03.03.2013 Views

Basic radiometry and SNR eq. for CCD, ICCD - UNIS

Basic radiometry and SNR eq. for CCD, ICCD - UNIS

Basic radiometry and SNR eq. for CCD, ICCD - UNIS

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Basic</strong> <strong>radiometry</strong> <strong>and</strong> <strong>SNR</strong><br />

<strong>eq</strong>uations <strong>for</strong> <strong>CCD</strong>, I<strong>CCD</strong> <strong>and</strong><br />

EM<strong>CCD</strong> imagers<br />

Urban Brändström, 1<br />

1 Swedish Institute of Space Physics, Kiruna, Sweden<br />

Presentation at:<br />

http://alis.irf.se/˜urban/AGF351/Braendstroem-<strong>UNIS</strong>.pdf<br />

<strong>UNIS</strong> 2011-11-15 – p. 1


In memoriam<br />

Professor Ingrid S<strong>and</strong>ahl (1949-2011) <strong>UNIS</strong> 2011-11-15 – p. 2


This is about taking pictures of<br />

darkness, or. . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 3


“Hunting photons with a spoon”<br />

<strong>UNIS</strong> 2011-11-15 – p. 4


Radiometry<br />

<strong>UNIS</strong> 2011-11-15 – p. 5


Radiometry vs. photometry<br />

Holst [1998] defines the term <strong>radiometry</strong>, as the<br />

“energy or power transfer from a source to<br />

a detector”<br />

<strong>UNIS</strong> 2011-11-15 – p. 6


Radiometry vs. photometry<br />

Holst [1998] defines the term <strong>radiometry</strong>, as the<br />

“energy or power transfer from a source to<br />

a detector”<br />

while photometry is defined as<br />

“the transfer from a source to a detector<br />

where the units of radiation have been<br />

normalised to the spectral sensitivity of<br />

the eye.”<br />

<strong>UNIS</strong> 2011-11-15 – p. 6


Radiometry vs. photometry<br />

Holst [1998] defines the term <strong>radiometry</strong>, as the<br />

“energy or power transfer from a source to<br />

a detector”<br />

while photometry is defined as<br />

“the transfer from a source to a detector<br />

where the units of radiation have been<br />

normalised to the spectral sensitivity of<br />

the eye.”<br />

Un<strong>for</strong>tunately the term photometry is often used<br />

instead of <strong>radiometry</strong><br />

<strong>UNIS</strong> 2011-11-15 – p. 6


Radiometry<br />

“Mathematics is often called the queen of the<br />

sciences. Radiometry should then be called the<br />

waiting maid or servant. It is not especially elegant;<br />

it is not very popular, has not been trendy; but it is<br />

essential in almost every part of optical<br />

engineering.” Wolfe [1998]<br />

<strong>UNIS</strong> 2011-11-15 – p. 7


Solid angle<br />

The solid angle Ω sweeps out the area A on the<br />

unit sphere (4π)<br />

Ω = A<br />

[sr]<br />

r2 Think of it as a 3D generalisation of the radian<br />

(arc length on the unit circle)<br />

<strong>UNIS</strong> 2011-11-15 – p. 8


Photon flux:<br />

in energy units:<br />

Flux<br />

Φγ = ∂N<br />

∂t<br />

ΦE = hc<br />

λ<br />

<br />

photons<br />

s<br />

∂N<br />

∂t [W]<br />

<strong>UNIS</strong> 2011-11-15 – p. 9


Radiance<br />

Also known as radiant sterance<br />

In energy units:<br />

LE = ∂2 <br />

Φ(λ) W<br />

∂As∂Ω m2 <br />

sr<br />

In quantum units:<br />

Lγ = λ<br />

hc LE<br />

<br />

photons<br />

s m2 <br />

sr<br />

<strong>UNIS</strong> 2011-11-15 – p. 10


Spectral radiance<br />

Also known as spectral radiant sterance<br />

In energy units:<br />

LλE = ∂L<br />

<br />

W<br />

∂λ m2 <br />

µm sr<br />

In quantum units:<br />

Lλγ = λ<br />

hc LλE<br />

<br />

photons<br />

s m2 <br />

µm sr<br />

<strong>UNIS</strong> 2011-11-15 – p. 11


Spectral radiant emittance<br />

Also known as spectral radiant exitance<br />

Mλγ = ∂Φ<br />

<br />

photons<br />

=<br />

∂As s m2 <br />

Flux per source area.<br />

What you get from a calibration source.<br />

In energy units:<br />

MλE = hc<br />

λ Mλγ<br />

<br />

W<br />

m2 µm sr<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 12


Spectral irradiance<br />

Also known as spectral radiant incidance<br />

Eλe = ∂Φ<br />

∂A =<br />

<br />

photons<br />

s m2 <br />

Flux per detector area.<br />

What you get on a detector (or whatever)<br />

In energy units:<br />

EλE = hc<br />

λ Eλγ<br />

<br />

W<br />

m2 µm sr<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 13


Transmittance<br />

T = <br />

∀X<br />

TX(λ) = TaToTf . . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 14


At apperture:<br />

Eγapp<br />

= Φγapp<br />

Aapp<br />

Irradiance<br />

= LγAsTaΩds<br />

Aapp<br />

=<br />

<br />

photons<br />

s m 2<br />

At image plane (assuming circular apperture):<br />

Eγi<br />

As<br />

= Lγ<br />

<br />

photons<br />

=<br />

s m2 (1)<br />

<br />

= Φγapp<br />

Ai<br />

Ai<br />

T πd2 app<br />

4r 2 s<br />

<strong>UNIS</strong> 2011-11-15 – p. 15


Photometric units<br />

Φv = KM<br />

750nm<br />

380nm<br />

V (λ)Mp(λ)dλ [lm]<br />

scoptic—rods photoptic—cones After Holst [1998]<br />

<strong>UNIS</strong> 2011-11-15 – p. 16


Photometric units<br />

scoptic—rods (KM = 1746 lm/W) photoptic—cones<br />

<strong>UNIS</strong> 2011-11-15 – p. 17


Photometric units<br />

Φv lm luminous flux<br />

Lv cd/m 2 or nits luminance<br />

Mv lux or lm/m 2 luminous emmitance<br />

Ev lux or lm/m 2 illumniance<br />

<strong>UNIS</strong> 2011-11-15 – p. 18


The foot-lambert<br />

A foot-lambert or footlambert (fL, sometimes fl or<br />

ft-L) is a unit of luminance in U.S. customary<br />

units <strong>and</strong> some other unit systems. A<br />

foot-lambert <strong>eq</strong>uals 1/π c<strong>and</strong>ela per square foot,<br />

or 3.426 c<strong>and</strong>ela per square meter (the<br />

corresponding SI unit).<br />

1 [ftL] = 1<br />

π<br />

cd<br />

ft 2<br />

<br />

≈ 3.426<br />

cd<br />

m 2<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 19


The Rayleigh<br />

<strong>UNIS</strong> 2011-11-15 – p. 20


The Rayleigh (1)<br />

Consider a cylindrical column of cross-sectional<br />

area 1 m 2 extending away from the detector into<br />

the source.<br />

The volume emission rate from a volume<br />

element of length dl at distance l is<br />

ǫ(l, t, λ) photons m −3 s −1 . The contribution to Lγ is<br />

given by:<br />

(2)<br />

dLγ =<br />

ǫ(l, t, λ)<br />

4π<br />

dl<br />

<br />

photons<br />

s m2 <br />

sr<br />

<strong>UNIS</strong> 2011-11-15 – p. 21


The Rayleigh (2)<br />

Integrating along the line of sight l [m]:<br />

∞<br />

(3) 4πLγ = ǫ(l, t, λ)dl<br />

0<br />

This quantity is the column emission rate, which<br />

Hunten et al. [1956] proposed as a radiometric unit<br />

<strong>for</strong> the aurora <strong>and</strong> airglow.<br />

<strong>UNIS</strong> 2011-11-15 – p. 22


The Rayleigh (3)<br />

In SI-units the Rayleigh becomes<br />

[Baker <strong>and</strong> Romick, 1976]:<br />

(4)<br />

1 [Rayleigh] ≡ 1 [R] 10 10<br />

<br />

photons<br />

s m 2 (column)<br />

The word column denotes the concept of an<br />

emission-rate from a column of unspecified<br />

length, as discussed above. It should be noted<br />

that the Rayleigh is an apparent emission rate,<br />

not taking absorption or scattering into account.<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 23


The Rayleigh (4)<br />

However (un<strong>for</strong>tunately. . . )<br />

“the Rayleigh can be used as defined without any<br />

commitment as to its physical interpretation, even<br />

though it has been chosen to make interpretation<br />

convenient.” Hunten et al. [1956]<br />

And then there is the clarifications by: Baker<br />

[1974]; Baker <strong>and</strong> Romick [1976]; Chamberlain [1995]<br />

<strong>UNIS</strong> 2011-11-15 – p. 24


By now you should realized<br />

that. . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 25


. . . God said:<br />

Go to, let us go down, <strong>and</strong> there confound their<br />

language, that they may not underst<strong>and</strong> one<br />

another’s speech. [Bible Gen11:7]<br />

<strong>UNIS</strong> 2011-11-15 – p. 26


. . . God said:<br />

Go to, let us go down, <strong>and</strong> there confound their<br />

language, that they may not underst<strong>and</strong> one<br />

another’s speech. [Bible Gen11:7]<br />

And there was: stilb, Rayleighs, footlamberts, Irradiance,<br />

spectral-radiant sterance, lumens, lux, c<strong>and</strong>ela, <strong>radiometry</strong>,<br />

nit, luminance, illuminance, emittance, apostilb, phot, skot,<br />

lambert, foot-c<strong>and</strong>le, photometry, DIN, ASA, ISO. . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 26


. . . God said:<br />

Go to, let us go down, <strong>and</strong> there confound their<br />

language, that they may not underst<strong>and</strong> one<br />

another’s speech. [Bible Gen11:7]<br />

And there was: stilb, Rayleighs, footlamberts, Irradiance,<br />

spectral-radiant sterance, lumens, lux, c<strong>and</strong>ela, <strong>radiometry</strong>,<br />

nit, luminance, illuminance, emittance, apostilb, phot, skot,<br />

lambert, foot-c<strong>and</strong>le, photometry, DIN, ASA, ISO. . .<br />

—Help! We are sinking!<br />

<strong>UNIS</strong> 2011-11-15 – p. 26


<strong>and</strong> now. . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 27


The 4π confusion<br />

<strong>UNIS</strong> 2011-11-15 – p. 28


The 4π confusion<br />

There<strong>for</strong>e, we propose that photometric<br />

measurements of the airglow <strong>and</strong> aurora be<br />

reported in terms of 4πB rather than the surface<br />

brightness B itself. Further, we suggest that 4πB<br />

be given the unit “rayleigh” (symbol R), where B is<br />

in units of 10 6 quanta cm −2 s −1 sr −1 . Hence<br />

1 R = 10 6 quanta cm −2 (column) −1 s −1 .<br />

Hunten et al. [1956]<br />

<strong>UNIS</strong> 2011-11-15 – p. 29


The 4π confusion<br />

There<strong>for</strong>e, we propose that photometric<br />

measurements of the airglow <strong>and</strong> aurora be<br />

reported in terms of 4πB rather than the surface<br />

brightness B itself. Further, we suggest that 4πB<br />

be given the unit “rayleigh” (symbol R), where B is<br />

in units of 10 6 quanta cm −2 s −1 sr −1 . Hence<br />

1 R = 10 6 quanta cm −2 (column) −1 s −1 .<br />

Hunten et al. [1956]<br />

So does both Hunten et al. [1956] <strong>and</strong> Chamberlain<br />

[1995] claim that 4π × 10 6 = 10 6 ???<br />

<strong>UNIS</strong> 2011-11-15 – p. 29


Can we agree on this?<br />

The apparent radiance (Lγ) can be obtained from<br />

the column emission rate I (in Rayleighs)<br />

according to Baker <strong>and</strong> Romick [1976]:<br />

(5)<br />

Lγ = 1010 I<br />

4π<br />

photons<br />

s m 2 sr<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 30


Can we agree on this?<br />

The apparent radiance (Lγ) can be obtained from<br />

the column emission rate I (in Rayleighs)<br />

according to Baker <strong>and</strong> Romick [1976]:<br />

(7)<br />

Or is it:<br />

(8)<br />

Lγ = 1010 I<br />

4π<br />

Lγ = 10 10 I<br />

photons<br />

s m 2 sr<br />

<br />

<br />

photons<br />

s m2 <br />

sr<br />

<strong>UNIS</strong> 2011-11-15 – p. 30


Still confused. . .<br />

. . . but at a different level.<br />

<strong>UNIS</strong> 2011-11-15 – p. 31


Signal<br />

<strong>UNIS</strong> 2011-11-15 – p. 32


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

<strong>UNIS</strong> 2011-11-15 – p. 33


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

<strong>UNIS</strong> 2011-11-15 – p. 33


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

• Area of detector (pixel-area <strong>for</strong> imagers)<br />

<strong>UNIS</strong> 2011-11-15 – p. 33


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

• Area of detector (pixel-area <strong>for</strong> imagers)<br />

• Number of photoelectrons collected in a pixel<br />

n −<br />

e = QE(λ)Eγi γ tintApix<br />

−<br />

e <br />

(15)<br />

<strong>UNIS</strong> 2011-11-15 – p. 33


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

• Area of detector (pixel-area <strong>for</strong> imagers)<br />

• Number of photoelectrons collected in a pixel<br />

n −<br />

e = QE(λ)Eγi γ tintApix<br />

−<br />

e <br />

(17)<br />

(18)<br />

n e − γ ≈ QE(λ)TtintApix<br />

10 10 I<br />

16f 2 #<br />

e − <br />

<strong>UNIS</strong> 2011-11-15 – p. 33


Noise<br />

<strong>UNIS</strong> 2011-11-15 – p. 34


What is noise?<br />

<strong>UNIS</strong> 2011-11-15 – p. 35


Some peoples noise are other<br />

peoples signal<br />

<strong>UNIS</strong> 2011-11-15 – p. 36


Notation<br />

〈X〉 2 variance of X<br />

〈X〉 st<strong>and</strong>ard deviation of X<br />

X mean value of X<br />

Photon arrival is Poisson distributed<br />

It can be shown that <strong>for</strong> a Poisson distributed<br />

signal variance is <strong>eq</strong>ual to the mean<br />

<strong>UNIS</strong> 2011-11-15 – p. 37


<strong>CCD</strong> principle of operation<br />

After Janesick et al. [1987]<br />

<strong>UNIS</strong> 2011-11-15 – p. 38


E2V TECH <strong>CCD</strong>201<br />

<strong>UNIS</strong> 2011-11-15 – p. 39


What is the <strong>SNR</strong> of an ideal<br />

photon detector?<br />

<strong>UNIS</strong> 2011-11-15 – p. 40


<strong>CCD</strong>-noise sources<br />

<strong>UNIS</strong> 2011-11-15 – p. 41


(19)<br />

〈n e −<br />

<strong>CCD</strong><br />

〉 =<br />

<strong>CCD</strong> noise<br />

<br />

〈n −<br />

e 〉 s 2 + 〈n −<br />

e 〉 r 2 + 〈n −<br />

e 〉 p 2 e − <br />

RMS<br />

<strong>UNIS</strong> 2011-11-15 – p. 42


(20)<br />

(21)<br />

(22)<br />

〈n e − s 〉 =<br />

=<br />

Shot Noise<br />

<br />

<br />

CTE N<br />

CTE N<br />

≈<br />

<br />

〈n −<br />

e 〉 γ 2 + 〈n −<br />

ed 〉2<br />

<br />

<br />

n e − γ + n e −<br />

d<br />

<br />

n e − γ + n e −<br />

d<br />

<br />

≈<br />

=<br />

<strong>UNIS</strong> 2011-11-15 – p. 43


<strong>CCD</strong> Noise sources<br />

After Holst [1998] <strong>UNIS</strong> 2011-11-15 – p. 44


(23)<br />

(24)<br />

〈n e − p 〉 =<br />

Pattern Noise<br />

<br />

〈n −<br />

eFPN 〉2 + 〈n −<br />

ePRNU 〉2 ≈ 〈n −<br />

e 〉 ≈<br />

PRNU<br />

≈ Un e − γ ≈ n e − γ<br />

√ ne − max<br />

e − RMS<br />

<br />

<strong>UNIS</strong> 2011-11-15 – p. 45


(25)<br />

〈n −<br />

e 〉 ≈<br />

<strong>CCD</strong><br />

<strong>CCD</strong> Noise<br />

<br />

n −<br />

e + n −<br />

γ ed + 〈ne − r 〉2 e − <br />

RMS<br />

<strong>UNIS</strong> 2011-11-15 – p. 46


Signal-to-noise ratio <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

(26)<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

<strong>UNIS</strong> 2011-11-15 – p. 47


Signal-to-noise ratio <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

(29)<br />

• thus <strong>for</strong> a <strong>CCD</strong>:<br />

(30)<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

<strong>SNR</strong><strong>CCD</strong> ≈<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

n −<br />

eγ <br />

n −<br />

e + n −<br />

γ ed + 〈ne − r 〉2<br />

<strong>UNIS</strong> 2011-11-15 – p. 47


Signal-to-noise ratio <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

(32)<br />

• thus <strong>for</strong> a <strong>CCD</strong>:<br />

(33)<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

<strong>SNR</strong><strong>CCD</strong> ≈<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

n −<br />

eγ <br />

n −<br />

e + n −<br />

γ ed + 〈ne − r 〉2<br />

• <strong>and</strong> <strong>for</strong> an ideal photon detector:<br />

<strong>SNR</strong>γideal =<br />

<br />

n e − γ<br />

(34) <strong>UNIS</strong> 2011-11-15 – p. 47


Threshold of detection<br />

The threshold of detection is usually defined as<br />

<strong>SNR</strong> = 2 while the Noise Equivalent Exposure<br />

NEE, is obtained when <strong>SNR</strong> = 1. For a <strong>CCD</strong> the<br />

maximum signal, or Saturation Equivalent<br />

Exposure, SEE is obtained when the charge well<br />

capacity n e − max [e − ], is reached. This occurs when:<br />

(35)<br />

n e − γ ≥ n e − max − n e −<br />

d<br />

In most cases the maximum charge-well capacity<br />

DN SEE [counts], is matched to the maximum<br />

ADC output DN max.<br />

<strong>UNIS</strong> 2011-11-15 – p. 48


Dynamic range (1)<br />

The Dynamic Range is defined as the peak<br />

signal divided by the RMS noise <strong>and</strong> the<br />

DC-bias-level, (if any). The minimum ADC<br />

output, is subtracted in the case of a signed<br />

integer output. DR is usually expressed in<br />

decibels.<br />

<br />

<br />

DN SEE − DN min<br />

DR = 20 log10 DN DC + DN NEE − DN min<br />

(36)<br />

[dB]<br />

<strong>UNIS</strong> 2011-11-15 – p. 49


Dynamic range (2)<br />

An approximate theoretical value <strong>for</strong> DR is<br />

obtained by dividing the maximum signal by the<br />

total noise<br />

(37)<br />

DR ≈ 20 log 10<br />

n e − max − n e −<br />

d<br />

〈n e − tot 〉<br />

[dB]<br />

<strong>UNIS</strong> 2011-11-15 – p. 50


I<strong>CCD</strong><br />

<strong>UNIS</strong> 2011-11-15 – p. 51


I<strong>CCD</strong><br />

After Holst [1998] <strong>UNIS</strong> 2011-11-15 – p. 52


<strong>SNR</strong> <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

<strong>UNIS</strong> 2011-11-15 – p. 53


<strong>SNR</strong> <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

• For an ideal photon detector:<br />

<strong>SNR</strong>γideal =<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

<br />

n e − γ<br />

<strong>UNIS</strong> 2011-11-15 – p. 53


<strong>SNR</strong> <strong>for</strong> a <strong>CCD</strong><br />

• Measured signal-to-noise ratio:<br />

<strong>SNR</strong><strong>CCD</strong> = DN signal<br />

DN noise<br />

• For an ideal photon detector:<br />

• <strong>and</strong> <strong>for</strong> a <strong>CCD</strong>:<br />

<strong>SNR</strong><strong>CCD</strong> ≈<br />

<strong>SNR</strong>γideal =<br />

≈ n e − γ<br />

〈n e −<br />

<strong>CCD</strong> 〉<br />

<br />

n e − γ<br />

n e − γ<br />

<br />

n e − + n e − + 〈n e −〉 2 <strong>UNIS</strong> 2011-11-15 – p. 53


<strong>SNR</strong> <strong>for</strong> an I<strong>CCD</strong><br />

Noting that <strong>for</strong> an I<strong>CCD</strong>:<br />

n e − γ,pc ≈ QEpc (λ)TtintM 2 FOApix<br />

10 10 I<br />

16f 2 #<br />

−<br />

eRMS <strong>UNIS</strong> 2011-11-15 – p. 54


<strong>SNR</strong> <strong>for</strong> an I<strong>CCD</strong><br />

• The signal-to-noise ratio <strong>for</strong> an I<strong>CCD</strong> can be<br />

estimated as:<br />

<strong>SNR</strong>I<strong>CCD</strong> ≈<br />

<br />

n e − γ,pc<br />

k2 MCP (ne − γ,pc + ne −<br />

d,pc ) + n e −<br />

d<br />

+〈n e − r 〉 2<br />

g 2<br />

<strong>UNIS</strong> 2011-11-15 – p. 55


<strong>SNR</strong> <strong>for</strong> an I<strong>CCD</strong><br />

• The signal-to-noise ratio <strong>for</strong> an I<strong>CCD</strong> can be<br />

estimated as:<br />

<strong>SNR</strong>I<strong>CCD</strong> ≈<br />

<br />

n e − γ,pc<br />

k2 MCP (ne − γ,pc + ne −<br />

d,pc ) + n e −<br />

d<br />

+〈n e − r 〉 2<br />

• As seen, increasing the gain of the image<br />

intensifier makes the <strong>CCD</strong> noise-sources<br />

negligible, but does not increase the <strong>SNR</strong><br />

beyond that. For very high gain, we see that:<br />

<strong>SNR</strong>I<strong>CCD</strong> ≈<br />

g 2<br />

<br />

n −<br />

eγ,pc 2(n −<br />

e + n −<br />

e<br />

<strong>UNIS</strong> 2011-11-15 – p. 55<br />

)


<strong>SNR</strong> <strong>for</strong> an em<strong>CCD</strong><br />

The signal-to-noise ratio <strong>for</strong> an<br />

electron-multiplication <strong>CCD</strong> can be estimated as:<br />

<strong>SNR</strong>em<strong>CCD</strong> ≈<br />

<br />

n e − γ<br />

k2 em (n −<br />

e + n −<br />

γ ed + 〈ne −<br />

cic 〉2 ) + 〈n e − r 〉2<br />

g2 Please note:<br />

For an EM<strong>CCD</strong> kem ≈ √ 2 while kMCP (I<strong>CCD</strong>) is<br />

taken as √ 2 here, which is somewhat too good to<br />

be true. In real cases kMCP ≥ 1.6<br />

<strong>UNIS</strong> 2011-11-15 – p. 56


<strong>SNR</strong> example: <strong>CCD</strong> vs. I<strong>CCD</strong><br />

<strong>SNR</strong><br />

1000<br />

100<br />

10<br />

1<br />

Ideal <strong>CCD</strong> (a)<br />

ALIS <strong>CCD</strong> (b)<br />

PAI ideal <strong>CCD</strong> (c)<br />

PAI I<strong>CCD</strong> (d)<br />

PAI <strong>CCD</strong> (e)<br />

t=16.7 ms, T=0.5, f/3.9, ALIS <strong>CCD</strong>CAM5, PAI I<strong>CCD</strong><br />

0.1<br />

10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10<br />

Column emission rate Rayleighs 557.7 nm<br />

<strong>UNIS</strong> 2011-11-15 – p. 57


<strong>SNR</strong> vs. of integration time<br />

<strong>SNR</strong><br />

10000<br />

1000<br />

100<br />

10<br />

1<br />

1 MR (a)<br />

100 kR (b)<br />

10 kR (c)<br />

1 kR (d)<br />

100 R (e)<br />

T=0.5, f/3.5, ALIS <strong>CCD</strong>CAM5 557.7 nm<br />

0.1<br />

0.001 0.01 0.1 1 10 100 1000 10000<br />

Integration time [s]<br />

<strong>UNIS</strong> 2011-11-15 – p. 58


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

<strong>UNIS</strong> 2011-11-15 – p. 59


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

<strong>UNIS</strong> 2011-11-15 – p. 59


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

• Area of detector (pixel-area <strong>for</strong> imagers)<br />

<strong>UNIS</strong> 2011-11-15 – p. 59


Where are my photons?<br />

• Transmittance (atmosphere, optics, filters. . . )<br />

• Apperture of the optics<br />

• Area of detector (pixel-area <strong>for</strong> imagers)<br />

• Number of photoelectrons collected in a pixel<br />

n −<br />

e = QE(λ)Eγi γ tintApix<br />

−<br />

e <br />

(44)<br />

(45)<br />

n e − γ ≈ QE(λ)TtintApix<br />

10 10 I<br />

16f 2 #<br />

e − <br />

<strong>UNIS</strong> 2011-11-15 – p. 59


<strong>SNR</strong><br />

<strong>SNR</strong> <strong>and</strong> on-chip binning<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

bin 1,1 (a)<br />

bin 2,2 (b)<br />

bin 4,4 (c)<br />

bin 8,8 (d)<br />

bin 16,16 (e)<br />

t=1 s, T=0.5, f/3.5, ALIS <strong>CCD</strong>CAM5, PAI I<strong>CCD</strong><br />

1 100 10000 1e+06 1e+08 1e+10<br />

Column emission rate Rayleighs 557.7 nm<br />

<strong>UNIS</strong> 2011-11-15 – p. 60


<strong>SNR</strong>: <strong>CCD</strong>, I<strong>CCD</strong> <strong>and</strong> em<strong>CCD</strong><br />

<strong>SNR</strong><br />

1000<br />

100<br />

10<br />

1<br />

Ideal SI003AB (a)<br />

SI003AB (b)<br />

Ideal PAI <strong>CCD</strong> (c)<br />

PAI I<strong>CCD</strong> (d)<br />

Ideal <strong>CCD</strong>201-20 (g)<br />

<strong>CCD</strong>201-20 (h)<br />

bin 2,2 <strong>CCD</strong>201-20 (h)<br />

t=1/25 s, T=0.5, f/1.6, bin=1x1<br />

0.1<br />

1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10<br />

Column emission rate Rayleighs 557.7 nm<br />

<strong>UNIS</strong> 2011-11-15 – p. 61


When do we need EM-gain?<br />

<strong>UNIS</strong> 2011-11-15 – p. 62


<strong>SNR</strong><br />

Fast: ≈ 2900 photons/pixel<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Ideal <strong>CCD</strong>201-20<br />

EM OFF 10 MHz <strong>CCD</strong>201-20<br />

EM ON 10 MHz <strong>CCD</strong>201-20<br />

EM ON vs. EM OFF at 10 MHz<br />

1 10 100 1000 10000<br />

photons/pixel (assuming 90% QE)<br />

<strong>UNIS</strong> 2011-11-15 – p. 63


Always <strong>for</strong> high temporal<br />

resolution<br />

<strong>UNIS</strong> 2011-11-15 – p. 64


<strong>SNR</strong><br />

Slow: ≈ 42 photons/pixel<br />

100<br />

10<br />

1<br />

0.1<br />

Ideal <strong>CCD</strong>201-20<br />

1 MHz Con. <strong>CCD</strong>201-20<br />

EM ON 1 MHz <strong>CCD</strong>201-20<br />

Slow readout EM ON vs. Conventional Ampl.<br />

1 10 100 1000<br />

photons/pixel (assuming 90% QE)<br />

<strong>UNIS</strong> 2011-11-15 – p. 65


Not always <strong>for</strong> low temporal<br />

resolution<br />

<strong>UNIS</strong> 2011-11-15 – p. 66


Intercalibration<br />

<strong>UNIS</strong> 2011-11-15 – p. 67


Intercalibration<br />

This is the process of intercalibrating calibration<br />

sources <strong>and</strong> to transfer absolute calibration<br />

in<strong>for</strong>mation between different instruments <strong>and</strong><br />

research groups.<br />

Hans Lauches intercalibration photometer (responsible<br />

person: 1981–1999 Lauche, 1999-2011 Widell, SSC,<br />

2011– Brändström, IRF)<br />

<strong>UNIS</strong> 2011-11-15 – p. 68


The European Rayleigh<br />

<strong>UNIS</strong> 2011-11-15 – p. 69


Intercal. procedure<br />

• Calibrators are compared at calibration<br />

workshops using a calibration-photometer<br />

with 7 filters <strong>and</strong> a reference source.<br />

<strong>UNIS</strong> 2011-11-15 – p. 70


Intercal. procedure<br />

• Calibrators are compared at calibration<br />

workshops using a calibration-photometer<br />

with 7 filters <strong>and</strong> a reference source.<br />

• Last known absolute callibration of the<br />

calibration <strong>eq</strong>uipment against a national<br />

st<strong>and</strong>ard (NBS) was done by [Torr <strong>and</strong> Espy,<br />

1981].<br />

<strong>UNIS</strong> 2011-11-15 – p. 70


Intercal. procedure<br />

• Calibrators are compared at calibration<br />

workshops using a calibration-photometer<br />

with 7 filters <strong>and</strong> a reference source.<br />

• Last known absolute callibration of the<br />

calibration <strong>eq</strong>uipment against a national<br />

st<strong>and</strong>ard (NBS) was done by [Torr <strong>and</strong> Espy,<br />

1981].<br />

• Known calibration workshops at the optical<br />

meetings were: Aberdeen 1981, Lindau 1983,<br />

Lysebu 1985, Saskatoon 1987, Lindau 1989,<br />

Wien 1991, Lindau 1999, Stockholm 2000,<br />

Oulu 2001, Kiruna 2006, Andøya 2007 <strong>and</strong><br />

Sodankylä 2011.<br />

<strong>UNIS</strong> 2011-11-15 – p. 70


25<br />

20<br />

15<br />

10<br />

5<br />

Intercal. workshops<br />

Number of participating calibrationsources in intercalibration workshops 1981-2011<br />

0<br />

1980 1985 1990 1995 2000 2005 2010<br />

<strong>UNIS</strong> 2011-11-15 – p. 71


Sodankylä 2011<br />

<strong>UNIS</strong> 2011-11-15 – p. 72


<strong>and</strong> the FMI-sphere<br />

<strong>UNIS</strong> 2011-11-15 – p. 73


To be done here<br />

After Sigernes et al. [2008]<br />

<strong>UNIS</strong> 2011-11-15 – p. 74


[Rayleighs/Angstrom]<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

0.01<br />

Y275<br />

L1614<br />

920B<br />

Intercal. results<br />

0.001<br />

3500 4000 4500 5000 5500 6000 6500 7000 7500<br />

Wavelength [Angstrom]<br />

<strong>UNIS</strong> 2011-11-15 – p. 75


atio [%]<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

Intercal. errors<br />

Confusogram of calibration ratios [1985,1999,2000,2001 to 2006]<br />

4000 4500 5000 5500 6000 6500 7000<br />

Wavelength [Angstrom]<br />

y275 1985<br />

y275 1999<br />

y275 2000<br />

y275 2001<br />

l1614 1985<br />

l1614 1999<br />

l1614 2000<br />

l1614 2001<br />

920b 1985<br />

920b 1999<br />

920b 2000<br />

920b 2001<br />

<strong>UNIS</strong> 2011-11-15 – p. 76


Calibration issues<br />

<strong>UNIS</strong> 2011-11-15 – p. 77


Calibration<br />

Calibration is the process of answering the<br />

following two basic questions:<br />

1. What physical value does the pixel represent?<br />

(absolute calibration)<br />

2. How is each pixel mapped to the observed<br />

object? (geometrical calibration)<br />

<strong>UNIS</strong> 2011-11-15 – p. 78


Abs. calibration (ALIS)<br />

<strong>UNIS</strong> 2011-11-15 – p. 79


Challenge<br />

Read the “28. Appendix” <strong>and</strong> compare to<br />

Sigernes et al. [2008]. You might also want to<br />

compare to Torr <strong>and</strong> Espy [1981]<br />

Calculate R/Å <strong>for</strong> the IRF-UJO-Y275 radioactive<br />

source around 5577 Å using the result in “28.<br />

Appendix” <strong>and</strong> compare to latest intercalibration<br />

result from Sodankylä. (That source is marked<br />

15 µlm<br />

<strong>UNIS</strong> 2011-11-15 – p. 80


ALIS<br />

<strong>UNIS</strong> 2011-11-15 – p. 81


ALIS 2009–2012<br />

A<br />

N<br />

F<br />

K<br />

O<br />

B<br />

T<br />

Norway<br />

D<br />

I<br />

E<br />

R<br />

Sweden<br />

S<br />

M<br />

Y<br />

Finl<strong>and</strong><br />

<strong>UNIS</strong> 2011-11-15 – p. 82


Spectroscopic imaging<br />

4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000<br />

Wavelength [Å]<br />

<strong>UNIS</strong> 2011-11-15 – p. 83


Selectable common volumes<br />

100<br />

50<br />

0<br />

−50<br />

−100<br />

Abisko<br />

Silkimuotka<br />

Nikaluokta Kiruna<br />

Merasjaervi<br />

Tjautjas<br />

−150<br />

−200 −100 0 100 200<br />

surveilance<br />

50<br />

0<br />

−50<br />

−100<br />

−150<br />

−200<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Abisko<br />

Silkimuotka<br />

Nikaluokta Kiruna<br />

Merasjaervi<br />

Tjautjas<br />

−200 −100 0<br />

south<br />

100 200<br />

Abisko<br />

Nikaluokta Kiruna<br />

Silkimuotka<br />

Tjautjas<br />

Merasjaervi<br />

−400 −200 0<br />

east−west<br />

200 400<br />

400<br />

300<br />

200<br />

100<br />

0<br />

−200 0<br />

eiscat<br />

200<br />

Approximate field of view at 110 km<br />

Abisko<br />

Nikaluokta Kiruna<br />

Silkimuotka<br />

Tjautjas<br />

Merasjaervi<br />

50<br />

0<br />

−50<br />

−100<br />

−150<br />

100<br />

50<br />

0<br />

−50<br />

−100<br />

300<br />

200<br />

100<br />

0<br />

Abisko<br />

Silkimuotka<br />

Nikaluokta Kiruna<br />

Merasjaervi<br />

Tjautjas<br />

−100 0<br />

mag_zen<br />

100 200<br />

Abisko<br />

Silkimuotka<br />

Nikaluokta Kiruna<br />

Merasjaervi<br />

Tjautjas<br />

−200 −100 0 100<br />

core<br />

400<br />

300<br />

200<br />

100<br />

Abisko<br />

Silkimuotka<br />

Nikaluokta Kiruna<br />

Merasjaervi<br />

Tjautjas<br />

−300 −200 −100<br />

north<br />

0 100 200<br />

0<br />

Abisko<br />

Nikaluokta Kiruna<br />

Silkimuotka<br />

Tjautjas<br />

Merasjaervi<br />

−200 0<br />

heating<br />

200<br />

[km]<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

W<br />

o<br />

50 90 o<br />

−150 −100 −50 0 100 200<br />

β<br />

S<br />

00 11<br />

00 11<br />

00 11<br />

α<br />

z<br />

N y<br />

β<br />

a φ<br />

[km]<br />

E<br />

x<br />

Azimuth<br />

<strong>UNIS</strong> 2011-11-15 – p. 84


Scientific results <strong>and</strong> capabilities<br />

<strong>UNIS</strong> 2011-11-15 – p. 85


Altitude (km)<br />

Altitude (km)<br />

Altitude (km)<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

20:09:00<br />

−50 0 50<br />

20:10:00<br />

−50 0 50<br />

20:11:00<br />

−50 0 50<br />

North (km)<br />

Auroral tomography<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

40 km west of Kiruna<br />

90<br />

20:09:30<br />

−50 0 50<br />

20:10:30<br />

−50 0 50<br />

20:11:30<br />

−50 0 50<br />

North (km)<br />

Altitude (km)<br />

Altitude (km)<br />

Altitude (km)<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

20:09:00<br />

−50 0 50<br />

20:10:00<br />

−50 0 50<br />

20:11:00<br />

−50 0 50<br />

North (km)<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

90<br />

160<br />

150<br />

140<br />

130<br />

120<br />

110<br />

100<br />

70 km west of Kiruna<br />

1997-02-16 ALIS/FAST/EISCAT<br />

90<br />

20:09:30<br />

−50 0 50<br />

20:10:30<br />

−50 0 50<br />

20:11:30<br />

−50 0 50<br />

North (km)<br />

<strong>UNIS</strong> 2011-11-15 – p. 86


<strong>UNIS</strong> 2011-11-15 – p. 87


<strong>UNIS</strong> 2011-11-15 – p. 88


electron energy<br />

10 2<br />

10 1<br />

10 0<br />

Auroral electron spectras,<br />

from tomography,<br />

log 10 electron energy flux<br />

200 400 600 800 1000 1200<br />

time after 23:20:00 UT (s)<br />

9<br />

8.5<br />

8<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

<strong>UNIS</strong> 2011-11-15 – p. 89


electron energy<br />

10 2<br />

10 1<br />

10 0<br />

Auroral electron spectras,<br />

from tomography,<br />

log 10 electron energy flux<br />

200 400 600 800 1000 1200<br />

time after 23:20:00 UT (s)<br />

<strong>and</strong> from spectroscopic<br />

ratios (right panel).<br />

After Gustavsson et al. [2001b], Phys. Chem. Earth 26.<br />

9<br />

8.5<br />

8<br />

7.5<br />

7<br />

6.5<br />

6<br />

5.5<br />

5<br />

4.5<br />

N−S distance<br />

N−S distance<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20<br />

−40<br />

−60<br />

0 500 1000<br />

time after 23:20:00 UT (s)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

−20<br />

−40<br />

−60<br />

Characteristic energy (keV)<br />

Oxygen scaling factor<br />

0 500 1000<br />

time after 23:20:00 UT (s)<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.35<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

N−S distance<br />

N−S distance<br />

N−S distance<br />

50<br />

0<br />

−50<br />

0 500 1000<br />

time after 23:20:00 UT (s)<br />

8446 A<br />

50<br />

0<br />

−50<br />

4278 A<br />

0 500 1000<br />

time after 23:20:00 UT (s)<br />

6300 A<br />

50<br />

0<br />

−50<br />

0 500 1000<br />

time after 23:20:00 UT (s)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

250<br />

200<br />

150<br />

100<br />

50<br />

<strong>UNIS</strong> 2011-11-15 – p. 89


<strong>UNIS</strong> 2011-11-15 – p. 90


Bus<br />

Kiruna<br />

Optlab<br />

Abisko<br />

filter/expose s<strong>eq</strong>uence<br />

Filter/exposure s<strong>eq</strong>uence: sync−rapid−aeronomi<br />

0 2 4 6 8 10 12 14 16 18 20<br />

time (s)<br />

<strong>UNIS</strong> 2011-11-15 – p. 91


<strong>UNIS</strong> 2011-11-15 – p. 92


<strong>UNIS</strong> 2011-11-15 – p. 93


<strong>UNIS</strong> 2011-11-15 – p. 94


Daylight aurora<br />

After Rees et al. [2000], GRL, 27.<br />

<strong>UNIS</strong> 2011-11-15 – p. 95


Radio-induced optical emissions<br />

<strong>UNIS</strong> 2011-11-15 – p. 96


RIOE<br />

ALIS made the first unambigous observation of<br />

high-latitude RIOE 1999-02-16<br />

17:40:15 17:40:35 17:40:55 17:41:15 17:41:35 17:41:55<br />

17:43:55 17:44:05 17:44:15 17:44:25 17:44:35 17:44:45<br />

After [Brändström et al., 1999], GRL, 26.<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

<strong>UNIS</strong> 2011-11-15 – p. 97


Tomography of RIOE<br />

After Gustavsson et al. [2001a], JGR<br />

106, 29<br />

ALIS made the first tomographic<br />

estimate of volume<br />

distribution of RIOE.<br />

<strong>UNIS</strong> 2011-11-15 – p. 98


<strong>UNIS</strong> 2011-11-15 – p. 99


<strong>UNIS</strong> 2011-11-15 – p. 100


Meteor research<br />

<strong>UNIS</strong> 2011-11-15 – p. 101


A strange meteor trail<br />

130<br />

120<br />

110<br />

100<br />

95<br />

x 10 4<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

110<br />

100<br />

4227 Å (left) 5893 Å (right)<br />

After Pellinen-Wannberg et al. [2004, GRL 31], GRL 31.<br />

95<br />

5000<br />

4500<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

<strong>UNIS</strong> 2011-11-15 – p. 102


Polar-Stratospheric clouds<br />

70<br />

60<br />

50<br />

40<br />

26<br />

Triangulation<br />

24<br />

23<br />

25<br />

21 22<br />

−20 −10 0<br />

After Enell [2002], IRF Sci. Rep. 278<br />

<strong>UNIS</strong> 2011-11-15 – p. 103


Future plans <strong>and</strong> challenges<br />

<strong>UNIS</strong> 2011-11-15 – p. 104


Small structure<br />

The aurora is extremly rich in small structure<br />

“With respect to underst<strong>and</strong>ing the<br />

dynamic coupling between the<br />

magnetosphere <strong>and</strong> the auroral<br />

ionosphere the observational bias toward<br />

bright aurora is physically unjustified”<br />

[Semeter 2001]<br />

<strong>UNIS</strong> 2011-11-15 – p. 105


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

• Diffuse aurora<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

• Diffuse aurora<br />

• Pulsating aurora<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

• Diffuse aurora<br />

• Pulsating aurora<br />

• The role of the ionosphere in the<br />

magnetosphere-ionosphere coupling<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

• Diffuse aurora<br />

• Pulsating aurora<br />

• The role of the ionosphere in the<br />

magnetosphere-ionosphere coupling<br />

• How are different scales related to each<br />

other?<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


We do not underst<strong>and</strong>:<br />

• Creation of narrow arcs<br />

• Diffuse aurora<br />

• Pulsating aurora<br />

• The role of the ionosphere in the<br />

magnetosphere-ionosphere coupling<br />

• How are different scales related to each<br />

other?<br />

Thus we need instruments measuring different<br />

scales with high temporal <strong>and</strong> spatial resolution,<br />

e.g. Polar/VIS, ASC, ALIS, ASK<br />

<strong>UNIS</strong> 2011-11-15 – p. 106


ALIS 2010–2014<br />

• Electrodynamics of auroral structures: get<br />

most out of EISCAT-UHF<br />

• ALIS/EISCAT/REIMEI<br />

• Improve temporal resolution: EM<strong>CCD</strong><br />

• Review which sites to use<br />

• Ionospheric sounding rockets?<br />

• Collaboration <strong>for</strong> development of methods<br />

<strong>and</strong> models<br />

• Calibration!!!<br />

• Improve access to data<br />

<strong>UNIS</strong> 2011-11-15 – p. 107


In particular<br />

we will work to answer the following specific<br />

questions:<br />

1. What is the temporal <strong>and</strong> spatial scale<br />

distribution of small (less than a few km)<br />

auroral structures?.<br />

2. What are the temporal <strong>and</strong> spatial variations<br />

of the primary particle distributions causing<br />

small auroral structures?<br />

3. What is the detailed 3D electrodynamics of<br />

small auroral structures?<br />

4. How does ionospheric feedback influence<br />

auroral structure?<br />

<strong>UNIS</strong> 2011-11-15 – p. 108


<strong>and</strong> now. . .<br />

<strong>UNIS</strong> 2011-11-15 – p. 109


My brain hurts!<br />

Mr. T. F. Gumby:—Doctor! Doctor! DOCTOR! DOCTOR! Doctor!<br />

— Are you the brain specialist? — My brain hurts!<br />

http://www.mwscomp.com/mpfc/gumbrain.ht<br />

<strong>UNIS</strong> 2011-11-15 – p. 110


It’s<br />

The end!<br />

<strong>UNIS</strong> 2011-11-15 – p. 111


THE END!<br />

<strong>UNIS</strong> 2011-11-15 – p. 112


The end?<br />

Kiruna ASC 2007-02-05 17.39.00 UTC 10s exp.<br />

<strong>UNIS</strong> 2011-11-15 – p. 113


References<br />

References<br />

Baker, D. J., Rayleigh, the unit <strong>for</strong> light radiance, Applied Op-<br />

tics, 13, 2160–2163, 1974.<br />

Baker, D. J., <strong>and</strong> G. J. Romick, The Rayleigh interpretation of<br />

the unit in terms of column emission rate or apparent radi-<br />

ance expressed in SI units, Applied Optics, 15, 1966–1968,<br />

1976.<br />

Brändström, B. U. E., T. B. Leyser, ˚A. Steen, M. T. Rietveld,<br />

B. Gustavsson, T. Aso, <strong>and</strong> M. Ejiri, Unambigous evidence of<br />

HF pump-enhanced airglow, Geophys. Res. Lett., 26, 3561–<br />

3564, 1999.<br />

Brändström, U., The Auroral Large Imaging System — Design,<br />

operation <strong>and</strong> scientific results, Ph.D. thesis, Swedish Insti-<br />

tute of Space Physics, Kiruna, Sweden, 2003, (IRF Scientific<br />

Report 279), ISBN: 91-7305-405-4.<br />

Chamberlain, J. W., Physics of the aurora <strong>and</strong> airglow, Classics<br />

in geophysics, AGU (American Geophysical Union), 1995, (A<br />

reprint of the original work from 1961).<br />

113-1


Enell, C.-F., Optical studies of polar stratospheric clouds <strong>and</strong><br />

related phenomena, Ph.D. thesis, Swedish Institute of Space<br />

Physics, Kiruna, Sweden, 2002, (IRF Scientific Report 278),<br />

ISBN: 91-7305-307-4.<br />

Gustavsson, B., T. Sergienko, M. T. Rietveld, F. Honary,<br />

˚A. Steen, B. U. E. Brändström, T. B. Leyser, A. L. Aruliah,<br />

T. Aso, <strong>and</strong> M. Ejiri, First tomographic estimate of volume dis-<br />

tribution of enhanced airglow emission caused by HF pump-<br />

ing, J. Geophys. Res., 106, 29,105–29,123, 2001a.<br />

Gustavsson, B., ˚A. Steen, T. Sergienko, <strong>and</strong> B. U. E. Bränd-<br />

ström, Estimate of auroral electron spectra, the power<br />

of ground-based multi-station optical measurements, Phys.<br />

Chem. Earth, 26, 189–194, 2001b.<br />

Holst, G. C., <strong>CCD</strong> arrays, cameras <strong>and</strong> displays, second<br />

ed., The International Society <strong>for</strong> Optical Engineering, 1998,<br />

ISBN: 0-8194-2853-1.<br />

Hunten, D. M., F. E. Roach, <strong>and</strong> J. W. Chamberlain, A photo-<br />

metric unit <strong>for</strong> the aurora <strong>and</strong> airglow, J. Atmos. Terr. Phys.,<br />

8, 345–346, 1956.<br />

Janesick, J. R., T. Elliott, S. Collins, M. M. Blouke, <strong>and</strong> J. Free-<br />

man, Scientific charge-coupled devices, Optical Engineering,<br />

26, 692–714, 1987.<br />

113-2


Pellinen-Wannberg, A., E. Murad, B. Gustavsson, U. Bränd-<br />

ström, C.-F. Enell, C. Roth, I. P. Williams, <strong>and</strong> ˚A. Steen, Op-<br />

tical observations of water in Leonid meteor trails, Geophys.<br />

Res. Lett., 31, 2004.<br />

Rees, D., M. Conde, ˚A. Steen, <strong>and</strong> U. Brändström, The first<br />

daytime ground-based optical image of the aurora, Geophys.<br />

Res. Lett., 27, 313–316, 2000.<br />

Sigernes, F., J. M. Holmes, M. Dyrl<strong>and</strong>, D. A. Lorentzen,<br />

T. Svenøe, K. Heia, T. Aso, S. Chernouss, <strong>and</strong> C. S. Deehr,<br />

Sensitivity calibration of digital colour cameras <strong>for</strong> auroral<br />

imaging, Optics Express, 16, 15,623–15,632, 2008.<br />

Torr, M. R., <strong>and</strong> P. Espy, Intercalibration of instrumentation<br />

used in the observation of atmospheric emissions: Second<br />

progress report, Tech. Rep. 101, Utah State University, Cen-<br />

ter <strong>for</strong> atmospheric <strong>and</strong> space sciences, Logan Utah, 1981.<br />

Wolfe, W. L., Introduction to Radiometry, vol. TT29, The Inter-<br />

national Society <strong>for</strong> Optical Engineering, 1998.<br />

113-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!