brim.<br />

Both stepwise discriminant analysis and logistic regression using<br />

stepwise selection selected the same four variables for the construction of<br />

an optimal model for group prediction. These variables emphasized the<br />

greater distances in whites between the anterior superior and inferior iliac<br />

spines and between the anterior superior iliac spine and point ilioauricular—a<br />

point on the ilium where the iliac tuberosity, fossa and auricular<br />

surface meet—the greater depth of the iliac fossa as projected between the<br />

anterior superior iliac spine and ilioauricular points, and the lesser depth<br />

of the notch between the anterior superior and inferior iliac spines when<br />

compared to blacks.<br />

Evaluation of the four-variable model for prediction accuracy using<br />

the discriminant function resulted in correct classification of 75.6% of<br />

black males and 90.2% of white. In comparison, a logistic regression<br />

model resulted in correct classification of 73.2% of black males and 93.4%<br />

of white.<br />

Conclusions: 1) Although the os coxa of white males was significantly<br />

greater in almost all dimensions measured, an increase in overall<br />

size did not result in a corresponding size increase in the central portion of<br />

the os coxa. 2) Based on only four measurements on the os coxa and using<br />

cross-validation, discriminant function analysis classified 82.9% of males<br />

correctly and logistic regression 83.3%. These accuracy rates have only<br />

been equaled by measurements of the cranium or femur, or surpassed by<br />

using a combination of postcranial elements.<br />

Discriminant Analysis, Logistic Regression, Os Coxa<br />

H35 An Assessment of Craniofacial Nonmetric<br />

Traits Currently Used in the Forensic<br />

Determination of Ancestry<br />

Joseph T. Hefner, BS*, Mercyhurst College, Forensic Anthropology<br />

Laboratory, 202 Parade Street, Erie, PA<br />

The primary goal of the current study is to provide more precise<br />

anatomical description and distribution of five craniofacial nommetric<br />

traits commonly used in ancestry determination.<br />

The determination of ancestry in the human skeleton – almost exclusively,<br />

the cranium – relies upon the combination of the assessment of the<br />

configuration of a number of unique morphological features (nonmetric<br />

traits) and the metric analysis (especially multivariate analyses) of the<br />

shape of the skull. Although nonmetric traits have proven rather effective<br />

in predicting the ancestry of an individual skull, success often relies almost<br />

exclusively on the experience of the observer rather than on objective<br />

comparisons to rigorous, well-conceived descriptions. Considering these<br />

deficiencies in the existing body of data, 17 cranial nonmetric traits were<br />

carefully documented for 762 individuals from 25 populations throughout<br />

the world (Caucasoid, n = 185; Mongoloid, n = 397; Negroid, n = 180)<br />

curated at the Smithsonian Institution and the Mercyhurst Archaeological<br />

Institute of Forensic Anthropology/Osteology Laboratory. In this<br />

presentation, discussion will focus on the morphological variations and<br />

distributions of five of the better known cranial traits. The traits include<br />

the inferior nasal aperture morphology, nasal bone external surface<br />

contour, nasal aperture width, interorbital breadth, and post-bregmatic<br />

depression. Each of these traits has been used extensively in ancestry<br />

determination, however, there has been only minimal effort to: 1) describe<br />

the morphological variants (i.e., character states) of each of these characters;<br />

2) analyze the distribution of these character states within each<br />

defined population: and; 3) provide correlation quotients for multiple<br />

traits. The range in variation of these characters is often not considered in<br />

the analysis of ancestry. This is inappropriate due to the fact that nonmetric<br />

traits are the result of polygenic control, and, therefore, consist of<br />

high inter– and intra– population variability.<br />

The analysis consisted of a number of stages. First, each major trait<br />

was examined and common variants (character states) were determined.<br />

Next, new anatomical terms were developed, where necessary, for<br />

character states not previously described. Each major trait was scored on<br />

a 5-level scale which allowed for the scoring of a range of intermediate<br />

morphologies. In this manner, each trait was scored progressively (i.e.,<br />

inferior nasal aperture morphology was scored: gutter = 0; incipient gutter<br />

= 1; straight edged, or blurred = 2; partial sill = 3; and sill = 4). Finally, in<br />

an attempt to quantify this morphological variability, standard distribution<br />

frequencies for each of the character states were calculated for the populations.<br />

In addition, tetrachoric correlation computations for all traits were<br />

used to determine population inter– and intra–variability.<br />

Results indicate that the more common nonmetric cranial traits<br />

historically used in the determination of ancestry do correlate well with the<br />

three main ancestral groups. The nasal bone external surface contour of<br />

the Mongoloid sample (n = 397), for example, revealed somewhat<br />

expected results. Generally thought to possess nonmetric traits intermediate<br />

to Caucasoid and Negroid, nasals of the Mongoloid sample scored<br />

highest in the following variants: intermediate quonset [1] (27.4%), tented<br />

[2] (23.3%), or vaulted [3] (34.1%), where vaulted refers to a steep sided,<br />

flat nasal bone structure intermediate to tenting and steepled. Initial<br />

593 * Presenting Author


esults also indicate high correlations for most traits between ancestry<br />

groups. For example, the tetrachoric correlation of inferior nasal aperture<br />

configuration and nasal bone external surface contour in Caucasoids and<br />

Negroids is statistically significant (r = 0.727; p


Conclusions: A correlation between endocranial sutures closure and<br />

age was found for some age ranges. Nevertheless, this study has shown<br />

that age estimation by cranial sutures closure is not always reliable and<br />

that it must be combined to other methods for a better approach of this<br />

evaluation.<br />

Forensic Anthropology, Age Estimation, Endocranial Suture Closure<br />

H38 Accuracy of Age at Death Estimates Derived<br />

From Human Cementum Increments<br />

Carrie Anne Berryman, MA*, Department of Anthropology, Vanderbilt<br />

University, Nashville, TN; and Jerome C. Rose, PhD, University of<br />

Arkansas, Department of Anthropology, Fayetteville, AR<br />

Upon completion of this presentation, attendees will understand how<br />

to present the results of research into the use of human cementum increments<br />

for age at death estimates and offer direction for future research.<br />

Physical Anthropologists have greatly improved the accuracy of age<br />

at death estimates throughout the last century; however, adult age estimation<br />

remains to be one of the most problematic aspects of skeletal<br />

analysis. In the search for improved techniques, many researchers within<br />

the past 20 years have obtained promising results counting the incremental<br />

lines found in human dental cementum, a method borrowed from wildlife<br />

biology. The application of this technique to human remains is controversial<br />

due to conflicting results by various researchers, as well as the<br />

unknown etiology of cementum increments. Unfortunately, studies have<br />

utilized very different methodologies limited by the cost and availability<br />

of equipment, making comparison of results difficult. In addition to the<br />

technical difficulties, no study, to date, has tested the technique on a large<br />

well-controlled sample of forensic origin (the target population). Past<br />

samples have generally been clinical in nature.<br />

In order to assess the accuracy and feasibility of using cementum<br />

annulations in the routine forensic setting, a forensic sample of 52 first<br />

mandibular premolars, from known white males ranging in age from 18-<br />

62 years (mean age 36 years), was tested using what were purported to be<br />

the most reliable methods available. Demineralized, 5µm longitudinal<br />

sections, stained with cresyl fast violet were analyzed with a Zeiss<br />

standard trinocular light microscope at x400 magnification. Specimens<br />

were analyzed in four different groups, progressively weeding out those<br />

with conditions that have previously been shown to affect the growth of<br />

cementum (such as periodontal disease and caries) as well as those<br />

exposed to heat or chemicals which might affect their affinity for the stain.<br />

Results were poor relative to many previous studies. Correlation coefficients<br />

ranged from only r=0.45 to r=0.72 for the groups analyzed,<br />

progressively improving as those with previously mentioned conditions<br />

were removed from the sample. Although p-values significant at the<br />

P>0.05 level for three of the four groups analyzed support the presence of<br />

a relationship between number of incremental cementum lines and age at<br />

death, the relationship is not strong enough to be of value to forensic<br />

anthropologists. Intraobserver error for the number of incremental lines<br />

counted was also problematic. The correlation coefficient between counts<br />

was only r=0.72. This is due to the poor affinity for the stain in many<br />

specimens.<br />

It is the opinion of the authors that the poor results obtained in the<br />

present study reflect the importance of testing methodologies on the target<br />

population. The methodology utilized by this study, as well as many other<br />

investigations of cementum increments, is reliant on the integrity of the<br />

soft tissue component of the tooth, collagen. Although most of the collagen<br />

is most certainly present, the slightest chemical alteration may affect<br />

the ability of a stain to clearly differentiate the histologic structure in<br />

question, especially when such a high degree of resolution is necessary.<br />

Innumerable variables may affect the physical and chemical properties of<br />

skeletal material during the postmortem interval. With the exception of<br />

Condon and colleagues (1986), samples for previous studies, obtaining<br />

much better results, were composed almost entirely of clinical extractions<br />

which had been immediately fixed in formalin. The postmortem interval,<br />

prior to fixation, for the specimens tested in this study was well over a<br />

decade for 46 of the 52 specimens. It is felt that future research utilizing<br />

hard tissue techniques (i.e., acid-etched thick sections) and a large sample<br />

of forensic origin would provide the most insight into the utility of this<br />

technique.<br />

Age Determination, Cementum, Cementum Annulations<br />

H39 Age Estimation From Long Bone Lengths<br />

in Forensic Data Bank Subadults: Evidence<br />

of Growth Retardation and Implications<br />

of Under Aging<br />

Martha Katherine Spradley, MA*, Knoxville, TN<br />

This presentation examine the aging of subadults utilizing long bone<br />

diaphyseal lengths in the Forensic Data Bank (FDB) and comparing them<br />

with previously published longitudinal and cross-sectional data. This<br />

study finds that the FDB subadults exhibit growth retardation which may<br />

lead to under aging.<br />

In the identification of subadults, lack of secondary sexual characteristics<br />

can make sex estimation difficult, even impossible leaving age<br />

estimations critical in order to search through missing children reports.<br />

Measurements of the long bones may accurately be used to assess the age<br />

of subadults when the dentition or epiphyses are not present (Hoffman<br />

1979, Pfau and Sciulli 1994, Ubelaker 1974). The samples from which<br />

these standards are derived are often population specific with regards to<br />

ethnic affiliation and socioeconomic class. Hoffman found diaphyseal<br />

long bone length to be a good age estimator for individuals between the<br />

ages of two months to twelve years, a technique that correlates well with<br />

dental development. However, Hoffman uses long bone lengths from<br />

white middle class subadults attained from the Denver Human Growth and<br />

Development Longitudinal Study (McCammon 1970) to assess the age of<br />

subadult forensic skeletons. This is a technique which only ages children<br />

2 through 12 years and may not correctly age subadults from differing<br />

socioeconomic classes.<br />

The initial phase of this research compared the FDB subadult long<br />

bone lengths to long bone lengths obtained from the Denver Human<br />

Growth and Development Longitudinal Study (McCammon 1970). The<br />

FDB sample consists of cross-sectional data with 46 positively identified<br />

white children, 17 males and 29 females with known ages at death ranging<br />

from 0.3 to 18 years of age, the majority being homicide victims. The long<br />

bone lengths for the FDB come from maximum lengths taken directly<br />

from the humerus, radius, ulna, femur, tibia and fibula. These measurements<br />

were taken by various researchers from around the country and sent<br />

to the FDB. The Denver Growth Study sample consists of longitudinal<br />

data for 334 individuals comprised of healthy white males and females<br />

from 0.2 to 18 years of age. Long bone lengths of the humerus, radius,<br />

ulna, femur, tibia and fibula for the Denver sample were obtained from<br />

radiographic measurements taken “parallel to the long axis of the bone<br />

from the most proximal edge to the most distal edge of the diaphysis<br />

(McCammon 1970:161).” Corrections were made for radiographic<br />

enlargement. Up to the age of 12 years, bones were measured with<br />

epiphyses, and, at 12.6 years, without epiphyses.<br />

The Denver study contains only means, standard deviations and<br />

percentiles. Therefore, the Forensic Data Bank long bone lengths were<br />

plotted against the Denver data. Plotting the known ages at death of the<br />

FDB sample against the Denver sample indicates the FDB sample is not<br />

normal regarding long bone length, with the exception of the radius and<br />

ulna. FDB male long bone lengths tend to fall within the normal range<br />

before the age of 12. begin to fall below the mean. After the age of 12 the<br />

females tend to fall within normal range before the age of 9, and to fall<br />

below the mean after age 9 begin.<br />

595 * Presenting Author


Since the Denver data stemsfrom a healthy middle class sample, a<br />

more socio-economically diverse sample was obtained from the Franklin<br />

County Coroner in Ohio (Pfau and Sciulli 1994). The Ohio sample<br />

consists of radius, ulna, tibia and fibula long bone lengths taken from<br />

radiographic measurements of children who died from all manners of<br />

death during the months of July 1, 1990 through June 30, 1991 (Pfau and<br />

Sciulli 1994). Only the accident victims, 30 white males and 7 white<br />

females, were used in this sample with the reasoning that they are less<br />

likely to suffer nutritional or physical stress, which could possibly cause<br />

growth retardation (Floud, 1992, Wales 1992).<br />

The comparison of the FDB subadult sample to the Denver and Ohio<br />

samples demonstrates that the FDB is not a normal sample. Female FDB<br />

long bone length observations start out in the Ohio range and begin to fall<br />

below the Ohio observations around the age of 9. Male FDB long bone<br />

lengths start out below and stay below the Ohio observations.<br />

Analyses of FDB, Denver, and Ohio subadults conclude that the FDB<br />

subadults exhibit growth retardation in long bones, and aging them with<br />

non-diverse samples with regards to socioeconomic class and manner of<br />

death could lead to under aging.<br />

Subadult, Growth Retardation, Age Estimation<br />

H40 Quantitative Analyses of Human<br />

Pubic Symphyseal Morphology Using<br />

Three-Dimensional Data: The Potential<br />

Utility for Aging Adult Human Skeletons<br />

Matthew W. Tocheri, BA*, and Anshuman Razdan, PhD, PRISM,<br />

Arizona State University, Box 87-5106, Tempe, AZ<br />

The goals of this presentation are to present results of on-going<br />

research attempts to quantify the age-related skeletal changes that occur to<br />

human pubic symphyses.<br />

Forensic anthropology traditionally relies on 2-dimensional (2D)<br />

techniques to analyze the complex 3-dimensional (3D) shape of human<br />

bones. Standard osteometric equipment includes sliding calipers,<br />

spreading calipers, osteometric boards, coordinate calipers, and the head<br />

spanner. This equipment is insufficient for adequately measuring,<br />

recording, classifying, and representing complex 3D data.<br />

The Partnership for Research In Stereo Modeling (PRISM) at<br />

Arizona State University is currently undertaking the 3-Dimensional<br />

Knowledge (3DK) and Distributed Intelligence project. The focus of this<br />

project is on researching and developing the technology required to aid in<br />

the acquisition, representation, query, and analysis of 3D information. The<br />

Kernel represents a software library being created by PRISM to facilitate<br />

analysis of 3D data sets. Automation of tedious data processing tasks and<br />

the ability to support new techniques for the visualization, modeling, and<br />

quantification of 3D data are provided by the computational and analytical<br />

power of the Kernel. One aspect of on-going research at PRISM applies<br />

to forensic anthropology. Specifically, morphological bone features currently<br />

best described as qualitative data are targeted and methods are<br />

developed to enable successful extraction of quantitative data.<br />

Establishing the age-at-death of an individual from skeletal remains<br />

is a critical component of forensic anthropology. One of the most reliable<br />

methods for estimating age-at-death of adults is based on the morphological<br />

changes of the pubic symphyseal face. Several aging methods<br />

based on pubic symphysis morphology have been presented over the past<br />

eighty years, however, the majority of these represent refinements of the<br />

original method described by Todd (1920). Today, especially in North<br />

America, the Suchey-Brooks method of aging the os pubis is the most<br />

widely accepted and utilized. Their method involves the use of special<br />

casts that illustrate the bony changes through different age categories for<br />

males and females respectively. There are twelve casts for each sex and<br />

these are subsequently divided into six age stages with an early and late<br />

stage of development represented.<br />

* Presenting Author<br />

This paper presents the results of analyses attempting to quantify the<br />

age-related changes that occur to the human pubic symphysis as displayed<br />

by the Suchey-Brooks casts. The age changes examined in this study<br />

include the following qualitative features: ridge-and-furrow system, dorsal<br />

margin, dorsal platform, ventral rampart, ossific nodules, rim, and<br />

delimited extremities.<br />

The analyses were conducted in the following manner: first, all<br />

twenty-four male and female pubic symphysis casts developed and<br />

described by Brooks and Suchey (1990) and Suchey and Katz (1986) were<br />

scanned using a 3D laser scanner to accurately acquire the 3D data;<br />

second, each pubic symphysis was geometrically modeled from the<br />

scanned images enabling essential shape characteristics, including curvatures,<br />

of the scanned cast to be extracted and quantified; finally, the<br />

resulting virtual 3D symphyseal faces were analyzed using various geometric<br />

analytical techniques in an attempt to extract quantitative data best<br />

representing the qualitative features of interest. Using a common set of<br />

algorithms, complex 3D features can be consistently extracted in the form<br />

of workable quantitative data. The paper will present preliminary results<br />

from the quantification of these 3D bone features. The utility of a quantitative<br />

approach and how 3D analyses can simulate the accuracy levels of<br />

experienced forensic anthropologists qualitatively aging human skeletal<br />

remains will also be discussed.<br />

The ability to quantitatively describe the age-related changes to the<br />

pubic symphysis may provide the potential for future refinement of the<br />

method. Other subjective aging methods (e.g., use of the auricular<br />

surface) may also be better understood through 3D analyses. In its continuing<br />

research, PRISM plans to develop a computerized database of 3D<br />

pubic symphyseal faces from individuals of known age-at-death, sex, and<br />

biological affinity. It is hoped that this work will lead to further<br />

efinements of the pubic symphysis aging method, especially in regard to<br />

differences between populations, as well as serving as an education and<br />

research tool.<br />

Skeletal Aging, Pubic Symphysis, Adult Age-at-Death<br />

H41 A Refinement of the Todd Method<br />

on a Sample of Modern Humans<br />

Steven N. Byers, PhD*, and Jennifer L. Brady, BA, University of New<br />

Mexico, Department of Anthropology, Albuquerque, NM<br />

The goals of this research project are to determine if numerical<br />

scoring of traits used in the Todd method for estimating age at death from<br />

the pubic face could increase the accuracy of estimates of this<br />

demographic parameter.<br />

Research was undertaken to provide more verification of the<br />

reliability of the Todd method for estimating age from changes in the<br />

symphysis of the pubic bone. Data were gathered on 124 pelvises from<br />

persons of known age at death from the Maxwell Museum of<br />

Anthropology’s osteological collection housed at the University of New<br />

Mexico. Approximately two-thirds of the samples were male, with the<br />

remaining one-third female; in addition, roughly three-quarters were of<br />

White ancestry, one-quarter Asian, and less than one percent Black. The<br />

features of the os pubis (e.g., symphyseal face, upper extremity) were<br />

broken down into component parts (e.g., dorsal aspect: outline, plateau,<br />

ridge) and were then assigned a number corresponding to their degree of<br />

development. These numerical scores were compared with both Todd<br />

phases and age-at-death to determine if this method could improve age<br />

assessment. On average, estimates of Todd phases derived from analysis<br />

of pubic faces coincided well with given age. Also, there was good<br />

agreement between phases derived from the left bone when compared<br />

with that estimated from the right bone. Other findings, as well as<br />

problems encountered, are described.<br />

Todd Method, Pubic Face, Age-at-Death<br />

596


H42 Age Estimation From Pubic Symphysis<br />

Alpana Sinha, MBBS, MD*, Assistant Professor, Department of Forensic<br />

Medicine & Toxicology, Lady Hardinge <strong>Medical</strong> College, New Delhi, India<br />

The goals of this research project are to present to the forensic community<br />

the usefulness of the pubic symhyseal surface as a reliable criteria<br />

of age estimation and to present the variations observed when the western<br />

standards are applied to Indian bones.<br />

Establishment of the identity of an individual is of utmost medico-legal<br />

significance. Age is an important criterion for identification. The present<br />

study was carried out to study age-related metamorphic changes at the symphyseal<br />

surface of pubic bones in Indians and to see whether they show a<br />

similar variation when compared to western standards. These changes have<br />

been compared with that of Todd’s phase system for white males, McKern and<br />

Stewart’s three component system with five active developmental stages for<br />

males, and the method of Hanihara and Suzuki who studied Japanese pubic<br />

bones using multiple regression analysis and quantification theory model.<br />

Eighty-two pairs of male pubic bones were collected from autopsy<br />

cases at Lady Hardinge <strong>Medical</strong> College and Associated Hospitals. The<br />

age was precisely recorded from the police records and further verified<br />

from municipal corporation records. The following features were recorded<br />

on the symphyseal surface: (1) Ridges and furrows, (2) Dorsal margin,<br />

(3) Ventral beveling, (4) Lower extremity, (5) Ossific nodule, (6) Upper<br />

extremity, (7) Ventral rampart, (8) Dorsal plateau, and (9) Symphyseal<br />

rim. Varying combinations of these features were used as criteria for age<br />

estimation of the subjects.<br />

The sample spans a range of 12-75 years with the highest concentration<br />

in the twenties (38%). It was found that the symphyseal surface<br />

remains convex up to 19 years and becomes flat after 27 years. The ridges<br />

and furrows are distinct till 17 years of age in males. The furrows become<br />

shallow between 18 to 26 years and disappear after 27 years. The dorsal<br />

margin appears by 12 years in males and is complete after 18 years of age.<br />

The dorsal plateau starts forming from 18 years in males and is complete<br />

after 35 years of age. The ventral bevelling starts forming after 20 years<br />

in males. The ventral rampart appears after 20 years in males and is well<br />

developed after 35 years of age. The inferior extremity shows its definition<br />

after 18 years in males and is well defined after 30 years. The<br />

superior extremity starts its definition after 22 years in males and is well<br />

defined after 35 years. The symphyseal rim starts its formation by 12<br />

years in males from the lower part of the dorsal border. It starts on the<br />

ventral half after 20 years in males and is complete by 39 years. The rim<br />

starts to break down after 30 years, with 65.5 % of males over 39 years<br />

showing this feature. The ossific nodules are observed from 18 to 50 years<br />

in males. Lipping on dorsal is observed above 30 years in males with 72.7<br />

% of case above the age of 45 years showing this feature. The disfigurement<br />

appears in 3.5 % of males above the age of 40 years. Variations<br />

on the two sides right and left, are noted in 34.1 % of males. The variations<br />

observed in the progression of metamorphic features can be<br />

attributed to environmental and dietetic factors.<br />

By comparing the progression of various metamorphic changes, it<br />

was found that Todd’s criteria tended to over age the Indian bones. When<br />

compared to McKern and Stewart’s Component stages, the development<br />

of dorsal margin is earlier in Indian bones. However, the completion of<br />

the dorsal plateau is delayed. The completion of ventral bevelling and<br />

rampart is delayed against the formation of symphyseal rim, which starts<br />

earlier, but completes later in Indian bones. According to McKern and<br />

Stewart’s Symphyseal Score method the metamorphosis in our series sets<br />

in earlier by 1-3 years, but the various bony features like dorsal plateau are<br />

found at a later age. When compared to the method of Hanihara and<br />

Suzuki using MRA, there is an over estimation until 30 years of age and<br />

under estimation between 31 to 39 years, The estimation becomes unreliable<br />

after 39 years of age. By using QM 1 method of Hanihara and<br />

Suzuki, the ages are overestimated until 30 years of age, while they are<br />

underestimated between 31 to 39 years of age.<br />

Age, Pubic Symphysis, Parameters<br />

H43 Aquatic Decomposition Rates<br />

in South Central Louisiana<br />

Sherice L. Hurst, MA*, and Mary H. Manhein, MA, Louisiana State<br />

University, Department of Geography & Anthropology, 227 Howe-<br />

Russell Geoscience Complex, Baton Rouge, LA<br />

The goals of this research project are to track aquatic decomposition<br />

rates in the southeast.<br />

Currently, little existing data provide insight into the postmortem<br />

interval (time since death) of human remains found in an aquatic environment<br />

in the southeastern United States. Though limited research on<br />

aquatic decomposition has been conducted in South Carolina and<br />

Tennessee, neither of these studies addressed such decay in a natural,<br />

freshwater setting, a lake. Therefore, this project focused on freshwater<br />

decomposition rates in subtropical Louisiana and also evaluated the effect<br />

of geographic location and temperature on such decomposition.<br />

Decomposition studies using pig carcasses began in early February<br />

2000. The site chosen for the project was the Louisiana State University<br />

Aquaculture Research Facility. The lake at the facility is a seventeen-acre,<br />

man-made lake stocked with perch, bass, catfish and various other animal<br />

life associated with a lake environment. The second area where research<br />

was conducted is a pecan grove located one half mile from the<br />

Aquaculture Center. This site is a sparsely wooded farming area with a<br />

creek bed located along the edge of the property. Both sites have cow<br />

pastures situated approximately 800 feet from the study area.<br />

One month prior to the beginning of the project, a 40-foot dock was<br />

constructed on the northeast side of the 400-foot-wide X 2000-foot-long<br />

lake. Two male and two female domestic pigs, Sus scrofa, were used in<br />

this project. The four 40-pound (18.14 kilograms) pigs were injected with<br />

4cc of Benthanasia-D®. A cage mechanism, attached to a winch on the<br />

end of the dock, housed one of the four pigs. The second and third pigs<br />

were placed in the lake without a cage and were rowed to their respective<br />

locations. The manner in which the second and third pigs were placed<br />

symbolized a homicide situation. Nylon rope was tied around their midsection<br />

and two front legs. One pig had a cinder block tied to the opposite<br />

end of the rope to simulate a victim being weighted down before being<br />

dumped. The other pig had a buoy tied to the end of a rope. The buoy was<br />

lightweight and helped to track the pig. This third pig represented a victim<br />

who might be thrown into the water and left to the natural elements. The<br />

fourth pig was placed in a cage located in the pecan grove. Daily observations<br />

were recorded for the first two weeks, followed by observations<br />

every other day for two weeks, and finally, once a week for the last eleven<br />

weeks of the experiment. Visual observations were recorded for all four<br />

specimens; however, the only carcass that was physically touched was the<br />

land pig in order to record various species of arthropods beneath the<br />

remains. The water pigs were photographed but not disturbed because<br />

additional movement might have produced trauma to the water specimens<br />

that could accelerate their decay process. Ambient temperature was<br />

collected from the Louisiana State University Climate Center, which<br />

accessed a weather station located on the Ben Hur Research Facility.<br />

Additionally, a Hobo® logger calculated water temperature.<br />

Results of this study showed that, as expected, the land specimen<br />

decayed faster than the three water specimens. Arthropod activity for the<br />

land pig included Musca domestica, Phormia regina, Dermestes<br />

maculatus, and Solenopsis invicta. Also, decomposition of the land pig<br />

followed stages similar to those of other researchers: fresh, bloat, dried<br />

remains, and skeletonized remains. For the land pig, the time elapsed from<br />

fresh to skeletonized remains with only desiccated skin left was 21 days.<br />

Ambient temperature for these days ranged from 62.9°F to 88.8°F.<br />

The decay rate for the pigs in the water was slower than that of the<br />

land pig. Though some flies hovered over the water pigs once they surfaced,<br />

no continuous, long-term arthropod activity was noted; nor were<br />

larvae found associated with the segments of these pigs that showed above<br />

the water line. Three main stages were recognized for the water pigs:<br />

597 * Presenting Author


fresh, bloat, and reduction. A fourth and final stage for the water pigs<br />

varied for each water specimen: sunken remains (cinder block/weighted<br />

pig), desiccated skin (pig at the dock), and relocated remains (buoyed pig,<br />

which washed to shore). Fresh stage to the final stage of decay in the<br />

water varied by specimen from 37 days to 72 days. Temperature and<br />

climate did affect the rate of decay and adipocere formation with<br />

adipocere forming after approximately two months for the water pigs and<br />

not at all in the land pig.<br />

This study provides new data on decomposition to assist with the<br />

determination of postmortem interval for those remains found in a freshwater<br />

aquatic environment in the southeast region of the United States.<br />

Freshwater Decomposition, Entomology, Louisiana<br />

H44 The Role of Clothing in<br />

Estimating Time Since Death<br />

Robyn A. Miller, BA*, University of Tennessee Department of<br />

Anthropology, 250 South Stadium Hall, Knoxville, TN<br />

The goals of this research project are to present to the Academy<br />

research results which show how clothing affects the process of human<br />

decomposition and how it also influences the process of estimating time<br />

since death.<br />

This presentation will familiarize the forensic community with<br />

current research on the effects of clothing on human decomposition and<br />

time-since-death estimation. Time-since-death estimation is an enigma<br />

that has plagued law enforcement, medical examiners, and the forensic<br />

community for years. An accurate estimate is critical for medicolegal<br />

purposes as it is often used in defense of an alibi. It may serve as a preliminary<br />

screening tool to eliminate putative killers who may or may not<br />

have had access to the body. More than half of the cases performed by The<br />

Forensic Anthropology Center at The University of Tennessee Knoxville<br />

require time-since-death estimates. Additionally, the success or failure of<br />

a criminal investigation may hinge directly upon accurate estimation.<br />

Several studies have been conducted at the Anthropology Research<br />

Facility located at The University of Tennessee, Knoxville, which longitudinally<br />

examine the process of human decomposition. However, to date,<br />

no study has focused exclusively on clothing as a variable in this process<br />

using human subjects. Furthermore, few studies have been performed<br />

using animal models. Recent research demonstrates conflicting results<br />

regarding the effect of clothing on decomposition. Some authors conclude<br />

that clothing accelerates decomposition, while others maintain that it<br />

retards the process. The goal of this study is twofold: first, the process of<br />

decomposition of clothed human subjects will be documented; second, it<br />

will be determined whether clothing accelerates or retards the process of<br />

decomposition. This will be accomplished by comparing accumulated<br />

degree-days for clothed cadavers with those of nude cadavers.<br />

This research is the culmination of a year-long project using six<br />

unembalmed, clothed cadavers placed at the Anthropology Research<br />

Facility located at The University of Tennessee, Knoxville, at various<br />

times throughout the year. Consecutive observations were made on each<br />

cadaver and photographs were taken to record the progression of decomposition.<br />

Each body was assigned a number to mark the progression into<br />

each of the four stages of decomposition: (1) fresh, (2) bloat, (3) advanced<br />

decomposition, (4) skeletonization. The fresh stage is marked by the<br />

absence of discoloration, except for lividity, and the absence of maggot<br />

activity. Early decomposition consists of discoloration, bloating, marbling,<br />

skin slippage and extensive maggot activity. Advanced decomposition is<br />

marked by the release of gases and the ensuing abdominal sagging, as well<br />

as extensive maggot activity. This period begins after maximum body<br />

bloating has been attained. The skeletonization stage is marked by the<br />

absence of any wet tissue and includes mummified or dry tissue. It is<br />

important to mention that patterns of decomposition are more marked in<br />

warmer months and may be ambiguous in cooler months. Extensive<br />

* Presenting Author<br />

freezing and lack of decay organisms in winter prevent observations of<br />

definitive decay patterns. Carnivores are also more aggressive in winter<br />

months, altering definitive stages of decomposition.<br />

It is well known that temperature is the primary variable affecting the<br />

rate of decomposition. After Vass and coworkers (1992), accumulated<br />

degree-days were calculated for each subject in this study after the final<br />

stage had been reached. This is performed by adding the average temperature<br />

for each day to the previous day. Vass and colleagues found that it<br />

takes approximately 1285 +/- 150 accumulated degree-days (ADD) for a<br />

body to decompose. In order to make an assessment as to the effects of<br />

clothing, ADD’s from this study were compared with ADD’s from previous<br />

studies using nude cadavers. It was determined that clothing retards<br />

the process of decomposition. Therefore, the presence or absence of<br />

clothing must be noted and compensated for when making an estimate of<br />

time since death.<br />

Time-Since-Death, Decomposition, Clothing<br />

H45 The Effects of Lime on the Decomposition<br />

Rate of Buried Remains<br />

Heather A. Thew, MS*, and Stephen P. Nawrocki, PhD, University of<br />

Indianapolis, 1400 East Hanna Avenue Indianapolis, IN<br />

The goals of this research project are to present the results of an<br />

experimental study on the effects of lime on the decomposition rate of<br />

buried pig remains. This may aid investigators in more accurately<br />

determining a post mortem interval (PMI) in limed burials base on the<br />

preservation of the remains.<br />

Of the many factors that affect buried remains, one that is particularly<br />

pertinent to forensic studies is the inclusion of lime in a burial. It would<br />

seem that assailants believe that lime accelerates the decomposition of soft<br />

tissues in buried remains. However, observations by forensic investigators<br />

suggest that lime actually tends to slow the decomposition of buried<br />

remains. Despite anecdotal information, the effect of lime on the decomposition<br />

of remains is not clearly understood. A systematic study of the<br />

role of lime in soft tissue preservation and how it interacts with other environmental<br />

variables is needed. The aim of this study was to determine the<br />

effects and interaction of three variables influential to the decomposition<br />

of buried remains: duration of burial, depth of remains below the surface,<br />

and the presence of lime.<br />

Over the course of four years, six separate groups of pigs ranging<br />

from 50-70 pounds each were buried in six rectangular pits on a farm in<br />

northwestern Indiana. Pits 1 and 2 each contained five pigs, which were<br />

interred for approximately thirty months (Nov 1995 to June 1998) at a<br />

depth of 50-60cm. Pits 3 and 4 each contained three pigs interred for<br />

approximately six months (Oct 1998 – May 1999) at a depth of 10-20cm.<br />

Pits 5 and 6 each contained three pigs interred for approximately six<br />

months (Oct 1998 – May 1999) at a depth of 50-60 cm. Pits 1, 3 and 5<br />

served as control groups. In Pits 2, 4 and 6 approximately 25 pounds of<br />

commercial lime covered each pig.<br />

In order to run a statistical analysis of the rate and degree of decomposition,<br />

a visual assessment of the condition of the pigs was translated<br />

into a numerical score. A continuum of decomposition stages was constructed<br />

and a number of points were assigned to each decomposition<br />

stage. Upon excavation, each pig was given a score based on the degree<br />

of decomposition it exhibited. These scores served as the dependent<br />

variable in an analysis of variance (ANOVA), with the independent<br />

categorical variables being time elapsed, depth, and lime inclusion. The<br />

theoretical model that best explains the relationships between the variables<br />

in standard ANOVA format is: Decomposition = Depth + Time Interval +<br />

Presence of Lime + Error. The various interactions between the main<br />

effects (such as Depth Lime*Time Interval, etc.) were also examined.<br />

Extensive qualitative descriptions also proved essential to understanding<br />

the results.<br />

598


The results show that lime does significantly slow the rate of decomposition<br />

of buried remains. The greatest difference in preservation<br />

between the limed and non-limed (control) burials occurred in the shallow,<br />

six-month pits (Pits 3 and 4). Although significant, the differences<br />

between the deep, six-month pits (Pits 5 and 6) and deep, thirty-month pits<br />

(Pits 1 and 2) were less impressive. Pits 3 and 4, being located near the<br />

surface, were potentially exposed to many more influential decompositional<br />

factors. The addition of lime to Pit 4 probably protected those<br />

remains from many of those same factors, while the unlimed Pit 3 remains<br />

quickly decomposed due to the near-surface exposure. The deeper burials<br />

in Pits 1, 2, 5, and 6 were better protected from temperature differences,<br />

insects, carnivores, moisture, and other factors by a thick layer of soil. The<br />

lime had little more protection to offer these deeply buried remains.<br />

Therefore, the decomposition scores between the paired pits (1 and 2, 5<br />

and 6) were more alike, albeit still significantly lower for the limed<br />

remains.<br />

In addition, due to the significance of the Lime*Time interaction, it<br />

appears that lime’s preservation qualities may decrease with time. This is<br />

likely due to the burial’s tendency to move towards equilibrium with the<br />

surrounding environment over time. It also appears that the preserving<br />

qualities of lime are not as influential at greater depths. This may occur<br />

because a thick layer of soil functions much like a layer of lime does in<br />

protecting against influential decompositional factors (such as insects).<br />

With this data, forensic investigators may be able to assess more accurately<br />

the postmortem interval for a limed burial.<br />

Soft-Tissue Decomposition, Lime, Burial<br />

H46 Evaluation of Odor as a<br />

Time-Since-Death Indicator<br />

Jennifer C. Love, PhD*, Regional Forensic Center, 1060 Madison<br />

Avenue, Memphis, TN<br />

The goals of this research project are to present a systematically<br />

method to collect and analyze decay odor and demonstrate its value as a<br />

time-since-death indicator.<br />

Until recently decay odor has not been used as a forensic investigative<br />

tool beyond body discovery by cadaver dogs. The object of this<br />

study is to evaluate decay odor as a time since death indicator.<br />

Decomposition results from two internal processes, autolysis, the<br />

breakdown of the cells following circulatory stasis, and putrefaction,<br />

endogenous bacterial proliferation, as well as many external factors; i.e.,<br />

bacteria, carnivores, insects. The byproducts of putrefaction contribute to<br />

the odor of decay and include cadaverine, putrescine, volatile fatty acids<br />

(VFAs), methane and hydrogen sulfide. As a corpse progresses through<br />

the stages of decay the composition and concentration of the decay odor is<br />

expected to change. This odor pattern variation is hypothesized to be consistent<br />

from individual to individual and correlated to temperature. To test<br />

this hypothesis, the odors of decaying corpses were collected and analyzed<br />

using electronic nose technology.<br />

The greatest obstacle to successfully studying decay odor was the<br />

collection of a representative and replicable sample. A portable sampling<br />

device was designed to collect an appropriate sample. The device<br />

consisted of three glass pipettes filled with molecular sieve, connected to<br />

the inflow nozzle of an air pump. Molecular sieve, a universal dryant,<br />

captured the odor-causing agents under field conditions and released them<br />

under the analytical conditions of the electronic nose. The simultaneous<br />

collection of repeat samples, via the three pipettes, minimized the<br />

intersample error and reduced the sampling time.<br />

Aroma samples were collected from eleven decaying individuals at<br />

regular intervals. The human remains were donated for scientific study<br />

with known time of death and cause of death. Each corpse was received<br />

during the fresh stage of decomposition and was unautopsied. Included in<br />

the study were eight males and three females; all individuals were white.<br />

Age range was from 25 to 98 years. Cause of death was natural in all but<br />

three cases, two-suspected drug overdose and one suicide by hanging. Ten<br />

corpses were enclosed in a body bag during the decomposition process to<br />

concentrate and isolate the odor. One corpse was not placed in a body bag.<br />

A small hole was cut in each body bag through which the sample was<br />

taken. At each sampling event the temperature and humidity, as well as<br />

the intersample high and low temperature and humidity and rainfall, were<br />

recorded. The fluctuation and accumulated effects of temperature were<br />

summarized as accumulated degree days (ADD). Control samples were<br />

collected by sampling air contained within empty body bags. Four of the<br />

ten body bags were disturbed by carnivore activity during the decay<br />

process. The duration of the study was one year and at least one corpse<br />

was analyzed in every season.<br />

The results of the study show that the aroma pattern as detected by<br />

the electronic nose did not change over time; however, the concentration<br />

of the odor did change. The intensity of the odor positively correlated to<br />

ADD when the body was isolated in an undisturbed body bag (r=0.8).<br />

Intensity of the odor did not correlate to ADD when the body bag was disturbed<br />

or the body was not placed in a body bag (r = 0.3). At this time,<br />

odor as a time-since-death indicator is only applicable to samples collected<br />

from bodies isolated in body bags. In order to expand the application of<br />

this method, the sensitivity of the sampling method must be improved.<br />

Furthermore, important odor pattern variation may become detectable<br />

with increased sensor sensitivity of the electronic nose. In sum, the concentration<br />

of odor positively correlated to ADD when specific conditions<br />

are met. However, aroma pattern change is undetectable.<br />

Time Since Death, Decay Odor, Electronic Nose<br />

H47 Determining Postmortem Interval:<br />

A Preliminary Examination of<br />

Postmortem Thorium, Actinium,<br />

and Radium Isotopes in Bone<br />

Christine N. Rea, MA*, Department of Anthropology, Kent State<br />

University, 228 Lowry Hall, Kent, OH; and H.O. Back, Department of<br />

Physics, Virginia Polytechnic Institute and State University, Robeson<br />

Hall, Blacksburg, VA<br />

The goals of this research project are to present a potential new<br />

method for determining postmortem interval by examining Ra-228,<br />

Th-228, and Ra-228.<br />

Determining postmortem interval (PMI) can aid in solving many<br />

police cases involving deaths. Authorities often look to the forensic<br />

anthropologist to determine PMI in skeletal material. Therefore, a method<br />

to determine PMI would be extremely beneficial to the anthropologist.<br />

The methods that are currently used in determining PMI include entomology,<br />

botany, pathology, and decomposition. Because the environment<br />

can affect these methods drastically, they can be inaccurate or not used at<br />

all. By determining a method based on the decay of radioactive isotopes,<br />

the environmental factor is eradicated. Environmental factors do not<br />

affect decay rates. Thus this method would have the benefit of being the<br />

only method not affected by any environmental factors or conditions. This<br />

research focuses on deriving a dating method similar to current radiometric<br />

methods such as C-14 and K/Ar. However, this study focuses on<br />

isotopes with a shorter decay rate: Ra-228, Ac-228, and Th-228.<br />

Research has shown that the preceding isotopes have consistently<br />

been shown to be present in bone. These isotopes are part of the thorium<br />

series with Ra-228 decaying into Ac-228 and Ac-228 decaying into<br />

Th-228. The half-life of these isotopes ranges from 6.13 hours to 6.7<br />

years, which will allow for a method that dates from the present to approximately<br />

20 years ago. Research shows that during the lifecycle of a human<br />

the Ra-228 isotopes and its daughters exist in equilibrium. Once a person<br />

dies, bone no longer accumulates isotopes. The only activity seen is the<br />

599 * Presenting Author


decay of the isotopes present in the bone at death. Looking at the ratio of<br />

remaining isotopes, a method to determine PMI can be derived.<br />

The sternal end of a rib from 5 individuals was tested. The Montana<br />

State <strong>Medical</strong> Examiner harvested the samples and gathered age, sex, and<br />

time/date of death for each specimen. The samples were tested at the<br />

Pacific Northwest National Laboratory in Washington State on an ICP-MS<br />

and a coincidence system. The coincidence system has a high efficiency<br />

for capturing coincident gamma ray emissions. The decay rates of the<br />

isotopes were used to determine the integration constant, C. This research<br />

rested on the premise that C was constant for all samples. When C is<br />

constant, the only unknown in the following equation is the time since<br />

death.<br />

The preceding equation only takes into account the decay rates of<br />

Ra-228 and Th-228. Because this research was a preliminary study,<br />

Ac-228 was excluded from the equation. Ac-228 did not need to be<br />

included in this equation to determine whether or not this method would<br />

work. In further research, Ac-228 will be included for an accurate<br />

determination of the integration constant. If Ac-228 were to be included<br />

in this preliminary study, the equations would have become extremely<br />

cumbersome. By looking at Th-228 and Ra-228, determining whether or<br />

not this new method was viable became easier. The premise of this study<br />

was to decide whether or not this new method was viable and worth future<br />

research.<br />

Postmortem Interval, Radioisotopes, Bones<br />

H48 Differentiation of Bone and Tooth From<br />

Other Materials Using SEM/EDS Analysis<br />

Douglas H. Ubelaker, PhD*, Department, Anthropology, Smithsonian<br />

Institution, Washington, DC; Dennis C. Ward, BS, FBI Laboratory,<br />

Washington, DC; Valeria S. Braz, MSc, Federal University of Rio de<br />

Janeiro, Rio de Janeiro, Brazil; and John Stewart, PhD, FBI,<br />

Washington, DC<br />

Upon completion of this presentation, the attendee will understand<br />

how the identification of small particles as representing bone or tooth can<br />

be facilitated through scanning Electron Microscopy/Energy Dispersive<br />

X-ray spectroscopy (SEM/EDS) analysis.<br />

With increasing frequency, materials thought to be of human origin<br />

submitted to the Federal Bureau of Investigation (FBI) Laboratory for<br />

identification are extremely fragmentary, incomplete, and often altered<br />

through taphonomic factors. Frequently such evidence is submitted with<br />

the intention that DNA analysis will clarify issues of identification. Prior<br />

to such analysis, it is desirable to determine if such evidence may be of<br />

bone of tooth origin or if it represents other materials commonly found in<br />

crime scenes which can be morphologically similar to bone or tooth.<br />

Determining if such evidence represents bone or tooth using standard<br />

morphological approaches can be problematic if such evidence is<br />

extremely small and/or has been altered taphonomically.<br />

In such cases, interpretation can be enhanced by comparison of the<br />

results of SEM/EDS analysis to reference material data archived in an<br />

x-ray spectral database. This contribution reports on such an approach and<br />

the continuing project to build an appropriate database.<br />

Analysis using SEM/EDS represents a well-known, commonly<br />

utilized tool to provide quantitative, qualitative, structural and/or comparative<br />

information to assist in the interpretation of materials of potential<br />

forensic significance. In 1994, the FBI initiated an effort to construct a<br />

database of x-ray spectra in support of laboratory analysis of forensic<br />

evidence (1). More recently, the concept of this database has been<br />

modified as a Windows-based application on a PC that functions with a<br />

* Presenting Author<br />

contemporary EDS system (1). The current system allows storage of<br />

standard spectra with display of qualitative composition, images and information<br />

about the sample. The system also permits comparison of spectral<br />

data from an individual sample against the database with expression of the<br />

appropriate probabilities of association.<br />

To address the bone/tooth identification problem discussed above,<br />

the authors have augmented the pre-existing database with many known<br />

bone and tooth samples from a variety of contexts, as well as materials that<br />

are easily confused with bone and tooth. The bone and tooth samples<br />

consist of pristine examples as well as those representing the full range of<br />

altered conditions. Human as well as other vertebrates are presented.<br />

Examination of this expanded database reveals the composition of<br />

bones and teeth, especially their proportions of calcium and phosphorus.<br />

These data will allow them to be successfully separated from most other<br />

materials in the database. Exceptions in the existing database that show<br />

potential for confusion with bone and tooth are ivory, mineral apatite, and<br />

perhaps samples from a group of corals. Research continues on new<br />

methods to differentiate fragments of these materials from bone and tooth.<br />

References:<br />

1. Ward, D.C., Use of an x-ray spectral database in forensic science. Forensic<br />

Science Communications, July, Vol. 2, No. 3, available on-line at www.fbi.gov.<br />

Bone Identification, Elemental Analysis, Data Bases<br />

H49 Factors That Affect mtDNA<br />

Recoverability From Osseous Remains<br />

Mark Leney, PhD*, U.S. Army CILHI, 310 Worchester Avenue Hickam<br />

Air Force Base, Honolulu, HI<br />

Due to the unprecedented scale of efforts to identify unknown<br />

osseous remains by the U.S. Army Central Identification Laboratory and<br />

through extensive access to the resources of the Armed Forces DNA<br />

Identification Laboratory, over 2500 osseous samples have been submitted<br />

for mtDNA analysis. While previous reports of ancient DNA analysis<br />

success rates have been anecdotal, concerned sample sizes and explored a<br />

relatively narrow range of environmental variables, this paper reviews sufficient<br />

samples to statistically characterize relatively subtle effects that<br />

may throw light on the odds and even the mechanism of DNA recovery.<br />

Improvements in technology, element sampled, sample mass, and timesince-death<br />

are all reviewed. In addition, the huge range of preservational<br />

environments represented allows a more systematic investigation of the<br />

effects of climate on the recoverability of DNA from bone. We contend<br />

that placing this data in the public domain will assist in the planning and<br />

optimization of the use of ancient DNA analyses and that systematic study<br />

of our successes and failures will better inform the debate over the actual<br />

mechanisms of DNA preservation and recoverability.<br />

CILHI, mtDNA, Preservation<br />

H50 How Not to Stage a Burial:<br />

Lessons From North Korea<br />

James T. Pokines, PhD*, Greg E. Berg, MA, Bradley J. Adams, MA, Ann<br />

W. Bunch, PhD, John E. Byrd, PhD, and Thomas D. Holland, PhD, U.S.<br />

Army Central Identification Laboratory, 310 Worchester Avenue, Hickam<br />

Air Force Base, Honolulu, HI<br />

This presentation conveys a range of factors that may be used to<br />

determine if a burial has been moved to its location recently with the<br />

design of deceiving investigators as to true burial age. This type of fakery<br />

can be detected most effectively at the time of excavation, since, in most<br />

cases, these remains have already undergone significant periods of burial<br />

600


or intermediate storage in another location. Detection must therefore<br />

focus upon forensic archaeological techniques, with laboratory analysis as<br />

an additional important contributor. The discrepancies noted in the presented<br />

cases may also pertain to forensic investigations in other settings,<br />

where loss of primary burial context is suspected.<br />

Through their recovery operations for the remains of soldiers missing<br />

in action from the Korean War (1950-53), the staff of the U.S. Army<br />

Central Identification Laboratory, Hawaii (USA-CILHI) has detected<br />

rampant staging of burial contexts in North Korea. This staging normally<br />

consists of the removal of skeletal remains and associated artifacts from a<br />

primary wartime burial or intermediate storage context and “planting”<br />

these items for recovery during joint operations with the Korean People’s<br />

Army (KPA). Identification of these remains is therefore hindered through<br />

the loss of primary context, mixing of remains from multiple burials, the<br />

loss of elements, and the misassociation of U.S. military identifying<br />

artifacts (identification tags and cards, unit and rank insignia, specific<br />

issue uniform items, and labeled equipment) and personal effects with<br />

unrelated human remains. The reburial of these remains therefore is a<br />

major hindrance to their eventual identification and return to next of kin.<br />

Multiple lines of field evidence have been used in the detection of<br />

staged burial contexts. Most obvious among these is the anatomical<br />

misalignment of skeletal remains laid out in approximate anatomical<br />

order. In some cases elements have been found reversed (right for left)<br />

in a burial otherwise appearing to have undergone no major disturbance.<br />

Other instances include vertebral columns with one reversed vertebra,<br />

single skeletal elements found at a significantly different depth than the<br />

remainder of a skeleton, thoracic elements found inside crania, or<br />

outright missing elements despite the excellent preservation of the<br />

surrounding bone.<br />

Non-anatomical field evidence has also proven key in the detection<br />

of burial staging. In some cases, staged burial contexts have been reconstructed<br />

to appear as former entrenched positions with hasty wartime<br />

burials placed inside. These contexts often lacked any sort of battlefield<br />

trash in the form of expended ammunition or other items that are ubiquitous<br />

in these settings. The lack of any corrosive staining of sediments<br />

surrounding highly corroded metal artifacts also indicates the short<br />

interval in their discovered location. The taphonomic state of skeletal elements<br />

has indicated their recent reburial, such as undamaged but fragile<br />

crania in a shallow grave less than 25 cm beneath the surface of a plowed<br />

field, or recent breakage upon elements reported to have been buried for<br />

an extended period. Variable plant root invasion and damage to skeletal<br />

elements has also indicated their differential burial history from associated<br />

artifacts. Loose burial fill and loose sediments within crania also have<br />

indicated recent depositional status. Degradable objects, such as fresh<br />

plant stalks and leaves, have also been recovered deep within burial<br />

deposits. Geomorphology and soil analysis have also proven useful in the<br />

detection of recent reburials, as in the cases of still-visible low mounds<br />

over burials in areas of high erosion or soil in burial areas that do not<br />

correspond to nearby conditions.<br />

Laboratory analysis has also aided in staged burial detection.<br />

Preliminary research in human taphonomy relative to soil pH has exposed<br />

multiple cases where the overall condition of the remains does not correspond<br />

to the relatively harsh or benign soil conditions where they had<br />

reportedly spent approximately 50 years. Gluing of elements and tool<br />

marks from previous excavation have also been found. Remains have also<br />

been identified as non-U.S. in origin, despite their association with U.S.<br />

artifacts. Laboratory analysis has also disclosed the modification of<br />

remains received through unilateral turnover from the North Korean government,<br />

including multiple mitochondrial DNA sequences from single<br />

sets of remains and other evidence of previous tampering during long term<br />

storage (gluing, drilling, and labeling).<br />

The combination of the laboratory analyses and the field evidence<br />

described above provides a comprehensive list of factors which may be<br />

used to detect staged burial contexts in forensic investigations.<br />

Staged Burial, North Korea, Forensic Archaeology<br />

H51 The Pits: Recovery and Examination<br />

of Skeletonized Remains From a<br />

Concrete Filled-Fire Pit<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, Armed Forces Institute of Pathology, 1413 Research<br />

Boulevard. Building 102, Rockville, MD<br />

The goals of this research project are to demonstrate the problems<br />

encountered when removing human remains which have been covered in<br />

concrete, and the use of forensic anthropological techniques to determine<br />

probable cause of death and to establish positive identification.<br />

Recovery of human remains is a scientific discipline within itself,<br />

requiring extensive study and implementation of specific methods and<br />

techniques. A multitude of recovery scenarios have been documented in<br />

the forensic literature for which the majority involve recovery of scattered<br />

surface remains. Aquatic recoveries such as from a pond, river or ocean<br />

also present many challenges. Similar challenges are encountered when<br />

attempting to recover remains from clandestine sites such as landfills,<br />

sewage tanks, and canals.<br />

Some of the more complexing types of recoveries encountered by<br />

death investigators are those from beneath or within concrete. Locating<br />

remains hidden in concrete itself can be difficult, requiring the use of geophysical<br />

technology such as ground penetrating radar, gas probe detectors,<br />

and remote miniature video cameras. Fortunately, in many such cases, the<br />

postmortem decompositional process results in improper curing of the<br />

concrete. Postmortem gas production and release of decompositional<br />

fluids in many cases, infiltrates the concrete producing cracks and fissures.<br />

Breakdown of the epidermal tissues often acts to form a barrier to the<br />

adhesive properties of the concrete. Cracks or other rupturing of the concrete<br />

can allow access to the remains by carrion insects, and alert<br />

investigators to the presence of a decomposing body.<br />

A case in point to be presented, involves the death of a twenty-nine<br />

year old Asian/American male whose decomposed and skeletonized<br />

remains were recovered from a concrete matrix. In October of 1999, a<br />

military platoon training in a partially-wooded area of US Army Post, Ft.<br />

Sill, Oklahoma, noted a strong odor emanating from an outdoor fire pit.<br />

The fire pit, which was rectangular in shape and constructed of large field<br />

stones and mortar, was utilized routinely by troops to cook meals while<br />

conducting field exercises. Upon inspection of the fire pit the soldiers<br />

noted the bottom to have been be filled with concrete. A sizable young<br />

tree sapling along with a long aluminum pole was also noted strangely<br />

protruding from the concrete. Removal of the small fractured section of<br />

concrete, by one of the soldiers, revealed the presence of a large mass of<br />

maggots, and what appeared to be human bones.<br />

Discovery of the remains was followed by recovery efforts<br />

conducted by representatives of the Armed Forces <strong>Medical</strong> Examiner’s<br />

Office, US Army Criminal Investigation Command, and the Federal<br />

Bureau of Investigation. Examination of the fire pit revealed that the<br />

components of the concrete had been transported to the remote location,<br />

and mixed directly within the pit over and around the body of the<br />

deceased. The long aluminum pole, noted extruding from the fire pit, was<br />

determined to be the tool utilized to mix the concrete. Removal of the<br />

remains was conducted by carefully chipping away sections of the<br />

concrete with a masonry hammer and chisel. A small tarp was used to<br />

cover skeletal elements after they were exposed in order to protect them<br />

from flying debris. As a result of postmortem decomposition, the concrete<br />

had formed a type of hollow casing over the remains. The casing provided<br />

for easy separation with the exception of the right lower leg, which had<br />

been fully encased in the concrete.<br />

Anthropological examination of the remains at the site revealed them<br />

to be consistent with an adult Mongoloid male between twenty-five and<br />

thirty-five years of age at death. Tactile examination of the cervical spine,<br />

which was covered in significant amounts of purified soft tissues, found<br />

extensive fragmentation of several of the vertebrae which was consistent<br />

601 * Presenting Author


with a gunshot wound. Radiological examination of the skeletal remains<br />

and associated soft tissues led to the discovery of multiple lead shotgun<br />

pellets in the area of the neck. The death was ruled as a homicide resulting<br />

from a single shotgun wound to the neck. Positive identification of the<br />

homicide victim was not established until approximately three months<br />

later, when a missing persons lead provided for the recovery of antemortem<br />

dental radiographs of the deceased.<br />

Decomposition, Physical Anthropology, Skeletal Recovery<br />

H52 Of Posteriors, Typicality, and<br />

Individuality in Forensic Anthropology<br />

Lyle W. Konigsberg, PhD*, and Richard L. Jantz, PhD, Department of<br />

Anthropology, University of Tennessee, 250 South Stadium Drive,<br />

Knoxville, TN<br />

The goals of this research project are to present to the forensic<br />

anthropology community the basis for calculating probabilities and likelihood<br />

ratios for identification purposes.<br />

With the increasing visibility of DNA evidence in the courts and the<br />

public press, forensic anthropologists are being called upon to present<br />

osteological information and/or evidence in probabilistic terms. This is an<br />

endeavor for which many forensic anthropologists are generally illprepared,<br />

as their training is likely to have included only a course or two<br />

in basic inferential statistics that rarely included more than a passing<br />

reference to probability theory in general, and Bayesian inference in<br />

particular. This paper gives a “gentle introduction” to probabilistic<br />

thinking in forensic anthropology, using examples drawn from the<br />

Forensic Anthropology Database maintained in the Department of<br />

Anthropology at the University of Tennessee, Knoxville.<br />

The paper begins with a presentation of the ideas underlying “posterior<br />

probability” and “typicality,” two key concepts with which many<br />

forensic anthropologists are already familiar from their exposure to discriminant<br />

function analysis and/or FORDISC. In the discriminant setting,<br />

we want to find the posterior probability that a particular case “c” belongs<br />

to a particular group gi of G groups. By Bayes’ Theorem, this conditional<br />

probability (i.e., posterior to the osteological information “x”) is:<br />

While the posterior probability of membership in a particular group<br />

may be high, the likelihood of getting the observed osteological information<br />

(which is proportional to ) may be quite low. “Typicality” is<br />

designed to answer this particular concern, by finding the probability that<br />

the observed distance of the case to the particular group centroid, or any<br />

greater distance, could arise by chance. This paper uses a computer simulation<br />

approach to demonstrate the less intuitive concept of “typicality.”<br />

Both “posterior probability” and “typicality” may be fairly<br />

comfortable concepts for forensic anthropologists, but the notion of<br />

“individuality” is a less familiar area. Forensic anthropologists are used to<br />

thinking in terms of “positive identifications,” and generally have less<br />

experience in calculating and presenting statistical evidence in an<br />

“identification case.” Neither “posterior probability” nor “typicality” are<br />

particularly relevant concepts in identification cases, because if the<br />

identification is correct there is no interest in a posterior probability calculation,<br />

and there is certainly no interest in the probability of finding any<br />

“more extreme” case (as in “typicality”). Instead, following Evett and<br />

Weir’s (1998) logic from their book Interpreting DNA Evidence:<br />

Statistical Genetics for Forensic Scientists, what is needed is a likelihood<br />

ratio that compares the probability of obtaining the observed osteological<br />

evidence if the putative identification is correct, versus the probability of<br />

obtaining the observed osteological evidence from the “population at<br />

* Presenting Author<br />

large.” The specificity of this likelihood ratio depends on the antemortem<br />

information that is available about the individual who is putatively identified.<br />

If the individual is only identified as to “being in group gi ,” then<br />

the likelihood ratio is:<br />

Although this likelihood may be too diffuse to “make the positive<br />

I.D,” when combined with other evidence it may provide a strong enough<br />

posterior odds ratio to satisfy the courts.<br />

Osteology, Statistics, Evidence<br />

H53 The Validity of Using Unique <strong>Bio</strong>logical<br />

Features as a Method of Identifying Victims<br />

of War Crimes in the Former Yugoslavia<br />

Debra Komar, PhD*, Director, Laboratory of Human Osteology,<br />

Maxwell Museum, Department of Anthropology, University of New<br />

Mexico, Albuquerque, NM<br />

The goals of this research project are to present findings of a research<br />

study regarding the frequency of fractures, pathologies, surgery, and dental<br />

reconstruction in modern populations and the reliability of using these<br />

features as a means of personal identification.<br />

The past decade has seen a dramatic increase in physical and forensic<br />

anthropologists participating in genocide and war crimes investigations in<br />

regions such as Rwanda, Argentina, and the Former Yugoslavia. Inherent<br />

in such rapid expansion is both the opportunity for research in previously<br />

unexplored areas and, unfortunately, the ad hoc use of untested methodologies.<br />

Traditional methods of identifying individuals include visual<br />

recognition, fingerprinting, DNA, dental records and the comparison of<br />

antemortem and postmortem x-rays. However, in the Balkans the decayed<br />

state of the remains precludes visual assessment and fingerprinting;<br />

limited access to healthcare and inadequate documentation prohibit dental<br />

and x-ray comparisons and DNA testing on such a massive scale is too<br />

costly and requires laboratory resources not presently available. Yet the<br />

need to identify victims for prosecution and humanitarian purposes<br />

persists and demands innovative methods.<br />

Current identification protocols in the Former Yugoslavia rely<br />

heavily on witness statements identification documents recovered family<br />

recognition of clothing and personal effects and the presence of unique<br />

biological identifiers such as artificial limbs, evidence of previous fractures<br />

or trauma, and extensive dental reconstructions. However, personal<br />

observation and experience in Bosnia in 1999 and Kosovo in 2000 indicated<br />

that it was not uncommon for a single mass grave to produce two or<br />

more individuals of similar age and sex who possessed identical fractures,<br />

surgical scars or dental work. Yet, identifications continue to be made on<br />

the basis of these features, under the assumption of their “uniqueness.”<br />

This study seeks to identify those features which are sufficiently rare<br />

as to be deemed unique biological identifiers. While previous studies have<br />

examined the incidence of trauma and pathology in archaeological<br />

contexts or the frequency of specific fracture types within populations, no<br />

literature exists on the overall frequency in modern populations of dental<br />

modifications, fractures, surgical interventions and other biological<br />

characteristics that endure and are recognisable post-mortem. Nor is it<br />

currently known how such features vary among cohorts of different age,<br />

sex, socio-economic status or geographic location.<br />

Data was collected on two modern skeletal populations which serve<br />

as control and comparative samples. The first population is housed at the<br />

Maxwell Museum of Anthropology at the University of New Mexico.<br />

This collection represents 463 individuals from documented donors as<br />

602


well as recent medico-legal cases. This collection encompasses a wide<br />

demographic population ranging in age from new born to 101 years and<br />

with a representative distribution of males and females, ethnic affinities,<br />

and socio-economic classes. A second collection, housed at the University<br />

of Tennessee Forensic Anthropology Research Center, was also analysed.<br />

A total of 137 adult individuals were included from this collection, creating<br />

a total sample size of 600 individuals who died between 1984 and<br />

2001. The need for such research to be conducted on very recent populations<br />

made the study of these collections preferable to the more traditional<br />

forensic research collections (such as the Terry collection at the<br />

Smithsonian), which were created pre-1950.<br />

Features such as antemortem fractures, pathologies, dental repairs,<br />

and surgical interventions were recorded for each individual. Statistical<br />

analyses will provide the overall frequency of each feature within the<br />

population, as well as by sex and age cohorts, and will determine which<br />

features represent unique biological identifiers. Future publications will<br />

compare these findings to data collected in Bosnia.<br />

The results of this research may be used to modify current identification<br />

methods and will provide the necessary scientific documentation to<br />

support or discredit the presumptive identifications of war crime victims<br />

should they be questioned in international and regional legal proceedings.<br />

Forensic Anthropology, Identification, War Crimes<br />

H54 Testing the Average Methodological<br />

Approach to Facial Approximation<br />

Carl N. Stephan, BHSc, Department of Anatomical Sciences, The<br />

University of Adelaide, Australia; Ian S. Penton-Voak, PhD, Department<br />

of Psychology, The University of Stirling, Scotland; David Perrett, PhD,<br />

and Bernard Tiddeman, PhD, School of Psychology, The University of St.<br />

Andrews, Scotland; John G. Clement, PhD*, School of Dental Science,<br />

The University of Melbourne, Australia; and Maciej Henneberg, DSc,<br />

Department of Anatomical Sciences, The University of Adelaide,<br />

Australia<br />

The goal of this presentation is to present research to forensic anthropologists,<br />

which, in the best-case scenario, indicates that standard facial<br />

approximation techniques will only permit about a 45% true positive<br />

recognition rate.<br />

Facial approximation is the process of building faces on dry skulls for<br />

identification purposes. Currently the technique relies upon the prediction<br />

of facial feature dimensions and shapes from the skull. However, attempts<br />

are less than optimal since most predictions are based on general trends,<br />

or averages, that are not representative of all individuals. One example of<br />

this is the use of average soft tissue depths. Since at present, face surface<br />

color tones and texture cannot be predicted from the skull, they are usually<br />

left to the subjective interpretation of the practitioner. A more objective<br />

way to represent the surface color and texture of facial approximations is<br />

to use the same approach as that used for feature dimension and shape<br />

determination, i.e., averages. The ability of the “average” facial approximation<br />

approach to generate personal recognition is unknown. Given that<br />

facial surface textures and color tones are unlikely ever to be easily<br />

determined from skulls, this study examines the ability for personal recognition<br />

to be generated from faces displaying average color and texture<br />

information, but displaying exact individual face shapes. Since facial<br />

approximation techniques cannot yet reproduce exact face shapes, this<br />

experiment is expected to be a “best-case scenario” test of facial approximation<br />

methods. The faces used for recognition testing were constructed<br />

in two-dimensional frontal views, on computers, using average human<br />

faces, warped to the exact face shape/proportions of target individuals.<br />

From a face pool of six individuals, unfamiliar assessors were asked to<br />

attempt to identify the person to whom the warped average face<br />

represented. Assessors had the option of not making identification if they<br />

thought the target person was not present in the face pool. Familiar<br />

assessors were also asked to examine the computer generated faces and<br />

indicate if they recognized any. Results indicate that average human faces,<br />

adjusted precisely to individual face shapes, allow identification in the<br />

majority of scenarios, however recognition rates are low (


H56 Comparative Radiography of the<br />

Lateral Hyoid: A New Method for<br />

Human Identification<br />

Jered B. Cornelison, MS*, Todd W. Fenton, PhD, and Norman J.<br />

Sauer, PhD, Department of Anthropology, Michigan State University,<br />

446 East Fee Hall, East Lansing, MI; Joyce L. de Jong, DO; and<br />

Brian C. Hunter, MD, Sparrow Hospital, Forensic Pathology Services,<br />

1215 East Michigan Avenue, Lansing, MI<br />

Attendees will learn that radiographic images of the human hyoid can<br />

be utilized for purposes of positive human identification.<br />

This paper has three objectives: First, the gross radiographic shape<br />

of the hyoid, in which differences in the radiographic pattern of the body<br />

and horns and cross-sectional architecture of the body are demonstrated to<br />

be variable and individualizing. Second, an easy, replicable method for the<br />

approximation of postmortem to antemortem lateral cervical radiographs<br />

will be described. Finally, the results of a validation study that tested identification<br />

by comparative radiography of the hyoid will be discussed.<br />

In human remains cases where identity is unknown or needs to be<br />

verified, antemortem/postmortem x-ray comparison is often the most<br />

effective and powerful means of positive identification. It is imperative in<br />

such cases that practitioners understand medical radiographic techniques<br />

and standards and know which dental and skeletal elements have been<br />

shown to be useful and acceptable in our legal system. Unfortunately, few<br />

validation studies have been published that contribute to our understanding<br />

of the uniqueness and the power of discrimination of various<br />

skeletal elements. In this study, a noninvasive protocol for approximating<br />

medical lateral cervical radiographs in the lab will be described, as well as<br />

the results of a validation procedure.<br />

From a sample of 200 medical examiner cases, ranging in age from<br />

birth to 92 years, 86 of the specimens exhibited unilateral or complete<br />

fusion. After eliminating specimens that had fused lesser horns and<br />

greater horns that could not be easily re-articulated, the sample consisted<br />

of 50 hyoids. The greater horns of unilaterally-fused hyoids were glued to<br />

the body and no attempt was made to re-articulate the lesser horns on any<br />

hyoid.<br />

Each of the 50 hyoids was individually x-rayed in a left lateral<br />

position using a General Electric Amx2 portable x-ray unit. The left horn<br />

of the hyoid was inserted into a floral foam block with the middle of the<br />

body oriented 7 inches from the cassette. Lateral approximation was<br />

accomplished by using a metal ruler to control for lateral and anterior/ -<br />

posterior tilt. The distance from the x-ray beam source and cassette was set<br />

at 40 inches. A review of several medical antemortem lateral cervical xrays<br />

required that the x-ray unit settings for this study were maintained at<br />

70 kVp and 8 mAs. Ten hyoids were then randomly selected from the 50<br />

hyoids and x-rayed again using the same positioning technique and x-ray<br />

unit settings. Finally, the tenhyoids that were x-rayed twice were<br />

compared to insure that there were no serious deviations from the first set<br />

of x-rays. Three of the hyoids were x-rayed again due to differences in orientation<br />

and exposure problems between the first and second x-ray series.<br />

The data were submitted to two forensic pathologists, two forensic<br />

anthropologists, and two forensic anthropology graduate students for comparison<br />

and matching of the 10 simulated unknown individuals. Each of<br />

the participants performed their analysis independently at different times<br />

and places. Participants were asked to compare each of the 10 lateral radiographs<br />

to the entire population of 50 hyoids to examine the possibility<br />

that more than one hyoid could match one from the test group. Part of the<br />

analysis involved asking the participant to report the specific anatomical<br />

criteria for justifying the identification.<br />

Based on this sample, the variability of the hyoid bone allows<br />

individuals to be discriminated radiographically. None of the participants<br />

mismatched or included any other hyoids as a possible match. The most<br />

useful attributes for identification were reported by the participants to be<br />

the shape and cross-sectional architecture of the hyoid body, and the shape<br />

* Presenting Author<br />

of the greater horns. Other important distinguishing characteristics<br />

included trabecular patterns of the hyoid body and greater horns, the shape<br />

of the terminal greater horns, the angle of the body to the greater horns,<br />

and radiopacity or radiolucency of the greater horn/body junction.<br />

The results of this study demonstrate that the radiographic configuration<br />

of the hyoid represents an individualizing skeletal element that can<br />

be used for purposes of human identification. Forensic anthropologists<br />

and forensic pathologists will benefit from the replicable technique<br />

employed in this study. The positioning and x-ray unit settings were<br />

selected based on a review of antemortem lateral cervical radiographs.<br />

The application of this technique does not require the removal of the hyoid<br />

for approximation and interpretation.<br />

Human Identification, Hyoid, Comparative Radiography<br />

H57 Musculoskeletal Stress Markers:<br />

An Exploration of Forensic Applicability<br />

Brian F. Spatola, MA*, Department of Geography and Anthropology,<br />

Louisiana State University, Baton Rouge, LA<br />

The goal of this research project is to report a method of evaluating<br />

musculoskeletal stress markers for use in human identification.<br />

Musculoskeletal stress markers (MSM) are sometimes used by<br />

physical anthropologists to evaluate activity patterns in skeletons from historic<br />

and prehistoric populations. Forensic anthropologists, as well, have<br />

long been interested in the potential to use MSM when reporting on<br />

unidentified human skeletons, but are often hindered in their efforts by the<br />

paucity of modern references and the lack of standards for MSM<br />

evaluation.<br />

MSM consist of remodeled regions of muscle attachment (i.e., the<br />

enthesis) which are attributable to musculoskeletal stress along with<br />

potential genetic, hormonal and dietary components. Examples of MSM<br />

include robust or enlarged markers of the adductor magnus insertion<br />

which can be the sign of a horseback rider and stress lesions or a<br />

depression of the costoclavicular ligament which can be found on males<br />

of populations known to paddle kayaks.<br />

The normal variation of MSM in modern populations is virtually<br />

unknown. MSM evidence from past populations is documented in the<br />

literature often used by forensic anthropologists, but modern examples<br />

remain largely anecdotal. Modern individuals are not generally engaged<br />

in the specialized forms of labor as members of past populations often<br />

were. Thus, modern MSM must be evaluated statistically and not in<br />

pursuit of occupational titles which may confound investigations.<br />

Some physical anthropologists believe that attempts to deduce<br />

specific activities from skeletal material lead to speculative conclusions.<br />

One alternative to this practice is to examine the organization of activity<br />

suggested by MSM throughout the entire skeleton. In this study, MSM<br />

research on a modern population (n=30) focused on the interpretation of<br />

data with respect to sex, weight, bilateral distribution of MSM scores and<br />

age. The range and variability of MSM expression in this population<br />

provide a generalized profile for evaluating individual skeletal remains.<br />

In order to evaluate a contemporary population, a descriptive, ranked<br />

method was used to determine the distribution of MSM in 39 post-cranial<br />

attachment areas, or entheses, using a post-1970s sample. Thirty skeletons<br />

from the Maxwell Museum of Anthropology and the Forensic<br />

Anthropology and Computer Enhancement Services Laboratory (FACES)<br />

were used. All skeletons were visually screened for bone modifying<br />

processes associated with known rheumatic and metabolic disorders.<br />

Twelve of the 30 skeletons had some documentation as to the individual’s<br />

occupation at time of death. Magnitudes of both robust markers and stress<br />

lesions were evaluated. MSM attributed to injury (myositis ossificans)<br />

were disregarded since they often relate to isolated traumatic events and<br />

not prolonged periods of stress.<br />

604


Wilcoxon signed ranks tests revealed significant bilateral distribution<br />

differences in MSM scores peculiar to both males and females.<br />

Additionally, scores in males show greater correlation with age using<br />

Spearman’s coefficients than females. Overall, age appears to have a<br />

limited effect on MSM scores for individuals between the ages of 20-59<br />

using chi-square. Males show greater correlation of upper body muscle<br />

pairs. In both sexes, the lower body shows increased correlation of pairs<br />

when compared to the upper body. Weight was shown to correlate with a<br />

variety of MSM sites in both sexes.<br />

Individual skeletons with anomalies can be easily visualized using<br />

boxplot graphs. Comparisons of individuals against the population can<br />

reveal regional differences involving musculature which often work<br />

together in groups. Anomalies in individuals may be compared with distribution<br />

statistics for the appropriate sex to ascertain regional differences<br />

that are inconsistent with the population as a whole.<br />

The elucidation of musculoskeletal anomalies may be useful in<br />

human identification since individuals with extraordinary MSM may<br />

reveal patterns of biased recruitment of muscle groups used in habitual<br />

activities or in tandem with variations in morphological characteristics of<br />

individual skeletons. MSM are not only important markers of osteoindividuality,<br />

but are potentially useful when comparing medical records,<br />

radiographs or biographical profiles of unidentified persons.<br />

Musculoskeletal Stress Markers, Osteoindividuality, Human<br />

Identification<br />

H58 Be Tenacious in Your Searches<br />

for Clandestine Burials: A Lesson<br />

From the Field<br />

Ann W. Bunch, PhD*, and Calvin Y. Shiroma, DMD, U.S. CILHI,<br />

310 Worchester Avenue, Hickam Air Force Base, Honolulu, HI<br />

The attendee can expect to learn how to use all possible information<br />

and methods available to him/her in order to discover clandestine<br />

burials/remains.<br />

In August 1971, a U.S.-manned armored patrol car (APC) moving to<br />

a night defensive position near Hoi An City, South Vietnam, was hit by<br />

enemy rocket-propelled grenade fire. This offensive action resulted in the<br />

deaths of all six soldiers aboard the vehicle. One of their bodies was not<br />

recovered. After-action reports from American eyewitnesses stated that<br />

the APC had exploded violently, as it was carrying various types of ammunition.<br />

These U.S. witnesses suggested that the lost soldier’s remains<br />

would likely never be found, as they were completely disintegrated in the<br />

explosions.<br />

Joint investigative teams followed up on this incident in the 1990s,<br />

interviewing Vietnamese witnesses who claimed to have buried the<br />

remains of an American in a nearby rice field after the U.S. troops had<br />

evacuated the area after the incident. One witness claimed to have<br />

disturbed the buried remains in the 1980s, however, with additional investigation,<br />

analysts deemed this individual “unreliable.”<br />

In May 2000, a joint recovery team from the U.S. Army Central<br />

Identification Laboratory, Hawaii (CILHI) and the Joint Task Force-Full<br />

Accounting (JTF-FA) was sent to this incident location, admittedly with<br />

low expectations of success. Five witnesses were initially interviewed and<br />

excavation began in earnest. A combination of excavation techniques<br />

(e.g., trenching, shovel-skimming, test pits), screening (dry and wet), and<br />

witness interviews were utilized in order to recover any remains. A key<br />

sixth witness eventually “cracked the case” for the team. The result was<br />

the recovery of dental remains, a dental prosthesis, and supporting<br />

material evidence. The seventeen teeth and partial denture were positively<br />

identified as the missing soldier from the August 1971 incident.<br />

Forensic Recovery, Clandestine Burial, Witness Interviews<br />

H59 The Importance of Recovered Life-Support<br />

Equipment In the Resolution of MIA Cases<br />

Chester E. Moore, II, PhD*, U.S. Army Central Identification<br />

Laboratory, 310 Worchester Avenue, Hickam Air Force Base,<br />

Honolulu, HI<br />

The attendee will learn that search and recovery of life-support<br />

equipment from military aircraft crashes can provide circumstantial<br />

information that can lead to resolution of MIA cases.<br />

The United States Army Central Identification Laboratory, Hawaii<br />

(CILHI) is responsible for the recovery and identification of U.S. service<br />

members killed and missing during World War II the Korean War, and the<br />

Cold War era. For the past five years, the CILHI mission has emphasized<br />

the search and recovery and identification of the U.S. service members<br />

killed and missing during the Vietnam War. The CILHI deploys search<br />

and recovery teams to Vietnam, Laos, and Cambodia to conduct archaeological<br />

excavations of aircraft crash sites and isolated burials. The greatest<br />

percentage of cases involving unaccounted-for U.S. service members<br />

involves aircraft crash sites of jets, helicopters, and propeller-driven<br />

airplanes. Inside these aircraft are life-support systems and life-support<br />

equipment that enable the aircrew to survive the stresses of flight while in<br />

the aircraft and in the event of an impending crash, to survive in a<br />

hostile/enemy environment should they survive the crash or successfully<br />

egress from the aircraft before crashing.<br />

When a search and recovery team excavates an aircraft crash site, the<br />

team may recover human remains, personal effects, life-support<br />

equipment (flight suit, anti-gravity suit [G-suit], helmet, oxygen mask,<br />

parachute, survival vest, and survival kit) and aircraft wreckage that may<br />

identify the type of aircraft (data plates and part identification numbers).<br />

The human remains and personal effects are repatriated to the CILHI<br />

where forensic anthropologists and odontologists attempt to establish<br />

positive biological identification, either through the traditional use of<br />

forensic anthropology and odontology or through the use of mitochondrial<br />

DNA analysis. Additionally, if the team recovers life-support equipment<br />

and significant pieces of aircraft wreckage such as data plates and aircraft<br />

identification numbers, this evidence is sent to the Headquarters of the<br />

Joint Task Force-Full Accounting (JTF-FA) where it is analyzed by lifesupport<br />

technicians (LST). In cases where further and extensive analysis<br />

is needed the evidence may be sent to the Life Sciences Equipment<br />

Laboratory (LSEL) at Kelly Air Force Base, San Antonio, Texas, where a<br />

team of scientists skilled in aeronautical engineering analyzes it, aircraft<br />

crash analysis, and life-support equipment analysis. The information<br />

provided by the LST and the LSEL is critical in instances when the human<br />

remains recovered at the crash site cannot be biologically associated to the<br />

unaccounted-for individual or when human remains are not recovered.<br />

This information may provide compelling and circumstantial evidence on<br />

the fate of the unaccounted-for individual, i.e., the individual(s) who<br />

perished in the aircraft crash or successfully ejected.<br />

This paper will provide two recovery scenarios: 1) an excavated<br />

aircraft crash site where the recovery of human remains and life-support<br />

equipment provided information to make an identification and provide<br />

information on the fate of the crewmember, and 2) an excavated aircraft<br />

crash site where the recovery of possible human remains (it is yet to be<br />

determined whether the remains are human or not human) and life-support<br />

equipment, circumstantially indicate that the unaccounted-for individual<br />

was in the aircraft at the time of impact.<br />

The recovery of life-support equipment, in addition to human<br />

remains (if they are recoverable and whether they may be biologically<br />

associable or not), personal effects, and significant aircraft wreckage, may<br />

provide significant information to answer the proverbial questions of who,<br />

what, when, where, why, and how and to provide information that can<br />

assist in determining the fate of the unaccounted-for individual.<br />

In summation, the two cases presented here illustrate the importance<br />

of the recovery of life-support equipment, what one can determine from it,<br />

605 * Presenting Author


and how the use of this information can provide circumstantial evidence<br />

in the resolution of MIA cases.<br />

Human Remains, Life-Support Equipment, Search and Recovery<br />

H60 Recovery and Identification Challenges<br />

in a Case of Suicidal Self-Cremation<br />

Emily A. Craig, PhD*, <strong>Medical</strong> Examiner's Office, 100 Sower Boulevard,<br />

Suite 202, Frankfort, KY; and Corky Deaton, DMD, Consulting Forensic<br />

Odontologist, 359-C South Fourth Street, Danville, KY<br />

This research project will present to the forensic community a case<br />

report that demonstrates improvised scene recovery techniques which led<br />

to positive identification in a unique case of suicidal self-cremation.<br />

This presentation outlines how a multidisciplinary group of investigators<br />

recovered and identified an individual who had burned for four days<br />

inside a huge truck tire. Rescue and recovery personnel were faced with a<br />

unique crime scene that was complicated by extreme climatic conditions.<br />

On November 28, 2000, in Adair County Kentucky, a man left a<br />

suicide note on his kitchen table. His wife was out of town and did not read<br />

the note until three days later. Upon her return, she contacted an emergency<br />

911 center in Adair County, and a search team responded. On the<br />

night of December 1, a huge smoldering TS?24 vehicle tire (88.6 inches<br />

in diameter) was discovered in a remote section of the decedent's property.<br />

Although the tire was still burning, first responders could see what<br />

appeared to be calcined bone fragments, remnants of a homemade<br />

shotgun, and a propane tank within the circumference of the tire. The tire<br />

had apparently been rolled to this remote site, laid on its side, and bolstered<br />

with firewood. The position of the skeletal remains indicated that<br />

the victim had been siting in the tire with his head and shoulders against<br />

one side, and his buttocks on the bare ground. The presence of the propane<br />

tank and the shotgun near the feet of the victim corroborated evidence of<br />

suicide. Also the victim had apparently previously plowed three<br />

tractor?width furrows around the tire to create a buffer which prevented<br />

any spread of the fire. At the coroner's direction, the scene was secured and<br />

left undisturbed until daylight the following day. This action was a critical<br />

component in the successful outcome of the investigation.<br />

On December 2, the scene was processed. By improvising and elaborating<br />

upon usual and customary methods of fire suppression, the fire<br />

fighters were able to insure the safety of the recovery team while preserving<br />

the physical integrity of the evidence. Severe winter weather,<br />

which included heavy sleet and freezing rain, complicated the recovery of<br />

the remains. As this precipitation fell onto the remaining fragments of<br />

teeth and bone, these materials would shatter. Any cover placed over the<br />

still?smoldering tire would have presented a safety hazard and a predicted<br />

heavy snowfall prevented a simple wait?and see protocol. A delicate<br />

balance between fire suppression and skeletal material recovery ensued<br />

and this took approximately three hours to complete.<br />

Once skull fragments were located this area was carefully processed.<br />

As visible skeletal and dental materials were recovered they were<br />

immediately transferred to the heated cab of a truck where they were laid<br />

on sheets of aluminum foil and allowed to cool slowly. The remaining ash<br />

and debris from this area were swept into a dustpan and transferred in<br />

small amounts to individual paper sacks lined with aluminum foil.<br />

Remnants of teeth, bones and numerous shotgun pellets were thus<br />

recovered from the same immediate area as the skull fragments. The postcranial<br />

elements were recovered and placed in a number of small plastic<br />

boxes, each labeled according to the corresponding anatomical area. The<br />

recovered bone was extremely fragile and approximated that seen in<br />

commercial cremations at the end of the firing stage, with a total residual<br />

weight of 2.17 kg.<br />

The coroner was able to retrieve several antemortem cranial and<br />

postcranial radiographs, but almost total thermal destruction of bones -<br />

precluded positive identification from skeletal radiographic comparison.<br />

* Presenting Author<br />

Nevertheless, the careful and thorough recovery of ash and debris at the<br />

scene produced dental materials that could be used for antemortem/ postmortem<br />

comparison. As each bag of ash was x?rayed, the radiographs<br />

revealed the presence of shotgun pellets as well as other radiopaque<br />

objects. This ash was then screened and washed to reveal<br />

porcelain?fused?to?metal crowns, which had remained remarkably intact<br />

even after prolonged exposure to extreme heat and the subsequent<br />

exposure to freezing rain. These were sufficient for positive identification.<br />

Forensic Anthropology, Forensic Odontology, Crime Scene<br />

H61 Accident, Suicide, or Homicide: A Case<br />

Study Involving the Investigation of<br />

Skeletonized and Bear-Scavenged Remains<br />

William C. Rodriguez III, PhD*, Office of the Armed Forces <strong>Medical</strong><br />

Examiner, Armed Forces Institute of Pathology, 1413 Research<br />

Boulevard. Building 102, Rockville, MD<br />

The presentation will demonstrate the perplexity of investigations<br />

involving human remains which have been scavenged by animals. A<br />

selected case study will present evidence of postmortem bear scavenging<br />

in which the interpretation of gnawing patterns along with scene evidence<br />

provided crucial answers to a perplexing death.<br />

Human remains scavenged by animals can present a number of difficulties<br />

to investigators. Damage to soft tissues and/or skeletal elements<br />

may be misinterpreted as an antemortem injury resulting from human<br />

interaction. Recognition of animal gnawing, specifically identifying tooth<br />

marks and scavenging patterns are essential in providing important evidence<br />

in many cases of questionable death. Over the years, bears in<br />

wilderness areas of the U.S. have attacked a number of humans. Many of<br />

these bear attacks have resulted in serious injuries, some of which have<br />

resulted in death. Investigation of a death involving human remains<br />

recovered from a wilderness area that is populated by bears can be especially<br />

problematic. In such cases, questions arise as to whether death<br />

resulted from a bear attack, or by other means.<br />

One such case involved the death of a nineteen-year-old soldier<br />

whose badly decomposed remains were discovered in a remote wilderness<br />

area near Mt. Home Air Force Base, Idaho. Two hunters discovered the<br />

remains of the young soldier in late October of 1999. According to investigative<br />

reports, the deceased was reported to have been last seen on<br />

September 5, 1999 when he left his residence during the early morning<br />

hours in order to go scouting for wild game. The remains of the young<br />

soldier were initially transported to Mt. Home Air Force Base, ID, where<br />

dental comparisons were conducted, to establish positive identification.<br />

Later the remains were transported to the morgue and laboratory facilities<br />

of the Armed Forces <strong>Medical</strong> Examiner in Washington, DC. Detailed fluoroscopic<br />

examination of the remains including the clothing that remained<br />

on the body revealed no foreign objects or metallic fragments.<br />

Gross examination of the body revealed it to be in a highly decomposed<br />

state with partial mummification and skeletonization. No internal<br />

organs were present with the exception of a small amount of decomposed<br />

brain matter located within the skull. The body was noted to be in a<br />

contorted position as the result of postmortem animal movement and<br />

mummification. Most of the tissues of the head and face were present and<br />

in a mummified state with the exception of the right side of the head where<br />

the skull was exposed as the result of a large open defect over the right<br />

frontal, sphenoid, parietal and temporal bone area. Multiple sites of<br />

animal gnawing were noted on the remains as well as the clothing. The<br />

most prominent area of animal gnawing was an area along the upper left<br />

chest where the clothing was torn through and through, with significant<br />

damage to the underlying musculature of the chest.<br />

Three personal items of particular note which were examined<br />

included a gold wedding band, a camouflaged baseball style cap, a nylon<br />

back pack, a 35 mm camera, and a .30-06 caliber rifle. The back pack<br />

606


which was still attached to the deceased did not exhibit evidence of tearing<br />

or tooth marks, the ring was noted as being somewhat deformed, and the<br />

right half of the brim of the baseball cap was found to be missing with<br />

ragged borders. Examination of the animal tooth marks and gnawing<br />

patterns on the remains found them consistent with a large carnivore,<br />

specifically a bear. All of the tooth marks were determined most likely to<br />

have occurred postmortem as scavenging activity. Examination of the<br />

skull, including additional fragments and dentition, which were located<br />

during a secondary recovery effort, were negative for animal tooth marks<br />

or gnawing patterns. The extensive fracturing of the skull was found to be<br />

most consistent with that of a grazing gunshot wound to the right side of<br />

the head.<br />

Film developed from the recovered camera included photographs<br />

depicting the deceased smiling while posing with a recently killed coyote.<br />

Also noted in the photographs was the location of the deceased standing<br />

just a short distance below the rocky ridge where his remains were<br />

recovered. Examination of the recovered rifle revealed that a single round<br />

had been fired and that the spent cartridge remained within the rifle<br />

chamber. Testing of the rifle by ballistic experts noted that the rifle’s sear<br />

had been modified to produce a “hair trigger.” The hair trigger, which was<br />

gauged at one pound and six ounces, resulted in the rifle being extremely<br />

unsafe, discharging if dropped from a height of two inches, or by tapping<br />

on the rifle’s stock. Death of the subject which was initially thought possibly<br />

to be the result of a bear attack was ruled as resulting from a single<br />

gunshot wound to the head. It is believed that the subject slipped during<br />

his assent of the rocky ridge, thus accidentally, discharging his rifle.<br />

Postmortem Changes, Tooth Marks, Skeleton<br />

H62 From Caffey (1946) to Kempe (1962):<br />

Historical Perspectives of the Recognition<br />

of Child Abuse<br />

Steven A. Symes, PhD*, Department of Forensic Pathology, University<br />

of Tennessee, Memphis, 1060 Madison Avenue, Memphis, TN;<br />

C. Ferraro, PhD, Long Island University, Long Island University,<br />

Brookville, NY, Susan B. Patton, MNSc, and O’Brian C. Smith, MD,<br />

Department of Forensic Pathology, University of Tennessee, Memphis,<br />

1060 Madison Avenue, Memphis, TN; and A.M. Kroman, BA,<br />

Department of Anthropology, University of Tennessee, Knoxville, 252<br />

South Stadium Hall, Knoxville, TN<br />

This paper attempts to critically examine physicians’ treatment of<br />

trauma in children in the earlier part of the last century.<br />

This historical review of the medical literature examines the recognition<br />

of child abuse from the perspective of the physicians in the first half<br />

of the 20th century. The literature reveals an interesting mix of obsessions<br />

with accurate diagnosis of bone fracture and hesitance to associate severe<br />

trauma in children with caretaker abuse. As Silverman so aptly states:<br />

Perhaps no body system of infants has been studied more intensively by the<br />

roentgen technique than the skeletal system. It is surprising, therefore,<br />

that physical trauma, probably the most common bone “disease” of<br />

infancy, should have certain roentgen manifestations which perplex physicians<br />

when discovered accidentally (Silverman 1953).<br />

When Kempe introduced his brazen phrase “Battered Child<br />

Syndrome” in 1962, he accomplished his intended purpose: to inflame the<br />

public into an awareness of child abuse. Although seldom used today,<br />

Kempe’s terminology also struck a cord in the medical community, producing<br />

a heightened awareness of abuses to children that still exists today.<br />

Kempe was not the first to discover child abuse. Beginning in the<br />

1940s, Caffey encouraged the medical profession to be suspicious of<br />

trauma in children. The culmination of his 20 years of experience and<br />

research prompted him to suggest that a correlation may exist between<br />

subdural hematoma, bone fractures, and caregiver abuse (Caffey 1946).<br />

So how does the early 20th century fare in the recognition of child<br />

abuse? One typical published case is illustrated below in table 1:<br />

Table 1. Case Study: This is a child born prematurely into a healthy<br />

family of 2 children. Clinical findings and comments are given below (all<br />

from Astley 1953).<br />

Age of Complaint History Radiographic<br />

Victim of Injury Healing Trauma<br />

or Other Injury<br />

6 months Lt Arm and Shoulder None Andy Proximal Lt<br />

Comments—“bones normal in all other respects . . .” Humerus, 15<br />

“…no osteoporosis” Posterior Healing<br />

Ribs, Distal Rt<br />

radius, Distal Lt<br />

Ulna, Distal Rt<br />

& Lt Femur,<br />

Proximal Lt Tibia,<br />

Distal Rt and Lt<br />

Tibia, Distal Rt<br />

Fibula<br />

12 months Rt Elbow None Distal Rt and Lt<br />

Humerus, Distal Lt<br />

Tibia Proximal Rt<br />

& Lt Tibia, Distal<br />

Rt & Lt Femora<br />

17 months Rt Leg Fell out of Acute Rt Femur<br />

Comments—“united normally . . .<br />

appeared firm 2 months later”<br />

a pram Shaft Fx<br />

23 months Rt Leg Relearning to Acute Rt Femur<br />

Comments—“united in a month” walk Shaft Fx<br />

32 months None Rib Fx and Acute<br />

Comments—“still very well” e: Lumbar 2 Body Fx<br />

Curvature or<br />

irregular outline of<br />

the Proximal Lt<br />

Humerus, Rt and Lt<br />

Elbows, Lt Tibia<br />

39 Months None Lt Retinal<br />

Comments—“…healthy looking girl” Detachment Lt<br />

Humerus, Deformity<br />

of Lt Tibia<br />

Final Comments— . . most of these [fractures] produced little disturbance and<br />

many were chance findings on X-ray exam.It is difficult to believe that a normal<br />

child could have such extensive lesions without a very definite story of trauma<br />

and without considerable pain. Thus whiled trauma is probably a factor in this<br />

condition, it seems likely that there is some additional underlying structural<br />

abnormality . . . the title of Metaphyseal Fragility of Bone is suggested as a<br />

provisional label for the syndrome (Astley 1953).<br />

In this blatant child abuse case, you can see physician attempts to<br />

explain these pathologies medically while ignoring indicators of abuse,<br />

thus the diagnosis of “Metaphyseal Fragility of Bone.” This represents<br />

just one of many child diagnoses seen in the literature that appears glaringly<br />

obvious today, but at the time were either misunderstood or mischaracterized.<br />

Physician denial of child abuse was commonplace in this<br />

time period, especially considering that physicians often knew their<br />

patients and were unaccustomed to the role of the accuser. Physicians<br />

solve medical, not social problems. Before public and legal consciousness<br />

was stimulated in the 1960s, children were often left to their own destiny.<br />

This historical review allows medical professionals a critical inspection of<br />

the past, while demonstrating that patterns of abuse remain the same; only<br />

the recognition has changed.<br />

References:<br />

1. Astley, R., 1953, Multiple metaphyseal fractures in small children (metaphyseal<br />

fragility of bone). British Journal Radiology, 26:577-583.<br />

2. Caffey, J., 1946, Multiple fractures in the long bones of infants suffering from<br />

chronic subdural hematoma. American Journal of Roentgenology. 56:163-173.<br />

607 * Presenting Author


3. Kempe, C.H., Silverman, F. N., Steele, B. F., Droegemueller, W, and Silver, H.K.<br />

1962 The battered child syndrome Journal of the American <strong>Medical</strong> Association.<br />

181:17-24<br />

4. Silverman, F.N., 1953, The Roentgen manifestations of unrecognized skeletal<br />

trauma infants. Am. J. Roentgenol. 69:413<br />

5. Lynch, M.A., 1985, Childe abuse before Kempe: an historical literature review.<br />

Child Abuse & Neglect. 9:7-15<br />

Child Abuse, Bone Fracture, Battered Child Syndrome<br />

H63 Fracture Patterns in Abused Children:<br />

A Study of Skeletal Trauma Among<br />

Battered Children in a Clinical Cohort<br />

From the Leeds (UK) Metropolitan Area<br />

Saskia M. de Jager Burford, BA, MSc*, Department of Archaeological<br />

Sciences, University of Bradford, Bradford, United Kingdom; Robert F.<br />

Pastor, PhD, The Calvin Wells Laboratory, Department of<br />

Archaeological Sciences, University of Bradford, Bradford, United<br />

Kingdom; and Christopher J. Hobbs, BSc, MB, BS, MRCP, Department<br />

of Community Pediatrics, Saint James University Hospital, Leeds,<br />

United Kingdom<br />

This presentation concerns the physical abuse of children, specifically<br />

the characteristics and patterns of non-accidental skeletal fractures<br />

for patients admitted to two hospitals in the area of Leeds, United<br />

Kingdom. The analysis of patterns of non-accidental fractures sustained<br />

by maltreated children can be used as a guide by the medical-legal<br />

community to determine if antemortem, perimortem, and/or postmortem<br />

fractures in children are the result of abuse.<br />

In this study, data concerning non-accidental fractures has been<br />

obtained from a study of the medical records of abused children with fractures.<br />

This data will create an added reference for fractures in abused<br />

children, specifically for the Leeds area. The discussion will place the new<br />

data in perspective with previous fracture pattern studies and accepted<br />

knowledge in order to establish validity and highlight the characteristics of<br />

abusive injury to children residing in inner urban areas of northern<br />

England.<br />

The occurrence of child maltreatment or abuse is more common than<br />

society may realize. In the broader definition of child abuse (including<br />

neglect, physical abuse, sexual abuse, and emotional abuse) at least one<br />

million children are abused each year in the United Kingdom. <strong>Medical</strong><br />

professionals, including those from the forensic community, often have<br />

primary responsibility for diagnosing and acknowledging child abuse.<br />

The recognition of non-accidental injury is one of the most important<br />

diagnoses a medical professional can make. An accurate diagnosis can<br />

save a child’s life or result in important information for the medical-legal<br />

authorities if the recognition is postmortem (Meadow 1997). According<br />

to Hobbs (1992) it is by physical abuse, or non-accidental injury, that the<br />

medical community often has its first concerns about a child suffering<br />

abuse. During the 1980s, approximately 1.5-2% of all children in Britain<br />

had been physically abused by the age of 17 years, and of the more severe<br />

cases of non-accidental injury between 200 and 230 deaths occurred<br />

annually. Hobbs et al. (1993) classifies non-accidental injury into superficial<br />

or dermatological injuries; deeper lesions; fractures, dislocations,<br />

wrenched limbs, and periosteal injury; thoraco-lumbar internal injury;<br />

intracranial and spinal injury; asphyxia, drowning, and poisoning; and<br />

fabricated disorders (Munchausen by proxy).<br />

The association of long bone fractures and subdural haematoma by<br />

Caffey (1946) began the recognition of child abuse as a medical condition.<br />

Since then, physicians have used skeletal fractures as a central<br />

part of the understanding and documentation of child maltreatment.<br />

Skeletal fractures have a high specificity for abuse and warrant extensive<br />

investigation in children who sustain them (Kleinman 1998). Analyses<br />

of child maltreatment cases have revealed a number of informative<br />

characteristics of fractures in abused children such as average age, sex,<br />

* Presenting Author<br />

socio-economic status, most commonly fractured bone, and the most<br />

common fracture type.<br />

In the current study medical records were examined from 180<br />

children under the age of three years, admitted for non-accidental skeletal<br />

fractures to St James’ University Hospital and Leeds General Infirmary in<br />

Leeds, West Yorkshire, U.K., during the period of 1990 to 1999. Results<br />

from the study revealed a skeletal fracture pattern for non-accidental<br />

abuse. The average age of the 180 children in the study was one year,<br />

more boys (58%) than girls were injured, and the majority of the children<br />

came from socially deprived areas (established from home postal codes).<br />

The bone most often fractured was the parietal bone (25%), and the most<br />

common fracture types were the single linear and rib fracture.<br />

Significance tests (chi-squared) revealed that abused children one-year of<br />

age and younger are at a significantly greater risk of skull fractures than<br />

older children in the group (χ² = 4.803; p< 0.05). Children of this same<br />

age were also found to be more at risk of sustaining multiple fractures than<br />

older children (χ² = 4.540; p


While some 2000 children die each year as a result of abuse or<br />

neglect by parents or caregivers, it is estimated that 10 times as many<br />

children survive abuse as die from it (Report of the U.S. Advisory Board<br />

on Child Abuse and Neglect, A Nation’s Shame 1995). Diagnostic<br />

imaging studies are often critical in assessment of infants and young<br />

children with evidence of physical injury, and the recognition of child<br />

abuse (AAP Section on Radiology, 2000). The Regional Forensic Center<br />

in Memphis, TN conducted research on the effectiveness of different radiographic<br />

views used to detect rib fractures in children. Skeletal injuries<br />

such as rib fractures, rarely pose a threat to the life of an abused child, yet,<br />

certain patterns of injury suggest the possible diagnosis of inflicted injury<br />

(Bulloch, et al, 2000; Shouldice & Huyer, 2000).<br />

Historically, rib fractures have been difficult to detect radiographically.<br />

To produce the highest diagnostic yield, imaging surveys must be<br />

performed at a high level of technical excellence but still remain at an<br />

acceptable cost. Based in part on the Kleinman (1996) study of 31 infants,<br />

the American Academy of Pediatrics Radiology Section (2000) has suggested<br />

that oblique views of the thorax may produce a higher yield than<br />

the recommended anterior/posterior (AP) and lateral views. However, few<br />

researchers have addressed or tested the predictive value of the oblique<br />

view in detection of rib fracture of an abused child.<br />

In the study presented, children from birth to eighteen years of age<br />

were examined externally, radiographically, during autopsy, and histologically<br />

to identify thoracic fractures. The attending pathologist, forensic<br />

anthropologist, and nurse researcher reviewed all radiographs. AP and<br />

lateral radiographs of the thorax were inspected, and a determination was<br />

made concerning the presence or absence of rib fractures. Oblique films<br />

were then examined, to test for improved visibility of fractures noted in the<br />

right and left posterior, and right and left anterior oblique views. Any<br />

radiograph accompanying a referred child was included in the study and<br />

viewed in the same manner. Ribs were also inspected at autopsy and<br />

palpated for abnormalities. For further examination, the attending pathologist<br />

or anthropologist excised ribs either suspected of fracture or lying<br />

adjacent existing fractures; the excised ribs were processed, photographed,<br />

and sectioned for histology. Histologic slides were reviewed by the<br />

attending pathologist both to confirm rib fracture and assist in determining<br />

the age of the fracture.<br />

Findings, gathered in the first twelve months of the study, indicate<br />

that for rib fractures not seen in the AP and lateral views, no significant<br />

positive predictive value was found by oblique view of the thorax. Initial<br />

findings suggest that the addition of oblique radiographs have yielded no<br />

significant additional diagnostic results, but limitations of the study may<br />

be contributory. While small sample size may likely be a valid limitation<br />

to the study, radiographic technique, angle, and lack of a radiologist<br />

assessment may be additional inhibiting variables. However, it must be<br />

emphasized that the purpose of this study was to facilitate medical examiners<br />

and other clinicians commonly lacking radiographic technologists,<br />

much less radiologists. In this regard, adopting guidelines promoted by the<br />

American Academy of Pediatric Radiologic Section can benefit forensic<br />

pathologists.<br />

References:<br />

1. American Academy of Pediatrics, Section on Radiology (2000). Diagnostic<br />

imaging of child abuse. Pediatrics, 105(6), 1345-1348.<br />

2. Brogdon, B.G. (1998). Forensic Radiology. Boston: CRC Press.<br />

3. Bulloch, B., Schubert, C.J., Brophy, P.D., Johnson, N., Reed, M.H., & Shapiro,<br />

R.A. (2000). Cause and clinical characteristics of rib fractures in infants. Pediatrics,<br />

105(4).<br />

4. , P.K., Marks, S.C., Nimkin, K., Rayder, S.M., & Kesler, S.C. (1996). Rib fractures<br />

in 31 abused infants: postmortem radiologic-histopathologic study. Radiology,<br />

200(3), 807-810.<br />

5. Report of the U.S. Advisory Board on Child Abuse and Neglect, A Nation’s<br />

Shame: Fatal Child Abuse and Neglect in the United States. U.S. Department of<br />

Health and Human Services, Washington, D.C., 1995.<br />

6. Shouldice, M. & Hyer, D. (2000). Non-accidental rib fractures. In T. J. David<br />

(Ed.), Recent Advances in Pediatrics. (pp. 63-76). Edinburgh: Churchill<br />

Livingstone, Inc.<br />

Child Abuse, Rib Fracture, Radiography<br />

H65 Recognizing Child Abuse in the<br />

Thoracic Region Through a<br />

Multidisciplinary Approach<br />

Dennis C. Dirkmaat, PhD*, Mercyhurst College, 501 East 38th Street,<br />

Erie, PA; Steven A. Symes, PhD, University of Tennessee Regional<br />

Forensic Center, 1060 Madison Avenue, Memphis, TN; Erik Vey, MD,<br />

Erie County Coroner’s Office, Erie County Courthouse, Erie, PA; and<br />

O’Brian C. Smith, MD, University of Tennessee Regional Forensic<br />

Center, 1060 Madison Avenue, Memphis, TN<br />

The goal of this presentation is to describe child abuse trauma to the<br />

thoracic region, which may be difficult to recognize or incompletely<br />

understood without a forensic osteological analysis.<br />

The recognition and subsequent presentation of persuasive evidence<br />

of child abuse is a difficult task often requiring evidence of:<br />

1) specific definitive trauma patterns, and 2) evidence of multiple or<br />

repetitive traumatic episodes (temporally distinct). The forensic<br />

pathology literature on soft tissue characteristics of child abuse is<br />

abundant, however, descriptions of osteological markers and patterns of<br />

chronic trauma in many areas of the skeleton are limited.<br />

Skeletal trauma in child abuse can be found in many regions of the<br />

body. Cranial trauma is highly visible and represents the most commonlydetected<br />

fatal traumatic site. Fractures of metaphyseal/epiphyseal junctions<br />

of the appendicular skeleton are rare in non-abuse cases and are<br />

radiographically distinct and easily found. Even though trauma in the thoracic<br />

region has a strong correlation to child abuse, this area remains one<br />

of the more difficult to detect fractures during external examinations and<br />

even following radiographic surveys of the body and may thus be underrepresented.<br />

Gross osteological analyses are often required to more<br />

definitively characterize traumatic defects associated with child abuse.<br />

It will be argued here that the unequivocal documentation of trauma<br />

in terms of specific defect location, morphology, severity and degree of<br />

healing requires a multidisciplinary effort of law enforcement and<br />

forensic specialists that necessarily includes a comprehensive osteological<br />

analysis of the remains completed by a accredited forensic<br />

anthropologist. The benefits of this approach to the identification and<br />

prosecution of child abuse cases will be illustrated through three cases.<br />

Focus is upon the thoracic region.<br />

Case 1: The first case involves a 3 ½ month-old white male who<br />

was transported to a hospital emergency room in full cardiac arrest. The<br />

mother reported that another young child allegedly fell and landed on the<br />

infant’s head. Early the next morning the child was found to be unresponsive.<br />

Multiple traumatic injuries were identified on the head back,<br />

legs and genitals. Radiologic studies revealed a posterior right parietal<br />

skull fracture and probable healing fractures to the sternal 1/3rd of left<br />

ribs 2-7 and left posterior 8th rib. Criteria for brain death were subsequently<br />

fulfilled, and life support measures were withdrawn. At the<br />

autopsy, the calvarium showed a simple non-displaced skull fracture to<br />

the posterior right parietal bone with multifocal overlying subgaleal<br />

hemorrhage. The cause of death was determined to be due to blunt force<br />

trauma to the head. In keeping with a previously established practice of<br />

multidisciplinary forensic cooperation, anthropologic consultation was<br />

undertaken in an effort to further evaluate and characterize the traumatic<br />

skeletal injuries.<br />

Following removal of all overlying soft tissue, the skull exhibited<br />

an incomplete linear fracture in the right parietal bone resulting from<br />

lateral bending forces on the bone and not direct blunt force trauma.<br />

Each of the six damaged left ribs exhibited a similarly-sized bony callus<br />

arranged in the linear “string of beads” pattern suggesting one specific<br />

episode of trauma. In addition, bony calluses were noted at the vertebral<br />

ends of left ribs 5 and 8. The size and configuration of the calluses<br />

(grossly and radiographically) indicated different degrees of healing<br />

relative to one another and relative to the sternal fractures. The<br />

comprehensive osteologic evaluation was vital in this instance in that<br />

609 * Presenting Author


three separate incidents of non-accidental trauma were identified which<br />

allowed the prosecution to establish of a “course of conduct” on the part<br />

of the defendant and resulted in a conviction.<br />

Case 2: Emergency medical personnel responded to a residence<br />

where a five month-old white male was in cardiac arrest. According to the<br />

primary care givers efforts to revive the child included CPR. A brief evaluation<br />

of the infant showed fixed and dilated pupils, no audible heart tones<br />

and slightly increased heart size. The initial diagnostic impression was<br />

severe hypoxic ischemic encephalopathy secondary to cardiopulmonary<br />

arrest, possibly due to sudden infant death syndrome or non-accidental<br />

trauma. A CT scan of the head did not reveal any hemorrhage or signs of<br />

trauma. A radiograph of the chest and subsequent bone scan revealed a<br />

possible healing fracture of the left 6th rib. The child’s neurologic condition<br />

continued to deteriorate and a decision was made to withdraw supportive<br />

ventilation.<br />

An autopsy revealed a cardiac laceration to the base of the right atrial<br />

appendage and a gastric contusion affecting the cardia of the stomach. In<br />

addition, an incomplete sternal fracture affecting the manubrial-sternal<br />

joint was identified. Potential fractures of a number of ribs were also noted<br />

though specific diagnosis of morphology, biomechanical etiology, and<br />

state of healing was not possible. The cause of death was determined to be<br />

hypoxic ischemic encephalopathy which developed as a consequence of<br />

blunt force trauma to the trunk.<br />

A subsequent forensic osteological analysis of the ribs indicated antemortem<br />

damage to the sternal portions of left ribs 2-7 and right ribs 2-6.<br />

The evidence consisted of previous linear fractures with minimal and large<br />

callus formation, and remodeled costochondral rib ends. The perimortem<br />

evidence included new fracture lines through healing defect sites on the<br />

ribs and a linear fracture through the mesosternal cartilage. Two and likely<br />

three separate and distinct trauma episodes were indicated and the caregiver<br />

arrested, thus negating the suggestion that CPR efforts alone led to<br />

the broken ribs.<br />

Case 3: The third case involves a 3-year-old boy rushed to a hospital<br />

in 1994 following a seizure, collapse and death. Although caretakers<br />

reported that the child had a history of seizures and was on medication for<br />

the condition, emergency room personnel contacted law enforcement<br />

authorities to report discrepancies between the reported history and the<br />

apparent traumatic condition of the child.<br />

External examinations at autosy revealed minimal findings with the<br />

exception of numerous linear marks associated with bruising evidence on<br />

the back of the child. When the case occurred, it was still customary for<br />

the autopsy to proceed before full body radiographs were taken, thus<br />

allowing the medical findings to dictate whether radiographs were<br />

necessary. Soft tissue damage included lacerations of the heart, liver and<br />

lungs. Numerous rib fractures were also identified and radiographs<br />

requested.<br />

Even though radiographs revealed little skeletal abnormality, the<br />

detailed osteological analysis revealed that all right ribs except 2 were<br />

fractured acutely. Of these, five were in the process of healing. Three of<br />

the seven fractured ribs were in repair. All healing appeared to be in the<br />

reparative stage suggesting similarly-aged previous trauma. The healing<br />

and re-fracturing of half of the broken ribs strongly indicates a repetitive<br />

pattern of abuse. While radiology was confusing in this case, invasive<br />

techniques by pathologists and anthropologists provide clear evidence for<br />

a court of law.<br />

Summary: Detailed evidentiary documentation of fracture locations,<br />

number of elements involved, and temporal variation of traumatic events<br />

all play a key role in the identification of child abuse and eventual<br />

successful prosecution. In all three cases described above, osteologic<br />

analysis was critical in establishing the repetitive nature of the non-accidental<br />

abuse and trauma and in a number of cases can successfully refute<br />

a potential “CPR defense” as an explanation for the injuries sustained<br />

during this child’s terminal event.<br />

Child Abuse, Thoracic Region Trauma, Forensic Osteological<br />

Analysis<br />

* Presenting Author<br />

H66 A Multidisciplinary Approach to Evaluate<br />

Chronic Malnutrition During Childhood in<br />

a Case of Suspected Fatal Child Abuse<br />

Susan M.T. Myster, PhD*, Hamline University, Department of<br />

Anthropology, Saint Paul, MN; Susan J. Roe, MD, Ramsey County<br />

<strong>Medical</strong> Examiner’s Office, 300 East University Avenue, Saint Paul, MN;<br />

Barbara H. O’Connell, PhD, Department of Anthropology, Hamline<br />

University, Saint Paul, MN; Janice J. Ophoven, MD, The Children’s<br />

Hospital, 345 North Smith Avenue, Saint Paul, MN; and Ann L.<br />

Norrlander, DDS, 1553 <strong>Medical</strong> Arts Building, 825 Nicollet Mall,<br />

Minneapolis, MN<br />

The goals of this presentation is to detail and promote a multidisciplinary<br />

approach to the identification and documentation of severe chronic<br />

malnutrition in children during autopsy.<br />

It has long been recognized that deaths due to child abuse and neglect<br />

are often misidentified as accidental or missed entirely and classified as<br />

natural. With this in mind, there has been a call for more aggressive<br />

autopsy techniques, utilizing a multidisciplinary team approach and<br />

focusing on a broader range of evidence, i.e., radiological, skeletal, dental,<br />

pathological, toxicological. Application of such an autopsy strategy has<br />

resulted in the identification of cases of abuse and neglect that may not<br />

have been identified previously. Conversely, such an aggressive autopsy<br />

approach may prevent an erroneous identification of manner of death as<br />

homicide and thereby reduce the risk of wrongful conviction.<br />

At 5:00 pm on June 8, 1992, a seven-year-old girl was pronounced<br />

dead in the Emergency Department of University <strong>Medical</strong> Center,<br />

Lubbock, Texas. At 7:30 pm that same evening an autopsy was<br />

performed; cause and mechanism of death were listed as “... a severe and<br />

chronic malnutrition which led to extensive emaciation resulting in metabolic<br />

acidosis and subsequent cardiac damage with cardiac arrhythmia and<br />

myocardial arrest.” Following an investigation, both parents were arrested<br />

and tried for the death of their daughter. Each was convicted of contributing<br />

to their daughter’s death. The father received a 10-year prison<br />

sentence, the mother, as primary care-giver, received a more severe<br />

sentence of 50 years.<br />

Following the mother’s conviction, Dr. Susan Roe was contacted by<br />

a colleague regarding the case and agreed to review relevant court, law<br />

enforcement, and medical records. After examining the autopsy report,<br />

autopsy photographs, medical records, microscopic slides, court documents<br />

and related reports, as well as consulting a second pathologist, a<br />

pediatric pathologist, and a forensic and cardiac pathologist, Dr. Roe concluded<br />

that the original autopsy findings were in error. Specifically, the<br />

materials reviewed could not support diagnoses of chronic malnutrition<br />

and cardiac damage from malnutrition. Following her review, Dr. Roe<br />

stated that the exhumation of the child’s body would aid in resolving the<br />

issues about this case and agreed to conduct a second autopsy. In 1996, as<br />

part of the mother’s application for writ of Habeas Corpus, the child’s<br />

body was exhumed and transported to St. Paul, Minnesota for the second<br />

autopsy. The condition of the remains warranted consultation of<br />

additional experts including forensic anthropologists, a forensic odontologist,<br />

and a pediatric pathologist to fully assess the original cause and<br />

manner of death.<br />

The anthropological and odontological examination centered on<br />

skeletal indicators of nutritional deficiency. Dietary sufficiency may be<br />

evaluated by measuring the concurrence of skeletal and dental development<br />

with known chronological age of the decedent. Additionally,<br />

skeletal and dental evidence of growth interruption and recovery may be<br />

observed on both skeletal and dental tissues. Dental development, long<br />

bone length, enamel hypoplasias, and Harris lines were evaluated. The<br />

stage of dental development observed is consistent with a 6.5 - 8.0 year old<br />

child. The maximum lengths of the femora, tibiae, and fibuale are consistent<br />

with a 6.0 - 9.0 year old child. No enamel hypoplasias were<br />

observed on the deciduous and permanent teeth present. Incomplete and<br />

610


faint Harris lines were observed on the distal end of the femora. Previous<br />

research has identified a relationship between Harris lines and enamel<br />

hypoplasias and various nutritional inadequacies. Enamel hypoplasias,<br />

however, are generally accepted as the more reliable and sensitive indicator<br />

of nutritional deficiency.<br />

The pathology examination and a review of the records contradicts<br />

the original autopsy findings. The original pathologist opined that the<br />

heart showed changes from malnutrition. The heart, however, is within<br />

normal limits for a 7-8 year old child. The organ weights are also within<br />

normal limits for the child’s age and the body fat visible in the autopsy<br />

photographs is within normal limits for this age child. Another factor used<br />

to support the original diagnosis of malnutrition was a fatty liver, the<br />

review of the records indicates that in fact the liver section was within<br />

normal limits for a child this age. Additionally, numerous vital studies,<br />

including postmortem vitreous electrolytes, postmortem culture results,<br />

and a bone marrow sample were not performed. In summary, the decedent<br />

was a 7-year-10-month-old female with normal body fat, normal organ<br />

weights, normal bone growth, and normal dental growth. Because many<br />

vital studies were not performed at autopsy, it is not possible to determine<br />

the manner or specific cause of death in this child. It is, however, clear<br />

that there is no evidence to support a diagnosis of chronic or acute malnutrition<br />

and, consequently, the reported manner of death as homicide.<br />

The multidisciplinary approach applied in this case highlights the contributions<br />

of a wide array of experts and the broad range of evidence that<br />

may be evaluated when investigating cases of suspected fatal child abuse.<br />

Although, the multidisciplinary team was originally assembled due to the<br />

advanced state of decomposition of the body, we advocate such a protocol<br />

for any case of suspected fatal child abuse to determine more accurately<br />

and to document more thoroughly the cause and manner of death<br />

Child Abuse, Multidisciplinary, Malnutrition<br />

H67 The Hidden Truth: Mandibular<br />

Condyle Fractures in Child Abuse<br />

A.M. Kroman, BA*, Department of Anthropology, University of<br />

Tennessee, Knoxville, 252 South Stadium Hall, Knoxville, TN; Steven A.<br />

Symes, PhD, O’Brian C. Smith, MD, and Jennifer C. Love, PhD,<br />

Department of Forensic Pathology, University of Tennessee, Memphis,<br />

1060 Madison Avenue, Memphis, TN; Harry H. Mincer, DDS, PhD,<br />

Division of Oral Pathology, Dunn Dental Building, Memphis, TN; and<br />

J.W. Lemmon, BS, Department of Forensic Pathology, University of<br />

Tennessee, Memphis, 1060 Madison Avenue, Memphis, TN<br />

Attendees will learn that mandibular fractures in infants may be more<br />

common as an indicator of child abuse than what the literature indicates.<br />

A high percentage of trauma in abused children occurs in the facial<br />

region. It has been stated that abusers often attack the face of a child<br />

because it “represents” the individual child (O’Neill et al. 1973). The most<br />

common areas of skull fractures in children, resulting from both accidents<br />

and abuse, are the parietals and post-parietal regions. Fractures that occur<br />

in other locations (such as the mandible) are also highly indicative of<br />

abuse (Hobbs 1984) but not as commonly identified. Identification of<br />

acute and healing fractures in the cranium and splanchnocranium are<br />

crucial to trauma analysis and establishing patterns of abuse.<br />

Mandible fractures are common in adults but have seldom been referenced<br />

in association with children, especially in cases of suspected<br />

abuse. This is a glaring contradiction to the reported high frequency of<br />

facial trauma in child abuse. This research suggests that facial fractures<br />

may be more common in child abuse, but often remain undetected.<br />

In a review of the 1998 child abuse cases from the Regional Forensic<br />

Center in Memphis, TN, two abuse cases illustrated mandibular condyle<br />

fractures. In the first case, a 10-month-old male was taken to the day care<br />

at 7:30 AM. That afternoon, the day care center alerted the parents that the<br />

child had a seizure, fell, and required emergency medical service. The<br />

child was admitted to the local children’s hospital in full arrest. CT scans<br />

revealed skull fractures. Local law enforcement and the medical examiners<br />

office were contacted because the history did not correspond to the<br />

severity of the injuries. The child was transported to the medical examiners<br />

office for examination.<br />

External exam illustrated that all of the injuries impacted the face and<br />

head. These included numerous acute contusions and abrasions. The<br />

forensic pathologist noted massive injuries to the posterior head including<br />

subgaleal hemorrhage, brain swelling, and fractures to the occipital,<br />

parietal, and internal border of the left eye orbit. After autopsy, several<br />

cranial bones were retained by the medical examiner for skeletal analysis<br />

by a forensic anthropologist. Skeletal analysis revealed radiating fractures<br />

from the basilar skull to the anterior frontal bone, and a fracture in the neck<br />

of the left mandibular condyle.<br />

The second case involved an 18-month-old female who was admitted<br />

to the local children’s hospital in full arrest. The child’s mother claimed<br />

that the child fell in the bath while being cared for by her current<br />

boyfriend. Local law enforcement and the medical examiners office were<br />

notified because the history did not correspond to the severity of the injury,<br />

which included an occipital bone fracture. The child was eventually transported<br />

to the medical examiners office for examination.<br />

The external exam revealed numerous acute contusions, abrasions,<br />

and lacerations, particularly to the face and head. The autopsy revealed<br />

subgaleal contusions on the occipital, bilateral occipital subdural hemorrhage,<br />

and occipital bone fracture. Several skeletal elements were retained<br />

for skeletal analysis, which revealed a healed mandibular condyle fracture,<br />

in addition to the occipital fracture. The healed condylar fracture is<br />

indicative of a pattern of abuse.<br />

Two questions arose from these cases. Do infant mandibles fracture<br />

differently from those of adults, and why are so few reported in cases of<br />

abuse? The infant mandible undergoes many rapid biomechanical changes<br />

during the first few years of life. Tremendous growth occurs in each<br />

mandibular ramus. Furthermore, the introduction of new foods changes the<br />

biomechanical demands placed on the condyles, generating a period of rapid<br />

bone reorganization. During this period, it is probable that an immature vs.<br />

mature mandible responds to external forces differently. Different biomechanical<br />

responses may be a contributing factor to the difficult identification<br />

on radiographic films, in external exams, and in autopsy. To correct this<br />

problem and visually identify fractures of the mandibular condyle,<br />

aggressive autopsy techniques are required by the forensic pathologist, with<br />

a complete anthropological examination to follow.<br />

References:<br />

Hobbs, C.J.<br />

1984 Skull fractures and the diagnosis of abuse, Archives of Disease in Childhood<br />

54: 246-252<br />

O’Neill, J.A., W.F. Meacham, P.P. Griffin, and J.L. Sawyers.<br />

1973 Patterns of injury in the battered child syndrome, The Journal of Trauma 13:<br />

332-339<br />

Child Abuse, Fracture, Mandible<br />

H68 Child Abuse Case: Multiple Forensic Issues<br />

Murray K. Marks, PhD*, and Kathryn H. Haden, MD, Department of<br />

Pathology, The University of Tennessee <strong>Medical</strong> Center, 250 South<br />

Stadium Hall, Knoxville, TN<br />

The goal of this presentation is to expose forensic investigators to<br />

many facets and intricacies associated with cases of child abuse.<br />

Introduction: On the evening of 16 October, 2000, the medical<br />

examiner’s office was notified of a four-month-old white male who had<br />

presented to a local emergency department in cardiac arrest. The baby’s<br />

past medical history was notable for a premature birth at 24 weeks<br />

gestation, followed by a lengthy (approximately 3 months) hospitalization<br />

in the neonatal intensive care unit. The baby survived many of the<br />

expected sequelae associated with prematurity, including respiratory<br />

distress syndrome and infections, only to be discharged home where he<br />

611 * Presenting Author


ultimately succumbed approximately one month later, to the violent and<br />

inexplicable act of child abuse.<br />

Clinical History: Premature male infant, born 11 June, 2000, by<br />

spontaneous vaginal delivery at 24 weeks gestation to a 17-year-old<br />

female. After spending approximately three months in the neonatal<br />

intensive care unit (NICU) before being discharged home with his parents<br />

on 2 September, 2000. While in the NICU, his parents would frequently<br />

disappear for several days at a time, despite agreeing to regularly<br />

scheduled visitations to become more proactive in his care. Hospital social<br />

workers became concerned over the repeated abandonment and two<br />

attempts to get DCS involved were unsuccessful. At the time of his discharge,<br />

arrangements were made such that the baby and his parents would<br />

be living with one of the baby’s grandparents in order to have greater<br />

access to medical care. On 6 October, 2000, he presented to the local<br />

children’s hospital for a respiratory illness, for which he was treated with<br />

nebulizers. At that time, he was noted to have unusual bruises over parts<br />

of his body and a forensic consult was sought. Skeletal radiographs<br />

showed buckle fractures involving the proximal left tibia and distal left<br />

radius. DCS was again contacted to investigate. However, it was felt that<br />

the fractures could be secondary to his prematurity and he was discharged<br />

home with his parents on 10 October, 2000. Per his parents and his<br />

paternal grandmother, on 13 October, 2000, he developed congestion<br />

requiring “breathing treatments.” Two days later, he had an apneic spell,<br />

“turned blue,” and required suctioning. He did better initially, but later that<br />

evening, he was noted to be lethargic and another “breathing treatment”<br />

was administered. In the early hours of 16 October, 2000, he was noted to<br />

be apneic, his father began administering CPR and called 911. He was<br />

essentially comatose at presentation to the Children’s Emergency Room<br />

and died several hours later. Child abuse was suspected after ophthalmologic<br />

examination revealed bilateral retinal hemorrhages and a chest x-ray<br />

revealed several rib fractures. Postmortem examination was ordered by<br />

law enforcement agents at the request of the medical examiner.<br />

Autopsy findings revealed multiple blunt force injuries caused by<br />

blows to the abdomen and chest causing multiple bilateral rib fractures,<br />

acute and remote, lung contusions, extensive liver and spleen lacerations<br />

and internal bleeding. Additionally, findings attributable to shaken infant<br />

Syndrome were also present, including but not limited to, bilateral retinal<br />

hemorrhages, acute subdural hematoma and cerebral edema. Abrasions<br />

and contusions were present around the anal canal, with mucosal hemorrhage<br />

of the distal rectum. Contusions were also noted on both lower<br />

extremities. Cause of death was attributed to multiple blunt force injuries<br />

and shaken infant syndrome.<br />

Anthropological analysis was performed on the entire rib cage to<br />

further understand the extensive fractures present. Not just acute bilateral<br />

fractures but healed rib fractures indicative of trauma two to three weeks<br />

prior were revealed. Histological analyses demonstrated a moderate<br />

degree of osteoblastic activity within the callus formation in the two to<br />

three week window when the antemortem fractures were sustained.<br />

A heated and emotional trial ensued against the father, resulting in a<br />

guilty verdict and sentencing to life in prison without the possibility of<br />

parole. No charges were ever filed against the mother. Testimonies by both<br />

the forensic pathologist and forensic anthropologist involved in the case<br />

were heard. However, part of the anthropological evidence was deemed<br />

inadmissible, adding a whole new dimension to the case.<br />

Most cases of child abuse are not isolated events. Not uncommonly,<br />

there are episodic bouts of trauma, that cultimate in a final, fatal event.<br />

Unfortunately, it is the opinion of our justice system that evidence of prior<br />

trauma is inadmissible in these instances, taking away proof of prior<br />

suffering the infant experienced during life, thereby possibly reducing the<br />

level of punishment imposed. Finally, the greater crime may be imposed<br />

by an inept child and family services programs who on numerous<br />

occasions dropped the ball on not only recovering the child from the home<br />

during his brief life, but for placing the infant in that environment in the<br />

first place.<br />

Child Abuse, Rib Fracture, Recognition<br />

* Presenting Author<br />

H69 Child Abuse: It’s All in the Recognition<br />

Steven A. Symes, PhD*, Susan B. Patton, MNSc*, T.D. Campbell, MD,<br />

Cynthia D. Gardner, MD, O’Brian C. Smith, MD, T. Paulette<br />

Sutton, MS, MT, and Craig T. Mallak, JD, MD, Department of<br />

Forensic Pathology, University of Tennessee, Memphis, 1060 Madison<br />

Avenue, Memphis, TN; and A.M. Kroman, BA, Department of<br />

Anthropology, University of Tennessee, Knoxville, 252 South Stadium<br />

Hall, Knoxville, TN<br />

The goals of this research project are to demonstrate how using a<br />

multidisciplinary approach for cases of sudden infant death lends the<br />

added expertise to allow the most accurate determinations of cause and<br />

manner of death.<br />

Historically, the ruling of manner and cause of sudden infant deaths<br />

has been challenging. This is due to a lack of eyewitness accounts and<br />

accurate historical records, not to mention the emotional involvement of<br />

the caregiver, law enforcement, and medical professionals. This problem<br />

has prompted the professionals at the Regional Forensic Center in<br />

Memphis to combine fields of expertise in the examination of sudden<br />

infant deaths. This multidisciplinary approach allows a more accurate and<br />

complete assessment of child mortality. While the forensic pathologist<br />

makes the final ruling, the enlistment of anthropology, nursing, bloodstain<br />

pattern analysis, and radiology can all contribute to a more complete<br />

investigation of children’s untimely death.<br />

Three case studies will demonstrate this multidisciplinary approach.<br />

Case 1: This 22-month-old male was found at home in full arrest by<br />

the mother’s boyfriend. Paramedics were called, but extensive resuscitation<br />

at the scene and in the emergency room could not save the child.<br />

When law enforcement interviewed the mother about her son’s death, she<br />

stated that he had been fine when she had left him in the custody of her<br />

boyfriend. The mother stated that her boyfriend had been rough to the<br />

child in the past.<br />

After pronouncement of death, the incident was reported to law<br />

enforcement and the body was transported to the medical examiner’s<br />

office. An examination into the child’s past medical history by the forensic<br />

nurse raised suspicion of past abuse. Seven months prior to the child’s<br />

death, caretakers claimed the child burned himself when a hot iron fell on<br />

him. There was also a report of a left humeral injury 6 weeks prior to<br />

death where victim “fell off a bed.” DHS was not notified in either case.<br />

External examination of the child revealed the burn scar on the calf of the<br />

right leg and multiple contusions and scars over the trunk and extremities.<br />

Radiographic findings included the healed periosteal elevation on the<br />

distal left humerus and a single acute fracture of right rib 7 that was suggested<br />

to be resuscitation related.<br />

Autopsy findings were unmistakable. Most noticeable were contusions<br />

of the intestine and a lacerated liver, suggestive of severe blows to<br />

the abdomen. The cause of death was ruled blunt force injuries to the<br />

chest and abdomen producing injury to vital organs, bleeding, and death.<br />

The anthropologist confirmed the existing fractures and examined each rib<br />

for acute or healing trauma. Even though nothing definitive was detected<br />

by examination of radiographic film or by palpation, ribs 6 through 8 were<br />

removed along with fractured rib 9, as well as the healing humerus.<br />

Examination of the ribs in a dry state produced more unexpected<br />

results. Each rib exhibited a healing fracture on the internal surface.<br />

While these rib defects were not visible radiographically, to the naked eye,<br />

or by palpation, their subtle presence provided unmistakable evidence for<br />

a pattern of abuse that existed long before the day the child died.<br />

Case 2: This case begins in the back of a garbage truck. As the<br />

attendant was compacting garbage into the truck, he noticed what<br />

appeared to be a human baby protruding out of a trash bag. Law<br />

enforcement officers and the medical examiner’s office were notified. The<br />

newborn was recovered from the truck, and found to be in the beginning<br />

stages of decomposition. The medical examiner decided to delay the<br />

autopsy until more information about the circumstances surrounding the<br />

discovery were obtained. The following day the medical examiner’s<br />

612


office was notified of a crime scene less than a block from where the<br />

newborn was discovered. At the crime scene, a female was found hanging<br />

in a closet by a ligature around her neck. Law enforcement suspected that<br />

the victim was the mother of the deceased infant.<br />

The crime scene was thoroughly examined, with the assistance of law<br />

enforcement, a bloodstain expert, pathologists, anthropologists, and a<br />

nursing practitioner. It was determined that the victim was the mother of<br />

the new born. There was evidence for a home birth that resulted in the<br />

natural death of the new born. Possibly distressed by the death, the mother<br />

resorted to suicide by cutting her wrist and neck before eventually hanging<br />

herself. Her death was ruled a suicide. The autopsy of the child produced<br />

suspicious results. There appeared to be subgaleal hemorrhage to the back<br />

of the head, and directly under the hemorrhage, were fissures in the<br />

occipital and parietal that appeared to be fractures. Was this child beaten?<br />

Anthropology was called in to confirm fractures, and within<br />

minutes, the lightly processed bones examined under magnification<br />

revealed that these were expected lateral fissures related to normal<br />

growing fetal skull bone.<br />

Case 3: An 18-month-old male was found choking in the home. The<br />

father started CPR and the mother called paramedics from a neighbor’s<br />

phone. Following extensive resuscitation attempts at the scene, the child<br />

was hospitalized for 48 hours and was pronounced dead in the intensive<br />

care unit. Interviews with the mother indicated that the child was in good<br />

health with the recent exception of vomiting and diarrhea associated with<br />

a common cold.<br />

Law enforcement was contacted immediately due to the unruly and<br />

uncooperative nature of the mother in the emergency room. At this time<br />

it was noted that the parents reported three different accounts of incidents<br />

leading up to the discovery of the choking child. The “best” story<br />

appeared to be that the child was being fed his bottle by an older sibling<br />

when he choked. The medical examiner’s office was contacted and the<br />

baby was transported to the Regional Forensic Center for examination.<br />

The forensic nurse examined the family and medical history of the<br />

infant, finding that an older daughter of the family had been placed into<br />

foster care for complicated medical problems since her parent’s home was<br />

identified as “unsuitable” to her care. Also, an older sibling of the<br />

deceased died at the age of four months, diagnosed with SIDS. The<br />

deceased appeared to have no prior medical history.<br />

This case obviously has numerous historical indicators of child<br />

abuse, including a suspect family history, injuries inconsistent with the<br />

child’s developmental age, history of injury changes, and caregivers<br />

unwilling to cooperate with authorities. There was no history or external<br />

evidence of previous injury and the child was well developed for his age.<br />

Autopsy findings produced no indicators of trauma. Besides the<br />

stigmata of medical intervention, there were no signs of abuse or neglect.<br />

However, dissection of the lung did reveal a foreign object. Imbedded<br />

deeply in the bronchus was a bead from a necklace. Upon reinterview<br />

with the parents, they confirmed that the child had been playing with a<br />

necklace shortly before eating. Cause of death was ruled aspiration of<br />

foreign body with occlusion of right bronchus.<br />

These cases illustrate how immature investigations or immediate<br />

medical findings can be deceptive and even misleading, especially in child<br />

abuse cases. But as medical examiners begin to depend more on a multidisciplinary<br />

team investigation, more information is utilized to influence<br />

decisions of cause and manner of death.<br />

Child Abuse, Bone Fracture, Trauma<br />

613 * Presenting Author

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!