29.03.2013 Views

Chromium (VI) Compounds - IARC Monographs on the Evaluation of ...

Chromium (VI) Compounds - IARC Monographs on the Evaluation of ...

Chromium (VI) Compounds - IARC Monographs on the Evaluation of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>IARC</str<strong>on</strong>g> M<strong>on</strong>oGRAphS – 100C<br />

After intratracheal instillati<strong>on</strong> in rats, chromium<br />

(<str<strong>on</strong>g>VI</str<strong>on</strong>g>) induced DNA strand breaks in<br />

lymphocytes (Gao et al., 1992). After intraperit<strong>on</strong>eal<br />

injecti<strong>on</strong> <strong>of</strong> chromium (<str<strong>on</strong>g>VI</str<strong>on</strong>g>) to mice, micr<strong>on</strong>uclei<br />

were induced in b<strong>on</strong>e marrow. In c<strong>on</strong>trast,<br />

no micr<strong>on</strong>ucleus inducti<strong>on</strong> was observed after<br />

oral administrati<strong>on</strong>, indicating that chromium<br />

(<str<strong>on</strong>g>VI</str<strong>on</strong>g>) does not reach <strong>the</strong> target cells to a high<br />

extent by this route <strong>of</strong> exposure (De Flora et al.,<br />

2006). <str<strong>on</strong>g>Chromium</str<strong>on</strong>g> (<str<strong>on</strong>g>VI</str<strong>on</strong>g>) induces dominant lethal<br />

mutati<strong>on</strong>s in male mice (Paschin et al., 1982).<br />

In vitro, soluble chromium (<str<strong>on</strong>g>VI</str<strong>on</strong>g>) compounds<br />

are mutagenic in mammalian and bacterial test<br />

systems (De Flora et al., 1990).<br />

4.2.1 DNA damage<br />

<str<strong>on</strong>g>Chromium</str<strong>on</strong>g> (<str<strong>on</strong>g>VI</str<strong>on</strong>g>) is unreactive towards DNA<br />

under physiological c<strong>on</strong>diti<strong>on</strong>s. According to <strong>the</strong><br />

uptake–reducti<strong>on</strong> model originally established<br />

by Wetterhahn et al. (1989), chromium (<str<strong>on</strong>g>VI</str<strong>on</strong>g>)<br />

undergoes a series <strong>of</strong> reducti<strong>on</strong> steps in cells, to<br />

form <strong>the</strong> <strong>the</strong>rmodynamically stable chromium<br />

(III). Intracellular reducti<strong>on</strong> does not require<br />

enzymatic steps but is mediated by direct electr<strong>on</strong><br />

transfer from ascorbate and n<strong>on</strong>-protein<br />

thiols, such as glutathi<strong>on</strong>e and cysteine. During<br />

<strong>the</strong> reducti<strong>on</strong> process, variable amounts <strong>of</strong> chromium<br />

(V) and chromium (IV) as well as organic<br />

radical species are generated; <strong>the</strong>ir exact nature,<br />

however, depends largely <strong>on</strong> <strong>the</strong> reducing species<br />

(Wetterhahn & Hamilt<strong>on</strong>, 1989). Fur<strong>the</strong>rmore,<br />

comparative in-vivo and in-vitro studies revealed<br />

a major impact <strong>of</strong> <strong>the</strong> intracellular reductants <strong>on</strong><br />

<strong>the</strong> nature and biological c<strong>on</strong>sequences <strong>of</strong> <strong>the</strong><br />

resultant DNA lesi<strong>on</strong>s.<br />

The major intracellular reductant under<br />

physiological c<strong>on</strong>diti<strong>on</strong>s appears to be ascorbate,<br />

reaching millimolar c<strong>on</strong>centrati<strong>on</strong>s in human<br />

tissues, and accounting for about 90% <strong>of</strong> chromium<br />

(<str<strong>on</strong>g>VI</str<strong>on</strong>g>) reducti<strong>on</strong> reacti<strong>on</strong>s in vivo (Standeven<br />

et al., 1992). In c<strong>on</strong>trast, <strong>on</strong>ly micromolar c<strong>on</strong>centrati<strong>on</strong>s<br />

<strong>of</strong> ascorbate are usually present in cell<br />

cultures (Quievryn et al., 2002), which leads to<br />

162<br />

an increase in thiol-mediated chromate reducti<strong>on</strong>.<br />

When ascorbate is <strong>the</strong> reductant, two electr<strong>on</strong>s<br />

are transferred, and chromium (IV) but<br />

not chromium (V) is generated as <strong>the</strong> first intermediate,<br />

whereas with cysteine as a reductant,<br />

predominantly chromium (V) is formed due to<br />

<strong>on</strong>e-electr<strong>on</strong> transfers (Stearns & Wetterhahn,<br />

1994). In both cases, <strong>the</strong> final product is chromium<br />

(III), which reacts to produce different<br />

types <strong>of</strong> DNA lesi<strong>on</strong>s.<br />

DNA lesi<strong>on</strong>s generated after exposure<br />

to chromium (<str<strong>on</strong>g>VI</str<strong>on</strong>g>) include chromium (III)–<br />

DNA adducts, DNA–protein and DNA–DNA<br />

interstrand crosslinks, DNA breaks as well as<br />

several oxidative DNA–base modificati<strong>on</strong>s. The<br />

predominant form <strong>of</strong> chromium (III)–DNA<br />

adducts are ternary adducts, where chromium<br />

forms a link between DNA and small molecules<br />

such as cysteine, histidine, glutathi<strong>on</strong>e or ascorbate,<br />

presumably arising from preformed chromium–ligand<br />

complexes during <strong>the</strong> reducti<strong>on</strong><br />

process. These adducts are formed primarily at<br />

phosphate groups, but <strong>the</strong> subsequent partial<br />

formati<strong>on</strong> <strong>of</strong> chelates involving <strong>the</strong> phosphate<br />

group and <strong>the</strong> N 7 -positi<strong>on</strong> <strong>of</strong> guanine have been<br />

suggested. Chelates formed from chromium–<br />

ascorbate particularly are potent premutagenic<br />

DNA lesi<strong>on</strong>s (Zhitkovich et al., 2001).<br />

The formati<strong>on</strong> <strong>of</strong> DNA–protein crosslinks<br />

after chromate exposure is well established, but<br />

is estimated to account for less than 1% <strong>of</strong> chromium–DNA<br />

adducts. Biological c<strong>on</strong>sequences<br />

are likely to be disturbances <strong>of</strong> DNA replicati<strong>on</strong><br />

and transcripti<strong>on</strong>. The formati<strong>on</strong> <strong>of</strong> DNA–DNA<br />

crosslinks appears to be restricted to certain<br />

in-vitro c<strong>on</strong>diti<strong>on</strong>s, due to severe steric hindrance<br />

up<strong>on</strong> intercalati<strong>on</strong> <strong>of</strong> octahedral chromium (III)<br />

complexes (Zhitkovich, 2005).<br />

DNA single-strand breaks may arise<br />

due to <strong>the</strong> reacti<strong>on</strong> <strong>of</strong> chromium (V) with<br />

hydrogen peroxide, forming hydroxyl radicals.<br />

Never<strong>the</strong>less, if ascorbate is <strong>the</strong> predominant<br />

reductant under in-vivo c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong> generati<strong>on</strong><br />

<strong>of</strong> chromium (V) and thus, single-strand

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!