28.02.2014 Views

The Bergman property for semigroups

The Bergman property for semigroups

The Bergman property for semigroups

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Page 18 of 21<br />

V. MALTCEV, J. D. MITCHELL, AND N. RUŠKUC<br />

Define h : Q → Q by<br />

xh =<br />

{<br />

x n x ∈ {y n , z n }<br />

x x ∉ {y 1 , z 1 , y 2 , z 2 . . .}.<br />

Hence we have shown that if f ∈ BSelf(Q) such that |x − xf| ≤ k, then there exist g, h ∈<br />

BSelf(Q) such that f = gh, |x − xg| ≤ (2/3)k, and |x − xh| ≤ (2/3)k. We may repeat this<br />

process <strong>for</strong> g and h and subsequently their factors and their factors’ factors and so on, until<br />

f is given as a product of elements of U. <strong>The</strong>re<strong>for</strong>e we have shown that the set U generates<br />

BSelf(Q). It is obvious that BSelf(Q) is not Cayley bounded with respect to U and so BSelf(Q)<br />

does not satisfy the semigroup <strong>Bergman</strong> <strong>property</strong>.<br />

It remains to prove that cf(BSelf(Q)) > ℵ 0 . Let<br />

and<br />

G = { f ∈ BSelf(Q) : [4n, 4n + 4)f ⊆ [4n, 4n + 4) <strong>for</strong> all n ∈ Z }<br />

H = { f ∈ BSelf(Q) : [4n + 2, 4n + 6)f ⊆ [4n + 2, 4n + 6) <strong>for</strong> all n ∈ Z }.<br />

It is straight<strong>for</strong>ward to verify that<br />

G ∼ = H ∼ ∏<br />

= Self([0, 4)).<br />

i∈Z<br />

We will now prove that U ⊆ GH. Let f ∈ U and im(f) = {x 1 , x 2 , . . .}. <strong>The</strong> proof follows a<br />

similar argument to that used to show that 〈 U 〉 = BSelf(Q). Let n ≥ 1. We will define elements<br />

y n , z n ∈ Q, n ∈ N, and functions<br />

g n : {x 1 , x 2 , . . . , x n }f −1 → {y 1 , z 1 , y 2 , z 2 , . . . , y n , z n }<br />

that depend on x n and extend g n−1 and h n−1 . <strong>The</strong>re are three cases to consider.<br />

If x n ∈ [4k, 4k + 1), then x n f −1 ⊆ [4k − 1, 4k + 2) since f ∈ U. Elements of G take [4k, 4k +<br />

2) to [4k, 4k + 4) and [4k − 1, 4k) to [4k − 4, 4k). Hence choose<br />

and<br />

Define g n by<br />

y n ∈ [4k, 4k + 2) \ {y 1 , z 1 , y 2 , z 2 , . . . , y n−1 , z n−1 }<br />

z n ∈ [4k − 1, 4k) \ {y 1 , z 1 , y 2 , z 2 , . . . , y n−1 , z n−1 }.<br />

⎧<br />

⎪⎨ xg n−1 x ∉ x n f −1<br />

xg n = y n x ∈ x n f<br />

⎪⎩<br />

−1 ∩ [4k, 4k + 2)<br />

x ∈ x n f −1 ∩ [4k − 1, 4k).<br />

If x n ∈ [4k + i, 4k + i + 1) where i = 1 or 2, then choose<br />

and define g n by<br />

z n<br />

y n , z n ∈ [4k + i, 4k + i + 1) \ {y 1 , z 1 , y 2 , z 2 , . . . , y n−1 , z n−1 }<br />

xg n =<br />

{<br />

xg n−1 x ∉ x n f −1<br />

y n x ∈ x n f −1 .<br />

If x n ∈ [4k + 3, 4k + 4), then x n f −1 ⊆ [4k + 2, 4k + 5). Choose<br />

y n ∈ [4k + 4, 4k + 5) \ {y 1 , z 1 , y 2 , z 2 , . . . , y n−1 , z n−1 }<br />

and<br />

z n ∈ [4k + 2, 4k + 4) \ {y 1 , z 1 , y 2 , z 2 , . . . , y n−1 , z n−1 }.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!