19.11.2013 Views

Quantitative Methods in Renography - Nucleus

Quantitative Methods in Renography - Nucleus

Quantitative Methods in Renography - Nucleus

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Radionuclides <strong>in</strong> Nephrourology, Mikulov 2010<br />

<strong>Quantitative</strong> <strong>Methods</strong> <strong>in</strong><br />

<strong>Renography</strong><br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre<br />

Richard.Lawson@manchester.ac.uk


Richard Lawson<br />

Overview<br />

• Problems of quantify<strong>in</strong>g the renogram<br />

• Complex shape of the curve<br />

• Unwanted background<br />

• Background subtraction<br />

• Recognis<strong>in</strong>g correct subtraction<br />

Tissue and vascular background components<br />

• Compare two solutions<br />

• Rutland plot<br />

• Deconvolution<br />

• <strong>Quantitative</strong> parameters<br />

• Relative function<br />

• Absolute function<br />

• Elim<strong>in</strong>ation<br />

ISCORN Consensus Report: Sem.Nucl.Med. 1999, 29:146-159<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


<strong>Renography</strong><br />

• <strong>Renography</strong> is a dynamic study of kidney function<br />

• Time is the important dimension<br />

• It is the renogram curves that show transit of tracer<br />

through the kidneys<br />

• So curves are more important than the images<br />

• Upslope of curves demonstrate kidney uptake<br />

• Relative function<br />

one kidney compared with the other<br />

• Absolute function<br />

each kidney compared with normal<br />

• Downslope of curves demonstrate elim<strong>in</strong>ation<br />

It is important to produce the correct curves<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


The Problems<br />

• The kidney activity-time curve is a comb<strong>in</strong>ation of<br />

three factors:<br />

• Uptake <strong>in</strong>to the kidney<br />

• Transit through the kidney<br />

• Elim<strong>in</strong>ation from the kidney<br />

• Uptake depends on blood activity, which varies with<br />

• Speed of <strong>in</strong>jection<br />

• Kidney function<br />

• Function of the other kidney<br />

• Recirculation of tracer<br />

• Renogram curve is a superimposition of the desired<br />

kidney activity and unwanted background activity<br />

Renogram quantification must overcome these problems<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Background Subtraction


Renogram Model<br />

Extravascular<br />

Tissue<br />

Blood<br />

Kidney<br />

Tubules + pelvis<br />

Bladder<br />

Concentration Concentration Concentration Concentration<br />

Time<br />

Time<br />

Time<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Renogram Model<br />

Extravascular<br />

Tissue<br />

Concentration<br />

Time<br />

This is the<br />

curve that<br />

we want<br />

Blood<br />

Kidney<br />

Tubules + pelvis<br />

Bladder<br />

Concentration Concentration Concentration<br />

Time<br />

Time<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Regions of Interest<br />

Each kidney ROI <strong>in</strong>cludes<br />

• Renal blood vessels<br />

• Renal tubules<br />

• Renal pelvis<br />

• Overly<strong>in</strong>g tissues<br />

Background ROI <strong>in</strong>cludes<br />

• Some blood vessels<br />

• Some tissues<br />

Renogram<br />

Kidney m<strong>in</strong>us background<br />

• Should leave desired renogram<br />

}<br />

Blood background<br />

Tissue background<br />

Blood background<br />

Tissue background<br />

The optimum background ROI must <strong>in</strong>clude the<br />

correct mixture of both blood and tissue background<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Background Subtraction<br />

Kidney ROI curve<br />

cps<br />

Richard Lawson<br />

Tissue<br />

+ Renal tubules<br />

& Renal pelvis<br />

+ Blood<br />

Time<br />

Background ROI curve<br />

cps<br />

Tissue<br />

+ Blood<br />

Time<br />

cps<br />

Background subtracted<br />

Renal tubules<br />

& Renal pelvis<br />

Time<br />

If background<br />

subtraction is correct,<br />

renogram curve should<br />

rise smoothly from zero<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Mix<strong>in</strong>g<br />

• Dur<strong>in</strong>g the first few seconds after <strong>in</strong>jection<br />

• Tracer has not had enough time to mix uniformly<br />

throughout all of the blood<br />

Therefore blood activity <strong>in</strong> the background region may<br />

differ from blood activity <strong>in</strong> the kidney region<br />

So background subtraction may be wrong<br />

• Therefore ignore first few seconds of the curve<br />

• Until mix<strong>in</strong>g is complete<br />

Varies between patients<br />

Often about 30 seconds<br />

Possibly up to 1 m<strong>in</strong>ute<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Recognis<strong>in</strong>g Correct Subtraction<br />

Curve is not<br />

smooth dur<strong>in</strong>g<br />

first m<strong>in</strong>ute<br />

Extrapolate to<br />

overcome<br />

mix<strong>in</strong>g phase<br />

0 1 2 3 4<br />

5 m<strong>in</strong><br />

Question 1: Is this renogram curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Under-subtracted<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Recognis<strong>in</strong>g Correct Subtraction<br />

0 1 2 3 4<br />

5 m<strong>in</strong><br />

Question 2: Is this renogram curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Over-subtracted<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Recognis<strong>in</strong>g Correct Subtraction<br />

0 1 2 3 4<br />

5 m<strong>in</strong><br />

Question 3: Is this renogram curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Correct subtraction – after extrapolation<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Recognis<strong>in</strong>g Correct Subtraction<br />

If curve has a<br />

k<strong>in</strong>k dur<strong>in</strong>g first<br />

m<strong>in</strong>ute then<br />

extrapolate to<br />

overcome<br />

mix<strong>in</strong>g phase<br />

Under-subtracted<br />

Correctly subtracted<br />

Over-subtracted<br />

0 1 2 3 4<br />

5 m<strong>in</strong><br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Three Phases of the Renogram<br />

Phase 1<br />

(Vascular)<br />

Phase 2<br />

(Uptake)<br />

Phase 3<br />

(Elim<strong>in</strong>ation)<br />

Textbooks<br />

3 phases<br />

Renogram model<br />

No vascular phase<br />

• Orig<strong>in</strong>ally renograms were acquired us<strong>in</strong>g probes<br />

• Without any means of background subtraction<br />

• The vascular phase was always present<br />

• The vascular phase is not part of the true renogram<br />

• With modern gamma camera techniques it should be<br />

removed by proper computer process<strong>in</strong>g<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Teach<strong>in</strong>g Po<strong>in</strong>t<br />

• Background subtraction is correct when the<br />

renogram curve rises smoothly from zero<br />

After extrapolat<strong>in</strong>g to overcome <strong>in</strong>complete mix<strong>in</strong>g<br />

dur<strong>in</strong>g the first m<strong>in</strong>ute<br />

Assum<strong>in</strong>g that the bolus appears <strong>in</strong> kidneys dur<strong>in</strong>g<br />

the first frame of the study – time zero<br />

0 1 m<strong>in</strong><br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Background Subtraction<br />

Examples


Example 1<br />

• 50 MBq 99m Tc MAG3<br />

• Good uptake <strong>in</strong> both kidneys<br />

• Both kidneys equal function<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 1 – Background below kidney<br />

Relative function<br />

Left kidney: 50%<br />

Right kidney: 50%<br />

Right Kidney<br />

Left Kidney<br />

Question 4: Are these curves correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Slight under-subtraction<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 1 – Peri-renal background<br />

Relative function<br />

Left kidney: 52%<br />

Right kidney: 48%<br />

Left Kidney<br />

Right Kidney<br />

Question 5: Are these curves correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Very slight under-subtraction<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 1 – Rutland method<br />

L<br />

R<br />

Relative function<br />

Left kidney: 52%<br />

Right kidney: 48%<br />

Question 6: Are these curves correctly subtracted ?<br />

Answer: Correct subtraction<br />

Right Kidney<br />

Left Kidney<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Teach<strong>in</strong>g Po<strong>in</strong>t<br />

• If us<strong>in</strong>g MAG3 and kidney function is good<br />

Us<strong>in</strong>g different background regions only makes a<br />

small difference to background subtraction<br />

• If both kidneys have equal function<br />

Then under-subtract<strong>in</strong>g doesn’t alter relative<br />

function significantly<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 2<br />

• 50MBq 99m Tc MAG3<br />

• Both kidneys poor function<br />

• Right worse than left<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 2 – Background below kidney<br />

L<br />

R<br />

Relative function<br />

Left kidney: 56%<br />

Right kidney: 44%<br />

Right Kidney<br />

Left Kidney<br />

Question 7: Are these curves correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Significantly under-subtracted – after extrapolation<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 2 – Peri-renal background<br />

L<br />

R<br />

Relative function<br />

Left kidney: 90%<br />

Right kidney: 10%<br />

Question 8: Are these curves correctly subtracted ?<br />

Answer: Over-subtracted<br />

Right Kidney<br />

Left Kidney<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 2 – Rutland method<br />

L<br />

R<br />

Relative function<br />

Left kidney: 66%<br />

Right kidney: 34%<br />

Right Kidney<br />

Left Kidney<br />

Question 9: Are these curves correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Correct subtraction – after extrapolation<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Teach<strong>in</strong>g Po<strong>in</strong>t<br />

• If us<strong>in</strong>g MAG3 and function is poor<br />

• Then different background regions can have a<br />

big effect<br />

• If us<strong>in</strong>g DTPA this happens even with good<br />

function<br />

• Because of lower extraction efficiency<br />

• If function is asymmetric<br />

Then <strong>in</strong>correct background subtraction can<br />

affect relative function measurement<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 3<br />

• 50 MBq 99m Tc MAG3<br />

• Left kidney good function<br />

• Right kidney hydronephrotic<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 3 - Background below kidney<br />

L<br />

R<br />

Right Kidney<br />

Relative function<br />

Left kidney: 76%<br />

Right kidney: 24%<br />

Left Kidney<br />

Question 10: Is the right kidney curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Under-subtracted<br />

Richard Lawson<br />

Left kidney little under-subtracted<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 3 – Peri-renal background<br />

L<br />

R<br />

Right Kidney<br />

Relative function<br />

Left kidney: 85%<br />

Right kidney: 15%<br />

Left Kidney<br />

Question 11: Is the right kidney curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Over-subtracted But left kidney is OK<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Example 3 – Rutland method<br />

L<br />

R<br />

Right Kidney<br />

Relative function<br />

Left kidney: 81%<br />

Right kidney: 19%<br />

Left Kidney<br />

Question 12: Is the right kidney curve correctly subtracted ?<br />

1 = Correct subtraction, 2 = Under-subtracted, 3 = Over-subtracted<br />

Answer: Correct subtraction<br />

Richard Lawson<br />

For both kidneys<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Teach<strong>in</strong>g Po<strong>in</strong>t<br />

• If the vascularity of each kidney is different<br />

Then it is difficult to f<strong>in</strong>d a s<strong>in</strong>gle background<br />

region that works for both kidneys<br />

• The Rutland method overcomes this by<br />

automatically adjust<strong>in</strong>g the amount of vascular<br />

background to suit each kidney<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


The Rutland Method


The Rutland Method *<br />

• The real renogram is the response of the kidney<br />

to a s<strong>in</strong>gle <strong>in</strong>jection<br />

• Result<strong>in</strong>g <strong>in</strong> a blood activity that is cont<strong>in</strong>ually<br />

fall<strong>in</strong>g<br />

• Imag<strong>in</strong>e what the renogram would look like if we<br />

gave a constant <strong>in</strong>fusion<br />

• The blood activity could be kept constant<br />

• The Rutland method predicts what the constant<br />

<strong>in</strong>fusion renogram would look like<br />

• Based on the real renogram<br />

• And the real blood curve<br />

* Rutland MD Nuc.Med.Comm 6: p11-20 (1985)<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Constant Infusion Model<br />

Extravascular<br />

Tissue<br />

Blood<br />

Kidney<br />

Bladder<br />

Concentration Concentration Concentration Concentration<br />

Time<br />

Time<br />

Time<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Def<strong>in</strong>e:<br />

Blood activity<br />

Kidney activity<br />

Assumptions:<br />

Now:<br />

Richard Lawson<br />

Rutland Theory<br />

B = Vascular ROI counts<br />

K = True kidney counts + Vascular background<br />

⎛<br />

⎜<br />

⎝<br />

K = Kidney ROI counts<br />

1) Input rate to kidney is proportional to B<br />

2) Noth<strong>in</strong>g leaves dur<strong>in</strong>g first few m<strong>in</strong>utes<br />

3) Vascular background = a x B (where a is a background subtraction factor)<br />

K<br />

K<br />

B<br />

⎞<br />

⎟<br />

⎠<br />

= UC × ∫ Bdt + a×<br />

B<br />

⎛ Bdt ⎞<br />

UC ⎜∫<br />

= × ⎟ + a<br />

⎜ B ⎟<br />

⎝ ⎠<br />

Tissue ROI counts<br />

(scaled for ROI size)<br />

True kidney counts = UC x ∫Bdt<br />

(where UC is an uptake constant)<br />

‘Rutland time’<br />

This is the equation of a straight l<strong>in</strong>e with slope ‘UC’ and <strong>in</strong>tercept ‘a’<br />

-<br />

-<br />

Tissue ROI counts<br />

(scaled for ROI size)<br />

Rutland Plot<br />

(Patlak plot)<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Rutland Practice<br />

• Draw regions of <strong>in</strong>terest<br />

L<br />

• Kidneys<br />

• Vascular background<br />

heart or spleen<br />

• Tissue background<br />

below kidney<br />

• Bladder<br />

• Generate activity-time curves<br />

• Subtract tissue background<br />

• from kidneys, bladder and vascular<br />

(scal<strong>in</strong>g only for region size)<br />

• Construct Rutland plot for each kidney<br />

• Select range of po<strong>in</strong>ts to fit straight l<strong>in</strong>e<br />

R<br />

Post<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Choos<strong>in</strong>g the fit range<br />

*<br />

Fit should <strong>in</strong>clude<br />

just po<strong>in</strong>ts <strong>in</strong><br />

straight section<br />

*<br />

* * * *<br />

Typical Rutland Plot<br />

Late po<strong>in</strong>ts will be below the l<strong>in</strong>e<br />

(kidney is empty<strong>in</strong>g)<br />

Early po<strong>in</strong>ts may be below the l<strong>in</strong>e<br />

(<strong>in</strong>complete mix<strong>in</strong>g)<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Rutland Practice (cont<strong>in</strong>ued)<br />

• Calculate relative function<br />

• Us<strong>in</strong>g ratio of slopes from Rutland fit<br />

• Subtract vascular background<br />

• Us<strong>in</strong>g factor from Rutland fit <strong>in</strong>tercept<br />

• Display background subtracted curves as usual<br />

• Guarantees that curves start at zero<br />

Relative function<br />

Left kidney: 81%<br />

Right kidney: 19%<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Summary - Rutland<br />

The Rutland plot is a mathematical manipulation<br />

of the renogram that simulates what would<br />

happen if blood activity was constant<br />

Kidney Counts / Blood Counts<br />

U ptake<br />

Blood background<br />

Rutland Plot<br />

Slope is a<br />

measure of the<br />

kidney function<br />

Rutland Time<br />

Intercept tells us<br />

how much blood<br />

background to<br />

subtract<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Deconvolution


Simple Kidney Model<br />

Renal<br />

Artery<br />

Renal<br />

Ve<strong>in</strong><br />

Blood Activity<br />

Bolus Input<br />

Renal<br />

Tubules<br />

Glomerulus<br />

Kidney Activity<br />

Transit<br />

time<br />

Elim<strong>in</strong>ation<br />

Renal<br />

Pelvis<br />

Uptake<br />

Impulse<br />

Retention<br />

Function<br />

Richard Lawson<br />

Ureter<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Mean Transit Time<br />

Impulse Retention Function<br />

MTT<br />

Mean transit time is<br />

the average time for<br />

a molecule to pass<br />

through the system<br />

Initial Height<br />

H(t)<br />

Two areas are equal<br />

Area<br />

MTT =<br />

Initial height<br />

Richard Lawson<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


‘Idealised’ Renogram<br />

Blood Activity<br />

• Perfect bolus Input<br />

• But not practicable<br />

• Perfect <strong>in</strong>jection<br />

• Direct <strong>in</strong>to renal artery<br />

• No recirculation<br />

time<br />

• Impulse Response<br />

• But easy to <strong>in</strong>terpret<br />

• Uptake, transit and<br />

elim<strong>in</strong>ation are separated<br />

Uptake<br />

Kidney Activity<br />

Transit<br />

Elim<strong>in</strong>ation<br />

Richard Lawson<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


But what about the real renogram ?<br />

Blood Activity<br />

• IV <strong>in</strong>jection<br />

• Slow recirculation<br />

• Blood activity persists<br />

time<br />

Kidney Activity<br />

• Real Renogram<br />

• What shape is the<br />

kidney curve ? ?<br />

Richard Lawson<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Convolution<br />

100<br />

Must be l<strong>in</strong>ear<br />

Must be stationary<br />

50%<br />

50%<br />

70 35<br />

25<br />

50<br />

50%<br />

50<br />

Richard Lawson<br />

Input<br />

time<br />

Represent blood curve as<br />

series of bolus <strong>in</strong>puts<br />

Response<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Deconvolution<br />

100<br />

70<br />

50<br />

100<br />

50<br />

100<br />

50<br />

100<br />

50%<br />

40<br />

100<br />

25<br />

18<br />

50<br />

36<br />

24<br />

40%<br />

35<br />

35<br />

25<br />

35<br />

12<br />

18<br />

25<br />

12<br />

18<br />

Input<br />

time<br />

50<br />

50<br />

50<br />

40<br />

28<br />

20<br />

12<br />

14<br />

Richard Lawson<br />

Response<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Convolution<br />

Bolus<br />

R 4<br />

R 3<br />

I(t)<br />

R 2<br />

I 1<br />

I 2 R 1<br />

I 3<br />

I 4<br />

R(t)<br />

Input<br />

time<br />

H(t)<br />

H 1 H 2 H 3 H 4<br />

Richard Lawson<br />

Response<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Deconvolution<br />

Bolus<br />

R 4<br />

R 3<br />

I(t)<br />

R 2<br />

I 1<br />

I 2 R 1<br />

I 3<br />

I 4<br />

R(t)<br />

Input<br />

time<br />

H(t)<br />

H 1 H 2 H 3 H 4<br />

Richard Lawson<br />

Response<br />

time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Teach<strong>in</strong>g Po<strong>in</strong>t<br />

• Given the <strong>in</strong>put to a system I(t) and the response<br />

to that <strong>in</strong>put R(t), you can use deconvolution to<br />

calculate the expected response to an ideal<br />

impulse <strong>in</strong>put<br />

• This is the impulse retention function , H(t)<br />

• The impulse retention function is easy to <strong>in</strong>terpret<br />

because<br />

• The <strong>in</strong>itial height represents uptake<br />

• The duration represents transit<br />

• The downslope represents elim<strong>in</strong>ation<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


How to do it<br />

R ( t)<br />

= I(<br />

t) * H ( t)<br />

R<br />

i<br />

=<br />

i<br />

∑<br />

j=<br />

1<br />

I<br />

j<br />

⋅<br />

H<br />

i−j+<br />

1∆<br />

t<br />

• Matrix method<br />

• As previous illustration<br />

• Fourier transform<br />

• FT of a convolution is<br />

product of FTs<br />

H<br />

i<br />

⎡<br />

i<br />

1 R<br />

− i<br />

= ⎢ −∑ I1<br />

⎣∆t<br />

j=<br />

⎛<br />

H ( t)<br />

= F<br />

-1<br />

⎜<br />

⎝<br />

• Constra<strong>in</strong>ed optimisation<br />

• F<strong>in</strong>d smooth solution consistent with noise<br />

F<br />

1<br />

1<br />

I<br />

i−j+<br />

1<br />

{ R(<br />

t)<br />

}<br />

F<br />

⋅ H<br />

j<br />

⎥<br />

⎦<br />

⎤<br />

⎞<br />

{ I(<br />

t)<br />

} ⎟ ⎠<br />

1. ISCORN Consensus report. Durand E, et al Sem<strong>in</strong>.Nucl.Med. 2008, 38:82-102<br />

2. “Application of mathematical methods <strong>in</strong> dynamic nuclear medic<strong>in</strong>e studies”<br />

Lawson RS. Phys. Med. Biol. 1999, 44: R57-98<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Renogram Deconvolution<br />

Blood Activity<br />

Deconvolution<br />

Renogram<br />

Richard Lawson<br />

Bolus Input<br />

Impulse Response Function<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Effect of Vascular Background<br />

Before Deconvolution<br />

Kidney Activity<br />

=<br />

Blood Activity<br />

+<br />

Renogram<br />

Richard Lawson<br />

Vascular Background<br />

Not easy to<br />

remove<br />

background<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Effect of Vascular Background<br />

After Deconvolution<br />

Kidney Activity<br />

=<br />

Blood Activity<br />

+<br />

Renogram<br />

Vascular Background<br />

Easy to<br />

remove<br />

background<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Renogram Example - Raw Curves<br />

Activity-time curves<br />

After smooth<strong>in</strong>g<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


After Deconvolution<br />

Impulse Response Functions<br />

Relative<br />

Function<br />

MTT<br />

LEFT 41% 10.5 m<strong>in</strong><br />

RIGHT 59% 4.9 m<strong>in</strong><br />

After trimm<strong>in</strong>g<br />

RIGHT KIDNEY<br />

LEFT KIDNEY<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Practical Considerations<br />

• System must be l<strong>in</strong>ear<br />

• OK<br />

• System must be stationary<br />

• No furosemide<br />

• No large pelvic contractions<br />

• Suitable ROI for blood <strong>in</strong>put<br />

• Aorta or heart<br />

With tissue background subtracted<br />

• Suitable ROI for kidney contents<br />

• Whole kidney<br />

• Renal parenchyma (whole kidney - pelvis)<br />

With tissue background subtracted<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


More Practical Considerations<br />

• Correct start time<br />

• Problems if kidney activity appears later than heart<br />

• Need good statistics<br />

• Use higher adm<strong>in</strong>istered activity<br />

• Must smooth curves<br />

But not too much<br />

• Identify plateau of retention function<br />

• Difficult if curves are too noisy<br />

• Height is used to measure relative function<br />

• Extrapolate to remove vascular background<br />

• Produce background subtracted renogram<br />

• By reconvolv<strong>in</strong>g subtracted retention function with<br />

blood <strong>in</strong>put curve<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Summary - Deconvolution<br />

Deconvolution gives the renogram that would be<br />

obta<strong>in</strong>ed if an idealised bolus <strong>in</strong>jection<br />

could be given straight <strong>in</strong>to the renal artery<br />

with no recirculation<br />

Impulse<br />

Retention<br />

Function<br />

Uptake<br />

transit<br />

Vascular<br />

Background<br />

Mean Transit Time<br />

Elim<strong>in</strong>at ion<br />

Richard Lawson<br />

Time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


<strong>Quantitative</strong> Parameters


Renogram Components<br />

Uptake<br />

Elim<strong>in</strong>ation<br />

Activity<br />

Elim<strong>in</strong>ation<br />

starts<br />

Uptake<br />

only<br />

Transit<br />

Renogram peaks when<br />

rate of uptake = rate of elim<strong>in</strong>ation<br />

Difference<br />

= kidney<br />

contents<br />

Downslope when<br />

rate of elim<strong>in</strong>ation is<br />

greater than rate of uptake<br />

Renogram<br />

Richard Lawson<br />

Time<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Richard Lawson<br />

Quantify<strong>in</strong>g Relative Function<br />

Dur<strong>in</strong>g first 2 or 3 m<strong>in</strong>utes there is no elim<strong>in</strong>ation<br />

• So we can calculate relative uptake from:<br />

• Relative counts <strong>in</strong> summed image<br />

• eg 1 to 3 m<strong>in</strong><br />

Difficult to get correct background subtraction<br />

• Relative area under uptake phase of curves<br />

• eg from 1 to 3 m<strong>in</strong><br />

Provided background subtraction is correct<br />

• Relative height of impulse retention function<br />

• After deconvolution<br />

Provided plateau can be identified<br />

• Relative slope of Rutland plot<br />

• Us<strong>in</strong>g l<strong>in</strong>ear fit<br />

Guarantees correct background subtraction<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Quantify<strong>in</strong>g Absolute Function<br />

• Absolute function is much harder than relative<br />

function<br />

• Compare kidney activity with adm<strong>in</strong>istered activity<br />

• Us<strong>in</strong>g known camera sensitivity<br />

eg Manchester method<br />

• By imag<strong>in</strong>g dose syr<strong>in</strong>ge first<br />

eg Gates method<br />

(Gates GF. Am.J.Roentgenol,1982, 138: 565-70)<br />

• Compare kidney activity with blood curve<br />

• Calibrate by tak<strong>in</strong>g one blood sample<br />

(eg Piepsz A et.al. Eur.J.Nucl.Med. 1977, 2:173-77)<br />

• Proper measurement requires formal blood clearance<br />

• Multiple blood samples<br />

(ISCORN Report. Blaufox et.al. J.Nucl.Med 1997, 37: 1883-1890)<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Quantify<strong>in</strong>g Elim<strong>in</strong>ation<br />

Integrate blood <strong>in</strong>put and fit to uptake phase (Rutland plot)<br />

Extrapolate to later times = Zero output curve<br />

Activity<br />

Uptake phase<br />

Difference between<br />

zero output and<br />

Renogram<br />

= Ur<strong>in</strong>e output<br />

Ur<strong>in</strong>e Output / Zero Output<br />

= Renal Output Efficiency *<br />

Renogram<br />

Blood (<strong>in</strong>put)<br />

* Chaiwatanarat et. al. J.Nucl.Med. 1993, 34: 845-848<br />

Time<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


We have looked at two <strong>Methods</strong><br />

• The problem<br />

• Variable <strong>in</strong>put function<br />

Complex curve shape & superimposed background<br />

• The solution<br />

• Standardise <strong>in</strong>put function<br />

Simpler curve shape with separable background<br />

• Delta function <strong>in</strong>put<br />

• Perfect bolus <strong>in</strong>jection<br />

Impossible <strong>in</strong> practice<br />

Bolus spread<strong>in</strong>g and recirculation<br />

Calculate us<strong>in</strong>g:<br />

Deconvolution<br />

• Constant <strong>in</strong>put<br />

• Cont<strong>in</strong>uous <strong>in</strong>fusion<br />

Possible but complicated<br />

Rutland plot<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Comparison of <strong>Methods</strong><br />

Renogram<br />

Deconvolution<br />

• Quantifies uptake<br />

• Quantifies MTT<br />

• Facilitates vascular<br />

background removal<br />

• Very sensitive to noise<br />

• Sensitive to tim<strong>in</strong>g<br />

errors<br />

• Spoiled by furosemide<br />

Rutland Plot<br />

• Quantifies uptake<br />

• ?<br />

• Facilitates vascular<br />

background removal<br />

• Insensitive to noise<br />

• Robust aga<strong>in</strong>st tim<strong>in</strong>g<br />

errors<br />

• Still OK with furosemide<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Summary<br />

Real<br />

renogram<br />

Blood Activity<br />

Kidney<br />

Background<br />

Renogram<br />

Deconvolution<br />

Bolus <strong>in</strong>put<br />

Background<br />

Kidney<br />

MTT<br />

Impulse<br />

Retention<br />

Function<br />

Rutland plot<br />

Integrate<br />

Rutland<br />

Constant <strong>in</strong>fusion<br />

Kidney<br />

MTT<br />

Background<br />

Richard Lawson<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre


Richard Lawson<br />

ISCORN Reports<br />

Quantification of the renogram<br />

Prigent A, Cosgriff PS, Gates GF, et al.<br />

Consensus report on quality control of quantitative measurements of<br />

renal function obta<strong>in</strong>ed from the renogram.<br />

Sem<strong>in</strong>.Nucl.Med. 1999 29:146-159.<br />

Renal transit times<br />

Durand E, Blaufox MD, Britton KE, et al<br />

ISCORN Consensus on renal transit time measurements.<br />

Sem<strong>in</strong>.Nucl.Med. 2008, 38:82-102<br />

Renal clearance<br />

Blaufox MD, Aurell M, Bubeck B et al.<br />

Report of the Radionuclides <strong>in</strong> Nephrourology Committee on renal<br />

clearance.<br />

J Nucl Med 1997; 37:1883-1890.<br />

Central Manchester Nuclear Medic<strong>in</strong>e Centre

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!