10.04.2013 Views

Analysis of Carbaryl and Carbofuran in Drinking ... - BGB Analytik AG

Analysis of Carbaryl and Carbofuran in Drinking ... - BGB Analytik AG

Analysis of Carbaryl and Carbofuran in Drinking ... - BGB Analytik AG

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Results <strong>and</strong> Discussion<br />

Separation<br />

The st<strong>and</strong>ard solutions were analyzed by <strong>in</strong>ject<strong>in</strong>g 10 µL <strong>of</strong><br />

each <strong>of</strong> the st<strong>and</strong>ard solutions onto the Agilent TC-C18(2)<br />

column. The chromatograms from the st<strong>and</strong>ard <strong>in</strong>jections<br />

(Figure 3) show high performance, high resolution, <strong>and</strong> symmetrical<br />

peaks. We have also run this on an HC-C18(2) column.<br />

A little longer retention was achieved with almost the<br />

same performance as with the TC-C18(2) column. These<br />

columns have a different carbon load: 17 percent for the<br />

HC-C18(2) column <strong>and</strong> 12 percent for the TC-C18(2) column.<br />

These differences impact retention, with the HC-C18(2) column<br />

typically reta<strong>in</strong><strong>in</strong>g nonpolar <strong>and</strong> moderately polar compounds<br />

more when compared with the TC-C18(2) column. We<br />

prefer the column provid<strong>in</strong>g a shorter analysis time but resolv<strong>in</strong>g<br />

all the peaks. Although both columns are suitable for this<br />

method, we chose the TC-C18(2) because it provided a slightly<br />

shorter analysis time.<br />

LU<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

Carb<strong>of</strong>uran<br />

4.88 ng<br />

<strong>Carbaryl</strong><br />

6.0 ng<br />

0 2 4 6 8 10 12<br />

Figure 3. Chromatogram <strong>of</strong> carb<strong>of</strong>uran <strong>and</strong> carbaryl st<strong>and</strong>ards on Agilent TC-C18(2),<br />

4.6 × 150 mm, 5 µm columns.<br />

L<strong>in</strong>earity, Reproducibility, <strong>and</strong> Limit <strong>of</strong> Detection<br />

The calibration curves result<strong>in</strong>g from these st<strong>and</strong>ard <strong>in</strong>jections<br />

on the TC-C18(2) column are shown <strong>in</strong> Figure 4. The<br />

method shows excellent l<strong>in</strong>earity, be<strong>in</strong>g very close to 1.0<br />

(0.9997). To evaluate the reproducibility <strong>of</strong> this method on the<br />

TC-C18(2) column, two concentrations <strong>of</strong> carb<strong>of</strong>uran <strong>and</strong> carbaryl<br />

were each <strong>in</strong>jected 10 times. The reproducibility <strong>of</strong> the<br />

peak areas is shown <strong>in</strong> Table 2; the absolute peak area reproducibility<br />

is superior. The average relative st<strong>and</strong>ard deviation<br />

(RSD) is below 3 percent. We calculate the LOD from the<br />

level 1 st<strong>and</strong>ard with a signal-to-noise ratio <strong>of</strong> 3. The LOD is<br />

0.066 ng for carb<strong>of</strong>uran <strong>and</strong> 0.080 ng for carbaryl, which is<br />

three to four times better than the 0.25 ng that is regulated by<br />

Ch<strong>in</strong>a's dr<strong>in</strong>k<strong>in</strong>g water st<strong>and</strong>ard.<br />

m<strong>in</strong><br />

4<br />

Area<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Area<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

0<br />

0<br />

1 2<br />

1 2<br />

Carb<strong>of</strong>uran, FLD1 A<br />

Area = 7.38558201*Amt + 0<br />

Rel. Res%(4): 3.286<br />

3<br />

5<br />

Amount[ng]<br />

<strong>Carbaryl</strong>, FLD1 A<br />

Area = 6.73870683*Amt + 0<br />

Rel. Res%(1): _ 3.824<br />

3<br />

Table 2. Reproducibility <strong>of</strong> St<strong>and</strong>ards Injections<br />

4<br />

4<br />

10<br />

5<br />

Correlation: 0.99975<br />

5 10<br />

Amount[ng]<br />

5<br />

Correlation: 0.99974<br />

Figure 4. Calibration curves <strong>of</strong> carb<strong>of</strong>uran <strong>and</strong> carbaryl [Agilent TC-C18(2),<br />

4.6 × 150 mm, 5 µm columns].<br />

RSD (%) n = 10 RSD (%) n = 10<br />

Carb<strong>of</strong>uran 48.8 ppb Carb<strong>of</strong>uran 488 ppb<br />

Analyte <strong>Carbaryl</strong> 60.0 ppb <strong>Carbaryl</strong> 600 ppb<br />

Carb<strong>of</strong>uran 2.3 1.6<br />

<strong>Carbaryl</strong> 1.8 1.5<br />

Recovery<br />

Two different levels were spiked <strong>in</strong> reagent water <strong>and</strong> tap<br />

water, respectively, <strong>and</strong> then followed the sample preparation<br />

procedure. The recovery data are good, with a typical recovery<br />

<strong>in</strong> the range <strong>of</strong> 80 to 110 percent (Table 3).<br />

To better match the Ch<strong>in</strong>a dr<strong>in</strong>k<strong>in</strong>g water method, <strong>in</strong> which<br />

dichloromethane is used for liquid-liquid extraction, we chose<br />

dichloromethane as the SPE cartridge eluent. That provided us<br />

clean chromatograms.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!