16.11.2013 Views

Effects of Initial Weakness on Rift Architecture - School of Geosciences

Effects of Initial Weakness on Rift Architecture - School of Geosciences

Effects of Initial Weakness on Rift Architecture - School of Geosciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Davy, 1996; Brune and Ellis, 1997). There is a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> overlap between the various<br />

interpretati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the three modes <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinental extensi<strong>on</strong> and overall they all point<br />

toward the c<strong>on</strong>clusi<strong>on</strong> that, c<strong>on</strong>tinental geotherm, rheology, and strain rate c<strong>on</strong>spire to<br />

dictate the rift mode.<br />

Many studies have also emphasized the role <str<strong>on</strong>g>of</str<strong>on</strong>g> localized initial weakness (as thermal<br />

anomalies, compositi<strong>on</strong>al heterogeneities or both) in localizing the development <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

narrow rifts (Bassi, 1991; 1995; Braun and Beaum<strong>on</strong>t, 1987; Dunbar and Sawyer,<br />

1989; Fletcher and Hallet, 1983), or promoting the development <str<strong>on</strong>g>of</str<strong>on</strong>g> core complexes<br />

(Brun, 1999; Brun, et al., 1994). We examine here a range rheological models in<br />

which localized and diffuse rheological heterogeneities are superimposed <strong>on</strong>to<br />

coupled and decoupled rheological pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles.<br />

Model Descripti<strong>on</strong><br />

We use the Ellipsis code, a Lagrangian integrati<strong>on</strong> point finite element code capable<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> tracking time dependant variables embedded in an Eulerian mesh, allowing for<br />

accurate tracking <str<strong>on</strong>g>of</str<strong>on</strong>g> surfaces and boundaries through time (Moresi, et al., 2002;<br />

Moresi, et al., 2001). While the parameters in the model are scaled to achieve<br />

maximum computati<strong>on</strong>al efficiency (see Appendix), “real-world” values parameters<br />

are listed in Table 1. Our c<strong>on</strong>tinental lithosphere is 450 km l<strong>on</strong>g and 140km thick and<br />

includes a 35 km thick c<strong>on</strong>tinental crust. Extensi<strong>on</strong> is driven by a c<strong>on</strong>stant velocity<br />

c<strong>on</strong>diti<strong>on</strong>s applied to the right boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> the model (Fig 1), giving an initial strain<br />

rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 . 10 -15 s -1 over the horiz<strong>on</strong>tal length <str<strong>on</strong>g>of</str<strong>on</strong>g> the model.<br />

A free-slip boundary<br />

c<strong>on</strong>diti<strong>on</strong> is applied at the top and bottom surfaces. The basal heat flux <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 mW . m -2<br />

and a crustal radiogenic heat producti<strong>on</strong> (1.2 10 -6 W . m -3 ) was adjusted to achieve a<br />

5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!