29.03.2013 Views

Rowan-Gollan-PhD-Thesis - Mechanical Engineering - University of ...

Rowan-Gollan-PhD-Thesis - Mechanical Engineering - University of ...

Rowan-Gollan-PhD-Thesis - Mechanical Engineering - University of ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

List <strong>of</strong> Figures<br />

1.1 Peak heating etimates for various atmospheric-entry vehicles . . . . . . . . . . . 4<br />

1.2 Modelling components for a continuum-based aerothermal analysis . . . . . . . 9<br />

2.1 Schematic <strong>of</strong> blunt body flow at hypersonic speeds . . . . . . . . . . . . . . . . . 14<br />

2.2 Velocity-altitude map <strong>of</strong> important physical and chemical processes . . . . . . . . 19<br />

2.3 Variation <strong>of</strong> the ratio <strong>of</strong> specific heats with temperature for air . . . . . . . . . . . 20<br />

3.1 Contours <strong>of</strong> primitive variables for a Method <strong>of</strong> Manufactured Solutions flow field 33<br />

3.2 Contours <strong>of</strong> generated source terms for a Method <strong>of</strong> Manufaactured Solutions<br />

flow field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34<br />

3.3 Computed global discretisation error based on L2 error norm for density . . . . . 35<br />

3.4 Analytical solution for an oblique detonation wave . . . . . . . . . . . . . . . . . 37<br />

3.5 Computed global discretisation error based on L1 error norm . . . . . . . . . . . . 39<br />

3.6 A typical setup for a numerical simulation <strong>of</strong> a D = 7.9375 mm sphere . . . . . . 41<br />

3.7 Procedure for determining shock location in the numerical solutions . . . . . . . 42<br />

3.8 Shock detachment distance for a 7.9375 mm diameter sphere fired into noble gases 44<br />

3.9 Demonstration <strong>of</strong> the grid dependency on the extracted value <strong>of</strong> shock location . 45<br />

4.1 Evolution <strong>of</strong> CHI as a function <strong>of</strong> time . . . . . . . . . . . . . . . . . . . . . . . . . 62<br />

4.2 Chemically relaxing flow behind a strong normal shock using Marrone’s kinetic<br />

scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65<br />

4.3 Chemically relaxing flow behind a strong normal shock using the reaction rate<br />

data proposed by Gupta et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66<br />

4.4 Ignition delay times for hydrogen combustion in air . . . . . . . . . . . . . . . . . 69<br />

4.5 Shock detachment distance for spheres fired into air . . . . . . . . . . . . . . . . . 74<br />

4.6 Schematic <strong>of</strong> the problem arrangement for the interdiffusion <strong>of</strong> two semi-infinite<br />

slabs <strong>of</strong> gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79<br />

4.7 Pr<strong>of</strong>iles for the mass fractions <strong>of</strong> nitrogen and oxygen in the binary diffusion<br />

verification problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81<br />

2.2 Velocity-altitude map <strong>of</strong> important physical and chemical processes . . . . . . . . 84<br />

5.1 Relaxation time for N2-N2 V-T exchanges . . . . . . . . . . . . . . . . . . . . . . . 92<br />

5.2 Transition probability, P 1,0<br />

0,1 (N2, O2), for V-V exchange . . . . . . . . . . . . . . . . 94<br />

xvi

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!