22.12.2013 Views

Turbulent flows generated/designed in multiscale/fractal ... - Ercoftac

Turbulent flows generated/designed in multiscale/fractal ... - Ercoftac

Turbulent flows generated/designed in multiscale/fractal ... - Ercoftac

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

first session | Fundamentals<br />

Fundamentals | first sessioN<br />

monday 28 MARCH 2011 | 9.50-10.25<br />

MONDAY 28 MARCH 2011 | 9.15-9.50<br />

Free<strong>in</strong>g turbulence<br />

from the tyranny of<br />

the past<br />

W.K. George<br />

Department of Aeronautics, Imperial College London, UK<br />

There have been numerous studies over the past few decades about how<br />

scientists do research on difficult and <strong>in</strong>tractable problems, both how we function<br />

as <strong>in</strong>dividuals and collectively. While we would like to th<strong>in</strong>k that as <strong>in</strong>dividuals we<br />

are purely objective, all evidence suggests that we are not, and our judgements are<br />

strongly <strong>in</strong>fluenced by <strong>in</strong>tuition and past prejudices. In groups we tend to cluster<br />

around ‘group-th<strong>in</strong>k’, substitut<strong>in</strong>g consensus for critical analysis. Moreover there is<br />

a ‘herd’ <strong>in</strong>st<strong>in</strong>ct, mean<strong>in</strong>g there is a tendency to flock to a new idea, often without a<br />

good reason for do<strong>in</strong>g so.<br />

Of course none of this behaviour has ever happened <strong>in</strong> turbulence. Nonetheless,<br />

by exam<strong>in</strong><strong>in</strong>g the problems those <strong>in</strong> other fields have had, we can learn how to<br />

guard aga<strong>in</strong>st them <strong>in</strong> the future. Therefore the first part of this presentation will<br />

focus on the phenomena of how we function as turbulence researchers. And the<br />

second will try to identify potential problem areas where if we are not careful ideas<br />

we have long assumed to be true might be adopted as religious pr<strong>in</strong>ciples, even if<br />

they are false or only partially true.<br />

Also <strong>in</strong> this talk we will try to dist<strong>in</strong>guish between the mathematics of turbulence<br />

and the physics of turbulence. In mathematics, equations are precisely determ<strong>in</strong>ed,<br />

and the laws of mathematics which must be applied to f<strong>in</strong>d solutions are welldef<strong>in</strong>ed<br />

Physicists, on the other hand, build mathematical models of the universe<br />

as we f<strong>in</strong>d it. Once we have built the model and def<strong>in</strong>ed the boundary conditions,<br />

however, there is noth<strong>in</strong>g that is arbitrary: the laws of mathematics take over. The<br />

problem <strong>in</strong> turbulence (and other fields as well) is that often the consequences<br />

of the mathematics for our solutions are not consistent with what we observe <strong>in</strong><br />

nature. So is the problem with our model, or is it with the boundary conditions<br />

we have assumed to be true? S<strong>in</strong>ce often we have had to assume these to be<br />

applied at <strong>in</strong>f<strong>in</strong>ity, we cannot be sure. Nonetheless, there are usually some criteria<br />

for evaluation we can agree upon. For example if our model is the Navier-Stokes<br />

equations, it should not generally be our first assumption that they are wrong,<br />

especially for the constant density flow of a Newtonian fluid. Nor should we throw<br />

away so quickly a theory developed for an <strong>in</strong>f<strong>in</strong>ite doma<strong>in</strong> if our experiment is<br />

performed <strong>in</strong> a box. In fact it will probably be more productive to exam<strong>in</strong>e what<br />

the consequences are of the f<strong>in</strong>ite doma<strong>in</strong> or our attempts to realize the solution <strong>in</strong><br />

nature. Numerous examples will be used to illustrate these po<strong>in</strong>ts [1,2,3,4,5].<br />

Beyond mean flow scal<strong>in</strong>g<br />

laws - how to obta<strong>in</strong> higher<br />

order moment scal<strong>in</strong>g from<br />

new statistical symmetries<br />

1 st UK-JAPAN BILATERAL WORKSHOP, IC LONDON, UNITED KINGDOM, 28./29.3.2011<br />

BEYOND MEAN FLOW SCALING LAWS - HOW TO OBTAIN HIGHER ORDER MOMENT<br />

M. Oberlack 1,2,3 , A. Rosteck 1 UK-JAPAN 3 BILATERAL SCALING FROM WORKSHOP, NEW STATISTICAL IC LONDON, SYMMETRIES<br />

UNITED KINGDOM, 28./29.3.2011<br />

1 1<br />

Chair of Fluid st UK-JAPAN BILATERAL WORKSHOP, IC LONDON, UNITED KINGDOM, 28./29.3.2011<br />

Dynamics, BEYOND MEAN Technische FLOW SCALING Universität Darmstadt, GERMANY<br />

Mart<strong>in</strong> Oberlack LAWS 1,2,3 - HOW & Andreas TO OBTAIN Rosteck 1 HIGHER ORDER MOMENT<br />

2<br />

Center of BEYOND Smart MEAN Interfaces, 1 Chair FLOW of Fluid SCALING TU Dynamics SCALING<br />

Darmstadt, LAWS , Technische FROM - HOW NEW Universität Germany<br />

TO STATISTICAL OBTAIN Darmstadt, HIGHER SYMMETRIES<br />

64289 Darmstadt, ORDER MOMENT Germany,<br />

1 st UK-JAPAN<br />

3<br />

GS Computational Eng<strong>in</strong>eer<strong>in</strong>g, 2 BILATERAL WORKSHOP, IC LONDON, UNITED<br />

SCALING CenterFROM of Smart NEW Interfaces, STATISTICAL TU Darmstadt, SYMMETRIES<br />

KINGDOM, 28./29.3.2011<br />

64287 Darmstadt, Germany<br />

TU Darmstadt, Germany<br />

3 GS Computational<br />

Mart<strong>in</strong><br />

Eng<strong>in</strong>eer<strong>in</strong>g,<br />

Oberlack<br />

TU 1,2,3 Darmstadt,<br />

& Andreas<br />

64293<br />

Rosteck<br />

Darmstadt, 1<br />

BEYOND 1 MEAN FLOW SCALING LAWS - HOW TO OBTAIN HIGHER ORDER GermanyMOMENT<br />

Chair of Fluid Dynamics , Technische Universität Darmstadt, 64289 Darmstadt, Germany,<br />

We <strong>in</strong>vestigate the symmetry We <strong>in</strong>vestigate and the symmetry 2 Mart<strong>in</strong> SCALING Oberlack FROM<br />

<strong>in</strong>variance Center and of Smart <strong>in</strong>variance structure 1,2,3 NEW & Andreas STATISTICAL RosteckSYMMETRIES<br />

Interfaces, structure TUof Darmstadt, of the <strong>in</strong>f<strong>in</strong>ite 1<br />

1 64287 set of set Darmstadt, multi-po<strong>in</strong>t of multi-po<strong>in</strong>t Germany correlation correlation (MPC) equations<br />

for the fluctuations velocity 3 , Technische Universität Darmstadt, 64289 Darmstadt, Germany,<br />

2 GS and Computational pressure u(x, t) fluctuations and<br />

(MPC) equations for<br />

Chair of Fluid Dynamics<br />

the velocity and pressure<br />

Eng<strong>in</strong>eer<strong>in</strong>g,<br />

p(x, u(x, t) t) TUand Darmstadt, p(x, t) 64293 Darmstadt, Germany<br />

Center of Smart Interfaces, Mart<strong>in</strong> TUOberlack Darmstadt, 1,2,3 & 64287 Andreas Darmstadt, Rosteck 1 Germany<br />

3 GS 1 Computational Chair of Fluid Dynamics Eng<strong>in</strong>eer<strong>in</strong>g,<br />

, Technische TU Darmstadt, Universität64293 Darmstadt, Darmstadt, 64289 Darmstadt, Germany Germany,<br />

We <strong>in</strong>vestigate the<br />

S i{n+1} = ∂R symmetry and<br />

i {n+1}<br />

n <strong>in</strong>variance structure<br />

+ Ū k(l) (x<br />

∂t<br />

(l) ) ∂R of the <strong>in</strong>f<strong>in</strong>ite<br />

i {n+1}<br />

− ν ∂2 R i{n+1}<br />

set of multi-po<strong>in</strong>t correlation (MPC) equations<br />

for the velocity 2 Center of Smart Interfaces, TU Darmstadt, 64287 Darmstadt, + R Germany<br />

3 and pressure fluctuations u(x,<br />

∂Ūi (l)<br />

∂x<br />

t) and p(x,<br />

k(l) ∂x<br />

t)<br />

k(l) ∂x<br />

i{n+1} [i (l) →k (l) ]<br />

GS Computational k(l) ∂x k(l)<br />

l=1<br />

Eng<strong>in</strong>eer<strong>in</strong>g, TU Darmstadt, 64293 Darmstadt, Germany<br />

We <strong>in</strong>vestigate the symmetry and <strong>in</strong>variance structure<br />

∂u i(l) u k(l) (x (l) )<br />

− R i{n} [i (l) →0]<br />

+ ∂P i {n} [l]<br />

+ ∂R (1)<br />

i {n+2} [i (n+1) →k (l) ][x (n+1) → x (l) ]<br />

S i{n+1} = ∂R of the <strong>in</strong>f<strong>in</strong>ite set of multi-po<strong>in</strong>t correlation (MPC) equations<br />

for the + Ū k(l) (x ,<br />

i {n+1}<br />

n<br />

∂t<br />

(l) ) ∂R i {n+1}<br />

− ν ∂2 R i{n+1}<br />

∂Ūi (l)<br />

We<br />

velocity<br />

<strong>in</strong>vestigate<br />

and pressure<br />

the symmetry<br />

fluctuations<br />

and <strong>in</strong>variance<br />

u(x, t)<br />

structure<br />

and p(x,<br />

of<br />

t)<br />

the <strong>in</strong>f<strong>in</strong>ite set of multi-po<strong>in</strong>t + R<br />

∂x k(l)<br />

∂x ∂x k(l) i(l)<br />

∂x k(l) ∂x<br />

i{n+1} correlation [i<br />

∂x<br />

(l) →k (l) ] (MPC) equations<br />

for the velocity and pressurel=1<br />

fluctuations u(x, t) and p(x, t)<br />

k(l) k(l)<br />

∂x k(l)<br />

∂u i(l) u k(l) (x (l) )<br />

where n =1...∞. − RIn i{n} (1)[i the (l) →0] MPC tensor is def<strong>in</strong>ed + ∂P i {n} [l]<br />

as R i{n+1} + ∂R (1)<br />

S i {n+2} [i (n+1) →k (l) ][x (n+1) → x (l) ]<br />

= u i(0) (x (0) ) · ...· u i(n) (x (n) ) , and with , the<br />

four variations S i{n+1} of = ∂R <br />

i{n+1} = ∂R <br />

i {n+1}<br />

n<br />

+ Ū k(l) (x<br />

∂t i {n+1}<br />

n (l) ) ∂R i {n+1}<br />

it we have + a complete Ū k(l)<br />

∂x<br />

statistical k(l) (x ∂x<br />

description i(l) ∂x<br />

of turbulence. k(l)<br />

∂t<br />

(l) ) ∂R − ν ∂2 R i{n+1}<br />

∂Ūi (l)<br />

+ R<br />

∂x i {n+1}<br />

− ν ∂2 k(l) ∂x k(l) ∂x R i{n+1} [i i{n+1}<br />

(l) →k (l) ]<br />

k(l) ∂x<br />

+ R k(l)<br />

∂Ūi (l)<br />

l=1<br />

∂x k(l) ∂x k(l) ∂x<br />

i{n+1} [i (l) →k (l) ]<br />

k(l) ∂x k(l)<br />

Equation (1) admits∂u l=1<br />

all i(l) symmetries u k(l) (x (l) of ) the Navier-Stokes equations where they orig<strong>in</strong>ally emerged from at the<br />

where n =1...∞. In (1) the<br />

first place. Nevertheless equation ∂uMPC i(l) (1) upossesses k(l)<br />

tensor (x (l) ) is def<strong>in</strong>ed as R<br />

additional symmetries i{n+1} = u<br />

(see i(0) (x<br />

Oberlack, (0) ) · ...· u<br />

Rosteck i(n) (x<br />

2010 (n) ) , and with the<br />

& Rosteck<br />

four variations− of Rit Oberlack 2011)<br />

i{n} we[i (l) have →0] a complete statistical + ∂P i {n} [l]<br />

description + ∂R (1)<br />

− R i{n} [i (l) →0]<br />

+ ∂P i {n} [l]<br />

+ ∂R (1)<br />

i {n+2} [i (n+1) →k (l) ][x (n+1) → x (l) ]<br />

i {n+2} [i (n+1) →k (l) ][x (n+1) → x (l) ],<br />

∂x k(l) ∂x i(l) of turbulence. ∂x k(l)<br />

,<br />

∂x k(l) ∂x i(l) ∂x k(l)<br />

Equation (1) admits all symmetries of the Navier-Stokes equations<br />

G sh : ˜x = x, ˜r i(l) = r i(l) , ˜Ū i = e asŪ i, ˜R ij (x, y) =e where they orig<strong>in</strong>ally emerged as (1 − e as )Ūi(x)Ūj(y) − R ij (x, y) from at the<br />

where n =1...∞. first place. In (1) Nevertheless MPC equation tensor is(1) def<strong>in</strong>ed possesses as Radditional symmetries (see Oberlack, Rosteck 2010 , ··· & Rosteck<br />

where n =1...∞. In (1) the MPC tensor is def<strong>in</strong>ed i{n+1} = u<br />

as R i(0) (x<br />

i{n+1} = u (0) ) · ...· u<br />

i(0) (x<br />

Oberlack 2011)<br />

(0) ) · ...· i(n) (x<br />

u (n) ) , and with the<br />

i(n) (x (n) ) , and with the<br />

four variations<br />

four<br />

of<br />

variations<br />

it we have<br />

G L(a) : ˜x of= it<br />

a complete<br />

x, we˜r have<br />

i(l) = arcomplete statistical<br />

i(l) , ˜Ū i = statistical<br />

description Ūi + L (i) , description<br />

of turbulence.<br />

of turbulence.<br />

Equation (1) Equation admits all (2)<br />

G<br />

(1) symmetries admits<br />

sh : ˜R ij<br />

˜x (x, =<br />

all<br />

x,<br />

symmetries of the Navier-Stokes<br />

y) ˜r =R i(l) = ij (x, r i(l) y) ,<br />

of<br />

− ˜Ū the i L =<br />

Navier-Stokes<br />

e (i) Ū asŪ equations<br />

j (y) i, − ˜R ij L (x, (j) Ūy) equations where<br />

i (x) =e − as L (1<br />

where they orig<strong>in</strong>ally<br />

(i) L − e (j) , as they<br />

··· )Ūi(x)Ūj(y)<br />

orig<strong>in</strong>ally emerged<br />

−<br />

emerged from<br />

R ij (x, y)<br />

from at<br />

, ···<br />

at the the<br />

first place. Nevertheless first place. Nevertheless equation (1) equation possesses (1)<br />

G L(ab)<br />

G : ˜x = x, ˜r i(l) = r i(l) , ˜Ū L(a) : ˜x = x, ˜r i = Ūi, ˜R i(l) = r i(l) , ˜Ū<br />

possesses additional additional symmetries symmetries (see Oberlack, (see Oberlack, Rosteck Rosteck 2010 2010 & & Rosteck<br />

Oberlack 2011) Oberlack 2011)<br />

i = + ij<br />

L (x, (i) , y) =R ij (x, y)+L (ij) , ···<br />

(2)<br />

˜R ij (x, y) =R ij (x, y) − L (i) Ū j (y) − L (j) Ū i (x) − L (i) L (j) , ···<br />

G The latter G sh are : ˜x purely x, statistical ˜r i(l) = r i(l) properties , ˜Ū i of the equations (1), while G sh can be identified as a statistical scal<strong>in</strong>g<br />

group G(SSG) L(ab) and : ˜x G= L(a)<br />

x, ˜r , i(l) G L(ab)<br />

= r i(l) as, statistical ˜Ū<br />

= e asŪ i, ˜R<br />

i = Ūi, translation ˜R<br />

ij (x, y) =e as (1 − e as − R ij (x, y) sh : ˜x = x, ˜r i(l) = r i(l) , ˜Ū i = e asŪ i, ˜R ij (x, y) =e as − e as )Ūi(x)Ūj(y) − R ij (x, y) , ··· , ···<br />

ij (x, y) =R groups ij (x, (STG). y)+L (ij) , ···<br />

G G<br />

Assum<strong>in</strong>g L(a) : ˜x x, ˜r i(l) r i(l) , ˜Ū i =<br />

a plane parallel turbulent shear Ūi + L<br />

flow, (i) ,<br />

L(a) : ˜x = x, ˜r i(l) = r i(l) , ˜Ū i = the <strong>in</strong>f<strong>in</strong>ite set of equations (1) and the correspond<strong>in</strong>g symmetries<br />

provide the<br />

The latter are purely statistical Ūi + L (i) ,<br />

properties of the equations (1), while G ˜R ij <strong>in</strong>variant (x, y) =Rsurface ij (x, y) condition − L sh can be identified as a statistical scal<strong>in</strong>g<br />

(i) Ū j (y) − L (j) Ū i (x) − L (i) L (j) , ···<br />

(2)<br />

(2)<br />

˜R group ij (x,(SSG) y) =Rand ij (x, G L(a)<br />

y) , −G L L(ab) (i) Ūas statistical translation groups (STG).<br />

Assum<strong>in</strong>g<br />

G L(ab) :<br />

a<br />

˜x<br />

plane x,<br />

parallel<br />

˜r i(l) = r<br />

dx 2 turbulent i(l) , ˜Ū<br />

j (y) − L (j) Ū i (x) − L (i) L (j) , ···<br />

i<br />

= dr =<br />

shear Ūi,<br />

(k) flow, ˜R ij (x,<br />

the<br />

y)<br />

<strong>in</strong>f<strong>in</strong>ite<br />

=R ij (x,<br />

dŪ1 set<br />

y)+L<br />

of equations<br />

=<br />

= dR (ij) , ···<br />

G (11)(x, (1) y) and the correspond<strong>in</strong>g symmetries<br />

provide the <strong>in</strong>variant<br />

L(ab) : ˜x = x, ˜r i(l) = r i(l) , ˜Ū i = = ··· (3)<br />

k 1 x 2<br />

surface Ūi, ˜R ij (x, y) =R ij (x, y)+L (ij) , ···<br />

+ k x kcondition<br />

The latter are purely statistical properties 1 r (k) of the (kequations 1 − k 2 + k(1), a )Ū1 while + l 1 G sh can I(x, bey)<br />

identified as a statistical scal<strong>in</strong>g<br />

The latter aregroup purely (SSG) statistical and G<br />

with the group parameters L(a)<br />

properties , G<br />

k L(ab)<br />

of<br />

dx asthe statistical equations<br />

1 , k 2 2 , k<br />

= x , k dr translation (1), while groups G sh (STG). can be<br />

a ,(k)<br />

l 1 and<br />

=<br />

l 11 descend<strong>in</strong>g dŪ1 from the<br />

= dR identified<br />

groups (11)(x,<br />

(2) y) as a statistical scal<strong>in</strong>g<br />

and<br />

= ···<br />

the classical symmetry<br />

group (SSG) Assum<strong>in</strong>g and G (3)<br />

groups here L(a) a , plane G<br />

written L(ab) parallel as statistical<br />

<strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal k turbulent 1 x 2 + k shear translation<br />

x forms. k 1 r flow,<br />

(k) (k<br />

the groups<br />

1 −<br />

<strong>in</strong>f<strong>in</strong>ite(STG).<br />

k 2 + k<br />

set of a )Ū1 +<br />

equations<br />

l 1 I(x, (1) and y) the correspond<strong>in</strong>g symmetries<br />

provide parallel theturbulent <strong>in</strong>variant surface shear flow, condition the <strong>in</strong>f<strong>in</strong>ite set of equations (1) and the correspond<strong>in</strong>g symme-<br />

Assum<strong>in</strong>g a plane<br />

tries provide the with <strong>in</strong>variant the group surface parameters condition k 1 , k 2 , k x , k a , l 1 and l 11 descend<strong>in</strong>g The abbreviation from the groups I(x, y) (2) isandef<strong>in</strong>ed the classical I(x, symmetry y) =<br />

groups here written <strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal dx 2<br />

= dr forms. (k)<br />

dŪ1<br />

=<br />

[2k 1 − 2k= 2 + dR k a<br />

(11)(x, y)<br />

]R (11) (x, = y)+l ··· 11 − k a Ū i (x)Ūj(y) (3) −<br />

dx k 1 x 2 + k x k 1 r (k) (k 1 − k 2 + k a l)Ū1 1 (Ūi(x)+Ūj(y)) + l 1 I(x, and y)<br />

2<br />

the <strong>in</strong>dices <strong>in</strong> brackets denote<br />

= dr (k)<br />

dŪ1<br />

=<br />

no<br />

The = dR (11)(x, y)<br />

summation<br />

abbreviation<br />

but <strong>in</strong>stead = I(x, ··· y)<br />

each<br />

is def<strong>in</strong>ed<br />

component<br />

as I(x,<br />

is (3) to<br />

y)<br />

be<br />

=<br />

with the group k 1 xparameters 2 + k x k 11 r , (k) k 2 , k x<br />

(k , k 1a −, l 1<br />

k 2 and + lk 11 a )Ū1 descend<strong>in</strong>g + l 1<br />

taken<br />

[2k 1<br />

from<br />

separately.<br />

−<br />

I(x,<br />

2kthe 2 +<br />

y) groups k a ]R (11)<br />

(2)(x, and y)+l the classical 11 − k a Ū i<br />

symmetry (x)Ūj(y) −<br />

groups here written <strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal forms.<br />

From<br />

l 1 (Ūi(x)+Ūj(y))<br />

(3) we may derive<br />

and<br />

various<br />

the <strong>in</strong>dices<br />

new<br />

<strong>in</strong><br />

scal<strong>in</strong>g<br />

brackets<br />

laws<br />

denote<br />

with the group parameters k 1 , k 2 , k x , k a , l 1 and l 11 descend<strong>in</strong>g from the groups (2) and the classical symmetryfor<br />

the<br />

no<br />

MPC<br />

summation<br />

tensor. Presently,<br />

but <strong>in</strong>stead<br />

we<br />

each<br />

<strong>in</strong>voke<br />

component<br />

symmetries<br />

is to<br />

<strong>in</strong><br />

be<br />

groups here written <strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal forms.<br />

The abbreviation I(x, y) is def<strong>in</strong>ed as I(x, y) =<br />

the<br />

taken<br />

range<br />

separately.<br />

[2k of the validity of the logarithmic law of the<br />

wall<br />

From 1 − 2k<br />

i.e.<br />

(3) 2 + k<br />

k 1 −<br />

we a ]R<br />

k<br />

may (11) (x, y)+l<br />

2 + k<br />

derive<br />

a =0and<br />

various 11 − k<br />

compute<br />

new a Ū<br />

scal<strong>in</strong>g i (x)Ūj(y) −<br />

the Reynolds<br />

laws for<br />

The abbreviation l 1 (Ūi(x)+Ūj(y)) I(x, y) andisthedef<strong>in</strong>ed <strong>in</strong>dices <strong>in</strong> asbrackets I(x, y) denote =<br />

stresses<br />

the MPC<br />

<strong>in</strong><br />

tensor.<br />

the range<br />

Presently,<br />

or the logarithmic<br />

we <strong>in</strong>voke symmetries<br />

law of the<br />

<strong>in</strong><br />

[2k 1 −no 2ksummation - but -<strong>in</strong>stead each- component - is to be<br />

wall.<br />

the 2 + range k a ]R<br />

The parameters<br />

of (11) the(x, validity y)+l<br />

of the<br />

of 11<br />

new<br />

the − k<br />

equations<br />

logarithmic a Ū i (x)Ūj(y)<br />

describ<strong>in</strong>g<br />

law−of the<br />

l 1 (Ūi(x)+Ūj(y)) taken separately.<br />

the<br />

wall<br />

Reynolds<br />

i.e. k 1 −and stresses<br />

k 2<br />

the + k<strong>in</strong>dices have a =0and <strong>in</strong><br />

been determ<strong>in</strong>ed<br />

compute bracketsthe denote<br />

from<br />

Reynolds<br />

From (3) we may derive various new scal<strong>in</strong>g laws for the<br />

no summation<br />

DNS-data<br />

stressesbut <strong>in</strong><br />

of<br />

the <strong>in</strong>stead<br />

a boundary<br />

rangeeach or<br />

layer<br />

the component logarithmicis flow at Re<br />

law to be<br />

Θ = 2003<br />

of the<br />

separately. the MPC tensor. Presently, we <strong>in</strong>voke symmetries <strong>in</strong><br />

Figure 1. Comparison of the DNS data (dotted l<strong>in</strong>es) with taken separately.<br />

by<br />

wall.<br />

Hoyas<br />

The<br />

and<br />

parameters<br />

Jimenez<br />

of<br />

(2006).<br />

the new<br />

In<br />

equations<br />

figure 1<br />

describ<strong>in</strong>g<br />

the range of the validity of the logarithmic lawone of the can<br />

the scal<strong>in</strong>g laws result<strong>in</strong>g from the new symmetries (solid From (3) see<br />

the we that<br />

Reynolds may thisderive provides<br />

stresses various have<br />

excellent new beenscal<strong>in</strong>g determ<strong>in</strong>ed<br />

matchlaws <strong>in</strong> the<br />

from for log<br />

the<br />

wall i.e. k<br />

l<strong>in</strong>es)<br />

region.<br />

DNS-data 1 − k<br />

of 2 + k<br />

a boundary a =0and compute the Reynolds<br />

the MPC layer flow at Re Θ = 2003<br />

stresses tensor. <strong>in</strong> the Presently, range or wethe <strong>in</strong>voke logarithmic symmetries law of<strong>in</strong>the<br />

Figure 1. Comparison of the DNS data (dotted l<strong>in</strong>es) the with rangeby Hoyas and Jimenez (2006). In figure 1 one can<br />

wall. ofThe theparameters validity of of the thelogarithmic new equations lawdescrib<strong>in</strong>g<br />

of the<br />

the scal<strong>in</strong>g laws result<strong>in</strong>g from the new symmetries (solid see that this provides an excellent match <strong>in</strong> the log<br />

wall i.e. the k 1 Reynolds − k 2 + kstresses a =0and havecompute been determ<strong>in</strong>ed the Reynolds from the<br />

l<strong>in</strong>es)<br />

region.<br />

stressesDNS-data <strong>in</strong> the range of a boundary or the logarithmic layer flow at law Re Θ of = the 2003<br />

Figure 1. Comparison of the DNS data (dotted l<strong>in</strong>es) with wall. The by Hoyas parameters and Jimenez of the new (2006). equations In figure describ<strong>in</strong>g 1 one can<br />

the scal<strong>in</strong>g laws result<strong>in</strong>g from the new symmetries (solid the Reynolds see thatstresses this provides have been an excellent determ<strong>in</strong>ed matchfrom <strong>in</strong> the the log<br />

l<strong>in</strong>es)<br />

DNS-data region. of a boundary layer flow at Re Θ = 2003<br />

Figure 1. Comparison of the DNS data (dotted l<strong>in</strong>es) with by Hoyas and Jimenez (2006). In figure 1 one can<br />

the scal<strong>in</strong>g laws result<strong>in</strong>g from the new symmetries (solid see that this provides an excellent match <strong>in</strong> the log<br />

l<strong>in</strong>es)<br />

region.<br />

where n=1...∞. In (1) the MPC tensor is def<strong>in</strong>ed as<br />

have a complete statistical description of turbulence.<br />

and with the four variations of it we<br />

Equation (1) admits all symmetries of the Navier-Stokes equations where they orig<strong>in</strong>ally emerged from <strong>in</strong> the first place.<br />

Nevertheless equation (1) possesses additional symmetries (see [6,7])<br />

The latter are purely statistical properties of the equations (1), while G sh<br />

can be identified as a statistical scal<strong>in</strong>g group<br />

(SSG) and G L(a)<br />

, G L(ab)<br />

as statistical translation groups (STG).<br />

Assum<strong>in</strong>g a plane parallel turbulent shear flow, the <strong>in</strong>f<strong>in</strong>ite set of equations (1) and the correspond<strong>in</strong>g symmetries provide<br />

the <strong>in</strong>variant surface condition<br />

with the group parameters k 1<br />

, k 2<br />

, k x<br />

, k a<br />

, l 1<br />

and l 11<br />

descend<strong>in</strong>g from the groups (2) and the classical symmetry groups here<br />

written <strong>in</strong> <strong>in</strong>f<strong>in</strong>itesimal forms.<br />

The abbreviation I(x, y) is def<strong>in</strong>ed as: I(x, y) = [2k 1<br />

- 2k 2<br />

+ k a<br />

]R (11)<br />

(x,y) + l 11<br />

- k a<br />

U i<br />

(x)U j<br />

(y) - l 1<br />

(U i<br />

(x) + U j<br />

(y)) and the <strong>in</strong>dices <strong>in</strong> brackets<br />

denote no summation but <strong>in</strong>stead each component is to be taken<br />

From (3) we may derive various new scal<strong>in</strong>g laws for the MPC<br />

tensor. Presently, we <strong>in</strong>voke symmetries <strong>in</strong> the range of the validity<br />

of the logarithmic law of the wall i.e. k 1<br />

− k 2<br />

+ k a<br />

= 0 and compute<br />

the Reynolds stresses <strong>in</strong> the range or the logarithmic law<br />

of the wall. The parameters of the new equations describ<strong>in</strong>g the<br />

Reynolds stresses have been determ<strong>in</strong>ed from the DNS-data of<br />

a boundary layer flow at Re τ<br />

= 2003 by Hoyas and Jimenez [8].<br />

In figure 1, one can see that this provides an excellent match <strong>in</strong><br />

the log region.<br />

4 turbulent <strong>flows</strong> <strong>generated</strong>/<strong>designed</strong> <strong>in</strong> <strong>multiscale</strong>/<strong>fractal</strong> ways: fundamentals and applications<br />

turbulent <strong>flows</strong> <strong>generated</strong>/<strong>designed</strong> <strong>in</strong> <strong>multiscale</strong>/<strong>fractal</strong> ways: fundamentals and applications 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!