03.03.2014 Views

Rearing the cotton bollworm, Helicoverpa armigera, on a tapioca ...

Rearing the cotton bollworm, Helicoverpa armigera, on a tapioca ...

Rearing the cotton bollworm, Helicoverpa armigera, on a tapioca ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Journal of Insect Science | www.insectscience.org ISSN: 1536-2442<br />

Introducti<strong>on</strong><br />

The <str<strong>on</strong>g>cott<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>bollworm</str<strong>on</strong>g>, <str<strong>on</strong>g>Helicoverpa</str<strong>on</strong>g> <str<strong>on</strong>g>armigera</str<strong>on</strong>g><br />

Hubner (Lepidoptera: Noctuidae) is a major<br />

threat to intensive agriculture (Sigsgaard et al.<br />

2002). Its wide disseminati<strong>on</strong> and pest status has<br />

been attributed to its polyphagy, and its ability to<br />

undergo both facultative diapause and seas<strong>on</strong>al<br />

migrati<strong>on</strong> (Fitt 1989). The species is migratory <strong>on</strong><br />

all c<strong>on</strong>tinents, and is a key pest <strong>on</strong> all of <str<strong>on</strong>g>the</str<strong>on</strong>g>m<br />

(Feng et al. 2005). Host plants used by H.<br />

<str<strong>on</strong>g>armigera</str<strong>on</strong>g>’s have been recorded for India (60<br />

cultivated and 67 wild plants) (Karim 2000),<br />

Africa (Pears<strong>on</strong> 1958), Australia (Zalucki et al.<br />

1986), and New Zealand (Thanee 1987).<br />

It is important to be able to ec<strong>on</strong>omically rear<br />

important insects to study <str<strong>on</strong>g>the</str<strong>on</strong>g>ir life history,<br />

behavior, feeding habits, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir susceptibility<br />

and resistance to chemical and biological<br />

pesticides. <str<strong>on</strong>g>Rearing</str<strong>on</strong>g> insects <strong>on</strong> artificial diets is an<br />

expensive process, especially for developing<br />

countries where insufficient funds are available<br />

for research. As a result it is inevitable that<br />

ec<strong>on</strong>omic threats imposed by insects to<br />

agriculture are poorly studied (Ahmed 1983). So<br />

far various artificial diets have been developed<br />

and proposed for <str<strong>on</strong>g>the</str<strong>on</strong>g> maintenance, and<br />

c<strong>on</strong>tinuous rearing of ec<strong>on</strong>omically important<br />

insects (Cohen, 2001; Castane and Zapata 2005;<br />

Ahmed et al. 1998). Although <str<strong>on</strong>g>the</str<strong>on</strong>g>re is some<br />

success in efforts to rear successive generati<strong>on</strong>s of<br />

ec<strong>on</strong>omically important insects entirely <strong>on</strong> an<br />

artificial diet, in many cases <str<strong>on</strong>g>the</str<strong>on</strong>g>re is loss of both<br />

fitness and reproductive potential which cause<br />

l<strong>on</strong>ger development times and lower fecundity<br />

(Coudr<strong>on</strong> et al. 2005). As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> cost-saving<br />

ratio is diminished. Life and fecundity tables have<br />

been found to be important methods for analyzing<br />

and understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> impact of an external<br />

factor, such as an artificial diet, up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth,<br />

survival, reproducti<strong>on</strong>, and rate of increase of an<br />

insect populati<strong>on</strong> (Bellows et al. 1992). These<br />

tools have been used to improve rearing<br />

techniques (Birch 1948) and compare different<br />

food sources in diet (Hansen et al. 1999).<br />

Agar is a vital ingredient of insect rearing diet<br />

(Ahmed et al. 1998) and is acquired from marine<br />

algae such as Gracilaria and Geladiella species<br />

(Nene 1996). Worldwide, agar is <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

expensive and sole ingredient of biological media.<br />

It is characterized as a gelling agent and provides<br />

some minerals and probably provides a<br />

stimulati<strong>on</strong> of gut motility, which can be very<br />

important in terms of absorpti<strong>on</strong> of nutrients and<br />

effective digesti<strong>on</strong> (Cohen, 2003). There are o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

functi<strong>on</strong>s of diet comp<strong>on</strong>ents such as modifiers of<br />

bioavailability, stability, palatability,<br />

emulsificati<strong>on</strong>, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspects of hydrocolloid<br />

functi<strong>on</strong> such as viscosity, sheer strength and<br />

tensile strength (Cohen, 2003). Tapioca, prepared<br />

from <str<strong>on</strong>g>the</str<strong>on</strong>g> cassava plant, Manihot esculenta Crantz<br />

(Euphorbiales: Euphorbiacea) has been<br />

successfully used instead of agar in plant tissue<br />

culture media (Nene 1996; Gebre and<br />

Sathyanarayana 2001). Tapioca can also be used<br />

as a gelling agent in media. In this report we show<br />

that <strong>tapioca</strong> can be used in place of agar to rear H.<br />

<str<strong>on</strong>g>armigera</str<strong>on</strong>g> for up to five successive generati<strong>on</strong>s. All<br />

materials used in this study were fabricated<br />

locally with <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose of determining cost<br />

effectiveness when compared to imported<br />

materials from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries. The impact of <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>tapioca</strong>-based artificial diet was studied <strong>on</strong> larval<br />

development, pupal development, pupal weight,<br />

incomplete pupati<strong>on</strong>, sex emergence percentage,<br />

fecundity and l<strong>on</strong>gevity, which were compared<br />

with results of simultaneously reared c<strong>on</strong>secutive<br />

generati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> agar-based diet formula.<br />

Materials and Methods<br />

A col<strong>on</strong>y of H. <str<strong>on</strong>g>armigera</str<strong>on</strong>g> was initiated from 2<br />

pairs of adults collected from <str<strong>on</strong>g>the</str<strong>on</strong>g> wild<br />

envir<strong>on</strong>ment and reared <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> agar-based diet<br />

used as <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol in current study (Ahmed et al.<br />

1998). Experiments were c<strong>on</strong>ducted <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

Table 1. Ingredients of agar and <strong>tapioca</strong>-based diets and vitamin soluti<strong>on</strong>.<br />

Weight (g)<br />

Vitamin stock soluti<strong>on</strong><br />

Comp<strong>on</strong>ents Tapioca diet Agar diet % Tapioca diet % Agar diet Ingredients Quantity<br />

Agar 0 7.1 0 3.6 Calcium pantothanate 9.6 g<br />

Granular <strong>tapioca</strong> 60 0 24 0 Nicotine acid amide 4.8 g<br />

Chickpea powder 171.4 171.4 70 89 Riboflavin 2.4 g<br />

Ascorbic acid 2 2 0.8 1 Folic acid 2.4 g<br />

Sorbic acid 0.86 0.86 0.3 0.5 Thymine hydrochloride 1.2 g<br />

Dried active yeast 5.7 5.7 2.3 3 Pyridoxine hydrochloride 1.2 g<br />

Methyl-para-hydroxy-benzoate 2.9 2.9 1.2 1.5 Biotin 0.096 g<br />

Vitamin mixture 1.42 1.42 0.6 0.7 Vitamin B 1 0.0048 g<br />

Formaldehyde 1.7 1.7 0.6 0.7 Sterilized distilled water 400 ml<br />

Total 245.98 193.08 99.8 100<br />

Journal of Insect Science: Vol. 7 | Article 35 2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!