06.03.2013 Views

Three-Coordinated Boron-11 Chemical Shifts in Borates - SMRL ...

Three-Coordinated Boron-11 Chemical Shifts in Borates - SMRL ...

Three-Coordinated Boron-11 Chemical Shifts in Borates - SMRL ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6246 Inorganic Chemistry, Vol. 40, No. 24, 2001 Kroeker and Stebb<strong>in</strong>s<br />

shield<strong>in</strong>g anisotropy. In calculat<strong>in</strong>g these spectra, the nearly<br />

axially symmetric quadrupolar tensor (η ) 0.04) was considered<br />

evidence for the presence of an approximate 3-fold rotation axis<br />

perpendicular to the BO3 plane. Accord<strong>in</strong>gly, the shield<strong>in</strong>g<br />

tensor is constra<strong>in</strong>ed to axial symmetry (κ )(1), with the<br />

unique component (i.e., the largest or the smallest) aligned with<br />

the largest component of the quadrupolar tensor. As described<br />

above, data at 14.1 and 18.8 T are best fit with a positive skew<br />

(κ )+1) and a shield<strong>in</strong>g tensor spann<strong>in</strong>g 15 ppm, <strong>in</strong>dicat<strong>in</strong>g<br />

that the most shielded component is perpendicular to the BO3<br />

plane. The magnitude and orientation of the shield<strong>in</strong>g tensor<br />

agrees with ab <strong>in</strong>itio calculations on three-coord<strong>in</strong>ate boron units<br />

<strong>in</strong> trimethyl borate. 81<br />

From an analogous treatment of Cs9B data at 14.1 and 18.8<br />

T, the shield<strong>in</strong>g tensor for the T 3 (r<strong>in</strong>g) sites is approximately<br />

21 ppm, aga<strong>in</strong> with a positive skew. Here, multiple T 3 sites<br />

and a larger quadrupolar asymmetry parameter (0.2-0.3) cast<br />

greater uncerta<strong>in</strong>ty on these values, suggest<strong>in</strong>g only that the<br />

shield<strong>in</strong>g anisotropy is slightly larger than for B2O3. Several<br />

other analyses were made of the sp<strong>in</strong>n<strong>in</strong>g sidebands <strong>in</strong> 14.1 T<br />

spectra for other compounds. For the T 0 group <strong>in</strong> lanthanum<br />

orthoborate, the axially symmetric quadrupolar tensor supports<br />

the assumption of co<strong>in</strong>cident tensors, yield<strong>in</strong>g a shield<strong>in</strong>g<br />

anisotropy of Ω ) 17 ( 3 ppm and κ )+1. In calcium<br />

metaborate (T 2 ) and magnesium pyroborate (T 1 ), the presence<br />

of nonbridg<strong>in</strong>g oxygens lowers the local symmetry, produc<strong>in</strong>g<br />

a nonzero quadrupolar asymmetry and almost certa<strong>in</strong>ly nonco<strong>in</strong>cident,<br />

nonaxially symmetric shield<strong>in</strong>g and quadrupolar<br />

tensors. With these unknowns it is not possible to report the<br />

shield<strong>in</strong>g tensor components with confidence, however an<br />

exploration of several relevant parameters suggests that the<br />

shield<strong>in</strong>g anisotropy is significantly larger <strong>in</strong> these compounds,<br />

spann<strong>in</strong>g 35-40 ppm. These values are <strong>in</strong> agreement with ab<br />

<strong>in</strong>itio calculations of T 2 groups <strong>in</strong> model clusters which <strong>in</strong>dicate<br />

a skew of about 0, with a span rang<strong>in</strong>g from 30 to 35 ppm. 82<br />

These shield<strong>in</strong>g data suggest that the small changes measured<br />

<strong>in</strong> δiso upon depolymerization result from larger changes <strong>in</strong> some<br />

or all of the tensor pr<strong>in</strong>cipal components, but are masked by<br />

opposite dependencies on structure. Thus, it would be most<br />

<strong>in</strong>formative to measure the full tensors to ga<strong>in</strong> a more<br />

comprehensive understand<strong>in</strong>g of how shield<strong>in</strong>g is correlated with<br />

structure.<br />

In light of these suppositions, it is worthwhile to consider<br />

how applicable to studies of glass structure the observed<br />

correlation may be. Relationships between anisotropic shield<strong>in</strong>g<br />

and structure have proven useful <strong>in</strong> nonsp<strong>in</strong>n<strong>in</strong>g NMR studies<br />

of the sp<strong>in</strong>- 1 /2 nuclides 29 Si and 31 P. The 29 Si shield<strong>in</strong>g tensors<br />

<strong>in</strong> silicate tetrahedra with 0-4 nonbridg<strong>in</strong>g oxygens progress<br />

from isotropic to anisotropic (κ )+1) to anisotropic (κ ≈ 0)<br />

to anisotropic (κ )-1) to isotropic, thus permitt<strong>in</strong>g structural<br />

conclusions and species quantification to be derived from<br />

appropriate experiments. 83,84 Similarly, phosphate tetrahedra<br />

exhibit the follow<strong>in</strong>g behavior for 1 to 4 nonbridg<strong>in</strong>g oxygens:<br />

anisotropic (κ )+1), anisotropic (κ ≈ 0), anisotropic (κ )-1),<br />

and isotropic. 85 For nuclei with quadrupolar <strong>in</strong>teractions, the<br />

<strong>in</strong>terplay between quadrupolar and shield<strong>in</strong>g <strong>in</strong>teractions often<br />

obscures <strong>in</strong>formation about both, especially <strong>in</strong> amorphous<br />

(81) Bryce, D. L.; Wasylishen, R. E.; Gee, M. J. Phys. Chem. A 2001,<br />

105, 3633-3640.<br />

(82) Tossell, J. A.; Sasaki, S. Personal communication, 2001.<br />

(83) Zhang, P.; Grand<strong>in</strong>etti, P. J.; Stebb<strong>in</strong>s, J. F. J. Phys. Chem. B 1997,<br />

101, 4004-4008.<br />

(84) Stebb<strong>in</strong>s, J. F. Nature 1987, 330, 465-467.<br />

(85) Eckert, H. In NMR: Basic Pr<strong>in</strong>ciples and Progress; Blümich, B., Ed.;<br />

Spr<strong>in</strong>ger-Verlag: New York, 1994; Vol. 33, pp 125-198.<br />

systems. However, sufficient 51 V(S ) 7 /2) shield<strong>in</strong>g data on<br />

crystall<strong>in</strong>e vanadates facilitated the use of 51 V NMR <strong>in</strong> the study<br />

of vanadium-niobium catalysts, 86 where it was concluded that<br />

the anisotropic shield<strong>in</strong>g was a better structural <strong>in</strong>dicator than<br />

δiso. At typical magnetic fields, however, this is a unique case<br />

<strong>in</strong> which the shield<strong>in</strong>g <strong>in</strong>teraction dom<strong>in</strong>ates the quadrupolar<br />

<strong>in</strong>teraction. In general, the measurement of shield<strong>in</strong>g tensors <strong>in</strong><br />

the presence of quadrupolar <strong>in</strong>teractions is not trivial. Prelim<strong>in</strong>ary<br />

<strong>11</strong> B NMR data at 18.8 T on borate glasses suggest that<br />

shield<strong>in</strong>g anisotropy plays a role <strong>in</strong> the observed sp<strong>in</strong>n<strong>in</strong>g<br />

sideband peak <strong>in</strong>tensities (unpublished data). It is yet unclear<br />

whether this can be quantified with sufficient precision to have<br />

predictive power.<br />

Conclusions<br />

The detection of a subtle but significant relation between <strong>11</strong> B<br />

chemical shifts for three-coord<strong>in</strong>ate boron and the degree of<br />

connectivity to other borate groups owes much to the use of<br />

relatively high magnetic fields of 14.1 and 18.8 T. Ma<strong>in</strong>ly due<br />

to the reduced <strong>in</strong>fluence of the quadrupolar <strong>in</strong>teraction and<br />

enhanced prom<strong>in</strong>ence of the shield<strong>in</strong>g <strong>in</strong>teraction <strong>in</strong> the spectra,<br />

greater precision <strong>in</strong> δiso may be obta<strong>in</strong>ed relative to previous<br />

studies at lower fields and sp<strong>in</strong>n<strong>in</strong>g rates. These effects are also<br />

advantageous <strong>in</strong> studies of glasses, where both three- and fourcoord<strong>in</strong>ated<br />

boron species are generally present. Whereas much<br />

of the early <strong>11</strong> B NMR work on borates relied on tedious fitt<strong>in</strong>g<br />

schemes to estimate the relative contributions of these sites to<br />

the spectra, MAS NMR studies of such systems at fields greater<br />

than <strong>11</strong>.7 T conveniently offer complete resolution of the<br />

trigonal and tetrahedral boron sites. A direct comparison of these<br />

NMR approaches is provided <strong>in</strong> ref 87.<br />

The particular correlation proposed here, as well as the general<br />

utility of us<strong>in</strong>g high field <strong>11</strong> B MAS NMR, opens up many<br />

possibilities for structural <strong>in</strong>vestigations of borate glasses. For<br />

example, us<strong>in</strong>g this approach to study high alkali b<strong>in</strong>ary borates<br />

or borosilicates may obviate the need to <strong>in</strong>voke assumptions<br />

about the degree of BO3 polymerization <strong>in</strong> the development of<br />

structural models. Applications to mixed alkali glasses, 88,89<br />

borosilicate, 90,91 alum<strong>in</strong>oborate, 92 and “<strong>in</strong>vert glasses”, where<br />

extensive depolymerization is expected, can be envisioned.<br />

Acknowledgment. We are grateful to Prof. J. Puglisi for<br />

access to the Inova 800 at the Stanford Magnetic Resonance<br />

Laboratory, and to Dr. Corey Liu for excellent technical support.<br />

Dr. R. A. Smith (U. S. Borax) is acknowledged for provid<strong>in</strong>g<br />

the crystall<strong>in</strong>e sample of B2O3. Dr. Peidong Zhao synthesized<br />

the sodium pyroborate sample. Helpful discussions with Dr. S.<br />

Sen (Corn<strong>in</strong>g, Inc.) regard<strong>in</strong>g synthetic methodology are<br />

acknowledged. S.K. thanks the Natural Sciences and Eng<strong>in</strong>eer<strong>in</strong>g<br />

Research Council (NSERC) of Canada for a postdoctoral<br />

fellowship. This research is supported by the U.S. National<br />

Science Foundation (NSF) Grant DMR 9802072.<br />

IC010305U<br />

(86) Smits, R. H. H.; Seshan, K.; Ross, J. R. H.; Kentgens, A. P. M. J.<br />

Phys. Chem. 1995, 99, 9169-9175.<br />

(87) Berryman, J. R.; Feller, S. A.; Affatigato, M.; Kodama, M.; Meyer,<br />

B. M.; Mart<strong>in</strong>, S. W.; Borsa, F.; Kroeker, S. J. Non-Cryst. Solids 2001.<br />

In press.<br />

(88) Zhong, J.; Bray, P. J. J. Non-Cryst. Solids 1989, <strong>11</strong>1, 67-76.<br />

(89) Ratai, E.; Janssen, M.; Eckert, H. Solid State Ionics 1998, 105, 25-<br />

37.<br />

(90) Yun, Y. H.; Bray, P. J. J. Non-Cryst. Solids 1981, 44, 227-237.<br />

(91) Dell, W. J.; Bray, P. J.; Xiao, S. Z. J. Non-Cryst. Solids 1983, 58,<br />

1-16.<br />

(92) Zhong, J.; Bray, P. J. J. Non-Cryst. Solids 1986, 84, 17-24.<br />

(93) Fang, S. Z. Kristallogr. 1938, 99, 1-8.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!