04.08.2013 Views

Improving TCP Performance over Optimal CSMA in Wireless ... - KAIST

Improving TCP Performance over Optimal CSMA in Wireless ... - KAIST

Improving TCP Performance over Optimal CSMA in Wireless ... - KAIST

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4 IEEE COMMUNICATIONS LETTERS, ACCEPTED FOR PUBLICATION<br />

Throughput (kbps)<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Outer flow 0->1<br />

Inner flow 2->3<br />

Outer flow 4->5<br />

802.11 o<strong>CSMA</strong> VQ-o<strong>CSMA</strong> UBC-o<strong>CSMA</strong><br />

(a) FIM: 3 <strong>TCP</strong> flows<br />

Throughput (kbps)<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

2-hop flow<br />

1-hop flow<br />

802.11 o<strong>CSMA</strong> VQ-o<strong>CSMA</strong> UBC-o<strong>CSMA</strong><br />

(b) Multihop: 2+1 hop <strong>TCP</strong> flows<br />

Throughput (kbps)<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Flow 1 (UBC)<br />

Flow 2 (UBC)<br />

Flow 3 (UBC)<br />

Flow 4 (<strong>TCP</strong>)<br />

802.11 o<strong>CSMA</strong> VQ-o<strong>CSMA</strong> UBC-o<strong>CSMA</strong><br />

(c) <strong>TCP</strong>+UBC: 3 UBC and 1 <strong>TCP</strong> flows<br />

Fig. 3. Throughput comparison of 802.11, o<strong>CSMA</strong>, VQ-o<strong>CSMA</strong>, and UBC-o<strong>CSMA</strong>: 95% confidence <strong>in</strong>tervals are also shown. The average throughput<br />

distribution of VQ-o<strong>CSMA</strong> is similar to that of UBC-o<strong>CSMA</strong>, imply<strong>in</strong>g that VQ-o<strong>CSMA</strong> nearly achieves the proportional fairness.<br />

is likely to have more chances to <strong>in</strong>crease its CWND because<br />

the well-served l<strong>in</strong>ks tend to be less aggressive. So, the <strong>TCP</strong><br />

flow achieves higher throughput, but the ga<strong>in</strong> is marg<strong>in</strong>al,<br />

s<strong>in</strong>ce as discussed <strong>in</strong> Section III-A, the <strong>TCP</strong> flow has much<br />

lower transmission <strong>in</strong>tensity than other UBC flows. Our VQo<strong>CSMA</strong><br />

gives higher transmission <strong>in</strong>tensity to the <strong>TCP</strong> flow<br />

by <strong>in</strong>creas<strong>in</strong>g the virtual queue of the l<strong>in</strong>k associated with <strong>TCP</strong><br />

flow and this significantly improves throughput fairness among<br />

<strong>TCP</strong> and UBC flows. Similarly to the previous scenario, the<br />

VQ-o<strong>CSMA</strong> can ma<strong>in</strong>ta<strong>in</strong> vq high even <strong>in</strong> the case of empty<br />

actual queue, and hence it can immediately provide high<br />

aggressiveness to new <strong>TCP</strong> packets enter<strong>in</strong>g the empty buffer.<br />

In this way, our virtual queue<strong>in</strong>g scheme achieves very close<br />

performance to UBC-o<strong>CSMA</strong>.<br />

V. CONCLUSION<br />

In this letter, we proposed a simple yet effective virtual<br />

queue<strong>in</strong>g scheme for optimal <strong>CSMA</strong> to improve both throughput<br />

and fairness of <strong>TCP</strong> flows. We demonstrated through<br />

testbed-based experiments that our VQ-o<strong>CSMA</strong> works as<br />

designed to address the <strong>TCP</strong> starvation problem <strong>in</strong> various<br />

contention scenarios.<br />

ACKNOWLEDGMENT<br />

This research was supported by the KCC (Korea Communications<br />

Commission), Korea, under the R&D program super-<br />

vised by the KCA (Korea Communications Agency).(KCA-<br />

2011-09913-04005, KCA-2012-11913-05004).<br />

REFERENCES<br />

[1] L. Jiang and J. Walrand, “A distributed <strong>CSMA</strong> algorithm for throughput<br />

and utility maximization <strong>in</strong> wireless networks,” IEEE/ACM Trans. Netw.,<br />

vol. 18, no. 3, pp. 960–972, June 2010.<br />

[2] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Towards<br />

utility-optimal random access without message pass<strong>in</strong>g,” Wiley J. <strong>Wireless</strong><br />

Commu. Mob. Comp., vol. 10, pp. 115–128, Jan. 2010.<br />

[3] S. Rajagopalan, D. Shah, and J. Sh<strong>in</strong>, “Network adiabatic theorem: an<br />

efficient randomized protocol for contention resolution,” <strong>in</strong> Proc. 2009<br />

ACM Sigmetrics.<br />

[4] S.-Y. Yun, Y. Yi, J. Sh<strong>in</strong>, and D. Y. Eun, “<strong>Optimal</strong> <strong>CSMA</strong>: a survey,’ <strong>in</strong><br />

Proc. 2012 IEEE ICCS.<br />

[5] J. Lee, J. Lee, Y. Yi, S. Chong, A. Proutiere, and M. Chiang, “Implement<strong>in</strong>g<br />

utility-optimal <strong>CSMA</strong>,” <strong>in</strong> Proc. 2009 Allerton Conf.<br />

[6] J. Lee, Y. Yi, S. Chong, B. Nardelli, E. Knightly, and M. Chiang, “Mak<strong>in</strong>g<br />

802.11 DCF optimal: design, implementation, and evaluation,” submitted<br />

for publication.<br />

[7] B. Nardelli, J. Lee, K. Lee, Y. Yi, S. Chong, E. Knightly, and M. Chiang,<br />

“Experimental evaluation of optimal <strong>CSMA</strong>,” <strong>in</strong> Proc. 2011 IEEE<br />

Infocom.<br />

[8] W. Chen, Y. Wang, M. Chen, and S. C. Liew, “On the performance of<br />

<strong>TCP</strong> <strong>over</strong> throughput-optimal <strong>CSMA</strong>,” <strong>in</strong> Proc. 2011 IWQoS.<br />

[9] J. Lee, J. Lee, K. Lee, and S. Chong, “CommonCode: a code-reuse<br />

platform for wireless network experimentation,” IEEE Commun. Mag.,<br />

vol. 50, no. 3, pp. 156–163, Mar. 2012.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!