03.08.2013 Views

Completion of Rectangular Matrices and Power-Free Modules

Completion of Rectangular Matrices and Power-Free Modules

Completion of Rectangular Matrices and Power-Free Modules

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

142 H. Chen<br />

A such that σ(ε1, · · · , εm) = (η1, · · · , ηn)A. Since σ is a split epimorphism, we can<br />

find a m × n matrix B such that AB = In. As R is a generalized stable ring, by<br />

virtue <strong>of</strong> Lemma 3.3, there exist U ∈ GLn(R) <strong>and</strong> V ∈ GLm(R) such that<br />

UAV =<br />

Observing that<br />

P ∼ = Ker σ ∼ ⎧<br />

⎪⎨<br />

=<br />

⎪⎩ (ε1,<br />

⎛<br />

⎜<br />

· · · , εm) ⎝ .<br />

In−1 0 (n−1)×(m−n+1)<br />

0 1×(n−1) b bn+1 · · · bm<br />

r1<br />

rm<br />

⎞<br />

for r1, · · · , rm ∈ R we have<br />

P ∼ <br />

m<br />

= εiri|(η1, · · · , ηn)U −1<br />

i=1<br />

⎛<br />

× V −1 ⎜<br />

⎝<br />

r1<br />

.<br />

.<br />

rm<br />

⎞<br />

<br />

⎟<br />

⎠ = 0.<br />

Set (ε ′ 1, · · · , ε ′ m) = (ε1, · · · , εm)V <strong>and</strong><br />

So<br />

P ∼ ⎧<br />

⎪⎨<br />

=<br />

⎪⎩ (ε′ 1, · · · , ε ′ ⎛<br />

⎜<br />

m) ⎝<br />

⎛<br />

⎜<br />

× ⎝<br />

r ′ 1<br />

.<br />

r ′ m<br />

⎞<br />

⎟<br />

⎛<br />

⎜<br />

⎝<br />

r ′ 1<br />

.<br />

r ′ m<br />

r ′ 1<br />

.<br />

.<br />

r ′ m<br />

⎛<br />

⎟<br />

⎜<br />

⎠ |(η1, · · · , ηn)A ⎝ .<br />

⎞<br />

r1<br />

rm<br />

<br />

.<br />

In−1 0 (n−1)×(m−n+1)<br />

⎞<br />

⎫<br />

⎪⎬<br />

⎟<br />

⎠ = 0, r1, · · · , rm ∈ R<br />

⎪⎭ ,<br />

0 1×(n−1) b bn+1 · · · bm<br />

⎛<br />

r1<br />

⎟<br />

⎠ = V −1 ⎜<br />

⎝ .<br />

⎞<br />

⎟<br />

⎠ |<br />

⎠ = 0, r ′ 1, · · · , r ′ m ∈ R<br />

Clearly, (ε ′ 1, · · · , ε ′ m) is a basis <strong>of</strong> R m . Thus,<br />

P ∼ ⎧<br />

⎪⎨<br />

=<br />

⎪⎩ (ε′ n, · · · , ε ′ ⎛<br />

⎜<br />

m) ⎝<br />

r ′ n<br />

.<br />

r ′ m<br />

⎞<br />

rm<br />

⎞<br />

⎟<br />

⎠ .<br />

In−1 0 (n−1)×(m−n+1)<br />

0 1×(n−1) b bn+1 · · · bm<br />

⎫<br />

⎪⎬<br />

⎪⎭ .<br />

⎟<br />

⎠ | b, bn+1, · · · , bm<br />

⎛<br />

⎜<br />

⎝<br />

r ′ n<br />

.<br />

r ′ m<br />

<br />

<br />

⎞ ⎫<br />

⎪⎬<br />

⎟<br />

⎠ = 0,<br />

⎪⎭<br />

for r ′ n, · · · , r ′ m ∈ R. Obviously, {ε ′ n, · · · , ε ′ m} is a basis <strong>of</strong> R m−n+1 . Let δ be a basis <strong>of</strong><br />

R. Construct a map ϕ : R m−n+1 → R given by ϕ(ε ′ n, · · · , ε ′ m) = δ(b, bn+1, · · · , bm).<br />

It suffices to prove that Ker ϕ ∼ = P is stably free <strong>of</strong> positive rank. Let B =<br />

(b, bn+1, · · · , bm). Then we have (m − n + 1) × 1 matrix C such that BC = 1.<br />

Let α = [bn+1, · · · , bm]. By elementary transformations, one easily checks that

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!