23.01.2013 Views

11-7 Force Analysis of Spur Gears Gear Free Body Diagrams ...

11-7 Force Analysis of Spur Gears Gear Free Body Diagrams ...

11-7 Force Analysis of Spur Gears Gear Free Body Diagrams ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>11</strong>-7 <strong>Force</strong> <strong>Analysis</strong> <strong>of</strong> <strong>Spur</strong> <strong><strong>Gear</strong>s</strong><br />

<strong>Gear</strong> <strong>Free</strong> <strong>Body</strong> <strong>Diagrams</strong><br />

pressure angle �<br />

� 2<br />

� 3<br />

3 pitch circle<br />

3<br />

b<br />

line <strong>of</strong> action<br />

a a<br />

2 2<br />

• Resolve applied force into radial and tangential directions<br />

r<br />

Fa2 Transmitted Load Wt = F t 32<br />

• Constant speed situation<br />

�<br />

F a2<br />

t<br />

F32 a<br />

F 32<br />

t<br />

Fa2 T = d<br />

2 Wt<br />

T = Ta2<br />

T a2<br />

• If we let the pitch line velocity be V = ω d<br />

2 ,<br />

1<br />

2<br />

r<br />

F32 �<br />

F 23<br />

F a2<br />

T b3<br />

b<br />

T a2<br />

F b3<br />

F 32


• In SI units:<br />

where<br />

Power = <strong>Force</strong> × Velocity<br />

Wt = (60)(1000)H<br />

πωd<br />

- Wt = tangential force in N or kN<br />

- H =powerinWorkW<br />

- ω = rotational speed in rpm<br />

- d = diameter in mm<br />

• Note that the formula above takes into account the unit conversions<br />

• In MathCAD, you can use<br />

Wt = 2H<br />

ωd<br />

in whatever units you select.<br />

• MathCAD will take care <strong>of</strong> units, as long as you specify units for all<br />

variables.<br />

• In US units:<br />

where<br />

H = WtV<br />

33000<br />

= Tω<br />

63000<br />

- Wt = tangential force in lbf<br />

- H = horsepower in HP<br />

- V = tangential speed in ft/min = πdω<br />

12<br />

- d = diameter in in<br />

2


- ω = rotational speed in rpm<br />

• We also have<br />

T = 63000H<br />

ω<br />

• The radial force acting on the gear is given by<br />

Wr = Wt tan φ<br />

• The total force acting on the gear is<br />

W = Wt<br />

cos φ<br />

Example<br />

Shaft a has a power input <strong>of</strong> 75 kW at a speed <strong>of</strong> 1000 rpm counterclockwise.<br />

<strong><strong>Gear</strong>s</strong> have a module <strong>of</strong> 5 mm and a 20◦ pressure angle. <strong>Gear</strong><br />

3 is an idler (to change direction <strong>of</strong> the output).<br />

• Find the force F3b that gear 3 exerts on shaft b<br />

• Find the torque T4c that gear 4 exerts on shaft c<br />

4<br />

3<br />

2<br />

3<br />

c<br />

b<br />

a T 17T<br />

34T<br />

51T


Pitch diameters<br />

• gear 2: d2 =<br />

• gear 3: d3 =<br />

• gear 4: d4 =<br />

Wt =<br />

F t 32 =<br />

F r 32 =<br />

F23 =<br />

• <strong>Gear</strong> 3 is an idler so it transmits no power to its shaft<br />

t<br />

F43 t<br />

F23 F 43<br />

4<br />

r<br />

F32 F 23<br />

y<br />

Fb3 b<br />

r<br />

F23 r<br />

F43 t<br />

F32 F 32<br />

F b3<br />

x<br />

Fb3


Hence<br />

for equilibrium<br />

in the x direction only<br />

F t 43 =<br />

F r 43 =<br />

F x b3 − F t 23 − F t 43 =0 ⇒<br />

F y<br />

b3 + F r 23 − F r 43 =0 ⇒ F y<br />

b3 =0kN<br />

T c4<br />

� 4<br />

F3b =<br />

y<br />

Fc4 c<br />

r<br />

F34 F c4<br />

x<br />

Fc4 F 34<br />

t<br />

F34 Tc4 − F t 34d4<br />

2 =0<br />

Tc4 =<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!