16.09.2013 Views

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

Vermiculture in Egypt: - FAO - Regional Office for the Near East and

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong>:<br />

Current Development<br />

<strong>and</strong><br />

Future Potential<br />

i


<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong>:<br />

Current Development<br />

<strong>and</strong><br />

Future Potential<br />

Written by:<br />

Mahmoud Medany, Ph.D.<br />

Environment Consultant<br />

<strong>Egypt</strong><br />

Edited by:<br />

Elhadi Yahia, Ph.D.<br />

Agro <strong>in</strong>dustry <strong>and</strong> <strong>in</strong>frastructure <strong>Office</strong>r<br />

Food <strong>and</strong> Agriculture Organizatioon<br />

(<strong>FAO</strong>/UN)<br />

<strong>Regional</strong> <strong>Office</strong> <strong>for</strong> North Africa<br />

<strong>and</strong> <strong>the</strong> <strong>Near</strong> <strong>East</strong>, Cairo, <strong>Egypt</strong><br />

Food <strong>and</strong> Agriculture Organization of <strong>the</strong> United Nations<br />

<strong>Regional</strong> <strong>Office</strong> <strong>for</strong> <strong>the</strong> <strong>Near</strong> <strong>East</strong><br />

Cairo, <strong>Egypt</strong><br />

April, 2011<br />

ii


The designations employed <strong>and</strong> <strong>the</strong> presentation of material <strong>in</strong> this<br />

<strong>in</strong><strong>for</strong>mation product do not imply <strong>the</strong> expression of any op<strong>in</strong>ion whatsoever<br />

on <strong>the</strong> part of <strong>the</strong> Food <strong>and</strong> Agriculture Organization of <strong>the</strong> United Nations<br />

(<strong>FAO</strong>) concern<strong>in</strong>g <strong>the</strong> legal or development status of any country, territory, city<br />

or area or of its authorities, or concern<strong>in</strong>g <strong>the</strong> delimitation of its frontiers or<br />

boundaries. The mention of specific companies or products of manufacturers,<br />

whe<strong>the</strong>r or not <strong>the</strong>se have been patented, does not imply that <strong>the</strong>se have<br />

been endorsed or recommended by <strong>FAO</strong> <strong>in</strong> preference to o<strong>the</strong>rs of a similar<br />

nature that are not mentioned.<br />

ISBN 978-92-5-106859-5<br />

All rights reserved. <strong>FAO</strong> encourages reproduction <strong>and</strong> dissem<strong>in</strong>ation of<br />

material <strong>in</strong> this <strong>in</strong><strong>for</strong>mation product. Non-commercial uses will be authorized<br />

free of charge, upon request. Reproduction <strong>for</strong> resale or o<strong>the</strong>r commercial<br />

purposes, <strong>in</strong>clud<strong>in</strong>g educational purposes, may <strong>in</strong>cur fees. Applications <strong>for</strong><br />

permission to reproduce or dissem<strong>in</strong>ate <strong>FAO</strong> copyright materials, <strong>and</strong> all<br />

queries concern<strong>in</strong>g rights <strong>and</strong> licences, should be addressed by e-mail to<br />

copyright@fao.org or to <strong>the</strong> Chief, Publish<strong>in</strong>g Policy <strong>and</strong> Support Branch,<br />

<strong>Office</strong> of Knowledge Exchange, Research <strong>and</strong> Extension, <strong>FAO</strong>,<br />

Viale delle Terme di Caracalla, 00153 Rome, Italy.<br />

© <strong>FAO</strong> 2011


Table of contents<br />

Table of contents ...................................................................................................................... iv<br />

List of Photos ............................................................................................................................ vi<br />

List of Figures .......................................................................................................................... vi<br />

List of tables ............................................................................................................................ vii<br />

Abbreviations ......................................................................................................................... viii<br />

Introduction ............................................................................................................................... 1<br />

Executive Summary .................................................................................................................. 2<br />

1. Introduction to <strong>the</strong> use of compost worms <strong>in</strong> <strong>Egypt</strong> .............................................................. 3<br />

1.1. Historical background ...................................................................................... 3<br />

1.2. Geographic distribution of earth worms ........................................................ 4<br />

1.3. Types of earthworms ........................................................................................ 6<br />

1.4. Vermicompost<strong>in</strong>g species ................................................................................. 6<br />

1.5. Native earthworm species <strong>in</strong> <strong>Egypt</strong> ................................................................. 7<br />

1.6. <strong>Vermiculture</strong> <strong>and</strong> vermicompost<strong>in</strong>g ............................................................... 8<br />

2. Trial of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g implementation <strong>in</strong> <strong>Egypt</strong> ............................... 10<br />

2.1. Pr<strong>in</strong>ciple of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g ......................................... 10<br />

2.1.1. Bedd<strong>in</strong>g ..................................................................................................... 10<br />

2.1.2. Worm Food ............................................................................................... 11<br />

2.1.3. Moisture .................................................................................................... 14<br />

2.1.4. Aeration .................................................................................................... 14<br />

2.1.5. Temperature control ................................................................................ 15<br />

2.2. Methods of vermicompost<strong>in</strong>g ......................................................................... 16<br />

2.2.1. Pits below <strong>the</strong> ground .............................................................................. 16<br />

2.2.2. Heap<strong>in</strong>g above <strong>the</strong> ground ...................................................................... 17<br />

2.2.3. Tanks above <strong>the</strong> ground .......................................................................... 17<br />

2.2.4. Cement r<strong>in</strong>gs............................................................................................. 18<br />

2.2.5. Commercial model ................................................................................... 18<br />

2.3. The trial experience <strong>in</strong> <strong>Egypt</strong> ......................................................................... 20<br />

2.3. 1. Earthworm types used:........................................................................... 20<br />

2.3.2. Bedd<strong>in</strong>g ..................................................................................................... 20<br />

2.3.3. Food ........................................................................................................... 21<br />

2.3.4. Moisture .................................................................................................... 22<br />

2.3.5. Aeration .................................................................................................... 22<br />

2.3.6. Temperature ............................................................................................. 23<br />

2.3.7 Harvest<strong>in</strong>g .................................................................................................. 23<br />

3. Use of compost worms globally <strong>in</strong> countries of similar climate ......................................... 26<br />

3.1 Vermicompost<strong>in</strong>g <strong>in</strong> Philipp<strong>in</strong>es ....................................................................................... 26<br />

3.2 Vermicompost<strong>in</strong>g <strong>in</strong> Cuba .............................................................................. 28<br />

3.3. Vermicompost<strong>in</strong>g <strong>in</strong> India .............................................................................. 29<br />

3.4. Vermicompost „teas‟ <strong>in</strong> Ohio, USA ............................................................... 32<br />

3.5. Vermicompost<strong>in</strong>g <strong>in</strong> United K<strong>in</strong>gdom .......................................................... 33<br />

4. Current on-farm <strong>and</strong> urban organic waste management practices <strong>in</strong> <strong>Egypt</strong>: gap analysis. . 34<br />

4.1. On-farm organic waste ................................................................................... 34<br />

4.1.1. Weak po<strong>in</strong>ts <strong>in</strong> rice straw system <strong>in</strong> <strong>Egypt</strong> ................................................ 35<br />

4.2. Urban wastes ................................................................................................... 35<br />

4.2.1. Overview of solid waste management problem <strong>in</strong> <strong>Egypt</strong> .......................... 35<br />

4.2.2. Ma<strong>in</strong> factors contribut<strong>in</strong>g to soil waste management problem .................. 36<br />

4.2.3. Waste generation rates ............................................................................... 37<br />

4.2.4. Major conventional solid waste systems are .............................................. 39<br />

iv


4.3. Overview of organic waste recovery options ................................................ 40<br />

4.3.1. Feed<strong>in</strong>g animals ........................................................................................ 40<br />

4.3.2. Compost .................................................................................................... 40<br />

4.3.3 L<strong>and</strong>fill disposal or <strong>in</strong>c<strong>in</strong>eration ................................................................. 40<br />

5. Potential of vermiculture as a means to produce fertilizers <strong>in</strong> <strong>Egypt</strong>. ................................. 45<br />

5.1. Fertilizer use <strong>in</strong> <strong>Egypt</strong> .................................................................................... 45<br />

5.2. Fertilizer statistics ............................................................................................. 46<br />

5.3. Vermicompost<strong>in</strong>g as fertilizers <strong>in</strong> <strong>Egypt</strong>....................................................... 48<br />

5.3.1. Urban waste vermicompost<strong>in</strong>g .................................................................. 49<br />

5.3.2. Vermicompost<strong>in</strong>g of agricultural wastes ................................................... 50<br />

5.3.3. Vermicomposts effect on plant growth ...................................................... 50<br />

5.4. Potentiality of vermicompost as a source of fertilizer <strong>in</strong> <strong>Egypt</strong> .................. 51<br />

6. Current animal feed prote<strong>in</strong> supplements production <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> potential to substitute<br />

desiccated compost worms as an animal feed supplement or use of live worms <strong>in</strong><br />

aquaculture <strong>in</strong>dustries. ...................................................................................................... 53<br />

6.1. Animal <strong>and</strong> aquaculture feed ......................................................................... 53<br />

6.2. Worm meal ...................................................................................................... 54<br />

6.3. Earthworms, <strong>the</strong> susta<strong>in</strong>able aquaculture feed of <strong>the</strong> future ..................... 56<br />

7. Current on-farm <strong>and</strong> urban organic waste management practices <strong>and</strong> environmental effects<br />

of those practices, e.g. carbon <strong>and</strong> methane emissions. .................................................... 62<br />

7.1. Emissions from vermicompost ....................................................................... 62<br />

7.2 Total emissions from waste sector <strong>in</strong> <strong>Egypt</strong> .................................................. 64<br />

7.3. Emissions from agricultural wastes .............................................................. 66<br />

7.4. Vermifilters <strong>in</strong> domestic wastewater treatment ........................................... 69<br />

8. Survey of global vermiculture implementation projects focused on greenhouse gas<br />

emission reductions ........................................................................................................... 71<br />

8.1. Background ..................................................................................................... 71<br />

8.2. Clean Development Mechanism (CDM) achievements <strong>in</strong> <strong>Egypt</strong> ................ 73<br />

8.3. <strong>Egypt</strong> National Strategy on <strong>the</strong> CDM ........................................................... 74<br />

8.4. The national regulatory framework .............................................................. 75<br />

9. Analysis of <strong>the</strong> <strong>Egypt</strong>ian context <strong>and</strong> applicability of vermiculture as a means of<br />

greenhouse gas emission reduction. .................................................................................. 76<br />

9.1. Profile of wastes <strong>in</strong> <strong>Egypt</strong> ............................................................................... 76<br />

9.1.1. Municipal solid waste ................................................................................ 76<br />

9.1.2. Agricultural wastes .................................................................................. 77<br />

9.2. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> solid wastes ......................................... 77<br />

9.3. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> agriculture wastes .............................. 79<br />

References ............................................................................................................................... 80<br />

Annex 1 ................................................................................................................................... 85<br />

General <strong>in</strong><strong>for</strong>mation <strong>and</strong> FAQ ................................................................................................. 85<br />

v


List of Photos<br />

Photo 1.1 Rich fertile soil of <strong>the</strong> Nile Delta enables wide variety of crops<br />

to be grown.<br />

4<br />

Photo 2.1 Open pit vermicompost<strong>in</strong>g - Kirungakottai. 16<br />

Photo 2.2 Open heap vermicompost<strong>in</strong>g. 17<br />

Photo 2.3 Commercial vermicompost operation at KCDC Bangalore, India 18<br />

Photo 2.4 Cement r<strong>in</strong>g vermicompost<strong>in</strong>g 18<br />

Photo 2.5 Commercial vermicompost<strong>in</strong>g unit 19<br />

Photo 2.6 Earthworms used <strong>in</strong> <strong>Egypt</strong> 20<br />

Photo 2.7 Trial vermicompost set up at Dokki. 21<br />

Photo 2.8 Mixture of food wastes <strong>and</strong> shredded plant material ready to be<br />

mixed <strong>in</strong> <strong>the</strong> rotat<strong>in</strong>g mach<strong>in</strong>e.<br />

21<br />

Photo 2.9 The locally manufactured shredd<strong>in</strong>g mach<strong>in</strong>e. 22<br />

Photo 2.10 The shaded grow<strong>in</strong>g beds. 23<br />

Photo 2.11 Harvest<strong>in</strong>g of cast<strong>in</strong>gs. 24<br />

Photo 2.12 Harvested adult worms from <strong>the</strong> grow<strong>in</strong>g beds. 24<br />

Photo 2.13 Couple of adult worms, with clear clitellum <strong>in</strong> both of <strong>the</strong>m. 25<br />

Photo 2.14 Worm eggs. 25<br />

Photo 3.1 Earthworm plots show<strong>in</strong>g plastic covers <strong>and</strong> support frame. 27<br />

Photo 3.2 W<strong>in</strong>drows vermicompost<strong>in</strong>g method: <strong>in</strong> Havana, Cuba . 29<br />

Photo 3.3 Women self-help group <strong>in</strong>volved <strong>in</strong> vermicompost<strong>in</strong>g, to<br />

promote micro-enterprises <strong>and</strong> generate <strong>in</strong>come.<br />

List of Figures<br />

Figure 2.1 Commercial model of vermicompost<strong>in</strong>g developed by ICRISAT 19<br />

Figure 5.1 Trends of production, imports <strong>and</strong> exports (1000 tonnes of<br />

nutrients) of fertilizers <strong>in</strong> <strong>Egypt</strong><br />

47<br />

Figure 5.2 Consumption of nitrogen, phosphate, potassium <strong>and</strong> total<br />

fertilizers <strong>in</strong> <strong>Egypt</strong>.<br />

48<br />

Figure 7.1 <strong>Egypt</strong>‟s GHG emissions by gas type <strong>for</strong> <strong>the</strong> year 2000 <strong>in</strong> mega<br />

tones of carbon dioxide equivalent.<br />

68<br />

Figure 7.2 <strong>Egypt</strong>‟s GHG emissions by sector <strong>for</strong> <strong>the</strong> year 2000, <strong>in</strong> mega<br />

tones of carbon dioxide equivalent.<br />

69<br />

Figure 7.3 Layout of <strong>the</strong> vermifilter. 70<br />

vi<br />

30


List of tables<br />

Table 1.1 Major families of Oligochaeta (order Opisthophora) <strong>and</strong> <strong>the</strong>ir<br />

regions of orig<strong>in</strong>.<br />

5<br />

Table 2.1 Common bedd<strong>in</strong>g materials. 11<br />

Table 2.2 Advantages <strong>and</strong> disadvantages of different types of feed. 12<br />

Table 3.1 Summary <strong>for</strong> production of vermicompost at farm scale <strong>in</strong><br />

Andaman <strong>and</strong> Nicobar (A&N) Isl<strong>and</strong>s, India.<br />

31<br />

Table 4.1 Municipal solid waste contents 2000-2005. 36<br />

Table 4.2 Distribution of waste accord<strong>in</strong>g to <strong>the</strong> sources. 37<br />

Table 4.3 Distribution of wastes accord<strong>in</strong>g to its sources <strong>and</strong> Governorates 38<br />

2007/2008 <strong>in</strong> tons.<br />

Table 4.4 <strong>Egypt</strong>‟s Integrated Solid Waste Management Plan <strong>for</strong> <strong>the</strong> period<br />

2007-2012.<br />

42<br />

Table 4.5 Solid waste accumulation <strong>in</strong> <strong>the</strong> <strong>Egypt</strong>ian Governorates. 43<br />

Table 4.6 Solid waste amount produced by governorates <strong>and</strong> <strong>the</strong> organic<br />

materials percentages For <strong>the</strong> year 2008.<br />

44<br />

Table 5.1 Physical <strong>and</strong> chemical analysis of various soil types. 46<br />

Table 5.2 The ma<strong>in</strong> types of fertilizers used <strong>in</strong> <strong>Egypt</strong>. 47<br />

Table 5.3 Potential nutrients that could be obta<strong>in</strong>ed from urban <strong>and</strong><br />

agriculture wastes <strong>in</strong> <strong>Egypt</strong>.<br />

52<br />

Table 6.1 Chemical composition % of various worm meal (<strong>in</strong> dry matter). 55<br />

Table 6.2 Essential am<strong>in</strong>o acid profile of vermi meals (g/16 gN). 55<br />

Table 6.3 Macro <strong>and</strong> trace m<strong>in</strong>eral contents of freeze dried vermi meal<br />

(Eudrilus eugeniae).<br />

55<br />

Table 6.4 Different nutrient concentration <strong>in</strong> manure <strong>and</strong> fertilizer applied<br />

(average value of triplicate sample analyzed).<br />

58<br />

Table 6.5 Average values (±SD) of physico-chemical parameters of water,<br />

primary productivity of phytoplankton <strong>and</strong> f<strong>in</strong>al body weights <strong>and</strong><br />

fish production of Cypr<strong>in</strong>us carpio (Ham.) <strong>in</strong> various treatments.<br />

59<br />

Table 6.6 Composition (% dry matter) of tested prote<strong>in</strong>s sources or<br />

supplements <strong>for</strong> fish feeds.<br />

60<br />

Table 6.7 Am<strong>in</strong>o acid (g/100g prote<strong>in</strong>) profiles of tested prote<strong>in</strong> sources or<br />

supplement as compared to fish meal (FM).<br />

61<br />

Table 7.1 Summary of greenhouse gas emissions <strong>for</strong> <strong>Egypt</strong>, 2000. 65<br />

Table 7.2 <strong>Egypt</strong>‟s greenhouse gas emissions by gas type <strong>for</strong> <strong>the</strong> year 2000. 67<br />

Table 7.3 <strong>Egypt</strong>‟s greenhouse gas emissions by sector <strong>for</strong> <strong>the</strong> year 2000. 68<br />

Table 9.1 Summary of identified mitigation measures <strong>for</strong> solid wastes. 78<br />

vii


Abbreviations<br />

AF Africa<br />

ARC Agricultural Research Center of <strong>Egypt</strong><br />

ARE Arab Republic of <strong>Egypt</strong><br />

AS Asia<br />

CA Central America<br />

CDM Clean Development Mechanism<br />

CER Certified Emissions Reductions<br />

CH4<br />

Methane<br />

CO Carbon monoxide<br />

CO2<br />

Carbon dioxide<br />

CO2e Equivalent carbon dioxide<br />

COPx Conference of parties number x<br />

DAP Diammonium phosphate<br />

EEAA <strong>Egypt</strong> Environmental Affairs Agency<br />

EU Europe<br />

<strong>FAO</strong> Food <strong>and</strong> Agriculture Organization<br />

GHG Greenhouse gas<br />

GIS Geographic In<strong>for</strong>mation System<br />

GTZ German Technical Cooperation Agency<br />

GWP Global Warm<strong>in</strong>g Potential<br />

ha Hectare, 10 thous<strong>and</strong> square meters<br />

HFC Hydrofluorocarbon<br />

ICRISAT International Crops Research Institute <strong>for</strong> <strong>the</strong> Semi-Arid Tropics<br />

IPCC Inter-governmental Panel on Climate Change<br />

JA Japan<br />

MA Madagascar<br />

ME Mediteranean<br />

MSW Municipal Solid Waste<br />

MSW Municipal Solid Waste<br />

Mt Million tons<br />

N2O Nitrous oxide<br />

NA North America<br />

NH3<br />

Ammonia<br />

NOx Nitrogen oxides<br />

NSS National Strategy Studies<br />

OC Oceania<br />

PFC's Perfluorocarbons<br />

SA South America<br />

viii


SF6<br />

Sulphur hexafluoride<br />

SWM Solid Waste Management<br />

Tg Teragrams<br />

UNCED United Nations Conference on Environment <strong>and</strong> Development<br />

UNDP United Nations Development Program<br />

UNFCCC United Nations Framework Convention on Climate Change<br />

USA The United States of America<br />

USA Unites States of America<br />

VF Vermifiltration: filtration utiliz<strong>in</strong>g earth worms<br />

VOC Volatile Organic Compound<br />

VSS Volatile suspendedsolids<br />

WWTP Wastewater treatment plant<br />

ix


Introduction<br />

The total amount of solid waste generated yearly <strong>in</strong> <strong>Egypt</strong> is about 17 million tons<br />

from municipal sources, 6 million tons from <strong>in</strong>dustrial sources <strong>and</strong> 30 million tons<br />

from agricultural sources. Approximately 8% of municipal solid waste is composted,<br />

2% recycled, 2% l<strong>and</strong>-filled <strong>and</strong> 88% disposed of <strong>in</strong> uncontrolled dumpsites.<br />

Agricultural wastes ei<strong>the</strong>r burned <strong>in</strong> <strong>the</strong> fields or used <strong>in</strong> <strong>the</strong> production of organic<br />

fertilizers, animal fodder <strong>and</strong> food or energy production. National ef<strong>for</strong>ts are be<strong>in</strong>g<br />

exerted to m<strong>in</strong>imize burn<strong>in</strong>g <strong>the</strong> agricultural wastes. There is a great opportunity <strong>for</strong><br />

maximiz<strong>in</strong>g <strong>the</strong> economical benefits of organic wastes by utiliz<strong>in</strong>g <strong>the</strong> earth worms as<br />

"biological mach<strong>in</strong>es" utiliz<strong>in</strong>g <strong>the</strong> waste <strong>for</strong> valuable commodities.<br />

Assessment of greenhouse gases (GHG) emissions <strong>for</strong> <strong>Egypt</strong> revealed that <strong>the</strong> total<br />

emissions <strong>in</strong> <strong>the</strong> year 2000 were about 193 MtCO2e, compared to about 117 MtCO2e<br />

<strong>in</strong> 1990, represent<strong>in</strong>g an average <strong>in</strong>crease of 5.1% annually. Estimated total<br />

greenhouse gas emissions <strong>in</strong> 2008 are about 288 MtCO2e. Although waste sector<br />

produces <strong>the</strong> least quantity of greenhouse gases <strong>in</strong> <strong>Egypt</strong>, without <strong>the</strong> organic residues<br />

burned from <strong>the</strong> agriculture sector, which when added toge<strong>the</strong>r can be <strong>in</strong> a higher<br />

rank. Convert<strong>in</strong>g organic wastes, whe<strong>the</strong>r municipal or agricultural, <strong>in</strong>to<br />

vermicompost can substantially reduce <strong>the</strong> greenhouse gas emission that could be paid<br />

back through <strong>the</strong> clean development mechanism (CDM) of Kyoto Protocol.<br />

From ano<strong>the</strong>r perspective, proper h<strong>and</strong>l<strong>in</strong>g of wastes, especially organic, <strong>in</strong> mega<br />

cities such as Cairo, will reduce <strong>the</strong> environmental impact on both public <strong>and</strong><br />

government. Any ef<strong>for</strong>t lead to cleaner streets is highly appreciated. The availability<br />

of organic compost from various sources will have a direct positive impact on<br />

agriculture <strong>in</strong> <strong>Egypt</strong>, as most soils of modern agriculture have poor organic matter<br />

contents. The benefits of convert<strong>in</strong>g organic wastes <strong>in</strong>to compost to be added to <strong>the</strong><br />

soil apply also to similar countries <strong>in</strong> <strong>the</strong> Middle <strong>East</strong> <strong>and</strong> North Africa.<br />

As general <strong>in</strong><strong>for</strong>mation regard<strong>in</strong>g <strong>the</strong> utilization of earthworm <strong>in</strong> compost<strong>in</strong>g:<br />

- One thous<strong>and</strong> adult worms weigh approximately one kilogram.<br />

- One kilogram of adults can convert up to 5 kilograms of waste per day.<br />

- Approximately ten kilograms of adults can convert one ton waste per month.<br />

- Two thous<strong>and</strong> adults can be accommodated <strong>in</strong> one square meter.<br />

- One thous<strong>and</strong> earthworms <strong>and</strong> <strong>the</strong>ir descendants, under ideal conditions, could<br />

convert approximately one ton of organic waste <strong>in</strong>to high yield fertilizer <strong>in</strong> one<br />

year.<br />

The purpose of this work is to <strong>in</strong>vestigat<strong>in</strong>g current development of vermiculture<br />

under <strong>the</strong> <strong>Egypt</strong>ian conditions, <strong>and</strong> to discuss its potential as an effective means of<br />

convert<strong>in</strong>g <strong>the</strong> carbon <strong>and</strong> nitrogen <strong>in</strong> domestic <strong>and</strong> agricultural organic wastes <strong>in</strong>to<br />

bio-available nutrients <strong>for</strong> food production, <strong>and</strong> <strong>the</strong> potential of vermiculture as means<br />

of reduction <strong>the</strong> greenhouse gas emissions that have negative impacts on <strong>the</strong><br />

environment.<br />

1


Executive Summary<br />

<strong>Vermiculture</strong> <strong>in</strong> <strong>Egypt</strong> dates s<strong>in</strong>ce Cleopatra. However, <strong>the</strong> Green Revolution, with its<br />

dependence on fossil fuelled large scale mach<strong>in</strong>ery <strong>and</strong> operations, toge<strong>the</strong>r with <strong>the</strong><br />

damm<strong>in</strong>g of <strong>the</strong> Nile, has <strong>in</strong> recent times all but removed <strong>the</strong> environment <strong>in</strong> which<br />

compost worms, most commonly Eisenia Foetida, can thrive.<br />

The total quantity of solid wastes generated <strong>in</strong> <strong>Egypt</strong> is 118.6 million tons/year <strong>in</strong><br />

2007/2008, <strong>in</strong>clud<strong>in</strong>g municipal solid waste (garbage) <strong>and</strong> agricultural wastes.<br />

Household waste constitutes about 60% of <strong>the</strong> total municipal waste quantities, with<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g 40% be<strong>in</strong>g generated by commercial establishments, service<br />

<strong>in</strong>stitutions, streets <strong>and</strong> gardens, hotels <strong>and</strong> o<strong>the</strong>r enterta<strong>in</strong>ment sector entities. Per<br />

capita generation rates <strong>in</strong> <strong>Egypt</strong>ian cities, villages <strong>and</strong> towns vary from lower than 0.3<br />

kg <strong>for</strong> low socio-economic groups <strong>and</strong> rural areas, to more than 1 kg <strong>for</strong> higher liv<strong>in</strong>g<br />

st<strong>and</strong>ards <strong>in</strong> urban centers. On a nationwide average, <strong>the</strong> composition is about 50-60%<br />

food wastes, 10-20% paper, <strong>and</strong> 1-7% each of metals, cloth, glass, <strong>and</strong> plastics, <strong>and</strong><br />

<strong>the</strong> rema<strong>in</strong>der is basically <strong>in</strong>organic matter <strong>and</strong> o<strong>the</strong>rs.<br />

Currently, solid waste quantities h<strong>and</strong>led by waste management systems are estimated<br />

at about 40,000 tons per day, with 30,000 tons per day be<strong>in</strong>g produced <strong>in</strong> cities, <strong>and</strong><br />

<strong>the</strong> rest generated from <strong>the</strong> pre-urban <strong>and</strong> rural areas. F<strong>in</strong>al dest<strong>in</strong>ations of municipal<br />

solid waste entail about 8% of <strong>the</strong> waste be<strong>in</strong>g composted, 2% recycled, 2%<br />

l<strong>and</strong>filled, <strong>and</strong> 88% dumped <strong>in</strong> uncontrolled open dumps.<br />

The organic wastes <strong>in</strong> cities can be as large as 10-15 thous<strong>and</strong> tons per day. After <strong>the</strong><br />

sw<strong>in</strong>e flu <strong>and</strong> <strong>the</strong> government decision to get rid of all sw<strong>in</strong>e used to live on <strong>the</strong><br />

organic wastes <strong>in</strong> <strong>the</strong> garbage collection sites near <strong>the</strong> cities, earth worms could be <strong>the</strong><br />

alternate biological mach<strong>in</strong>es that could h<strong>and</strong>le <strong>the</strong> wastes with greater revenues <strong>and</strong><br />

cleaner production. There is a great opportunity <strong>for</strong> all municipal waste systems to<br />

adapt <strong>the</strong> vermicompost <strong>in</strong> <strong>the</strong>ir operation.<br />

<strong>Egypt</strong> produces around 25 to 30 Mt of agriculture waste annually (around 66,000 tons<br />

per day). Some of this waste is used <strong>in</strong> <strong>the</strong> production of organic fertilizers, animal<br />

fodder, food production, energy production, or o<strong>the</strong>r useful purposes. <strong>Vermiculture</strong> is<br />

also a valuable system <strong>for</strong> convert<strong>in</strong>g most of <strong>the</strong> organic waste <strong>in</strong>to vermicompost.<br />

With rural awareness <strong>and</strong> tra<strong>in</strong><strong>in</strong>g, vermicompost could be produced <strong>in</strong> all villages.<br />

The target groups of this book are all growers, <strong>in</strong>clud<strong>in</strong>g organic agriculture growers,<br />

as well as all organic waste producers from as small scale as households to <strong>the</strong> large<br />

scale urban solid waste operations. The very rich <strong>and</strong> valuable organic vermicompost<br />

produce will assist <strong>in</strong> enrich<strong>in</strong>g <strong>the</strong> soil, especially s<strong>and</strong>y <strong>and</strong> newly reclaimed soil,<br />

with organic matter <strong>and</strong> fertilizers <strong>in</strong> <strong>the</strong> <strong>for</strong>m of prote<strong>in</strong>s, enzymes, hormones, humus<br />

substances, vitam<strong>in</strong>s, sugars, <strong>and</strong> synergistic compounds, which makes it as<br />

productive as good soil.<br />

2


1. Introduction to <strong>the</strong> use of compost worms <strong>in</strong> <strong>Egypt</strong><br />

1.1. Historical background<br />

The importance of earthworms is not a very modern phenomenon. Earthworms have<br />

been on <strong>the</strong> Earth <strong>for</strong> over 20 million years. In this time <strong>the</strong>y have faithfully done <strong>the</strong>ir<br />

part to keep <strong>the</strong> cycle of life cont<strong>in</strong>uously mov<strong>in</strong>g. Their purpose is simple but very<br />

important. They are nature‟s way of recycl<strong>in</strong>g organic nutrients from dead tissues<br />

back to liv<strong>in</strong>g organisms. Many have recognized <strong>the</strong> value of <strong>the</strong>se worms. Ancient<br />

civilizations, <strong>in</strong>clud<strong>in</strong>g Greece <strong>and</strong> <strong>Egypt</strong> valued <strong>the</strong> role earthworms played <strong>in</strong> soil.<br />

The ancient <strong>Egypt</strong>ians were <strong>the</strong> first to recognize <strong>the</strong> beneficial status of <strong>the</strong><br />

earthworm. The <strong>Egypt</strong>ian Pharaoh, Cleopatra (69 – 30 B.C.) said, “Earthworms are<br />

sacred.” She recognized <strong>the</strong> important role <strong>the</strong> worms played <strong>in</strong> fertiliz<strong>in</strong>g <strong>the</strong> Nile<br />

Valley cropl<strong>and</strong>s after annual floods. Removal of earthworms from <strong>Egypt</strong> was<br />

punishable by death. <strong>Egypt</strong>ian farmers were not allowed to even touch an earthworm<br />

<strong>for</strong> fear of offend<strong>in</strong>g <strong>the</strong> God of fertility. The Ancient Greeks considered <strong>the</strong><br />

earthworm to have an important role <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> quality of <strong>the</strong> soil. The Greek<br />

philosopher Aristotle (384 – 322 B.C.) referred to worms as “<strong>the</strong> <strong>in</strong>test<strong>in</strong>es of <strong>the</strong><br />

earth”.<br />

Jerry M<strong>in</strong>nich, <strong>in</strong> The Earthworm Book (Rodale, 1977), provides a historical<br />

overview which <strong>in</strong>dicates that at <strong>the</strong> end of <strong>the</strong> last Ice Age, some 10,000 years ago,<br />

earthworm populations had been decimated <strong>in</strong> many regions by glaciers <strong>and</strong> o<strong>the</strong>r<br />

adverse climatic conditions. Many surviv<strong>in</strong>g species were nei<strong>the</strong>r productive nor<br />

prolific. In places where active species <strong>and</strong> suitable environments were found, such as<br />

<strong>the</strong> Nile River Valley, earthworms played a significant role <strong>in</strong> agricultural<br />

susta<strong>in</strong>ability. While <strong>the</strong> Nile‟s long-term fertility is well known <strong>and</strong> attributed to rich<br />

alluvial deposits brought by annual floods, <strong>the</strong>se materials were mixed <strong>and</strong> stabilized<br />

by valley-dwell<strong>in</strong>g earthworms. In 1949, <strong>the</strong> USDA estimated that earthworms<br />

contributed approximately 120 tons of <strong>the</strong>ir cast<strong>in</strong>gs per year to each acre of <strong>the</strong> Nile<br />

floodpla<strong>in</strong> (Tilth, 1982).<br />

<strong>Egypt</strong> has historically had some of <strong>the</strong> most productive <strong>and</strong> fertile l<strong>and</strong> <strong>in</strong> <strong>the</strong> world.<br />

The Nile River not only provides water critical <strong>for</strong> agriculture, but <strong>in</strong> times past, <strong>the</strong><br />

annual flood<strong>in</strong>g of <strong>the</strong> Nile deposited nutrient-rich soil onto <strong>the</strong> l<strong>and</strong>. In recent years,<br />

<strong>the</strong> Aswan High Dam has virtually elim<strong>in</strong>ated <strong>the</strong> annual flood which has resulted <strong>in</strong> a<br />

loss of <strong>the</strong> beneficial soil deposits lead<strong>in</strong>g to a need <strong>for</strong> organic material on l<strong>and</strong>s used<br />

<strong>for</strong> agricultural production <strong>in</strong> <strong>Egypt</strong>.<br />

Charles Darw<strong>in</strong> (1809 –1882) studied earthworms <strong>for</strong> more than <strong>for</strong>ty years <strong>and</strong><br />

devoted an entire book (The Formation of Vegetable Mould through <strong>the</strong> Action of<br />

Worms) to <strong>the</strong> earthworm. Darw<strong>in</strong> said, “it may be doubted that <strong>the</strong>re are many o<strong>the</strong>r<br />

animals which have played so important a part <strong>in</strong> <strong>the</strong> history of <strong>the</strong> world as have<br />

<strong>the</strong>se lowly organized creatures”.<br />

3


For three millennia (3,000 years), <strong>the</strong> thriv<strong>in</strong>g civilization of ancient <strong>Egypt</strong> was<br />

strik<strong>in</strong>gly successful <strong>for</strong> two reasons: 1) The Nile River, which brought abundant<br />

water to <strong>the</strong> o<strong>the</strong>rwise parched l<strong>and</strong>s of <strong>the</strong> region; <strong>and</strong> 2) <strong>the</strong> billions of earthworms<br />

that converted <strong>the</strong> annual deposit of silt <strong>and</strong> organic matter, brought down by <strong>the</strong><br />

annual floods <strong>in</strong>to <strong>the</strong> richest food-produc<strong>in</strong>g soil anywhere. Those <strong>Egypt</strong>ian worms<br />

are thought to be <strong>the</strong> found<strong>in</strong>g stock of <strong>the</strong> night crawlers that slowly spread<br />

throughout Europe <strong>and</strong> eventually came to <strong>the</strong> Western Hemisphere with <strong>the</strong> early<br />

settlers (Burton <strong>and</strong> Burton, 2002).<br />

1.2. Geographic distribution of earth worms<br />

4<br />

Photo 1.1.<br />

Rich fertile soil of<br />

<strong>the</strong> Nile Delta<br />

enables wide variety<br />

of crops to be<br />

grown.<br />

Source: Author<br />

The diversity of earthworm community is <strong>in</strong>fluenced by <strong>the</strong> characteristics of soil,<br />

climate <strong>and</strong> organic resources of <strong>the</strong> locality as well as history of l<strong>and</strong> use. The<br />

species poor communities are characterized by extreme soil conditions such as low<br />

pH, poor fertility, low fertility litter or a high degree of soil disturbance. The most<br />

significant soil factors affect<strong>in</strong>g <strong>the</strong> distribution of different species of earthworm are<br />

<strong>the</strong> C/N ratio, pH <strong>and</strong> contents of Al, Ca, Mg, organic matter, silt <strong>and</strong> coarse s<strong>and</strong><br />

(Ghafoor et al., 2008).<br />

Europe is <strong>the</strong> orig<strong>in</strong>al home of some of most common <strong>and</strong> productive earthworm<br />

species: Lumbricus rubellus (<strong>the</strong> red worm or red wiggler); Eisenia foetida (<strong>the</strong><br />

br<strong>and</strong>l<strong>in</strong>g, manure worm or tiger worm); Lumbricus terrestris (<strong>the</strong> common night<br />

crawler); <strong>and</strong> Allolobophora ealignosa (<strong>the</strong> field worm). The first two species are <strong>the</strong><br />

major „„earthworms of commerce, whose ideal liv<strong>in</strong>g environments are manure or<br />

compost heaps. The night crawler <strong>and</strong> field worms, on <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, both prefer<br />

grassl<strong>and</strong>s <strong>and</strong> woodl<strong>and</strong> marg<strong>in</strong>s. The ma<strong>in</strong> types <strong>in</strong> <strong>Egypt</strong> are Alma nilotico <strong>and</strong> A.<br />

stuhlmannt. Details of distribution of types will be discussed later <strong>in</strong> this chapter.<br />

Over 3500 earthworm species have been described worldwide, <strong>and</strong> it is estimated that<br />

fur<strong>the</strong>r surveys will reveal this number to be much larger. Dist<strong>in</strong>ct taxonomic groups<br />

of earthworms have arisen on every cont<strong>in</strong>ent except Antarctica, <strong>and</strong>, through human<br />

transport, some groups have been distributed worldwide (Hendrix <strong>and</strong> Bohlen, 2002).<br />

Earthworms are classified with<strong>in</strong> <strong>the</strong> phylum Annelida, class Clitellata, subclass<br />

Oligochaeta, order Opisthophora. There are 16 families worldwide (Table 1.1). Six of


<strong>the</strong>se families (cohort Aquamegadrili plus suborder Alluroid<strong>in</strong>a) comprise aquatic or<br />

semiaquatic worms, whereas <strong>the</strong> o<strong>the</strong>r 10 (cohort Terrimegadrili) consist of <strong>the</strong><br />

terrestrial <strong>for</strong>ms commonly known as earthworms. Two families (Lutodrilidae <strong>and</strong><br />

Komarekionidae, both monospecific) <strong>and</strong> genera from three or four o<strong>the</strong>rs<br />

(Sparganophilidae, Lumbricidae, Megascolecidae, <strong>and</strong> possibly Ocnerodrilidae) are<br />

<strong>Near</strong>ctic.<br />

No native earthworms have been reported from Canada east of <strong>the</strong> Pacific Northwest<br />

or from Alaska or Hawaii, although exotic species now occur <strong>in</strong> all of <strong>the</strong>se regions.<br />

Native earthworms <strong>in</strong> <strong>the</strong> families Ocnerodrilidae, Glossoscolecidae, <strong>and</strong><br />

Megascolecidae occur <strong>in</strong> Mexico <strong>and</strong> <strong>the</strong> Caribbean isl<strong>and</strong>s.<br />

Table 1.1. Major families of Oligochaeta (order Opisthophora) <strong>and</strong> <strong>the</strong>ir regions of<br />

orig<strong>in</strong>.<br />

Family Region of orig<strong>in</strong><br />

Limicolous or aquatic<br />

Alluroididae<br />

Syngenodrilidae<br />

Sparganophilidae<br />

Biwadrilidae<br />

Almidae<br />

Lutodrilidae<br />

Terrestrial<br />

Ocnerodrilidae<br />

Eudrilidae<br />

Kynotidae<br />

Komarekionidae<br />

Ailoscolecidae<br />

Microchaetidae<br />

Hormogastridae<br />

Glossoscolecidae<br />

Lumbricidae<br />

Megascolecidae<br />

AF, SA<br />

AF<br />

NA, EU<br />

JA<br />

EU, AF, SA, AS<br />

NA<br />

SA, CA, AF, AS, MA<br />

AF<br />

MA<br />

NA<br />

EU<br />

AF<br />

ME<br />

SA, CA<br />

NA, EU<br />

NA, CA, SA, OC, AS, AF, MA<br />

Note: AF = Africa, AS = Asia, CA = Central America,<br />

EU = Europe, JA = Japan, MA = Madagascar, ME = Mediteranean,<br />

NA = North America, OC = Oceania, SA = South America<br />

Source: Hendrix <strong>and</strong> Bohlen (2002)<br />

5


1.3. Types of earthworms<br />

Earthworm is a common polyphagous annelid <strong>and</strong> plays an important role <strong>in</strong> <strong>the</strong> soil<br />

ecosystem.<br />

Although all species of earthworms contribute to <strong>the</strong> breakdown of plant-derived<br />

organic matter, <strong>the</strong>y differ <strong>in</strong> <strong>the</strong> ways by which <strong>the</strong>y degrade organic matter.<br />

Accord<strong>in</strong>g to <strong>the</strong>ir habitat types <strong>and</strong> ecological functions, earthworms can be divided<br />

<strong>in</strong>to three types: <strong>the</strong> anecic, <strong>the</strong> endogeic, <strong>and</strong> <strong>the</strong> epigeic.<br />

Anecic (Greek <strong>for</strong> “out of <strong>the</strong> earth”) – <strong>the</strong>se are burrow<strong>in</strong>g worms that come to <strong>the</strong><br />

surface at night to drag food down <strong>in</strong>to <strong>the</strong>ir permanent burrows deep with<strong>in</strong> <strong>the</strong><br />

m<strong>in</strong>eral layers of <strong>the</strong> soil. Example: <strong>the</strong> Canadian Night crawler (Munroe , 2007).<br />

These species are of primary importance <strong>in</strong> pedogenesis.<br />

Endogeic (Greek <strong>for</strong> “with<strong>in</strong> <strong>the</strong> earth”) – <strong>the</strong>se are also burrow<strong>in</strong>g worms but <strong>the</strong>ir<br />

burrows are typically more shallow. Such species are limited ma<strong>in</strong>ly to <strong>the</strong> plant<br />

litter layer on <strong>the</strong> soil surface, composed of decay<strong>in</strong>g organic matter or wood, <strong>and</strong><br />

seldom penetrate soil more than superficially. The ma<strong>in</strong> role of <strong>the</strong>se species<br />

seems to be shredd<strong>in</strong>g of <strong>the</strong> organic matter <strong>in</strong>to f<strong>in</strong>e particles, which facilitates<br />

<strong>in</strong>creased microbial activity.<br />

Epigeic (Greek <strong>for</strong> “upon <strong>the</strong> earth”), <strong>the</strong>y are limited to liv<strong>in</strong>g <strong>in</strong> organic materials<br />

<strong>and</strong> cannot survive long <strong>in</strong> soil; <strong>the</strong>se species are commonly used <strong>in</strong> vermiculture<br />

<strong>and</strong> vermicompost<strong>in</strong>g. All earthworm species depend on consum<strong>in</strong>g organic<br />

matter <strong>in</strong> some <strong>for</strong>m, <strong>and</strong> <strong>the</strong>y play an important role, ma<strong>in</strong>ly by promot<strong>in</strong>g<br />

microbial activity <strong>in</strong> various stages of organic matter decomposition, which<br />

eventually <strong>in</strong>cludes humification <strong>in</strong>to complex <strong>and</strong> stable amorphous colloids<br />

conta<strong>in</strong><strong>in</strong>g phenolic materials. An example is Eisenia fetida, commonly known as<br />

(partial list only): <strong>the</strong> “compost worm”, “manure worm”, “redworm”, <strong>and</strong> “red<br />

wiggler”. This extremely tough <strong>and</strong> adaptable worm is <strong>in</strong>digenous to most parts of<br />

<strong>the</strong> world.<br />

1.4. Vermicompost<strong>in</strong>g species<br />

To consider a species to be suitable <strong>for</strong> use <strong>in</strong> vermicompost<strong>in</strong>g, it should possess<br />

certa<strong>in</strong> specific biological <strong>and</strong> ecological characteristics, i.e., an ability <strong>for</strong> coloniz<strong>in</strong>g<br />

organic wastes naturally; high rates of organic matter consumption, digestion <strong>and</strong><br />

assimilation of organic matter, able to tolerate a wide range of environmental factors;<br />

have high reproduction rate, produc<strong>in</strong>g large numbers of cocoons that should not have<br />

a long hatch<strong>in</strong>g time, <strong>and</strong> <strong>the</strong>ir growth <strong>and</strong> maturation rates from hatchl<strong>in</strong>g to adult<br />

<strong>in</strong>dividual should be rapid. It should be strong, resistant <strong>and</strong> survive h<strong>and</strong>l<strong>in</strong>g. Not too<br />

many species of earth worm have all <strong>the</strong>se characteristics.<br />

Those species used <strong>in</strong> vermiculture around <strong>the</strong> world are ma<strong>in</strong>ly “litter” species that<br />

<strong>in</strong>clude, but are not limited to: Eisenia fetida “Tiger Worm”, as mentioned earlier, <strong>and</strong><br />

its sibl<strong>in</strong>g species E. <strong>and</strong>rei “Red Tiger Worm”; Perionyx excavatus “Indian Blue”;<br />

Eudrilus eugeniae “African Nightcrawler”; Amynthas corticis) <strong>and</strong> A. gracilis<br />

“Pheretimas” (<strong>for</strong>merly known a P. hawayana); Eisenia hortensis <strong>and</strong> Eisenia veneta<br />

“European Nightcrawlers”; Lampito mauritii “Mauritius Worm”.<br />

6


Additional species used <strong>in</strong> Australia are Anisochaeta buckerfieldi, Anisochaeta spp.<br />

<strong>and</strong> Dichogaster spp.<br />

O<strong>the</strong>r worm species <strong>in</strong>volved <strong>in</strong> vermicompost<strong>in</strong>g are of Family Enchytraeidae<br />

(enchytraeid or pot worms), microdriles (small „aquatic‟ worms), free-liv<strong>in</strong>g<br />

nematodes (roundworms) (Blakemore , 2000).<br />

In recent years, <strong>in</strong>teractions of earthworms with microorganisms <strong>in</strong> degrad<strong>in</strong>g organic<br />

matter have been used commercially <strong>in</strong> systems designed to dispose agricultural <strong>and</strong><br />

urban organic wastes <strong>and</strong> convert <strong>the</strong>se materials <strong>in</strong>to valuable soil amendments <strong>for</strong><br />

crop production. Commercial enterprises process<strong>in</strong>g wastes <strong>in</strong> this way are exp<strong>and</strong><strong>in</strong>g<br />

worldwide <strong>and</strong> divert<strong>in</strong>g organic wastes from more expensive <strong>and</strong> environmentally<br />

harmful ways of disposal, such as <strong>in</strong>c<strong>in</strong>erators <strong>and</strong> l<strong>and</strong>fills (Padmavathiamma et al.,<br />

2008).<br />

1.5. Native earthworm species <strong>in</strong> <strong>Egypt</strong><br />

The Nile bas<strong>in</strong> is subdivided <strong>in</strong>to three Obligataete subregions: <strong>the</strong> ma<strong>in</strong> (Lower)<br />

Nile, from <strong>the</strong> Delta to Kartoum (Characterized by Alma nilotico <strong>and</strong> A. stuhlmannt),<br />

<strong>the</strong> Upper Nile from Kartoum to Centeral <strong>and</strong> <strong>East</strong> Africa (Characterized by A. em<strong>in</strong>i),<br />

<strong>and</strong> <strong>the</strong> Ethiopian subregion (Characterized by Eudrilus).<br />

In <strong>Egypt</strong> Species <strong>and</strong> locations newly <strong>in</strong>vestigated <strong>in</strong>clude Allolboplora<br />

(Aporrectodea) calig<strong>in</strong>osa, associated with <strong>the</strong> aquatic Eiseniella tetraedra <strong>in</strong> spr<strong>in</strong>g<br />

near <strong>the</strong> St. Ca<strong>the</strong>r<strong>in</strong>e monastery <strong>in</strong> South S<strong>in</strong>ai, <strong>and</strong> Allolboplora (Aporrectodea)<br />

rosea (Eisenia rosea) on <strong>the</strong> slops of <strong>the</strong> Mounta<strong>in</strong> of Moses, <strong>and</strong> near Monastery.<br />

Allolobophoru jassyensis is found <strong>in</strong> <strong>the</strong> Delta <strong>and</strong> Eiseniella tetraedra <strong>in</strong> S<strong>in</strong>ai<br />

(Ghabbour, 2009).<br />

The scarcity of earthworm <strong>in</strong> <strong>Egypt</strong>ian soils is mostly attributable to <strong>the</strong> aridity of <strong>the</strong><br />

climate <strong>and</strong> to <strong>the</strong> fact that <strong>the</strong> majority of cultivated l<strong>and</strong> is under <strong>the</strong> plough (arable).<br />

In an arid, almost ra<strong>in</strong>less country like <strong>Egypt</strong>, earth worm, which are highly sensitive<br />

to water loss, cannot move easily from a less to a more favorable place <strong>in</strong> or on dry<br />

ground. Earthworms are scarce <strong>in</strong> <strong>Egypt</strong> because of acreage of favorable soils (e.g.<br />

orchards <strong>and</strong> <strong>for</strong>est) is very small. Moreover, <strong>in</strong> o<strong>the</strong>r places (e.g. arable l<strong>and</strong> soils)<br />

<strong>the</strong> favorable conditions are transient. These favorable conditions are:<br />

1. An undisturbed soil.<br />

2. A regular <strong>and</strong> adequate water supply.<br />

3. A f<strong>in</strong>e soil texture (to raise <strong>the</strong> availability of water).<br />

4. A regular <strong>and</strong> adequate supply of organic matter.<br />

There are several well known species <strong>in</strong> <strong>Egypt</strong>, such as Aporrectodea calig<strong>in</strong>oosa that<br />

can survive <strong>in</strong> s<strong>and</strong> dunes soils but numbers decreased with <strong>in</strong>creased proportions of<br />

gravel <strong>and</strong> s<strong>and</strong>.<br />

Quantitative sampl<strong>in</strong>g <strong>for</strong> earthworms by h<strong>and</strong>-sort<strong>in</strong>g was carried out <strong>in</strong> fourteen<br />

localities <strong>in</strong> Beheira Governorate <strong>and</strong> adjacent areas by El-Duwe<strong>in</strong>i <strong>and</strong> Ghabbour<br />

(1965). They collected five different species: 1- Gordiodrilus sp., 2- Pheretima<br />

califonica ; 3-Pheretima Elongate; 4- Allolbophora calig<strong>in</strong>oosa f. trapezoids <strong>and</strong> 5-<br />

Eisenia rosea f. Biomastoides. A number of juvenile lumbrivids found <strong>in</strong> cattle<br />

7


enclosure could not be ascribed with certa<strong>in</strong>ty to ei<strong>the</strong>r of <strong>the</strong> latter two species <strong>and</strong><br />

are <strong>the</strong>re<strong>for</strong>e recorded separately.<br />

1.6. <strong>Vermiculture</strong> <strong>and</strong> vermicompost<strong>in</strong>g<br />

<strong>Vermiculture</strong> is <strong>the</strong> process of breed<strong>in</strong>g worms. Growers usually pay <strong>for</strong> <strong>the</strong>ir<br />

feedstock, <strong>and</strong> <strong>the</strong> worm cast<strong>in</strong>gs are often considered a waste product. <strong>Vermiculture</strong><br />

is <strong>the</strong> culture of earthworms. The goal is to cont<strong>in</strong>ually <strong>in</strong>crease <strong>the</strong> number of worms<br />

<strong>in</strong> order to obta<strong>in</strong> a susta<strong>in</strong>able harvest. The worms are ei<strong>the</strong>r used to exp<strong>and</strong> a<br />

vermicompost<strong>in</strong>g operation or sold to customers who use <strong>the</strong>m <strong>for</strong> <strong>the</strong> same or o<strong>the</strong>r<br />

purposes.<br />

Vermicompost<strong>in</strong>g, is a simple biotechnological process of compost<strong>in</strong>g, "Vermi" is a<br />

Lat<strong>in</strong> word mean<strong>in</strong>g "worm" <strong>and</strong> thus, vermicompost<strong>in</strong>g is compost<strong>in</strong>g with <strong>the</strong> aid of<br />

worms, <strong>in</strong> which certa<strong>in</strong> species of earthworms are used to enhance <strong>the</strong> process of<br />

waste conversion <strong>and</strong> produce a better end product. Vermicompost<strong>in</strong>g differs from<br />

compost<strong>in</strong>g <strong>in</strong> several ways. It is a mesophilic process, utiliz<strong>in</strong>g microorganisms <strong>and</strong><br />

earthworms that are active at 10–32°C (not ambient temperature but temperature<br />

with<strong>in</strong> <strong>the</strong> pile of moist organic material). The process is faster than compost<strong>in</strong>g;<br />

because <strong>the</strong> material passes through <strong>the</strong> earthworm gut, a significant but not yet fully<br />

understood trans<strong>for</strong>mation takes place, whereby <strong>the</strong> result<strong>in</strong>g earthworm cast<strong>in</strong>gs<br />

(worm manure) are rich <strong>in</strong> microbial activity <strong>and</strong> plant growth regulators, <strong>and</strong> <strong>for</strong>tified<br />

with pest repellence attributes as well (Munroe, 2007). In short, earthworms, through<br />

a type of biological alchemy, are capable of trans<strong>for</strong>m<strong>in</strong>g garbage <strong>in</strong>to valuable<br />

material (Nagavallemma et al., 2004). The ultimate goal of vermicompost<strong>in</strong>g is to<br />

produce vermicompost as quickly <strong>and</strong> efficiently as possible. If <strong>the</strong> goal is to produce<br />

vermicompost, maximum worm population density needs to be ma<strong>in</strong>ta<strong>in</strong>ed all of <strong>the</strong><br />

time. If <strong>the</strong> goal is to produce worms, population density needs to be kept low enough<br />

that reproductive rates are optimized.<br />

It is known that many extracellular enzymes can become bound to humic matter<br />

dur<strong>in</strong>g a compost<strong>in</strong>g or a vermicompost<strong>in</strong>g process, regardless of <strong>the</strong> type of organic<br />

matter used, but knowledge of <strong>the</strong> chemical <strong>and</strong> biochemical properties of such<br />

extracellular enzymes is very scanty (Benítez et al., 2000).<br />

Vermitechnology has been promoted as an eco-biotechnological tool to manage<br />

organic wastes generated from different sources (Suthar, 2010).<br />

Vermicast, similarly known as worm cast<strong>in</strong>gs, worm humus or worm manure, is<br />

<strong>the</strong> end-product of <strong>the</strong> breakdown of organic matter by a species of earthworm.<br />

Vermicast is very important to <strong>the</strong> fertility of <strong>the</strong> soil. The cast<strong>in</strong>gs conta<strong>in</strong> high<br />

amounts of nitrogen, potassium, phosphorus, calcium, <strong>and</strong> magnesium. Cast<strong>in</strong>gs<br />

conta<strong>in</strong>: 5 times <strong>the</strong> available nitrogen, 7 times <strong>the</strong> available potash, <strong>and</strong> 1½ times<br />

more calcium than found <strong>in</strong> good topsoil. It has excellent aeration, porosity, structure,<br />

dra<strong>in</strong>age, <strong>and</strong> moisture-hold<strong>in</strong>g capacity. Vermicast can hold close to n<strong>in</strong>e times <strong>the</strong>ir<br />

weight <strong>in</strong> water. It is a very good fertilizer, growth promoter <strong>and</strong> helps <strong>in</strong>duc<strong>in</strong>g<br />

flower<strong>in</strong>g <strong>and</strong> fruit-bear<strong>in</strong>g <strong>in</strong> higher plants. This can even help plants to get rid of<br />

pests <strong>and</strong> diseases (Venkatesh <strong>and</strong> Eevera, 2008 ).<br />

8


1.7. Compost vs. vermicompost<br />

Compost<strong>in</strong>g, generally def<strong>in</strong>ed as <strong>the</strong> biological aerobic trans<strong>for</strong>mation of an organic<br />

byproduct <strong>in</strong>to a different organic product that can be added to <strong>the</strong> soil without<br />

detrimental effects on crop growth, has been <strong>in</strong>dicated as <strong>the</strong> most adequate method<br />

<strong>for</strong> pre-treat<strong>in</strong>g <strong>and</strong> manag<strong>in</strong>g organic wastes. In <strong>the</strong> process of compost<strong>in</strong>g, organic<br />

wastes are recycled <strong>in</strong>to stabilized products that can be applied to <strong>the</strong> soil as an<br />

odorless <strong>and</strong> relatively dry source of organic matter, which would respond more<br />

efficiently <strong>and</strong> safely than <strong>the</strong> fresh material to soil organic fertility requirements. The<br />

conventional <strong>and</strong> most traditional method of compost<strong>in</strong>g consists of an accelerated<br />

biooxydation of <strong>the</strong> organic matter as it passes through a <strong>the</strong>rmophilic stage (45° to<br />

65°C) where microorganisms liberate heat, carbon dioxide <strong>and</strong> water.<br />

Vermicomposts conta<strong>in</strong> nutrients <strong>in</strong> <strong>for</strong>ms that are readily taken up by <strong>the</strong> plants such<br />

as nitrates, exchangeable phosphorus, <strong>and</strong> soluble potassium, calcium, <strong>and</strong><br />

magnesium. Vermicomposts should have a great potential <strong>in</strong> <strong>the</strong> horticultural <strong>and</strong><br />

agricultural <strong>in</strong>dustries as media <strong>for</strong> plant growth. Vermicomposts, whe<strong>the</strong>r used as<br />

soil additives or as components of horticultural media, improved seed germ<strong>in</strong>ation<br />

<strong>and</strong> enhanced rates of seedl<strong>in</strong>g growth <strong>and</strong> development.<br />

However, compost<strong>in</strong>g <strong>and</strong> vermicompost<strong>in</strong>g are quite dist<strong>in</strong>ct processes, particularly<br />

concern<strong>in</strong>g <strong>the</strong> optimum temperatures <strong>for</strong> each process <strong>and</strong> <strong>the</strong> types of microbial<br />

communities that predom<strong>in</strong>ate dur<strong>in</strong>g active process<strong>in</strong>g (i.e. <strong>the</strong>rmophilic bacteria <strong>in</strong><br />

compost<strong>in</strong>g, mesophilic bacteria <strong>and</strong> fungi <strong>in</strong> vermicompost<strong>in</strong>g). The wastes<br />

processed by <strong>the</strong> two systems are also quite different. Vermicomposts have a much<br />

f<strong>in</strong>er structure than composts <strong>and</strong> conta<strong>in</strong> nutrients <strong>in</strong> <strong>for</strong>ms that are readily available<br />

<strong>for</strong> plant uptake. There have also been reports of production of plant growth<br />

regulators <strong>in</strong> <strong>the</strong> vermicomposts. There<strong>for</strong>e, it was hypo<strong>the</strong>sized that <strong>the</strong>re should be<br />

considerable differences <strong>in</strong> <strong>the</strong> per<strong>for</strong>mances <strong>and</strong> effects of composts <strong>and</strong><br />

vermicomposts on plant growth when used as soil amendments or as components of<br />

horticultural plant growth media (Atiyeh et al., 2000).<br />

9


2. Trial of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g<br />

implementation <strong>in</strong> <strong>Egypt</strong><br />

The historical background, geographic distribution of earth worms, types of<br />

earthworms, native earthworm species, <strong>for</strong>mal def<strong>in</strong>itions of vermiculture <strong>and</strong><br />

vermicompost<strong>in</strong>g, <strong>and</strong> a comparison between compost <strong>and</strong> vermicompost were<br />

<strong>in</strong>troduced <strong>in</strong> <strong>the</strong> previous chapter. This chapter deals with <strong>the</strong> physical requirements<br />

of vermiculture <strong>and</strong> vermicompost, <strong>and</strong> ends by <strong>the</strong> implementation trial of both<br />

vermiculture <strong>and</strong> vermicompost <strong>in</strong> <strong>Egypt</strong>, <strong>in</strong>clud<strong>in</strong>g all details of this trial.<br />

2.1. Pr<strong>in</strong>ciple of vermiculture <strong>and</strong> vermicompost<strong>in</strong>g<br />

Compost worms need five basic pr<strong>in</strong>ciples: a hospitable liv<strong>in</strong>g environment, usually<br />

called “bedd<strong>in</strong>g”, a food source, adequate moisture (greater than 50% water content<br />

by weight), adequate aeration, <strong>and</strong> protection from temperature extremes. These five<br />

essentials are discussed below <strong>in</strong> more details accord<strong>in</strong>g to Munroe (2007).<br />

2.1.1. Bedd<strong>in</strong>g<br />

Bedd<strong>in</strong>g is any material that provides <strong>the</strong> worms with a relatively stable habitat. This<br />

habitat must have <strong>the</strong> follow<strong>in</strong>g characteristics:<br />

- High absorbency. Worms brea<strong>the</strong> through <strong>the</strong>ir sk<strong>in</strong>s <strong>and</strong> <strong>the</strong>re<strong>for</strong>e must have a<br />

moist environment <strong>in</strong> which to live. If a worm‟s sk<strong>in</strong> dries out, it dies. The bedd<strong>in</strong>g<br />

must be able to absorb <strong>and</strong> reta<strong>in</strong> water fairly well if <strong>the</strong> worms are to thrive.<br />

- Good bulk<strong>in</strong>g potential. If <strong>the</strong> material is too dense to beg<strong>in</strong> with, or packs too<br />

tightly, <strong>the</strong>n <strong>the</strong> flow of air is reduced or elim<strong>in</strong>ated. Worms require oxygen to live,<br />

just as we do. Different materials affect <strong>the</strong> overall porosity of <strong>the</strong> bedd<strong>in</strong>g through<br />

a variety of factors, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> range of particle size <strong>and</strong> shape, <strong>the</strong> texture, <strong>and</strong><br />

<strong>the</strong> strength <strong>and</strong> rigidity of its structure.<br />

- Low prote<strong>in</strong> <strong>and</strong>/or nitrogen content (high carbon: nitrogen ratio). Although <strong>the</strong><br />

worms do consume <strong>the</strong>ir bedd<strong>in</strong>g as it breaks down, it is very important that this be<br />

a slow process. High prote<strong>in</strong>/nitrogen levels can result <strong>in</strong> rapid degradation <strong>and</strong> its<br />

associated heat<strong>in</strong>g, creat<strong>in</strong>g <strong>in</strong>hospitable, often fatal, conditions. Heat<strong>in</strong>g can occur<br />

safely <strong>in</strong> <strong>the</strong> food layers of <strong>the</strong> vermiculture or vermicompost<strong>in</strong>g system, but not <strong>in</strong><br />

<strong>the</strong> bedd<strong>in</strong>g.<br />

Some materials make good bedd<strong>in</strong>gs all by <strong>the</strong>mselves, while o<strong>the</strong>rs lack one or more<br />

of <strong>the</strong> above characteristics <strong>and</strong> need to be used <strong>in</strong> various comb<strong>in</strong>ations. Table 2.1<br />

provides a list of some of <strong>the</strong> most commonly used bedd<strong>in</strong>gs <strong>and</strong> provides some <strong>in</strong>put<br />

regard<strong>in</strong>g each material‟s absorbency, bulk<strong>in</strong>g potential, <strong>and</strong> carbon to nitrogen (C:N)<br />

ratios.<br />

10


Table 2.1. Common Bedd<strong>in</strong>g Materials:<br />

Bedd<strong>in</strong>g Material Absorbency Bulk<strong>in</strong>g Pot. C:N Ratio<br />

Horse Manure Medium-Good Good 22 - 56<br />

Peat Moss Good Medium 58<br />

Corn Silage Medium-Good Medium 38 - 43<br />

Hay – general Poor Medium 15 - 32<br />

Straw – general Poor Medium-Good 48 - 150<br />

Straw – oat Poor Medium 48 - 98<br />

Straw – wheat Poor Medium-Good 100 - 150<br />

Paper from municipal waste stream Medium-Good Medium 127 - 178<br />

Newspaper Good Medium 170<br />

Bark – hardwoods Poor Good 116 - 436<br />

Bark -- softwoods Poor Good 131 - 1285<br />

Corrugated cardboard Good Medium 563<br />

Lumber mill waste -- chipped Poor Good 170<br />

Paper fiber sludge Medium-Good Medium 250<br />

Paper mill sludge Good Medium 54<br />

Sawdust Poor-Medium Poor-Medium 142 - 750<br />

Shrub trimm<strong>in</strong>gs Poor Good 53<br />

Hardwood chips, shav<strong>in</strong>gs Poor Good 451 - 819<br />

Softwood chips, shav<strong>in</strong>gs Poor Good 212 - 1313<br />

Leaves (dry, loose) Poor-Medium Poor-Medium 40 - 80<br />

Corn stalks Poor Good 60 - 73<br />

Corn cobs Poor-Medium Good 56 - 123<br />

Source: Munroe (2007).<br />

Researchers <strong>in</strong> Canada made an experiment to determ<strong>in</strong>e <strong>the</strong> feasibility of mix<strong>in</strong>g<br />

municipally generated fiber wastes (e.g., non-recyclable paper, corrugated cardboard,<br />

<strong>and</strong> boxboard) with farm wastes (animal manures) <strong>and</strong> process<strong>in</strong>g <strong>the</strong> mixture with<br />

worms (large-scale vermiculture) to produce a commercially viable compost product<br />

<strong>for</strong> farms. The results show that <strong>the</strong> greatest worm population <strong>in</strong>creases were <strong>in</strong> <strong>the</strong><br />

pure shredded cardboard or <strong>in</strong> <strong>the</strong> high-fiber-content cow-manure mixes, but that<br />

biomass changes were more positive <strong>in</strong> <strong>the</strong> chicken-manure series (GEORG, 2004).<br />

2.1.2. Worm Food<br />

Compost worms are big eaters. Under ideal conditions, <strong>the</strong>y are able to consume more<br />

than <strong>the</strong>ir body weight each day, although <strong>the</strong> general rule-of-thumb is ½ of <strong>the</strong>ir<br />

body weight per day. Table 2.2 summarizes <strong>the</strong> most important attributes of some<br />

worm food that could be used <strong>in</strong> an on-farm vermicompost<strong>in</strong>g or vermiculture<br />

operation.<br />

11


Table 2.2. Advantages <strong>and</strong> disadvantages of different types of feed.<br />

Food Advantages Disadvantages Notes<br />

Good nutrition; natural Weed seeds make All manures are partially<br />

Cattle manure food, <strong>the</strong>re<strong>for</strong>e little pre-compost<strong>in</strong>g decomposed <strong>and</strong> thus ready<br />

adaptation required. necessary.<br />

<strong>for</strong> consumption by worms.<br />

Poultry High N content results High prote<strong>in</strong> levels<br />

manure <strong>in</strong> good nutrition <strong>and</strong> a can be dangerous to Some books suggest that<br />

high value product. worms, so must be poultry manure is not<br />

used <strong>in</strong> small suitable <strong>for</strong> worms because<br />

quantities; major it is so “hot”; however,<br />

adaptation required research <strong>in</strong> has shown that<br />

<strong>for</strong> worms not used to worms can adapt if <strong>in</strong>itial<br />

this feedstock. May proportion of PM to<br />

be precomposted but bedd<strong>in</strong>g is 10% by volume<br />

not necessary if used<br />

cautiously.<br />

or less.<br />

Sheep/Goat Good nutrition. Require<br />

manure<br />

precompost<strong>in</strong>g (weed<br />

seeds); small particle<br />

size can lead to<br />

pack<strong>in</strong>g, necessitat<strong>in</strong>g<br />

extra bulk<strong>in</strong>g<br />

material.<br />

With right additives to<br />

<strong>in</strong>crease C:N ratio, <strong>the</strong>se<br />

manures are also good<br />

bedd<strong>in</strong>gs<br />

Rabbit manure N content second only<br />

to poultry manure,<br />

<strong>the</strong>re<strong>for</strong>e good<br />

nutrition; conta<strong>in</strong>s<br />

very good mix of<br />

vitam<strong>in</strong>s & m<strong>in</strong>erals;<br />

ideal earthworm feed.<br />

Must be leached prior<br />

to use because of high<br />

ur<strong>in</strong>e content; can<br />

overheat if quantities<br />

too large; availability<br />

usually not good<br />

Many U.S. rabbit growers<br />

place earthworm beds<br />

under <strong>the</strong>ir rabbit hutches<br />

to catch <strong>the</strong> pellets as <strong>the</strong>y<br />

drop through <strong>the</strong> wire mesh<br />

cage floors.<br />

Fresh food Excellent nutrition, Extremely variable Some food wastes are<br />

scraps (e.g., good moisture content, (depend<strong>in</strong>g on much better than o<strong>the</strong>rs:<br />

peels, o<strong>the</strong>r possibility of revenues source); high N can coffee grounds are<br />

food prep from waste tipp<strong>in</strong>g result <strong>in</strong> heat<strong>in</strong>g; meat excellent, as <strong>the</strong>y are high<br />

waste, fees.<br />

& high-fat wastes can <strong>in</strong> N, not greasy or smelly,<br />

leftovers,<br />

create anaerobic <strong>and</strong> are attractive to<br />

commercial<br />

conditions <strong>and</strong> odors, worms; alternatively, root<br />

food<br />

attract pests, so vegetables (e.g., potato<br />

process<strong>in</strong>g<br />

should not be culls) resist degradation<br />

wastes)<br />

<strong>in</strong>cluded without <strong>and</strong> require a long time to<br />

precompost<strong>in</strong>g. be consumed.<br />

Precomposted<br />

food wastes<br />

Good nutrition; partial<br />

decomposition makes<br />

digestion by worms<br />

easier <strong>and</strong> faster; can<br />

<strong>in</strong>clude meat <strong>and</strong> o<strong>the</strong>r<br />

greasy wastes; less<br />

tendency to overheat.<br />

Nutrition less than<br />

with fresh food<br />

wastes.<br />

Vermicompost<strong>in</strong>g can<br />

speed <strong>the</strong> cur<strong>in</strong>g process<br />

<strong>for</strong> conventional<br />

compost<strong>in</strong>g operations<br />

while <strong>in</strong>creas<strong>in</strong>g value of<br />

end product.<br />

12


Food Advantages Disadvantages Notes<br />

Bio-solids<br />

(human<br />

waste)<br />

Excellent nutrition<br />

<strong>and</strong> excellent product;<br />

can be activated or<br />

non-activated sludge,<br />

septic sludge;<br />

possibility of waste<br />

management revenues<br />

Seaweed Good nutrition; results<br />

<strong>in</strong> excellent product,<br />

high <strong>in</strong> micronutrients<br />

<strong>and</strong> beneficial<br />

microbes<br />

Legume hays Higher N content<br />

makes <strong>the</strong>se good feed<br />

as well as reasonable<br />

Gra<strong>in</strong>s (e.g.,<br />

feed mixtures<br />

<strong>for</strong><br />

animals, such<br />

as chicken<br />

mash)<br />

Corrugated<br />

cardboard<br />

(<strong>in</strong>clud<strong>in</strong>g<br />

Waxed)<br />

Fish, poultry<br />

offal; blood<br />

wastes; animal<br />

mortalities<br />

bedd<strong>in</strong>g.<br />

Excellent, balanced<br />

nutrition, easy to<br />

h<strong>and</strong>le, no odor, can<br />

use organic gra<strong>in</strong>s <strong>for</strong><br />

certified organic<br />

product.<br />

Excellent nutrition<br />

(due to high prote<strong>in</strong><br />

glue used to hold<br />

layers toge<strong>the</strong>r);<br />

worms like this<br />

material; possible<br />

revenue source from<br />

WM fees<br />

High N content<br />

provides good<br />

nutrition; opportunity<br />

to turn problematic<br />

wastes <strong>in</strong>to highquality<br />

product<br />

Source: Munroe (2007).<br />

Heavy metal <strong>and</strong>/or<br />

chemical<br />

contam<strong>in</strong>ation (if<br />

from municipal<br />

sources); odor dur<strong>in</strong>g<br />

application to beds<br />

(worms control fairly<br />

quickly); possibility<br />

of pathogen survival<br />

if process not<br />

complete<br />

Salt must be r<strong>in</strong>sed<br />

off, as it is<br />

detrimental to worms;<br />

availability<br />

varies by region<br />

Moisture levels not as<br />

high as o<strong>the</strong>r feeds,<br />

requires more <strong>in</strong>put<br />

<strong>and</strong> monitor<strong>in</strong>g<br />

Higher value than<br />

most feeds, <strong>the</strong>re<strong>for</strong>e<br />

expensive to use; low<br />

moisture content;<br />

some larger seeds<br />

hard to digest <strong>and</strong><br />

slow to break down<br />

Must be shredded<br />

(waxed variety)<br />

<strong>and</strong>/or soaked (nonwaxed)<br />

prior to<br />

feed<strong>in</strong>g<br />

Must be<br />

precomposted until<br />

past Thermophillic<br />

stage<br />

13<br />

Vermitech Pty Ltd. <strong>in</strong><br />

Australia has been very<br />

successful with this<br />

process, but <strong>the</strong>y use<br />

automated systems; EPAfunded<br />

tests <strong>in</strong> Florida<br />

demonstrated that worms<br />

destroy human pathogens<br />

as well as does<br />

<strong>the</strong>rmophillic compost<strong>in</strong>g<br />

(<strong>East</strong>man et al., 2001).<br />

Beef farmer <strong>in</strong> Antigonish,<br />

Nova Scotia, Canada, are<br />

produc<strong>in</strong>g certified organic<br />

vermicompost from cattle<br />

manure, bark, <strong>and</strong> seaweed<br />

Probably best to mix this<br />

feed with o<strong>the</strong>rs, such as<br />

manures<br />

Danger: Worms consume<br />

gra<strong>in</strong>s but cannot digest<br />

larger, tougher kernels;<br />

<strong>the</strong>se are passed <strong>in</strong> cast<strong>in</strong>gs<br />

<strong>and</strong> build up <strong>in</strong> bedd<strong>in</strong>g,<br />

result<strong>in</strong>g <strong>in</strong> sudden<br />

overheat<strong>in</strong>g.<br />

Some worm growers claim<br />

that corrugated cardboard<br />

stimulates worm<br />

reproduction<br />

Compost<strong>in</strong>g of offal, blood<br />

wastes, etc. is difficult <strong>and</strong><br />

produces strong odors.<br />

Should only be done with<br />

<strong>in</strong>- vessel systems; much<br />

bulk<strong>in</strong>g required.


2.1.3. Moisture<br />

The bedd<strong>in</strong>g used must be able to hold sufficient moisture if <strong>the</strong> worms are to have a<br />

livable environment. Earthworms do not have specialized breath<strong>in</strong>g devices. They<br />

brea<strong>the</strong> through <strong>the</strong>ir sk<strong>in</strong>, which needs to rema<strong>in</strong> moist to facilitate respiration. Like<br />

<strong>the</strong>ir aquatic ancestors, earthworms can live <strong>for</strong> months completely submerged <strong>in</strong><br />

water, <strong>and</strong> <strong>the</strong>y will die if <strong>the</strong>y dry out (Sherman, 2003). The ideal moisture-content<br />

range <strong>for</strong> materials <strong>in</strong> conventional compost<strong>in</strong>g systems is 45-60%. In contrast, <strong>the</strong><br />

ideal moisture-content range <strong>for</strong> vermicompost<strong>in</strong>g or vermiculture processes is 70-<br />

90%. With<strong>in</strong> this broad range, researchers have found slightly different optimums:<br />

Dom<strong>in</strong>guez <strong>and</strong> Edwards (1997) found that <strong>the</strong>re is a direct relationship between <strong>the</strong><br />

moisture content <strong>and</strong> <strong>the</strong> growth rate of earthworms. E. <strong>and</strong>rei cultured <strong>in</strong> pig manure<br />

grew <strong>and</strong> matured between 65 <strong>and</strong> 90% moisture content, <strong>the</strong> optimum be<strong>in</strong>g 85%.<br />

Until 85% moisture, <strong>the</strong> higher moisture conditions clearly facilitated growth, as<br />

measured by <strong>the</strong> <strong>in</strong>crease <strong>in</strong> biomass. Increased moisture up to 90% clearly<br />

accelerated <strong>the</strong> development of sexual maturity, whereas not all <strong>the</strong> worms at 65-75%<br />

developed a clitellum even after 44 days. Additionally, earthworms at sexual maturity<br />

had greater biomass at higher moisture contents compared to worms grown at lower<br />

moisture contents. Canadian researchers <strong>in</strong> Nova Scotia tested moisture contents with<br />

different bedd<strong>in</strong>g materials, i.e. organic materials <strong>in</strong>cluded shredded corrugated<br />

cardboard, waxed corrugated cardboard, immature municipal solid waste compost,<br />

biosolids (sewage sludge), chicken manure <strong>and</strong> dairy cow manure <strong>in</strong> a variety of<br />

comb<strong>in</strong>ations. They found that 75-80% moisture contents produced <strong>the</strong> best growth<br />

<strong>and</strong> reproductive response (GEORG, 2004).<br />

The moisture content preferences of juvenile <strong>and</strong> clitellate cocoon-produc<strong>in</strong>g (adult)<br />

E. fetida <strong>in</strong> separated cow manure have been <strong>in</strong>vestigated. It ranged from 50% to 80%<br />

<strong>for</strong> adults, but juvenile earthworms had a narrower range of suitable moisture levels<br />

from 65% to 70%. Clitellum development occurred <strong>in</strong> earthworms at a moisture<br />

content from 60% to 70% but occurred later at a moisture content from 55% to 60%.<br />

The tolerance limit <strong>for</strong> low moisture conditions on <strong>the</strong> growth of E. fetida was<br />

reported to be below 50% <strong>for</strong> up to 1 month (Re<strong>in</strong>ecke <strong>and</strong> Venter, 1987). While<br />

Gunadi et al. (2003) found that <strong>the</strong> earthworm growth rate was fastest <strong>in</strong> <strong>the</strong> separated<br />

cattle manure solids with a moisture content of 90% with a maximum mean weight of<br />

earthworms of 600 mg after 12 weeks. The slowest growth rate of E. fetida was <strong>in</strong> <strong>the</strong><br />

separated cattle manure solids at a moisture content of 70%.<br />

2.1.4. Aeration<br />

Worms require oxygen <strong>and</strong> cannot survive anaerobic conditions (very low or absence<br />

of oxygen). When factors such as high levels of grease <strong>in</strong> <strong>the</strong> feedstock or excessive<br />

moisture comb<strong>in</strong>ed with poor aeration conspire to cut off oxygen supplies, areas of<br />

<strong>the</strong> worm bed, or even <strong>the</strong> entire system, can become anaerobic. This will kill <strong>the</strong><br />

worms very quickly. Not only are <strong>the</strong> worms deprived of oxygen, <strong>the</strong>y are also killed<br />

by toxic substances (e.g., ammonia) created by different sets of microbes that bloom<br />

under <strong>the</strong>se conditions. This is one of <strong>the</strong> ma<strong>in</strong> reasons <strong>for</strong> not <strong>in</strong>clud<strong>in</strong>g meat or o<strong>the</strong>r<br />

greasy wastes <strong>in</strong> worm feedstock unless <strong>the</strong>y have been pre-composted to break down<br />

<strong>the</strong> oils <strong>and</strong> fats.<br />

14


2.1.5. Temperature control<br />

Controll<strong>in</strong>g temperature to with<strong>in</strong> <strong>the</strong> worms‟ tolerance is vital to both<br />

vermicompost<strong>in</strong>g <strong>and</strong> vermiculture processes.<br />

2.1.5.1. Low temperatures<br />

Eisenia can survive <strong>in</strong> temperatures as low as 0 o C, but <strong>the</strong>y don‟t reproduce at s<strong>in</strong>gledigit<br />

temperatures <strong>and</strong> <strong>the</strong>y don‟t consume as much food. It is generally considered<br />

necessary to keep <strong>the</strong> temperatures above 10 o C (m<strong>in</strong>imum) <strong>and</strong> preferably 15 o C <strong>for</strong><br />

vermicompost<strong>in</strong>g efficiency <strong>and</strong> above 15 o C (m<strong>in</strong>imum) <strong>and</strong> preferably 20 o C <strong>for</strong><br />

productive vermiculture operations.<br />

2.1.5.2. Effects of freez<strong>in</strong>g<br />

Eisenia can survive hav<strong>in</strong>g <strong>the</strong>ir bodies partially encased <strong>in</strong> frozen bedd<strong>in</strong>g <strong>and</strong> will<br />

only die when <strong>the</strong>y are no longer able to consume food. Moreover, tests at <strong>the</strong> Nova<br />

Scotia Agricultural College (NSAC) have confirmed that <strong>the</strong>ir cocoons survive<br />

extended periods of deep freez<strong>in</strong>g <strong>and</strong> rema<strong>in</strong> viable (GEORG, 2004).<br />

2.1.5.3. High temperatures<br />

Compost worms can survive temperatures <strong>in</strong> <strong>the</strong> mid-30s but prefer a range <strong>in</strong> <strong>the</strong> 20s<br />

( o C). Above 35 o C will cause <strong>the</strong> worms to leave <strong>the</strong> area. If <strong>the</strong>y cannot leave, <strong>the</strong>y<br />

will quickly die. In general, warmer temperatures (above 20 o C) stimulate<br />

reproduction.<br />

Hou et al. (2005) studied <strong>the</strong> <strong>in</strong>fluence of some environmental parameters on <strong>the</strong><br />

growth <strong>and</strong> survival of earthworms <strong>in</strong> municipal solid waste. Earthworms atta<strong>in</strong>ed <strong>the</strong><br />

highest growth rate of 0.0459g / g-day at a temperature of 19.7˚C. The shortest growth<br />

period was 52 days at 25˚C, with <strong>the</strong> largest growth rate 0.0138 g /g-day. At 15˚C,<br />

20˚C <strong>and</strong> 25˚C, <strong>the</strong> fastest growth rate appeared, respectively, <strong>in</strong> 53 days, 34 days <strong>and</strong><br />

27 days, with <strong>the</strong> growth rate 0.0068, 0.0123 <strong>and</strong> 0.0138 g /g-day.<br />

Activities <strong>in</strong> all soil organisms follow a typical seasonal fluctuation. This cycle is<br />

related to optimal temperature <strong>and</strong> moisture, such that a peak <strong>in</strong> activity usually<br />

occurs <strong>in</strong> <strong>the</strong> spr<strong>in</strong>g as temperature <strong>and</strong> moisture become optimal after cold w<strong>in</strong>ter<br />

temperatures. In systems where snow accumulates on <strong>the</strong> soil surface, such that <strong>the</strong><br />

soil does not actually freeze, fungal activity may cont<strong>in</strong>ue at high levels throughout<br />

<strong>the</strong> w<strong>in</strong>ter <strong>in</strong> litter. Decomposition may cont<strong>in</strong>ue at <strong>the</strong> highest rates through <strong>the</strong><br />

w<strong>in</strong>ter under <strong>the</strong> snow <strong>in</strong> <strong>the</strong> litter. In systems where moisture becomes limit<strong>in</strong>g <strong>in</strong> <strong>the</strong><br />

summer, activity may reach levels even lower than <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter. When temperatures<br />

rema<strong>in</strong> warm <strong>in</strong> <strong>the</strong> fall <strong>and</strong> ra<strong>in</strong> beg<strong>in</strong>s aga<strong>in</strong> after a summer drought, such as <strong>in</strong><br />

Mediterranean climates, a second peak of activity may be observed <strong>in</strong> <strong>the</strong> fall. If <strong>the</strong>se<br />

peaks are not observed, this suggests <strong>in</strong>adequate organic matter <strong>in</strong> <strong>the</strong> soil.<br />

15


The growth of E. fetida <strong>in</strong> organic matter substrates with different moisture<br />

contents <strong>and</strong> temperatures has been studied by various authors <strong>in</strong> <strong>the</strong> laboratory. This<br />

species ga<strong>in</strong>ed weight maximally <strong>and</strong> survived best at temperatures between 20˚C<br />

<strong>and</strong> 29˚C <strong>and</strong> moisture contents between 70% <strong>and</strong> 85% <strong>in</strong> horse manure <strong>and</strong> activated<br />

sludge (Kaplan et al., 1980). Edwards (1988) reported that <strong>the</strong> optimum growth of E.<br />

fetida <strong>in</strong> different animal <strong>and</strong> vegetable wastes occurred at 25-30˚C <strong>and</strong> at a moisture<br />

content range of 75-90%, but <strong>the</strong>se factors could vary <strong>in</strong> different substrates.<br />

2.1.5.4. Worms‟s response to temperature differentials.<br />

Compost worms will redistribute <strong>the</strong>mselves with<strong>in</strong> piles, beds or w<strong>in</strong>drows<br />

accord<strong>in</strong>g to temperature gradients. In outdoor compost<strong>in</strong>g w<strong>in</strong>drows <strong>in</strong> w<strong>in</strong>tertime,<br />

where <strong>in</strong>ternal heat from decomposition is <strong>in</strong> contrast to frigid external temperatures,<br />

<strong>the</strong> worms will be found <strong>in</strong> a relatively narrow b<strong>and</strong> at a depth where <strong>the</strong> temperature<br />

is close to optimum. They will also be found <strong>in</strong> much greater numbers on <strong>the</strong> south<br />

fac<strong>in</strong>g side of w<strong>in</strong>drows <strong>in</strong> <strong>the</strong> w<strong>in</strong>ter <strong>and</strong> on <strong>the</strong> opposite side <strong>in</strong> <strong>the</strong> summer.<br />

Edwards (1988) studied <strong>the</strong> life cycles <strong>and</strong> optimal conditions <strong>for</strong> survival <strong>and</strong> growth<br />

of E. fetida, D. veneta, E. eugeniae, <strong>and</strong> P. excavatus. Each of <strong>the</strong>se four species<br />

differed considerably <strong>in</strong> terms of <strong>the</strong>ir responses <strong>and</strong> tolerance to different<br />

temperatures. The optimum temperature <strong>for</strong> E. fetida was 25 °C, <strong>and</strong> its temperature<br />

tolerance was between 0 <strong>and</strong> 35°C. Dendrobaena veneta had a ra<strong>the</strong>r low temperature<br />

optimum <strong>and</strong> ra<strong>the</strong>r less tolerance to extreme temperatures. The optimum<br />

temperatures <strong>for</strong> E. eugeniae <strong>and</strong> P. excavatus were around 25 °C, but <strong>the</strong>y died at<br />

temperatures below 9°C <strong>and</strong> above 30°C. Optimal temperatures <strong>for</strong> cocoon<br />

production were much lower than those <strong>for</strong> growth <strong>for</strong> all <strong>the</strong>se species.<br />

2.2. Methods of vermicompost<strong>in</strong>g<br />

2.2.1. Pits below <strong>the</strong> ground<br />

Pit of any convenient dimension can be constructed <strong>in</strong> <strong>the</strong> backyard or garden or<br />

<strong>in</strong> a field. It may be s<strong>in</strong>gle pit, two pits or tank of any sizes with brick <strong>and</strong> mortar with<br />

proper water outlets. The most convenient pit or chamber of easily manageable size is<br />

2m x 1m x 0.75m. The size of <strong>the</strong> pits <strong>and</strong> chambers should be determ<strong>in</strong>ed accord<strong>in</strong>g<br />

to <strong>the</strong> volume of biomass <strong>and</strong> agricultural waste. To combat <strong>the</strong> ants from attack<strong>in</strong>g<br />

<strong>the</strong> worms, it is good to have a water column <strong>in</strong> <strong>the</strong> centre of <strong>the</strong> parapet wall of <strong>the</strong><br />

verm<strong>in</strong>-pits.<br />

Photo 2.1.<br />

Open Pit Vermicompost<strong>in</strong>g<br />

Source: Kirungakottai<br />

(http://www.icasaweb.google.com)<br />

16


2.2.2. Heap<strong>in</strong>g above <strong>the</strong> ground<br />

The waste material is spread on a poly<strong>the</strong>ne sheet placed on <strong>the</strong> ground <strong>and</strong> <strong>the</strong>n<br />

covered with cattle dung. Sunitha et al. (1997) compared <strong>the</strong> efficacy of pit <strong>and</strong> heap<br />

methods of prepar<strong>in</strong>g vermicompost under field conditions. Consider<strong>in</strong>g <strong>the</strong><br />

biodegradation of wastes as <strong>the</strong> criterion, <strong>the</strong> heap method of prepar<strong>in</strong>g vermicompost<br />

was better than <strong>the</strong> pit method. Earthworm population was high <strong>in</strong> <strong>the</strong> heap method,<br />

with a 21-fold <strong>in</strong>crease <strong>in</strong> Eudrilus eugenae as compared to 17-fold <strong>in</strong>crease <strong>in</strong> <strong>the</strong> pit<br />

method. Biomass production was also higher <strong>in</strong> <strong>the</strong> heap method (46-fold <strong>in</strong>crease)<br />

than <strong>in</strong> <strong>the</strong> pit method (31-fold). Consequent production of vermicompost was also<br />

higher <strong>in</strong> <strong>the</strong> heap method (51 kg) than <strong>in</strong> <strong>the</strong> pit method (40 kg). On <strong>the</strong> contrary,<br />

Sa<strong>in</strong>i (2008) compared <strong>the</strong> efficacy of pit <strong>and</strong> heap methods under field conditions<br />

over three seasons (w<strong>in</strong>ter, summer <strong>and</strong> ra<strong>in</strong>y) us<strong>in</strong>g, Eisenia fetida. A pit size of 2 ×<br />

0.5 × 0.6 m (length × width × depth); <strong>and</strong> heap of size 2 × 0.6 × 0.5 m (length × width<br />

× hight) were prepared with <strong>the</strong> same amount of mixture. The pits <strong>and</strong> heaps were<br />

made under shady trees, <strong>in</strong> open field hav<strong>in</strong>g a temporary shed made of straw, raised<br />

on pillars, to prevent <strong>the</strong>m from direct sunlight <strong>and</strong> ra<strong>in</strong>fall. The pits had brick l<strong>in</strong><strong>in</strong>gs<br />

<strong>and</strong> plastered bottoms. The pits <strong>and</strong> heaps carry<strong>in</strong>g <strong>the</strong> organic waste mixture were<br />

covered with gunny bags <strong>and</strong> were watered at 10 liter/pit or heap daily, except on<br />

ra<strong>in</strong>y days, to ma<strong>in</strong>ta<strong>in</strong> moisture. On <strong>the</strong> basis of <strong>the</strong> results of three seasons, it was<br />

concluded that summer <strong>and</strong> w<strong>in</strong>ter were better <strong>for</strong> <strong>the</strong> pit method, whereas <strong>the</strong> ra<strong>in</strong>y<br />

season favored <strong>the</strong> heap method <strong>for</strong> vermicompost<strong>in</strong>g, utiliz<strong>in</strong>g Eisenia fetida.<br />

However, if <strong>the</strong> annual per<strong>for</strong>mance of <strong>the</strong> two methods is compared, <strong>the</strong> pit method<br />

produced more worms <strong>and</strong> more biomass. There<strong>for</strong>e, on <strong>the</strong> latter grounds, <strong>the</strong> pit<br />

method of vermicompost<strong>in</strong>g is more suitable than <strong>the</strong> heap method <strong>in</strong> <strong>the</strong> semi-arid<br />

sub-tropical regions of North-West India.<br />

2.2.3. Tanks above <strong>the</strong> ground<br />

17<br />

Photo 2.2.<br />

Open heap vermicompost<strong>in</strong>g<br />

Source: Department of Agriculture,<br />

Andaman & Nicobar:<br />

(http://agri.<strong>and</strong>.nic.<strong>in</strong>/vermi_culture.htm)<br />

Tanks made up of different materials such as normal bricks, hollow bricks, local<br />

stones, asbestos sheets <strong>and</strong> locally available rocks were evaluated <strong>for</strong> vermicompost<br />

preparation (Nagavallemma et al., 2004).


18<br />

Photo 2.3.<br />

Commercial vermicompost operation<br />

at KCDC Bangalore, India.<br />

Source: Basavaiah (2006)<br />

2.2.4. Cement r<strong>in</strong>gs<br />

Vermicompost can also be prepared above <strong>the</strong> ground by us<strong>in</strong>g cement r<strong>in</strong>gs. The size<br />

of <strong>the</strong> cement r<strong>in</strong>g should be 90 cm <strong>in</strong> diameter <strong>and</strong> 30 cm <strong>in</strong> height (Nagavallemma et<br />

al., 2004).<br />

2.2.5. Commercial model<br />

Photo 2.4.<br />

Cement r<strong>in</strong>g<br />

vermicompost<strong>in</strong>g.<br />

Source: Nagavallemma et al.<br />

(2004)<br />

This model conta<strong>in</strong>s partition walls with small holes to facilitate easy movement<br />

of earthworms from one chamber to ano<strong>the</strong>r (Figure 2.1). Provid<strong>in</strong>g an outlet at one<br />

corner of each chamber with a slight slope facilitates collection of excess water. The<br />

four components are filled with plant residues one after ano<strong>the</strong>r. Once <strong>the</strong> first<br />

chamber is filled layer by layer along with cow dung, earthworms are released. Then<br />

<strong>the</strong> second chamber is started fill<strong>in</strong>g layer by layer. Once <strong>the</strong> contents <strong>in</strong> first chamber<br />

are decomposed <strong>the</strong> earthworms move to <strong>the</strong> chamber 2, which is already filled <strong>and</strong><br />

ready <strong>for</strong> earthworms. This facilitates harvest<strong>in</strong>g of decomposed material from <strong>the</strong><br />

first chamber <strong>and</strong> also saves labor <strong>for</strong> harvest<strong>in</strong>g <strong>and</strong> <strong>in</strong>troduc<strong>in</strong>g earthworms. This<br />

technology reduces labor cost <strong>and</strong> saves water as well as time (Twomlow, 2004).<br />

Water is saved by reduc<strong>in</strong>g evaporation from <strong>the</strong> surface dur<strong>in</strong>g h<strong>and</strong>l<strong>in</strong>g from one<br />

room to ano<strong>the</strong>r <strong>in</strong> limited distances with m<strong>in</strong>imum exposure to drier air outside.<br />

Tanks can be constructed with <strong>the</strong> dimensions suitable <strong>for</strong> operations. with small<br />

holes to facilitate easy movement of earthworms from one tank to <strong>the</strong> o<strong>the</strong>r.


19<br />

Photo 2.5.<br />

Commercial vermicompost<strong>in</strong>g unit<br />

Source: Ecoscience<br />

Research Foundation:<br />

(http://www.erf<strong>in</strong>dia.org)<br />

Vermicompost<strong>in</strong>g based on <strong>the</strong> use of worms results <strong>in</strong> high quality compost. The<br />

process does not require physical turn<strong>in</strong>g of <strong>the</strong> material. To ma<strong>in</strong>ta<strong>in</strong> aerobic<br />

conditions <strong>and</strong> limit <strong>the</strong> temperature rise, <strong>the</strong> bed or pile of materials needs to be of<br />

limited size. Temperatures should be regulated so as to favour growth <strong>and</strong> activity of<br />

worms. Compost<strong>in</strong>g period is longer as compared to o<strong>the</strong>r rapid methods <strong>and</strong> varies<br />

between six to twelve weeks.<br />

Figure 2.1.<br />

Commercial model of<br />

vermicompost<strong>in</strong>g<br />

developed by<br />

ICRISAT.<br />

Source: Twomlow,<br />

2004.


2.3. The trial experience <strong>in</strong> <strong>Egypt</strong><br />

2.3. 1. Earthworm types used:<br />

Four types of earthworms were brought to <strong>Egypt</strong> from Australia. from Australia:<br />

Lumbriscus Rubellus (Red Worm), Eisenia Fetida (Tiger Worm), Perionyx Excavatus<br />

(Indian Blue), <strong>and</strong> Eudrilus Eugeniae (African Night Crawler).<br />

2.3.2. Bedd<strong>in</strong>g<br />

Two types of vermiculture were used. The first was aim<strong>in</strong>g at <strong>in</strong>creas<strong>in</strong>g <strong>the</strong><br />

population <strong>and</strong> known as breed<strong>in</strong>g vermiculture. The o<strong>the</strong>r type is <strong>the</strong> grow<strong>in</strong>g system<br />

aim<strong>in</strong>g at convert<strong>in</strong>g organic matter <strong>in</strong>to vermicompost.<br />

Commercially available per<strong>for</strong>ated plastic conta<strong>in</strong>ers, generally used <strong>for</strong> harvest<strong>in</strong>g<br />

fruits <strong>and</strong> vegetables, each has <strong>the</strong> dimensions of 30cm wide, 50cm long <strong>and</strong> 20cm<br />

height were used <strong>for</strong> <strong>the</strong> breed<strong>in</strong>g system. The first 5cm from <strong>the</strong> bottom was l<strong>in</strong>ed by<br />

a mixture of 2/3 shredded cardboard <strong>and</strong> 1/3 shredded newspaper, as bedd<strong>in</strong>g<br />

material. The cardboard <strong>and</strong> newspaper were wetted <strong>in</strong> a bucket of water; <strong>and</strong><br />

allow<strong>in</strong>g <strong>the</strong> excess water to run out be<strong>for</strong>e us<strong>in</strong>g. The next layer was 5cm of pH<br />

neutral cast<strong>in</strong>gs spread evenly, <strong>the</strong>n 1-2kg/m² of adult worms was supplied. Every 1-2<br />

days, 1-2kg of old manure was added. The surface was covered by 5cm shredded<br />

newspaper to keep moisture.<br />

The grow<strong>in</strong>g system was made of brick, with <strong>the</strong> dimensions 1m width, 0.5m height,<br />

<strong>and</strong> 3m long, <strong>and</strong> 0.5m between beds. The bottom of <strong>the</strong> beds was <strong>in</strong>sulated by 20cm<br />

cement layer with a slight slope <strong>in</strong> order to facilitate collection of leachate (Photo<br />

2.7).<br />

The sequence of layers <strong>for</strong> <strong>the</strong> grow<strong>in</strong>g beds was <strong>the</strong> same as <strong>the</strong> breed<strong>in</strong>g system<br />

except that <strong>the</strong> base of <strong>the</strong> bed was 10cm of cardboard/newspaper moist mixture, <strong>and</strong><br />

<strong>the</strong> worms spread over <strong>the</strong> surface were <strong>the</strong> juvenile worms only.<br />

20<br />

Photo 2.6.<br />

Earthworms used <strong>in</strong><br />

<strong>Egypt</strong><br />

Source: Au<strong>the</strong>r


2.3.3. Food<br />

21<br />

Photo 2.7.<br />

Trial vermicompost set up at<br />

Dokki.<br />

Source: Author<br />

For <strong>the</strong> feed<strong>in</strong>g of <strong>the</strong> breed<strong>in</strong>g boxes, a mixture of rabbit manure <strong>and</strong> fresh kitchen<br />

scraps (citrus not more than 1/3 of food scraps) were used. The feed was mixed well<br />

<strong>in</strong> <strong>the</strong> mix<strong>in</strong>g unit until it resembles dairy slurry. This was added <strong>in</strong> one strip along<br />

lengthwise wall <strong>in</strong> a maximum 5cm thick <strong>and</strong> 10cm wide. The feed was supplied<br />

aga<strong>in</strong> only when first strip is f<strong>in</strong>ished, <strong>and</strong> <strong>the</strong> new feed is added along opposite wall.<br />

As <strong>for</strong> <strong>the</strong> grow<strong>in</strong>g beds, <strong>the</strong> feed varies over time. Potato wastes from <strong>the</strong><br />

manufacturers as potato peels were brought <strong>in</strong>to <strong>the</strong> site to be dried <strong>and</strong> used as<br />

needed. Plant wastes from <strong>the</strong> location were shredded <strong>and</strong> mixed with animal manure<br />

to be composted <strong>for</strong> 1-2 weeks. This semi-composted material was <strong>the</strong> base feed that<br />

goes to <strong>the</strong> mix<strong>in</strong>g unit with available fruits <strong>and</strong> vegetable wastes were brought from<br />

<strong>the</strong> nearby shops. The feed mixture was spread evenly on <strong>the</strong> surface of <strong>the</strong> beds.<br />

Photo 2.8.<br />

Mixture of food wastes <strong>and</strong> shredded<br />

plant material ready to be mixed <strong>in</strong> <strong>the</strong><br />

rotat<strong>in</strong>g mach<strong>in</strong>e.<br />

Source: Author<br />

In order to facilitate <strong>the</strong> work, a shredd<strong>in</strong>g mach<strong>in</strong>e was manufactured locally (Photo<br />

2.9) to prepare large plant material be<strong>for</strong>e mixed with o<strong>the</strong>r fruit or vegetable wastes<br />

us<strong>in</strong>g a rotat<strong>in</strong>g mix<strong>in</strong>g mach<strong>in</strong>e.


2.3.4. Moisture<br />

Photo 2.9.<br />

The locally manufactured shredd<strong>in</strong>g<br />

mach<strong>in</strong>e.<br />

Source: Author<br />

The rule of thump is to check manually <strong>for</strong> moisture on a daily basis to ensure that is<br />

not too dry, <strong>and</strong> when water<strong>in</strong>g it is important not to make it too wet. Only fresh water<br />

was used. The breed<strong>in</strong>g boxes were rearranged to make <strong>the</strong> first on <strong>the</strong> top to become<br />

<strong>the</strong> first from <strong>the</strong> bottom <strong>in</strong> order to avoid moisture variations between <strong>the</strong> boxes.<br />

The <strong>in</strong>structions were:<br />

- Water little <strong>and</strong> often – only <strong>the</strong> newspaper on <strong>the</strong> surface should be wet.<br />

- Water after check<strong>in</strong>g <strong>the</strong> bed surface – if already damp, skip one water<strong>in</strong>g.<br />

- Water should be used to supplement exist<strong>in</strong>g humidity <strong>and</strong> replace evaporation.<br />

- Use a spray or mist, not jets of water.<br />

2.3.5. Aeration<br />

The aeration was ma<strong>in</strong>ta<strong>in</strong>ed as <strong>the</strong> bottom of beds or boxes has sufficient bedd<strong>in</strong>g<br />

material, <strong>and</strong> <strong>the</strong> surface is only shredded newspaper. The aeration could be a<br />

problem ma<strong>in</strong>ly if water<strong>in</strong>g is not done properly lead<strong>in</strong>g to too wet conditions.<br />

Only <strong>the</strong> newspaper on <strong>the</strong> surface should be wet, <strong>and</strong> as mentioned earlier, water<br />

should be used to supplement exist<strong>in</strong>g humidity <strong>and</strong> replace evaporation. Beds<br />

must be mixed if:<br />

- The bed smells bad.<br />

- The bed is too wet.<br />

- The bed is hot or lukewarm to touch.<br />

- The worms are not distributed evenly on <strong>the</strong> surface.<br />

- The section of bed turned only when <strong>the</strong>re is no food on <strong>the</strong> surface of<br />

<strong>the</strong> bed, <strong>and</strong> to a depth of 10-15cm only.<br />

22


2.3.6. Temperature<br />

The location of <strong>the</strong> grow<strong>in</strong>g beds was selected <strong>in</strong> order to avoid strong w<strong>in</strong>ds. A<br />

shad<strong>in</strong>g roof made of reed mats was <strong>in</strong>stalled <strong>in</strong> order to prevent direct solar radiation<br />

over <strong>the</strong> beds <strong>in</strong> summer. The mats were removed dur<strong>in</strong>g <strong>the</strong> w<strong>in</strong>ter.<br />

Narrower mats were used to cover <strong>the</strong> beds, as <strong>the</strong>y shade <strong>the</strong> grow<strong>in</strong>g beds, <strong>and</strong> also<br />

protect from birds, cats or dogs.<br />

The breed<strong>in</strong>g boxes were laid under grape v<strong>in</strong>es grown <strong>in</strong> a shaded greenhouse. In<br />

w<strong>in</strong>ter, <strong>the</strong> v<strong>in</strong>es were pruned allow<strong>in</strong>g sun to penetrate, while <strong>in</strong> summer <strong>the</strong> shad<strong>in</strong>g<br />

screens <strong>and</strong> <strong>the</strong> shade of <strong>the</strong> green leaves of <strong>the</strong> v<strong>in</strong>es were pleasant, not only<br />

temperature wise, but also moisture as well. No o<strong>the</strong>r temperature control measures<br />

were used <strong>and</strong> this made grow<strong>in</strong>g <strong>and</strong> breed<strong>in</strong>g conditions ma<strong>in</strong>ta<strong>in</strong>ed stable over both<br />

summer <strong>and</strong> w<strong>in</strong>ter without major reduction <strong>in</strong> worms‟ activities. Temperatures<br />

ma<strong>in</strong>ta<strong>in</strong>ed by daily check<strong>in</strong>g. The general practice was to turn <strong>the</strong> beds or boxes<br />

when conditions were not suitable. When a bed is hot or lukewarm to touch, it must<br />

be mixed gently <strong>in</strong> order to allow air flow between <strong>the</strong> layers. In such cases,<br />

precomposted food must be used to prevent over heat<strong>in</strong>g from organic matter<br />

decomposition. It should be remembered that earth worms move from one side to<br />

ano<strong>the</strong>r horizontally, <strong>and</strong> from <strong>the</strong> bottom to be close to surface <strong>and</strong> close or far from<br />

<strong>the</strong> food accord<strong>in</strong>g to <strong>the</strong> com<strong>for</strong>table comb<strong>in</strong>ation of moisture <strong>and</strong> humidity. In such<br />

dynamic situations, temperature varies over time of <strong>the</strong> day, season, type of organic<br />

material, <strong>the</strong> cover<strong>in</strong>g material, as well as uni<strong>for</strong>mity of <strong>the</strong> beds.<br />

2.3.7 Harvest<strong>in</strong>g<br />

23<br />

Photo 2.10.<br />

The shaded grow<strong>in</strong>g beds at Dokki<br />

greenhouse station.<br />

Source: Author<br />

Harvest<strong>in</strong>g is an important procedure <strong>for</strong> <strong>the</strong> success of vermiculture operations.<br />

Regardless of <strong>the</strong> harvest<strong>in</strong>g target, it should be done quickly <strong>and</strong> simply. The target<br />

of harvest could be cast<strong>in</strong>gs, adult worms or babies <strong>and</strong> eggs.<br />

a- Harvest<strong>in</strong>g cast<strong>in</strong>gs is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a grow<strong>in</strong>g bed.


- Plac<strong>in</strong>g narrow strips of 1-2 day old manure along each side of bed.<br />

- Wait<strong>in</strong>g 1-2 days<br />

- Scoop<strong>in</strong>g out from <strong>the</strong> centre of <strong>the</strong> bed some cast<strong>in</strong>gs.<br />

- Check<strong>in</strong>g <strong>for</strong> eggs <strong>and</strong> worms – <strong>the</strong>se should be very limited.<br />

- Collect<strong>in</strong>g cast<strong>in</strong>gs from centre of bed.<br />

- Spread<strong>in</strong>g cast<strong>in</strong>gs to dry.<br />

- When cast<strong>in</strong>gs clump <strong>and</strong> crumble, pack <strong>in</strong>to plastic bags with p<strong>in</strong>prick<br />

holes<br />

24<br />

Photo 2. 11. Harvest<strong>in</strong>g of<br />

cast<strong>in</strong>gs.<br />

source: Basavaiah (2006)<br />

b- Harvest<strong>in</strong>g adult worms is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a grow<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g narrow strips of 1-2 day old manure <strong>in</strong>side 70% shade-cloth along<br />

centre of bed.<br />

- Wait<strong>in</strong>g 1-2 days.<br />

- Collect<strong>in</strong>g worms <strong>and</strong> cast<strong>in</strong>gs from side walls.<br />

Photo 2. 12.<br />

Harvested adult worms from <strong>the</strong><br />

grow<strong>in</strong>g beds.<br />

Source: Author


- Check<strong>in</strong>g size of worm – should be approach<strong>in</strong>g reproductive state <strong>and</strong><br />

clitellum should be noticeable.<br />

- Plac<strong>in</strong>g adult worms <strong>in</strong> breed<strong>in</strong>g beds.<br />

- Check<strong>in</strong>g cast<strong>in</strong>gs <strong>for</strong> eggs - replace <strong>in</strong> grow<strong>in</strong>g bed.<br />

25<br />

Photo 2. 13.<br />

A couple of adult worms, with clear<br />

clitellum <strong>in</strong> both of <strong>the</strong>m.<br />

Source: Author<br />

c- Harvest<strong>in</strong>g babies is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a breed<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g narrow strips of 1-2 day old manure or th<strong>in</strong> fruit peels (not citrus)<br />

<strong>in</strong>side 90% shade-cloth along centre of bed.<br />

- Wait<strong>in</strong>g1-2 days.<br />

- Empty<strong>in</strong>g contents straight <strong>in</strong>to grow<strong>in</strong>g bed, under newspaper cover.<br />

- Check<strong>in</strong>g <strong>for</strong> babies that may be caught <strong>in</strong> shade-cloth.<br />

d- Harvest<strong>in</strong>g eggs is per<strong>for</strong>med accord<strong>in</strong>g to <strong>the</strong> follow<strong>in</strong>g steps:<br />

- Select<strong>in</strong>g a breed<strong>in</strong>g bed.<br />

- Bait<strong>in</strong>g one side of <strong>the</strong> bed.<br />

- Wait 1-2 days.<br />

- Scoop<strong>in</strong>g out <strong>the</strong> bed on <strong>the</strong> opposite side of <strong>the</strong> bait.<br />

- Check<strong>in</strong>g <strong>for</strong> adult worms <strong>and</strong> replace <strong>in</strong> bed.<br />

- Plac<strong>in</strong>g contents directly <strong>in</strong> grow<strong>in</strong>g bed.<br />

- Plac<strong>in</strong>g new bedd<strong>in</strong>g <strong>and</strong> food on empty side of breed<strong>in</strong>g bed.<br />

Photo 2.14.<br />

Worm eggs.<br />

Source: Author


3. Use of compost worms globally <strong>in</strong> countries of similar climate<br />

The previous two chapters covered <strong>the</strong> historical background as well as <strong>the</strong> trial The<br />

Philipp<strong>in</strong>es, Cuba <strong>and</strong> India are examples of countries with similar overall conditions<br />

to <strong>Egypt</strong> Their technologies are simple <strong>and</strong> could be easily adapted to <strong>the</strong> local<br />

conditions. The United States of America is <strong>the</strong> model example of advanced<br />

technologies <strong>in</strong> vermiculture. Such examples will broaden <strong>the</strong> readers choice with<br />

what could be done <strong>in</strong> <strong>the</strong> future. Un<strong>for</strong>tunately, vermicompost <strong>and</strong> vermiculture are<br />

very limited <strong>in</strong> MENA region, Most of <strong>the</strong> studies look at utilization of local species<br />

to produce vermicompost. For example, Aldadi et al. (2005), Nourbakhsh (2007) <strong>and</strong><br />

Yousefi et al. (2009) had some studies <strong>in</strong> Iran aim<strong>in</strong>g <strong>for</strong> waste water treatment.<br />

There<strong>for</strong>e, <strong>the</strong> follow<strong>in</strong>g examples were selected to broaden <strong>the</strong> picture of commercial<br />

production. One could adapt or modify any of <strong>the</strong>m or even create a newer version.<br />

3.1 Vermicompost<strong>in</strong>g <strong>in</strong> Philipp<strong>in</strong>es<br />

The worms used are Lumbricus rubellus <strong>and</strong>/or Perionyx excavator. The worms are<br />

reared <strong>and</strong> multiplied from a commercially-obta<strong>in</strong>ed breeder stock <strong>in</strong> shallow wooden<br />

boxes stored <strong>in</strong> a shed. The boxes are approximately 45 cm x 60 cm x 20 cm <strong>and</strong> have<br />

dra<strong>in</strong>age holes; <strong>the</strong>y are stored on shelves <strong>in</strong> rows <strong>and</strong> tiers. A bedd<strong>in</strong>g material is<br />

compounded from miscellaneous organic residues such as sawdust, cereal straw, rice<br />

husks, bagasse, cardboard <strong>and</strong> so on, <strong>and</strong> is moistened well with water. The wet<br />

mixture is stored <strong>for</strong> about one month, be<strong>in</strong>g covered with a damp sack to m<strong>in</strong>imize<br />

evaporation, <strong>and</strong> is thoroughly mixed several times. When fermentation is complete,<br />

chicken manure <strong>and</strong> green matter such as water hyac<strong>in</strong>th is added. The material is<br />

placed <strong>in</strong> <strong>the</strong> boxes <strong>and</strong> should be sufficiently loose <strong>for</strong> <strong>the</strong> worms to burrow <strong>and</strong><br />

should be able to reta<strong>in</strong> moisture. The proportions of <strong>the</strong> different materials will vary<br />

accord<strong>in</strong>g to <strong>the</strong> nature of <strong>the</strong> material but a f<strong>in</strong>al prote<strong>in</strong> content of about 15% should<br />

be aimed at. A pH value as near neutral as possible is necessary <strong>and</strong> <strong>the</strong> boxes should<br />

be kept at temperatures between 20 o C <strong>and</strong> 27 o C. At higher temperatures, <strong>the</strong> worms<br />

will aestivate <strong>and</strong>, at lower temperatures, <strong>the</strong>y hibernate. The excess worms that have<br />

been harvested from <strong>the</strong> pit can be used <strong>in</strong> o<strong>the</strong>r pits, sold to o<strong>the</strong>r farmers <strong>for</strong> <strong>the</strong><br />

same purpose, used or sold <strong>for</strong> use as animal feed supplement, used or sold <strong>for</strong> use as<br />

fish food or, may even be used <strong>in</strong> certa<strong>in</strong> human food preparations (Misra <strong>and</strong> Roy,<br />

2003).<br />

African night crawler was <strong>in</strong>troduced <strong>in</strong> <strong>the</strong> Philipp<strong>in</strong>es <strong>in</strong> <strong>the</strong> 1970s <strong>for</strong> <strong>the</strong><br />

production vermicast<strong>in</strong>gs as an organic fertilizer. Its use today rema<strong>in</strong>s focused <strong>for</strong><br />

this purpose. Recently, with ris<strong>in</strong>g cost of imported fishmeal, a study explores on <strong>the</strong><br />

commercial farm<strong>in</strong>g of <strong>the</strong> species, specifically on its production economics, <strong>and</strong> <strong>the</strong><br />

technical challenges <strong>in</strong> husb<strong>and</strong>ry <strong>and</strong> operation (Cruz, 2005). This project was<br />

fund<strong>in</strong>g assistance of <strong>the</strong> DOST-PCAMRD 1 . The site chosen was a flat but slightly<br />

<strong>in</strong>cl<strong>in</strong><strong>in</strong>g area (around 3%) of approximately 1,000 m 2 . It is partially shaded by<br />

mahogany trees <strong>in</strong> <strong>the</strong> morn<strong>in</strong>g <strong>and</strong> <strong>the</strong> afternoon. The soil is clay loam with nearly<br />

neutral pH. Water used <strong>for</strong> <strong>the</strong> experiment was provided from an adjacent deep well.<br />

1 Philipp<strong>in</strong>e Council <strong>for</strong> Aquatic <strong>and</strong> Mar<strong>in</strong>e Research <strong>and</strong> Development, (Department of Science <strong>and</strong><br />

Technology)<br />

26


A total of 8 units of 1 m x 5 m earthworm plots were constructed on bare<br />

ground utiliz<strong>in</strong>g roof<strong>in</strong>g material as sidewalls. The sidewalls had a total height of<br />

around 40 cm, of which 3-4 cm was sunk on <strong>the</strong> ground. Wooden stakes supported<br />

<strong>the</strong>se sidewalls. Each plot was sub-divided <strong>in</strong>to two units of 1 m x 2.5 m beds <strong>for</strong> ease<br />

of management. The unit was provided with a hapa net l<strong>in</strong><strong>in</strong>g, to prevent <strong>the</strong> worms<br />

from digg<strong>in</strong>g beneath <strong>the</strong> substrate <strong>and</strong> escap<strong>in</strong>g. Plots were covered with a plastic<br />

sheet to protect it from direct sunlight <strong>and</strong> ra<strong>in</strong>. A horizontal wooden beam stretch<strong>in</strong>g<br />

<strong>the</strong> length of plot <strong>and</strong> held by vertical poles provided <strong>the</strong> support <strong>for</strong> <strong>the</strong> plastic sheet<br />

cover. Earthworm plots were kept covered with a plastic canopy, <strong>and</strong> opened only<br />

dur<strong>in</strong>g <strong>in</strong>spection or when water<strong>in</strong>g was done.<br />

27<br />

Photo 3.1.<br />

Earthworm plots show<strong>in</strong>g plastic<br />

covers <strong>and</strong> support frame<br />

Source: Wormsphilipp<strong>in</strong>es.com<br />

Several types of substrates were used <strong>in</strong> <strong>the</strong> study; <strong>the</strong>se were sugarcane bagasse,<br />

mudpress, spent mushroom substrate, <strong>and</strong> cow manure. The plots were watered every<br />

3-6 days, depend<strong>in</strong>g on <strong>the</strong> wea<strong>the</strong>r. Dur<strong>in</strong>g <strong>the</strong> dry months, water<strong>in</strong>g was rout<strong>in</strong>ely<br />

done every 3 days.<br />

Based on <strong>the</strong> data <strong>and</strong> experience ga<strong>the</strong>red <strong>in</strong> this study, <strong>the</strong> cost <strong>and</strong> return<br />

projection <strong>for</strong> a larger scale earthworm farm are based on <strong>the</strong> follow<strong>in</strong>g key<br />

assumptions:<br />

- 3 full-time workers with a salary of PhP150 (3.33$)/day<br />

- Crop cycle of 60 days (2 months), or 6 production cycles/yr<br />

- Total of 52 units of 2.5 m 2 area earthworm plots<br />

- Stock<strong>in</strong>g of 1 bed a day (26 work<strong>in</strong>g days a month)<br />

- Harvest<strong>in</strong>g of 1 bed a day (26 work<strong>in</strong>g days a month)<br />

- Earthworm stock<strong>in</strong>g biomass of 3 kg/plot <strong>and</strong> harvest biomass of 9 kg/plot,<br />

fter 60 days (200% biomass ga<strong>in</strong>)<br />

- Total substrate volume of 600 kg/plot/crop cycle based on two 300 kg<br />

load<strong>in</strong>gs<br />

- 70% recovery of vermicast<strong>in</strong>gs from total substrate weight<br />

- 20% recovery of vermi-meal from total earthworm biomass<br />

The total operational cost <strong>for</strong> 52 plots <strong>for</strong> a 2 month crop cycle is estimated at<br />

PhP80,401.79 (1783.74$), <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> cost of equipment depreciation (capital cost<br />

assumed at PhP5,000 per plot, depreciated <strong>in</strong> 6 crops or 1 year). The total volume of


vermicast<strong>in</strong>gs produced per crop is 21,840 kg based on a production of 420 kg/plot<br />

(from 600 kg x 70% recovery). The total gross production of earthworm biomass per<br />

crop is 468 kg, based on a yield of 9 kg/plot (from <strong>the</strong> 3 kg starter <strong>and</strong> 6 kg of biomass<br />

ga<strong>in</strong>). At <strong>the</strong> sell<strong>in</strong>g price of 0.11$/kg of vermicast<strong>in</strong>gs <strong>and</strong> 0.22$/kg <strong>for</strong> <strong>the</strong><br />

earthworms biomass, gross sales <strong>for</strong> one crop cycle is estimated at 2356.11$ <strong>and</strong><br />

1035.62$, respectively. This would provide <strong>the</strong> venture a net profit of around 742.73$<br />

every 2 months, <strong>and</strong> a rate of return of 249.83% annually. The study suggests a<br />

potential <strong>for</strong> develop<strong>in</strong>g <strong>the</strong> use of earthworms <strong>in</strong> farm-made moist feeds. Such type<br />

of feed is simple to produce <strong>and</strong> is proven to work well when properly <strong>for</strong>mulated <strong>and</strong><br />

processed. In as much as <strong>the</strong> production technology <strong>for</strong> earthworm farm<strong>in</strong>g can be<br />

readily adopted at <strong>the</strong> village level, where organic raw materials abound <strong>and</strong> where<br />

labor is cheap.<br />

3.2 Vermicompost<strong>in</strong>g <strong>in</strong> Cuba<br />

In Cuba, different methods are used <strong>for</strong> worm propagation <strong>and</strong> vermicompost<strong>in</strong>g. The<br />

first <strong>and</strong> most common is cement troughs, two feet wide <strong>and</strong> six feet long, much like<br />

livestock water<strong>in</strong>g troughs, used to raise worms <strong>and</strong> create worm compost. Because of<br />

<strong>the</strong> climate, <strong>the</strong>y are watered by h<strong>and</strong> every day. In <strong>the</strong>se beds, <strong>the</strong> only feedstock <strong>for</strong><br />

<strong>the</strong> worms is manure, which is aged <strong>for</strong> about one week be<strong>for</strong>e be<strong>in</strong>g added to <strong>the</strong><br />

trough.<br />

First, a layer of three to four <strong>in</strong>ches of manure is placed <strong>in</strong> <strong>the</strong> empty trough, <strong>the</strong>n<br />

worms are added. As <strong>the</strong> worms consume <strong>the</strong> manure, more manure is layered on top,<br />

roughly every ten days, until <strong>the</strong> worm compost reaches with<strong>in</strong> a couple <strong>in</strong>ches of <strong>the</strong><br />

top of <strong>the</strong> trough, about two months. Then <strong>the</strong> worms are separated from <strong>the</strong> compost<br />

<strong>and</strong> transferred to ano<strong>the</strong>r trough.<br />

The second method of vermicompost<strong>in</strong>g is w<strong>in</strong>drows, where cow manure is piled<br />

about three feet across <strong>and</strong> three feet wide, <strong>and</strong> <strong>the</strong>n it is seeded with worms. As <strong>the</strong><br />

worms work <strong>the</strong>ir way through it, fresh manure is added to <strong>the</strong> end of <strong>the</strong> row, <strong>and</strong> <strong>the</strong><br />

worms move <strong>for</strong>ward. The rows are covered with fronds or palm leaves to keep <strong>the</strong>m<br />

shaded <strong>and</strong> cool. Some of <strong>the</strong>se rows have a drip system - a hose runn<strong>in</strong>g alongside<br />

<strong>the</strong> row with holes <strong>in</strong> it. But mostly, <strong>the</strong> rows are watered by h<strong>and</strong>. Some of <strong>the</strong>se<br />

rows are hundreds of feet long. The compost is ga<strong>the</strong>red from <strong>the</strong> opposite end when<br />

<strong>the</strong> worms have moved <strong>for</strong>ward. Then it is bagged <strong>and</strong> sold. Fresh manure, seeded<br />

with worms, beg<strong>in</strong>s <strong>the</strong> row <strong>and</strong> <strong>the</strong> process aga<strong>in</strong>. Some of <strong>the</strong> w<strong>in</strong>drows have bricks<br />

runn<strong>in</strong>g along <strong>the</strong>ir sides, but most are simply piles of manure without sides or<br />

protection. Manure is static composted <strong>for</strong> 30 days, <strong>the</strong>n transferred to rows <strong>for</strong><br />

worms to be added. After 90 days, <strong>the</strong> piles reach three feet high. It has been reported<br />

that worm populations can double <strong>in</strong> 60 to 90 days.<br />

28


3.3. Vermicompost<strong>in</strong>g <strong>in</strong> India<br />

Photo 3.2.<br />

W<strong>in</strong>drows vermicompost<strong>in</strong>g method:<br />

<strong>in</strong> Havana, Cuba .<br />

Source: newfarm.org<br />

A study on production <strong>and</strong> market<strong>in</strong>g of vermicompost was carried out dur<strong>in</strong>g 2007-<br />

08 <strong>in</strong> Dharwad District of Karnataka (Shivakumar et al., 2009). The study made an<br />

attempt to analyze <strong>the</strong> economics of vermicompost production, market<strong>in</strong>g methods<br />

followed, f<strong>in</strong>ancial feasibility of vermicompost<strong>in</strong>g <strong>and</strong> <strong>the</strong> problems faced <strong>in</strong><br />

vermicompost production <strong>and</strong> market<strong>in</strong>g <strong>in</strong> Dharwad District. The players <strong>in</strong>volved <strong>in</strong><br />

vermicompost production activities are <strong>the</strong> farm<strong>in</strong>g sector, government organizations,<br />

private organizations <strong>and</strong> o<strong>the</strong>r agencies. This has encouraged many government <strong>and</strong><br />

nongovernment agencies to promote vermicompost production. The rough estimates<br />

<strong>in</strong>dicate that Karnataka state produces around 40,000 to 50,000 metric tons annually.<br />

The study perta<strong>in</strong>s to Dharwad district. Two locations of <strong>the</strong> district, namely Dharwad<br />

<strong>and</strong> Kalaghatagi were purposively selected <strong>and</strong> two villages each were r<strong>and</strong>omly<br />

selected from each location. For <strong>the</strong> economics of production, 10 vermicompost<br />

producers, who followed traditional heap system of vermicompost<strong>in</strong>g, were r<strong>and</strong>omly<br />

selected from each village. Thus, <strong>the</strong> total sample size was 40 producers. The results<br />

revealed that 70 % of vermicompost producers were illiterate. With regard to family<br />

type of vermicompost producers, it can be seen that as many as 60 % of <strong>the</strong>m had a<br />

family, while 40 percent had jo<strong>in</strong>t families. A majority of <strong>the</strong>m (~70 %) had annual<br />

<strong>in</strong>come <strong>in</strong> <strong>the</strong> range of $257 to 1070$ followed by around 18 per cent of <strong>the</strong>m hav<strong>in</strong>g<br />

<strong>in</strong>come of more than $1070 per annum <strong>and</strong> <strong>the</strong> rest hav<strong>in</strong>g annual <strong>in</strong>come of less than<br />

$257. With respect to method of production, heap method of vermicompost<strong>in</strong>g was<br />

followed by 70 % of <strong>the</strong> producers <strong>and</strong> trench method was followed by <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

30 %. With respect to method of production, a majority of respondents were found to<br />

produce vermicompost us<strong>in</strong>g heap method because it costs considerably lower<br />

compared to <strong>the</strong> trench method of production. The production of Vermicompost<br />

provided part time employment <strong>for</strong> <strong>the</strong> family members <strong>and</strong> hence it generated<br />

additional revenue <strong>for</strong> <strong>the</strong> family.<br />

The total cost of production of vermicompost per ton was 28.6$. The total market<strong>in</strong>g<br />

cost amounted to $4.3 per ton <strong>in</strong> channel-I (<strong>the</strong> producer-seller sold <strong>the</strong> produce to<br />

29


users <strong>in</strong> Dharwad) <strong>and</strong> $3.2 per ton <strong>in</strong> channel-II (<strong>the</strong> producer-seller sold <strong>the</strong> produce<br />

through BAIF to <strong>the</strong> users <strong>in</strong> Kalghatagi). The net returns per ton of vermicompost<br />

were $26 <strong>in</strong> channel-I compared to $24.5 <strong>in</strong> channel-II. The net present value <strong>for</strong> <strong>the</strong><br />

vermicompost production was $2136.89, <strong>the</strong> benefit cost ratio at 12% discount rate<br />

was 3.44, <strong>in</strong>ternal rate of return was 38% <strong>and</strong> payback period was 1.71 years.<br />

Some isl<strong>and</strong>s <strong>in</strong> India such as Andaman <strong>and</strong> Nicobar isl<strong>and</strong>s are known <strong>for</strong> <strong>the</strong>ir wide<br />

variety of crops such as paddy, coconut, areca_nut, clove, black pepper, c<strong>in</strong>namon,<br />

nutmeg <strong>and</strong> vegetables. About 2-3 kg of earthworms is required <strong>for</strong> 1000 kg of<br />

biomass, whereas about 1100 number earthworms are required <strong>for</strong> one square meter<br />

area. Non burrow<strong>in</strong>g species are mostly used <strong>for</strong> compost mak<strong>in</strong>g. Red earthworm<br />

species like Eisenia foetida <strong>and</strong> Eudrillus eng<strong>in</strong>ae are most efficient <strong>in</strong> compost<br />

mak<strong>in</strong>g. Summary <strong>for</strong> Production of Vermicompost at Farm Scale is shown <strong>in</strong> Table<br />

3.1.<br />

Women self-help groupes (SHGs) <strong>in</strong> several watersheds <strong>in</strong> India have set up<br />

vermicompost<strong>in</strong>g enterprises. By becom<strong>in</strong>g an earn<strong>in</strong>g member of <strong>the</strong> family, <strong>the</strong>y are<br />

<strong>in</strong>volved <strong>in</strong> <strong>the</strong> decision-mak<strong>in</strong>g process, which has raised <strong>the</strong>ir social status. One of<br />

<strong>the</strong> women managed to earn earned $36 per month from this activity. She has also<br />

<strong>in</strong>spired <strong>and</strong> tra<strong>in</strong>ed 300 peers <strong>in</strong> 50 villages. (Nagavallemma et al., 2004).<br />

30<br />

Photo 3.3.<br />

Women self-help group <strong>in</strong>volved<br />

<strong>in</strong> vermicompost<strong>in</strong>g, to promote<br />

micro-enterprises <strong>and</strong> generate<br />

<strong>in</strong>come<br />

Source: Nagavallemma et al.<br />

(2004)


Table 3.1. Summary <strong>for</strong> Production of Vermicompost at Farm Scale <strong>in</strong> Andaman <strong>and</strong><br />

Nicobar (A&N) Isl<strong>and</strong>s, India:<br />

Parameters Low ly<strong>in</strong>g area Hilly area<br />

Low ly<strong>in</strong>g +<br />

Hilly area<br />

Area (ha) 0.08 5.08 5.08<br />

Cropp<strong>in</strong>g System<br />

Vermicompost requirement<br />

(kg/year)<br />

Crop residue requirement (kg)<br />

Paddy-<br />

vegetable<br />

2500 + 5000<br />

= 7500<br />

7750 Paddy<br />

system +<br />

homestead waste<br />

31<br />

1 Coconut/<br />

2 Areca_nut<br />

spices<br />

Paddy-vegetable<br />

/ (1 ha) Coconut/<br />

arecanut/spices (1 ha)<br />

2500 7500 + 2500 =10000<br />

1750 from<br />

coconut or<br />

areca_nut<br />

plantations<br />

3000 from paddy<br />

system + 6500 from<br />

plantations<br />

Gliricidia production from<br />

fence (kg)<br />

1250 1250 2500<br />

Cow dung required (kg) 6000 2000 Kg 8000 kg<br />

Number of animals required<br />

1 cow + 4 goats+<br />

10 poultry birds<br />

1 cow 2cow<br />

Total waste <strong>for</strong> compost<strong>in</strong>g (kg) 15000<br />

5000<br />

20000<br />

Earth worms required (kg)<br />

7.5<br />

2.5<br />

10<br />

RCC r<strong>in</strong>gs required<br />

Number of units<br />

Capital Cost / year (A)<br />

6 r<strong>in</strong>gs<br />

2 (3 r<strong>in</strong>gs +<br />

3 r<strong>in</strong>gs)<br />

Expenditure/year<br />

2r<strong>in</strong>gs<br />

1 (2 r<strong>in</strong>gs)<br />

8 r<strong>in</strong>gs<br />

2 (4 r<strong>in</strong>gs+<br />

4 r<strong>in</strong>gs)<br />

Cost of r<strong>in</strong>gs $ 191.8$ 191.8$ 255.8$<br />

Cost of shed $ 53.3 53.3 74.6$<br />

Runn<strong>in</strong>g cost /year (B)<br />

Labour <strong>and</strong> Miscellaneous cost 127.9$ 127.9$ 159.86$<br />

Packag<strong>in</strong>g cost 79.93$ 79.93$ 106.6$<br />

Total (A+B) 452.9$ 452.9$ 596.8$<br />

Returns / year<br />

Vermicompost<br />

production (kg/year)<br />

Returns<br />

159.8 159.8 213.2<br />

1438. 8$ 1438. 8$ 1918.2$<br />

Net returns $ /year 985.8$ 985.8$ 1321.6$<br />

Source: MBM-CARI-XIV, Vermicompost Production, central agricultural research <strong>in</strong>stitute, <strong>and</strong>aman<br />

<strong>and</strong> nicobar isl<strong>and</strong>s,, Central Agricultural Research India.: http://cari.res.<strong>in</strong>/<br />

1 Coconut <strong>and</strong> arecanut produces around 8100 <strong>and</strong> 6900 kg of wastes/year, respectively. Hence,<br />

on an average, 7500 kg of wastes will be available per year <strong>for</strong> compost<strong>in</strong>g. If all <strong>the</strong> available<br />

wastes are utilized <strong>for</strong> production, <strong>the</strong> requirement of cowdung will be 5500 kg/year which can be<br />

met from one cow. Includ<strong>in</strong>g Gliricidia, <strong>the</strong> total waste availability will be 15000 kg/year which<br />

requires 7.5 kg of earth worms <strong>and</strong> 2 units compris<strong>in</strong>g 3 r<strong>in</strong>gs + 3 r<strong>in</strong>gs <strong>for</strong> compost<strong>in</strong>g. The total<br />

production will be 7500 kg of vermicompost/year. The additional quantity of 5000 kg/year<br />

available can be sold.<br />

2 Areca nut is <strong>the</strong> seed of <strong>the</strong> Areca palm (Areca catechu), which grows <strong>in</strong> much of <strong>the</strong> tropical Pacific,<br />

Asia, <strong>and</strong> parts of east Africa


3.4. Vermicompost „teas‟ <strong>in</strong> Ohio, USA<br />

These aqueous vermicompost extracts or „teas‟ are much easier to transport <strong>and</strong> apply,<br />

than solid vermicomposts, <strong>and</strong> can duplicate most of <strong>the</strong> benefits of vermicomposts<br />

when applied to <strong>the</strong> same crops. Additionally, <strong>the</strong>y can be applied to crops as foliar<br />

sprays.<br />

Work at The Ohio State University has shown that vermicompost „teas‟ <strong>in</strong>creased <strong>the</strong><br />

germ<strong>in</strong>ation, growth, flower<strong>in</strong>g, <strong>and</strong> yields of tomatoes, cucumbers, <strong>and</strong> o<strong>the</strong>r crops <strong>in</strong><br />

similar ways to solid vermicomposts. The aerated, vermicompost „teas‟ suppressed<br />

<strong>the</strong> plant diseases Fusarium, Verticillium, Plectosporium, <strong>and</strong> Rhizoctonia to <strong>the</strong> same<br />

extent as <strong>the</strong> solid.<br />

Vermicompost „teas‟ also suppressed populations of spider mites (Tetranychus<br />

urticae) <strong>and</strong> aphids (Myzus persicae) significantly.<br />

Additionally, <strong>the</strong>y had dramatic effects on <strong>the</strong> suppression of attacks by plant<br />

parasitic nematodes such as Meloidogyne on tomatoes both <strong>in</strong> terms of reduc<strong>in</strong>g <strong>the</strong><br />

numbers of root cysts significantly <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g root <strong>and</strong> shoot growth <strong>and</strong> Physicochemical<br />

characteristics of <strong>the</strong> feed <strong>and</strong> optimum worm density are important<br />

parameters <strong>for</strong> <strong>the</strong> efficient work<strong>in</strong>g of a vermicompost<strong>in</strong>g system. The results<br />

showed that E. fetida growth rate was faster at higher stock<strong>in</strong>g densities; however,<br />

biomass ga<strong>in</strong> per worm was faster at lower stock<strong>in</strong>g densities. Sexual maturity was<br />

atta<strong>in</strong>ed earlier at higher stock<strong>in</strong>g densities. Growth rate was highest <strong>in</strong> 100% cow<br />

dung at all <strong>the</strong> stock<strong>in</strong>g densities when compared to textile mill wastewater sludge<br />

conta<strong>in</strong><strong>in</strong>g feed mixtures. A worm population of 27–53 worms per kg of feed was<br />

found to be <strong>the</strong> most favorable stock<strong>in</strong>g density. Even when <strong>the</strong> physical conditions<br />

(temperature <strong>and</strong> moisture) <strong>and</strong> quality of waste (size, total organic carbon, total<br />

nitrogen, <strong>and</strong> total available phosphorus) are appropriate <strong>for</strong> vermicompost<strong>in</strong>g,<br />

problems can develop due to overcrowd<strong>in</strong>g of earthworms. This study clearly showed<br />

that when E. fetida was allowed to grow at different stock<strong>in</strong>g densities <strong>the</strong> worms<br />

grew slowly at higher stock<strong>in</strong>g densities. The maximum body weight of earthworm<br />

was higher at lower stock<strong>in</strong>g densities. Maturation rate was also affected by stock<strong>in</strong>g<br />

rate. Worms atta<strong>in</strong>ed sexual maturity earlier <strong>in</strong> crowded conta<strong>in</strong>ers. Worms of same<br />

age developed clitellum at different times at different population densities. The results<br />

<strong>in</strong>dicate that population of 27–53 worms per kg <strong>and</strong> 4–8 worms per 150 g/feed<br />

mixture is optimum (Garg et al., 2008).<br />

Most of <strong>the</strong> research on utilization of earthworms <strong>in</strong> waste management has focused<br />

on <strong>the</strong> f<strong>in</strong>al product, i.e. <strong>the</strong> vermicompost. There are only few literature references<br />

that have looked <strong>in</strong>to <strong>the</strong> process, or exam<strong>in</strong>ed <strong>the</strong> biochemical trans<strong>for</strong>mations that<br />

are brought about by <strong>the</strong> action of earthworms as <strong>the</strong>y fragment <strong>the</strong> organic matter,<br />

result<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>for</strong>mation of a vermicompost with physicochemical <strong>and</strong> biological<br />

properties which seem to be superior <strong>for</strong> plant growth to those of <strong>the</strong> parent material.<br />

It has been reported that <strong>the</strong> storage of organic wastes over a period of time could<br />

alter <strong>the</strong> biochemistry of <strong>the</strong> organic matter <strong>and</strong> could eventually lead to <strong>the</strong><br />

stabilization of <strong>the</strong> organic waste. Never<strong>the</strong>less, we hypo<strong>the</strong>size that add<strong>in</strong>g<br />

earthworms to <strong>the</strong> organic wastes would accelerate <strong>the</strong> stabilization of <strong>the</strong>se wastes <strong>in</strong><br />

32


terms of decomposition <strong>and</strong> m<strong>in</strong>eralization of <strong>the</strong> organic matter, lead<strong>in</strong>g to a more<br />

suitable medium <strong>for</strong> plant growth(Atiyeh et al., 2000).<br />

3.5. Vermicompost<strong>in</strong>g <strong>in</strong> United K<strong>in</strong>gdom<br />

In <strong>the</strong> UK, although <strong>the</strong> number of <strong>in</strong>door or enclosed systems appears to be<br />

<strong>in</strong>creas<strong>in</strong>g, most vermicompost<strong>in</strong>g systems would appear to be based on ei<strong>the</strong>r<br />

outdoor w<strong>in</strong>drows or covered shallow beds. There is very little evidence of<br />

mechanisation <strong>and</strong> <strong>the</strong> use of labor sav<strong>in</strong>g equipment, such as earthworm harvesters,<br />

is rare. The bed is approximately 5m wide, 50m long <strong>and</strong> 0.5m deep. The beds<br />

typically comprise wooden sides covered <strong>in</strong> a woven semi-permeable fabric<br />

conta<strong>in</strong><strong>in</strong>g coir or shredded wood chip bedd<strong>in</strong>g placed directly on <strong>the</strong> soil surface.<br />

When <strong>in</strong>stalled, <strong>the</strong> bed would have been <strong>in</strong>oculated with start<strong>in</strong>g culture of adult<br />

earthworms at a density of approximately 0.5kg earthworms per m3 of bed. Up until<br />

recently, most vermicompost<strong>in</strong>g facilities were modest <strong>in</strong> size with bed areas around<br />

1,000 m 2 , but <strong>the</strong>re is now a trend towards much larger units, as much as ten times<br />

this size. Very large units can process large amounts of waste, of <strong>the</strong> order of<br />

thous<strong>and</strong>s of tonnes per year, mak<strong>in</strong>g <strong>the</strong>m comparable to many of <strong>the</strong> smaller<br />

municipal compost<strong>in</strong>g operations.<br />

There is very little <strong>in</strong><strong>for</strong>mation available on <strong>the</strong> nature of <strong>the</strong> vermicompost<strong>in</strong>g<br />

<strong>in</strong>dustry <strong>in</strong> <strong>the</strong> UK <strong>and</strong> what little exists is considered to be commercially sensitive.<br />

There are at least four major suppliers of large-scale vermicompost<strong>in</strong>g systems<br />

currently operat<strong>in</strong>g. In year 2000, <strong>the</strong>re were around 90 <strong>in</strong>dividual operators with<br />

81,000 m 2 of beds. The total <strong>in</strong>vestment would have exceeded £1.25 million<br />

(Frederickson, 2003).<br />

33


4. Current on-farm <strong>and</strong> urban organic waste management practices<br />

<strong>in</strong> <strong>Egypt</strong>: gap analysis.<br />

The most important material <strong>for</strong> compost production is <strong>the</strong> organic material. There are<br />

two ma<strong>in</strong> sources of organic matter: farm wastes <strong>and</strong> urban wastes. In order to obta<strong>in</strong><br />

such materials, one should underst<strong>and</strong> waste management practices <strong>in</strong> <strong>the</strong> area. This<br />

chapter covers such an important subject.<br />

4.1. On-farm organic waste<br />

Agricultural wastes are def<strong>in</strong>ed accord<strong>in</strong>g to <strong>the</strong> relevant legislation as “waste from<br />

agriculture that <strong>in</strong>cludes any substances or object which <strong>the</strong> holder discards or <strong>in</strong>tends<br />

or is required to discard”. The disposal of biomass represents a problem <strong>for</strong> <strong>in</strong>dustries<br />

<strong>and</strong> society. It has been estimated that <strong>the</strong> off-farm disposed plant <strong>and</strong> animal wastes<br />

are 27 <strong>and</strong> 12 million tons annually, respectively. Burn<strong>in</strong>g of crop residues is a<br />

problem <strong>in</strong> <strong>Egypt</strong>, especially rice wastes. <strong>Egypt</strong> cultivates about 360.000 ha of rice<br />

accord<strong>in</strong>g to 2008 statistics, with a production of 6 million tons of straw.<br />

It is up to <strong>the</strong> grower to decide <strong>the</strong> way of dispos<strong>in</strong>g his agriculture wastes. The most<br />

common practice <strong>for</strong> dispos<strong>in</strong>g is by dump<strong>in</strong>g it at municipal waste sites, dump<strong>in</strong>g it<br />

<strong>in</strong> <strong>the</strong> desert or by simply burn<strong>in</strong>g it. The failure of any management plan to tackle <strong>the</strong><br />

agriculture waste, especially rice straw, is based on <strong>the</strong> assumption that this waste is<br />

free, <strong>and</strong> <strong>the</strong> grower has to give it away. In fact <strong>the</strong> grower realizes that <strong>the</strong> waste<br />

becomes valuable once collected <strong>and</strong> ready <strong>for</strong> transport. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, as long<br />

as <strong>the</strong> residues are <strong>in</strong> his property, no one could <strong>for</strong>ce him to h<strong>and</strong> it over. For him,<br />

burn<strong>in</strong>g <strong>the</strong> residue <strong>in</strong> site has some agricultural benefits, such as use of m<strong>in</strong>erals of<br />

<strong>the</strong> ash, or gett<strong>in</strong>g rid of <strong>in</strong>sects <strong>and</strong> diseases on above <strong>the</strong> ground as a result of<br />

burn<strong>in</strong>g.<br />

Even though <strong>the</strong> practice is well known, farmers <strong>in</strong> many parts of <strong>the</strong> world especially<br />

<strong>in</strong> develop<strong>in</strong>g countries f<strong>in</strong>d <strong>the</strong>mselves at a disadvantage by not mak<strong>in</strong>g <strong>the</strong> best use<br />

of organic recycl<strong>in</strong>g opportunities available to <strong>the</strong>m, due to various constra<strong>in</strong>ts which<br />

among o<strong>the</strong>rs <strong>in</strong>clude absence of efficient expeditious technology, long time span,<br />

<strong>in</strong>tense labor, l<strong>and</strong> <strong>and</strong> <strong>in</strong>vestment requirements, <strong>and</strong> economic aspects.<br />

In rural areas, <strong>in</strong> particular, <strong>the</strong> implementation of effective solid waste management<br />

systems is faced with a number of constra<strong>in</strong>ts. These constra<strong>in</strong>ts are related to<br />

environmental conditions, <strong>in</strong>stitutional/ adm<strong>in</strong>istrative issues, f<strong>in</strong>ancial matters,<br />

technical deficiencies <strong>and</strong> plann<strong>in</strong>g <strong>and</strong> legal limitations.<br />

As <strong>for</strong> agriculture waste, two options <strong>for</strong> treat<strong>in</strong>g rice straw are recommended. The<br />

first is to collaborate with <strong>the</strong> fresh universities graduates to collect such dispersed<br />

produced amount <strong>in</strong> order to be used <strong>in</strong> <strong>the</strong> compost mak<strong>in</strong>g activities, <strong>the</strong> o<strong>the</strong>r<br />

option is to <strong>in</strong>stall small manufactures <strong>for</strong> fiber process<strong>in</strong>g to produce packages <strong>for</strong><br />

exported crops as rice straw could be used as a virg<strong>in</strong> material.<br />

34


4.1.1. Weak po<strong>in</strong>ts <strong>in</strong> rice straw system <strong>in</strong> <strong>Egypt</strong><br />

There is an extreme shortage of <strong>the</strong> comb<strong>in</strong><strong>in</strong>g, rak<strong>in</strong>g <strong>and</strong> bal<strong>in</strong>g mach<strong>in</strong>es,<br />

<strong>and</strong> no enough trucks to transport <strong>the</strong> ready straw bales (economical problem).<br />

In addition, <strong>the</strong> un-paved dirt roads that makes <strong>the</strong> transportation between<br />

farms <strong>and</strong> market (economical <strong>and</strong> managerial problems) almost impossible.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>s, agricultural co-operations have to work to provide a<br />

storage place <strong>for</strong> <strong>the</strong> ready bales, trucks <strong>and</strong> some mechanical equipment to<br />

overcome <strong>the</strong> previous obstacles. To facilitate such work, GIS maps should<br />

provide <strong>the</strong> farms sites <strong>in</strong> each governorate <strong>and</strong> a full study of <strong>the</strong> road status<br />

that will be used <strong>for</strong> <strong>the</strong> transportation.<br />

4.2. Urban wastes<br />

Ma<strong>in</strong> four systems were <strong>in</strong>volved <strong>in</strong> solid waste management be<strong>for</strong>e <strong>the</strong> trend to<br />

privatization; The Governmental system <strong>in</strong>clud<strong>in</strong>g Cairo <strong>and</strong> Giza "Cleans<strong>in</strong>g <strong>and</strong><br />

Beautification Authorities". These central agencies were responsible <strong>for</strong> municipal<br />

solid waste activities <strong>in</strong>clud<strong>in</strong>g regulation of private service delivery. In spite of<br />

creat<strong>in</strong>g such powerful entities, <strong>the</strong>y were not effective <strong>and</strong> faced lots of problems.<br />

The second system is <strong>the</strong> conventional Zabbaleen (<strong>in</strong><strong>for</strong>mal waste collectors) system,<br />

which offers door-to-door service <strong>in</strong> return <strong>for</strong> <strong>the</strong> monthly fee. Thirdly, <strong>the</strong>re is <strong>the</strong><br />

<strong>for</strong>mal private sector system, which has been <strong>in</strong>troduced <strong>in</strong> larger cities <strong>and</strong> some<br />

prov<strong>in</strong>cial towns. Each private operator must have a collection license or a service<br />

contract <strong>for</strong> his assigned area from <strong>the</strong> local municipality. F<strong>in</strong>ally, <strong>the</strong>re is Non<br />

Governmental Organizations (NGOs), which per<strong>for</strong>m some limited solid waste<br />

services, especially <strong>in</strong> rural areas <strong>and</strong> small cities.<br />

4.2.1. Overview of solid waste management problem <strong>in</strong> <strong>Egypt</strong><br />

The problem of solid waste management <strong>in</strong> <strong>Egypt</strong> has been grow<strong>in</strong>g at an alarm<strong>in</strong>g<br />

rate. Its negative manifestations, as well as its direct <strong>and</strong> <strong>in</strong>direct harmful<br />

consequences on public health, environment <strong>and</strong> national economy (particularly as<br />

related to manpower productivity <strong>and</strong> tourism) are becom<strong>in</strong>g quite apparent <strong>and</strong> acute.<br />

In large cities like Cairo <strong>and</strong> Alex<strong>and</strong>ria <strong>the</strong> problem reached such serious proportions<br />

that <strong>the</strong>y called <strong>for</strong> considerable government <strong>in</strong>tervention <strong>and</strong> a series of judicious<br />

actions <strong>in</strong> <strong>the</strong> short, medium, <strong>and</strong> long term.<br />

In essence, <strong>the</strong> problem –as described <strong>in</strong> <strong>the</strong> National Waste Management Strategy<br />

2000- lies <strong>in</strong> <strong>the</strong> fact that:<br />

"The present systems could not satisfy <strong>the</strong> served community needs with its various<br />

strata <strong>for</strong> a reasonably accepted cleans<strong>in</strong>g level, as well as <strong>in</strong> reduc<strong>in</strong>g <strong>the</strong> negative<br />

health <strong>and</strong> environmental impacts, or <strong>in</strong> improv<strong>in</strong>g <strong>the</strong> aes<strong>the</strong>tic appearance".<br />

35


The clearly evident symptoms of <strong>the</strong> problem are:<br />

- Various levels of waste accumulations at various places <strong>and</strong> locations that<br />

became liable to various vectors (rodents <strong>and</strong> <strong>in</strong>sects) <strong>and</strong> environmental<br />

pollution, bad smells <strong>and</strong> appearance, aside from frequent uncontrolled open<br />

burn<strong>in</strong>g that all contribute to negative health <strong>and</strong> environmental impacts.<br />

- Ineffective <strong>and</strong> environmentally non-sound h<strong>and</strong>l<strong>in</strong>g, treatment <strong>and</strong> recycl<strong>in</strong>g<br />

techniques that may pose health risks.<br />

- Prevalent open-dump type of r<strong>and</strong>om solid waste disposal as well as<br />

<strong>in</strong>discrim<strong>in</strong>ate dump<strong>in</strong>g lead<strong>in</strong>g to various associated health <strong>and</strong> environmental<br />

hazards.<br />

4.2.2. Ma<strong>in</strong> factors contribut<strong>in</strong>g to soil waste management problem<br />

Municipal solid waste contents <strong>for</strong> <strong>the</strong> years 2000-2008 <strong>and</strong> <strong>the</strong>ir distribution are<br />

illustrated <strong>in</strong> Table (4.1) <strong>and</strong> Table (4.2). The ma<strong>in</strong> factors contribut<strong>in</strong>g <strong>the</strong> solid<br />

waste problems <strong>in</strong> <strong>Egypt</strong> could be summarized as follows:<br />

- Actions taken <strong>in</strong> <strong>the</strong> past were not always susta<strong>in</strong>able, <strong>and</strong> <strong>the</strong> issues were not<br />

addressed <strong>in</strong> a comprehensive <strong>and</strong> <strong>in</strong>tegrated manner.<br />

- Accurate <strong>and</strong> reliable data concern<strong>in</strong>g solid waste quantities, rates of<br />

generation, composition does not exist. Numerous attempts to quantify <strong>the</strong><br />

problem have been made; however, <strong>the</strong>se attempts are by no means<br />

comprehensive or rigorous.<br />

- Laws are not applicable with very weak mechanisms <strong>for</strong> en<strong>for</strong>cement.<br />

- The <strong>in</strong>volvement of <strong>the</strong> private sector <strong>in</strong> SWM activities <strong>in</strong> <strong>Egypt</strong> has been<br />

m<strong>in</strong>imal till <strong>the</strong> last decade when <strong>the</strong> private sector became more <strong>in</strong>volved.<br />

- Ineffective recycl<strong>in</strong>g activities, especially with all k<strong>in</strong>ds of waste mixed<br />

toge<strong>the</strong>r without any plan to encourage sort<strong>in</strong>g at source. Moreover, nonhazardous<br />

<strong>and</strong> hazardous wastes are mixed through <strong>the</strong> "waste cycle".<br />

- Low level of public awareness <strong>and</strong> improper behaviors <strong>and</strong> practices <strong>in</strong><br />

relation to solid waste h<strong>and</strong>l<strong>in</strong>g <strong>and</strong> disposal.<br />

Table 4.1. Municipal solid waste contents 2000, 2005 <strong>and</strong> 2008<br />

Waste % 2000 Waste % 2005 Waste % 2008<br />

Organic materials 45-55% 50-60% 50-60%<br />

Paper 10-20% 10-25% 10-25%<br />

Plastic 3-12% 3-12% 3-12%<br />

Glass 1-5% 1-5% 1-5%<br />

Metal 1.5- 7% 1.5- 7% 1.5- 7%<br />

Fabrics 1.2- 7% 1.2- 7% 1.2- 7%<br />

O<strong>the</strong>rs 11-30% 11-30% 11-30%<br />

Source: EEAA (2001) <strong>and</strong> (2006) <strong>and</strong> CAPMAS (2010)<br />

36


Table 4.2. Distribution of waste accord<strong>in</strong>g to <strong>the</strong> sources <strong>in</strong> 2000 <strong>and</strong> 2005<br />

Source<br />

Estimated quantity<br />

2000 2005<br />

Municipal garbage 14-15 million ton 15-16 million ton<br />

Industrial 4-5 million ton 4.5 - 5 million ton<br />

Agricultural 23 million ton 25-30 million ton<br />

Sludge 1.5 -2 million ton 1.5 -2 million ton<br />

Clear<strong>in</strong>g banks<br />

sewage outputs<br />

<strong>and</strong><br />

20 million ton 20 million ton<br />

Hospitals 100 -120 million ton 100 -120 million ton<br />

Construction<br />

demolition waste<br />

<strong>and</strong><br />

3-4 million ton 3-4 million ton<br />

Source: EEAA (2007)<br />

4.2.3. Waste generation rates<br />

The total quantity of solid wastes generated <strong>in</strong> <strong>Egypt</strong> is 118.6 million tons/year <strong>in</strong><br />

2007/2008 as shown <strong>in</strong> Table (4-3) estimates, <strong>in</strong>clud<strong>in</strong>g municipal solid waste<br />

(garbage), <strong>in</strong>dustrial waste, agricultural waste, sludge result<strong>in</strong>g from sanitation<br />

treatment, hospital wastes, construction <strong>and</strong> demolition debris <strong>and</strong> wastes from <strong>the</strong><br />

clean<strong>in</strong>g of canals <strong>and</strong> dra<strong>in</strong>s. Municipal solid wastes (garbage) <strong>in</strong>clude rema<strong>in</strong>s of<br />

households (about 60 %), shops <strong>and</strong> commercial markets, service <strong>in</strong>stitutions such as<br />

schools <strong>and</strong> educational <strong>in</strong>stitutes, utilities, hospitals, adm<strong>in</strong>istrative build<strong>in</strong>gs, streets,<br />

gardens, markets, hotels, <strong>and</strong> recreation areas, <strong>in</strong> addition to small factories <strong>and</strong><br />

camps.<br />

Resource recovery reduces <strong>the</strong> quantity of raw materials needed <strong>in</strong> production<br />

processes. It may <strong>the</strong>re<strong>for</strong>e reduce dependency on imports <strong>and</strong> save <strong>for</strong>eign currency.<br />

Reused rubber <strong>and</strong> plastics, <strong>for</strong> example, reduce <strong>the</strong> need <strong>for</strong> imported raw materials<br />

<strong>and</strong> <strong>the</strong> reuse of organic waste as compost reduces <strong>the</strong> dependence on imported<br />

chemical fertilizers.<br />

Resource recovery saves natural resources, particularly <strong>in</strong> <strong>the</strong> <strong>for</strong>m of raw materials<br />

<strong>and</strong> energy. The recycl<strong>in</strong>g of alum<strong>in</strong>um, <strong>for</strong> example, results <strong>in</strong> energy sav<strong>in</strong>gs 14 of<br />

up to 96%. An environmentally sound waste disposal system should <strong>the</strong>re<strong>for</strong>e <strong>in</strong>volve<br />

resource recovery as much as possible.<br />

However, waste recovery also creates employment opportunities that can conflict with<br />

environmental <strong>and</strong> health criteria. Although <strong>the</strong> reuse of organic waste helps to<br />

prevent environmental degradation <strong>and</strong> pollution, <strong>the</strong> recovery methods <strong>the</strong>mselves<br />

are often not environmentally sound <strong>and</strong> may pose health hazards <strong>for</strong> workers. With<strong>in</strong><br />

solid waste disposal systems environmental, socio-economic <strong>and</strong> health costs are<br />

rarely considered. The total costs of safe <strong>and</strong> environmentally acceptable solid waste<br />

disposal are poorly documented <strong>and</strong> are <strong>the</strong>re<strong>for</strong>e underestimated. However, it is<br />

aga<strong>in</strong>st this background that resource recovery needs to be valued <strong>and</strong> supported <strong>in</strong><br />

order to use <strong>the</strong> potential of recovery to its full extent <strong>and</strong> to improve exist<strong>in</strong>g<br />

practices.<br />

For many people, work<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong><strong>for</strong>mal waste sector is <strong>the</strong> last resort <strong>in</strong> <strong>the</strong> daily<br />

struggle <strong>for</strong> survival. Incomes are usually m<strong>in</strong>imal, <strong>and</strong> work<strong>in</strong>g conditions are often<br />

appall<strong>in</strong>g. Never<strong>the</strong>less, some traders have managed to set up a feasible bus<strong>in</strong>ess that<br />

can earn reasonable profits. All <strong>the</strong>se people provide a valuable service to society as a<br />

37


whole; <strong>in</strong> many cities <strong>the</strong> municipal refuse collection <strong>and</strong> disposal services are<br />

woefully <strong>in</strong>adequate, particularly <strong>in</strong> low-<strong>in</strong>come areas, where waste accumulates <strong>in</strong><br />

<strong>the</strong> streets. Improved recovery processes could <strong>the</strong>re<strong>for</strong>e reduce <strong>the</strong> amounts of waste<br />

that need to be collected, <strong>and</strong> thus <strong>the</strong> costs of municipal waste disposal, <strong>and</strong> could<br />

help to reduce <strong>the</strong> risk to human health.<br />

For example, Cairo is renowned <strong>for</strong> its extensive <strong>in</strong><strong>for</strong>mal waste recycl<strong>in</strong>g system. In<br />

<strong>the</strong> Cairo metropolitan area, 6000 tons of municipal solid waste is generated daily.<br />

The municipality collects about 2400 tons per day, while <strong>in</strong><strong>for</strong>mal workers collect<br />

about 2700 tons of household waste per day us<strong>in</strong>g a fleet of some 700 donkey carts.<br />

The balance of 900 tons rema<strong>in</strong>s on <strong>the</strong> city streets, vacant lots <strong>and</strong> <strong>the</strong> peripheries of<br />

poorly serviced low-<strong>in</strong>come areas of <strong>the</strong> city.<br />

Table 4.3. Distribution of wastes accord<strong>in</strong>g to its sources <strong>and</strong> Governorates 2007/2008<br />

Governorate<br />

Source (ton/month)<br />

Municipal Industrial Agricultural Sludge<br />

m 3<br />

38<br />

Clear<strong>in</strong>g<br />

banks &<br />

sewage<br />

Hospitals<br />

Construction<br />

<strong>and</strong><br />

demolition<br />

Cairo 1761668 149914 - - - 49860 811488<br />

Giza 139650 - - - - - 77100<br />

Qalyobia - - - - - - -<br />

Alex<strong>and</strong>ria - 620500 1296506 - - - -<br />

Behira 27330 - 4099.5 5072500 - 1366.5 -<br />

Menofia 3281224 2749.42 20617.7 7168 169239 899.57 5035.83<br />

Gharbia 40860 32.5 10069.6 - - 0.5 -<br />

Kar ElSheih 65600 - 369619 - 3550 33 56<br />

Damitta 1124 337.2 - - - - -<br />

Daqhlia - - 456517 - - - -<br />

North S<strong>in</strong>ia 14.75 700 2083.3 8.3 - 31.7 283.3<br />

South S<strong>in</strong>ia 47 - - - - - -<br />

Port Said 18390.1 - - 2205 - 244.11 -<br />

Ismailia 17160 240 2918 369750 25000 35.9 17053<br />

Suis 118625 51666.7 - 18250 37083.3 243.33 760.417<br />

Sharqia 12000 - - - - 11.648 -<br />

Beni Suif 45420 178 - 335.3 - 32.88 975<br />

M<strong>in</strong>ia 13406 53.4 45666.5 218 3186 33.08 2566<br />

Assuit 6120 - - - - - -<br />

New valley 2322 - 6166 416 666 14.7 583<br />

Sohag 2691 382 409 330 250 290 1919<br />

Qena<br />

2046<br />

480m3<br />

15<br />

90m 3 340 - 1500 9.5<br />

135<br />

12545m 3<br />

Asswan 76003.3 6360 64.1667 0.5833 0.833333 134.46 4080<br />

Red sea<br />

16650<br />

12750m 3 - - - - 2.55<br />

1500<br />

100m 3<br />

Luxor 550 50 250 120 150 8 360<br />

Total<br />

5649880.15<br />

13230 m<br />

833278 2215326 8587.88 203541.8 53255 924254.55<br />

3 90 m 3 - 5462713 m 3 37083.3 m 3 - 12645 m 3<br />

Source: EEAA (2007).<br />

The <strong>in</strong><strong>for</strong>mal sector <strong>in</strong> <strong>Egypt</strong> plays a significant role <strong>in</strong> <strong>the</strong> solid waste services<br />

<strong>in</strong>clud<strong>in</strong>g waste recycl<strong>in</strong>g. This sector has been grow<strong>in</strong>g significantly over <strong>the</strong> last<br />

three decades. There<strong>for</strong>e, it is essential to underst<strong>and</strong> <strong>and</strong> recognize <strong>the</strong> complex role<br />

of this sector <strong>in</strong> solid waste services <strong>and</strong> to benefit from its exist<strong>in</strong>g <strong>in</strong>frastructure <strong>and</strong><br />

expertise <strong>in</strong> any <strong>for</strong>mal <strong>in</strong>itiative (GTZ, 2004).


Over <strong>the</strong> last three decades, <strong>the</strong> <strong>in</strong><strong>for</strong>mal garbage collectors have drastically<br />

developed <strong>the</strong> volume <strong>and</strong> scope of activities <strong>the</strong>y per<strong>for</strong>m. Solid waste operators <strong>in</strong><br />

<strong>the</strong> <strong>in</strong><strong>for</strong>mal sector generally per<strong>for</strong>m five functions: collection, transportation,<br />

recovery, trade, <strong>and</strong> recycl<strong>in</strong>g. It is usually a family bus<strong>in</strong>ess where men do <strong>the</strong><br />

transportation <strong>and</strong> trad<strong>in</strong>g <strong>and</strong> women do most of <strong>the</strong> sort<strong>in</strong>g.<br />

The waste sort<strong>in</strong>g <strong>and</strong> recovery is almost entirely done <strong>in</strong> <strong>the</strong> courtyard of garbage<br />

collector‟s houses. After waste collection <strong>and</strong> transportation to <strong>the</strong> Zabbaleen area,<br />

waste is sorted <strong>in</strong>to: (i) organic waste that is fed to <strong>the</strong> animals, sold to o<strong>the</strong>rs as<br />

animal feed, or sent <strong>for</strong> compost<strong>in</strong>g; <strong>and</strong> (ii) non-organic waste that is categorized<br />

<strong>in</strong>to: paper, plastic, metal, glass, fabric, bones, <strong>and</strong> residual non-recyclable waste.<br />

Subsequently, ano<strong>the</strong>r sort<strong>in</strong>g process is <strong>the</strong>n undertaken to sort different sub-types of<br />

each of <strong>the</strong> ma<strong>in</strong> categories while non-recyclable waste is transported to <strong>the</strong> municipal<br />

disposal site on a monthly basis. The recovered material is sold while <strong>the</strong> nonrecoverable<br />

materials are sent to <strong>the</strong> municipal dumps. Recyclable materials sorted<br />

<strong>in</strong>to categories <strong>and</strong> sub-categories of paper, plastic, metal, glass, fabric, <strong>and</strong> bones are<br />

transferred to recycl<strong>in</strong>g workshops.<br />

In 2000, <strong>the</strong>re were more than 220 recycl<strong>in</strong>g workshops <strong>in</strong> <strong>the</strong> Zabbaleen area of<br />

Cairo. About 90% own <strong>the</strong>ir workshop space (even if <strong>in</strong><strong>for</strong>mally) while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g<br />

10% rent <strong>the</strong>ir workshop. A workshop employs six workers on average. The average<br />

area of <strong>the</strong> recycl<strong>in</strong>g workshop is 155 square meters but varies widely depend<strong>in</strong>g on<br />

<strong>the</strong> recycl<strong>in</strong>g activity per<strong>for</strong>med. Generally plastic recycl<strong>in</strong>g <strong>and</strong> cloth gr<strong>in</strong>ders use up<br />

<strong>the</strong> most space <strong>and</strong> <strong>the</strong>ir workshops usually have an area more than 200 m 2 . Metal<br />

recycl<strong>in</strong>g <strong>in</strong>dustries need less space.<br />

4.2.4. Major conventional solid waste systems are<br />

- Governmental system: municipalities or clean<strong>in</strong>g authorities (Cairo <strong>and</strong> Giza)<br />

collect <strong>and</strong> transfer wastes from <strong>the</strong> streets, b<strong>in</strong>s, public conta<strong>in</strong>ers, <strong>and</strong> supervises<br />

public dumpsites <strong>and</strong> <strong>the</strong> operation of compost<strong>in</strong>g plants ei<strong>the</strong>r directly or through<br />

<strong>the</strong> private sector.<br />

- Traditional “Zabbaleen” (garbage collectors) system: <strong>in</strong> this system, which date<br />

back to <strong>the</strong> early twentieth century, collectors collect garbage from household units<br />

<strong>and</strong> some commercial establishments, <strong>and</strong> transfer it to <strong>the</strong>ir communities<br />

(Zabbaleen villages) <strong>for</strong> sort<strong>in</strong>g <strong>and</strong> recycl<strong>in</strong>g. Although work<strong>in</strong>g conditions <strong>and</strong><br />

methods used, that are of m<strong>in</strong>imal costs <strong>and</strong> do not comply with <strong>the</strong> requirements of<br />

health <strong>and</strong> <strong>the</strong> environment, yet <strong>the</strong>y are considered by clients as a considerably<br />

good service. Fur<strong>the</strong>r, this system achieves <strong>the</strong> highest recovery degree possible;<br />

sometimes reach 80% of <strong>the</strong> garbage collected by Zabbaleen, which is estimated by<br />

3000 tons per day <strong>in</strong> Cairo (about 30% of <strong>the</strong> total amount generated daily). Local<br />

private companies: <strong>the</strong>se collect <strong>and</strong> transfer garbage <strong>in</strong> a number of <strong>Egypt</strong>ian cities.<br />

They represent a developed model of <strong>the</strong> garbage collectors‟ system, work<strong>in</strong>g <strong>in</strong><br />

limited areas under <strong>the</strong> supervision <strong>and</strong> control of municipalities or clean<strong>in</strong>g<br />

authorities. The f<strong>in</strong>al disposal of wastes takes place ei<strong>the</strong>r at <strong>the</strong> garbage collectors<br />

communities or <strong>in</strong> public dumpsites.<br />

39


4.3. Overview of organic waste recovery options<br />

S<strong>in</strong>ce organic material <strong>for</strong>ms all farm wastes <strong>and</strong> a large proportion of urban refuse,<br />

ways can be sought as to use this resource more effectively. Organic material can be<br />

reused <strong>in</strong> three ways:<br />

- to feed animals (fodder),<br />

- to improve <strong>the</strong> soil (compost),<br />

- to produce energy (biogas or briquettes).<br />

The first two options are already very common <strong>in</strong> economically less developed<br />

countries. In Lahore, Pakistan, <strong>for</strong> example, 40% of urban refuse is collected by<br />

farmers <strong>and</strong> used as animal feed <strong>and</strong> soil amendment.<br />

4.3.1. Feed<strong>in</strong>g animals<br />

Rais<strong>in</strong>g animals is <strong>the</strong> easiest possibility; <strong>in</strong> most cases organic waste can be fed<br />

directly to domestic animals without pretreatment, but cook<strong>in</strong>g or <strong>the</strong> addition of<br />

nutrients may sometimes be necessary. This strategy refers to divert<strong>in</strong>g food not<br />

appropriate <strong>for</strong> human consumption to animal feed. While a potentially useful outlet<br />

<strong>for</strong> food scraps that o<strong>the</strong>rwise would be disposed, this avenue tends to be limited<br />

primarily to food processors <strong>and</strong> beer <strong>in</strong>dustries <strong>and</strong> may not be feasible <strong>for</strong> urban<br />

<strong>in</strong>stitutions. In some cases, rural corrections facilities <strong>and</strong> l<strong>and</strong>-grant colleges have <strong>the</strong><br />

appropriate comb<strong>in</strong>ation of circumstances that allows <strong>for</strong> <strong>the</strong> collection <strong>and</strong> feed<strong>in</strong>g of<br />

certa<strong>in</strong> food scraps to on-site animals.<br />

4.3.2. Compost<br />

Compost<strong>in</strong>g is <strong>the</strong> microbial decomposition of discarded organic materials under<br />

controlled conditions. The end product, compost, is used as an organic soil<br />

amendment. It promotes microbiological activity <strong>in</strong> soils necessary <strong>for</strong> plant growth,<br />

disease resistance, water retention <strong>and</strong> filtration, <strong>and</strong> erosion prevention. Compost can<br />

be used <strong>in</strong> various ways. As a soil amendment, compost enhances <strong>the</strong> physical,<br />

chemical, <strong>and</strong> biological properties of soil. The macro-nutrient value of compost is<br />

typically not high relative to fertilizers. Compost enriches <strong>the</strong> soil by <strong>in</strong>creas<strong>in</strong>g<br />

organic matter. Additionally, compost <strong>in</strong>creases soil‟s capacity to hold water. By<br />

amend<strong>in</strong>g soil with compost, soil is better able to hold nutrients. Nutrients do not<br />

leach as easily; ra<strong>the</strong>r, <strong>the</strong>y are released more slowly to plants, which can reduce <strong>the</strong><br />

need <strong>for</strong> fertilizers. Compost can also suppress fungal diseases <strong>in</strong> soil, which can be<br />

particularly important to <strong>the</strong> golf <strong>and</strong> nursery <strong>in</strong>dustries.<br />

The utilization of earth worms, as discussed previously, could play a strong role <strong>in</strong><br />

convert<strong>in</strong>g organic wastes, whe<strong>the</strong>r urban or rural, <strong>in</strong>to a valuable vermicompost<br />

material.<br />

4.3.3 L<strong>and</strong>fill disposal or <strong>in</strong>c<strong>in</strong>eration<br />

This strategy refers send<strong>in</strong>g organic materials to a disposal facility to be l<strong>and</strong>filled or<br />

<strong>in</strong>c<strong>in</strong>erated. This is considered <strong>the</strong> least desirable strategy from a social,<br />

environmental, <strong>and</strong> sometimes economic perspective.<br />

40


The garbage from which <strong>the</strong> recyclable items have been removed is dumped by a<br />

mechanical front-end loader through a grid onto a conveyor belt, which transfers <strong>the</strong><br />

garbage to a hopper <strong>and</strong> f<strong>in</strong>ally to a rotat<strong>in</strong>g, cyl<strong>in</strong>drical drum, where <strong>the</strong> compost is<br />

sieved. At <strong>the</strong> end of <strong>the</strong> sieve, children anxiously wait <strong>for</strong> some useful remnants. The<br />

maturity of <strong>the</strong> compost is determ<strong>in</strong>ed by measur<strong>in</strong>g <strong>the</strong> temperature.<br />

Normally, <strong>the</strong> plant processes 30 tons (60 m 3 ) of compost per shift per day. Dur<strong>in</strong>g <strong>the</strong><br />

season when l<strong>and</strong> is prepared <strong>for</strong> cultivation (November to February) output is<br />

doubled by work<strong>in</strong>g two shifts per day. The plant provides jobs <strong>for</strong> 11 employees (1<br />

consultant, 1 plant manager, 1 technician, 1 electrician, 1 operation <strong>and</strong> ma<strong>in</strong>tenance<br />

manager, 3 security guards, 2 drivers, <strong>and</strong> 1 messenger). Mechanical parts <strong>for</strong> <strong>the</strong><br />

plant can be bought <strong>in</strong> <strong>Egypt</strong>, although some electrical parts have to be imported.<br />

Although <strong>the</strong> quality of <strong>the</strong> compost appears to be good, it has been found to conta<strong>in</strong><br />

small pieces of glass <strong>and</strong> plastics, <strong>and</strong> large quantities of heavy metals.<br />

The major pressures on solid waste management <strong>in</strong> <strong>Egypt</strong> are exemplified <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>crease <strong>in</strong> waste quantities generated due to <strong>the</strong> escalat<strong>in</strong>g population, on <strong>the</strong> one<br />

h<strong>and</strong>, <strong>and</strong> <strong>the</strong> change <strong>in</strong> consumption patterns <strong>in</strong> towns <strong>and</strong> villages alike, on <strong>the</strong> o<strong>the</strong>r<br />

h<strong>and</strong>, <strong>in</strong> addition to <strong>the</strong> lack of awareness <strong>and</strong> <strong>the</strong> wrong h<strong>and</strong>l<strong>in</strong>g of solid wastes <strong>in</strong><br />

general. Various studies on ducted dur<strong>in</strong>g <strong>the</strong> last two decades <strong>in</strong> a number of<br />

<strong>Egypt</strong>ian Governorates <strong>and</strong> cities po<strong>in</strong>t out to a significant decrease <strong>in</strong> municipal solid<br />

waste collection efficiency totally lack<strong>in</strong>g <strong>in</strong> some rural areas. Consequently, large<br />

amounts of waste accumulations appeared <strong>in</strong> streets, vacant l<strong>and</strong> between build<strong>in</strong>gs<br />

<strong>and</strong> different areas <strong>in</strong> cities <strong>and</strong> populated areas throughout <strong>the</strong> past years. Such areas<br />

have become focal po<strong>in</strong>ts of environmental pollution <strong>and</strong> represent significant<br />

pressures on human health as well as on <strong>the</strong> environment.<br />

41


Table 4.4. <strong>Egypt</strong>‟s Integrated Solid Waste Management Plan <strong>for</strong> <strong>the</strong> period 2007-<br />

2012.<br />

Governorate<br />

The cost of <strong>the</strong> program / million <strong>Egypt</strong>ian pound<br />

Remove<br />

Accumula-<br />

tions<br />

Improve<br />

process of<br />

collections &<br />

transportation<br />

Establish<br />

<strong>in</strong>termediate<br />

station<br />

42<br />

Establish<br />

recycle<br />

centers<br />

Improve<br />

work <strong>in</strong><br />

controlled<br />

Dumpsites<br />

Establish<br />

sanitary<br />

l<strong>and</strong>fill<br />

Total with<br />

million<br />

<strong>Egypt</strong>ian<br />

pound<br />

Cairo --- 13 13 30 40 30 126<br />

Alex<strong>and</strong>ria 15 17 5 5 --- --- 42<br />

Giza --- 30 30 10 10 30 110<br />

Kalyobiya --- 19.5 19.5 10 10 30 89<br />

Dakahilya 60 56.5 16 10 --- 30 172.5<br />

Gharbeya 52 31.5 16 10 --- 30 139.5<br />

Monofiya 6 33 10 10 --- 30 89<br />

Beheira 8 47 13 10 --- 40 118<br />

Kafr-ELShiekh 6 27 10 15 --- 30 83<br />

Sharkia 10 48.5 10 10 --- 30 108.5<br />

Damietta 3 26 10 10 --- --- 64<br />

Fayoum 3 20.5 4 5 --- 15 62.5<br />

Bani Suif 3 22 5 5 --- 30 65<br />

Menia 10 28.5 6 10 --- 30 84.5<br />

Assiut 3 28.5 6 10 --- 30 72.5<br />

Sohag 4.5 35 7 5 --- 30 86.5<br />

Qena 4.5 30.5 7 5 --- 30 82<br />

Luxor 2 2 3 5 --- 15 27<br />

Aswan 6 17 3.5 5 --- 15 46.5<br />

Ismailia 7 17.5 3 5 --- 30 62.5<br />

Port Said 6 7 2.5 5 5 --- 25.5<br />

Suez 10 7.5 2.5 5 5 --- 30<br />

Red Sea 7.5 14 2 5 --- 30 58.5<br />

Matrouh --- 26 5 5 --- 15 51<br />

North S<strong>in</strong>ai --- 31 4 5 --- 30 70<br />

South 7.5 15 3 5 --- 30 60.5<br />

New Valley --- 15 2 5 --- 10 37<br />

total 234 666 218 220 70 655 2063<br />

Source: EEAA (2008) <strong>and</strong> (2009).


Table 4.5. Solid waste accumulation <strong>in</strong> <strong>the</strong> <strong>Egypt</strong>ian Governorates.<br />

Governorate Accumulations <strong>in</strong> m 3 Governorate Accumulations <strong>in</strong> m 3<br />

Cairo 500000 Menoufia 280000<br />

Alex<strong>and</strong>ria 344830 Kafr_El Sheikh 227000<br />

Giza 500000 Damietta 100000<br />

Behairah 600000 Gharbia 1500000<br />

Qalyubia 500000 Dakahlia 1300000<br />

Sharqia 510000 North S<strong>in</strong>ai 140000<br />

Matruh 146429 South S<strong>in</strong>ai 512000<br />

Port Said 359040 Suez 1168550<br />

Ismailia 350000 Red Sea 11885000<br />

Fayoum 292500 Beni Suef 150000<br />

M<strong>in</strong>ya 951000 Assiut 250000<br />

Sohag 281845 Qena 258480<br />

Luxor 107022 Aswan 385240<br />

Total accumulation 23598936<br />

Source: EEAA (2008) <strong>and</strong> (2009).<br />

43


Table 4.6. Solid waste amount produced by governorates <strong>and</strong> <strong>the</strong> organic materials<br />

percentages <strong>for</strong> <strong>the</strong> year 2008.<br />

Governorate<br />

Cairo<br />

Alex<strong>and</strong>ria<br />

Port Said<br />

Suez<br />

Damietta<br />

Behairah<br />

Kafr_El Sheikh<br />

Dakahlia<br />

Ismailia<br />

Menoufia<br />

Gharbia<br />

Sharqia<br />

Qalyubia<br />

Giza<br />

Fayoum<br />

Beni Suef<br />

Menia<br />

Assiut<br />

Suhag<br />

Qena<br />

Aswan<br />

Luxor<br />

Red Sea<br />

New Valley<br />

Matruh<br />

North S<strong>in</strong>ai<br />

South S<strong>in</strong>ai<br />

Total<br />

Source: CAPMAS (2010)<br />

Total waste<br />

(Ton/Day)<br />

44<br />

10000<br />

2700<br />

1014<br />

325<br />

1319<br />

911<br />

1361<br />

3718<br />

572<br />

897<br />

2960<br />

717<br />

1738<br />

9062<br />

706<br />

924<br />

785<br />

187<br />

98<br />

343<br />

364<br />

164<br />

395<br />

917<br />

260<br />

337<br />

287<br />

43061<br />

% of organic<br />

material<br />

50%<br />

65%<br />

34%<br />

50%<br />

70%<br />

60%<br />

80%<br />

70%<br />

75%<br />

65%<br />

65%<br />

70%<br />

70%<br />

60%<br />

60%<br />

65%<br />

50%<br />

75%<br />

80%<br />

90%<br />

8%<br />

50%<br />

20%<br />

25%<br />

40%<br />

20%<br />

75%


5. Potential of vermiculture as a means to produce<br />

fertilizers <strong>in</strong> <strong>Egypt</strong>.<br />

The concept of us<strong>in</strong>g earthworms to stabilize organic wastes (vermicompost<strong>in</strong>g) is not<br />

new, <strong>and</strong> is <strong>in</strong> use on vary<strong>in</strong>g scales <strong>in</strong> a large number of both developed <strong>and</strong><br />

underdeveloped countries. The capital cost of establish<strong>in</strong>g systems has proven to be a<br />

barrier to <strong>the</strong> large scale use of vermicompost<strong>in</strong>g, largely due to <strong>the</strong> high value placed<br />

on <strong>the</strong> worms <strong>the</strong>mselves.<br />

Three factors contribute to <strong>the</strong> economic susta<strong>in</strong>ability of <strong>the</strong> system. The first is <strong>the</strong><br />

provision of a susta<strong>in</strong>able waste stabilization process, a service which can generate<br />

ongo<strong>in</strong>g <strong>in</strong>come but which, at <strong>the</strong> moment, is provided at m<strong>in</strong>imal cost. The second is<br />

<strong>the</strong> creation of a saleable <strong>for</strong>m of soil conditioner <strong>in</strong> <strong>the</strong> <strong>for</strong>m of vermicast. The third<br />

is <strong>the</strong> production of prote<strong>in</strong> <strong>in</strong> <strong>the</strong> <strong>for</strong>m of worm-meal, a valuable source of am<strong>in</strong>o<br />

acids, vitam<strong>in</strong>s, long cha<strong>in</strong> fatty acids <strong>and</strong> m<strong>in</strong>erals <strong>for</strong> chicken <strong>and</strong> fish.<br />

Recycl<strong>in</strong>g of farm waste <strong>and</strong> compost<strong>in</strong>g is <strong>the</strong> o<strong>the</strong>r alternative to use m<strong>in</strong>eral<br />

fertilizers. The <strong>in</strong>crease <strong>in</strong> us<strong>in</strong>g compost <strong>in</strong> conventional agricultural will be coupled<br />

by a decrease <strong>in</strong> fertilizers usage <strong>and</strong> will result <strong>in</strong> higher quality production <strong>and</strong> less<br />

pollution hazards.<br />

Organic agriculture could be one of <strong>the</strong> important options that have a good<br />

opportunity <strong>in</strong> a wide zone of <strong>the</strong> newly reclaimed l<strong>and</strong>s <strong>in</strong> <strong>Egypt</strong>. Wider production<br />

of organic material will <strong>in</strong>crease <strong>the</strong> opportunities of more growers to jo<strong>in</strong> <strong>the</strong> organic<br />

farm<strong>in</strong>g.<br />

This chapter sheds <strong>the</strong> light on <strong>the</strong> fertilizer needs <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> potentiality of us<strong>in</strong>g<br />

vermicompost as a fertilizer <strong>in</strong> <strong>Egypt</strong>, especially <strong>for</strong> organic farm<strong>in</strong>g.<br />

5.1. Fertilizer use <strong>in</strong> <strong>Egypt</strong><br />

Application of fertilizers <strong>for</strong> grow<strong>in</strong>g crops is a rout<strong>in</strong>e operation <strong>in</strong> modern<br />

agriculture <strong>and</strong> one of <strong>the</strong> essential requirements <strong>for</strong> a high quantity <strong>and</strong> quality yield<br />

under extensive agricultural systems. Fertilizers are primary <strong>in</strong>put <strong>in</strong> extensive<br />

agricultural systems, but <strong>the</strong>y are considered as one of <strong>the</strong> important sources of air,<br />

water <strong>and</strong> soil pollution as well as greenhouse gases (greenhouse gases) of climate<br />

change.<br />

<strong>Egypt</strong> has a long history of us<strong>in</strong>g m<strong>in</strong>eral fertilizers. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, excessive<br />

amounts of soluble salts <strong>in</strong> <strong>the</strong> soil can prevent or delay seed germ<strong>in</strong>ation, kill or<br />

seriously retard plant growth, <strong>and</strong> possibly render soils <strong>and</strong> groundwater unusable.<br />

The degree of environmental impacts can depend on <strong>the</strong> fertilizer application method.<br />

The <strong>Egypt</strong>ian fertilizers first production was from about 75 years ago. Now, <strong>Egypt</strong> is<br />

ranked as one of <strong>the</strong> countries that are highly consum<strong>in</strong>g fertilizers <strong>in</strong> agricultural<br />

activities. The total production quantity of fertilizers is approximately reaches to 2<br />

million Mt, 32% of <strong>the</strong> total production is exported. Excessive use of such chemical<br />

components have a harmful effect on <strong>the</strong> <strong>Egypt</strong>ian environment <strong>and</strong> human health,<br />

45


which needs to f<strong>in</strong>d o<strong>the</strong>r alternatives such as, organic agriculture that could be one of<br />

<strong>the</strong> important options that have a good opportunity <strong>in</strong> a wide zone of <strong>the</strong> newly<br />

reclaimed l<strong>and</strong>s <strong>in</strong> <strong>Egypt</strong>. Moreover, recycl<strong>in</strong>g of farm waste <strong>and</strong> compost<strong>in</strong>g is<br />

ano<strong>the</strong>r alternative <strong>for</strong> renew<strong>in</strong>g soil fertility that has very low organic content<br />

(Table.5.1). Harvest<strong>in</strong>g <strong>the</strong> fruits or gra<strong>in</strong>s, which is a small proportion of a whole<br />

plant system, <strong>and</strong> return<strong>in</strong>g <strong>the</strong> rema<strong>in</strong><strong>in</strong>g plant residues after compost<strong>in</strong>g back to <strong>the</strong><br />

soil will result <strong>in</strong> a m<strong>in</strong>imum need <strong>for</strong> additional m<strong>in</strong>erals. Substitut<strong>in</strong>g any quantity<br />

of chemical fertilizers will result <strong>in</strong> a cleaner production <strong>and</strong> environment, as well as<br />

less emissions of greenhouse gases, <strong>and</strong> consequently <strong>the</strong> organic farm<strong>in</strong>g growers<br />

can get substituted through <strong>the</strong> clean development mechanism (CDM) of Kyoto<br />

protocol, which will be discussed <strong>in</strong> more details <strong>in</strong> a separate chapter later.<br />

Table 5.1. Physical <strong>and</strong> chemical analysis of various soil types.<br />

Item<br />

North<br />

Delta<br />

South<br />

Delta<br />

46<br />

Middle &<br />

Upper<br />

<strong>Egypt</strong><br />

<strong>East</strong> Delta West Delta<br />

Soil texture Clayey Clayey Loamy clay S<strong>and</strong>y Calcareous<br />

pH (1:2.5) 7.9-8.5 7.8-8.2 7.7-8.0 7.6-7.9 7.7-8.1<br />

Percent total soluble salts 0.2-0.5 0.2-0.4 0.1-0.5 0.1-0.6 0.2-0.6<br />

Percent calcium carbonate 2.6-4.4 2.0-3.1 2.6-5.3 1.0-5.1 11.0-30.0<br />

Percent organic matter 1.9-2.6 1.8-2.8 1.5-2.7 0.35-0.8 0.7-1.5<br />

Total soluble N (ppm) 25-50 30-60 15-40 10 – 20 10 -30<br />

ppm available P (Olsen) 5.4 -10 3.5-15.0 2.5-16 2-5.0 1.5-10.5<br />

ppm available K (ammonium<br />

acetate)<br />

250-500 300-550 280-700 105-350 100-300<br />

Available Zn (DTPA) (ppm) 0.5-4.0 0.6-6.0 0.5-3.9 0.6-1.2 0.5-1.2<br />

Available Fe (DTPA) (ppm) 20.8-63.4 19.0-27.4 12.4-40.8 6.7-16.4 12 - 18<br />

Available Mn (DTPA) (ppm) 13.1-45 11.2-37.2 8.2-51.6 3-16.7 10 - 20<br />

Source: <strong>FAO</strong> (2005).<br />

5.2. Fertilizer statistics<br />

The dem<strong>and</strong> <strong>for</strong> food <strong>and</strong> o<strong>the</strong>r agricultural commodities is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> <strong>Egypt</strong> due to<br />

<strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> population <strong>and</strong> improvements <strong>in</strong> liv<strong>in</strong>g st<strong>and</strong>ards. Ef<strong>for</strong>ts cont<strong>in</strong>ue<br />

to improve crop productivity <strong>and</strong> quality. Appropriate fertilization is one of <strong>the</strong> most<br />

important agricultural practices <strong>for</strong> achiev<strong>in</strong>g <strong>the</strong> agricultural improvement (<strong>FAO</strong>,<br />

2005).<br />

The ma<strong>in</strong> commercial types of fertilizers used <strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> percentage of active<br />

<strong>in</strong>gredients are listed <strong>in</strong> Table 5.2.


Table 5.2. The ma<strong>in</strong> types of fertilizers used <strong>in</strong> <strong>Egypt</strong><br />

Element Fertilizer<br />

Nitrogen - urea (46.5 percent N)<br />

- ammonium nitrate (33.5 percent N)<br />

- ammonium sulphate (20.6 percent N)<br />

- calcium nitrate (15.5 percent N)<br />

Phosphate - s<strong>in</strong>gle superphosphate (15 percent P 2 O 5 )<br />

- concentrated superphosphate (37 percent P 2 O 5 )<br />

Potassium - potassium sulphate (48 to 50 percent K 2 O)<br />

Mixed <strong>and</strong><br />

compound<br />

fertilizers<br />

Source: <strong>FAO</strong> (2005).<br />

- potassium chloride (50 to 60 percent K 2 O)<br />

-N, P, K, Fe, Mn, Zn <strong>and</strong>/or Cu <strong>in</strong> different <strong>for</strong>mulations <strong>for</strong><br />

ei<strong>the</strong>r soil or foliar application. The micronutrient may be <strong>in</strong><br />

ei<strong>the</strong>r m<strong>in</strong>eral or chelated <strong>for</strong>m.<br />

The improvement <strong>in</strong> fertilizers production is achieved through <strong>the</strong> last decades. The<br />

total production quantity of fertilizers is approximately reaches to 2 million Mt, 32%<br />

of <strong>the</strong> total production is exported. The rema<strong>in</strong><strong>in</strong>g quantity of production after<br />

export<strong>in</strong>g is less than <strong>the</strong> dem<strong>and</strong> quantity by about 43%. There<strong>for</strong>e, <strong>Egypt</strong><br />

compensates <strong>the</strong> shortage <strong>in</strong> <strong>the</strong> dem<strong>and</strong>s by import<strong>in</strong>g fertilizers by about 43% of <strong>the</strong><br />

total consumption. Figure (5.1.) illustrates <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g trend of fertilizers<br />

production <strong>and</strong> export. This <strong>in</strong>crease is ma<strong>in</strong>ly due to <strong>the</strong> rapid agricultural horizontal<br />

<strong>and</strong> vertical expansion.<br />

1000 tonnes<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

2002 2003 2004 2005 2006 2007 2008<br />

Production Import Export<br />

Figure 5.1.Production, imports <strong>and</strong> exports (1000 tonnes of nutrients) trends of<br />

fertilizers <strong>in</strong> <strong>Egypt</strong><br />

Source: <strong>FAO</strong> ( 2010).<br />

47


The latest fertilizers consumption is shown <strong>in</strong> Figure (5.2) <strong>and</strong> illustrates that<br />

phosphorus <strong>and</strong> nitrogen fertilizers are <strong>the</strong> highest consumed type of fertilizers under<br />

<strong>Egypt</strong>ian conditions. The most recent <strong>FAO</strong> statistics of 2010 <strong>in</strong>dicated that <strong>the</strong>re is an<br />

<strong>in</strong>crease <strong>in</strong> nitrogen fertilizer consumption <strong>for</strong> 2008 (1721105 ton N) <strong>and</strong> phosphorus<br />

(229911 tons). This <strong>in</strong>crease reached 60 <strong>and</strong> 61% <strong>in</strong> 2008 compared to 2002 <strong>for</strong><br />

nitrogen <strong>and</strong> phosphorus, respectively.<br />

In addition, <strong>the</strong> cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> fertilizers consumption is obvious <strong>and</strong><br />

additional <strong>in</strong>crease <strong>in</strong> fertilizer dem<strong>and</strong> is expected <strong>in</strong> <strong>the</strong> next few years.<br />

1000 tonnes N<br />

2000<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Consumption <strong>in</strong> nutrients (tonnes of nutrients)<br />

2002 2003 2004 2005 2006 2007 2008<br />

N P K<br />

Figure 5.2. Nitrogen, phosphate, potassium <strong>and</strong> total fertilizers consumption <strong>in</strong> <strong>Egypt</strong>.<br />

Source: <strong>FAO</strong> (2010).<br />

5.3. Vermicompost<strong>in</strong>g as fertilizers <strong>in</strong> <strong>Egypt</strong><br />

The production of consistently high-quality vermicompost is especially important to<br />

growers of high-value crops. The <strong>in</strong>fluence of production factors, such as <strong>the</strong><br />

variability <strong>in</strong> <strong>the</strong> characteristics of <strong>the</strong> organic feedstocks, <strong>the</strong> length of time of<br />

vermicompost<strong>in</strong>g, <strong>and</strong> <strong>the</strong> various parameters used as maturity <strong>in</strong>dicators, are<br />

essential aspects to be considered <strong>in</strong> develop<strong>in</strong>g guidel<strong>in</strong>es <strong>for</strong> assess<strong>in</strong>g <strong>the</strong> quality of<br />

vermicompost. The vermicompost<strong>in</strong>g <strong>in</strong>dustry anticipates a need <strong>for</strong> compost quality<br />

<strong>in</strong>dicators as <strong>the</strong> production, utilization <strong>and</strong> market<strong>in</strong>g of vermicompost exp<strong>and</strong>s.<br />

Various organic wastes tested <strong>in</strong> past as feed material <strong>for</strong> different species of<br />

earthworms <strong>in</strong>clude sewage sludge, paper mill <strong>in</strong>dustry sludge, water hyac<strong>in</strong>th, paper<br />

waste, crop residues, cattle manure, etc.<br />

Many studies were conducted <strong>in</strong> order to evaluate vermicompost<strong>in</strong>g from various<br />

waste sources as follows:<br />

48<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

1000 tonnes P & K


5.3.1. Urban waste vermicompost<strong>in</strong>g<br />

Home compost<strong>in</strong>g is a tradition <strong>in</strong> many countries, <strong>and</strong> is recommended as an<br />

important waste management option <strong>in</strong> <strong>the</strong> European Union policy. Advantages are<br />

that <strong>the</strong> waste does not have to be transported <strong>and</strong> that home gardens are provided<br />

with nutrients <strong>and</strong> humus. Fur<strong>the</strong>rmore, it has an educational importance <strong>in</strong> improv<strong>in</strong>g<br />

environmental awareness. Limit<strong>in</strong>g conditions to its adoption are <strong>the</strong> availability of<br />

space <strong>for</strong> compost<strong>in</strong>g <strong>and</strong> compost application, <strong>and</strong> <strong>the</strong> lack of knowledge as to <strong>the</strong><br />

correct compost<strong>in</strong>g procedure. This <strong>in</strong>cludes <strong>the</strong> selection of substrates that are<br />

suitable <strong>for</strong> home compost<strong>in</strong>g <strong>and</strong> <strong>the</strong> provision of suitable process conditions.<br />

In a city like Cairo, <strong>the</strong>re is a possibility of produc<strong>in</strong>g vermicompost from <strong>in</strong>dividual<br />

houses. Hav<strong>in</strong>g <strong>the</strong> suitable amount of earthworms <strong>in</strong> a double basket system with a<br />

per<strong>for</strong>ated one <strong>in</strong>side, organic wastes could be vermicomposted without any odors or<br />

side annoyance. Although <strong>the</strong> system is not widely established, but with <strong>the</strong> proper<br />

awareness <strong>and</strong> public support could be implemented. This could both create an<br />

<strong>in</strong>come to <strong>the</strong> poor families, <strong>and</strong> produce considerable amount of vermicompost that<br />

goes directly to agricultural activities. In addition, it has <strong>the</strong> follow<strong>in</strong>g advantages:<br />

Saves money <strong>and</strong> <strong>the</strong> environment<br />

It reduces household garbage disposal costs;<br />

It produces less odor <strong>and</strong> attracts fewer pests than putt<strong>in</strong>g food wastes <strong>in</strong>to a<br />

garbage conta<strong>in</strong>er;<br />

It saves <strong>the</strong> water <strong>and</strong> electricity that kitchen s<strong>in</strong>k garbage disposal units<br />

consume;<br />

It produces a free, high-quality soil amendment (compost);<br />

It requires little space, labor, or ma<strong>in</strong>tenance;<br />

It spawns free worms <strong>for</strong> fish<strong>in</strong>g.<br />

Several options <strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> Zabbaleen <strong>in</strong>to <strong>the</strong> <strong>in</strong>ternational companies‟<br />

contracts were explored dur<strong>in</strong>g <strong>in</strong>terviews with staff members at CID, rais<strong>in</strong>g <strong>the</strong><br />

issue of local-global confrontation <strong>and</strong> <strong>the</strong> possible contribution of a private–public<br />

partnership. The Zabbaleen could act as sub-contractors, as <strong>the</strong>y implement a<br />

“segregation system”, separat<strong>in</strong>g organic from non-organic waste. They could<br />

cont<strong>in</strong>ue to collect household waste while medical <strong>and</strong> <strong>in</strong>dustrial waste <strong>and</strong> l<strong>and</strong>fill<br />

management could be h<strong>and</strong>led by mult<strong>in</strong>ational companies. Transfer stations could be<br />

established where a major proportion of non-organic waste could be recovered <strong>and</strong><br />

directed to exist<strong>in</strong>g traders. The Zabbaleen could receive <strong>in</strong>organic waste from<br />

companies as <strong>in</strong>put to <strong>the</strong>ir recycl<strong>in</strong>g bus<strong>in</strong>esses, as small communitybased<br />

compost<strong>in</strong>g facilities are established. In such ways <strong>the</strong> traditional <strong>in</strong><strong>for</strong>mal Zabbaleen<br />

system could be <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> new privatized large-scale waste collection system<br />

to <strong>the</strong> mutual benefit of both sides. Despite such suggestions, recent developments<br />

have demonstrated <strong>the</strong> unlikelihood of fruitful local–global partnerships. Instead,<br />

<strong>in</strong>ternational companies favour tra<strong>in</strong><strong>in</strong>g <strong>the</strong> Zabbaleen as waged employees, while<br />

allow<strong>in</strong>g <strong>the</strong>m to search l<strong>and</strong>fill sites <strong>for</strong> organic waste <strong>for</strong> <strong>the</strong>ir pig-rear<strong>in</strong>g activities<br />

(Fahmi, 2005).<br />

49


5.3.2. Vermicompost<strong>in</strong>g of agricultural wastes<br />

Vermicompost<strong>in</strong>g of crop residues <strong>and</strong> cattle shed wastes can not only produce a<br />

value-added product (vermicompost<strong>in</strong>g) but at <strong>the</strong> same time acts as best culture<br />

medium <strong>for</strong> large-scale production of earthworms.<br />

The compost<strong>in</strong>g ability <strong>and</strong> growth per<strong>for</strong>mance of E. eugeniae were evaluated by<br />

us<strong>in</strong>g a variety of comb<strong>in</strong>ations of crop residues <strong>and</strong> cattle dung, under laboratory<br />

conditions. The best results <strong>in</strong> terms of nutrient enhancement <strong>in</strong> <strong>the</strong> end product were<br />

recorded <strong>in</strong> vermicomposted beds as compared to experimental compost<strong>in</strong>g without<br />

worms. Moreover, vermicompost showed higher amounts of total nitrogen, available<br />

phosphorous, exchangeable potassium <strong>and</strong> calcium content. The ready end product<br />

showed relatively lower C:N ratio <strong>and</strong> comparatively was a more stabilized product.<br />

A considerable amount of worm biomass <strong>and</strong> cocoons were produced <strong>in</strong> different<br />

treatments. However, quality of <strong>the</strong> feed stuff, used <strong>in</strong> this study was of a primary<br />

importance, determ<strong>in</strong><strong>in</strong>g <strong>the</strong> earthworm‟s growth parameter, e.g. <strong>in</strong>dividual biomass,<br />

cocoon numbers, growth rate. The results suggest that crop residues can be used as an<br />

efficient culture media <strong>for</strong> large-scale production of E. eugeniae <strong>for</strong> susta<strong>in</strong>able l<strong>and</strong><br />

restoration practices at low-<strong>in</strong>put basis (Suthar, 2008).<br />

5.3.3. Vermicomposts effect on plant growth<br />

It is well established that earthworms have beneficial physical, biological <strong>and</strong><br />

chemical effects on soils <strong>and</strong> can <strong>in</strong>crease plant growth <strong>and</strong> crop yields <strong>in</strong> both natural<br />

<strong>and</strong> managed ecosystems. These beneficial effects have been attributed to<br />

improvements <strong>in</strong> soil properties <strong>and</strong> structure, to greater availability of m<strong>in</strong>eral<br />

nutrients to plants, <strong>and</strong> to biologically active metabolites act<strong>in</strong>g as plant growth<br />

regulators.<br />

Earthworm (Eisenia foetida) compost strongly affects soil fertility by <strong>in</strong>creas<strong>in</strong>g<br />

availability of nutrients, improv<strong>in</strong>g soil structure <strong>and</strong> water hold<strong>in</strong>g capacity. It has<br />

been suggested that earthworms can <strong>in</strong>crease <strong>the</strong> velocity of decomposition of organic<br />

residues <strong>and</strong> also produce several bioactive humic substances. These substances are<br />

endowed with hormone like activity that improves plant nutrition <strong>and</strong> growth. Humic<br />

acids (HAs) comprise one of <strong>the</strong> major fractions of humic substances.<br />

An experiment was conducted to p<strong>in</strong>po<strong>in</strong>t precisely a biological mechanism by which<br />

vermicomposts can <strong>in</strong>fluence plant growth positively <strong>and</strong> produce significant<br />

<strong>in</strong>creases <strong>in</strong> overall plant productivity, <strong>in</strong>dependent of nutrient uptake. Mix<strong>in</strong>g <strong>the</strong><br />

conta<strong>in</strong>er media with <strong>in</strong>creas<strong>in</strong>g concentrations of vermicompost-derived humic acids<br />

<strong>in</strong>creased plant growth, <strong>and</strong> larger concentrations usually reduced growth, <strong>in</strong> a pattern<br />

similar to <strong>the</strong> plant growth responses observed after <strong>in</strong>corporation of vermicomposts<br />

<strong>in</strong>to conta<strong>in</strong>er media with all needed m<strong>in</strong>eral nutrition. Plant growth was <strong>in</strong>creased by<br />

treatments of <strong>the</strong> plants with 50–500 mg/kg humic acids, but decreased significantly<br />

when <strong>the</strong> concentrations of humic acids <strong>in</strong> <strong>the</strong> conta<strong>in</strong>er medium exceeded 500–1000<br />

mg/kg. Although some of <strong>the</strong> growth enhancement by humic acids could have been<br />

partially due to <strong>in</strong>creased rates of nitrogen uptake by <strong>the</strong> plants, most of <strong>the</strong> results<br />

reported exceed those that would result from such a mechanism, very considerably.<br />

However, this does not exclude <strong>the</strong> possibility of o<strong>the</strong>r contributory mechanisms by<br />

50


which humic acids could affect plant growth. There is a fur<strong>the</strong>r alternative explanation<br />

<strong>for</strong> <strong>the</strong> hormone-like mode of action of humic acids <strong>in</strong> <strong>the</strong>se experiments. In our<br />

laboratory, we have extracted plant growth regulators such as <strong>in</strong>dole acetic acid,<br />

gibberell<strong>in</strong>s <strong>and</strong> cytok<strong>in</strong><strong>in</strong>s from vermicomposts <strong>in</strong> aqueous solution <strong>and</strong><br />

demonstrated that <strong>the</strong>se can have significant effects on plant growth. Such substances<br />

may be relatively transient <strong>in</strong> soils. However, <strong>the</strong>re seems a strong possibility that<br />

such plant growth regulators which are relatively transient may become adsorbed on<br />

to humates <strong>and</strong> act <strong>in</strong> conjunction with <strong>the</strong>m to <strong>in</strong>fluence plant growth (Atiyeh et al.,<br />

2002).<br />

Vermicompost has been promoted as a viable alternative conta<strong>in</strong>er media component<br />

<strong>for</strong> <strong>the</strong> horticulture <strong>in</strong>dustry. The addition of vermicompost <strong>in</strong> media mixes of 10%<br />

<strong>and</strong> 20% volume had positive effects on plant growth. The greatest growth<br />

enhancement was on seedl<strong>in</strong>gs dur<strong>in</strong>g <strong>the</strong> plug stage of <strong>the</strong> bedd<strong>in</strong>g plant crop cycle.<br />

Growth <strong>in</strong>creases up to 40% were observed <strong>in</strong> dry shoot tissue <strong>and</strong> leaf area of<br />

marigold, tomato <strong>and</strong> green pepper. The <strong>in</strong>creased vigor exhibited was also<br />

ma<strong>in</strong>ta<strong>in</strong>ed when <strong>the</strong> seedl<strong>in</strong>g plugs were transplanted <strong>in</strong>to larger conta<strong>in</strong>ers with<br />

st<strong>and</strong>ard commercial pott<strong>in</strong>g substrates without vermicompost. Additionally, <strong>the</strong>re<br />

were benefits apparently result<strong>in</strong>g from <strong>the</strong> nutritional content of <strong>the</strong> vermicompost.<br />

All of <strong>the</strong> plugs were produced without <strong>the</strong> <strong>in</strong>put of additional fertilization. The<br />

potential exists <strong>for</strong> growers to use vermicompost-amended commercial pott<strong>in</strong>g<br />

substrates dur<strong>in</strong>g <strong>the</strong> plug production stage without <strong>the</strong> use of additional fertilizer<br />

(Bachman <strong>and</strong> Metzger, 2008).<br />

5.4. Potentiality of vermicompost as a source of fertilizer <strong>in</strong> <strong>Egypt</strong><br />

Consider<strong>in</strong>g urban wastes as mentioned <strong>in</strong> <strong>the</strong> previous chapter <strong>for</strong> <strong>the</strong> year 2005<br />

ranged from 15 to 16 million tons, compostable matter <strong>in</strong> <strong>the</strong> wastes as 50-60% <strong>and</strong><br />

average collection efficiency as 70%. <strong>Egypt</strong> has an estimated potential of produc<strong>in</strong>g<br />

from urban wastes about 1.99 million tons of compost each year conta<strong>in</strong><strong>in</strong>g about<br />

21,000 ton N, 5,000 ton P, <strong>and</strong> 10,640 ton K (Table 5.2). Inappropriate solid waste<br />

management <strong>and</strong> production of poor quality of composts are ma<strong>in</strong> constra<strong>in</strong>t <strong>in</strong><br />

exploit<strong>in</strong>g such large amount plant nutrients <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g crop productivity.<br />

On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, agricultural wastes <strong>in</strong> <strong>Egypt</strong> could produce almost four times<br />

compost material compared to urban wastes, assum<strong>in</strong>g that 100% of it is organic<br />

material <strong>and</strong> all of it is accessible to <strong>the</strong> grower. There are o<strong>the</strong>r advantages of this<br />

waste, which are <strong>the</strong> availability of space <strong>and</strong> directly l<strong>in</strong>ked to <strong>the</strong> farm. This<br />

m<strong>in</strong>imizes <strong>the</strong> need of collection <strong>and</strong> transportation. The amounts of N, P <strong>and</strong> K that<br />

could be produced from agricultural wastes are almost four folds of that of <strong>the</strong> urban<br />

wastes.<br />

From both sources, <strong>the</strong> total composted material is almost 10 million tons, conta<strong>in</strong><strong>in</strong>g<br />

about 10 thous<strong>and</strong> tons of nitrogen, 20 thous<strong>and</strong> tons of phosphorus, <strong>and</strong> 41 thous<strong>and</strong><br />

tons of potassium. Nitrogen fertilizer obta<strong>in</strong>ed from organic wastes could save up to<br />

5.9% of that consumed <strong>in</strong> 2008; while more than 10% of phosphorus fertilizers<br />

consumed <strong>in</strong> 2008 could be saved.<br />

51


Table 5.3. Potential nutrients that could be obta<strong>in</strong>ed from urban <strong>and</strong> agriculture<br />

wastes <strong>in</strong> <strong>Egypt</strong>*<br />

Waste Ton/year<br />

Fraction<br />

organic<br />

Fraction<br />

efficiency<br />

collection<br />

Fraction<br />

of waste<br />

to be<br />

compost Quantity, Ton Type<br />

15500000 0.55 0.70 0.33 1,988,968 Compost<br />

20,815 N<br />

Urban<br />

5,088 P<br />

10,639 K<br />

23000000 1.00 1.00 0.33 7,665,900 Compost<br />

Agriculture<br />

80,225<br />

19,610<br />

N<br />

P<br />

41,004 K<br />

9,654,868 Compost<br />

Total<br />

101,039<br />

24,698<br />

N<br />

P<br />

51,642 K<br />

*Estimated as <strong>the</strong> assumptions of fractions <strong>and</strong> fixed percent of N, P <strong>and</strong> K <strong>in</strong> <strong>the</strong><br />

compost.<br />

Source: CAPMAS (2010)<br />

52


6. Current animal feed prote<strong>in</strong> supplements production<br />

<strong>in</strong> <strong>Egypt</strong> <strong>and</strong> <strong>the</strong> potential to substitute desiccated<br />

compost worms as an animal feed supplement or use<br />

of live worms <strong>in</strong> aquaculture <strong>in</strong>dustries.<br />

Production of vermicompost <strong>and</strong> vermiculture is covered <strong>in</strong> previous chapters. In<br />

order to utilize <strong>the</strong> products <strong>and</strong> byproducts of <strong>the</strong> <strong>in</strong>dustry, clear end-users should be<br />

def<strong>in</strong>ed <strong>in</strong> order to facilitate <strong>the</strong> development of <strong>the</strong> <strong>in</strong>dustry. One important possible<br />

consumption cha<strong>in</strong> is <strong>the</strong> utilization <strong>in</strong> animal <strong>and</strong> fish feed prote<strong>in</strong> supplement. This<br />

chapter h<strong>and</strong>les such possibilities.<br />

6.1. Animal <strong>and</strong> aquaculture feed<br />

The basic reason <strong>for</strong> <strong>the</strong> poor per<strong>for</strong>mance of livestock <strong>in</strong> develop<strong>in</strong>g countries is <strong>the</strong><br />

seasonal <strong>in</strong>adequacy of feed, both <strong>in</strong> quantity <strong>and</strong> quality (Makkar, 2002). These<br />

deficiencies have rarely been corrected by conservation <strong>and</strong>, or, supplementation,<br />

often <strong>for</strong> lack of <strong>in</strong>frastructure, technical know-how, poor management, etc. In<br />

addition, many feed resources that could have a major impact on livestock production<br />

cont<strong>in</strong>ue to be unused, undeveloped or poorly utilized. A critical factor <strong>in</strong> this regard<br />

has been <strong>the</strong> lack of proper underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> nutritional pr<strong>in</strong>ciples underly<strong>in</strong>g <strong>the</strong>ir<br />

utilization.<br />

Poultry waste has been successfully used <strong>in</strong> rum<strong>in</strong>ant rations <strong>in</strong> <strong>Egypt</strong>. The total<br />

bacterial count was considerably lower <strong>in</strong> sun dried poultry waste compared to <strong>the</strong><br />

oven dried waste. Aflatox<strong>in</strong>s were not detectable <strong>in</strong> <strong>the</strong> concentrate mixtures<br />

conta<strong>in</strong><strong>in</strong>g poultry litter. Both feed <strong>in</strong>take <strong>and</strong> milk production <strong>in</strong> ewes was not<br />

affected by <strong>the</strong> <strong>in</strong>clusion of 14% poultry waste as a dietary supplement, suggest<strong>in</strong>g<br />

that cottonseed meal <strong>and</strong> o<strong>the</strong>r high prote<strong>in</strong> feed <strong>in</strong>gredients could be, at least partially<br />

replaced, by poultry waste without any loss <strong>in</strong> productivity. The weight <strong>and</strong> age at<br />

puberty of lambs fed a ration conta<strong>in</strong><strong>in</strong>g 17% poultry waste was similar to those given<br />

a ration without any poultry waste. Similarly, poultry waste up to 20% <strong>in</strong> <strong>the</strong> diet had<br />

no detrimental effect on growth <strong>in</strong> cattle <strong>and</strong> buffaloes <strong>and</strong> on <strong>the</strong> reproductive<br />

per<strong>for</strong>mance <strong>in</strong> buffalo heifers evaluated. The <strong>in</strong>clusion of 15% poultry waste <strong>in</strong><br />

mixed concentrate feed decreased <strong>the</strong> cost of feed by about 10% (Makkar, 2002).<br />

It is an ancient practice <strong>in</strong> Ch<strong>in</strong>a to feed earthworms to livestock <strong>and</strong> poultry, i.e. to<br />

dig earthworms from fields to feed chickens <strong>and</strong> ducks or to graze chicken <strong>and</strong> ducks<br />

to feed on earthworms at ease. Earthworms are rich <strong>in</strong> nutrients with high prote<strong>in</strong>.<br />

Accord<strong>in</strong>g to measurements, <strong>the</strong> crude prote<strong>in</strong> <strong>in</strong> dry earthworms reaches about 70%,<br />

while <strong>in</strong> wet earthworms about 10-20%. The am<strong>in</strong>o acids of earthworm prote<strong>in</strong> are<br />

complete, especially <strong>the</strong> contents of Glutamic acid, Leuc<strong>in</strong>e <strong>and</strong> Lys<strong>in</strong>e, among which<br />

Arg<strong>in</strong><strong>in</strong>e is higher than fish meal, <strong>and</strong> Tryptophan is 4 times higher than <strong>in</strong> blood<br />

powder, <strong>and</strong> 7 times higher than <strong>in</strong> cow liver. Earthworms are rich <strong>in</strong> Vitam<strong>in</strong> A <strong>and</strong><br />

Vitam<strong>in</strong> B. There is 0.25mg of Vitam<strong>in</strong> B1 <strong>and</strong> 2.3mg of Vitam<strong>in</strong> B2 <strong>in</strong> each 100 g of<br />

earthworms. Vitam<strong>in</strong> D accounts <strong>for</strong> 0.04%-0.073% of earthworms‟ wet weight. In<br />

view of <strong>the</strong> great effects of El Niño, fish meal from Peru can not meet <strong>the</strong> market<br />

53


dem<strong>and</strong> <strong>in</strong> <strong>the</strong> world. Thus earthworms are <strong>the</strong> best substitute with <strong>the</strong> functions of<br />

supplements, anti-diseases <strong>and</strong> allurement. Earthworms are used as additive to<br />

produce pellet feeds <strong>in</strong> <strong>the</strong> USA, Canada <strong>and</strong> Japan, which account <strong>for</strong> 50% of <strong>the</strong><br />

pellet feed market. However, when earthworms are used as feeds, one must note that<br />

earthworms degrade quickly <strong>and</strong> should be processed with<strong>in</strong> several hours by hot<br />

w<strong>in</strong>d or freeze dry<strong>in</strong>g. In general earthworms conta<strong>in</strong> more pollutants than fish meal<br />

because it is hard to clean residues from <strong>the</strong> epidermis <strong>and</strong> seta of earthworms. Some<br />

people realize that it is better to feed earthworms <strong>in</strong> wet. For fowls, <strong>the</strong> earthworm<br />

amount could reach 50% <strong>and</strong> <strong>for</strong> swamp eel 100% (Kangm<strong>in</strong>, 2005).<br />

6.2. Worm meal<br />

Worm meal or verm<strong>in</strong>-meal is an excellent source of prote<strong>in</strong> <strong>and</strong> nutrients.<br />

Earthworms typically conta<strong>in</strong> over 80% moisture <strong>and</strong> can be fed directly to animals.<br />

To preserve <strong>the</strong> worms <strong>and</strong> process <strong>the</strong>m <strong>in</strong>to to a more convenient food <strong>the</strong>y can be<br />

dried <strong>and</strong> ground up <strong>in</strong>to worm meal.<br />

In addition to <strong>the</strong> prote<strong>in</strong>, worms are a valuable source of essential am<strong>in</strong>o acids <strong>and</strong><br />

vitam<strong>in</strong>s. The fats <strong>in</strong> worms are highly unsaturated <strong>and</strong> no additional antioxidants<br />

need to be added to <strong>the</strong> worm meal to preserve it.<br />

Worm meal may replace fish meal <strong>and</strong> meat <strong>and</strong> bone meal. Broilers fed with<br />

earthworm meal consumed 13% less feed <strong>for</strong> <strong>the</strong> same weight ga<strong>in</strong> than those fed<br />

with ord<strong>in</strong>ary broiler diet, but given live <strong>in</strong> earthworms matured 15 days earlier than<br />

<strong>the</strong> control group without earthworms (Hertrampf <strong>and</strong> Piedad-Pascual, 2000).<br />

Earthworms are <strong>the</strong> best bait <strong>for</strong> anglers. Pay attention to <strong>the</strong> palatability of various<br />

species of earthworms. It is said that Eisenia foetida can produce a substance fish do<br />

not like. In Australia <strong>the</strong>y culture 3-4 species of earthworms: red wiggler Lumbricus<br />

rubellus, Indian blue Perionyx excavatus, African earthworm Eudrilus eugeniae, <strong>and</strong><br />

Eisenia foetida. Table (6.1) shows <strong>the</strong> different composition of several earth worms.<br />

Different fish prefer different species of earthworms as bait, <strong>the</strong> palatability of<br />

earthworms is out of question. Table (6.2) shows <strong>the</strong> richness of verm<strong>in</strong> meal with<br />

essential am<strong>in</strong>o acids, while Table (6.3) demonstrate <strong>the</strong> macro <strong>and</strong> trace m<strong>in</strong>eral<br />

contents of freeze dried vermi meal (Eudrilus eugeniae).<br />

The prote<strong>in</strong> content of earthworms is complete, conta<strong>in</strong><strong>in</strong>g 8-9 essential am<strong>in</strong>o acids<br />

<strong>for</strong> human be<strong>in</strong>gs, <strong>in</strong>clud<strong>in</strong>g 9-10% tasty glutamic acid. Compared with o<strong>the</strong>r meat,<br />

<strong>the</strong> prote<strong>in</strong> of earthworms is higher than meat <strong>and</strong> <strong>the</strong> lipid, 2% lower than meat.<br />

From <strong>the</strong> view po<strong>in</strong>t of health, earthworms might be one of ideal food with high<br />

prote<strong>in</strong> <strong>and</strong> low lipid <strong>for</strong> human be<strong>in</strong>gs. In sou<strong>the</strong>rn Ch<strong>in</strong>a <strong>and</strong> Taiwan people used to<br />

eat earthworms. There are many dishes of earthworms: m<strong>in</strong>ce meat of earthworm as<br />

stuff<strong>in</strong>g <strong>for</strong> dumpl<strong>in</strong>gs to <strong>in</strong>crease delicacy <strong>and</strong> prevent it from go<strong>in</strong>g bad. It is said<br />

that spiced sauce from ROK has a big market <strong>in</strong> SEA. For human consumption a<br />

worm farm should use beer spent gra<strong>in</strong>s or mushroom spent substrate to feed<br />

earthworms. The Edible Fungi Scientific Center <strong>in</strong> Q<strong>in</strong>gyuan as well as Shanghai<br />

Academy of Agriculture has developed artificial logs which do not require pure<br />

hardwood chips. Each year Q<strong>in</strong>gyuan produces some 50,000 tons of used logs. This<br />

substrate of shiitake Lent<strong>in</strong>us edodes could also generate as much as 5,000 tons of<br />

54


earthworms <strong>and</strong> <strong>in</strong> turn can be processed to quality human food. It is said that <strong>the</strong>re<br />

are 200 k<strong>in</strong>ds of food from earthworms <strong>in</strong> <strong>the</strong> U.S.A (Kangm<strong>in</strong>, 2005). Earthworms<br />

are <strong>the</strong> future of seafood. Not yet, but <strong>the</strong>y will be (Sh<strong>in</strong>er , 2009).<br />

Table 6.1. Chemical composition % of various worm meal (<strong>in</strong> dry matters)<br />

Eisenia Lumbricus<br />

foetida terrestils<br />

Moisture<br />

83.3 81.1<br />

Crude prot<strong>in</strong>e 57.4 56.1<br />

Crude fat 13.2 2.1<br />

Ash<br />

10.8 28.7<br />

Crude fiber 0.7 -<br />

N-free extract 18.2 13.1<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascua l(2000).<br />

55<br />

Allolobophora<br />

longa<br />

78.3<br />

50.4<br />

1.4<br />

35.2<br />

-<br />

12.9<br />

Table 6.2. Essential am<strong>in</strong>o acid profile of vermi meals (g/16 gN)<br />

Eisenia Lumbricus<br />

foetida terrestils<br />

Arg<strong>in</strong><strong>in</strong>e<br />

3.67 3.17<br />

Histid<strong>in</strong>e<br />

1.39 1.38<br />

Isoleuc<strong>in</strong>e 2.85 2.20<br />

Leuc<strong>in</strong>e<br />

4.90 4.11<br />

Lys<strong>in</strong>e<br />

4.16 3.52<br />

Methion<strong>in</strong>e 0.83 1.11<br />

Phenylalan<strong>in</strong>e 2.65 2.02<br />

Theron<strong>in</strong>e 3.07 2.48<br />

Tryptophan 0.67 0.44<br />

Val<strong>in</strong>e<br />

3.11 2.30<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascua l( 2000).<br />

Allolobophora<br />

longa<br />

3.15<br />

1.01<br />

2.24<br />

3.57<br />

3.43<br />

0.5<br />

2.65<br />

2.11<br />

-<br />

2.46<br />

Neries sp. Eudrilus<br />

eugeniae<br />

-<br />

85.3<br />

47.0 56.4<br />

25.2 7.9<br />

6.6 13.1<br />

-0.6 5.9<br />

20.6 17.8<br />

Eudrilus<br />

eugeniae<br />

4.95<br />

1.58<br />

2.82<br />

5.22<br />

4.50<br />

1.04<br />

2.47<br />

3.22<br />

0.63<br />

3.39<br />

Table 6.3. Macro <strong>and</strong> trace m<strong>in</strong>eral contents of freeze dried vermi meal (Eudrilus<br />

eugeniae)<br />

Calcium<br />

Phosphorus<br />

Sodium<br />

Iron<br />

Z<strong>in</strong>c<br />

Copper<br />

Cadmium<br />

%<br />

%<br />

%<br />

mg/kg<br />

mg/kg<br />

mg/kg<br />

mg/kg<br />

Source: Hertrampf <strong>and</strong> Piedad-Pascual (2000).<br />

1.5<br />

0.9<br />

0.2<br />

100.0<br />

122.5<br />

7.8<br />

21.0<br />

The key to <strong>the</strong> multi-pronged success of earthworms as aquaculture fodder is <strong>the</strong>ir diet<br />

of organic wastes. L<strong>and</strong>-based pollution, such as fester<strong>in</strong>g animal manure, is an<br />

enormous problem <strong>for</strong> coastal fisheries impacted by runoff. Brita<strong>in</strong> alone produces 84<br />

megatons of cow manure, 9 megatons of pig waste <strong>and</strong> 5 megatons of chicken waste<br />

each year, much of which flows to <strong>the</strong> coast as runoff. This pollution is a significant<br />

contributor to <strong>the</strong> decl<strong>in</strong><strong>in</strong>g productivity of wild fish stocks, as fish struggle to cope<br />

with <strong>the</strong>ir heavily contam<strong>in</strong>ated environment. Earthworms solve this problem by<br />

convert<strong>in</strong>g l<strong>and</strong> animal wastes <strong>in</strong>to high-prote<strong>in</strong> aquaculture feed. Earthworms<br />

convert cow manure <strong>in</strong>to dry matter at a remarkable 10 percent clip, such that<br />

Brita<strong>in</strong>‟s 84 megatons of cow manure could produce 8.4 megatons of dehydrated


earthworms, deliver<strong>in</strong>g a prote<strong>in</strong> punch of 5.9 million tons. The recipe is<br />

uncomplicated: f<strong>in</strong>d crap, add worms, wait, <strong>the</strong>n harvest, dry <strong>and</strong> gr<strong>in</strong>d.<br />

The rock-solid implications of earthworms <strong>for</strong> aquaculture have already been verified.<br />

Two species of worms were fed to a group of trout, a classic <strong>in</strong>tensive aquaculture<br />

species, while ano<strong>the</strong>r group was fed commercial trout pellets made from fishmeal.<br />

The results were splendid: <strong>the</strong> earthworm-fed fish grew as well or better than <strong>the</strong>ir<br />

fishmeal-fed counterparts. Ano<strong>the</strong>r study <strong>in</strong>dicated <strong>the</strong> effectiveness of earthworm<br />

feed on tilapia aquaculture, f<strong>in</strong>d<strong>in</strong>g that tilapia actually grew better with earthworm<br />

supplements than with fishmeal.<br />

Us<strong>in</strong>g earthworms as fish feed presents a truly novel method <strong>for</strong> reduc<strong>in</strong>g <strong>the</strong> impact<br />

of aquaculture on mar<strong>in</strong>e ecosystems. The benefits are threefold. Earthworms eat<br />

pollut<strong>in</strong>g manure, improv<strong>in</strong>g water quality of coastal fisheries <strong>and</strong> aid<strong>in</strong>g <strong>in</strong> recovery<br />

from over-fish<strong>in</strong>g. Elim<strong>in</strong>at<strong>in</strong>g fishmeal from aquaculture diets will also significantly<br />

reduce overall stress on wild fisheries as well as allow <strong>for</strong> production cost control<br />

<strong>in</strong>dependent of <strong>the</strong> price of wild fish. Thirdly, <strong>and</strong> not <strong>in</strong>significantly, earthworms can<br />

be used <strong>in</strong> place of fishmeal to feed l<strong>and</strong> animals such as cows, pigs <strong>and</strong> chickens. At<br />

present, l<strong>and</strong> animal consumption accounts <strong>for</strong> a great deal of fishmeal <strong>in</strong>take, <strong>and</strong><br />

transition<strong>in</strong>g livestock to an earthworm diet will take huge pressure off wild fisheries.<br />

Earthworms are a triple-w<strong>in</strong> solution to <strong>in</strong>tensive aquacultures‟ appetite <strong>for</strong> fishmeal.<br />

The worms are by no means a silver bullet as <strong>the</strong>y cannot solve all of aquaculture‟s<br />

problems immediately. Pollution from <strong>in</strong>tensive crustacean aquaculture will rema<strong>in</strong> a<br />

serious threat to coastal habitats until <strong>the</strong> lagoons are ei<strong>the</strong>r moved <strong>in</strong>l<strong>and</strong> or farmed<br />

less <strong>in</strong>tensively. This is to say noth<strong>in</strong>g of mollusk aquaculture, a genu<strong>in</strong>e champion of<br />

susta<strong>in</strong>able prote<strong>in</strong> production.<br />

Earthworms, with an important high prote<strong>in</strong> component, are used to feed chickens,<br />

pigs, rabbits, <strong>and</strong> as a dietary supplement <strong>for</strong> ornamental fish or o<strong>the</strong>r fish species<br />

difficult to raise <strong>and</strong> Some authors claim that <strong>in</strong> breed<strong>in</strong>g of aquarium fish it is<br />

essential to use a variety of food.<br />

Vermicompost produced <strong>in</strong> ecological boxes can be used <strong>for</strong> feed<strong>in</strong>g plants <strong>and</strong> <strong>the</strong><br />

created biomass can be a highly nutritious food <strong>for</strong> animals, because it consists of 58–<br />

71% prote<strong>in</strong>, 2.3–9.0% fat depend<strong>in</strong>g on earthworm species <strong>and</strong> <strong>the</strong> way earthworms<br />

are fed with organic waste.<br />

6.3. Earthworms, <strong>the</strong> susta<strong>in</strong>able aquaculture feed of <strong>the</strong> future<br />

Aquaculture is a boom<strong>in</strong>g global <strong>in</strong>dustry: from 2002 to 2006, world aquaculture<br />

production <strong>in</strong>creased from 40.4 million metric tons to 51.7 million metric tons. Over a<br />

three-decade span from 1975 to 2005, aquaculture production grew tenfold. Dur<strong>in</strong>g<br />

this same span of time, however, wild capture fell from 93.2 to 92.0 million metric<br />

tons. The <strong>in</strong>herent exhaustibility of <strong>the</strong> oceans necessitates that economically efficient<br />

<strong>and</strong> environmentally responsible aquaculture fill <strong>the</strong> gap between supply <strong>and</strong> dem<strong>and</strong><br />

<strong>for</strong> f<strong>in</strong>fish <strong>and</strong> shellfish worldwide.<br />

56


Genetic contam<strong>in</strong>ation <strong>and</strong> pollution, both chemical <strong>and</strong> biological, are serious<br />

blemishes on <strong>the</strong> face of responsible aquaculture; however, <strong>the</strong> solution is simple.<br />

Float<strong>in</strong>g or l<strong>and</strong>-based solid-wall tanks, such as those already <strong>in</strong> use <strong>in</strong> British<br />

Columbia, elim<strong>in</strong>ate escapes altoge<strong>the</strong>r. Wastes <strong>and</strong> uneaten feed, all collected with<strong>in</strong><br />

<strong>the</strong> tank, are pumped through a filter, elim<strong>in</strong>at<strong>in</strong>g <strong>the</strong>ir respective eutrophy<strong>in</strong>g <strong>and</strong><br />

pollut<strong>in</strong>g effects. The real problem with status quo aquaculture isn‟t genetic<br />

contam<strong>in</strong>ation or pollution, but ra<strong>the</strong>r <strong>the</strong> <strong>in</strong>efficiency <strong>and</strong> un-susta<strong>in</strong>ability of<br />

fishmeal as used <strong>for</strong> fish feed.<br />

Carnivorous f<strong>in</strong>fish aquaculture, <strong>the</strong> type employed <strong>in</strong> salmon <strong>and</strong> tuna farm<strong>in</strong>g,<br />

typically depends on fishmeal, an oily paste made from ground fishes such as<br />

mackerel <strong>and</strong> sard<strong>in</strong>es, <strong>for</strong> feed. Each pound of farmed fish <strong>for</strong> human consumption<br />

dem<strong>and</strong>s many pounds of fishmeal throughout <strong>the</strong> farm<strong>in</strong>g process, present<strong>in</strong>g a<br />

serious barrier to <strong>the</strong> expansion of responsible aquaculture. Tilapia, a onetime d<strong>in</strong><strong>in</strong>g<br />

hall staple, is only 25 percent calorie efficient, mean<strong>in</strong>g that it takes four tons of<br />

fishmeal to grow only one ton of tilapia. Sard<strong>in</strong>es <strong>and</strong> mackerel serve as important<br />

sources of prote<strong>in</strong> worldwide <strong>and</strong> as <strong>the</strong> diet of larger, commercially valuable stocks.<br />

New sources of feed must be developed <strong>in</strong> order to facilitate <strong>in</strong>dustrial expansion <strong>and</strong><br />

ease aquaculture‟s stra<strong>in</strong> on <strong>the</strong> world‟s over-fished oceans.<br />

Organic manures if not decomposed completely be<strong>for</strong>e application <strong>in</strong> aquaculture<br />

pond may deteriorate <strong>the</strong> water quality as <strong>the</strong>y utilize oxygen dur<strong>in</strong>g decomposition.<br />

There<strong>for</strong>e, <strong>the</strong> amount of any organic manure to be added <strong>in</strong> <strong>the</strong> pond ma<strong>in</strong>ly depends<br />

upon its biological oxygen dem<strong>and</strong> (BOD), as <strong>the</strong>ir excessive use may cause severe<br />

dissolved oxygen depletion <strong>in</strong> <strong>the</strong> pond <strong>and</strong> results <strong>in</strong> production of toxic gases like<br />

CO2, H2S, NH3, etc., <strong>and</strong> can spread parasitic diseases.<br />

A study suggests higher potential of utiliz<strong>in</strong>g vermicompost as compared to cow dung<br />

<strong>and</strong> hence can be used more effectively <strong>for</strong> manur<strong>in</strong>g semi-<strong>in</strong>tensive carp culture<br />

ponds without affect<strong>in</strong>g <strong>the</strong> hydro biological parameters. In develop<strong>in</strong>g country like<br />

India, agriculture <strong>and</strong> livestock work <strong>in</strong> <strong>in</strong>tegration, where livestock waste (ma<strong>in</strong>ly<br />

cow dung) is <strong>the</strong> most commonly used organic manure <strong>in</strong> agriculture <strong>and</strong> aquaculture.<br />

Hence, <strong>the</strong> small scale on farm <strong>in</strong>tegration of vermicompost<strong>in</strong>g of livestock <strong>and</strong><br />

agriculture waste with <strong>the</strong> rural aquaculture (extensive/semi-<strong>in</strong>tensive) holds ample<br />

scope <strong>for</strong> develop<strong>in</strong>g economically <strong>and</strong> ecologically susta<strong>in</strong>able farm<strong>in</strong>g system <strong>for</strong><br />

<strong>the</strong> socio-economic upliftment of rural population <strong>in</strong> develop<strong>in</strong>g countries (Kaur <strong>and</strong><br />

Ansal, 2010).<br />

The research on Carassius auratus, showed that a 10% supplement of E. fetida<br />

earthworms <strong>in</strong> food, given to those fish, caused a doubl<strong>in</strong>g of <strong>the</strong>ir biomass. The<br />

research on P. reticulata, fed on earthworms only, also showed benefits. Compared to<br />

<strong>the</strong> group fed with Bio-vit, <strong>the</strong> fish were characterized by a larger number of broods<br />

<strong>and</strong> larger numbers of surviv<strong>in</strong>g fry. From this research it can be seen that E. fetida is<br />

a highly nutritious food that is eagerly eaten by all age groups of <strong>the</strong> exam<strong>in</strong>ed species<br />

of fish. For <strong>the</strong> advocates of <strong>the</strong> ecological box, it means ano<strong>the</strong>r possible use of one<br />

of its products. That is because <strong>in</strong> addition to us<strong>in</strong>g <strong>the</strong> vermicompost, it gives ano<strong>the</strong>r<br />

possibility of feed<strong>in</strong>g selected aquarium fish with <strong>the</strong> produced biomass of<br />

earthworms. The results of <strong>the</strong> research not only <strong>in</strong>dicate <strong>the</strong> possibility of reduc<strong>in</strong>g<br />

57


<strong>the</strong> cost of fish-keep<strong>in</strong>g, but also better results of that culture (Kostecka <strong>and</strong> Paczka,<br />

2006).<br />

Three meals were <strong>for</strong>mulated from <strong>the</strong> earthworm (Endrilus eug<strong>in</strong>eae) <strong>and</strong> maggot<br />

(Musca domestica) <strong>and</strong> fish (Engraulis encrosicolus). These meals were evaluated as<br />

a potential replacement <strong>for</strong> fishmeal. This is because fishmeal could be very<br />

expensive at times. The three meals were used <strong>in</strong> feed<strong>in</strong>g <strong>the</strong> catfish (Heterobranchus<br />

isopterus) <strong>for</strong> 30 days. On <strong>the</strong> basis of weight <strong>in</strong>crement, <strong>the</strong> best growth per<strong>for</strong>mance<br />

was produced by maggot meal. It was followed by earthworm <strong>and</strong> fish meals,<br />

respectively. Based on food conversion ratio maggot meal was aga<strong>in</strong> <strong>the</strong> best,<br />

followed by earthworm <strong>and</strong> fish meals respectively. The importance of supplementary<br />

feed<strong>in</strong>g was evidenced <strong>in</strong> <strong>the</strong> higher weight <strong>in</strong>crement <strong>in</strong> fish that were fed than those<br />

that were not fed. Maggot <strong>and</strong> earthworm meals could <strong>the</strong>re<strong>for</strong>e be a whole or partial<br />

replacement <strong>for</strong> fishmeal. The difficulty <strong>in</strong> <strong>the</strong> harvest<strong>in</strong>g or rear<strong>in</strong>g maggots <strong>and</strong><br />

earthworms may however reduce this potential (Yaqub, 1991).<br />

The use of vermicompost <strong>in</strong> pisci-culture is ga<strong>in</strong><strong>in</strong>g its <strong>in</strong>creased recognition <strong>for</strong> <strong>the</strong><br />

conservation of energy <strong>and</strong> optimum but economical utilization of available resources<br />

with simultaneous pollution control. Vermicompost is hazard free organic manure,<br />

which improves quality of pond base <strong>and</strong> overly<strong>in</strong>g water as well as provides<br />

organically produced aqua crops. The additions of manures affect <strong>the</strong> relative<br />

abundance of <strong>the</strong> plankton <strong>and</strong> <strong>the</strong>ir community structure <strong>in</strong> aquatic system. Proper<br />

comb<strong>in</strong>ations of <strong>in</strong>organic nutrients (NPK) are <strong>the</strong> major factors that <strong>in</strong>fluence <strong>the</strong><br />

growth <strong>and</strong> production of plankton <strong>in</strong> a pond. Vermicompost conta<strong>in</strong>s all <strong>the</strong> major<br />

organic nutrient components of N, P <strong>and</strong> K along with some necessary micronutrients<br />

<strong>for</strong> plankton growth (Table 6.4).<br />

In aquaculture <strong>in</strong>dustry, capital <strong>in</strong>vestment apart, <strong>the</strong>re are also operat<strong>in</strong>g expenses,<br />

ma<strong>in</strong>ly <strong>for</strong> seed, fertilizer, feed <strong>and</strong> labors. Among those, <strong>the</strong> cost of feed <strong>and</strong><br />

fertilizer constitute about 70% of <strong>the</strong> total expenses. For this reason <strong>the</strong>re is need <strong>for</strong><br />

search<strong>in</strong>g out chapter sources <strong>for</strong> feed <strong>and</strong> fertilizer. So, this is particularly significant<br />

<strong>in</strong> develop<strong>in</strong>g nations, where fish farmers are unable to buy costly fish feed <strong>and</strong><br />

chemical fertilizer vermicompost <strong>for</strong>ms an abundant alternative natural resource <strong>for</strong><br />

less expensive manure <strong>and</strong> fish feed <strong>for</strong> higher fish yield. However, <strong>the</strong> amount of<br />

available nitrogen <strong>and</strong> phosphorus from vermicompost is less when compared with<br />

conventional fertilizers <strong>and</strong> research should be oriented to <strong>in</strong>crease its nitrogen <strong>and</strong><br />

phosphorus concentration through alteration of substrate composition.<br />

Table 6.4. Different nutrient concentration <strong>in</strong> manure <strong>and</strong> fertilizer applied (average<br />

value of triplicate sample analyzed)<br />

Parameters<br />

Available N<br />

(mg·g -1 )<br />

Available P<br />

(mg·g -1 )<br />

Available K<br />

(mg·g -1 )<br />

Dry weight of fertilizer<br />

<strong>and</strong> manure used (g)<br />

Diammonium phosphate (DAP) 18 ± 0.07 46 ± 0.05 Nil 3.04<br />

Vermicompost 1.5 ± 0.05 1.4 ± 0.08 1.0 ± 0.05 99.0<br />

Compost<br />

Souce: Chakrabarty et al, (2009).<br />

1.0 ± 0.08 0.55 ± 0.09 1.0 ± 0.05 252.0<br />

Sample of soil, compost, vermicompost <strong>and</strong> DAP were analyzed <strong>for</strong> available P, N<br />

content as well as <strong>for</strong> organic carbon. The dry weights of <strong>the</strong> fertilizer <strong>and</strong> manure<br />

58


were ranged from 3.04 to 252.0 g <strong>in</strong> different treatments (50 kg P2O5 content basis)<br />

(Table 6.5).<br />

Table 6.5. Average values* (±SD) of physio-chemical parameters of water, primary<br />

productivity of phytoplankton <strong>and</strong> f<strong>in</strong>al body weights <strong>and</strong> fish production of<br />

Cypr<strong>in</strong>us carpio <strong>in</strong> various treatments.<br />

Parameters Control (T-1) Compost<br />

(T-2)<br />

59<br />

Diammonium<br />

phosphate<br />

(T-3)<br />

Vermicompost<br />

(T-4)<br />

Temperature (˚C) 30.0 ± 4.3 30.0 ± 5.1 30.0 ± 4.9 30.00 ± 5.5<br />

pH 7.06 ± 0.4 7.26 ± 0.6 7.14 ± 0.1 7.43 ± 0.6<br />

Dissolved oxygen (mg l -1 ) 6.01 ± 0.9 6.21 ± 1.1 7.74 ± 1.0 7.02 ± 1.2<br />

Ortho phosphate (mg l -1 ) 0.09 ± 0.09 0.19 ± 0.06 0.52 ± 0.10 0.30 ± 0.14<br />

Organic phosphate (mg l -1 ) 0.08 ± 0.19 0.27 ± 0.15 0.20 ± 0.14 0.35 ± 0.21<br />

Total phosphate (mg l -1 ) 0.10 ± 0.10 0.66 ± 0.16 0.88 ± 0.25 0.68 ± 0.21<br />

NO3–N (mg l -1 ) 0.06 ± 0.08 0.12 ± 0.06 0.28 ± 0.03 0.16 ± 0.04<br />

Total <strong>in</strong>organic N (mg l -1 ) 0.06 ± 0.005 0.40 ± 0.02 0.80 ± 0.04 0.62 ± 0.03<br />

Total <strong>in</strong>organic nitrogen (N)/total 1.6 0.61 0.90 0.91<br />

phosphate (P)<br />

Community respiration (mg C m -2 h -<br />

1<br />

)<br />

20.13 ±±9.3 28.13 ± 12.5 35.79 ± 18.2 38.58 ± 13.1<br />

F<strong>in</strong>al mean body weight (g) 18.24 ± 2.3 22.25 ± 3.6 39.50 ± 4.3 45.77 ± 3.9<br />

Fertilizer/manure added (g) 0 252 3.04 99<br />

Stock<strong>in</strong>g density 10.00 10.00 10.00 10.00<br />

Initial average <strong>in</strong>dividual length 1.40 ± 0.02 1.40 ± 0.02 1.40 ± 0.02 1.40 ± 0.02<br />

(cm)<br />

Initial average <strong>in</strong>dividual weight (g) 2.40 ± 0.01 2.40 ± 0.03 2.40 ± 0.04 2.40 ± 0.02<br />

F<strong>in</strong>al average <strong>in</strong>dividual length (cm) 4.20 ± 0.03 6.80 ± 0.06 7.60 ± 0.04 8.80 ± 0.07<br />

F<strong>in</strong>al average <strong>in</strong>dividual weight (g) 3.76 ± 0.01 8.29 ± 0.05 12.92 ± 0.03 16.76 ± 0.07<br />

Growth <strong>in</strong>crement (g fish -1 day -1 ) 0.0151 0.0654 0.1169 0.1595<br />

Production of fish (kg ha -1 90 day-1) 385.92 1,952.64 3080.45 3,970.56<br />

Total weight ga<strong>in</strong> (TWG) (g fish -1 ) 0.57 2.45 4.38 5.98<br />

Survival (%) 85 88 87 90<br />

*Each average value applies to 90 days samples.<br />

Source: Chakrabarty et al. (2009).<br />

Where:<br />

Absolute growth (AG) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight<br />

Growth <strong>in</strong>crement (GI) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight /<br />

number of culture days after fish <strong>in</strong>troduction<br />

Total weight ga<strong>in</strong> (TWG) = f<strong>in</strong>al body weight - <strong>in</strong>itial body weight /<br />

<strong>in</strong>itial body weight<br />

The dem<strong>and</strong> <strong>for</strong> organically cultured food <strong>for</strong> human consumption is <strong>in</strong>creas<strong>in</strong>g across<br />

<strong>the</strong> globe <strong>and</strong> <strong>for</strong> this reason organic aquaculture is <strong>the</strong> need of <strong>the</strong> present time. Wide<br />

variety of organic manures such as grass, leaves, sewage water, livestock manure,<br />

domestic wastes, night soil <strong>and</strong> dried blood meal have been used.<br />

6.4. Possibilities of worms as animal feed <strong>in</strong> <strong>Egypt</strong>:<br />

For a long time, extensive fish farm<strong>in</strong>g was <strong>the</strong> type practiced <strong>in</strong> <strong>Egypt</strong>, where only<br />

chemical <strong>and</strong>/or organic fertilizers were applied <strong>for</strong> promot<strong>in</strong>g <strong>the</strong> natural productivity<br />

of ponds. Agricultural by-products such as wheat bran <strong>and</strong> rice bran were used <strong>for</strong><br />

supplementation <strong>in</strong> some farms. As <strong>the</strong> technology of fish farm<strong>in</strong>g has developed,


aquaculture started to exert some significant dem<strong>and</strong> on fish feed. In 2001, <strong>the</strong>re are<br />

twelve feed mills that produced about 68 500 tons of specialized feeds. Most of feeds<br />

are produced <strong>for</strong> self-sufficiency to support <strong>the</strong> needs of Governmental fish farms, but<br />

some quantities are available <strong>for</strong> sale to private sector. Because of <strong>the</strong> cost, such mills<br />

produce fish feeds of 18-32% prote<strong>in</strong> of s<strong>in</strong>k<strong>in</strong>g type pellets, however, higher prote<strong>in</strong><br />

float<strong>in</strong>g feeds could be produced upon request. High quality fish meal provide <strong>the</strong><br />

major component <strong>in</strong> <strong>the</strong> commercial fish feeds <strong>and</strong> may constitute up to 60% of <strong>the</strong><br />

total diet <strong>for</strong> mar<strong>in</strong>e species, with higher levels be<strong>in</strong>g used <strong>in</strong> starter <strong>and</strong> f<strong>in</strong>gerl<strong>in</strong>g<br />

rations. Generally, a good range of raw materials is available <strong>for</strong> fish manufacture <strong>in</strong><br />

<strong>Egypt</strong>. However, price <strong>and</strong> competition from <strong>the</strong> human food <strong>and</strong> animal feed<br />

<strong>in</strong>dustries limits <strong>the</strong> choice. High quality feed materials are <strong>in</strong> short supply <strong>and</strong> are<br />

expensive. Apart from fish meal (imported <strong>and</strong> <strong>in</strong>digenous), <strong>the</strong> ma<strong>in</strong> available<br />

prote<strong>in</strong> sources are: soybean meal (hexane-extracted), cottonseed meal (expeller),<br />

meat meal, poultry offal meal <strong>and</strong> fea<strong>the</strong>r meal. O<strong>the</strong>r possibilities <strong>for</strong> new feed<br />

materials may be <strong>the</strong> wide spread mar<strong>in</strong>e macroalgae or fresh water weed hyac<strong>in</strong>th.<br />

On local basis, <strong>the</strong>re is a scope <strong>for</strong> <strong>the</strong>ir <strong>in</strong>corporation <strong>in</strong>to fish feeds particularly <strong>for</strong><br />

tilapia <strong>and</strong> mullets. Tables 6.6 <strong>and</strong> 6.7 show <strong>the</strong> proximate composition of <strong>the</strong> tested<br />

feed <strong>in</strong>gredients, namely: acid fish silage (AFS), fermented fish silage (FFS), soybean<br />

meal (SBM), a mixture of FFS <strong>and</strong> SBM (MIX), green macroalga Ulva meal (UM)<br />

<strong>and</strong> red macro-algae Pterocladia meal (PM) compared to fish meal (FM) from<br />

different sources <strong>and</strong> <strong>the</strong>ir am<strong>in</strong>o acid profiles, respectively.<br />

Table 6.6. Composition (%dry matter) of tested prote<strong>in</strong>s sources or supplements <strong>for</strong><br />

fish feeds<br />

Ingredient Prote<strong>in</strong> Lipid Ash Moisture NFE Fiber DE<br />

AFS1 72.90 13.12 12.76 73.28 1.22 - 164<br />

AFS2 73.40 17.10 8.30 - 1.20 - 178<br />

AFS3 63.00 22.10 9.68 75.00 - - 177<br />

FFS 56.67 12.7 20.04 0.98 - - 135<br />

SBMG 44.80 20.60 5.40 5.50 29.20 - 161<br />

SBMB 44.00 1.80 8.00 8.94 37.26 - 103<br />

SBMD 44.00 4.00 6.53 11.00 38.17 7.30 110<br />

UM 17.44 2.5 32.85 3.69 41.47 5.47 64<br />

PM 22.61 2.18 37.3 3.05 28.29 9.62 35<br />

FM1 72.05 10.94 7.00 5.00 8.98 1.02 160<br />

FMD 61.00 8.95 20.72 6.20 9.73 - 136<br />

FMD 61.00 5.00 16.60 5.00 16.70 0.70 127<br />

Source: Wassef (2005).<br />

NFE: Nitrogen free extract, by difference; DE: Digestible energy (MJ/Kg); AFS: acid fish silage;<br />

FFS: fermented fish silage; SBM: boiled full fat soy meal (G: germ<strong>in</strong>ated; B: boilled fullfat; D:<br />

defatted); MIX: mixture of FFS <strong>and</strong> SBM; UM: Ulva meal; PM: Pterocladia meal; FM: fish meal (D:<br />

domestic product; I: imported Manhaden).<br />

60


Table 6.7. Am<strong>in</strong>o acid (g/100g prote<strong>in</strong>) profiles of tested prote<strong>in</strong> sources or<br />

supplement as compared to fish meal (FM)<br />

Am<strong>in</strong>o acid (AA) AFS FFS SBM MIX UM PM FM<br />

Indispensable (IAA)<br />

Arg<strong>in</strong><strong>in</strong>e (ARG)<br />

Histid<strong>in</strong>e (HIS)<br />

Isoleuc<strong>in</strong>e (ILE)<br />

Leuc<strong>in</strong>e (LEU)<br />

Lys<strong>in</strong>e (LYS)<br />

Methion<strong>in</strong>e (MET)<br />

Phenyl-alan<strong>in</strong>e (PHE)<br />

Threon<strong>in</strong>e (THR)<br />

Val<strong>in</strong>e (VAL)<br />

Tryptophan (TRP)<br />

Total IAA<br />

Dispensable (DAA)<br />

Aspartic Acid (ASP)<br />

Ser<strong>in</strong>e (SER)<br />

Glutamic Acid<br />

(GLU)<br />

Glyc<strong>in</strong>e (GLY)<br />

Alan<strong>in</strong>e (ALA)<br />

Tyros<strong>in</strong>e (TYR)<br />

Prol<strong>in</strong>e (PRO)<br />

Cyste<strong>in</strong>e (CYS)<br />

Total (DAA)<br />

Total am<strong>in</strong>o acids<br />

03.62<br />

02.36<br />

02.66<br />

04.43<br />

05.27<br />

01.81<br />

02.36<br />

02.60<br />

03.01<br />

00.63<br />

28.75<br />

05.97<br />

02.62<br />

08.81<br />

03.50<br />

03.74<br />

02.04<br />

02.60<br />

00.73<br />

30.01<br />

58.76<br />

02.86<br />

01.33<br />

01.87<br />

03.73<br />

03.95<br />

01.35<br />

02.30<br />

01.41<br />

02.41<br />

00.36<br />

21.57<br />

61<br />

05.59<br />

04.30<br />

03.64<br />

06.09<br />

04.49<br />

01.25<br />

04.30<br />

02.97<br />

03.86<br />

36.94<br />

15.20<br />

04.15<br />

13.03<br />

03.14<br />

03.54<br />

04.03<br />

04.46<br />

01.13<br />

48.68<br />

85.62<br />

06.20<br />

02.48<br />

03.27<br />

00.51<br />

05.44<br />

02.22<br />

03.06<br />

03.74<br />

03.94<br />

00.72<br />

31.58<br />

05.85<br />

02.80<br />

03.47<br />

05.21<br />

05.62<br />

04.40<br />

04.45<br />

03.94<br />

07.46<br />

43.20<br />

11.54<br />

04.48<br />

09.35<br />

05.53<br />

07.19<br />

03.31<br />

05.15<br />

01.27<br />

47.82<br />

91.02<br />

04.46<br />

02.70<br />

04.53<br />

05.92<br />

06.90<br />

03.26<br />

04.78<br />

04.23<br />

06.69<br />

43.47<br />

10.59<br />

04.08<br />

10.22<br />

07.49<br />

07.23<br />

03.65<br />

04.64<br />

01.51<br />

49.41<br />

92.88<br />

05.88<br />

02.48<br />

04.41<br />

05.71<br />

04.42<br />

02.50<br />

03.87<br />

03.76<br />

04.75<br />

00.80<br />

38.58<br />

02.04<br />

00.66<br />

03.30<br />

04.13<br />

01.47<br />

01.47<br />

00.97<br />

12.57<br />

51.15<br />

Source: Wassef (2005).<br />

AFS: acid fish silage; FFS: fermented fish silage; SBM: boiled full fat soy meal; MIX: mixture of FFS<br />

<strong>and</strong> SBM; UM: Ulva meal; PM: Pterocladia meal; FM: fish meal.<br />

There is still a great opportunity <strong>for</strong> <strong>Egypt</strong> to use <strong>the</strong> tremendous amount of organic<br />

wastes to be used as meal not only <strong>for</strong> poultry, rabbits, ducks, <strong>and</strong> geese, but also <strong>for</strong><br />

aquaculture <strong>and</strong> large animals. The only miss<strong>in</strong>g part is to create awareness <strong>and</strong> to<br />

develop capacity build<strong>in</strong>g programs <strong>in</strong> a well established demonstrated sites<br />

represent<strong>in</strong>g different geographic regions of <strong>the</strong> country.


7. Current on-farm <strong>and</strong> urban organic waste management practices<br />

<strong>and</strong> environmental effects of those practices, e.g. carbon <strong>and</strong> methane<br />

emissions.<br />

The ma<strong>in</strong> beneficiaries of this work are <strong>the</strong> agriculture producers <strong>in</strong> general <strong>and</strong><br />

organic farm<strong>in</strong>g producers specifically. Previous chapters covered all aspects of<br />

production of vermicompost <strong>and</strong> vermiculture. As an organic grower <strong>in</strong>terest, <strong>the</strong><br />

environmental positive impacts of utiliz<strong>in</strong>g such methods of production, it is<br />

important to underst<strong>and</strong> how vermicompost contribute to improve reduc<strong>in</strong>g <strong>the</strong><br />

production of greenhouse gases, <strong>and</strong> consequently help mitigat<strong>in</strong>g <strong>the</strong> global<br />

warm<strong>in</strong>g. This chapter aims at highlight<strong>in</strong>g on-farm <strong>and</strong> urban organic waste<br />

management practices <strong>and</strong> <strong>the</strong> environmental effects of those practices.<br />

7.1. Emissions from vermicompost<br />

Compost<strong>in</strong>g has been identified as an important source of CH4 <strong>and</strong> N2O. With<br />

<strong>in</strong>creas<strong>in</strong>g divergence of biodegradable waste from l<strong>and</strong>fill <strong>in</strong>to <strong>the</strong> compost<strong>in</strong>g<br />

sector, it is important to quantify emissions of CH4 <strong>and</strong> N2O from all <strong>for</strong>ms of<br />

compost<strong>in</strong>g <strong>and</strong> from all stages. The study focused on <strong>the</strong> f<strong>in</strong>al phase of a two stage<br />

compost<strong>in</strong>g process <strong>and</strong> compared <strong>the</strong> generation <strong>and</strong> emission of CH4 <strong>and</strong> N2O<br />

associated with two differ<strong>in</strong>g compost<strong>in</strong>g methods: mechanically turned w<strong>in</strong>drow <strong>and</strong><br />

vermicompost<strong>in</strong>g. The mechanically turned w<strong>in</strong>drow system was characterized by<br />

emissions of CH4 <strong>and</strong> to a much lesser extent N2O. However, <strong>the</strong> vermicompost<strong>in</strong>g<br />

system emitted significant fluxes of N2O <strong>and</strong> only traces amounts of CH4. High N2O<br />

emission rates from vermicompost<strong>in</strong>g were ascribed to strongly nitrify<strong>in</strong>g conditions<br />

<strong>in</strong> <strong>the</strong> process<strong>in</strong>g beds comb<strong>in</strong>ed with <strong>the</strong> presence of de-nitrify<strong>in</strong>g bacteria with<strong>in</strong> <strong>the</strong><br />

worm gut (Hobson et al., 2005).<br />

Different o<strong>the</strong>r reports from several countries stated that any possible emissions of<br />

greenhouse gases by earthworms from soil or vermicompost<strong>in</strong>g systems is extremely<br />

small when compared with <strong>the</strong> well-documented emissions of nitrous oxide, methane<br />

<strong>and</strong> carbon dioxide from <strong>in</strong>organic fertilizer manufacture, l<strong>and</strong>fills, manure heaps,<br />

lagoons, crop residues <strong>in</strong> soils <strong>and</strong> manure from pigs <strong>and</strong> cattle <strong>in</strong> housed systems.<br />

While <strong>the</strong>re will be N2O emissions from all <strong>the</strong>se sources, <strong>the</strong>re is no justification <strong>for</strong><br />

suggest<strong>in</strong>g that environmentally-friendly <strong>and</strong> energy-efficient systems <strong>for</strong> produc<strong>in</strong>g<br />

vermicomposts <strong>and</strong> composts should be restricted because of <strong>the</strong>ir potential to<br />

produce greenhouse gases. The global production of nitrogenous greenhouse gases <strong>in</strong><br />

agriculture should be compared from all sources be<strong>for</strong>e vermicompost<strong>in</strong>g is publicly<br />

condemned <strong>in</strong> such a sensational way (Edwards, 2008).<br />

Recent research has shown that certa<strong>in</strong> types of vermicompost<strong>in</strong>g can generate<br />

significant amounts of N2O. These <strong>in</strong>itial f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate a need <strong>for</strong> more research to<br />

be conducted be<strong>for</strong>e any sound recommendations on vermicompost<strong>in</strong>g can be given.<br />

S<strong>in</strong>ce <strong>the</strong> amount of emissions from compost<strong>in</strong>g depends on <strong>the</strong> specific compost<strong>in</strong>g<br />

method used <strong>and</strong> on how well <strong>the</strong> process is managed, it is not possible to give a<br />

62


def<strong>in</strong>itive answer to <strong>the</strong> question of how much compost<strong>in</strong>g contributes to climate<br />

change. Most studies on emissions from compost<strong>in</strong>g have been carried out <strong>in</strong><br />

developed countries where conditions differ from <strong>the</strong> target countries of this study.<br />

Never<strong>the</strong>less, several environmental agencies have concluded that when compost<strong>in</strong>g<br />

is done properly, it generates very small amounts of greenhouse gases (IGES, 2008).<br />

Chan et al. (2010) <strong>in</strong>vestigated greenhouse gas emissions from three different home<br />

waste treatment methods <strong>in</strong> Brisbane, Australia. Gas samples were taken monthly<br />

from 34 backyard compost<strong>in</strong>g b<strong>in</strong>s from January to April 2009. Averaged over <strong>the</strong><br />

study period, <strong>the</strong> aerobic compost<strong>in</strong>g b<strong>in</strong>s released lower amounts of CH4 (2.2 mg·m -<br />

2 ·h -1 ) than <strong>the</strong> anaerobic digestion b<strong>in</strong>s (9.5 mg·m -2 ·h -1 ) <strong>and</strong> <strong>the</strong> vermicompost<strong>in</strong>g b<strong>in</strong>s<br />

(4.8 mg . m -2. h -1 ). The vermicompost<strong>in</strong>g b<strong>in</strong>s had lower N2O emission rates (1.2 mg m -2<br />

h -1 ) than <strong>the</strong> o<strong>the</strong>rs (1.5–1.6 mg·m -2 ·h -1 ). Total greenhouse gas emissions <strong>in</strong>clud<strong>in</strong>g<br />

both N2O <strong>and</strong> CH4 were 463, 504 <strong>and</strong> 694 mg CO2e m -2 ·h -1 <strong>for</strong> vermicompost<strong>in</strong>g,<br />

aerobic compost<strong>in</strong>g <strong>and</strong> anaerobic digestion, respectively, with N2O contribut<strong>in</strong>g<br />

>80% <strong>in</strong> <strong>the</strong> total budget. The greenhouse gas emissions varied substantially with<br />

time <strong>and</strong> were regulated by temperature, moisture content <strong>and</strong> <strong>the</strong> waste properties,<br />

<strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> potential to mitigate greenhouse gas emission through proper<br />

management of <strong>the</strong> compost<strong>in</strong>g systems. The results suggest that home compost<strong>in</strong>g<br />

provides an effective <strong>and</strong> feasible supplementary waste management method to a<br />

centralized facility <strong>in</strong> particular <strong>for</strong> cities with lower population density such as <strong>the</strong><br />

Australian cities.<br />

In terms of greenhouse gas emissions dur<strong>in</strong>g <strong>the</strong> maturation process, <strong>the</strong> w<strong>in</strong>drow<br />

compost<strong>in</strong>g process was characterized by emission of CH4. Emission of greenhouse<br />

gases from vermicompost<strong>in</strong>g was predom<strong>in</strong>antly N2O with comparatively little CH4<br />

emitted, demonstrat<strong>in</strong>g that sufficiently aerobic conditions were ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

vermicompost<strong>in</strong>g beds to <strong>in</strong>hibit CH4 production. The global warm<strong>in</strong>g potential of <strong>the</strong><br />

vermicompost<strong>in</strong>g maturation system was estimated to be approximately 30 times<br />

greater than that <strong>for</strong> <strong>the</strong> w<strong>in</strong>drow compost<strong>in</strong>g system. The emission of greenhouse<br />

gases from <strong>the</strong>se types of compost<strong>in</strong>g systems requires fur<strong>the</strong>r <strong>in</strong>vestigation.<br />

Vermicompost<strong>in</strong>g by worms decreases <strong>the</strong> proportion of 'anaerobic to aerobic<br />

decomposition', result<strong>in</strong>g <strong>in</strong> a significant decrease <strong>in</strong> methane (CH4) <strong>and</strong> volatile<br />

sulfur compounds which are readily emitted from <strong>the</strong> conventional (microbial)<br />

compost<strong>in</strong>g process. Vermi-compost<strong>in</strong>g of waste organics us<strong>in</strong>g earthworms <strong>the</strong>re<strong>for</strong>e<br />

has a dist<strong>in</strong>ct advantage over <strong>the</strong> conventional aerobic compost<strong>in</strong>g as it does not allow<br />

<strong>the</strong> greenhouse gas methane (CH4) to be <strong>for</strong>med. Molecule to molecule, methane is a<br />

20-25 times more powerful greenhouse gas than CO2. Earthworms can play a good<br />

part <strong>in</strong> <strong>the</strong> strategy of greenhouse gas reduction <strong>and</strong> mitigation <strong>in</strong> <strong>the</strong> disposal of<br />

global organic wastes as l<strong>and</strong>fills also emit methane result<strong>in</strong>g from <strong>the</strong> slow anaerobic<br />

decomposition of waste organics over several years. However, recent research done <strong>in</strong><br />

Germany has found that earthworms produce a third of nitrous oxide (N20) gases<br />

when used <strong>for</strong> vermicompost<strong>in</strong>g. Molecule to molecule N:0 is a 296 times more<br />

powerful greenhouse gas than carbon dioxide (CO2). This needs fur<strong>the</strong>r study (Daven<br />

<strong>and</strong> Kle<strong>in</strong>, 2008).<br />

63


7.2 Total emissions from waste sector <strong>in</strong> <strong>Egypt</strong><br />

Total emissions <strong>for</strong> 2000 amounted to about 193 megaton of carbon dioxide<br />

equivalent 1 . With <strong>the</strong> total emissions <strong>for</strong> 1990 amount<strong>in</strong>g to about 117 megaton of<br />

carbon dioxide equivalent., The average greenhouse gases emissions <strong>in</strong>crease is about<br />

5% annually. In this respect, <strong>the</strong> estimated total greenhouse gases emissions <strong>for</strong> 2008<br />

are about 288 megaton of carbon dioxide equivalent. <strong>Egypt</strong>‟s specific greenhouse<br />

gases emissions <strong>for</strong> 2000 amounted to 2.99 megaton of carbon dioxide per capita,<br />

while direct CO2 emissions per capita <strong>in</strong> 2000 amounted to 1.98 ton per capita.<br />

The total greenhouse gas emissions <strong>in</strong> 1990 of carbon dioxide, methane, nittrogen<br />

oxide, Perfluorocarbons, haloflorocarbons, sulpher hexafloride (exclud<strong>in</strong>g emissions<br />

from l<strong>and</strong> use change), <strong>for</strong> <strong>the</strong> world amounted to 29,910 megaton of carbon dioxide..<br />

The total 1990 emissions of <strong>Egypt</strong> amounted to about 117 megaton of carbon dioxide,<br />

based on emissions of dioxide, methane, nittrogen oxide (EEAA, 1999). These figures<br />

denote that <strong>the</strong> share of <strong>Egypt</strong> <strong>in</strong> <strong>the</strong> total World emissions <strong>in</strong> 1990 was 0.4%.<br />

<strong>Egypt</strong>‟s total emissions are about 193 dioxide, methane, nittrogen oxide, <strong>in</strong>clud<strong>in</strong>g<br />

emissions of manure management, agriculture soil, <strong>and</strong> field burn<strong>in</strong>g of agricultural<br />

residues, <strong>and</strong> emissions from some sources of sub-categories, such as methane<br />

emissions from aerobic waste water treatment plants, nitrogen oxide emissions from<br />

domestic wastewater <strong>and</strong> emissions from <strong>in</strong>c<strong>in</strong>eration, all of which were not <strong>in</strong>cluded<br />

<strong>in</strong> <strong>the</strong> 1990 figures. Moreover, more updated figures <strong>for</strong> activity data were used <strong>for</strong><br />

solid waste generation <strong>and</strong> wastewater generation <strong>for</strong> <strong>the</strong> year 2000. Based on this <strong>and</strong><br />

tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> world total emissions <strong>for</strong> <strong>the</strong> year 2000, amount<strong>in</strong>g to 33,017<br />

megaton of carbon dioxide equivalen, <strong>Egypt</strong>‟s share <strong>in</strong> <strong>the</strong> total world emissions <strong>for</strong><br />

2000 was 0.58% (EEAA, 2010).<br />

1 Each of <strong>the</strong> greenhouse gases has a global warm<strong>in</strong>g potential (GWP) value compared to CO2, which has global<br />

warm<strong>in</strong>g potential=1. All quantities of green house gases are converted to CO 2 equivalent quantities by<br />

multiply<strong>in</strong>g <strong>the</strong> weight of such gas by its GWP to obta<strong>in</strong> <strong>the</strong> CO 2 equivalent weight.<br />

64


Table 7.1. Summary of greenhouse gases emissions <strong>for</strong> <strong>Egypt</strong>, 2000, as of its Second<br />

National Communications 1 submitted <strong>in</strong> July 2010.<br />

Greenhouse gases<br />

Source & S<strong>in</strong>k<br />

Categories<br />

Total National<br />

Emissions & Removals<br />

ALL ENERGY<br />

(Fuel Combustion &<br />

Fugitive)<br />

CO2<br />

(Kt)<br />

CH4<br />

(Kt)<br />

65<br />

N2O<br />

(Kt)<br />

128,227 1,877 79<br />

106,629 447<br />

Fuel combustion 105,161 3<br />

Petroleum & energy<br />

trans<strong>for</strong>mation <strong>in</strong>dustries<br />

41,436<br />

Industry 26,987<br />

930<br />

(tons)<br />

680<br />

(tons)<br />

Transport 27,120 1<br />

Small combustion 9,389<br />

Agriculture 229<br />

Fugitive emissions from<br />

fuels<br />

188<br />

(tons)<br />

10<br />

(tons)<br />

1,469 444<br />

Oil & Natural Gas 1,469 444<br />

INDUSTRIAL<br />

PROCESSES<br />

581<br />

(tons)<br />

559<br />

(tons)<br />

130<br />

(tons)<br />

180<br />

(tons)<br />

222<br />

(tons)<br />

25<br />

(tons)<br />

2<br />

(tons)<br />

22<br />

(tons)<br />

22<br />

(tons)<br />

21,594 -- 16<br />

PFCs<br />

(Kt)<br />

160<br />

(tons)<br />

--<br />

--<br />

--<br />

SF6<br />

(Kt)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

5<br />

(tons)<br />

HFCs<br />

(Kt)<br />

28<br />

(tons)<br />

Total<br />

(Mt<br />

CO2e)<br />

193.3<br />

-- 116.3<br />

-- 105.5<br />

--<br />

-- -- --<br />

-- -- --<br />

-- -- --<br />

-- -- --<br />

-- -- -- 10.8<br />

-- -- --<br />

160<br />

(tons)<br />

--<br />

28<br />

(tons)<br />

Cement production 17,251 -- -- -- -- -- --<br />

Lime production 31 -- -- -- -- -- --<br />

Iron <strong>and</strong> steel <strong>in</strong>dustry 1,576 -- -- -- -- -- --<br />

Nitric acid production -- -- 16 -- -- -- --<br />

Alum<strong>in</strong>um production -- -- --<br />

160<br />

(tons)<br />

Ozone Deplet<strong>in</strong>g Substitutes -- -- -- -- --<br />

27.8<br />

-- -- --<br />

28<br />

(tons)<br />

Ammonia production 2,736 -- -- -- -- -- --<br />

1 As per Kyoto Protocol, <strong>Egypt</strong> submitted it's Second National Communication <strong>for</strong> Climate Change to<br />

<strong>the</strong> United Nations Framework Convention <strong>for</strong> Climate Change (UNFCCC) <strong>in</strong> June 2010.<br />

--


Greenhouse gases<br />

Source & S<strong>in</strong>k<br />

Categories<br />

CO2<br />

(Kt)<br />

CH4<br />

(Kt)<br />

66<br />

N2O<br />

(Kt)<br />

PFCs<br />

(Kt)<br />

SF6<br />

(Kt)<br />

HFCs<br />

(Kt)<br />

Total<br />

(Mt<br />

CO2e)<br />

AGRICULTURE -- 599 62 31.7<br />

Agriculture soils -- -- 33 -- -- -- --<br />

Enteric fermentation -- 385 -- -- -- -- --<br />

Manure management -- 28 28 -- -- -- --<br />

Rice cultivation --<br />

Field burn<strong>in</strong>g of<br />

agricultural residues<br />

118<br />

WASTE 3 832<br />

-- -- -- -- --<br />

-- 68 1 -- -- -- --<br />

10<br />

(tons)<br />

-- -- -- 17.5<br />

Solid waste disposal on l<strong>and</strong> -- 557 -- -- -- -- --<br />

Wastewater treatment -- 275<br />

10<br />

(tons)<br />

-- -- -- --<br />

Waste <strong>in</strong>c<strong>in</strong>eration 3 -- -- -- -- -- --<br />

Source: EEAA (2010).<br />

7.3. Emissions from agricultural wastes<br />

The global N2O emission from crop residue has been estimated at 0.4 tera gram<br />

nitrogen per year, us<strong>in</strong>g <strong>the</strong> IPCC default emission factor of 1.25% of applied residue<br />

N emitted as N2O. However, this default emission factor is based on relatively few<br />

experimental studies. Recent experiments showed that <strong>the</strong> emission factor <strong>for</strong> crop<br />

residues can vary considerably with residue quality, particularly <strong>the</strong> carbon/nitrogen<br />

(C/N) ratio <strong>and</strong> <strong>the</strong> amount of m<strong>in</strong>eralizable N. Generally, higher emissions follow<br />

<strong>in</strong>corporation of residue with lower C/N ratios. It could be concluded that earthworm<br />

activity has <strong>the</strong> potential to <strong>in</strong>crease N2O emissions from crop residues up to 18-fold;<br />

that <strong>the</strong> earthworm effect is largely <strong>in</strong>dependent of bulk density; <strong>and</strong> that earthworm<br />

species, specifically, impact N2O emissions <strong>and</strong> residue stabilization <strong>in</strong> soil organic<br />

matter. However, earthworm-mediated emissions of N2O mostly resulted from residue<br />

<strong>in</strong>corporation <strong>in</strong>to <strong>the</strong> soil, <strong>and</strong> disappeared when plow<strong>in</strong>g of residue <strong>in</strong>to <strong>the</strong> soil was<br />

simulated. Our results suggest that, irrespective of earthworm activity, farmers may<br />

decrease direct N2O emissions from crop residues with a relatively low C/N ratio by<br />

leav<strong>in</strong>g it on top <strong>for</strong> a few weeks be<strong>for</strong>e plow<strong>in</strong>g it <strong>in</strong>to <strong>the</strong> soil. However, field<br />

studies should confirm this effect, <strong>and</strong> possible trade-offs to o<strong>the</strong>r (<strong>in</strong>direct) emissions<br />

of N2O should be taken <strong>in</strong>to consideration be<strong>for</strong>e this can be recommended (Rizhiya<br />

et al., 2007).


Over <strong>the</strong> past three years, a comprehensive research program on vermicompost<strong>in</strong>g has<br />

been developed at <strong>the</strong> Ohio State University. This has <strong>in</strong>cluded experiments<br />

<strong>in</strong>vestigat<strong>in</strong>g <strong>the</strong> effects of vermicomposts on <strong>the</strong> germ<strong>in</strong>ation, growth, flower<strong>in</strong>g, <strong>and</strong><br />

fruit<strong>in</strong>g of vegetable plants such as bell peppers <strong>and</strong> tomatoes, as well as on a wide<br />

range of flower<strong>in</strong>g plants <strong>in</strong>clud<strong>in</strong>g petunias, marigolds, bachelor‟s button,<br />

chrysan<strong>the</strong>mums, impatiens, sunflowers, <strong>and</strong> po<strong>in</strong>settias. A consistent trend <strong>in</strong> all<br />

<strong>the</strong>se growth trials has been that <strong>the</strong> best plant growth responses, with all needed<br />

nutrients supplied, occurred when vermicomposts constituted a relatively small<br />

proportion (10% to 20%) of <strong>the</strong> total volume of <strong>the</strong> conta<strong>in</strong>er medium mixture, with<br />

greater proportions of vermicomposts <strong>in</strong> <strong>the</strong> plant growth medium not always<br />

improv<strong>in</strong>g plant growth. Some of <strong>the</strong> plant growth responses <strong>in</strong> horticultural conta<strong>in</strong>er<br />

media, substituted with a range of dilutions of vermicomposts, were similar to those<br />

reported when composts were used <strong>in</strong>stead (Atiyeh et al., 2000).<br />

Table (7.2) <strong>and</strong> Figure (7.1) present <strong>Egypt</strong>‟s total greenhouse gas emissions by gas<br />

type, <strong>for</strong> <strong>the</strong> year 2000, while Table (7.2) <strong>and</strong> figure (7.2) present <strong>Egypt</strong>‟s total<br />

greenhouse gas emissions by sector <strong>for</strong> <strong>the</strong> year 2000.<br />

Table 7.2. <strong>Egypt</strong>‟s greenhouse gas emissions by gas type <strong>for</strong> <strong>the</strong> year 2000.<br />

Gas<br />

Emissions<br />

(mega ton CO2<br />

equivalent)<br />

67<br />

Emissions<br />

(%)<br />

Carbon Dioxide, CO2 128.2 66.3<br />

Methane, CH4 39.4 20.4<br />

Nittrogen oxide, N2O 24.4 12.6<br />

Perfluorocarbons, PFC 1.1 0.6<br />

Sulpher hexafluoride, SF6 0.1 0.1<br />

Haloflorocarbons, HFC's<br />

blend<br />

0.1<br />

0.1<br />

TOTAL<br />

Source: EEAA (2010).<br />

193.3 100


CH4<br />

;<br />

Figure 7.1. <strong>Egypt</strong>‟s greenhouse gases emissions by gas type <strong>for</strong> <strong>the</strong> year 2000 <strong>in</strong><br />

mega ton CO2 equivalent.<br />

Source: EEAA (2010).<br />

Table 7.3. <strong>Egypt</strong>‟s greenhouse gases emissions by sector <strong>for</strong> <strong>the</strong> year 2000<br />

Sector<br />

N2<br />

O;<br />

39.44 ; 20%<br />

PFC;<br />

24.36 ; 13%<br />

1.04 ; 1%<br />

Emissions<br />

(mega ton CO2<br />

equivalent)<br />

68<br />

SF6; 0.11; 0%<br />

HFC's blend; 0.05; 0%<br />

CO2;<br />

128.22;<br />

66%<br />

Emissions<br />

(%)<br />

Fuel Combustion 105.5 55<br />

Fugitive Fuel Emissions 10.8 6<br />

Agriculture 31.7 16<br />

Industrial Processes 27.8 14<br />

Waste 17.5 9<br />

TOTAL 193.3 100<br />

Source: EEAA (2010).


Agriculture;<br />

31.72;<br />

16%<br />

Industrial Processes;<br />

;<br />

27.77; 14%<br />

Fuel Combustion<br />

Waste;<br />

17.49;<br />

9%<br />

Fugitive fuel;<br />

10.81; 6%<br />

Fugitive fuel emissions<br />

Figure 7.2. <strong>Egypt</strong>‟s greenhouse gases emissions by sector <strong>for</strong> <strong>the</strong> year 2000, <strong>in</strong> mega<br />

ton CO2 equivalent.<br />

Source: EEAA(2010).<br />

Table (7.3) <strong>and</strong> figure (7.2) show <strong>the</strong> change of sectors‟ contribution to <strong>Egypt</strong>‟s total<br />

<strong>in</strong>ventory. It is clear that <strong>the</strong> total greenhouse gas emissions of <strong>Egypt</strong> <strong>in</strong>creased <strong>in</strong><br />

2000 to be 165% of that <strong>in</strong> 1990. Dur<strong>in</strong>g this period <strong>Egypt</strong>‟s population <strong>in</strong>creased by<br />

123% with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> GDP of 277% (M<strong>in</strong>istry of Economic Development,<br />

2007). The ratio of GDP, at <strong>the</strong> 1981/82 fixed prices, <strong>for</strong> <strong>the</strong> year 2000 to that <strong>for</strong><br />

1990 is 151%, denot<strong>in</strong>g that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> greenhouse gas emissions seems to be<br />

correlated to <strong>the</strong> GDP <strong>in</strong>crease ra<strong>the</strong>r than <strong>the</strong> population growth. It is clear that<br />

emissions from agriculture are <strong>the</strong> second after fuel combustion <strong>and</strong> be<strong>for</strong>e <strong>in</strong>dustrial<br />

processes.<br />

7.4. Vermifilters <strong>in</strong> domestic wastewater treatment<br />

There is ano<strong>the</strong>r important use that helps <strong>the</strong> environment which is <strong>the</strong> use of<br />

vermiculture as a biological filter <strong>for</strong> domestic waste water. use of earthworms <strong>in</strong><br />

filtration systems, which has been termed vermifiltration (VF) (X<strong>in</strong>g et al., 2010).<br />

S<strong>in</strong>ce <strong>the</strong>n, several studies have been conducted to evaluate <strong>the</strong> use of vermifilters <strong>in</strong><br />

domestic wastewater treatment, municipal wastewater treatment, <strong>and</strong> sw<strong>in</strong>e<br />

wastewater treatment processes, as well as <strong>in</strong> simultaneous sludge reduction<br />

processes. However, less attention has been given to <strong>the</strong> use of vermifilters to dispose<br />

of excess sludge directly. Moreover, most studies conducted to evaluate VFs have<br />

only focused on <strong>the</strong> contam<strong>in</strong>ation purification efficiencies, but <strong>the</strong> <strong>in</strong>teractions<br />

between earthworms <strong>and</strong> microorganisms, which are very important <strong>for</strong> underst<strong>and</strong><strong>in</strong>g<br />

<strong>the</strong> sludge stabilization mechanisms <strong>in</strong>volved <strong>in</strong> VFs, have not been fully <strong>in</strong>vestigated.<br />

A study was conducted to explore <strong>the</strong> feasibility of us<strong>in</strong>g a VF to stabilize sewage<br />

sludge while focus<strong>in</strong>g on elucidat<strong>in</strong>g <strong>the</strong> earthworm–microorganism <strong>in</strong>teractions<br />

responsible <strong>for</strong> <strong>the</strong> decomposition of organic matter <strong>in</strong> <strong>the</strong> vermifilter. Additionally,<br />

this <strong>in</strong>vestigation sought to identify <strong>the</strong> primary mechanism by which sewage sludge<br />

stabilization <strong>in</strong> <strong>the</strong> vermifilter occurs based on <strong>the</strong> chemical <strong>and</strong> spectroscopic<br />

69<br />

Industrial Processes<br />

Fuel Combustion;<br />

105.51;<br />

55%<br />

Agriculture<br />

Waste


properties of <strong>the</strong> treated sludge, <strong>the</strong> microbial community <strong>in</strong> <strong>the</strong> biofilm, <strong>and</strong> <strong>the</strong><br />

earthworm–microorganism <strong>in</strong>teractions <strong>in</strong> <strong>the</strong> vermifilter reactor. The results of this<br />

study provide useful <strong>in</strong><strong>for</strong>mation regard<strong>in</strong>g <strong>the</strong> use of a vermifilter <strong>for</strong> <strong>the</strong> optimal<br />

sewage sludge treatment. A cyl<strong>in</strong>der shaped vermifilter (30 cm <strong>in</strong> diameter <strong>and</strong> 60 cm<br />

<strong>in</strong> depth) that was naturally ventilated was equipped with a 0.5-<strong>in</strong>ch polypropylene<br />

pipe with holes to ensure uni<strong>for</strong>m distribution of <strong>the</strong> <strong>in</strong>fluent (Figure 7.3). The<br />

vermifilter conta<strong>in</strong>ed a 0.5 m filter bed of ceramic pellets (6–9 mm <strong>in</strong> diameter). A<br />

layer of plastic fiber was placed on <strong>the</strong> top of <strong>the</strong> filter bed to avoid direct hydraulic<br />

impact on <strong>the</strong> earthworms <strong>and</strong> to ensure an even <strong>in</strong>fluent distribution. The <strong>in</strong>fluent<br />

sludge was <strong>in</strong>troduced to <strong>the</strong> vermifilter via a peristaltic pump. After pass<strong>in</strong>g through<br />

<strong>the</strong> filter bed, <strong>the</strong> treated sludge entered <strong>in</strong>to a sedimentation tank below <strong>the</strong><br />

vermifilter <strong>and</strong> <strong>the</strong> supernatant <strong>in</strong> <strong>the</strong> sedimentation tank was recycled.<br />

Figure 7.3. Layout of <strong>the</strong> Vermifilter<br />

Source: Zhaoa et al. (2010).<br />

The vermifilter may be an efficient technology <strong>for</strong> stabilization of excess sludge from<br />

domestic Waste Water Treatment Plants. The volatile suspended solids (VSS)<br />

reduction <strong>in</strong> <strong>the</strong> VF reached 56.2–66.6%, which met <strong>the</strong> criteria <strong>for</strong> aerobic <strong>and</strong><br />

anaerobic sludge stabilization (>40%). The presence of <strong>the</strong> earthworms <strong>in</strong> <strong>the</strong> VF<br />

<strong>in</strong>duced an additional 25.1% reduction <strong>in</strong> volatile suspended solids. On average, <strong>the</strong><br />

earthworm–microorganism <strong>in</strong>teractions were responsible <strong>for</strong> approximately 46% of<br />

<strong>the</strong> improvement <strong>in</strong> <strong>the</strong> VSS reduction. Moreover, a detailed characterization of<br />

sludge <strong>and</strong> earthworm cast samples revealed that earthworms <strong>in</strong> <strong>the</strong> VF improved <strong>the</strong><br />

microbial activity by trans<strong>for</strong>m<strong>in</strong>g <strong>in</strong>soluble organic materials <strong>in</strong>to a soluble <strong>for</strong>m <strong>and</strong><br />

selectively digest<strong>in</strong>g <strong>the</strong> sludge particles of 10–200 μm to f<strong>in</strong>er particles of 0–2 μm,<br />

while enhanc<strong>in</strong>g <strong>the</strong> bacterial diversity <strong>in</strong> <strong>the</strong> biofilm. Additionally, improved sludge<br />

settleability with a compact structure <strong>and</strong> low SVI values (33–45 mL/g) were<br />

achieved <strong>in</strong> <strong>the</strong> presence of earthworms, which was favorable <strong>for</strong> fur<strong>the</strong>r sludge<br />

process<strong>in</strong>g (Zhaoa et al., 2010).<br />

70


8. Survey of global vermiculture implementation projects focused on<br />

greenhouse gas emission reductions<br />

Vermicompost is one of <strong>the</strong> activities that could mitigate <strong>the</strong> greenhouse gases<br />

(GHGs) that cause global warm<strong>in</strong>g. Both urbane wastes <strong>and</strong> agricultural residues<br />

produce considerable amounts of greenhouse gases as described <strong>in</strong> <strong>the</strong> previous<br />

chapter. Accord<strong>in</strong>g to <strong>the</strong> environmental regulations, <strong>the</strong> reduction of greenhouse<br />

gases could be a source of f<strong>in</strong>ancial benefits <strong>for</strong> vermicompost producers. There<strong>for</strong>e,<br />

this chapter deals with examples of reduc<strong>in</strong>g <strong>the</strong> emissions through vermicompost<strong>in</strong>g,<br />

which may assist <strong>the</strong> firms work<strong>in</strong>g <strong>in</strong> this bus<strong>in</strong>ess to sell <strong>the</strong>ir carbon reduction <strong>in</strong><br />

what is called "carbon market". Every ton of CO2e reduced could be sold with around<br />

10 Euros accord<strong>in</strong>g to pre-signed contract. The mechanism that regulates such activity<br />

is <strong>the</strong> clean development mechanism (CDM) of <strong>the</strong> Kyoto prorocol. Under <strong>the</strong> CDM<br />

<strong>in</strong>dustrialized countries can purchase greenhouse gas emission reductions from<br />

develop<strong>in</strong>g countries to help meet <strong>the</strong>ir obligations under <strong>the</strong> Kyoto Protocol.<br />

8.1. Background<br />

The Clean Development Mechanism (CDM) proposed under article 12 of <strong>the</strong> Kyoto<br />

Protocol is an important potential <strong>in</strong>strument to promote <strong>for</strong>eign <strong>in</strong>vestment <strong>in</strong><br />

greenhouse gas emission reduction options while simultaneously address<strong>in</strong>g <strong>the</strong> issue<br />

of susta<strong>in</strong>able development.<br />

The Clean Development Mechanism (CDM) is one of <strong>the</strong> Kyoto Protocol programs<br />

<strong>for</strong> <strong>the</strong> reduction of greenhouse gas (GHG) emission. Under <strong>the</strong> CDM, an<br />

<strong>in</strong>dustrialized country with a greenhouse gas reduction target can <strong>in</strong>vest <strong>in</strong> a project <strong>in</strong><br />

a develop<strong>in</strong>g country without a target <strong>and</strong> claim credit <strong>for</strong> <strong>the</strong> emissions that <strong>the</strong><br />

project achieves. German companies, <strong>for</strong> <strong>in</strong>stance, <strong>in</strong>vested <strong>in</strong> a w<strong>in</strong>d power project <strong>in</strong><br />

<strong>Egypt</strong>, thus replac<strong>in</strong>g electricity that would o<strong>the</strong>rwise have been produced from coal.<br />

<strong>Egypt</strong> <strong>the</strong>n sold <strong>the</strong> credit <strong>for</strong> <strong>the</strong> emissions that have been avoided to Germany<br />

which, <strong>in</strong> turn, used <strong>the</strong>m to meet its own greenhouse gas reduction target.<br />

Both sides benefit from CDM projects. For <strong>in</strong>dustrialized countries, <strong>the</strong> CDM greatly<br />

reduces <strong>the</strong> cost of meet<strong>in</strong>g <strong>the</strong> reduction commitments that <strong>the</strong>y agreed to under <strong>the</strong><br />

Kyoto Protocol. Develop<strong>in</strong>g countries receive f<strong>in</strong>ancial <strong>and</strong> technical assistance <strong>in</strong><br />

upgrad<strong>in</strong>g <strong>the</strong>ir energy <strong>in</strong>frastructure <strong>and</strong> can sell certified emission reductions <strong>for</strong><br />

profit. This diversification of external earn<strong>in</strong>gs will reduce oil-export<strong>in</strong>g countries'<br />

dependence on <strong>the</strong> highly volatile world oil price.<br />

<strong>Egypt</strong> is striv<strong>in</strong>g to develop efficient, transparent <strong>and</strong> strong criteria <strong>and</strong> <strong>in</strong>stitutions<br />

<strong>for</strong> <strong>the</strong> market<strong>in</strong>g, approval <strong>and</strong> control of CDM projects, thus mak<strong>in</strong>g <strong>the</strong> country<br />

attractive <strong>for</strong> <strong>in</strong>ternational CDM <strong>in</strong>vestors <strong>and</strong> ensur<strong>in</strong>g <strong>the</strong> efficient implementation<br />

of CDM projects. The private sector will play an important role <strong>in</strong> this process, be it<br />

as project hosts, <strong>in</strong> project design <strong>and</strong> implementation, or <strong>in</strong> <strong>the</strong> verification of<br />

emission reductions. Donors <strong>and</strong> governmental authorities are <strong>the</strong> potential facilitators<br />

of CDM projects. Environment 2007 <strong>the</strong>re<strong>for</strong>e <strong>in</strong>tends to <strong>in</strong>crease awareness <strong>and</strong><br />

br<strong>in</strong>g toge<strong>the</strong>r bus<strong>in</strong>esses <strong>and</strong> <strong>the</strong> various f<strong>in</strong>anc<strong>in</strong>g <strong>in</strong>stitutions <strong>in</strong> order to ensure <strong>the</strong>ir<br />

full participation <strong>in</strong> <strong>the</strong> CDM process.<br />

71


The United Nations Framework Convention on Climate Change – UNFCCC was<br />

agreed at <strong>the</strong> United Nations Conference on Environment <strong>and</strong> Development<br />

(UNCED) <strong>in</strong> Rio de Janeiro, 1992. This agreement aims at <strong>the</strong> stabilization of<br />

greenhouse gases <strong>in</strong> <strong>the</strong> atmosphere, at a level that would prevent dangerous changes<br />

to <strong>the</strong> climate.<br />

The UNFCCC adopted Kyoto Protocol at <strong>the</strong> third conference of parties (COP3) <strong>in</strong><br />

Kyoto, Japan <strong>in</strong> 1997. The Protocol sets b<strong>in</strong>d<strong>in</strong>g commitments by 39 developed<br />

countries <strong>and</strong> economies <strong>in</strong> transition, listed <strong>in</strong> Annex B, to reduce <strong>the</strong>ir greenhouse<br />

gas emissions by an average of 5.2 per cent on 1990 levels (<strong>the</strong> first commitment<br />

period, 2008 - 2012).<br />

The UNFCCC divides countries <strong>in</strong> two ma<strong>in</strong> groups: Annex I parties that <strong>in</strong>clude <strong>the</strong><br />

<strong>in</strong>dustrialized countries <strong>and</strong> countries with “economies <strong>in</strong> transition” /EITs (<strong>the</strong><br />

Russian Federation, <strong>the</strong> Baltic States <strong>and</strong> several o<strong>the</strong>r Central <strong>and</strong> <strong>East</strong>ern European<br />

countries). All <strong>the</strong> o<strong>the</strong>rs are called non-Annex I countries.<br />

Annex I countries that have ratified <strong>the</strong> Kyoto Protocol can <strong>in</strong>vest <strong>in</strong> projects that both<br />

reduce greenhouse gases <strong>and</strong> contribute to susta<strong>in</strong>able development <strong>in</strong> non-Annex I<br />

countries. A CDM project provides certified emissions reductions (CERs) to Annex I<br />

countries, which <strong>the</strong>y can use to meet <strong>the</strong>ir greenhouse gas reduction commitments<br />

under <strong>the</strong> Kyoto Protocol. Article 12 of <strong>the</strong> Kyoto Protocol sets out three goals <strong>for</strong> <strong>the</strong><br />

CDM: i) To help mitigate climate change; ii) To assist Annex I countries atta<strong>in</strong> <strong>the</strong>ir<br />

emission reduction commitments, <strong>and</strong> iii) To assist develop<strong>in</strong>g countries <strong>in</strong> achiev<strong>in</strong>g<br />

susta<strong>in</strong>able development.<br />

In addition to contribute towards susta<strong>in</strong>able development, CDM project c<strong>and</strong>idates<br />

look<strong>in</strong>g <strong>for</strong> approval under <strong>the</strong> CDM must lead to real, measurable reductions <strong>in</strong><br />

greenhouse gas emissions, or lead to <strong>the</strong> measurable absorption (or “sequestration”) of<br />

greenhouse gases <strong>in</strong> a develop<strong>in</strong>g country. The six greenhouse gases <strong>and</strong> gas classes<br />

com<strong>in</strong>g from varied sources of <strong>the</strong> economy are: carbon dioxide "CO2" (source: fossil<br />

fuel combustion; de<strong>for</strong>estation; agriculture); methane "CH4" (source: agriculture; l<strong>and</strong><br />

use change; biomass burn<strong>in</strong>g; l<strong>and</strong>fills); nitrous oxide "N2O" (source: fossil fuel<br />

combustion; <strong>in</strong>dustrial; agriculture); hydrofluorocarbons "HFCs" (source: <strong>in</strong>dustrial<br />

/manufactur<strong>in</strong>g); perfluorocarbons "PFCs" (source: <strong>in</strong>dustrial/manufactur<strong>in</strong>g); sulphur<br />

hexafluoride "SF6" (source: electricity transmission; manufactur<strong>in</strong>g(.<br />

The basel<strong>in</strong>e <strong>for</strong> a CDM project is <strong>the</strong> scenario used to show <strong>the</strong> trend of<br />

anthropogenic greenhouse gas emissions that would occur <strong>in</strong> <strong>the</strong> absence of <strong>the</strong><br />

proposed CDM project. The basel<strong>in</strong>e basically shows what would be <strong>the</strong> future<br />

greenhouse gas emissions without <strong>the</strong> CDM project <strong>in</strong>tervention. Each CDM project<br />

has to develop its own basel<strong>in</strong>e. Once a basel<strong>in</strong>e methodology has been approved by<br />

<strong>the</strong> Executive Board, o<strong>the</strong>r projects can use it too. For small-scale projects, guidance<br />

is provided on st<strong>and</strong>ard basel<strong>in</strong>es.<br />

Greenhouse gas emissions from a CDM project activity must be reduced below those<br />

that would have occurred <strong>in</strong> <strong>the</strong> absence of <strong>the</strong> project. It must be shown that <strong>the</strong><br />

project would not have been implemented without <strong>the</strong> CDM. Without this<br />

“additionality” requirement, <strong>the</strong>re is no guarantee that CDM projects will create<br />

72


<strong>in</strong>cremental greenhouse gas emissions reductions equivalent to those that would have<br />

been made <strong>in</strong> Annex I countries, or play a role <strong>in</strong> <strong>the</strong> ultimate objective of stabiliz<strong>in</strong>g<br />

atmospheric greenhouse gas concentrations.<br />

CERs generated by CDM projects that are used by Annex 1 countries to meet <strong>the</strong>ir<br />

Kyoto targets allow emissions <strong>in</strong> <strong>the</strong>se countries to rise. There<strong>for</strong>e if CERs are<br />

awarded to activities that would happen without <strong>the</strong> CDM project, i.e. <strong>for</strong> reductions<br />

that would occur anyway, Annex 1 emissions are allowed to rise without a<br />

correspond<strong>in</strong>g cut elsewhere, <strong>the</strong>reby rais<strong>in</strong>g global emissions. The only w<strong>in</strong>ners are<br />

<strong>the</strong> buyers of cheap credits, because host countries do not receive new <strong>in</strong>vestment <strong>and</strong><br />

climate change is not be<strong>in</strong>g mitigated.<br />

CDM projects assist develop<strong>in</strong>g countries to achieve susta<strong>in</strong>able development.<br />

Industrialized countries have developed domestic policies to comply with <strong>the</strong> Kyoto<br />

Protocol. This has led to a grow<strong>in</strong>g dem<strong>and</strong> <strong>for</strong> carbon credits. Develop<strong>in</strong>g countries<br />

may supply such carbon credits. While many factors <strong>in</strong>fluence <strong>the</strong> size <strong>and</strong> stability of<br />

<strong>the</strong> global market, facts <strong>in</strong>dicate that this market would move billions of dollars a<br />

year, <strong>in</strong>creas<strong>in</strong>g <strong>for</strong>eign <strong>in</strong>vestment capital flow <strong>in</strong> develop<strong>in</strong>g countries.<br />

Accord<strong>in</strong>g to <strong>the</strong> Kyoto Protocol, <strong>in</strong>vestments <strong>in</strong> various sectors of non-Annex I<br />

countries may qualify <strong>for</strong> CDM credits <strong>in</strong> 1) energy fuel combustion: energy<br />

<strong>in</strong>dustries; manufactur<strong>in</strong>g <strong>in</strong>dustries <strong>and</strong> construction; transport; o<strong>the</strong>r sectors; 2)<br />

Fugitive emissions from fuels: solid fuels; oil <strong>and</strong> natural gas; 3) <strong>in</strong>dustrial processes:<br />

m<strong>in</strong>eral products; chemical <strong>in</strong>dustry; metal production; o<strong>the</strong>r production; production<br />

<strong>and</strong> consumption of halocarbons <strong>and</strong> sulphur hexaflouride; 4) solvent; 5) agriculture:<br />

enteric fermentation; manure management; rice cultivation; agricultural soils;<br />

prescribed burn<strong>in</strong>g of savannas; filed burn<strong>in</strong>g of agricultural residues; 6) solid waste<br />

disposal on l<strong>and</strong>; wastewater h<strong>and</strong>l<strong>in</strong>g; waste <strong>in</strong>c<strong>in</strong>eration; 7) l<strong>and</strong>-use, l<strong>and</strong>-use<br />

change, <strong>and</strong> <strong>for</strong>estry: af<strong>for</strong>estation; re<strong>for</strong>estation; avoided de<strong>for</strong>estation <strong>for</strong> <strong>the</strong>rmal<br />

energy <strong>in</strong> small-scale projects.<br />

8.2. Clean Development Mechanism (CDM) achievements <strong>in</strong> <strong>Egypt</strong><br />

Clean Development Mechanism is one of Kyoto Protocol three mechanisms which<br />

<strong>in</strong>clude Jo<strong>in</strong>t Implementation <strong>and</strong> Emissions Trad<strong>in</strong>g. The aim from apply<strong>in</strong>g CDM is<br />

<strong>the</strong> implementation of projects reduc<strong>in</strong>g greenhouse gas emissions from different<br />

sectors such as <strong>in</strong>dustry, waste recycl<strong>in</strong>g, transport, switch<strong>in</strong>g to usage of natural gas<br />

as a fuel, <strong>and</strong> af<strong>for</strong>estation to absorb greenhouse gas. These projects contribute to<br />

achiev<strong>in</strong>g susta<strong>in</strong>able development goals, create job opportunities, produce additional<br />

f<strong>in</strong>ancial return from sell<strong>in</strong>g carbon reduction certificates as a result.<br />

Dur<strong>in</strong>g 2007, NCCC held 6 meet<strong>in</strong>gs (3 <strong>for</strong> <strong>the</strong> <strong>Egypt</strong>ian Bureau <strong>for</strong> CDM (EB-CDM)<br />

<strong>and</strong> <strong>the</strong> <strong>Egypt</strong>ian Council <strong>for</strong> CDM (EC-CDM)). Seventeen CDM projects have been<br />

approved <strong>and</strong> Letters of No-Objection (LoN) have been issued (first phase of project<br />

approval). Such projects <strong>in</strong>clude:<br />

1. Abatement of nitrous oxide from <strong>the</strong> acid factory, Delta Fertilizers <strong>and</strong> Chemical<br />

Industries.<br />

73


2. Abatement of nitrous oxide from <strong>the</strong> acid factory, KIMA Chemical Industries.<br />

3. Abatement of nitrous oxide from <strong>the</strong> acid factory, Nasr Fertilizers <strong>and</strong> Chemical<br />

Industries.<br />

4. Fuel switch<strong>in</strong>g <strong>and</strong> reduction of cl<strong>in</strong>ker, National Cement Company.<br />

5. Fuel switch<strong>in</strong>g <strong>in</strong> <strong>in</strong>dustrial processes, El-Delta Steel Company.<br />

6. Equipment replacement <strong>and</strong> fuel switch<strong>in</strong>g, El-Max Sal<strong>in</strong>as Company,<br />

Alex<strong>and</strong>ria.<br />

7. L<strong>and</strong> fill<strong>in</strong>g, treatment, <strong>and</strong> recycl<strong>in</strong>g, Sou<strong>the</strong>rn Region, Cairo Governorate.<br />

8. Installation of cogeneration unit operat<strong>in</strong>g by gas recovered from <strong>the</strong> <strong>in</strong>dustrial<br />

processes, Alex<strong>and</strong>ria Carbon Black Company.<br />

9. Replacement of fuel oil by natural gas, Dakahlia Sp<strong>in</strong>n<strong>in</strong>g <strong>and</strong> Weav<strong>in</strong>g<br />

Company.<br />

10. Replacement of light oil <strong>and</strong> coke gas by natural gas as a fuel <strong>for</strong> furnaces, Nasr<br />

Forg<strong>in</strong>g Company.<br />

11. Fuel Switch<strong>in</strong>g from Light Oil to Natural Gas <strong>in</strong> Spr<strong>in</strong>g <strong>and</strong> Transport Needs<br />

Manufactur<strong>in</strong>g Co.<br />

12. Methane Reduction by Compost<strong>in</strong>g of Municipal Waste from Cairo North <strong>and</strong><br />

West.<br />

13. Capture <strong>and</strong> flar<strong>in</strong>g of biologically-generated methane from Abu Zaabal<br />

l<strong>and</strong>fills,Qalyubia.<br />

14. Replacement of light oil by natural gas, Damietta Sp<strong>in</strong>n<strong>in</strong>g <strong>and</strong> Weav<strong>in</strong>g<br />

Company.<br />

15. Reduction of sodium carbonate, Nile Oils <strong>and</strong> Detergents Company.<br />

16. Reduction of CO2 emissions, <strong>Egypt</strong> <strong>for</strong> Oils <strong>and</strong> Soap Company.<br />

17. Switch<strong>in</strong>g fuel from heavy oil to natural gas, El-Nasr Wool <strong>and</strong> Selected Textile<br />

Company (STIA).<br />

8.3. <strong>Egypt</strong> National Strategy on <strong>the</strong> CDM<br />

<strong>Egypt</strong> has participated to <strong>the</strong> National Strategy Studies (NSS) Program, launched by<br />

<strong>the</strong> Government of Switzerl<strong>and</strong> <strong>and</strong> <strong>the</strong> World Bank <strong>in</strong> 1997.<br />

This program has assisted <strong>Egypt</strong> <strong>in</strong> <strong>the</strong> development of <strong>the</strong> CDM Strategy which was<br />

undertaken <strong>in</strong> collaboration with <strong>the</strong> M<strong>in</strong>istry of State <strong>for</strong> Environmental Affairs <strong>and</strong><br />

<strong>Egypt</strong>ian Environmental Affairs Agency (EEAA).<br />

The <strong>Egypt</strong>‟s NSS on <strong>the</strong> CDM aims at ma<strong>in</strong>stream<strong>in</strong>g environment <strong>in</strong>to <strong>the</strong> relevant<br />

sectors <strong>and</strong> m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> environmental impacts of development, through<br />

identification of priority policies <strong>and</strong> plann<strong>in</strong>g <strong>for</strong> <strong>the</strong>ir implementation.<br />

1- Ratification on <strong>the</strong> United Nations Framework Convention on Climate<br />

Change, <strong>the</strong> issuance of Law 4/1994 <strong>for</strong> <strong>the</strong> Protection of <strong>the</strong> Environment,<br />

<strong>and</strong> <strong>the</strong> participation <strong>in</strong> various <strong>in</strong>ternational workshops <strong>and</strong> conferences<br />

related to climate change to avoid hav<strong>in</strong>g any <strong>in</strong>ternational obligations on<br />

develop<strong>in</strong>g countries, <strong>in</strong>clud<strong>in</strong>g <strong>Egypt</strong> .<br />

2- Ratification of Kyoto's Protocol, <strong>and</strong> <strong>the</strong> establishment of <strong>the</strong> <strong>Egypt</strong>ian<br />

Designated National Authority <strong>for</strong> Clean Development Mechanism (DNA);<br />

74


consist<strong>in</strong>g of <strong>the</strong> <strong>Egypt</strong>ian Bureau <strong>and</strong> <strong>the</strong> <strong>Egypt</strong>ian Council <strong>for</strong> Clean<br />

Development Mechanism.<br />

3- M<strong>in</strong>istry of Electricity <strong>and</strong> Energy: establishment several projects <strong>in</strong> <strong>the</strong> field<br />

of New <strong>and</strong> Renewable Energy (W<strong>in</strong>d - Solar - Hydro - Bio), <strong>and</strong> encourag<strong>in</strong>g<br />

Energy Efficiency Projects .<br />

4- M<strong>in</strong>istry of State <strong>for</strong> Environmental Affairs: establish<strong>in</strong>g guid<strong>in</strong>g schemes <strong>for</strong><br />

private sector to encourage <strong>in</strong>vestments <strong>in</strong> <strong>the</strong> field of clean energy projects,<br />

waste recycl<strong>in</strong>g, <strong>and</strong> af<strong>for</strong>estation .<br />

5- Maximiz<strong>in</strong>g <strong>the</strong> benefit from Kyoto Protocol Mechanisms through<br />

implement<strong>in</strong>g Clean Development Mechanism Projects .<br />

In addition to <strong>the</strong> State's concern <strong>in</strong> maximiz<strong>in</strong>g <strong>the</strong> benefit from Kyoto Protocol<br />

Mechanisms, especially Clean Development Mechanism, it established <strong>the</strong><br />

<strong>Egypt</strong>ian Designated National Authority <strong>for</strong> Clean Development Mechanism<br />

(DNA-CDM), <strong>in</strong>stantly after ratify<strong>in</strong>g <strong>the</strong> protocol <strong>and</strong> its entrance <strong>in</strong>to <strong>for</strong>ce <strong>in</strong><br />

2005. The DNA has achieved tangible progress <strong>in</strong> several sectors, 36 projects<br />

have been approved with<strong>in</strong> <strong>the</strong> framework of <strong>the</strong> Mechanism. This is <strong>in</strong>clud<strong>in</strong>g <strong>the</strong><br />

sectors of: New <strong>and</strong> Renewable Energy, Industry, Waste Recycl<strong>in</strong>g, Af<strong>for</strong>estation,<br />

Energy Efficiency, <strong>and</strong> Fuel Switch<strong>in</strong>g to Natural Gas. This is <strong>for</strong> an estimated<br />

total cost of 1200 Million US Dollar. These projects are considered as a source <strong>for</strong><br />

attract<strong>in</strong>g <strong>for</strong>eign <strong>in</strong>vestments, provid<strong>in</strong>g employment opportunities, <strong>and</strong><br />

contribut<strong>in</strong>g <strong>in</strong> <strong>the</strong> implementation of Susta<strong>in</strong>able Development plans <strong>in</strong> <strong>Egypt</strong>.<br />

8.4. The national regulatory framework<br />

The law number 4 of 1994 <strong>and</strong> its executive regulation conta<strong>in</strong> <strong>the</strong> national policy <strong>and</strong><br />

regulatory framework govern<strong>in</strong>g <strong>the</strong> growth <strong>and</strong> competitiveness of <strong>the</strong> agro residue<br />

based biomass sector. In <strong>the</strong> protection of air environment from pollution section<br />

article (36) said that <strong>in</strong> carry<strong>in</strong>g out <strong>the</strong>ir activities, establishments subject to <strong>the</strong><br />

provisions of this law are held to ensure that emissions or leakages of air pollutants do<br />

not exceed <strong>the</strong> maximum limits permitted <strong>and</strong> Article (38) Concern about dump, treat<br />

or burn garbage <strong>and</strong> solid waste, while Article (42) talk about <strong>the</strong> consideration which<br />

should be given by <strong>the</strong> competent bodies, accord<strong>in</strong>g to <strong>the</strong>ir activities, when burn<strong>in</strong>g<br />

any type of fuel or o<strong>the</strong>r substance, <strong>and</strong> <strong>the</strong> Precautions, Permissible limits, <strong>and</strong><br />

Specification of Chimneys While Article (45)Talk about <strong>the</strong> necessary precautions<br />

<strong>and</strong> procedures laid down by <strong>the</strong> M<strong>in</strong>istry of Manpower <strong>and</strong> Employment to prevent<br />

<strong>the</strong> leakage or emission of air pollutants <strong>in</strong>side <strong>the</strong> work. Annex I conta<strong>in</strong> <strong>the</strong><br />

executive regulation of law number 4 of 1994 which govern<strong>in</strong>g <strong>the</strong> growth <strong>and</strong><br />

competitiveness of <strong>the</strong> agro residue based biomass sector.<br />

75


9. Analysis of <strong>the</strong> <strong>Egypt</strong>ian context <strong>and</strong> applicability of vermiculture<br />

as a means of greenhouse gas emission reduction.<br />

In <strong>the</strong> waste sector, <strong>the</strong> <strong>Egypt</strong>ian relevant m<strong>in</strong>istries, <strong>in</strong> collaboration with concerned<br />

governorates, have developed several plans <strong>and</strong> programs over <strong>the</strong> past ten years to<br />

improve <strong>the</strong> process of collection, reuse <strong>and</strong> recycl<strong>in</strong>g of waste, yet <strong>the</strong>re are several<br />

barriers to achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong>se programs. These <strong>in</strong>clude f<strong>in</strong>ancial constra<strong>in</strong>ts<br />

<strong>for</strong> <strong>the</strong> mitigation of greenhouse gass emissions from <strong>the</strong> waste sector; <strong>the</strong> significant<br />

dependence on external f<strong>in</strong>ancial support, as grants <strong>and</strong> concessionary loans,<br />

complicat<strong>in</strong>g <strong>the</strong> plann<strong>in</strong>g process <strong>and</strong> slow<strong>in</strong>g down implementation; limited public<br />

awareness about <strong>the</strong> economic benefits of reuse <strong>and</strong> recycl<strong>in</strong>g of waste leads, lead<strong>in</strong>g<br />

to <strong>the</strong> hesitation of fund<strong>in</strong>g <strong>in</strong>stitutions to consider waste management activity as a<br />

viable option; <strong>the</strong> need of technology transfer <strong>and</strong> high <strong>in</strong>vestments <strong>for</strong> some waste<br />

treatment options, such as anaerobic digestion; <strong>the</strong> weak en<strong>for</strong>cement of exist<strong>in</strong>g laws<br />

<strong>and</strong> regulations <strong>for</strong> violations <strong>in</strong> h<strong>and</strong>l<strong>in</strong>g waste.<br />

9.1. Profile of wastes <strong>in</strong> <strong>Egypt</strong><br />

9.1.1. Municipal solid waste<br />

Waste <strong>in</strong> <strong>Egypt</strong> can be considered as constituted of solid waste <strong>and</strong> wastewater. The<br />

total annual amount of solid waste produced <strong>in</strong> <strong>Egypt</strong> is about 17 Mt accord<strong>in</strong>g to <strong>the</strong><br />

year 2000 estimates. The amount of accumulated solid waste (i.e. waste not collected<br />

<strong>and</strong> dumped <strong>in</strong> disposal sites but ra<strong>the</strong>r dumped on roads <strong>and</strong> empty l<strong>and</strong>s) was<br />

estimated to be about 9.7 Mt <strong>for</strong> <strong>the</strong> year 2000, with a total volume of 36,098,936 m 3<br />

(EEAA 2007). This solid waste can be categorized <strong>in</strong>to municipal waste, <strong>in</strong>dustrial<br />

waste, agriculture waste, waste from clean<strong>in</strong>g waterways <strong>and</strong> healthcare waste.<br />

Household waste constitutes about 60% of <strong>the</strong> total municipal waste quantities, with<br />

<strong>the</strong> rema<strong>in</strong><strong>in</strong>g 40% be<strong>in</strong>g generated by commercial establishments, service<br />

<strong>in</strong>stitutions, streets <strong>and</strong> gardens, hotels <strong>and</strong> o<strong>the</strong>r enterta<strong>in</strong>ment sector entities. Per<br />

capita generation rates <strong>in</strong> <strong>Egypt</strong>ian cities, villages <strong>and</strong> towns vary from lower than 0.3<br />

kg <strong>for</strong> low socio-economic groups <strong>and</strong> rural areas, to more than 1 kg <strong>for</strong> higher liv<strong>in</strong>g<br />

st<strong>and</strong>ards <strong>in</strong> urban centers. On a nationwide average, <strong>the</strong> composition is about 50-60%<br />

food wastes, 10-20% paper, <strong>and</strong> 1-7% each of metals, cloth, glass, <strong>and</strong> plastics, <strong>and</strong><br />

<strong>the</strong> rema<strong>in</strong>der is basically <strong>in</strong>organic matter <strong>and</strong> o<strong>the</strong>rs.<br />

Currently, solid waste quantities h<strong>and</strong>led by waste management systems are estimated<br />

at about 40,000 tons per day, with 30,000 tons per day be<strong>in</strong>g produced <strong>in</strong> cities, <strong>and</strong><br />

<strong>the</strong> rest generated from <strong>the</strong> pre-urban <strong>and</strong> rural areas. Various studies <strong>in</strong>dicate low<br />

waste collection efficiencies, vary<strong>in</strong>g between less than 35% <strong>in</strong> small prov<strong>in</strong>cial<br />

towns to 77% <strong>in</strong> large cities.<br />

F<strong>in</strong>al dest<strong>in</strong>ations of municipal solid waste entail about 8% of <strong>the</strong> waste be<strong>in</strong>g<br />

composted, 2% recycled, 2% l<strong>and</strong>filled, <strong>and</strong> 88% dumped <strong>in</strong> uncontrolled open<br />

dumps. In this respect, 16 l<strong>and</strong>fills exist <strong>in</strong> <strong>Egypt</strong>: 7 <strong>in</strong> <strong>the</strong> Greater Cairo Region, 5 <strong>in</strong><br />

<strong>the</strong> Delta governorates <strong>and</strong> 4 <strong>in</strong> Upper <strong>Egypt</strong>. Their capacities range between 0.5 <strong>and</strong><br />

76


12 Mt per day. They are usually operated by private entities. Recently, 53 sites have<br />

been identified <strong>for</strong> new l<strong>and</strong>fills, <strong>and</strong> <strong>the</strong> construction of 56 compost<strong>in</strong>g plants<br />

throughout <strong>the</strong> country is underway.<br />

9.1.2. Agricultural wastes<br />

<strong>Egypt</strong> produces around 25 to 30 Mt of agriculture waste annually (around 66,000 tons<br />

per day). Some of this waste is used <strong>in</strong> <strong>the</strong> production of organic fertilizers, animal<br />

fodder, food production, energy production, or o<strong>the</strong>r useful purposes.<br />

9.2. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> solid wastes<br />

As a non-annex I country, <strong>Egypt</strong> is not required to meet any specific emission<br />

reduction or limitation targets <strong>in</strong> terms of commitments under <strong>the</strong> UNFCCC, or <strong>the</strong><br />

Kyoto protocol. However, mitigation measures are already <strong>in</strong> progress. <strong>Egypt</strong> is fully<br />

aware that greenhouse gas emissions reduction, particularly by major producers, is <strong>the</strong><br />

only measure that could ensure <strong>the</strong> mitigation of global warm<strong>in</strong>g <strong>and</strong> climate change.<br />

The mitigation measures <strong>in</strong> this section are based on those described <strong>in</strong> national plans<br />

<strong>and</strong> country studies documents (Table 9.1).<br />

Six ma<strong>in</strong> criteria have been selected <strong>for</strong> prioritization of mitigation measures <strong>in</strong> <strong>the</strong><br />

waste sector accord<strong>in</strong>g to <strong>Egypt</strong>'s Second National Communication. These entail<br />

<strong>in</strong>vestment costs; payback periods; greenhouse gases emission reductions potentials;<br />

duration of implementation; priority <strong>in</strong> national strategies/programs; <strong>and</strong> contribution<br />

to susta<strong>in</strong>able development. Mitigation options, concluded from a multi-criteria<br />

analysis, were comb<strong>in</strong>ed <strong>for</strong> each sub-sector <strong>in</strong> order to generate a number of<br />

scenarios <strong>for</strong> solid waste <strong>and</strong> wastewater. The lowest greenhouse gas emitt<strong>in</strong>g<br />

scenario was selected <strong>for</strong> implementation dur<strong>in</strong>g <strong>the</strong> period 2009 to 2025.<br />

Mitigation measures under one or more of appropriate treatment categories, <strong>the</strong><br />

associated emission reduction potential, <strong>and</strong> <strong>in</strong>vestment costs calculated <strong>for</strong> 25 years<br />

lifetime <strong>in</strong> simple l<strong>in</strong>ear amortization cost, are summarized <strong>in</strong> tables (III.6) <strong>and</strong> (III.7)<br />

<strong>for</strong> solid waste <strong>and</strong> wastewater, respectively (EEAA, 2007).<br />

77


Table 9.1. Summary of identified mitigation measures <strong>for</strong> solid wastes.<br />

Mitigation Measure<br />

78<br />

Emission<br />

reduction<br />

potential<br />

(ton CO2e per<br />

ton MSW)<br />

Investment cost<br />

(US$/ton MSW)<br />

Compost<strong>in</strong>g <strong>and</strong> recycl<strong>in</strong>g facilities 0.38 0.92<br />

Refuse Derived Fuel (RDF) with<br />

electricity generation only,<br />

compost<strong>in</strong>g, <strong>and</strong> recycl<strong>in</strong>g<br />

Refuse Derived Fuel (RDF) with<br />

substitution <strong>in</strong> cement kiln,<br />

compost<strong>in</strong>g, <strong>and</strong> recycl<strong>in</strong>g facilities<br />

Anaerobic digestion with recycl<strong>in</strong>g<br />

(flar<strong>in</strong>g biogas)<br />

Anaerobic digestion with recycl<strong>in</strong>g<br />

facilities (with electricity<br />

generation)<br />

Source: EEAA (2010).<br />

< 0.3<br />

< 0.3<br />

2.07<br />

1.97<br />

0.342 12.16<br />

0.547<br />

16.16<br />

The <strong>Egypt</strong>ian relevant m<strong>in</strong>istries, <strong>in</strong> close collaboration with concerned governorates,<br />

have developed several plans <strong>and</strong> programs over <strong>the</strong> past ten years to improve <strong>the</strong><br />

process of deal<strong>in</strong>g with waste reduction, reuse, recycl<strong>in</strong>g <strong>and</strong>/or proper disposal.<br />

These plans <strong>and</strong> programs lead to <strong>the</strong> reduction <strong>in</strong> emissions from <strong>the</strong> waste sector.<br />

Yet <strong>the</strong>re are several barriers to achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong>se programs. These<br />

comprise <strong>the</strong> follow<strong>in</strong>g:<br />

Although f<strong>in</strong>ancial support <strong>for</strong> mitigation of greenhouse gases emissions from<br />

<strong>the</strong> waste sector <strong>in</strong> <strong>Egypt</strong> has <strong>in</strong>creased significantly over <strong>the</strong> last years, it still<br />

represents a clear constra<strong>in</strong>t <strong>in</strong> <strong>the</strong> implementation of <strong>the</strong> <strong>in</strong>tended programs.<br />

The significant dependence on external f<strong>in</strong>ancial support, as grants <strong>and</strong><br />

concessionary loans, complicates <strong>the</strong> plann<strong>in</strong>g process, <strong>and</strong> slows down<br />

implementation.<br />

The limited public awareness about <strong>the</strong> economic benefits of mitigation options<br />

<strong>in</strong> <strong>the</strong> waste sector leads to <strong>the</strong> hesitation of fund<strong>in</strong>g <strong>in</strong>stitutions to consider<br />

waste management activity as an economically viable option.<br />

Technology transfer represents ano<strong>the</strong>r barrier ma<strong>in</strong>ly <strong>in</strong> anaerobic digestion<br />

technologies as it needs high capital <strong>in</strong>vestment <strong>and</strong> skills to operate correctly.<br />

Some technologies are designed on site-specific bases, which are not optimal <strong>for</strong><br />

o<strong>the</strong>r regions. Highly local skilled experts <strong>and</strong> extensive studies are needed <strong>for</strong><br />

prov<strong>in</strong>g <strong>the</strong> suitability <strong>and</strong> applicability of <strong>the</strong> technology accord<strong>in</strong>g to different<br />

vary<strong>in</strong>g local conditions <strong>in</strong> <strong>Egypt</strong>.<br />

All parties <strong>in</strong> <strong>the</strong> waste sector are relatively of limited environmental<br />

management experience <strong>and</strong> <strong>the</strong> mechanisms <strong>for</strong> coord<strong>in</strong>ation with EEAA are<br />

not well established. Fur<strong>the</strong>rmore, privatization of <strong>the</strong> waste sector lacks clear


modalities <strong>for</strong> partnership, particularly with regards to private-public<br />

partnership.<br />

Weak en<strong>for</strong>cement of exist<strong>in</strong>g laws <strong>and</strong> regulations <strong>for</strong> violations <strong>in</strong> h<strong>and</strong>l<strong>in</strong>g<br />

waste reduces <strong>the</strong> opportunity <strong>for</strong> achiev<strong>in</strong>g <strong>the</strong> goals of <strong>the</strong> planned programs.<br />

9.3. Mitigat<strong>in</strong>g greenhouse gas from <strong>the</strong> agriculture wastes<br />

As <strong>the</strong> activities of agriculture are too complicated <strong>and</strong> <strong>the</strong> share of emission from all<br />

agriculture activities is almost 16%, it was not mentioned <strong>in</strong> <strong>the</strong> mitigation options <strong>for</strong><br />

<strong>the</strong> National Communication of <strong>Egypt</strong>. Although no studies have been reported on <strong>the</strong><br />

mitigation from <strong>the</strong> agricultural wastes, vermicompost could save considerable<br />

amounts of greenhouse gases from reduc<strong>in</strong>g <strong>the</strong> amount of crop residues burned.<br />

Fur<strong>the</strong>r studies are still required to elaborate on this subject.<br />

79


References<br />

Aldadi, H.; A.R. Parvaresh; M. R. Shahmansouri <strong>and</strong> H. Pourmoghadas. 2005. Heavy<br />

Metals Bioaccumulation by Iranian <strong>and</strong> Australian Earthworms (Eisenia fetida)<br />

<strong>in</strong> <strong>the</strong> Sewage Sludge Vermicompost<strong>in</strong>g. Iranian J F.w Health Sci Eng, 2 (1), pp:<br />

28-32.<br />

Atiyeh, R. M.; S. Subler; C. A. Edwards; G. Bachman; J. D. Metzger <strong>and</strong> W. Shuster.<br />

2000. Effects of vermicomposts <strong>and</strong> composts on plant growth <strong>in</strong> horticultural<br />

conta<strong>in</strong>er media <strong>and</strong> soil. Pedobiologia, 44, pp: 579–590.<br />

Atiyeh, R.M.; S. Lee; C. A. Edwards; N. Q. Arancon, <strong>and</strong> J. D. Metzger. 2002. The<br />

<strong>in</strong>fluence of humic acids derived from earthworm-processed organic wastes on<br />

plant growth. Bioresource Technology 84, pp: 7–14.<br />

Bachman, G.R. <strong>and</strong> J. D. Metzger 2008. Growth of bedd<strong>in</strong>g plants <strong>in</strong> commercial<br />

pott<strong>in</strong>g substrate amended with vermicompost, Bioresource Technology, 99 (8),<br />

pp: 3155-3161.<br />

Basavaiah C. 2008. Karnataka Compost Development Corporation Ltd. (Government<br />

of Karnataka), <strong>Near</strong> Kudlu, Madiwala Post, Hosur Road, Bangalore – 560 068,<br />

Karnataka, India.<br />

Benítez, E.; R. Nogales,; G. Masci<strong>and</strong>aro, <strong>and</strong> B. Ceccanti, 2000. Isolation by<br />

isoelectric focus<strong>in</strong>g of humic-urease complexes from earthworm (Eisenia<br />

fetida)-processed sewage sludges. Biol Fertil Soils, 31, pp: 489–493.<br />

Blakemore, R. 2000. Dances with worms - Biology, ecology, taxonomy <strong>and</strong> Worm<br />

Species Suitable <strong>for</strong> Vermicompost<strong>in</strong>g. Presentations at <strong>the</strong> "Vermillennium"<br />

conference held <strong>in</strong> Kalamazoo, Michigan, pp: 16-22.<br />

Burton, M. <strong>and</strong> R. Burton. 2002. International Wildlife Encyclopedia. Marshall<br />

Cavendish, New York. Publication Year, 6, pp: 734.<br />

CAPMAS. 2010. The annual report of environment statistics. Central Agency <strong>for</strong> Public<br />

Mobilization And Statistics, 71 - 12800/2008: (http://www.capmas.gov.eg).<br />

Chakrabarty, D.; S. K. Das; <strong>and</strong> M. K. Das. 2009. Relative efficiency of<br />

vermicompost as direct application manure <strong>in</strong> pisciculture. Paddy Water Environ<br />

7, pp:27–32.<br />

Chan, Y. C; R. K. S<strong>in</strong>ha; <strong>and</strong> W. Wang, 2010. Emission of greenhouse gases from<br />

home aerobic compost<strong>in</strong>g, anaerobic digestion <strong>and</strong> vermicompost<strong>in</strong>g of<br />

household wastes <strong>in</strong> Brisbane. Australia. Waste Manager Research.<br />

(http://wmr.sagepub.com).<br />

Cortet, J.; A. G. Vauflery; N. Po<strong>in</strong>sot-Balaguer; L. Gomot,; C. Texier, , <strong>and</strong> D.<br />

Cluzeau. 1999. The use of <strong>in</strong>vertebrate soil fauna <strong>in</strong> monitor<strong>in</strong>g pollutant effects.<br />

European Journal of Soil Biology, 35, pp: 115 134.<br />

Cruz, P. S. 2005. Prospects of rais<strong>in</strong>g earthworm biomass as a substitute <strong>for</strong> fishmeal<br />

<strong>in</strong> aquaculture feeds. International Symposium - Workshop on Vermi<br />

Technologies <strong>for</strong> Develop<strong>in</strong>g Countries (ISWVT 2005).<br />

80


Daven, J. I. <strong>and</strong> R. N. Kle<strong>in</strong>. 2008. Progress <strong>in</strong> waste management research. Nova<br />

Publishers. pp392.<br />

Dom<strong>in</strong>guez, J. <strong>and</strong> C. A. Edwards. 1997. Effects of Sock<strong>in</strong>g Rate <strong>and</strong> Moisture<br />

Content on <strong>the</strong> Growth <strong>and</strong> Maturation of Eisenia Andrei (Oliogochaeta) <strong>in</strong> Pig<br />

Manure”. In Soil Biol Biochem Vol 29, #3,4, pp: 743-746.<br />

<strong>East</strong>man, B. R. ; P. N. Kane; C. A. Edwards; L. Trytek; B. Gunadi; A. L. Stermer <strong>and</strong><br />

J. R. Mobley, 2001. The Effectiveness of <strong>Vermiculture</strong> <strong>in</strong> Human Pathogen<br />

Reduction <strong>for</strong> USEPA Biosolids Stabilization. Compost Science & Utilization,<br />

(2001), 9 (1), pp: 38-49.<br />

Edwards, C. A. 1988. Breakdown of animal, vegetable <strong>and</strong> <strong>in</strong>dustrial organic wastes<br />

by earthworms, <strong>in</strong>: C.A. Edwards, E.F. Neuhauser (Eds.), Earthworms <strong>in</strong> Waste<br />

<strong>and</strong> Environmental Management, SPB Academic Publish<strong>in</strong>g, The Hague, 1988,<br />

pp. 21–31.<br />

Edwards, C. A. 2008. Can Earthworms Harm The Planet?. Bio Cycle December, 49,<br />

(12), pp53.<br />

EEAA. 1999. First National Communications of <strong>Egypt</strong>. <strong>Egypt</strong>ian Environmental<br />

Affairs Agency, IPCC, UNFCCC.<br />

EEAA. Second National Communications of <strong>Egypt</strong>. <strong>Egypt</strong>ian Environmental Affairs<br />

Agency. IPCC, UNFCCC.<br />

El-Duwe<strong>in</strong>i, A. K. <strong>and</strong> Ghabbour, I. S. .1965. Population Density <strong>and</strong> Biomass of<br />

Earthworms <strong>in</strong> Different Types of <strong>Egypt</strong>ian Soils. Journal of Applied Ecology, 2<br />

(2), pp: 271-287.<br />

Fahmi, W. S. 2005. The impact of privatization of solid waste management on <strong>the</strong><br />

Zabaleen garbage collectors of Cairo, Environment & Urbanization, 17 (2): 77.<br />

<strong>FAO</strong>. 2005. Fertilizer use by crop <strong>in</strong> <strong>Egypt</strong>. L<strong>and</strong> <strong>and</strong> Water Development Division<br />

<strong>and</strong> Plant Nutrition Management Service, Food <strong>and</strong> agriculture organization of<br />

<strong>the</strong> united nations.<br />

<strong>FAO</strong>. 2010. <strong>FAO</strong>Stat, Food <strong>and</strong> agriculture organization of <strong>the</strong> united nations:<br />

http://faostat.fao.org.<br />

Frederickson, J. 2003. Vermicompost<strong>in</strong>g trial at <strong>the</strong> worm research centre, Part 1 -<br />

technical evaluation, funded by BIFFAWARD 2002 - 2003 :<br />

www.wormresearchcentre.co.uk, S:\biffa reports worms\F<strong>in</strong>al Report app1.doc<br />

Garg, V. K.; P. Kaushik <strong>and</strong> Y. K. Yadav. 2008. Effect of stock<strong>in</strong>g density <strong>and</strong> food<br />

quality on <strong>the</strong> growth <strong>and</strong> fecundity of an epigeic earthworm (Eisenia fetida)<br />

dur<strong>in</strong>g vermicompost<strong>in</strong>g. Environmentalist 28, pp:483–488.<br />

GEORG. 2004. Feasibility of develop<strong>in</strong>g <strong>the</strong> organic <strong>and</strong> transitional farm market <strong>for</strong><br />

process<strong>in</strong>g municipal <strong>and</strong> farm organic wastes us<strong>in</strong>g large-scale<br />

vermicompost<strong>in</strong>g. The good earth organic resources group limited Sackville,<br />

Nova Scotia.<br />

Ghabbour, S. 2009. The Oligochaeta of <strong>the</strong> Nile Bas<strong>in</strong> Revisited. The Nile Orig<strong>in</strong>,<br />

Environments, Limnology <strong>and</strong> Human Use, Series: Monographiae Biologicae,<br />

89.<br />

81


Ghafoor, A.; M. Hassan <strong>and</strong> Z.H. Alvi. 2008. Biodiversity of earthworm species from<br />

various habitats of district Narowal, Pakistan. Int. J. Agri. Biol., 10, pp: 681–<br />

684.<br />

GTZ. 2004. <strong>Regional</strong> Solid Waste Management Project <strong>in</strong> Mashreq <strong>and</strong> Maghreb<br />

Countries, regional guidel<strong>in</strong>es case study: In<strong>for</strong>mal Sector Recycl<strong>in</strong>g Activities-<br />

<strong>Egypt</strong>, FINAL REPORT. German Technical Cooperation Agency.<br />

Gunadi, B.; C. A. Edwards; <strong>and</strong> IV C. Blount. 2003. The <strong>in</strong>fluence of different<br />

moisture levels on <strong>the</strong> growth, fecundity <strong>and</strong> survival of Eisenia fetida (Savigny)<br />

<strong>in</strong> cattle <strong>and</strong> pig manure solids. European Journal of Soil Biology 39, pp:19–24.<br />

Hendrix, F. P. <strong>and</strong> P. J. Bohlen. 2002. Exotic Earthworm Invasions <strong>in</strong> North America:<br />

Ecological<strong>and</strong> Policy Implications. BioScience 801, 52 (9), pp: 801-811.<br />

Hertrampf, J. W. <strong>and</strong> F. Piedad-Pascual. 2000. H<strong>and</strong>book on Ingredients <strong>for</strong><br />

Aquaculture Feeds. Kluwer academic puplishers.<br />

Hobson, A. M.; J. Frederickson <strong>and</strong> NB. Dise, 2005. CH4 <strong>and</strong> N2O from<br />

mechanically turned w<strong>in</strong>drow <strong>and</strong> vermicompost<strong>in</strong>g systems follow<strong>in</strong>g <strong>in</strong>-vessel<br />

pre-treatment. Waste Manag, 25(4), pp:345-52.<br />

Hou, J.; Y. Qian,; G. Liu <strong>and</strong> R. Dong, 2005. “The Influence of Temperature, pH <strong>and</strong><br />

C/N Ratio on <strong>the</strong> Growth <strong>and</strong> Survival of Earthworms <strong>in</strong> Municipal Solid<br />

Waste” Agricultural Eng<strong>in</strong>eer<strong>in</strong>g International: <strong>the</strong> CIGR Ejournal. Manuscript<br />

FP 04 014. VII.<br />

IGES. 2008. Climate Change Policies <strong>in</strong> <strong>the</strong> Asia-Pacific, Re-unit<strong>in</strong>g Climate Change<br />

<strong>and</strong> Susta<strong>in</strong>able Development. Institute <strong>for</strong> Global Environmental Strategies.<br />

Kangm<strong>in</strong>, Li. 2005. <strong>Vermiculture</strong> Industry <strong>in</strong> Circular Economy,<br />

http://www.wormdigest.org .<br />

Kaplan, D.L.; R. Hartenste<strong>in</strong>; E. F. Neuhauser <strong>and</strong> M. R. Malechi, 1980.<br />

Physicochemical requirements <strong>in</strong> <strong>the</strong> environment of <strong>the</strong> earthworm Eisenia<br />

foetida. Soil Biol. Biochem. 12, pp: 352:347.<br />

Kaur, V. I. <strong>and</strong> M. D. Ansal. 2010. Efficacy of vermicompost as fish pond manure –<br />

Effect on water quality <strong>and</strong> growth of Cypr<strong>in</strong>us carpio (L<strong>in</strong>n.)Bioresource<br />

Technology, Bioresource Technology, 101, Issue 15, pp: 6215-6218 .<br />

Kostecka, J. <strong>and</strong> G. Paczka. 2006. Possible use of earthworm Eisenia fetida (Sav.)<br />

biomass <strong>for</strong> breed<strong>in</strong>g aquarium fish. European Journal of Soil Biology 42, pp:<br />

S231–S233.<br />

Makkar, H. P. S. 2002. Development <strong>and</strong> field evaluation of animal feed<br />

upplementation packages (AFRA project II-17 - RAF/5/041), Animal<br />

Production <strong>and</strong> Health Section International Atomic Energy Agency IAEA-<br />

TECDOC-1294<br />

MBM-CARI-XIV, Vermicompost production, central agricultural research <strong>in</strong>stitute,<br />

<strong>and</strong>aman <strong>and</strong> nicobar isl<strong>and</strong>s, Central Agricultural Research India.:<br />

http://cari.res.<strong>in</strong>/<br />

82


Misra, R.V. <strong>and</strong> R. N. Roy. 2003. on-farm compost<strong>in</strong>g methods. L<strong>and</strong> <strong>and</strong> water<br />

disccusion paper2, Ffood <strong>and</strong> agriculture organization of <strong>the</strong> united nations<br />

<strong>FAO</strong>.<br />

MSEA. 2001. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2006. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2008. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

MSEA. 2009. Annual report (http://www.eeaa.gov.eg). M<strong>in</strong>istry of State <strong>for</strong><br />

Environmental Affairs, Cairo, <strong>Egypt</strong>.<br />

Munroe, G. 2007. Manual of On-Farm Vermicompost<strong>in</strong>g <strong>and</strong> <strong>Vermiculture</strong>. Organic<br />

Agriculture Centre of Canada: http://www.allth<strong>in</strong>gsorganic.com/How_To/01.asp.<br />

Nagavallemma, K. P.; S. P. Wani; L. Stephane; V. V. Padmaja; C. V<strong>in</strong>eela,; R. M.<br />

Babu <strong>and</strong> K.L. Sahrawat. 2004. Vermicompost<strong>in</strong>g: Recycl<strong>in</strong>g wastes <strong>in</strong>to<br />

valuable organic fertilizer. Global <strong>the</strong>meon agrecosystems report no. 8.<br />

Patancheru 502 324, Andhra Pradesh, India: Sahrawat 502324, Andhra Pradesh,<br />

India: International Crops Research Institute <strong>for</strong> <strong>the</strong> Semi-Arid Tropics. P.<br />

Ecoscience Research Foundation: http://www.erf<strong>in</strong>dia.org.<br />

Nourbakhsh, F. 2007. Influence of vermicompost<strong>in</strong>g on solid wastes decomposition<br />

k<strong>in</strong>etics <strong>in</strong> soils. Journal of Zhejiang University. Science. B, 8(10), pp: 725–730.<br />

Padmavathiamma, P. K.; L. Y. Li <strong>and</strong> U. R. Kumari. 2008. An experimental study of<br />

vermibiowaste compost<strong>in</strong>g <strong>for</strong> agricultural soil improvement. Bioresource<br />

Technology, 99 (6), pp: 1672-1681.<br />

Re<strong>in</strong>ecke, A.J. <strong>and</strong> J. M. Venter. 1987. Moisture preferences, growth <strong>and</strong> reproduction<br />

of <strong>the</strong> compost worm Eisenia fetida (oligochaeta), Biol. Fertil. Soils, pp: 135–<br />

141.<br />

Rizhiya, E.; C. Bertora; P. C. J. V. vlit; P. J. Kuikman; J. H. Faber <strong>and</strong> J. W. V.<br />

Groenigen. 2007. Earthworm activity as a determ<strong>in</strong>ant <strong>for</strong> N2O emission from<br />

crop residue, Soil biology <strong>and</strong> biochemistry, 39 (8), pp: 2058-2069.<br />

Sa<strong>in</strong>i, V. K., 2008. Relative efficacy of two methods of vermicompost<strong>in</strong>g <strong>for</strong> biodegradation<br />

of organic wastes, Int. J. Environment <strong>and</strong> waste management, Vol.<br />

2, Nos. 1/2.<br />

Sherman, R. 2003. Rais<strong>in</strong>g Earthworms Successfully, North Carol<strong>in</strong>a Cooperative<br />

Extension Service; (http://www.bae.ncsu.edu).<br />

Sh<strong>in</strong>er, A. 2009. Aquaculture 2.0. Yale daily news; (http://www.yaledailynews.com).<br />

Shivakumar, C.; S. B. Mahajanashetti; C. Murthy; H. Basavaraja And Y. N.<br />

Hawaldar, 2009. Production <strong>and</strong> market<strong>in</strong>g of vermicompost <strong>in</strong> Dharwad district<br />

: An economic analysis. J. Agric. Sci., 22 (4), pp:850-853.<br />

83


Sunitha, ND; R. S. Giraddi,; K. A. Kulkarni; <strong>and</strong> S. L<strong>in</strong>gappa, 1997. Evaluation<br />

methods of vermicompost<strong>in</strong>g under open field conditions. Karnataka Journal of<br />

Agricultural Sciences 10(4), pp: 987–990.<br />

Suthar, S. 2008. Bioconversion of post harvest crop residues <strong>and</strong> cattle shed manure<br />

<strong>in</strong>to value-added products us<strong>in</strong>g earthworm Eudrilus eugeniae K<strong>in</strong>berg.<br />

ecological eng<strong>in</strong>eer<strong>in</strong>g 32, pp: 206–214.<br />

Suthar, S. 2010. Pilot-scale vermireactors <strong>for</strong> sewage sludge stabilization <strong>and</strong> metal<br />

remediation process: Comparison with small-scale vermireactors. Ecological<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Volume 36, Issue 5, pp: 703-712.<br />

Tilth, 1982. Earthworms - surpris<strong>in</strong>g partners <strong>in</strong> <strong>the</strong> creation of fertile Soils. Tilth<br />

producers quarterly, A journal of organic <strong>and</strong> susta<strong>in</strong>able agriculture, 8(1 & 2)<br />

(Soil supplement),<br />

Twomlow, S. 2004. Water, soil <strong>and</strong> agro-diversity management <strong>for</strong> ecosystem<br />

resilience, annual report 2003, International Crops Research Institute <strong>for</strong> <strong>the</strong><br />

Semi-Arid Tropics ICRISAT, Patancheru 502 324, Andhra Pradesh, India.<br />

Venkatesh, R. M. <strong>and</strong> T. Eevera. 2008. “Mass reduction <strong>and</strong> recovery of nutrients<br />

through vermicompost<strong>in</strong>g of fly ash,” applied ecology <strong>and</strong> environmental<br />

research, 6, pp: 77–84.<br />

Wassef, E. A. 2005. Alternative prote<strong>in</strong> sources <strong>for</strong> fish feeds <strong>in</strong> <strong>Egypt</strong>.<br />

Mediterranean Fish Nutrition, 63, pp: 127-142.<br />

X<strong>in</strong>g, Meiyan; X. Li <strong>and</strong> Y. Jian. 2010. Treatment per<strong>for</strong>mance of small-scale<br />

vermifilter <strong>for</strong> domestic wastewater <strong>and</strong> its relationship to earthworm growth,<br />

reproduction <strong>and</strong> enzymatic activity. African Journal of Biotechnology, 9(44),<br />

pp: 7513-7520.<br />

Yaqub, H. 1991. Earthworm <strong>and</strong> maggot meals as a potential fish meal replacement.<br />

Thesis .Institute of Renewable Natural Resources U.S.T., Kumasi, Ghana:<br />

http://hdl.h<strong>and</strong>le.net/1834/1268 .<br />

Yousefi, Z., M. Ramezani, S. K. A. Mohamadi, R. A. Mohammadpour <strong>and</strong> A.<br />

Nemati. 2009. Identification of earthworms species <strong>in</strong> sari township <strong>in</strong> Nor<strong>the</strong>rn<br />

Iran, 2007-2008. J. Applied Sci., 9, pp: 3746-3751.<br />

Zhaoa, L.; Y. Wang; J. Yanga; M. X<strong>in</strong>ga; X. Lia; D. Yia, <strong>and</strong> D. Denga. 2010.<br />

Earthworm–microorganism <strong>in</strong>teractions: A strategy to stabilize domestic<br />

wastewater sludge. Water research, 44, Issue 8, pp: 2572-2582.<br />

84


General <strong>in</strong><strong>for</strong>mation <strong>and</strong> FAQ<br />

WORM FACTS<br />

Annex 1<br />

SMALLEST: Less than an <strong>in</strong>ch<br />

LARGEST: 22 Foot found <strong>in</strong> South Africa<br />

An earthworm has a bra<strong>in</strong>, five hearts, <strong>and</strong> “ brea<strong>the</strong>s” through its sk<strong>in</strong><br />

An earthworm produces its own weight <strong>in</strong> casts everyday<br />

There are over 1 million earthworms <strong>in</strong> one acre of soil<br />

Earthworms can burrow as deep as fifteen feet<br />

Earthworms are 82% prote<strong>in</strong> <strong>and</strong> are a food source <strong>for</strong> many people around <strong>the</strong><br />

world<br />

Eat<strong>in</strong>g earthworms can reduce cholesterol, as <strong>the</strong> basic essential oil of<br />

earthworms is Omega 3<br />

Benefits of Earthworms<br />

Increased moisture absorption<br />

Improved soil aeration <strong>and</strong> dra<strong>in</strong>age<br />

Leach<strong>in</strong>g counteracted by nutrient-rich cast<strong>in</strong>gsbrought to <strong>the</strong> surface<br />

Nutrients are pre-digested, mak<strong>in</strong>g <strong>the</strong>m readily available to microorganisms<br />

<strong>and</strong> plants<br />

Worm cast<strong>in</strong>gs <strong>for</strong>m aggregates which improve soil structure<br />

Cast<strong>in</strong>gs neutralize soil by buffer<strong>in</strong>g acid <strong>and</strong> alkal<strong>in</strong>e conditions<br />

Worm tunnels create fertile channels <strong>for</strong> <strong>the</strong> growth of plant roots<br />

The bottom l<strong>in</strong>e: Earthworms <strong>in</strong>crease crop yields while build<strong>in</strong>g soil fertility<br />

reserves.<br />

FAQ Compost Worm -<br />

Do compost worms also eat normal earth or only rott<strong>in</strong>g organic material?<br />

Although <strong>the</strong> compost worms Eisenia foetida <strong>and</strong> Eisenia <strong>and</strong>rei are not commonly<br />

found <strong>in</strong> m<strong>in</strong>eral grounds, scientific <strong>in</strong>vestigations show that <strong>the</strong>y also eat m<strong>in</strong>eral<br />

earth. However, <strong>the</strong>y select an organic enriched fraction from <strong>the</strong> bulk soil<br />

(approximately by a factor 2), which is also typical <strong>for</strong> soil dwell<strong>in</strong>g worms.<br />

There<strong>for</strong>e, compost worms can also be used to clean contam<strong>in</strong>ated m<strong>in</strong>eral grounds.<br />

Can compost worms be used <strong>for</strong> decontam<strong>in</strong>ation of m<strong>in</strong>eral soils?<br />

Yes, because <strong>the</strong>y eat m<strong>in</strong>eral soils too. Experiments were done with <strong>the</strong> harbour<br />

sludge of Rotterdam.<br />

Eisenia <strong>and</strong>rei is commonly used <strong>in</strong> st<strong>and</strong>ard toxcicity tests <strong>and</strong> <strong>in</strong> bioassays <strong>for</strong><br />

contam<strong>in</strong>ated soils (Cortet et al., 1999).<br />

85


How long will <strong>the</strong> material <strong>in</strong>gested by <strong>the</strong> compost worm be <strong>in</strong> his gut?<br />

In adult compost worms (Eisenia <strong>and</strong>rei) appr. 3 to 4 hours, <strong>in</strong> juvenile worms appr.<br />

11 to 13 hours. The scientists expected <strong>the</strong> opposite (a longer retention time <strong>for</strong> adult<br />

worms).<br />

For Eisenia foetida 2.5 h were measured at 25°C, <strong>in</strong>dependent from <strong>the</strong> weight or <strong>the</strong><br />

length of <strong>the</strong> worm. At 18°C <strong>the</strong> retention time was about 3.5 hours.<br />

Lumbricus terrestris shows a retention time of 20 hours. O<strong>the</strong>r worm species 11 to 13<br />

hours (Lumbricus festivus, Lumbricus rubellus, Allolobophora calig<strong>in</strong>osa).<br />

How do compost worms multiply?<br />

Like all earthworms, compost worms have female <strong>and</strong> male gender organs<br />

(hermaphrodite). If <strong>the</strong>y pair off, <strong>the</strong> genitals come mutually to narrow contact. These<br />

are localized <strong>in</strong> <strong>the</strong> wide r<strong>in</strong>gs (clitellum) of adult worms. This r<strong>in</strong>g walks <strong>in</strong> <strong>the</strong><br />

course of <strong>the</strong> next days on <strong>and</strong> on to <strong>the</strong> back <strong>and</strong> is shored up, <strong>in</strong> <strong>the</strong> end, so that a<br />

yellowish cocoon orig<strong>in</strong>ates which has <strong>the</strong> <strong>for</strong>m a lemon. After a certa<strong>in</strong> time, out of<br />

this small mites are slipp<strong>in</strong>g.<br />

How often does a conception take place with <strong>the</strong> mat<strong>in</strong>g of compost worms?<br />

It comes to 61% of <strong>the</strong> mat<strong>in</strong>gs to <strong>the</strong> transfer of sperm. Of it a mutual transfer of<br />

sperm takes place <strong>in</strong> 88.2% of <strong>the</strong> cases, <strong>in</strong> 9.8% <strong>the</strong> transfer occurred only <strong>in</strong> one<br />

direction. Merely <strong>in</strong> one case a self conception occurred.<br />

Is a self-fertilization also possible with compost worms?<br />

Although reported very often with earthworms, a self-sperm transfer could be clearly<br />

documented <strong>in</strong> 2003 <strong>for</strong> <strong>the</strong> first time. This occurs very seldom <strong>and</strong> was observed with<br />

Eisenia foetida. Self conception is an extreme <strong>for</strong>m of <strong>in</strong>breed<strong>in</strong>g. The genetic<br />

diversity is lowered what normally leads to a reduction <strong>in</strong> fitness of <strong>the</strong> species. For<br />

this reason mechanisms of self-<strong>in</strong>compatibility have been developed <strong>in</strong> many species.<br />

Which compost worm multiplies faster? Eisenia foetida or Eisenia <strong>and</strong>rei?<br />

Scientific <strong>in</strong>vestigations from <strong>the</strong> year 2003 showed that Eisenia <strong>and</strong>rei multiplies<br />

much faster under <strong>the</strong> elective conditions of <strong>the</strong> study. The percentage of <strong>the</strong> worms,<br />

that produced cocoons was substantially higher (33% compared with 3.5%). Also <strong>the</strong><br />

number of <strong>the</strong> produced cocoons was higher with Eisenia <strong>and</strong>rei, likewise <strong>the</strong> slip rate<br />

of <strong>the</strong> mites from <strong>the</strong> cocoons. The life ability of <strong>the</strong> cocoons was possibly equally<br />

high with both species.<br />

86


What do eat compost worms?<br />

Fungi are probably a primary source of food <strong>for</strong> many earthworm species. Rott<strong>in</strong>g<br />

material from plants, which is richly colonized with it, is <strong>the</strong> most popular "meal" <strong>for</strong><br />

<strong>the</strong> worms.<br />

Slows <strong>the</strong> compost<strong>in</strong>g process down because <strong>the</strong> fungi <strong>in</strong> <strong>the</strong> compost are eaten<br />

by <strong>the</strong> worms?<br />

On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> general, it is even accelerated. More diverse fungal<br />

communities <strong>in</strong>habited earthworm-processed substrates than were found <strong>in</strong> fresh<br />

substrates. This, although it is generally believed that fungal hyphae are destroyed <strong>and</strong><br />

may be a preferred food source <strong>for</strong> earthworms. Worms probably accelerate <strong>the</strong><br />

compost<strong>in</strong>g process by both graz<strong>in</strong>g <strong>and</strong> dispersal, <strong>and</strong> <strong>in</strong>directly by <strong>the</strong>ir effects on<br />

<strong>the</strong> substrate (burrow<strong>in</strong>g <strong>and</strong> cast<strong>in</strong>g).<br />

Can earthworms nibble at liv<strong>in</strong>g roots?<br />

No! The earthworms to which also <strong>the</strong> compost worms belong, attack no liv<strong>in</strong>g roots.<br />

They live on <strong>the</strong> dead plant material colonized richly with micro-organisms. In<br />

addition, <strong>the</strong>y have no tools (teeth, grater plates or o<strong>the</strong>r th<strong>in</strong>gs) by which <strong>the</strong>y could<br />

nibble at roots. The earthworm <strong>in</strong> <strong>the</strong> flowerpot or plant patch does not harm <strong>the</strong><br />

plants.<br />

Are certa<strong>in</strong> fungi preferred by earthworms as food?<br />

Earthworms can make a good dist<strong>in</strong>ction between <strong>the</strong> different k<strong>in</strong>ds of fungi.<br />

Lumbricus terrestris prefers Fusarium oxysporum <strong>and</strong> Mucor hiemalis, o<strong>the</strong>r tested<br />

mushrooms are only sometimes eaten or are avoided even completely. In case of <strong>the</strong><br />

compost worm Eisenia foetida it was shown, that <strong>the</strong> black melan<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g<br />

fungus C. cladosporioides was <strong>the</strong> most attractive <strong>in</strong> contrast to Aspergillus niger<br />

which was <strong>the</strong> least attractive. For Eisenia <strong>and</strong>rei still no <strong>in</strong>vestigations were done.<br />

Does a quicker worm compost<strong>in</strong>g take place if <strong>the</strong> plant leftovers are <strong>in</strong>oculated<br />

with certa<strong>in</strong> fungi be<strong>for</strong>e?<br />

This is possible, however, <strong>for</strong> <strong>the</strong> normal leisure gardener too exaggeratedly <strong>and</strong> also<br />

not necessary. Investigations proved that a previous addition of A. flavus accelerates<br />

<strong>the</strong> growth of Eisenia <strong>and</strong>rei. Mucor sp. should accelerate <strong>the</strong> growth with five o<strong>the</strong>r<br />

earthworms. Never<strong>the</strong>less, with Eisenia <strong>and</strong>rei M. circ<strong>in</strong>elloides shows <strong>the</strong> opposite<br />

effect.<br />

What role do compost<strong>in</strong>g worms play besides <strong>the</strong> use as humus producer, fish<br />

bait <strong>and</strong> animal food?<br />

The compost worms Eisenia fetida <strong>and</strong> Eisenia <strong>and</strong>rei play an important role <strong>in</strong> <strong>the</strong><br />

ecotoxicological assessment of compounds <strong>in</strong> soil <strong>and</strong> are <strong>the</strong> recommended OECD<br />

87


earthworm test species. This species has been used to exam<strong>in</strong>e <strong>the</strong> relative toxicity<br />

<strong>and</strong> predict <strong>the</strong> short <strong>and</strong> long-term effects of toxic substances on earthworm<br />

populations <strong>in</strong> field soil. The compost<strong>in</strong>g worm (Eisenia fetida) is representative of<br />

three o<strong>the</strong>r species of earthworms (Allolobophora tuberculata, Eudrilus eugenia, <strong>and</strong><br />

Perionyx excavus). For Eisenia fetida a very large toxicological literature database is<br />

exist<strong>in</strong>g.<br />

88


ISBN 978-92-5-106859-5<br />

9 7 8 9 2 5 1 0 6 8 5 9 5<br />

I2196E/1/04.11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!