10.04.2013 Views

Study of the antioxidant power of brandies and vinegars derived ...

Study of the antioxidant power of brandies and vinegars derived ...

Study of the antioxidant power of brandies and vinegars derived ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

720 A.M. Alonso et al. / Food Research International 37 (2004) 715–721<br />

Table 6<br />

Polyphenols quantified (mg/L) in <strong>vinegars</strong><br />

Samples gal proc proe tyr p-OH-benc cat p-OH-ben sir van caft c-p-cout t-p-cout fert caf c-p-coum t-p-coum i-fer fer<br />

Vinegar<br />

type<br />

V1 10.97 9.67 n.d. 29.01 7.52 n.d. 0.96 4.55 n.d. 19.57 4.73 8.27 3.74 3.12 1.67 3.04 1.64 2.08<br />

V2 62.70 16.24 n.d. 39.19 n.d. 21.92 n.d. 15.17 n.d. 20.89 6.50 8.68 5.64 5.34 2.44 3.86 n.d. 1.80<br />

V3 12.55 6.67 0.36 37.35 n.d. n.d. 2.04 11.18 n.d. 19.71 6.47 7.35 5.67 3.10 1.92 2.67 1.24 1.19<br />

V4 12.29 n.d. n.d. 30.54 n.d. n.d. 0.79 3.46 3.94 23.41 4.46 9.35 3.49 2.75 1.32 2.45 1.26 2.01<br />

V5 9.45 4.82 n.d. 20.81 4.54 11.31 1.11 3.50 n.d. 2.39 1.34 1.39 1.07 0.69 n.d. 1.10 n.d. n.d.<br />

Not aged<br />

in wood<br />

V1–W 95.01 n.d. 9.73 97.96 33.47 60.02 8.27 17.43 17.03 8.46 n.d. 8.47 8.22 6.60 2.98 7.59 3.37 5.10<br />

V2–W 43.74 n.d. 3.13 34.86 9.22 21.19 2.37 5.72 6.06 10.64 2.73 5.67 2.91 4.77 1.97 4.24 1.04 1.71<br />

V3–W 22.47 3.96 n.d. 26.87 5.48 12.11 n.d. 4.71 4.13 14.24 3.84 5.53 3.30 2.97 1.68 2.96 0.98 0.93<br />

V4–W 27.14 4.63 n.d. 25.17 4.78 9.06 1.24 5.65 4.72 17.31 3.99 6.47 3.32 3.60 1.84 3.51 1.13 1.10<br />

V5–W 48.90 13.69 n.d. 53.80 9.15 17.16 1.83 6.37 6.07 9.23 2.18 3.46 1.74 3.90 1.82 3.87 n.d. 1.51<br />

V6–W 44.41 n.d. 9.81 42.75 12.83 22.04 2.68 7.09 7.05 9.05 1.83 4.18 3.01 4.06 n.d. 4.34 n.d. n.d.<br />

V7–W 27.23 n.d. n.d. 35.13 8.01 15.57 1.46 4.29 4.21 7.10 2.01 3.13 2.42 2.81 n.d. 2.79 n.d. n.d.<br />

Aged in<br />

wood<br />

Key. gal: gallic acid, proc: protocatechuic acid, proe: protocatechualdehyde, tyr: tyrosol, p-OH-benc: p-OH-benzoic acid, cat: catechin, p-OH-ben: p-OH-benzaldehyde, sir: siringic acid, van:<br />

vanillin, caft: caftaric acid, c-p-cout: cis-p-coutaric acid, t-p-cout: trans-p-coutaric acid, fert: fertaric acid, caf: caffeic acid, c-p-coum: cis-p-coumaric acid, t-p-coum: trans-p-coumaric acid, i-fer:<br />

i-ferulic acid, fer: ferulic acid.<br />

Component 2<br />

3.2<br />

2.2<br />

SGRB5<br />

sin<br />

con<br />

1.2<br />

0.2<br />

-0.8<br />

SB1 SB2<br />

SB6<br />

SB4<br />

SB3<br />

SB5<br />

SRB6<br />

SRB4<br />

SRB3<br />

SRB5<br />

SRB1<br />

Trolox<br />

sir<br />

van<br />

GAE<br />

vanc<br />

SGRB3<br />

SRB2<br />

SGRB1<br />

SGRB2<br />

-1.8<br />

pcou<br />

sco<br />

pOHben<br />

scu<br />

-2.8<br />

SGRB4<br />

-2.9 -0.9 1.1 3.1 5.1 7.1<br />

Component Co 1<br />

Fig. 5. Principal component analysis. Biplot representation <strong>of</strong> <strong>br<strong>and</strong>ies</strong><br />

<strong>and</strong> statistical variables (polyphenols <strong>and</strong> <strong>antioxidant</strong> <strong>power</strong>). Codes in<br />

Table 5.<br />

Component 2<br />

5.2<br />

3.2<br />

1.2<br />

-0.8<br />

V5<br />

cpcout<br />

caft<br />

V3<br />

V1 proc<br />

V4<br />

V4-W<br />

V3-W<br />

V5-W<br />

V7-W<br />

tpcout<br />

cpcoum<br />

fert fer<br />

sir<br />

caf<br />

GAE ifer<br />

trolox<br />

gal<br />

tpcoum<br />

tyr<br />

cat<br />

V2-W pOHben<br />

pOHbenc<br />

van<br />

proe<br />

V1-W<br />

-2.8<br />

V6-W<br />

-4 -1 2 5<br />

Component 1<br />

8 111<br />

1<br />

<strong>the</strong>se factors, 75.95% <strong>of</strong> total variance is explained.<br />

Fig. 5 shows <strong>the</strong> score plot for <strong>the</strong> studied <strong>br<strong>and</strong>ies</strong><br />

obtained by selecting <strong>the</strong> first two PCs as axes. As can be<br />

seen, <strong>the</strong> first component (PC1) allows us to differentiate<br />

between SGRB <strong>br<strong>and</strong>ies</strong> <strong>and</strong> <strong>the</strong> o<strong>the</strong>r two groups, SB<br />

<strong>and</strong> SRB. Taking into account that all variables considered<br />

contributed with a positive sign to this component,<br />

SGRB <strong>br<strong>and</strong>ies</strong> exhibit a higher content in <strong>the</strong>se<br />

parameters than <strong>the</strong> o<strong>the</strong>r two groups.<br />

For <strong>vinegars</strong>, three significant components were obtained.<br />

With <strong>the</strong>se factors, 89.44% <strong>of</strong> total variance is<br />

explained. Fig. 6 shows <strong>the</strong> score plot for <strong>the</strong> studied<br />

<strong>vinegars</strong> obtained by selecting <strong>the</strong> first two PCs as axes.<br />

As can be seen, no differentiation between <strong>vinegars</strong> with<br />

<strong>and</strong> without aging in wood was obtained.<br />

4. Conclusions<br />

V2<br />

Fig. 6. Principal component analysis. Biplot representation <strong>of</strong> <strong>vinegars</strong><br />

<strong>and</strong> statistical variables (polyphenols <strong>and</strong> <strong>antioxidant</strong> <strong>power</strong>). Codes in<br />

Table 6.<br />

From <strong>the</strong>se observations, it can be concluded that <strong>the</strong><br />

<strong>antioxidant</strong> <strong>power</strong> is very closely correlated with <strong>the</strong><br />

total polyphenolic content <strong>of</strong> <strong>the</strong> samples. In respect <strong>of</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!