10.08.2013 Views

MSW-A Possible Solution to the Solar-Neutrino Problem

MSW-A Possible Solution to the Solar-Neutrino Problem

MSW-A Possible Solution to the Solar-Neutrino Problem

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MSW</strong><br />

|(tt) [a 1 (tt)e iM 1 t cos a 2 (tt)e iM 2 t sin ] | e <br />

[a 1 (tt)e iM 1 t sin a 2 (tt)e iM 2 t cos ] | . (8)<br />

We next consider <strong>the</strong> neutrino as a superposition of flavor states:<br />

|(t) a e (t) | e a (t) | . (9)<br />

Because only electron neutrinos interact via charged currents, <strong>the</strong> two flavor states<br />

have different forward-scattering amplitudes, and each sees a different effective refractive<br />

index in matter. We assume that <strong>the</strong> change in <strong>the</strong> probability amplitudes a e (t) and<br />

a (t) during an infinitesimal time t can be expressed as a simple phase shift that is<br />

proportional <strong>to</strong> <strong>the</strong> refractive index:<br />

a e (tt) a e (t) exp [ip (n nc n cc 1)t] a e (t)exp [i( )t , and (10a)<br />

a (tt) a (t) exp [ip (n nc 1)t] a (t)exp [i t] , (10b)<br />

where (2N e /p)f nc and 2G F N e . The latter relation is <strong>the</strong> matter<br />

oscillation term. We have also used x t. The neutrino state, <strong>the</strong>refore, evolves as<br />

|(tt) ae (t)ei( )t |e a (t)e i t | ae (t)eit |e a (t) | , (11)<br />

where again we have dropped <strong>the</strong> overall phase fac<strong>to</strong>r of exp(it) because it does not<br />

affect <strong>the</strong> final result. Equations (8) and (11) are expressions for |(t t). Equating<br />

<strong>the</strong> coefficients of | e and | results in a set of coupled equations:<br />

a 1 (tt)e iM 1 t cos a 2 (tt)e iM 2 t sin a e (t)e i( )t , (12a)<br />

a 1 (tt)e iM 1 t sin a 2 (tt)e iM 2 t cos a (t)e i t . (12b)<br />

Both sides of Equations (12a) and (12b) are expanded <strong>to</strong> first order in t,<br />

[a 1 (t) a˙ 1 (t)t ia 1 (t)M 1 t]cos [a 2 (t) a˙ 2 (t)t ia 2 (t)M 2 t]sin a e (t)(1it) (13a)<br />

[a 1 (t) a˙ 1 (t)t ia 1 (t)M 1 t]sin [a 2 (t) a˙ 2 (t)t ia 2 (t)M 2 t]cos a (t) , (13b)<br />

where a dot indicates <strong>the</strong> time derivative. Equations (4c) and (4d) are used <strong>to</strong> express<br />

a 1 (t), . a 1 (t), a 2 (t), and . a 2 (t) in terms of a e (t), a e (t), a (t), and a (t). Following more algebraic<br />

operations,<br />

i .a˙ e (t) [M 1 cos 2 M 2 sin 2 ]a e (t) (M 2 M 1 )cos sin a (t) , (14a)<br />

a˙ (t) (M 2 M 1 )cos sin a e (t) [M 1 sin 2 M 2 cos 2 ]a (t) . (14b)<br />

These expressions can be cast in a Schrödinger-like equation for a column matrix A<br />

consisting of <strong>the</strong> probability amplitudes a e (t) and a (t):<br />

dA<br />

i HA ,<br />

dt<br />

(15)<br />

where H and A M1cos ae (t)<br />

a (t)<br />

2 M2sin2 (M2 M1 )cos sin <br />

(M2 M1 )cos sin M1sin2 M2cos2 62 Los Alamos Science Number 25 1997<br />

The eigenvalues of <strong>the</strong> matrix H are given by<br />

<br />

1,2 . (16)<br />

Equation (15) can <strong>the</strong>n be solved:<br />

e<br />

A(t) I H A(0) , (17)<br />

where I is <strong>the</strong> identity matrix. At time t 0, <strong>the</strong> beam consists only of electron<br />

neutrinos. Thus, ae (0) 1, and a (0) 0 so that<br />

i 2 t ei 1 t<br />

<br />

2e<br />

<br />

2 <br />

1<br />

i 1 t <br />

1ei 2 t<br />

<br />

<br />

2 <br />

1<br />

2 (M 2 M 1 ) 2 1 2 2(M 2 M 1 cos ) 2<br />

<br />

2<br />

2<br />

ae (t) (M1cos2 + M2sin2 e<br />

) ,(18a)<br />

i 2 t ei 1 t<br />

<br />

2e<br />

<br />

2 <br />

1<br />

i 1 t <br />

1ei 2 t<br />

<br />

2 <br />

1<br />

e<br />

a (t) (M2 M1 )cos sin . (18b)<br />

i 2 t ei 1 t<br />

<br />

2 <br />

1<br />

The probability of detecting a muon neutrino after a time t is given by<br />

P <strong>MSW</strong> ( e → ) (t) 2 a e (t) e a (t) 2 a (t) 2 (19)<br />

so that<br />

(M2 M1 )<br />

P<strong>MSW</strong> (e → ) <br />

2(1 cos(<br />

2 1 )t)<br />

2cos2 sin2 <br />

(<br />

2 <br />

1 ) 2<br />

sin2 t . (20)<br />

By substituting in <strong>the</strong> expressions for <br />

1 , <br />

2 , M1 , M2 , we have<br />

(2 1 ) 2 (M2 M1 ) 2 sin2 (M ( )<br />

2 M1 ) 2 1<br />

<br />

2<br />

<br />

2<br />

2 cos2 M2<br />

M1 2sin22 <br />

( )<br />

2 1 2<br />

(21a)<br />

m<br />

(M2 M1 ) . (21b)<br />

2<br />

m<br />

<br />

2E<br />

2<br />

<br />

2p<br />

Recalling that x t, and 2G F N e ,we arrive at <strong>the</strong> <strong>MSW</strong> probability for<br />

an electron neutrino <strong>to</strong> oscillate in<strong>to</strong> a muon neutrino:<br />

P<strong>MSW</strong> (e → ) sin2 sin xW<br />

, (22)<br />

<br />

22 <br />

W2 W2 sin22 2G F Ne cos 22 2E<br />

, (23)<br />

m2 where is <strong>the</strong> in vacuo oscillation length,<br />

2E = 2 <br />

m2 , (24)<br />

and m 2 m 2 2 m1 2 is required <strong>to</strong> be nonzero. If <strong>the</strong> numerical values of <strong>the</strong><br />

hidden fac<strong>to</strong>rs of h _ and c are included, <strong>the</strong> expression for <strong>the</strong> oscillation length<br />

becomes E/1.27m 2 . ■<br />

Number 25 1997 Los Alamos Science<br />

<strong>MSW</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!