31.08.2013 Views

Chain conditions in free products of lattices with infinitary ... - MSP

Chain conditions in free products of lattices with infinitary ... - MSP

Chain conditions in free products of lattices with infinitary ... - MSP

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CHAIN CONDITIONS IN FREE PRODUCTS OF LATTICES 115<br />

for x 6 X otherwise extends to an τn-homomorphism <strong>of</strong> L onto 2<br />

that maps y a to 0 and y β to 1; thus, y a Φ y β.<br />

Problem 3. Is every m-complete cha<strong>in</strong> conta<strong>in</strong>ed <strong>in</strong> a Boolean<br />

m-algebra <strong>in</strong> DJ<br />

If m = xt + , a Boolean m-algebra <strong>in</strong> D m is called n-representable<br />

by R. Sikorski [10]. If, for any two dist<strong>in</strong>ct elements <strong>of</strong> an mlattice<br />

L, there is an m-homomorphism from L onto 2 separat<strong>in</strong>g<br />

the two elements, then L is <strong>in</strong> D m. Thus, as observed <strong>in</strong> the pro<strong>of</strong><br />

<strong>of</strong> Lemma 3, any successor ord<strong>in</strong>al is an m-sublattice <strong>of</strong> a power<br />

set. It also follows that D m conta<strong>in</strong>s every m-complete cha<strong>in</strong>.<br />

(Replace each element <strong>of</strong> an m-complete cha<strong>in</strong> C by two elements,<br />

form<strong>in</strong>g the cha<strong>in</strong> C; then C is an m-sublattice <strong>of</strong> a power set and<br />

the obvious map from C to C is an m-homomorphism.) S<strong>in</strong>ce the<br />

embedd<strong>in</strong>g <strong>of</strong> a cha<strong>in</strong> <strong>in</strong>to the Boolean algebra that it ϋί-generates<br />

preserves all exist<strong>in</strong>g jo<strong>in</strong>s and meets (see [5]), any m-complete<br />

cha<strong>in</strong> is an m-sublattice <strong>of</strong> a Boolean m-algebra. However, the<br />

follow<strong>in</strong>g example shows that m-congruences <strong>of</strong> maximal cha<strong>in</strong>s need<br />

not extend to m-congruences <strong>of</strong> Boolean m-algebras. (Contrast <strong>with</strong><br />

the m = fc$ 0 case <strong>in</strong> [5].) Let B be the power set <strong>of</strong> [0,1] and let<br />

C be the maximal cha<strong>in</strong> <strong>in</strong> B consist<strong>in</strong>g <strong>of</strong> all <strong>in</strong>tervals <strong>of</strong> the<br />

form [0, x) or [0, x], where xe[0, 1]. The m-homomorphism that<br />

only collapses [0, x) and [0, x],0^x^l, maps C onto [0, 1], Yet,<br />

if m ^ (2**°)+, any m-congruence <strong>of</strong> B that collapses [0, x) and [0, x],<br />

0 ^ x ^ 1, collapses all <strong>of</strong> B s<strong>in</strong>ce [0, 1] C U([0, x] - [0, x)\0^x£l.)<br />

REFERENCES<br />

1. M. E. Adams and D. Kelly, <strong>Cha<strong>in</strong></strong> <strong>conditions</strong> <strong>in</strong> <strong>free</strong> <strong>products</strong> <strong>of</strong> <strong>lattices</strong>, Algebra<br />

Universalis, 7 (1977), 235-243.<br />

2. W. W. Confort and S. Negrepontis, The Theory <strong>of</strong> Ultrafilters, Spr<strong>in</strong>ger-Verlag,<br />

New York, 1974.<br />

3. P. Erdδs and R. Rado, Intersection theorems for systems <strong>of</strong> sets II, J. London<br />

Math. Soc, 44 (1969), 467-479.<br />

4. F. Galv<strong>in</strong> and B. Jόnsson, Distributive suh<strong>lattices</strong> <strong>of</strong> a <strong>free</strong> lattice, Canad. J. Math.,<br />

13 (1961), 265-272.<br />

5. G. Gratzer, General Lattice Theory, Birkhauser Verlag, Basel, 1979.<br />

6. G. Gratzer and D. Kelly, Free m-product <strong>of</strong> <strong>lattices</strong>, Colloq. Math., to appear.<br />

7. G. Gratzer and D. Kelly, A normal form theorem for <strong>lattices</strong> completely generated<br />

by a subset, Proc. Amer. Math. Soc, 67 (1977), 215-218.<br />

8. G. Gratzer and H. Lakser, <strong>Cha<strong>in</strong></strong> <strong>conditions</strong> <strong>in</strong> the distributive <strong>free</strong> product <strong>of</strong><br />

<strong>lattices</strong>, Trans. Amer. Math. Soc, 144 (1969), 301-312.<br />

9. B. Jόnsson, Relatively <strong>free</strong> <strong>products</strong> <strong>of</strong> <strong>lattices</strong>, Algebra Universalis, 1 (1972), 362-373.<br />

10. R. Sikorski, Boolean Algebras, 3rd edition, Spr<strong>in</strong>ger-Verlag, New York, 1969.<br />

Received March 21, 1978 and <strong>in</strong> revised form December 29, 1978. The research <strong>of</strong><br />

the authors was supported by the National Research Council <strong>of</strong> Canada.<br />

UNIVERSITY OF MANITOBA<br />

WINNIPEG, CANADA

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!