21.01.2015 Views

Understanding Orbital Mechanics Through a Step-by-Step ... - AGI

Understanding Orbital Mechanics Through a Step-by-Step ... - AGI

Understanding Orbital Mechanics Through a Step-by-Step ... - AGI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNCLASSIFIED<br />

<strong>Understanding</strong> <strong>Orbital</strong> <strong>Mechanics</strong> <strong>Through</strong> a <strong>Step</strong>-<strong>by</strong>-<strong>Step</strong><br />

Examination of the Space-Based Infrared System (SBIRS)<br />

Denny Sissom –Elmco, Inc.<br />

May 2003<br />

www.stk.com<br />

Pg 1 of 27<br />

UNCLASSIFIED<br />

SSMD-1102-366 [1]


The Ground-Based Midcourse<br />

Defense Architecture (2004)<br />

UNCLASSIFIED<br />

SSMD-0403-433 [2]<br />

• Radars<br />

• IFICS (In-Flight Interceptor Communications System)<br />

• Ground-Based Interceptors<br />

• Battle Management (BMC3)<br />

• Space-Based Infrared System (SBIRS)<br />

– SBIRS High GEO (Geo-Stationary Orbits)<br />

– SBIRS High HEO (Highly-Elliptical Orbits)<br />

– SBIRS Low (Low-Altitude Orbits)<br />

– SBIRS Ground Station Processing (MCS)<br />

www.stk.com<br />

Pg 2 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

SBIRS Model Overview<br />

SBIRS High<br />

Launch Detection<br />

Boost Tracking<br />

SBIRS Communication<br />

Mission<br />

Control<br />

Station<br />

(MCS)<br />

Launch Detection<br />

Boost Tracking<br />

DSP/GEO<br />

2D Detection<br />

Report<br />

Mission Control Station<br />

•• One One Central CONUS Location<br />

•Boost and and Coast Tracking<br />

•Booster Typing<br />

•Launch Point Estimation<br />

•Impact Point Prediction<br />

SBIRS Architecture<br />

– Four Satellites in Geostationary<br />

Orbits (GEO)<br />

– Two Satellites in Highly<br />

Elliptical Orbits (HEO)<br />

– Twenty or more<br />

Satellites in Low Earth<br />

Orbit (LEO)<br />

– Ground-Based Mission<br />

Control Station (MCS)<br />

SBIRS Low<br />

Launch Detection<br />

Boost Tracking<br />

Mid-Course<br />

Tracking<br />

Discrimination<br />

DSP Payload<br />

• Scanner Only<br />

-SWIR Band<br />

-Periodic Revisit<br />

• GEO Satellites<br />

• Rotating Platform<br />

• Provides 2D<br />

Detection Reports to<br />

MCS<br />

LEO Payload<br />

• Acquisition Sensor<br />

-Wide FOV (WFOV)<br />

-SWIR Band<br />

-Boost Detection<br />

• Track Sensor<br />

-Narrow FOV<br />

(NFOV)<br />

-Multiple Wavebands<br />

-2-Axis Gimbal<br />

Control<br />

-Precise Midcourse<br />

Acquisition,<br />

Tracking, &<br />

Discrimination<br />

GEO<br />

Payload<br />

• Scanner<br />

–Rapid Global<br />

Coverage<br />

–SWIR, MWIR<br />

Bands<br />

–Taskable Scan<br />

Rate and Revisit<br />

• Starer<br />

–SWIR, MWIR<br />

Bands<br />

–Taskable Revisit<br />

• Follow-on and<br />

replacement for<br />

DSP<br />

SSMD-0403-433 [3]<br />

HEO Payload<br />

• Highly Elliptical<br />

Orbit (HEO)<br />

• Scanner Only<br />

- SWIR, MWIR<br />

Bands<br />

- Taskable Scan<br />

Rate and Revisit<br />

www.stk.com<br />

Pg 3 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

SBIRS Concept of Operations<br />

Animation Showing Concept of Operations<br />

From www.stk.com<br />

• SBIRS High (GEO and/or HEO)<br />

Acquire Target (SBIRS Low Can<br />

Also Acquire Target)<br />

• Data Transmitted From SBIRS<br />

High To Mission Control Station<br />

(MCS)<br />

• Track Data Is Transmitted From<br />

MCS To SBIRS Low<br />

• SBIRS Low Acquires And Hands<br />

Data Over From Acquisition<br />

Sensor To Track Sensor<br />

• Data Handed Over To Other SBIRS<br />

Low Spacecraft and MCS<br />

• Track Data Sent From<br />

MCS To Battle Manager<br />

SSMD-0403-433 [4]<br />

www.stk.com<br />

Pg 4 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Kepler’s Laws<br />

SSMD-0403-433 [5]<br />

Area 1 = Area 2<br />

Planetary<br />

Motion over<br />

30 Days<br />

Area 1<br />

Area 2<br />

Planetary<br />

Motion over<br />

30 Days<br />

Average Distance<br />

• Kepler’s First Law: The Orbits of Planets (or Satellites) are Ellipses with the Sun at a Focus<br />

• Kepler’s Second Law: The Orbits of the Planets Sweep Out Equal Areas in Equal Time<br />

• Kepler’s Third Law: The Square of the Orbit Period (The Time it Takes to Go Around Once)<br />

is Proportional to the Cube of the Average Distance to the Sun<br />

P<br />

=<br />

2π<br />

www.stk.com<br />

a<br />

μ<br />

3<br />

Where:<br />

P = Period (sec)<br />

a = Semi-Major Axis (km)<br />

m= Gravitational Parameter (km 3 /s 2 ) = GM earth<br />

G = Universal Gravitational Constant (Nm 2 /kg 2 )<br />

M earth<br />

= Mass of the Earth (kg)<br />

Pg 5 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Newton’s Law and the Restricted Two-<br />

Body Equation of Motion<br />

F<br />

v<br />

ma<br />

Newton’s Second Law<br />

SSMD-0403-433 [6]<br />

v<br />

=<br />

2<br />

−<br />

µ<br />

R<br />

E<br />

2<br />

m<br />

F g<br />

=<br />

Gm m<br />

1<br />

R<br />

r − µ<br />

E<br />

F m<br />

g<br />

=<br />

2<br />

R<br />

v<br />

R<br />

R<br />

v<br />

= ma<br />

2<br />

v<br />

R<br />

R<br />

= mR<br />

& v<br />

v<br />

R<br />

R<br />

& v µ<br />

+ = 0<br />

2<br />

R R<br />

Newton’s Law of Universal Gravitation<br />

Newton’s Law of Universal Gravitation in<br />

Vector Form with Earth as Central Body<br />

(m E = GM earth = 3.986 x10 14 m 3 /s 2 )<br />

Combining Newton’s Two Laws, assuming:<br />

(1) No perturbations (drag, earth’s oblateness, other planets, etc.)<br />

(2) Bodies are spherically symmetric<br />

(3) m 1 >> m 2<br />

We Get the Restricted Two-Body Equation of<br />

Motion Which is a Second-Order, Non-Linear,<br />

Vector Differential Equation – YUK!<br />

This Equation Represents a Conic Section (Circle, Ellipse, Parabola, or Hyperbola)<br />

www.stk.com<br />

Pg 6 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

A Few More Useful Equations for<br />

<strong>Orbital</strong> <strong>Mechanics</strong><br />

E<br />

=<br />

v<br />

H<br />

1<br />

2<br />

v v<br />

R × mV<br />

v v v<br />

h = R × V<br />

= Angular Momentum<br />

mV<br />

2<br />

mµ<br />

−<br />

R<br />

Specific Angular Momentum, where<br />

v<br />

h ≡<br />

Total Mechanical Energy for Orbiting Spacecraft<br />

(Must remain constant!)<br />

Apogee:<br />

High PE = -mµ/R<br />

Low KE = ½ mV 2<br />

E<br />

Earth<br />

v<br />

H<br />

m<br />

Perigee:<br />

Low PE = -mµ/R<br />

High KE = ½ mV 2<br />

SSMD-0403-433 [7]<br />

ε<br />

V 2<br />

= −<br />

µ<br />

2 R<br />

ε<br />

=<br />

−<br />

µ<br />

2a<br />

Specific Mechanical Energy, where<br />

Shows We can Easily Find Specific Mechanical Energy Just<br />

Knowing the Semi-Major Axis<br />

- e is negative for circles and ellipses<br />

- e is zero for parabolas<br />

- e is positive for hyperbolas<br />

ε<br />

≡<br />

E<br />

m<br />

www.stk.com<br />

Pg 7 of 27<br />

UNCLASSIFIED


Geocentric – Equatorial<br />

Coordinate System<br />

UNCLASSIFIED<br />

SSMD-0403-433 [8]<br />

• Origin –Center of Earth<br />

• Fundamental Plane –Earth’s Equator<br />

• Principle Direction (I-Axis)<br />

– Vernal Equinox Direction Found <strong>by</strong> Drawing a Line from the Earth to the<br />

Sun on the First Day of Spring<br />

– Points at First Star in Aries Constellation (First Point of Aries)<br />

– Denoted <strong>by</strong> Ram’s Head Symbol –<br />

– Wanders Due to Earth Spin-Axis Wobble<br />

– Because of the Wobble, Sometimes the Vernal Equinox Direction is<br />

Specified at a Certain Time or “Epoch”<br />

– Fixed at Vernal Equinox direction at Noon on January 1, 2000 at<br />

Greenwich Meridian <strong>by</strong> International Astronomical Union (More Truly<br />

Inertial)<br />

• K-Axis<br />

– North Pole<br />

www.stk.com<br />

Pg 8 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Semi-Major Axis and Eccentricity<br />

The Size and Shape of a Orbit<br />

SSMD-0403-433 [9]<br />

e > 1<br />

Semi-Major Axis<br />

e = 1<br />

Apogee radius<br />

Perigee radius<br />

Apogee Altitude<br />

Perigee Altitude<br />

Apogee<br />

Center of<br />

Ellipse<br />

C<br />

Perigee<br />

0 < e < 1<br />

e = 0<br />

C = distance from center of Earth to center<br />

of ellipse = eccentricity * semi major axis<br />

ellipse<br />

circle<br />

• Size Determination: Semi-Major Axis<br />

• Shape Determination: Eccentricity<br />

www.stk.com<br />

Pg 9 of 27<br />

UNCLASSIFIED


Inclination<br />

The Orientation of an Orbit<br />

UNCLASSIFIED<br />

• Tilt of <strong>Orbital</strong> Plane with Respect to Fundamental Plane (of Geocentric-<br />

Equatorial Coordinate System)<br />

• Angle Between Specific Angular Momentum Vector ( h = R × V ) and the<br />

Vector Perpendicular to the Fundamental Plane Pointing <strong>Through</strong> the<br />

North Pole (K-axis)<br />

Inclination<br />

<strong>Orbital</strong> Type<br />

Diagram<br />

• Ranges from 0° to 180°<br />

Î<br />

ĥ<br />

i<br />

Kˆ<br />

Ĵ<br />

0 or 180<br />

90<br />

0 £i < 90<br />

90 < i £ 180<br />

Equatorial<br />

Polar<br />

Direct or Prograde (Moves<br />

in the Direction of Earth’s<br />

Rotation)<br />

Indirect or Retrograde<br />

(Moves Against the<br />

Direction of Earth’s<br />

Rotation)<br />

v<br />

v<br />

v<br />

i =<br />

90°<br />

Ascending<br />

node<br />

Ascending<br />

node<br />

SSMD-0403-433 [10]<br />

www.stk.com<br />

Pg 10 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Right Ascension of Ascending Node (RAAN or Ω)<br />

The “Swivel” of an Orbit<br />

• Angle, Along the Equator, Between Principle Direction (i.e., First Point<br />

of Aries) and the Point Where the <strong>Orbital</strong> Plane Crosses the Equator,<br />

from South to North (The Ascending Node), Measured Eastward<br />

• Not the Same As the Longitude of the Ascending Node<br />

– RAAN Relative to Inertial Frame (Geocentric-Equatorial)<br />

– Longitude of Ascending Node Relative to Rotating Earth<br />

• Ranges from 0° to 360°<br />

Kˆ<br />

SSMD-0403-433 [11]<br />

Î<br />

Equatorial<br />

Plane<br />

Ω<br />

Ĵ<br />

Ascending<br />

Node<br />

www.stk.com<br />

Pg 11 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Argument of Perigee (ω)<br />

The Orientation of the Orbit within the <strong>Orbital</strong> Plane<br />

SSMD-0403-433 [12]<br />

• Angle Along <strong>Orbital</strong> Path Between the Ascending Node and the Perigee<br />

• Always measured Along the <strong>Orbital</strong> Path in Direction of Spacecraft<br />

Motion<br />

• Perigee – Closest Approach to Earth<br />

• Ranges from 0° to 360°<br />

Kˆ<br />

Perigee<br />

ω<br />

Ĵ<br />

Î<br />

www.stk.com<br />

Pg 12 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

True Anomaly at Epoch<br />

The Spacecraft’s Location within an Orbit<br />

SSMD-0403-433 [13]<br />

• Angle Along <strong>Orbital</strong> Path from Perigee to Spacecraft’s Position<br />

• Always Measured Along <strong>Orbital</strong> Path in Direction of Spacecraft Motion<br />

• The Only <strong>Orbital</strong> Element Set Parameter That Varies with Time as the<br />

Spacecraft Travels Around its Fixed Orbit, Assuming a Spherically-<br />

Symmetric Earth (A So-So Assumption)<br />

Vˆ<br />

Rˆ<br />

ν<br />

Perigee<br />

www.stk.com<br />

Pg 13 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Summary of <strong>Orbital</strong> Elements<br />

SSMD-0403-433 [14]<br />

Element<br />

Name<br />

Description<br />

Range of Values<br />

Undefined<br />

a<br />

Semimajor Axis<br />

Size<br />

Depends on the<br />

Conic Section<br />

Never<br />

e<br />

Eccentricity<br />

Shape<br />

e = 0: Circle<br />

0 < e < 1: ellipse<br />

Never<br />

i<br />

Inclination<br />

Tilt, angle from Kˆ unit<br />

vector to specific<br />

angular momentum<br />

vector ĥ<br />

0 £i £ 180<br />

Never<br />

W<br />

Right ascension<br />

of the ascending<br />

node<br />

Swivel, angle from<br />

vernal equinox to<br />

ascending node<br />

0 £W£360<br />

When i = 0 or 180<br />

(equatorial orbit)<br />

w<br />

Argument of<br />

perigee<br />

Angle from ascending<br />

node to perigee<br />

0 £w£360<br />

When i = 0 or 180<br />

(equatorial orbit) or e = 0<br />

(circular orbit)<br />

n<br />

True anomaly<br />

Angle from perigee to<br />

the spacecraft’s position<br />

0 £n£360<br />

When e = 0 (circular orbit)<br />

www.stk.com<br />

Pg 14 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Alternate <strong>Orbital</strong> Elements<br />

Element<br />

u<br />

• A Circular Orbit<br />

– No Argument of Perigee<br />

– No True Anomaly<br />

• An Equatorial Orbit<br />

– No RAAN<br />

– No Argument of Perigee<br />

Name<br />

Argument of<br />

latitude<br />

What Do We Do With:<br />

Description<br />

Angle from ascending node<br />

to the spacecraft’s position<br />

• A Circular Equatorial Orbit<br />

– No RAAN<br />

– No Argument of Perigee<br />

– No True Anomaly<br />

Range of Values<br />

0 £u£360<br />

Undefined<br />

SSMD-0403-433 [15]<br />

Use when there is no perigee (e =<br />

0)<br />

P<br />

Longitude of<br />

perigee<br />

Angle from the principal<br />

direction to perigee<br />

0 £P£360<br />

Use when equatorial (i = 0 or<br />

180 ) because there is no<br />

ascending node<br />

l<br />

True longitude<br />

Angle from the principal<br />

direction to the spacecraft’s<br />

position<br />

0 £l£360<br />

Use when there is no perigee and<br />

ascending node (e = 0 and i = 0<br />

or 180 )<br />

www.stk.com<br />

Pg 15 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

SBIRS High Scenario<br />

SSMD-0403-433 [16]<br />

• SBIRS High is a “Molniya” Type Orbit<br />

• Russian word for “Zipper” or “Lightning”<br />

• Large Dwell Time over Northern Hemisphere<br />

• Usually a 12-Hour Orbit with High Eccentricity (0.7)<br />

and Perigee in Southern Hemisphere<br />

• Has Inclination of 63.4° (No Rotation of Perigee)<br />

• Covers High Latitudes and Polar Regions Very Well<br />

www.stk.com<br />

Pg 16 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

SBIRS Low Coverage Studies<br />

SSMD-0403-433 [17]<br />

SBIRS Low Constellation Showing Threat Object Coverage<br />

(Sensor Footprints in Green, Sensor Acquisitions in Yellow)<br />

• SBIRS Low Constellation As Implemented In TESS<br />

• Coverage Almost Complete Utilizing 24 Satellites<br />

• <strong>Orbital</strong> Element Set Propagation Within TESS<br />

www.stk.com<br />

Pg 17 of 27<br />

UNCLASSIFIED


SBIRS DSP (GEO)<br />

UNCLASSIFIED<br />

SSMD-0403-433 [18]<br />

From www.stk.com<br />

• Geostationary Orbits (Fixed ECR)<br />

• Above and Below-the-Horizon Viewing Ability<br />

www.stk.com<br />

Pg 18 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

In Summary<br />

• Excellent References<br />

– Expensive: <strong>Understanding</strong> Space – An Introduction to Astronautics, Jerry<br />

Jon Sellers<br />

$66.00 at www.walmart.com<br />

– Cheap: Fundamentals of Astrodynamics, Roger R. Bate<br />

$9.00 at www.walmart.com<br />

Introduction to Space Dynamics, William Tyrrell Thomson<br />

$9.00 at www.walmart.com<br />

– Free: TRW Space Data, Neville J. Barter, editor<br />

Free from TRW Space and Electronics Group<br />

• Excellent Web Site<br />

– www.heavens-above.com<br />

– Iridium Flares, ISS, HST, etc.<br />

• Excellent Software<br />

– Satellite Tool Kit from Analytical Graphics, Inc. (www.stk.com)<br />

– Price: Free to Over $100,000<br />

• Training Available for Basic <strong>Orbital</strong> <strong>Mechanics</strong><br />

www.stk.com<br />

Pg 19 of 27<br />

UNCLASSIFIED<br />

SSMD-0403-433 [19]


UNCLASSIFIED<br />

SSMD-0403-433 [20]<br />

Supplemental Charts<br />

www.stk.com<br />

Pg 20 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Ground-Based Midcourse<br />

Defense Architecture (2004)<br />

SSMD-0403-433 [21]<br />

GBIs<br />

IFICS<br />

BMC3<br />

BMC3<br />

Cobra Dane<br />

IFICS<br />

GBIs<br />

IFICS<br />

UEWR<br />

GBIs<br />

IFICS<br />

BMC3<br />

GBR-P<br />

AEGIS<br />

GBIs<br />

SBIRS MCS<br />

IFICS<br />

www.stk.com<br />

Pg 21 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

GMD with SBIRS High and DSP<br />

SSMD-0403-433 [22]<br />

From www.stk.com<br />

www.stk.com<br />

Pg 22 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

SBIRS Waveband Utilization<br />

• SBIRS DSP, High, and Low<br />

Utilize Different Sensor<br />

Wavebands<br />

SBIRS High<br />

• MWIR (3-8 mm)<br />

• SWIR (1-3 mm)<br />

DSP/GEO<br />

• SWIR (1-3 mm)<br />

SSMD-0403-433 [23]<br />

• Different Target Types are Visible<br />

in Different Wavelengths<br />

• Synergy Between Satellites Allow<br />

Full Tracking of Threat Objects<br />

from Initial Launch <strong>Through</strong> Mid-<br />

Course<br />

PBVs<br />

PBV<br />

Plumes<br />

Upper<br />

Stage<br />

Boost<br />

Phase<br />

Low-<br />

Altitude<br />

Boost<br />

Phase<br />

• Provides Extended Capability for<br />

Strategic and Theater Missile<br />

Defense<br />

SBIRS Low<br />

• LWIR (8-14 mm)<br />

• MWIR (3-8 mm)<br />

• SWIR (1-3 mm)<br />

• Visible (0.4-0.7 mm)<br />

Mid-<br />

Course<br />

Tracking<br />

Visible Near Infrared Middle Infrared Far Infrared Extreme Infrared<br />

V B G Y OR<br />

0.4<br />

0.6<br />

0.8<br />

1<br />

1.5<br />

2<br />

3<br />

4<br />

6<br />

8<br />

10<br />

15<br />

20<br />

30<br />

www.stk.com<br />

Pg 23 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Effects of Earth’s Oblateness<br />

on Orbiting Spacecraft<br />

22 km<br />

Rˆ<br />

F v<br />

J 2<br />

Nodal Regression Rate<br />

SSMD-0403-433 [24]<br />

22 km<br />

Perigee Rotation Rate<br />

.<br />

• Equatorial Bulge Causes Slight Shift in Direction<br />

Gravity Pulls Spacecraft<br />

• Modeled <strong>by</strong> Complex Mathematics Referred to as<br />

the “J2 Effect”<br />

• Earth is 22 km Bigger (radius) at Equator<br />

• Causes Nodal Regression Rate (Movement of the<br />

RAAN, Ω) and . a Perigee Rotation Rate (ω)<br />

www.stk.com<br />

Graphs from “<strong>Understanding</strong> Space” <strong>by</strong> Jerry Jon Sellers<br />

Pg 24 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Sun Synchronous Orbits<br />

If Someone Gives You Lemons, Make Lemonade! (Part 1)<br />

SSMD-0403-433 [25]<br />

• Despite the Complexities That the “J2 Effect” Cause, There are Advantages<br />

• Sun-Synchronous Orbits Take Advantage of the Rate of Change of the RAAN<br />

• Inclination is Set to Give Approximately a One-Degree Nodal Regression Eastward per day (Note that the<br />

Earth Moves 0.9863 Degrees per day in its Orbit Around the Sun (i.e., 360 /365 days)<br />

• Spacecraft’s <strong>Orbital</strong> Plane Always Maintains Same Orientation to Sun<br />

– Spacecraft Always Sees Same Sun Angle When It Passes Over a Particular Point on Earth<br />

– Sun’s Shadows Cast <strong>by</strong> Objects on Earth’s Surface Will Not Change When Pictures are Taken Days or Weeks Apart<br />

– Good for Remote Sensing, Reconnaissance, Weather, etc.<br />

Earth moves<br />

around the Sun at<br />

1° /day<br />

<strong>Orbital</strong> plane<br />

rotates at ~1° /day<br />

due to earth’s<br />

oblateness<br />

Inclination = 97.03<br />

<strong>Orbital</strong> plane<br />

Sun line<br />

Sun angle<br />

www.stk.com<br />

Pg 25 of 27<br />

UNCLASSIFIED


UNCLASSIFIED<br />

Molniya Orbits<br />

If Someone Gives You Lemons, Make Lemonade! (Part 2)<br />

SSMD-0403-433 [26]<br />

• Another Advantage of the “J2 Effect”<br />

• Molniya –Russian word for “Zipper”<br />

or “Lightning”<br />

• Large Dwell Time over Northern<br />

Hemisphere<br />

• Usually a 12-Hour Orbit with High<br />

Eccentricity (0.7) and Perigee in<br />

Southern Hemisphere<br />

• Has Inclination of 63.4 (No Rotation<br />

of Perigee)<br />

• Covers High Latitudes and Polar<br />

Regions Very Well<br />

www.stk.com<br />

Pg 26 of 27<br />

UNCLASSIFIED


Geosynchronous Orbit<br />

No Perigee Rotation<br />

UNCLASSIFIED<br />

SSMD-0403-433 [27]<br />

• Orbits Every 24 Hours<br />

• Inclination of 63.4 degrees<br />

• No Perigee Rotation<br />

www.stk.com<br />

Pg 27 of 27<br />

UNCLASSIFIED

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!