06.02.2014 Views

Congress Abstracts - Society for Developmental Biology

Congress Abstracts - Society for Developmental Biology

Congress Abstracts - Society for Developmental Biology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

appears not to be directly regulated by endoderm convergence. Furthermore, defects in endoderm convergence induced by a<br />

deficiency <strong>for</strong> S1pr2/Gα 13 signaling impaired both the passive and active modes of myocardial precursor migration. We are currently<br />

investigating the mechanisms by which S1pr2/Gα 13 controls both endoderm convergence and myocardial migration. Our study is<br />

expected to establish a framework <strong>for</strong> the interplay between the endoderm and myocardial precursors during heart-tube <strong>for</strong>mation.<br />

Program/Abstract # 237<br />

A role <strong>for</strong> Claudin-10 in left-right axis patterning<br />

Collins, Michelle M.; Ryan, Aimee (McGill University, Canada)<br />

Asymmetric organ positioning within the limited space of the body cavity is critical <strong>for</strong> normal physiological function. The origin of<br />

this asymmetry is initiated during gastrulation in an evolutionarily conserved molecular cascade. We have identified that a<br />

transmembrane tight junction component, Claudin-10, plays a role in directing asymmetric organ positioning in the chick. Claudins<br />

are integral components of tight junctions. Within the tight junction, claudins play a critical role in the regulation of the movement of<br />

ions and small molecular within the paracellular space. Additionally, claudins link the tight junction to the actin cytoskeleton via<br />

interactions within their cytoplasmic tails with adaptor and scaffolding proteins. Here, we report that Claudin-10 mRNA and protein<br />

are asymmetrically expressed on the right side of Hensen’s node, a critical site where bilateral symmetry is broken. We demonstrate<br />

that overexpression of Claudin-10 on the left side of the node, or knockdown of endogenous Claudin-10 on the right side of the node,<br />

randomizes the direction of heart-looping, the earliest morphological sign of disrupted left-right patterning. Furthermore, expression of<br />

classic left-right patterning genes Nodal, Lefty, Pitx2c, and cSnR is randomized in manipulated embryos. Mutagenesis of charged<br />

residues in the domain determining ion permeability properties did not affect the function of Claudin-10 in asymmetric organogenesis.<br />

However, mutation of two sites in the cytoplasmic tail (PDZ-binding domain and a putative phosphorylation site at S218) abolished<br />

the ability of Claudin-10 to randomize the direction of heart looping in gain-of-function studies, suggesting that interactions with<br />

cytoplasmic proteins are critical <strong>for</strong> Claudin-10 function. We are currently exploring the mechanism by which Claudin-10 functions in<br />

patterning the left-right axis.<br />

Program/Abstract # 238<br />

Dynamic cell rearrangement driving early heart tube <strong>for</strong>mation and looping<br />

Saijoh, Yukio; Kidokoro, Hinako (University of Utah, USA); Tamura, Koji (Tohoku University, Japan); Okabe, Masataka (The Jikei<br />

University School of Medicine, Japan); Schoenwolf, Gary (University of Utah, USA)<br />

The vertebrate heart <strong>for</strong>ms by the fusion of the paired left and right fields of precardiac mesoderm, which are originally separated on<br />

the either side of the embryonic midline. The short and symmetric primitive heart, undergoes rapid elongation along the A-P axis as<br />

the fusion proceeds, trans<strong>for</strong>ming from a straight morphology into a C-shaped loop. The asymmetric looping usually orients the heart<br />

tube toward the right side of the embryo, and several laterality genes that are expressed exclusively on the left side of the heart field<br />

have been shown to control the directionality of the looping. However, the behaviors/properties of cells that are modified by the leftright<br />

signals to drive morphogenesis remain unknown. To address this, we first analyzed in detail morphological changes of the heart<br />

tube during C-looping and found that C-looping is accomplished by asymmetric tissue growth between the left and right heart<br />

rudiments. Using cell labeling with fluorescent dyes and time-lapse microscopy, we further investigated how precardiac tissues are<br />

arranged during heart tube <strong>for</strong>mation and C-looping. Our observations suggested that heart precursor cells undergo dynamic<br />

rearrangement during these processes to trans<strong>for</strong>m the sheet-like structure of the precardiac mesoderm into a single elongated tube and<br />

to shape the primitive heart. Detailed analyses comparing movements of groups of labeled cells in the left and right heart primordia<br />

revealed that each primordium undergoes different patterns of rearrangement during heart morphogenesis. We will discuss<br />

differences in cell properties between left and right heart tissues that control differential tissue rearrangement and tissue growth to<br />

drive asymmetric looping.<br />

Program/Abstract # 239<br />

Importancia de microRNAS en la embryogénesis del tracto de salida ventricular derecho. Estudio en el embrión de pollo<br />

Sanchez Gomez, Concepcion, (Hospital Infantil Federico Gomez, Mexico), Perez, Carmen (UNAM, Mexico)<br />

El objetivo fue determinar el patrón de expresión de 13 miRs cardiacos en la región del corazón embrionario de pollo incluyendo al<br />

cono, tronco y saco aórtico durante su trans<strong>for</strong>mación en tractos de salida y troncos arteriales (St.24-36HH). Se seleccionó 13miRs<br />

cardiacos, se disectó la zona de interés y se obtuvo tejido adulto de tractos de salida ventrículares y troncos arteriales. Se extrajo el<br />

RNA total por el método de Trizol, se amplificó por RT-PCR. La expresión relativa se calculó con el método ∆CT y se empleo Anova<br />

una vía y una prueba post-hoc Tukey p ≤0.005. En St.24HH, la mayoría de los miRs estaban subexpresados respecto a la expresión en<br />

estructuras maduras, excepto cuando se comparó con el tracto de salida ventricular derecho. En este caso, el tejido embrionario mostró<br />

la mayoría de los miRs sobreexpresados. Por búsqueda bioin<strong>for</strong>matica y en la literatura, se encontró que miRs 206, 23b, 24 y Let7<br />

están relacionados con TGF- b , importante en la TEM necesaria para el desarrollo de las crestas conales. Estos miRs fueron evaluados<br />

de St.24-36HH y se investigo sus blancos. Al comparara tejido embrionario con tracto de salida ventricular derecho se halló que en St.<br />

24HH cuando TEM ya no es importante para el desarrollo de crestas conales, miR206 y 23b están sobreexpresados, después<br />

desaparecen. El blanco de miR206 es la endotelina y de miR 23b la acido hialurónico sintetasa, ambos modifican la MEC. miR24<br />

inhibe la síntesis y secreción de TGF- b , que promueve la regulación de TEM. Estos eventos en conjunto provocan descenso de TEM,<br />

68

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!