27.07.2013 Views

Russian Issue 3 - Harvard University Department of Physics

Russian Issue 3 - Harvard University Department of Physics

Russian Issue 3 - Harvard University Department of Physics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

-Radiation & Risk", 1993, <strong>Issue</strong> 3<br />

assumed that since 1990,12991 the main role in<br />

137 Cs decontamination <strong>of</strong> agricultural produce<br />

will be played by the "slow" component.<br />

The statistical distributions <strong>of</strong> specific activity<br />

with respect to the mean in different kinds <strong>of</strong><br />

agricultural produce are presented in Fig. 5-7<br />

and Table 13.<br />

The presented data suggest that all distributions<br />

<strong>of</strong> activity by products and in human body<br />

99.9<br />

99<br />

95<br />

80<br />

50<br />

20<br />

5<br />

^ r<br />

1 f " *<br />

^<br />

* *<br />

0.1<br />

-2.5 -1.5 -0.5 0.5 L.5<br />

InCAij/Aj)<br />

Scientific Articles<br />

can be approximated by lognormal dependence<br />

with close values <strong>of</strong> fig <strong>of</strong> about 1.8.<br />

This is <strong>of</strong> principal importance for the scope<br />

and frequency <strong>of</strong> radiation monitoring. If there<br />

are no additional sources <strong>of</strong> activity in a settlement,<br />

it is enough to determine the mean value<br />

and then use data <strong>of</strong> Figs. 4-7 and Table 13.<br />

1<br />

Pasture grass p<br />

*<br />

V<br />

-"i<br />

r f<br />

^ m •<br />

: ^<br />

2.5 3.5<br />

Fig. 5. Distribution <strong>of</strong> logarithm <strong>of</strong> relative concentration <strong>of</strong> 137 Cs in pasture grass samples<br />

in the vicinity <strong>of</strong> settlement.<br />

99.9<br />

99<br />

95<br />

BO<br />

50<br />

30<br />

»#»»<br />

Pol tato 1<br />

^^r i<br />

0.1 1! '<br />

-1.6 -0.8 0.4<br />

„ lnCAjj/Aj)<br />

J .<br />

*—;—•— •<br />

Fig. 6. Distribution <strong>of</strong> logarithm <strong>of</strong> relative concentration <strong>of</strong> 137 Cs in potato samples<br />

in the vicinity <strong>of</strong> settlement.<br />

86<br />

1.4<br />

3.4<br />

'Radiation & Risk', 1993, issue 3<br />

99,9<br />

99<br />

95<br />

80<br />

50<br />

F.%<br />

20<br />

u9 J'<br />

Milk i<br />

1 ..-*<br />

f<br />

0.1 •<br />

•<br />

f<br />

•3.6 -2.6 -1.6 -0.8 0.4 L4 2.4<br />

ln(AM/Aj)<br />

!<br />

* *<br />

Scientific Articles<br />

Fig. 7. Distribution <strong>of</strong> logarithm <strong>of</strong> relative concentration <strong>of</strong> 137 Cs in milk samples in the vicinity <strong>of</strong><br />

settlement.<br />

Table 13<br />

Statistical characteristics <strong>of</strong> distribution <strong>of</strong> relative radiation parameters in the exclusion zone<br />

N<br />

1.<br />

2.<br />

3.<br />

4.<br />

5.<br />

6.<br />

7.<br />

Radiation<br />

parameter<br />

Dose rate<br />

" r Cs soil contamination density<br />

" r Cs concentration in grass<br />

157<br />

Cs concentration in potato<br />

137<br />

Cs concentration in milk<br />

External exposure dose<br />

,37<br />

Cs concentration in body<br />

\ 6. External and internal<br />

exposure doses<br />

6.1. External exposure<br />

Distribution<br />

type<br />

normal<br />

normal<br />

tognorm.<br />

lognorm.<br />

lognorm.<br />

lognorm.<br />

lognorm.<br />

According to the results <strong>of</strong> IDM, in May-June<br />

1989 in Lubyanka and Opachichi the mean daily<br />

doses were practically the same - 8.3 uGy/day<br />

at maximum individual values <strong>of</strong> 16 ^Gy/day in<br />

Lubyanka and 13.7 u,Gy/day in Opachichi.<br />

As is seen from Fig. 8, individual doses can<br />

be well approximated by the lognormal dependence<br />

with pg = 1.52.<br />

Based on the results <strong>of</strong> IDM in the areas <strong>of</strong><br />

rigorous monitoring [15] it was established that<br />

probability density fi(ln(H/)) <strong>of</strong> distribution<br />

<strong>of</strong> ratio <strong>of</strong> individual doses H to settlement a<br />

averaged is rather stable and practically<br />

universal for a rural settlement:<br />

87<br />

Mean<br />

1.0<br />

1.0<br />

1.0<br />

1.0<br />

1.0<br />

1.0<br />

1.0<br />

Standard<br />

deviation<br />

0.224<br />

0.558<br />

0.667<br />

0.614<br />

0.784<br />

0.439<br />

0.729<br />

A<br />

1.81<br />

1.76<br />

2.00<br />

1.52<br />

1.92<br />

f1(ln(H/))=0.96exp{-[ln(H/)+<br />

90%<br />

quantite<br />

1.29 3<br />

1.56<br />

1.64<br />

1.58<br />

1.87<br />

1.54<br />

2.00<br />

+0.088f/0.3S}. (8)<br />

If we compare the distribution variances in<br />

settlements <strong>of</strong> the rigorous monitoring zone and<br />

settlements <strong>of</strong> the 30-km zone we see that they<br />

are close. The analysis <strong>of</strong> the relation <strong>of</strong> nonuniformity<br />

<strong>of</strong> contaminations <strong>of</strong> settlements and<br />

distribution <strong>of</strong> individual doses shows that in the<br />

range <strong>of</strong> 10 to 95 percentile the form <strong>of</strong> distribution<br />

and its parameters (mode, median, variance)<br />

with 10% error do not depend on the nature<br />

<strong>of</strong> radioactive contamination <strong>of</strong> a settlement.<br />

The effect <strong>of</strong> non-uniformity <strong>of</strong> radioactive<br />

contamination becomes noticeable only for extreme<br />

values.<br />

For practical purposes it is convenient to use<br />

the distribution f^H/am) <strong>of</strong> ratio <strong>of</strong> external<br />

individual doses H to mean density <strong>of</strong> 137 Cs

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!