13.03.2014 Views

Abiotic and biotic stresses and changes in the lignin ... - ResearchGate

Abiotic and biotic stresses and changes in the lignin ... - ResearchGate

Abiotic and biotic stresses and changes in the lignin ... - ResearchGate

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1<br />

<strong>A<strong>biotic</strong></strong> <strong>and</strong> <strong>biotic</strong> <strong>stresses</strong> <strong>and</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> lign<strong>in</strong> content <strong>and</strong><br />

composition <strong>in</strong> plants<br />

Runn<strong>in</strong>g title: Lign<strong>in</strong> <strong>changes</strong> caused by <strong>stresses</strong><br />

Jullyana Crist<strong>in</strong>a Magalhães Silva Moura 1 , Cesar Augusto Valencise Bon<strong>in</strong>e 2 , Juliana<br />

de Oliveira Fern<strong>and</strong>es Viana 1,2 , Marcelo Carnier Dornelas 1 <strong>and</strong> Paulo Mazzafera 1 *<br />

1 Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de<br />

Camp<strong>in</strong>as, CP 6109, 13083-970, Camp<strong>in</strong>as, SP, Brazil<br />

2 Votorantim Celulose e Papel S.A., Rodovia SP 255, Km 41,2, s/nº, 14210-000, Luis<br />

Antonio, SP, Brazil<br />

*Correspond<strong>in</strong>g author:<br />

email: pmazza@unicamp.br<br />

Tel: +55 19 3521 6358


2<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

Abbreviations: PAL - phenylalan<strong>in</strong>e ammonia-lyase; C4H - c<strong>in</strong>namate 4-hydroxylase;<br />

C3H - c<strong>in</strong>namate 3-hydroxylase or p-coumaroyl shikimic acid/qu<strong>in</strong>ic acid 3-<br />

hydroxylase; OMT - O-methyltransferase; HCT - p-hydroxy c<strong>in</strong>namoyl-CoA:<br />

shikimate/qu<strong>in</strong>ate p-hydroxy c<strong>in</strong>namoyl transferase; CCoAOMT - caffeoyl coenzyme A<br />

O-methyltransferase; F5H - ferulate 5-hydroxylase; 4CL - 4-coumarate: coenzyme A<br />

ligase; CCR - c<strong>in</strong>namoyl coenzyme A reductase; Cald5H - coniferaldehyde 5-<br />

hydroxylase; AldOMT - 5-hydroxy coniferaldehyde O-methyltransferase; SAD -<br />

s<strong>in</strong>apyl alcohol dehydrogenase; CAD - c<strong>in</strong>namyl alcohol dehydrogenase.<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

Abstract: Lign<strong>in</strong> is a polymer of phenylpropanoid compounds formed through a<br />

complex biosyn<strong>the</strong>sis route, represented by a metabolic grid for which most of <strong>the</strong> genes<br />

<strong>in</strong>volved have been sequenced <strong>in</strong> several plants, ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> model-plants Arabidopsis<br />

thaliana <strong>and</strong> Populus. Plants are exposed to different <strong>stresses</strong>, which may change lign<strong>in</strong><br />

content <strong>and</strong> composition. In many cases, particularly for plant-microbe <strong>in</strong>teractions, this<br />

has been suggested as defence responses of plants to <strong>the</strong> stress. Thus, underst<strong>and</strong><strong>in</strong>g<br />

how a stressor modulates expression of <strong>the</strong> genes related with lign<strong>in</strong> biosyn<strong>the</strong>sis may<br />

allow us to develop study-models to <strong>in</strong>crease our knowledge on <strong>the</strong> metabolic control of<br />

lign<strong>in</strong> deposition <strong>in</strong> <strong>the</strong> cell wall. This review focuses on recent literature report<strong>in</strong>g on<br />

<strong>the</strong> ma<strong>in</strong> types of a<strong>biotic</strong> <strong>and</strong> <strong>biotic</strong> <strong>stresses</strong> that alter <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> <strong>in</strong> plants.<br />

20<br />

21<br />

22<br />

Key words: disease, drought, light stress, low temperature, m<strong>in</strong>eral nutrition, plant<br />

growth, plant breed<strong>in</strong>g, reaction wood.<br />

23<br />

24<br />

25


3<br />

26<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

47<br />

48<br />

49<br />

Introduction<br />

Lign<strong>in</strong> (from <strong>the</strong> Lat<strong>in</strong> word lignum, wood) is a highly branched polymer of<br />

phenylpropanoid compounds, <strong>and</strong> a component of <strong>the</strong> plant cell wall. After cellulose,<br />

lign<strong>in</strong> is <strong>the</strong> second most abundant organic compound <strong>in</strong> plants, represent<strong>in</strong>g<br />

approximately 30% of <strong>the</strong> organic carbon <strong>in</strong> <strong>the</strong> biosphere (Boerjan et al., 2003).<br />

The lignification process seems to have appeared on Earth 430 million years ago<br />

(Boudet, 2000) among <strong>the</strong> possible strategies that allowed plants to adapt to terrestrial<br />

life. The functional significance of lign<strong>in</strong> is associated ma<strong>in</strong>ly with <strong>the</strong> mechanical<br />

support allow<strong>in</strong>g plants to st<strong>and</strong>, with water transport <strong>in</strong> <strong>the</strong> xylem vases <strong>and</strong> as a<br />

defence aga<strong>in</strong>st pests <strong>and</strong> microorganisms (Boudet, 2000). The first two characteristics<br />

are related to <strong>the</strong> way lign<strong>in</strong> <strong>in</strong>teracts with o<strong>the</strong>r molecules of <strong>the</strong> cell wall,<br />

streng<strong>the</strong>n<strong>in</strong>g <strong>the</strong> whole structure.<br />

Despite <strong>the</strong> importance of lign<strong>in</strong> <strong>in</strong> plant evolution <strong>and</strong> development, it<br />

represents a problem for <strong>the</strong> agro-<strong>in</strong>dustrial application of several plants, particularly <strong>in</strong><br />

<strong>the</strong> papermak<strong>in</strong>g <strong>in</strong>dustry. The processes used for <strong>the</strong> separation of lign<strong>in</strong> from <strong>the</strong><br />

cellulose pulp are <strong>the</strong> most costly <strong>and</strong> pollut<strong>in</strong>g parts of <strong>the</strong> whole process (Hatfield <strong>and</strong><br />

Fukushima, 2005). Consequently, several studies have <strong>in</strong>vestigated how to improve<br />

pulp<strong>in</strong>g efficiency (Akgül et al., 2007), as well as alternative pulp<strong>in</strong>g methods<br />

(Khristova et al., 2006; Huang et al., 2007).<br />

In addition to <strong>the</strong> chemical studies try<strong>in</strong>g to f<strong>in</strong>d more efficient <strong>and</strong><br />

environmentally friendly methods for lign<strong>in</strong> extraction, <strong>the</strong>re are also several<br />

laboratories around <strong>the</strong> world seek<strong>in</strong>g to genetically manipulate lign<strong>in</strong> structure <strong>and</strong><br />

content. Genetically modified plants with less lign<strong>in</strong> <strong>and</strong>/or with a different structural<br />

lign<strong>in</strong> composition may allow for improved cellulose yield dur<strong>in</strong>g pulp<strong>in</strong>g <strong>and</strong>, at <strong>the</strong>


4<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

same time, reduce <strong>the</strong> level of pollutants released to <strong>the</strong> environment. Arabidopsis<br />

thaliana <strong>and</strong> Populus have been used as model-plants <strong>in</strong> most of <strong>the</strong>se studies.<br />

With<strong>in</strong> this context, lign<strong>in</strong> biosyn<strong>the</strong>sis has been shown to be <strong>the</strong> result of a<br />

complex genetic network (Rogers <strong>and</strong> Campbel, 2004), where several enzymes are<br />

<strong>in</strong>volved <strong>and</strong> may respond differently to <strong>biotic</strong> <strong>and</strong> a<strong>biotic</strong> effects (Figure 1). In this<br />

regard, <strong>the</strong> literature is rich with examples where lign<strong>in</strong> content <strong>in</strong> <strong>the</strong> plant body is<br />

<strong>in</strong>creased or exhibits a change <strong>in</strong> chemical composition due to stressors, suggest<strong>in</strong>g<br />

complex genetic <strong>and</strong> physiological control. It is possible that underst<strong>and</strong><strong>in</strong>g how a<br />

stressor “modulates” <strong>the</strong> expression of “lign<strong>in</strong> genes” would allow us to develop studymodels<br />

to elucidate genetic control of lign<strong>in</strong> syn<strong>the</strong>sis <strong>and</strong> its deposition <strong>in</strong> <strong>the</strong> cell wall.<br />

Different types of a<strong>biotic</strong> <strong>stresses</strong>, such as m<strong>in</strong>eral deficiency, drought, UV-B<br />

radiation <strong>and</strong> low temperatures, as well as <strong>biotic</strong> <strong>stresses</strong>, such as <strong>in</strong>fection by fungi,<br />

bacteria <strong>and</strong> viruses, cause <strong>changes</strong> <strong>in</strong> <strong>the</strong> lign<strong>in</strong> contents of several plants. Thus, this<br />

review focuses on <strong>the</strong> recent literature report<strong>in</strong>g on <strong>the</strong> ma<strong>in</strong> types of a<strong>biotic</strong> <strong>and</strong> <strong>biotic</strong><br />

<strong>stresses</strong> that alter <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> <strong>in</strong> plants.<br />

65<br />

66<br />

Insert Figure 1<br />

67<br />

68<br />

69<br />

70<br />

71<br />

72<br />

73<br />

74<br />

Low temperatures<br />

Low temperature is an important factor limit<strong>in</strong>g <strong>the</strong> extension of cultivat<strong>in</strong>g<br />

areas <strong>and</strong> <strong>the</strong>refore <strong>the</strong> productivity of grow<strong>in</strong>g several plants. It is known that, <strong>in</strong> many<br />

species, a prior exposure to non-freez<strong>in</strong>g low temperatures allows survival follow<strong>in</strong>g<br />

fur<strong>the</strong>r exposure to freez<strong>in</strong>g temperatures (Ch<strong>in</strong>nusamy et al., 2007). Underst<strong>and</strong><strong>in</strong>g<br />

which mechanisms are <strong>in</strong>volved <strong>in</strong> <strong>the</strong> acclimation to cold would allow researchers to<br />

produce genetically modified plants with greater resistance to low temperatures. This


5<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

would m<strong>in</strong>imize <strong>the</strong> impact of cold on <strong>the</strong> productivity of agriculturally important plants<br />

<strong>and</strong> would also allow <strong>the</strong> expansion of agricultural areas <strong>in</strong> several countries.<br />

The acclimation to cold is a process that <strong>in</strong>volves <strong>changes</strong> <strong>in</strong> gene expression<br />

associated with physiological <strong>and</strong> biochemical <strong>changes</strong>. Dur<strong>in</strong>g cold acclimation of<br />

Arabidopsis, 3379 genes, <strong>in</strong>clud<strong>in</strong>g those cod<strong>in</strong>g for several transcription factors,<br />

exhibit altered expression patterns (Hannah et al., 2005).<br />

In below-zero temperatures, <strong>the</strong> membranes are <strong>the</strong> most <strong>in</strong>jured regions of <strong>the</strong><br />

cell. This damage occurs ma<strong>in</strong>ly due to dehydration caused by <strong>the</strong> formation of<br />

extracellular ice (Steponkus, 1984; Steponkus et al., 1993). O<strong>the</strong>r <strong>in</strong>juries are caused by<br />

reactive oxygen species (Suzuki <strong>and</strong> Mittler, 2006). Therefore, it may be possible to<br />

improve cold tolerance by exam<strong>in</strong><strong>in</strong>g <strong>changes</strong> <strong>in</strong> lipid composition (Thomashow, 1999),<br />

as well as <strong>the</strong> accumulation of sugars, am<strong>in</strong>o acids <strong>and</strong> anti-freeze compounds, such as<br />

anti-freeze prote<strong>in</strong>s (Atici <strong>and</strong> Nalbantoglu, 2003) <strong>and</strong> antioxidant enzymes <strong>and</strong><br />

compounds (Gratão et al., 2005).<br />

Even though we do not know <strong>the</strong> role of lign<strong>in</strong> <strong>in</strong> <strong>the</strong> acclimation to cold, low<br />

temperatures can cause <strong>changes</strong> <strong>in</strong> plant lign<strong>in</strong> content. Ex vitro poplar (Populus<br />

tremula x P. tremuloides L. cv. Muhs1) seedl<strong>in</strong>gs grown at 10 o C showed an <strong>in</strong>crease <strong>in</strong><br />

lign<strong>in</strong> content, but <strong>the</strong> same was not true for <strong>in</strong> vitro seedl<strong>in</strong>gs (Hausman et al., 2000).<br />

The amount of lign<strong>in</strong> <strong>in</strong> latewood Picea abies may be positively correlated with <strong>the</strong><br />

annual average temperature (G<strong>in</strong>dl et al., 2000). Monocots <strong>in</strong> temperate climate regions<br />

exhibit an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> amounts of lign<strong>in</strong>, cellulose <strong>and</strong> hemicellulose with <strong>in</strong>creas<strong>in</strong>g<br />

temperature (Ford et al., 1979).<br />

O<strong>the</strong>r studies showed variation <strong>in</strong> <strong>the</strong> level of phenylpropanoid lign<strong>in</strong> precursors<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> activities of related enzymes <strong>in</strong> plants exposed to low temperatures. Brassica<br />

napus plants exposed to cold (3 weeks to 2 o C followed by a rapid decl<strong>in</strong>e to -5ºC for


6<br />

100<br />

101<br />

102<br />

103<br />

104<br />

105<br />

106<br />

107<br />

108<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

18h, <strong>the</strong>n followed by 6h at 2 o C) did not show any change <strong>in</strong> <strong>the</strong> levels of lign<strong>in</strong> or cell<br />

wall-bound phenols (Solecka et al., 1999). However, <strong>the</strong>re was an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> levels<br />

of ρ-coumaric acid, ferulic acid <strong>and</strong> synapic acid <strong>in</strong> <strong>the</strong> cells of <strong>the</strong> leaf mesophyll, as<br />

well as an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> esterified soluble forms of <strong>the</strong>se acids, which may be<br />

associated with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> activity of phenylalan<strong>in</strong>e ammonia-lyase (PAL).<br />

Previous studies showed that B. napus exposed to low temperatures demonstrated<br />

<strong>in</strong>creased PAL activity (Solecka <strong>and</strong> Kacperska, 1995). The <strong>in</strong>crease <strong>in</strong> phenolic acid<br />

esterified soluble forms observed by Solecka et al. (1999) might be a mechanism to<br />

avoid <strong>the</strong> toxic effect on plant cells of free phenols (Whetten <strong>and</strong> Sederoff, 1995). This<br />

would also allow <strong>the</strong>ir transport to <strong>the</strong> vacuoles (Dixon <strong>and</strong> Paiva, 1995), where <strong>the</strong>y<br />

could be used as substrates for peroxidase (Takahama, 1988) to protect <strong>the</strong> cells aga<strong>in</strong>st<br />

reactive oxygen species, s<strong>in</strong>ce this enzyme uses peroxide as oxidiz<strong>in</strong>g substrate<br />

(Takahama <strong>and</strong> Oniki, 1997).<br />

Glyc<strong>in</strong>e max roots also showed <strong>in</strong>creased PAL activity dur<strong>in</strong>g acclimation to<br />

cold (10 o C), accompanied by a significant <strong>in</strong>crease <strong>in</strong> <strong>the</strong> levels of esterified forms of<br />

ferulic, syr<strong>in</strong>gic <strong>and</strong> p-hydroxybenzoic acids (Janas et al., 2000). Such <strong>in</strong>creases were<br />

also suggested to be a mechanism to prevent cell damage, <strong>in</strong>volv<strong>in</strong>g transport to <strong>the</strong><br />

vacuole <strong>and</strong> peroxidase activity as scavenger mechanisms to protect aga<strong>in</strong>st generated<br />

reactive oxygen species.<br />

Peroxidase activity also <strong>in</strong>creased <strong>in</strong> wheat (Taşgına et al., 2006; J<strong>and</strong>a et al.,<br />

2007) <strong>and</strong> Saccharum spp. hybrid (Ja<strong>in</strong> et al., 2007) exposed to low temperature.<br />

Levels of lign<strong>in</strong> <strong>and</strong> soluble phenols were closely related <strong>in</strong> leaves <strong>and</strong> roots of<br />

Triticum aestivum plants at 2 o C (Olenichenko <strong>and</strong> Zagosk<strong>in</strong>a, 2005). While leaves<br />

showed an <strong>in</strong>crease of soluble phenols <strong>and</strong> a decrease of lign<strong>in</strong>, <strong>the</strong> opposite was<br />

observed <strong>in</strong> roots. The accumulation of soluble phenolic compounds was argued to


7<br />

125<br />

126<br />

127<br />

128<br />

129<br />

130<br />

131<br />

132<br />

133<br />

134<br />

135<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

correlate with <strong>changes</strong> <strong>in</strong> CO 2 exchange, as <strong>the</strong>re was a smaller reduction <strong>in</strong><br />

photosyn<strong>the</strong>sis as compared to respiration, s<strong>in</strong>ce photosyn<strong>the</strong>sis is less sensitive to low<br />

temperatures. The <strong>in</strong>crease of <strong>the</strong>se compounds was considered a cellular adaptation to<br />

stress, act<strong>in</strong>g as endogenous antioxidant. O<strong>the</strong>r studies with wheat also showed an<br />

<strong>in</strong>crease <strong>in</strong> <strong>the</strong> accumulation of soluble phenolic compounds <strong>in</strong> leaves, but no change <strong>in</strong><br />

lign<strong>in</strong> content was detected (Olenichenko <strong>and</strong> Zagosk<strong>in</strong>a, 2005). However, lign<strong>in</strong><br />

accumulated <strong>in</strong> tiller<strong>in</strong>g nodes; <strong>in</strong> contrast to o<strong>the</strong>r studies where <strong>the</strong> <strong>in</strong>creased amount<br />

of soluble phenolic compounds was correlated with <strong>in</strong>creased PAL activity (Solecka<br />

<strong>and</strong> Kacperska, 1995; Janas et al., 2000), <strong>in</strong> this case less activity was observed <strong>in</strong> both<br />

tissues with a concomitant <strong>in</strong>crease of free L-phenylalan<strong>in</strong>e.<br />

Curiously, some studies have shown that although no <strong>changes</strong> <strong>in</strong> <strong>the</strong> levels of<br />

lign<strong>in</strong> or its precursors were observed <strong>in</strong> plants ma<strong>in</strong>ta<strong>in</strong>ed at low temperatures, <strong>the</strong>re<br />

was an <strong>in</strong>crease <strong>in</strong> related enzyme activities as well as an <strong>in</strong>crease <strong>in</strong> gene expression.<br />

Dur<strong>in</strong>g acclimation of Rhododendron to cold, <strong>the</strong>re was an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> expression of<br />

<strong>the</strong> gene cod<strong>in</strong>g for C3H, a cytochrome P450-dependent monooxygenase <strong>in</strong>volved <strong>in</strong><br />

<strong>the</strong> biosyn<strong>the</strong>sis of phenylpropanoids <strong>and</strong> lign<strong>in</strong> (El Kayal et al., 2006). Accord<strong>in</strong>g to<br />

<strong>the</strong>se authors, <strong>in</strong>creased expression of C3H could result <strong>in</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> composition<br />

of lign<strong>in</strong>, alter<strong>in</strong>g <strong>the</strong> stiffness of <strong>the</strong> cell wall.<br />

143<br />

144<br />

145<br />

146<br />

147<br />

148<br />

Water deficit<br />

Water deficit occurs <strong>in</strong> plants when <strong>the</strong> water supply is <strong>in</strong>sufficient to ma<strong>in</strong>ta<strong>in</strong><br />

growth, photosyn<strong>the</strong>sis <strong>and</strong> transpiration (Fan et al., 2006). This is one of <strong>the</strong> ma<strong>in</strong><br />

problems affect<strong>in</strong>g food production <strong>in</strong> <strong>the</strong> world, reduc<strong>in</strong>g crop productivity (V<strong>in</strong>cent et<br />

al., 2005).


8<br />

149<br />

150<br />

151<br />

152<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

163<br />

164<br />

165<br />

166<br />

167<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

Very little is known about <strong>the</strong> effects of drought on lign<strong>in</strong> biosyn<strong>the</strong>sis. A<br />

reduction <strong>in</strong> <strong>the</strong> amount of ferulic acid <strong>and</strong> an <strong>in</strong>crease of p-coumaric <strong>and</strong> caffeic acids<br />

<strong>in</strong> <strong>the</strong> xylem sap of maize was observed after 12 days of water uphold<strong>in</strong>g (Alvarez et al.,<br />

2008). It was also detected decreased anionic peroxidase activity <strong>and</strong> <strong>in</strong>creased cationic<br />

peroxidase activity. Accord<strong>in</strong>g to <strong>the</strong> authors, <strong>the</strong> <strong>in</strong>crease of free lign<strong>in</strong> precursors <strong>in</strong><br />

<strong>the</strong> xylem sap as well as <strong>the</strong> reduced anionic peroxidase activity could be an <strong>in</strong>dication<br />

that drought decreases <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> <strong>in</strong> maize (Alvarez et al., 2008).<br />

Different regions of <strong>the</strong> maize root may respond differently to drought, as <strong>the</strong><br />

deposition of lign<strong>in</strong> may be greater <strong>in</strong> a specific region of <strong>the</strong> root or at certa<strong>in</strong> times of<br />

stress (Fan et al., 2006; Yang et al., 2006; Yoshimura et al., 2008).<br />

It has been shown that <strong>the</strong> basal part of <strong>the</strong> roots of maize plants under water<br />

stress exhibit a greater reduction <strong>in</strong> growth than <strong>the</strong> apical region (Fan et al., 2006).<br />

Such a reduction was associated with an <strong>in</strong>creased expression of two genes <strong>in</strong>volved <strong>in</strong><br />

<strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong>: c<strong>in</strong>namoyl-CoA reductase 1 <strong>and</strong> 2. The reduction was also<br />

associated with <strong>in</strong>creased deposition of lign<strong>in</strong>, which stiffened cell wall extensibility<br />

<strong>and</strong> decreased cell wall expansion. In <strong>the</strong>se plants, reduced growth of <strong>the</strong> basal root<br />

might improve <strong>the</strong> availability of water, m<strong>in</strong>erals <strong>and</strong> sugars, factors necessary to<br />

ma<strong>in</strong>ta<strong>in</strong> m<strong>in</strong>imum growth <strong>and</strong> survival of young cells <strong>in</strong> <strong>the</strong> most apical portion,<br />

facilitat<strong>in</strong>g renewed growth after rehydration (Fan et al., 2006).<br />

Researches have shown an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> expression of genes related to cell<br />

growth <strong>and</strong> extensibility <strong>in</strong> <strong>the</strong> roots of rice (Oryza sativa L.) plants dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial<br />

stages (16 hours) of water stress, enabl<strong>in</strong>g root growth <strong>in</strong> <strong>the</strong>se plants (Yang et al.,<br />

2006). It was also observed that <strong>the</strong>re was an <strong>in</strong>creased expression of genes <strong>in</strong>volved <strong>in</strong><br />

lign<strong>in</strong> biosyn<strong>the</strong>sis dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>termediate <strong>and</strong> f<strong>in</strong>al stages of water stress (from 48 to<br />

72 hours), such as those cod<strong>in</strong>g for PAL, C3H, 4CL, CCoAOMT, CAD <strong>and</strong> peroxidase.


9<br />

174<br />

175<br />

176<br />

177<br />

178<br />

179<br />

180<br />

181<br />

182<br />

183<br />

184<br />

185<br />

186<br />

187<br />

188<br />

189<br />

190<br />

191<br />

192<br />

193<br />

194<br />

195<br />

196<br />

197<br />

198<br />

Similar results were obta<strong>in</strong>ed with Citrullus lanatus sp., which shows an extraord<strong>in</strong>ary<br />

resistance to drought (Yoshimura et al., 2008). In <strong>the</strong> early stages of stress, this plant<br />

showed an <strong>in</strong>crease <strong>in</strong> root growth, which was associated with <strong>the</strong> <strong>in</strong>duction of <strong>the</strong><br />

syn<strong>the</strong>sis of prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> morphogenesis (act<strong>in</strong>, α-tubul<strong>in</strong> <strong>and</strong> Ran GTPase) as<br />

well as <strong>the</strong> metabolism of carbon <strong>and</strong> nitrogen (isoforms of triose-phosphate isomerase,<br />

malate dehydrogenase, α-mannosidase, UDP-sugar pyrophosphorylase, NADP-malic<br />

enzymes, phosphoglucomutase <strong>and</strong> UDP glucose-6-phosphate dehydrogenase). In <strong>the</strong><br />

f<strong>in</strong>al stages of <strong>the</strong> stress, however, <strong>the</strong>re was a reduction <strong>in</strong> root growth <strong>and</strong> <strong>in</strong>duction of<br />

lign<strong>in</strong> biosyn<strong>the</strong>sis, with <strong>in</strong>creas<strong>in</strong>g expression of CCoAOMT <strong>and</strong> a large number of<br />

isoenzymes compris<strong>in</strong>g class III peroxidases. Growth reduction <strong>and</strong> tolerance to<br />

desiccation were associated with more lign<strong>in</strong> <strong>in</strong> <strong>the</strong> roots.<br />

O<strong>the</strong>r plant organs such as leaves may show marked physiological <strong>changes</strong><br />

dur<strong>in</strong>g drought stress. Grow<strong>in</strong>g leaves of maize plants accumulated more COMT,<br />

mostly at 10 to 20 cm from <strong>the</strong> po<strong>in</strong>t of leaf <strong>in</strong>sertion; drought resulted <strong>in</strong> a shift of this<br />

region of maximal accumulation toward basal regions (V<strong>in</strong>cent et al., 2005). The lign<strong>in</strong><br />

content <strong>in</strong> leaves of maize plants subjected to water stress was lower than <strong>in</strong> <strong>the</strong> wellwatered<br />

control plants, suggest<strong>in</strong>g an adaptation to drought, s<strong>in</strong>ce <strong>the</strong> ma<strong>in</strong>tenance of<br />

high levels of lign<strong>in</strong> <strong>in</strong> <strong>the</strong> region of leaf elongation region might negatively affect<br />

growth after rehydration (V<strong>in</strong>cent et al., 2005).<br />

The biosyn<strong>the</strong>sis of lign<strong>in</strong> <strong>and</strong> its functional significance dur<strong>in</strong>g water stress was<br />

studied <strong>in</strong> <strong>the</strong> leaves of Trifolium repens plants subjected to 28 days of drought (Bok-<br />

Rye et al., 2007). Reduced leaf growth occurred concurrently with <strong>the</strong> <strong>in</strong>crease <strong>in</strong> lign<strong>in</strong><br />

biosyn<strong>the</strong>sis. The activities of enzymes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> revealed<br />

that <strong>the</strong> enzyme responses to drought might differ, depend<strong>in</strong>g on <strong>the</strong> period for which<br />

plants are exposed to drought. Overall, <strong>the</strong>re was a large <strong>in</strong>crease <strong>in</strong> <strong>the</strong> activities of


10<br />

199<br />

200<br />

201<br />

202<br />

203<br />

PAL <strong>and</strong> ascorbate peroxidase <strong>in</strong> <strong>the</strong> early stages of stress (0-14 days), with activity<br />

levels decreas<strong>in</strong>g gradually as <strong>the</strong> period of stress was extended. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>,<br />

o<strong>the</strong>r enzymes such as guaiacol peroxidase, coniferyl alcohol peroxidase <strong>and</strong><br />

syr<strong>in</strong>galdaz<strong>in</strong>e peroxidase exhibited greater activity dur<strong>in</strong>g <strong>the</strong> f<strong>in</strong>al stages of stress (14-<br />

28 days).<br />

204<br />

205<br />

Light<br />

206<br />

207<br />

208<br />

209<br />

210<br />

211<br />

212<br />

213<br />

214<br />

215<br />

216<br />

217<br />

218<br />

219<br />

220<br />

221<br />

222<br />

223<br />

Light is essential for plants to ensure normal growth. However, an excess of<br />

light has <strong>the</strong> potential to cause cellular damage, ma<strong>in</strong>ly due to <strong>the</strong> formation of reactive<br />

oxygen species (ROS). To cope with this degenerative stress, plants have evolved<br />

strategies to protect <strong>the</strong>mselves aga<strong>in</strong>st ROS, such as <strong>in</strong>creased peroxidase activity,<br />

accumulation of anthocyan<strong>in</strong>s <strong>and</strong> reduction of <strong>the</strong> antenna systems components to<br />

dissipate <strong>the</strong> energy of absorbed light (Kimura et al., 2003).<br />

Light itself has an effect on lign<strong>in</strong> biosyn<strong>the</strong>sis. Ebenus cretica L. seedl<strong>in</strong>gs<br />

grown <strong>in</strong> <strong>the</strong> light had 2.5 times more lign<strong>in</strong> than seedl<strong>in</strong>gs grown <strong>in</strong> <strong>the</strong> dark (Syros et<br />

al., 2005).<br />

The control of lign<strong>in</strong> biosyn<strong>the</strong>sis by light was <strong>in</strong>vestigated <strong>in</strong> 3-day-old soybean<br />

seedl<strong>in</strong>gs, which were divided <strong>in</strong> three groups: seedl<strong>in</strong>gs kept <strong>in</strong> <strong>the</strong> dark, seedl<strong>in</strong>gs<br />

exposed to light (340 µmol m -2 s -1 ) <strong>and</strong> seedl<strong>in</strong>gs exposed to light (340 µmol m -2 s -1 ,<br />

16h per day) plus diam<strong>in</strong>e oxidase <strong>in</strong>hibitors (Andersson-Gunneras et al., 2006). Plants<br />

<strong>in</strong> <strong>the</strong> light showed <strong>in</strong>creased levels of H 2 O 2 <strong>and</strong> lign<strong>in</strong>, as well as higher levels of<br />

diam<strong>in</strong>e oxidase <strong>and</strong> POD activity. The light plus <strong>in</strong>hibitor condition reduced <strong>the</strong><br />

amount of H 2 O 2 <strong>and</strong> lign<strong>in</strong>.<br />

Dur<strong>in</strong>g <strong>the</strong> differentiation of cultured calli of P<strong>in</strong>us radiata <strong>in</strong>to tracheids, it was<br />

found a positive effect of light on <strong>the</strong> activity of <strong>the</strong> enzymes PAL <strong>and</strong> CAD, which


11<br />

224<br />

225<br />

226<br />

227<br />

228<br />

229<br />

230<br />

231<br />

232<br />

233<br />

234<br />

235<br />

236<br />

237<br />

238<br />

239<br />

240<br />

241<br />

242<br />

243<br />

244<br />

245<br />

246<br />

247<br />

248<br />

resulted <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> concentration of lign<strong>in</strong> when <strong>the</strong> calli were transferred<br />

from dark to a photoperiod of 16 hours (Möller et al., 2006). Cont<strong>in</strong>uous light (16.7 W<br />

m -2 ) <strong>in</strong>creased <strong>the</strong> activity of anionic <strong>and</strong> cationic PODs <strong>and</strong> laccases <strong>in</strong> mungbean<br />

hypocotyls, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> lign<strong>in</strong> content (Chen et al., 2002).<br />

Phalaenopsis orchids ma<strong>in</strong>ta<strong>in</strong>ed for one month at 25ºC ± 2°C at different light<br />

<strong>in</strong>tensities (60, 160 <strong>and</strong> 300 µmol m -2 s -1 ) tended to <strong>in</strong>crease <strong>the</strong> lign<strong>in</strong> content <strong>in</strong> leaves<br />

<strong>and</strong> roots with <strong>in</strong>creas<strong>in</strong>g light <strong>in</strong>tensity, which was associated with <strong>the</strong> <strong>in</strong>duction of<br />

PAL, CAD <strong>and</strong> POD activities (Akgül et al., 2007). It was concluded that <strong>the</strong> <strong>in</strong>crease<br />

<strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong>, probably not only provided cell wall rigidity, but also<br />

provided protection aga<strong>in</strong>st radiation stress.<br />

In Arabidopsis thaliana, 7,000 genes exhibited altered expression when plants<br />

were submitted to high light <strong>in</strong>tensity. Among <strong>the</strong>se, 110 showed <strong>in</strong>creased expression,<br />

<strong>and</strong> several of <strong>the</strong>m are <strong>in</strong>volved <strong>in</strong> <strong>the</strong> lign<strong>in</strong> biosyn<strong>the</strong>sis pathway (Kimura et al.,<br />

2003).<br />

The accumulation of gene transcripts cod<strong>in</strong>g for enzymes <strong>in</strong>volved <strong>in</strong> lign<strong>in</strong><br />

biosyn<strong>the</strong>sis <strong>in</strong> A. thaliana varies dur<strong>in</strong>g <strong>the</strong> diurnal cycle, stimulated by light provided<br />

that <strong>the</strong>re is a prior period of darkness (Rogers et al., 2005). It was also observed that <strong>in</strong><br />

<strong>the</strong> sex1 mutant, which is deficient <strong>in</strong> starch metabolism, <strong>the</strong>re was lower expression of<br />

genes <strong>in</strong>volved <strong>in</strong> lign<strong>in</strong> syn<strong>the</strong>sis dur<strong>in</strong>g <strong>the</strong> day, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong> availability of<br />

carbohydrate may regulate lign<strong>in</strong> biosyn<strong>the</strong>sis. These mutants accumulated less lign<strong>in</strong><br />

than wild type; lign<strong>in</strong> composition was also changed, with a higher proportion of lign<strong>in</strong>type<br />

S as compared with type G type H (of which <strong>the</strong>re was none). This resulted <strong>in</strong><br />

lign<strong>in</strong> that was easier to extract from <strong>the</strong> cell wall. It was concluded that at least three<br />

factors could affect <strong>the</strong> syn<strong>the</strong>sis of lign<strong>in</strong> <strong>in</strong> <strong>the</strong>se plants: light, circadian rhythms <strong>and</strong><br />

sugar perception.


12<br />

249<br />

250<br />

251<br />

252<br />

253<br />

254<br />

255<br />

256<br />

257<br />

258<br />

259<br />

260<br />

261<br />

262<br />

263<br />

264<br />

265<br />

266<br />

267<br />

268<br />

269<br />

270<br />

271<br />

272<br />

273<br />

UV-B (280-320nm)<br />

In recent years, <strong>the</strong>re has been <strong>in</strong>creased <strong>in</strong>terest <strong>in</strong> <strong>the</strong> biological effects of UV<br />

radiation on liv<strong>in</strong>g organisms, <strong>in</strong> part due to <strong>the</strong> reduction of <strong>the</strong> atmospheric ozone<br />

layer caused by anthropogenic actions, lead<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> UV rays reach<strong>in</strong>g <strong>the</strong><br />

Earth’s surface.<br />

Plants <strong>and</strong> animals both undergo morphological, anatomical, physiological <strong>and</strong><br />

biochemical <strong>changes</strong> follow<strong>in</strong>g exposure to UV rays. Among <strong>the</strong> <strong>changes</strong> caused by<br />

UV-B radiation are <strong>in</strong>hibition of growth, <strong>in</strong>creased thickness of leaf blades, reduced<br />

biomass, damage to <strong>the</strong> photosyn<strong>the</strong>sis apparatus, altered membrane composition <strong>and</strong><br />

modifications to <strong>the</strong> balance of phytohormones (Zagosk<strong>in</strong>a et al., 2003). Structural<br />

damage to <strong>the</strong> DNA is also observed, reflected <strong>in</strong> <strong>the</strong> formation of cyclobutane<br />

pyrimid<strong>in</strong>e dimers (CDPs) <strong>and</strong> pyrimid<strong>in</strong>e-(6-4)-pyrimidone (Yamasaki et al., 2007).<br />

Thus, to protect <strong>the</strong>mselves from UV damage, plants produce mechanical<br />

barriers, such as thicker cuticles <strong>and</strong> trichomes; <strong>the</strong>y also syn<strong>the</strong>size protective<br />

substances, such as secondary compounds (Yamasaki et al., 2007). UV-B affects <strong>the</strong><br />

production of several secondary compounds such as flavonoids, tann<strong>in</strong>s <strong>and</strong> lign<strong>in</strong>,<br />

which are thought to have played an important role <strong>in</strong> <strong>the</strong> transition of aquatic plants to<br />

l<strong>and</strong>, when <strong>the</strong>y became more exposed to UV-B radiation (Rozema et al., 1997).<br />

UV-B radiation affected <strong>the</strong> morphogenesis of trichomes <strong>in</strong> <strong>the</strong> cotyledons of<br />

Cucumis sativus L. <strong>and</strong> <strong>in</strong>duced <strong>the</strong> accumulation of lign<strong>in</strong> <strong>in</strong> <strong>the</strong>se structures<br />

(Yamasaki et al., 2007). In a study with two types of Camellia s<strong>in</strong>ensis L. cell cultures<br />

that differed <strong>in</strong> <strong>the</strong>ir capacity to biosyn<strong>the</strong>size <strong>the</strong> phenolic compounds ChS1 <strong>and</strong> ChS-<br />

2, <strong>the</strong> latter had greater capacity for production of phenolic compounds (Zagosk<strong>in</strong>a et<br />

al., 2003). It was observed that under exposure to UV-B radiation, ChS2 demonstrated


13<br />

274<br />

275<br />

276<br />

277<br />

278<br />

279<br />

280<br />

281<br />

282<br />

283<br />

284<br />

greater accumulation of lign<strong>in</strong> <strong>in</strong> <strong>the</strong> cell walls of <strong>the</strong> parenchyma of tracheid elements<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> <strong>in</strong>tercellular space, <strong>in</strong> addition to <strong>the</strong> formation of a layer of lign<strong>in</strong>-likematerial<br />

on <strong>the</strong> surface of <strong>the</strong> callus. The ChS2 l<strong>in</strong>eage was also more resistant to UV-<br />

B, suggest<strong>in</strong>g <strong>the</strong> <strong>in</strong>volvement of lign<strong>in</strong> <strong>in</strong> cell protection aga<strong>in</strong>st this type of stress.<br />

Cotyledons of Chenopodium qu<strong>in</strong>oa exposed to UV-B radiation exhibited <strong>in</strong>creased<br />

epidermal cell wall thickness; this was associated with a large accumulation of lign<strong>in</strong><br />

due to <strong>in</strong>creased peroxidase activity (Hilal et al., 2004). Additionally, <strong>changes</strong> <strong>in</strong> <strong>the</strong><br />

ultrastructure of chloroplasts rendered <strong>the</strong>m similar to <strong>the</strong> chloroplasts of shaded plants.<br />

It was suggested that such alterations <strong>in</strong> <strong>the</strong> chloroplast were caused by reduced light<br />

penetration <strong>in</strong> <strong>the</strong> cells of <strong>the</strong> mesophyll, due to <strong>the</strong> protective effect of lign<strong>in</strong><br />

deposition. Therefore, lign<strong>in</strong> <strong>in</strong> epidermal tissue may attenuate radiation.<br />

285<br />

286<br />

287<br />

288<br />

289<br />

290<br />

291<br />

292<br />

293<br />

294<br />

295<br />

296<br />

297<br />

298<br />

Mechanical <strong>in</strong>juries<br />

Injuries <strong>in</strong>duce specific reactions <strong>in</strong> <strong>the</strong> wood which can be restricted to <strong>the</strong> bark<br />

or might extend to <strong>the</strong> cambium <strong>and</strong> xylem (Frankenste<strong>in</strong> et al., 2006). Several studies,<br />

if not most of <strong>the</strong>m, have focused on characteriz<strong>in</strong>g histological <strong>and</strong> anatomical wood<br />

<strong>changes</strong> produced by a particular type of <strong>in</strong>jury, <strong>and</strong> <strong>the</strong> obta<strong>in</strong>ed <strong>in</strong>formation is <strong>the</strong>n<br />

used to expla<strong>in</strong> <strong>the</strong> roles of <strong>the</strong>se <strong>changes</strong> <strong>in</strong> adaptation <strong>and</strong> resistance to stress. In<br />

general, attention has been paid to <strong>the</strong> <strong>changes</strong> occurr<strong>in</strong>g after <strong>in</strong>sect attack or after<br />

microorganism <strong>in</strong>fection. Some species have defence mechanisms that range from<br />

physical barriers <strong>in</strong>clud<strong>in</strong>g cuticle formation, lignification, sp<strong>in</strong>es <strong>and</strong> trichomes to <strong>the</strong><br />

biosyn<strong>the</strong>sis of toxic compounds such as alkaloids <strong>and</strong> tann<strong>in</strong>s (Delessert et al., 2004).<br />

Electron microscopy has demonstrated that <strong>in</strong>juries to <strong>the</strong> stem of Populus spp.<br />

<strong>in</strong>duce <strong>the</strong> thicken<strong>in</strong>g of <strong>the</strong> xylem fibre cell wall <strong>in</strong> three ways: syn<strong>the</strong>sis of an<br />

additional S2 layer, thicken<strong>in</strong>g of <strong>the</strong> exist<strong>in</strong>g cell wall or syn<strong>the</strong>sis of a sclereid-like


14<br />

299<br />

300<br />

301<br />

302<br />

303<br />

304<br />

305<br />

306<br />

307<br />

308<br />

309<br />

310<br />

311<br />

312<br />

313<br />

314<br />

315<br />

316<br />

317<br />

318<br />

319<br />

320<br />

321<br />

322<br />

323<br />

sublayer (Frankenste<strong>in</strong> et al., 2006). The authors also showed, from <strong>the</strong> UVmicrospectrophotometric<br />

determ<strong>in</strong>ations, that cell walls of <strong>the</strong>se xylem modified-fibres<br />

had a higher content of lign<strong>in</strong> <strong>and</strong> uneven distribution of this polymer <strong>in</strong> <strong>the</strong> middle<br />

lamella <strong>and</strong> secondary wall. They concluded that <strong>the</strong> observed <strong>changes</strong> might enable<br />

<strong>the</strong>se plants to resist stress.<br />

Histochemical (phlorogluc<strong>in</strong>ol-HCL) <strong>and</strong> quantitative (acetyl bromide) studies<br />

on <strong>the</strong> accumulation of lign<strong>in</strong> <strong>and</strong> ferulic acid <strong>in</strong> <strong>the</strong> phloem of Chamaecyparis obtusa<br />

exposed to <strong>in</strong>jury (<strong>in</strong>jury of <strong>the</strong> bark near <strong>the</strong> base of <strong>the</strong> stem) reported <strong>the</strong> formation of<br />

a parenchymal zone <strong>and</strong> <strong>in</strong>duction of lignification <strong>in</strong> <strong>the</strong> necrotic phloem (Kusumoto,<br />

2005) after 7 days. The formation of a ligno-suberized layer between <strong>the</strong> necrotic tissue<br />

<strong>and</strong> <strong>the</strong> parenchymatous area was observed after 14 days. It was also observed <strong>the</strong><br />

formation of a callus (due to hyperplasia of cells <strong>in</strong> <strong>the</strong> parenchyma <strong>and</strong> cambium),<br />

which became lignified. The concentration of lign<strong>in</strong> measured <strong>in</strong> <strong>the</strong> cell walls of<br />

necrotic tissues was significantly higher at 28 <strong>and</strong> 56 days after <strong>in</strong>jury. The<br />

concentration of ferulic acid was significantly higher from <strong>the</strong> seventh day after <strong>in</strong>jury,<br />

which suggests that <strong>the</strong> accumulation of ferulic acid occurred before <strong>the</strong> accumulation<br />

of lign<strong>in</strong>.<br />

Given <strong>the</strong> complexity of responses to <strong>in</strong>jury, it is not surpris<strong>in</strong>g that genes of<br />

different metabolic pathways are <strong>in</strong>duced. Thus, various studies have aimed at<br />

identify<strong>in</strong>g which genes are <strong>in</strong>volved <strong>in</strong> this response <strong>and</strong> many have already<br />

demonstrated <strong>the</strong> <strong>in</strong>duction of genes related to lign<strong>in</strong> biosyn<strong>the</strong>sis. The expression of<br />

genes of <strong>the</strong> At4CL family (At4CL1-i), which codes for <strong>the</strong> enzyme 4CL, was studied <strong>in</strong><br />

Arabidopsis thaliana <strong>in</strong> response to <strong>in</strong>jury caused by perforation of <strong>the</strong> leaf with <strong>the</strong> tip<br />

of a pipette (Soltani et al., 2006). 4CL catalyzes <strong>the</strong> conversion of hydroxyc<strong>in</strong>namic<br />

acids <strong>in</strong> CoA esters, which are subsequently reduced to <strong>the</strong> correspond<strong>in</strong>g monolignol


15<br />

324<br />

325<br />

326<br />

327<br />

328<br />

329<br />

330<br />

331<br />

332<br />

333<br />

334<br />

335<br />

336<br />

337<br />

338<br />

339<br />

340<br />

341<br />

342<br />

343<br />

344<br />

345<br />

346<br />

347<br />

precursors of lign<strong>in</strong>. The results showed <strong>in</strong>creased expression of At4CL1 <strong>and</strong> At4CL2<br />

dur<strong>in</strong>g two dist<strong>in</strong>ct phases, at 2.5 hours (early phase) <strong>and</strong> 48-72 hours (late) after <strong>in</strong>jury.<br />

The level of At4CL4 transcripts also <strong>in</strong>creased dur<strong>in</strong>g <strong>the</strong> first 2.5 hours, but was later<br />

reduced to lower levels. The expression of At4CL3 was rapidly reduced <strong>in</strong> response to<br />

<strong>in</strong>jury, <strong>and</strong> returned to <strong>in</strong>itial levels after 4 hours; from that po<strong>in</strong>t on, expression<br />

gradually <strong>in</strong>creased. The construction of vectors conta<strong>in</strong><strong>in</strong>g At4CL::GUS showed that<br />

At4CL1::GUS <strong>and</strong> At4CL2::GUS were specific to <strong>the</strong> vascular regions of <strong>the</strong> root <strong>and</strong><br />

aerial parts of <strong>the</strong> plant, unlike AT4CL3::GUS <strong>and</strong> At4CL4::GUS.<br />

The expression of CaF5H1, which codes for F5H, <strong>in</strong>creased <strong>in</strong> detached leaf<br />

discs of Campto<strong>the</strong>ca acum<strong>in</strong>ata plants (Kim et al., 2006). F5H is a cytochrome P450-<br />

dependent monooxygenase that catalyzes <strong>the</strong> hydroxylation of ferulic acid,<br />

coniferaldehyde <strong>and</strong> coniferyl alcohol, promot<strong>in</strong>g <strong>the</strong> biosyn<strong>the</strong>sis of syr<strong>in</strong>gyl lign<strong>in</strong>.<br />

The results suggested that such a response represented protection from mechanical<br />

stress.<br />

As a strategy to avoid pathogen <strong>in</strong>fection <strong>and</strong> water loss, <strong>in</strong>jured leaves of<br />

Arabidopsis thaliana showed <strong>in</strong>creased expression of genes related to lign<strong>in</strong><br />

biosyn<strong>the</strong>sis, cod<strong>in</strong>g for <strong>the</strong> enzymes 4CL, CAD <strong>and</strong> CCR (Delessert et al., 2004). It<br />

was suggested that lign<strong>in</strong> was formed <strong>in</strong> <strong>the</strong> cells surround<strong>in</strong>g <strong>the</strong> wound site.<br />

The removal of <strong>the</strong> stem apex <strong>in</strong> Eucalyptus gunnii caused an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

activities of CAD <strong>and</strong> SAD, enzymes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> f<strong>in</strong>al steps of lign<strong>in</strong> biosyn<strong>the</strong>sis<br />

(Hawk<strong>in</strong>s <strong>and</strong> Boudet, 2003). Microscopy <strong>and</strong> histochemical analyses also detected <strong>the</strong><br />

formation of a "barrier zone" where <strong>the</strong> cell walls exhibited a clear <strong>in</strong>tensification of<br />

lign<strong>in</strong> deposition. This lign<strong>in</strong> was poor <strong>in</strong> S units <strong>and</strong> differed from <strong>the</strong> usual quantity of<br />

G-S that has been reported for this species.<br />

348


16<br />

349<br />

350<br />

351<br />

352<br />

353<br />

354<br />

355<br />

356<br />

357<br />

358<br />

Reaction wood: tension wood <strong>and</strong> compression wood<br />

Reaction wood (RW) is a type of wood that occurs <strong>in</strong> lean<strong>in</strong>g stems <strong>and</strong><br />

branches <strong>in</strong> order to force <strong>the</strong>m <strong>in</strong>to <strong>the</strong> normal position. Therefore, <strong>in</strong> some way<br />

reaction wood may represent a stress<strong>in</strong>g situation.<br />

In angiosperms, RW develops above <strong>the</strong> lean<strong>in</strong>g region, pull<strong>in</strong>g it up: <strong>in</strong> this<br />

context, it is called tension wood. In gymnosperms, this wood develops below <strong>the</strong><br />

lean<strong>in</strong>g region <strong>and</strong> it is called compression wood; it pushes <strong>the</strong> plant up (Paux et al.,<br />

2005). The wood reaction <strong>in</strong>volves a marked reprogramm<strong>in</strong>g of <strong>the</strong> genes <strong>in</strong>volved <strong>in</strong><br />

cell wall formation <strong>and</strong> <strong>the</strong>refore significantly affects <strong>the</strong> properties of <strong>the</strong> wood<br />

(Déjard<strong>in</strong> et al., 2004).<br />

359<br />

360<br />

361<br />

362<br />

363<br />

364<br />

365<br />

366<br />

367<br />

368<br />

369<br />

370<br />

371<br />

372<br />

Tension wood: A wide variety of characteristics are observed <strong>in</strong> <strong>the</strong> tension wood (TW)<br />

of various angiosperms, but <strong>the</strong> most common type of TW is characterized by hav<strong>in</strong>g<br />

fewer xylem vessel elements, which have a smaller diameter <strong>and</strong> a higher proportion of<br />

fibres with thick walls, more cellulose <strong>and</strong> less lign<strong>in</strong> (Wilson <strong>and</strong> White, 1986). In<br />

addition, TW fibres often develop an additional <strong>in</strong>ternal layer of <strong>the</strong> cell wall called <strong>the</strong><br />

gelat<strong>in</strong>ous layer or G-layer, with higher amounts of cellulose, low microfibril angles<br />

(MFA: angle that <strong>the</strong> cellulose microfibrils form with <strong>the</strong> longitud<strong>in</strong>al axis of <strong>the</strong> fibre)<br />

<strong>and</strong> low levels of lign<strong>in</strong> (Qiu et al., 2008). Normal wood fibres conta<strong>in</strong> a middle<br />

lamella, a th<strong>in</strong> primary wall <strong>and</strong> a thicker secondary wall, which is made of 3 sublayers:<br />

S1, S2 <strong>and</strong> S3 (Clair et al., 2005). In different trees, TW conta<strong>in</strong>s fibres with a<br />

special morphology <strong>and</strong> chemical composition due to <strong>the</strong> development of <strong>the</strong> G-layer,<br />

which replaces <strong>the</strong> S2-layer <strong>and</strong> ei<strong>the</strong>r partially or completely substitutes <strong>the</strong> S3-layer<br />

(Clair et al., 2005).


17<br />

373<br />

374<br />

375<br />

376<br />

377<br />

378<br />

379<br />

380<br />

381<br />

382<br />

383<br />

384<br />

385<br />

386<br />

387<br />

388<br />

389<br />

390<br />

391<br />

392<br />

393<br />

394<br />

395<br />

396<br />

The lower amount of lign<strong>in</strong> <strong>in</strong> TW has been attributed ma<strong>in</strong>ly to <strong>the</strong> reduction of<br />

lign<strong>in</strong> <strong>in</strong> <strong>the</strong> G-layer <strong>and</strong> to <strong>changes</strong> <strong>in</strong> <strong>the</strong> relative proportions of monolignols. Dur<strong>in</strong>g<br />

<strong>the</strong> development of TW <strong>in</strong> Eucalyptus vim<strong>in</strong>alis, <strong>the</strong>re is a reduction <strong>in</strong> <strong>the</strong> amount of<br />

lign<strong>in</strong> <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> level of S residues, <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> ratio of syr<strong>in</strong>gyl/guaiacyl<br />

monolignol units (Aoyama et al., 2001). Ultrastructural studies on <strong>the</strong> distribution of<br />

lign<strong>in</strong> <strong>in</strong> cell walls of TW <strong>in</strong> Populus deltoides us<strong>in</strong>g polyclonal antibodies specific to<br />

syn<strong>the</strong>tic polymers of lign<strong>in</strong> showed that, <strong>in</strong> <strong>the</strong>se plants, <strong>the</strong> additional G-layer conta<strong>in</strong>s<br />

low amounts of guaiacyl lign<strong>in</strong> <strong>and</strong> greater amounts of syr<strong>in</strong>gyl lign<strong>in</strong> (Joseleau et al.,<br />

2004). In contrast, <strong>changes</strong> <strong>in</strong> <strong>the</strong> proportion of monolignols <strong>in</strong> <strong>the</strong> lign<strong>in</strong> have not been<br />

observed <strong>in</strong> <strong>the</strong> TW of different eucalyptus species (Rodrigues et al., 2001).<br />

In species that do not have <strong>the</strong> G layer, <strong>the</strong> S2-layer of <strong>the</strong> cell wall has similar<br />

characteristics to those found <strong>in</strong> <strong>the</strong> G-layer. Incl<strong>in</strong>ed branches of two angiosperm<br />

species of <strong>the</strong> primitive genus Magnolia, which does not form a gelat<strong>in</strong>ous layer, have<br />

fewer <strong>and</strong> smaller vessel elements <strong>and</strong> no S3-layer <strong>in</strong> <strong>the</strong> cell walls of xylem tracheids<br />

(Yoshizawa et al., 2000). As expected, <strong>the</strong> presence of a G-layer was not observed;<br />

however, <strong>the</strong> more <strong>in</strong>ternal layer of secondary cell wall (S2-layer) showed<br />

characteristics of a G-layer, with smaller cellulose microfibril angles. Additionally it<br />

was noted that <strong>the</strong> amount of lign<strong>in</strong> sta<strong>in</strong>ed by <strong>the</strong> Wiesner reaction was lower <strong>in</strong> TW<br />

fibres as compared with regions of normal wood, suggest<strong>in</strong>g that <strong>the</strong> amount of lign<strong>in</strong><br />

(ma<strong>in</strong>ly <strong>the</strong> guaiacyl type) would have been reduced. In Liriodendron tulipifera, which<br />

does not form a G-layer <strong>in</strong> TW, it was observed a decrease <strong>in</strong> <strong>the</strong> lign<strong>in</strong> content of<br />

secondary cell walls, while <strong>the</strong> syr<strong>in</strong>gyl/guaiacyl proportion <strong>in</strong>creased. Additionally, it<br />

was also observed an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> amount of cellulose <strong>and</strong> smaller cellulose<br />

microfibril angles (Yoshida et al., 2002).


18<br />

397<br />

398<br />

399<br />

400<br />

401<br />

402<br />

403<br />

404<br />

405<br />

406<br />

407<br />

408<br />

409<br />

410<br />

411<br />

412<br />

413<br />

414<br />

415<br />

416<br />

417<br />

418<br />

419<br />

420<br />

421<br />

Eucalyptus nitens, which rarely exhibits a G-layer, was bent to 45 o . These plants<br />

displayed a TW with high cellulose content, reduced microfibril angle, <strong>and</strong> less Klason<br />

lign<strong>in</strong> (Qiu et al., 2008).<br />

Laeta procera TW has a peculiar polylam<strong>in</strong>ate secondary wall, formed by th<strong>in</strong><br />

lignified layers with small microfibril angles alternat<strong>in</strong>g with layers that are still th<strong>in</strong> but<br />

exhibit greater lignification (Ruelle et al., 2007).<br />

Most of <strong>the</strong> work on TW has focused on anatomical <strong>and</strong> biochemical<br />

characterization of <strong>the</strong> wood, fail<strong>in</strong>g to consider <strong>the</strong> physiological <strong>and</strong> molecular<br />

mechanisms <strong>in</strong>volved. These studies refer only to <strong>changes</strong> <strong>in</strong> quantity or quality<br />

(syr<strong>in</strong>gyl <strong>and</strong> guaiacyl) of lign<strong>in</strong> <strong>and</strong> do not explore which factors are responsible for<br />

<strong>the</strong>se <strong>changes</strong> <strong>in</strong> <strong>the</strong> lignifications process, whe<strong>the</strong>r hormones, prote<strong>in</strong>s or genes.<br />

Aux<strong>in</strong> was thought to be <strong>the</strong> ma<strong>in</strong> hormone <strong>in</strong>volved <strong>in</strong> <strong>in</strong>duc<strong>in</strong>g <strong>the</strong> formation<br />

of reaction wood (Déjard<strong>in</strong> et al., 2004). For years, experiments with exogenous<br />

supplies of aux<strong>in</strong> <strong>and</strong> aux<strong>in</strong> transport <strong>in</strong>hibitors showed that TW can be <strong>in</strong>duced by a<br />

deficiency of aux<strong>in</strong> (Little <strong>and</strong> Savidge, 1987). However, reaction wood (from both<br />

tension <strong>and</strong> compression) can be formed without obvious <strong>changes</strong> <strong>in</strong> <strong>the</strong> balance of<br />

aux<strong>in</strong>. This f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicated <strong>the</strong> importance of <strong>in</strong>vestigat<strong>in</strong>g o<strong>the</strong>r factors, such as<br />

mechanisms of aux<strong>in</strong> perception or even o<strong>the</strong>r signall<strong>in</strong>g molecules (Hellgren et al.,<br />

2004). Ethylene appeared as a strong c<strong>and</strong>idate s<strong>in</strong>ce it was observed that this hormone<br />

is distributed asymmetrically <strong>in</strong> <strong>the</strong> TW <strong>and</strong> that expression of a 1-am<strong>in</strong>ocyclopropane-<br />

1-carboxylate oxidase gene (PttACO1) controls <strong>the</strong> process (Andersson-Gunnerås et al.,<br />

2003). In addition, <strong>the</strong>re is a connection between ethylene <strong>and</strong> lignification, as observed<br />

<strong>in</strong> <strong>the</strong> phenotype of Arabidopsis mutants, where a mutation <strong>in</strong> a chit<strong>in</strong>ase gene causes<br />

<strong>the</strong> ectopic expression of CCoAOMT, ectopic deposition of lign<strong>in</strong> <strong>and</strong> <strong>the</strong><br />

overproduction of ethylene (Zhong et al., 2002).


19<br />

422<br />

423<br />

424<br />

425<br />

426<br />

427<br />

428<br />

429<br />

430<br />

431<br />

432<br />

433<br />

434<br />

435<br />

436<br />

437<br />

438<br />

439<br />

440<br />

441<br />

442<br />

443<br />

444<br />

445<br />

In addition to ethylene, gibberell<strong>in</strong>s also seem to be related to <strong>the</strong> formation of<br />

reaction wood. It was observed that <strong>the</strong> application of gibberell<strong>in</strong>s to <strong>the</strong> stems of some<br />

angiosperms <strong>in</strong>duces <strong>the</strong> formation of wood with characteristics similar to tension<br />

wood: fibres have <strong>in</strong>ner layers similar to a G-layer, with high cellulose content, small<br />

microfibril angles <strong>and</strong> low lign<strong>in</strong> content (Funada et al., 2008).<br />

In addition to studies of plant hormones, important research has characterized<br />

<strong>the</strong> prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> reaction wood formation. SDS-PAGE comparisons of <strong>the</strong><br />

pattern of prote<strong>in</strong> accumulation <strong>in</strong> TW <strong>and</strong> normal wood showed <strong>the</strong> presence of at least<br />

five prote<strong>in</strong>s <strong>in</strong>duced dur<strong>in</strong>g <strong>the</strong> formation of TW (Baba et al., 2000). The extraction<br />

conditions used <strong>in</strong> <strong>the</strong> protocols led <strong>the</strong> authors to suggest that <strong>the</strong>se five prote<strong>in</strong>s were<br />

cell wall- or membrane-bound prote<strong>in</strong>s. Additionally, a study on peroxidase activity<br />

showed that <strong>the</strong> <strong>in</strong>crease <strong>in</strong> <strong>the</strong> S/G ratio, generally observed <strong>in</strong> TW, could be partly<br />

attributed to <strong>the</strong> <strong>in</strong>creased activity of a syr<strong>in</strong>galdaz<strong>in</strong>e peroxidase ionically l<strong>in</strong>ked to <strong>the</strong><br />

cell wall (Aoyama et al., 2001).<br />

The molecular mechanisms <strong>in</strong>volved <strong>in</strong> <strong>the</strong> formation reaction wood <strong>and</strong> <strong>the</strong>ir<br />

relationship to metabolomics data have been <strong>in</strong>vestigated. However, due to <strong>the</strong><br />

complexity of differential accumulation of lign<strong>in</strong> <strong>in</strong> TW, very little is known about <strong>the</strong><br />

genes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> process.<br />

ESTs obta<strong>in</strong>ed from different wood tissues, among <strong>the</strong>m TW <strong>and</strong> opposite wood<br />

from <strong>the</strong> poplar (Populus tremula x P. alba), <strong>in</strong>dicated <strong>the</strong> presence of some genes<br />

specific to <strong>the</strong>se tissues (Déjard<strong>in</strong> et al., 2004). In tissues under tension, ESTs related to<br />

arab<strong>in</strong>ogalactan prote<strong>in</strong>-like (AGP), fructok<strong>in</strong>ase <strong>and</strong> sucrose synthase were abundant.<br />

In contrast, <strong>the</strong> opposite wood exhibited greater CCoA-OMT expression, which is<br />

consistent with <strong>the</strong> high levels of lign<strong>in</strong> syn<strong>the</strong>sis observed <strong>in</strong> this wood.


20<br />

446<br />

447<br />

448<br />

449<br />

450<br />

451<br />

452<br />

453<br />

454<br />

455<br />

456<br />

457<br />

458<br />

459<br />

460<br />

461<br />

462<br />

The <strong>in</strong>creased expression of fascicl<strong>in</strong>-like arab<strong>in</strong>ogalactan prote<strong>in</strong>s was also<br />

observed <strong>in</strong> G-fibres <strong>in</strong> ano<strong>the</strong>r poplar hybrid (Populus tremula x P. tremuloides)<br />

(Andersson-Gunneras et al., 2006). In addition, several genes <strong>in</strong>volved <strong>in</strong> lign<strong>in</strong><br />

biosyn<strong>the</strong>sis exhibited reduced expression <strong>in</strong> <strong>the</strong> TW: PttPAL1, PttCCoAOMT1, 4CL,<br />

HCT, C3H, CCR, F5H, COMT <strong>and</strong> CAD. A MYB transcription factor (PttMYB21a)<br />

previously shown to repress biosyn<strong>the</strong>sis of lign<strong>in</strong> displayed elevated expression levels.<br />

Branches of artificially <strong>in</strong>cl<strong>in</strong>ed Eucalyptus globulus showed that <strong>the</strong> expression<br />

of a cellulose synthase gene (EgCesA) was correlated with <strong>the</strong> appearance of <strong>the</strong> G-<br />

layer (Paux et al., 2005). The lign<strong>in</strong> biosyn<strong>the</strong>sis genes for which expression changed<br />

dur<strong>in</strong>g TW formation <strong>in</strong>cluded: 4CL, CCR, CAD, COMT, <strong>and</strong> CCoAOMT. The response<br />

of <strong>the</strong>se genes was varied <strong>and</strong> complex, with different patterns of expression for each<br />

gene. The 4CL, CCR <strong>and</strong> CAD genes exhibited reduced expression dur<strong>in</strong>g <strong>the</strong> first 6 h<br />

of stress but <strong>the</strong> transcript levels were similar to those observed <strong>in</strong> control plants after a<br />

week. Accord<strong>in</strong>g to <strong>the</strong> authors, this variation could not expla<strong>in</strong> <strong>the</strong> reduced amount of<br />

lign<strong>in</strong> often observed <strong>in</strong> tension wood; <strong>the</strong> lower amount of lign<strong>in</strong>, ma<strong>in</strong>ly G-type, was<br />

probably due to <strong>the</strong> differential expression of CCoAOMT <strong>and</strong> COMT, genes that encode<br />

methylation enzymes.<br />

463<br />

464<br />

465<br />

466<br />

467<br />

468<br />

469<br />

Compression wood: Compression wood (CW) has small <strong>and</strong> rounded tracheids with<br />

thicker cell walls, higher lign<strong>in</strong> content, less cellulose, large microfibril angles, <strong>and</strong><br />

typically lacks <strong>the</strong> S3 layer (McDougall, 2000; Donaldson et al., 2004; Yeh et al., 2005;<br />

Yeh et al., 2006). Additionally, <strong>the</strong> lign<strong>in</strong> <strong>in</strong> this wood has high levels of p-<br />

hydroxyphenylpropane units (Monties, 1989) <strong>and</strong> alterations <strong>in</strong> <strong>the</strong> chemical l<strong>in</strong>ks<br />

between lign<strong>in</strong> units, when compared with normal wood (Nimz et al., 1981).


21<br />

470<br />

471<br />

472<br />

473<br />

474<br />

475<br />

476<br />

477<br />

478<br />

479<br />

480<br />

481<br />

482<br />

483<br />

484<br />

485<br />

486<br />

487<br />

488<br />

489<br />

490<br />

491<br />

492<br />

493<br />

494<br />

As <strong>in</strong> TW, <strong>the</strong> chemical <strong>and</strong> anatomical characteristics of <strong>the</strong> CW are <strong>the</strong> results<br />

of various altered molecular <strong>and</strong> physiological factors. Unravell<strong>in</strong>g <strong>the</strong>se factors will be<br />

necessary to underst<strong>and</strong> <strong>the</strong> mechanisms <strong>in</strong>volved <strong>and</strong> elucidate lign<strong>in</strong> biosyn<strong>the</strong>sis <strong>in</strong><br />

wood. Many studies have already identified prote<strong>in</strong>s <strong>and</strong> genes potentially responsible<br />

for <strong>the</strong> different characteristics of CW, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> high amount of lign<strong>in</strong>.<br />

The comparison of prote<strong>in</strong>s <strong>in</strong> CW <strong>and</strong> <strong>in</strong> <strong>the</strong> opposite normal wood showed that<br />

<strong>the</strong> presence of a dioxygenase related to <strong>the</strong> biosyn<strong>the</strong>sis of anthocyan<strong>in</strong>s<br />

(leucoanthocyanid<strong>in</strong> dioxygenase) might contribute to <strong>the</strong> colour of this reddish wood<br />

(Gion et al., 2005).<br />

O<strong>the</strong>r prote<strong>in</strong>s abundant <strong>in</strong> this type of wood are: 1-am<strong>in</strong>ocyclopropane-1-<br />

carboxylate oxidase, an enzyme that catalyzes <strong>the</strong> conversion of 1-am<strong>in</strong>ocyclopropane-<br />

1-carboxylate to ethylene; glutam<strong>in</strong>e syn<strong>the</strong>tase <strong>and</strong> fructok<strong>in</strong>ase, enzymes <strong>in</strong>volved <strong>in</strong><br />

<strong>the</strong> assimilation of nitrogen <strong>and</strong> carbon; malate dehydrogenase, an enzyme of <strong>the</strong> Krebs<br />

cycle (Plomion et al., 2000); glyceraldehyde-3-phosphate dehydrogenase (G3PDH), an<br />

enzyme related to energy production <strong>and</strong> metabolism; <strong>and</strong> α-tubul<strong>in</strong>, <strong>the</strong> ma<strong>in</strong><br />

component of cortical microtubules (Le Provost et al., 2003).<br />

O<strong>the</strong>r studies have reported on prote<strong>in</strong>s possibly more directly <strong>in</strong>volved <strong>in</strong> <strong>the</strong><br />

differential accumulation of lign<strong>in</strong>. A polypeptide correspond<strong>in</strong>g to a laccase-type of<br />

polyphenol oxidase, which is <strong>in</strong>volved <strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong>, has higher activity<br />

<strong>in</strong> develop<strong>in</strong>g xylem <strong>in</strong> <strong>the</strong> CW of Picea sitchensis, as compared to non-compressed<br />

wood (McDougall, 2000).<br />

Twenty-six prote<strong>in</strong>s whose expression was correlated with an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

degree of compression were identified <strong>in</strong> P<strong>in</strong>us p<strong>in</strong>aster, <strong>in</strong>clud<strong>in</strong>g two methylat<strong>in</strong>g<br />

enzymes <strong>in</strong>volved <strong>in</strong> lign<strong>in</strong> biosyn<strong>the</strong>sis - COMT <strong>and</strong> CCoAOMT – <strong>and</strong> members of <strong>the</strong><br />

S-adenosyl-L-methion<strong>in</strong>e syn<strong>the</strong>tase gene family. In addition to be<strong>in</strong>g enzymes


22<br />

495<br />

496<br />

497<br />

498<br />

499<br />

500<br />

501<br />

<strong>in</strong>volved <strong>in</strong> <strong>the</strong> response to ethylene, this gene family also plays a role <strong>in</strong> <strong>the</strong><br />

methylation of monolignols dur<strong>in</strong>g <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> (Plomion et al., 2000).<br />

Sequenced cDNAs from CW <strong>and</strong> normal wood of P<strong>in</strong>us taeda showed that <strong>the</strong><br />

genes that were most abundant <strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> code for <strong>the</strong> enzymes PAL,<br />

C4H, OMT, 4CL, CAD, diphenol oxidase (laccase) <strong>and</strong> POD (Allona et al., 1998).<br />

The R2R3-MYB transcription factors, which have been associated with <strong>the</strong><br />

biosyn<strong>the</strong>sis of lign<strong>in</strong>, also display elevated expression <strong>in</strong> CW (Bedon et al., 2007).<br />

502<br />

503<br />

504<br />

505<br />

506<br />

507<br />

508<br />

M<strong>in</strong>eral nutrition <strong>and</strong> heavy metals<br />

Deficiency disability <strong>and</strong> abnormally high concentrations of a nutrient can both<br />

cause abnormalities <strong>in</strong> <strong>the</strong> accumulation of lign<strong>in</strong>, where this has been documented by<br />

many studies. Most of <strong>the</strong>se, however, do not <strong>in</strong>clude a study of <strong>the</strong> physiological or<br />

molecular causes of <strong>the</strong>ir f<strong>in</strong>d<strong>in</strong>gs. Recent reports have also shown that lign<strong>in</strong> content<br />

may be affected by toxic heavy metals.<br />

509<br />

510<br />

511<br />

512<br />

513<br />

514<br />

515<br />

516<br />

517<br />

Nitrogen (N): Few studies were conducted to assess <strong>the</strong> impact of fertilization with N<br />

on <strong>the</strong> properties of wood (Luo et al., 2005; Liberloo et al., 2006); most of <strong>the</strong>se<br />

<strong>in</strong>vestigated grasses used as forage for animal feed<strong>in</strong>g, show<strong>in</strong>g that lign<strong>in</strong> content was<br />

<strong>in</strong>creased by N due to elevated PAL activity (Pitre et al., 2007).<br />

Moreover, <strong>the</strong> effect of N seems to vary with <strong>the</strong> type, degree of development<br />

<strong>and</strong> tissue exam<strong>in</strong>ed. In p<strong>in</strong>e (P<strong>in</strong>us palustris) seedl<strong>in</strong>gs, high-N fertilization reduced<br />

<strong>the</strong> lign<strong>in</strong> content <strong>in</strong> roots but had no effect on <strong>the</strong> lign<strong>in</strong> concentration <strong>in</strong> aerial parts of<br />

<strong>the</strong> plant (Entry et al., 1998).


23<br />

518<br />

519<br />

520<br />

521<br />

522<br />

523<br />

524<br />

525<br />

526<br />

In red p<strong>in</strong>e (P<strong>in</strong>us res<strong>in</strong>osa), comb<strong>in</strong>ed nitrogen-phosphorus-potassium (NPK)<br />

fertilization reduced <strong>the</strong> lign<strong>in</strong> content of branches (Blodgett et al., 2005) but had an<br />

opposite effect on <strong>the</strong> ma<strong>in</strong> stem of Picea abies (Kostia<strong>in</strong>en et al., 2004).<br />

Populus plants receiv<strong>in</strong>g high concentrations of nitrogen (10 mM NH 4 NO 3 ) had<br />

less lign<strong>in</strong>, reduced β-O-4 l<strong>in</strong>kage, <strong>in</strong>creased frequency of ρ-hydroxyphenyl units <strong>and</strong> a<br />

tendency toward low S/G ratios (Pitre et al., 2007).<br />

At <strong>the</strong> molecular level, <strong>the</strong> expression of <strong>the</strong> pot171 gene, which encodes a<br />

prote<strong>in</strong> similar to CCoAOMT, is negatively regulated <strong>in</strong> response to nitrogen <strong>in</strong> Populus<br />

trichocarpa x deltoid hybrids (Cooke et al., 2003).<br />

527<br />

528<br />

529<br />

530<br />

531<br />

532<br />

533<br />

534<br />

535<br />

536<br />

537<br />

538<br />

539<br />

540<br />

541<br />

542<br />

Calcium (Ca): The effect of Ca on <strong>the</strong> biosyn<strong>the</strong>sis of phenylpropanoids is not<br />

sufficiently clear. Some studies have shown that Ca <strong>in</strong>creases <strong>the</strong> activity of guaiacol-<br />

POD <strong>and</strong> PAL (Castañeda <strong>and</strong> Pérez, 1996; Kolupaev et al., 2005); however, a<br />

reduction <strong>in</strong> <strong>the</strong> amount of phenolic compounds has also been reported (de Obeso et al.,<br />

2003). O<strong>the</strong>r authors observed a reduction <strong>in</strong> PAL <strong>and</strong> POD activity (soluble <strong>and</strong> cell<br />

wall-bound), as well as reductions <strong>in</strong> <strong>the</strong> levels of phenolic compounds, <strong>in</strong>clud<strong>in</strong>g lign<strong>in</strong><br />

(Teixeira et al., 2006). No substantial <strong>changes</strong> <strong>in</strong> <strong>the</strong> amounts of <strong>the</strong>se compounds was<br />

observed (Tomas-Barberan et al., 1997).<br />

In Populus tremula x Populus tremuloides, Ca deficiency was responsible for<br />

wood deformation, which <strong>in</strong>cluded smaller diameter of xylem vessels, shorter fibre<br />

length <strong>and</strong> reduced levels of S units <strong>in</strong> lign<strong>in</strong> (Lautner et al., 2007). Therefore, it seems<br />

that Ca is necessary for <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> <strong>in</strong> plants. It is important to note that<br />

several PODs are l<strong>in</strong>ked to <strong>the</strong> galacturonic doma<strong>in</strong>s of pect<strong>in</strong> <strong>in</strong> <strong>the</strong> presence of Ca<br />

(Penel <strong>and</strong> Grepp<strong>in</strong>, 1996) <strong>and</strong> such a l<strong>in</strong>k occurs only <strong>in</strong> <strong>the</strong> pect<strong>in</strong> cha<strong>in</strong> that is crossl<strong>in</strong>ked<br />

to Ca, known as Ca-pectates (Carp<strong>in</strong> et al., 2001). S<strong>in</strong>ce <strong>the</strong> middle lamella <strong>and</strong>


24<br />

543<br />

544<br />

545<br />

546<br />

cell corners are rich <strong>in</strong> Ca-pectates (Carpita <strong>and</strong> Gibeaut, 1993) <strong>and</strong> are <strong>the</strong> first places<br />

to be lignified, POD l<strong>in</strong>ked to <strong>the</strong>se cha<strong>in</strong>s of Ca-pectates might play a role <strong>in</strong><br />

controll<strong>in</strong>g <strong>the</strong> spatial deposition of lign<strong>in</strong>, <strong>and</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> concentrations of Ca<br />

would def<strong>in</strong>e <strong>the</strong> location of <strong>the</strong>se PODs (Carp<strong>in</strong> et al., 2001).<br />

547<br />

548<br />

549<br />

550<br />

551<br />

552<br />

553<br />

554<br />

555<br />

556<br />

557<br />

558<br />

559<br />

560<br />

561<br />

562<br />

563<br />

564<br />

565<br />

566<br />

Copper (Cu): It is known that copper has a positive effect on <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong>.<br />

Thus, Cu deficiency results <strong>in</strong> less lign<strong>in</strong> (Robson et al., 1981), <strong>and</strong> excess Cu results <strong>in</strong><br />

more lign<strong>in</strong>.<br />

Capsicum annuum hypocotyls grown <strong>in</strong> a nutrient solution with excess copper<br />

(50 mM CuSO 4 ) showed higher levels of shikimate dehydrogenase <strong>and</strong> POD activity<br />

<strong>and</strong> greater accumulation of soluble phenolic compounds <strong>and</strong> lign<strong>in</strong> (Diaz et al., 2001).<br />

Roots of Raphanus sativus grown <strong>in</strong> <strong>the</strong> presence of Cu (1-10 mM CuSO 4 ) showed<br />

higher levels of cationic <strong>and</strong> anionic POD activities <strong>and</strong> higher levels of lign<strong>in</strong> <strong>in</strong><br />

comparison with plants grown <strong>in</strong> <strong>the</strong> absence of this element; <strong>the</strong> <strong>in</strong>creases were dosedependent<br />

(Chen et al., 2002).<br />

Laccases were responsible for <strong>the</strong> extracellular polymerization of monolignols <strong>in</strong><br />

<strong>the</strong> roots of soybean plants dur<strong>in</strong>g <strong>the</strong> early stages of Cu exposure. Later, POD activity<br />

<strong>in</strong>creases, work<strong>in</strong>g cooperatively with laccases <strong>in</strong> <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> (Barnes et<br />

al., 1997).<br />

Exposure of Panax g<strong>in</strong>seng root suspension cultures to <strong>in</strong>creas<strong>in</strong>g concentrations<br />

of Cu led to an enhancement of <strong>the</strong> activities of glucose-6-phosphate dehydrogenase,<br />

shikimate dehydrogenase, PAL <strong>and</strong> CAD <strong>and</strong> to <strong>the</strong> accumulation of phenolic<br />

compounds <strong>and</strong> lign<strong>in</strong>. It also caused an <strong>in</strong>crease <strong>in</strong> levels of caffeic acid-POD,<br />

polyphenol oxidase <strong>and</strong> β-glucosidase (Akgül et al., 2007).


25<br />

567<br />

568<br />

569<br />

570<br />

571<br />

572<br />

573<br />

574<br />

575<br />

576<br />

577<br />

578<br />

Thus, lign<strong>in</strong> accumulates <strong>in</strong> plant cell walls <strong>in</strong> <strong>the</strong> presence of Cu. This process<br />

is correlated with enhanced activities of several enzymes, <strong>in</strong>clud<strong>in</strong>g POD <strong>and</strong> laccases,<br />

which are enzymes that carry out <strong>the</strong> polymerization of monolignol precursors of lign<strong>in</strong>.<br />

This could be partly expla<strong>in</strong>ed by <strong>the</strong> fact that Cu is structurally important for laccases<br />

(Claus, 2004). It appears also that Cu has functional importance <strong>in</strong> terms of peroxidase<br />

activity, s<strong>in</strong>ce an am<strong>in</strong>e oxidase conta<strong>in</strong><strong>in</strong>g Cu that generates H 2 O 2 by oxidis<strong>in</strong>g<br />

putresc<strong>in</strong>e has been co-located with lign<strong>in</strong> <strong>and</strong> with POD activity <strong>in</strong> tracheid elements<br />

of xylem <strong>in</strong> Arabidopsis (Møller <strong>and</strong> McPherson, 1998).<br />

However, Cu also mediates an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> activity of o<strong>the</strong>r enzymes of <strong>the</strong><br />

lign<strong>in</strong> biosyn<strong>the</strong>sis pathway, such as PAL <strong>and</strong> CAD. This could be an <strong>in</strong>direct effect of<br />

this metal, which enhances oxidation <strong>and</strong> polymerization of monolignols via laccases;<br />

peroxidase would stimulate (by feedback) <strong>the</strong> syn<strong>the</strong>sis of <strong>the</strong>se monolignols.<br />

579<br />

580<br />

581<br />

582<br />

583<br />

584<br />

585<br />

586<br />

587<br />

588<br />

Boron <strong>and</strong> Z<strong>in</strong>c: Boric acid at 5 mM <strong>in</strong>creased <strong>the</strong> activities of PAL <strong>and</strong><br />

syr<strong>in</strong>galdaz<strong>in</strong>e-POD <strong>and</strong> <strong>in</strong>creased <strong>the</strong> lign<strong>in</strong> content <strong>in</strong> soybean (Ghanati et al., 2005).<br />

At high concentrations of Zn, both A. thaliana <strong>and</strong> Thlaspi caeru lescens showed<br />

<strong>in</strong>creased expression of genes related to <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> (van de Mortel et al.,<br />

2006). However, <strong>in</strong> T. Caerulescens, a Zn hyper-accumulator, <strong>the</strong> expression of <strong>the</strong>se<br />

genes was even greater. This could be related to <strong>the</strong> ability of this species to adapt to<br />

higher concentrations of Zn. Among <strong>the</strong> genes that had higher expression <strong>in</strong> T.<br />

caerulescens than <strong>in</strong> A. thaliana were genes related to dirigent prote<strong>in</strong>s, 4CL, CCR,<br />

F5H, CAD, CCoAOMT <strong>and</strong> laccase.<br />

589<br />

590<br />

591<br />

Metals - Alum<strong>in</strong>ium (Al) <strong>and</strong> Cadmium: Al is one of <strong>the</strong> ma<strong>in</strong> factors <strong>in</strong>hibit<strong>in</strong>g plant<br />

growth <strong>in</strong> acidic tropical soils. A typical symptom of Al toxicity is <strong>the</strong> <strong>in</strong>hibition of root


26<br />

592<br />

593<br />

594<br />

595<br />

596<br />

597<br />

598<br />

599<br />

600<br />

601<br />

602<br />

603<br />

604<br />

605<br />

606<br />

607<br />

608<br />

609<br />

610<br />

611<br />

612<br />

613<br />

614<br />

615<br />

616<br />

growth (Tahara et al., 2005). Excess of Al causes <strong>in</strong>creased lign<strong>in</strong> deposition <strong>in</strong> <strong>the</strong> cell<br />

walls of some plant species (Sasaki et al., 1996; Budíková, 1999). In plants susceptible<br />

to Al, lign<strong>in</strong> accumulation is even higher, dramatically reduc<strong>in</strong>g growth; growth<br />

<strong>in</strong>hibition is strongly correlated with <strong>the</strong> extent to which lign<strong>in</strong> is deposited <strong>in</strong> <strong>the</strong> cell<br />

wall, <strong>in</strong>dependently of <strong>the</strong> tolerance to this metal (Sasaki et al., 1996).<br />

Among several species of Myrtaceae, only <strong>the</strong> most sensitive to Al shows<br />

<strong>in</strong>creased lign<strong>in</strong> content when exposed to high concentrations of alum<strong>in</strong>ium (Tahara et<br />

al., 2005).<br />

Camellia s<strong>in</strong>ensis is know to be highly tolerant to Al, <strong>and</strong> its growth is<br />

stimulated by high concentrations of this element (Lima et al., 2009). When this species<br />

was grown <strong>in</strong> high concentrations of Al, <strong>the</strong>re was a reduction <strong>in</strong> <strong>the</strong> activities of PAL<br />

<strong>and</strong> POD bound to <strong>the</strong> cell wall, as well as a reduction <strong>in</strong> lign<strong>in</strong> content, which might<br />

expla<strong>in</strong> enhanced growth of <strong>the</strong>se plants <strong>in</strong> <strong>the</strong> presence of Al (Ghanati et al., 2005).<br />

It was also demonstrated that Al <strong>in</strong>duces <strong>the</strong> expression of genes cod<strong>in</strong>g for<br />

enzymes of <strong>the</strong> lign<strong>in</strong> biosyn<strong>the</strong>sis pathway. Both resistant <strong>and</strong> sensitive rice (Oriza<br />

sativa) plants under Al stress exhibited <strong>in</strong>creased expression of 4CL, PAL, CAD <strong>and</strong><br />

C3H (Chuanzao et al., 2004). Nor<strong>the</strong>rn blot analysis <strong>in</strong>dicated that <strong>the</strong> temporal patterns<br />

of expression differ between <strong>the</strong> two varieties <strong>and</strong>, additionally, that transcripts of PAL<br />

accumulated more <strong>in</strong>tensively <strong>in</strong> <strong>the</strong> sensitive variety. Al also <strong>in</strong>duces expression of<br />

PAL <strong>in</strong> wheat (Snowden <strong>and</strong> Gardner, 1993).<br />

Cd is a heavy metal pollutant, not essential for plants, which enters <strong>the</strong><br />

environment primarily through <strong>in</strong>dustrial processes <strong>and</strong> phosphate fertilizers. Among its<br />

many effects on plants, Cd may <strong>in</strong>duce <strong>the</strong> syn<strong>the</strong>sis of lign<strong>in</strong>. This was observed <strong>in</strong><br />

roots of Phragmites australis (Ederli et al., 2004) <strong>and</strong> callus tissue culture from <strong>the</strong><br />

roots <strong>and</strong> branches of C. s<strong>in</strong>ensis (Zagosk<strong>in</strong>a et al., 2007).


27<br />

617<br />

618<br />

619<br />

620<br />

621<br />

622<br />

Cd concentrations vary<strong>in</strong>g from 0.2 mM to 1 mM reduced <strong>the</strong> growth of soybean<br />

roots <strong>and</strong> <strong>in</strong>creased <strong>the</strong> lign<strong>in</strong> content (Bhuiyan et al., 2007). This was accompanied by<br />

<strong>in</strong>creased POD (cationic <strong>and</strong> anionic) activity, elevated laccase activity, <strong>and</strong> <strong>in</strong>creased<br />

expression of genes related to POD. The authors also noted that <strong>the</strong> laccases are<br />

responsible for <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>itial stages of treatment with Cd<br />

<strong>and</strong> that POD participation become important at later stages.<br />

623<br />

624<br />

625<br />

626<br />

627<br />

628<br />

629<br />

630<br />

631<br />

632<br />

633<br />

634<br />

635<br />

636<br />

637<br />

Gases (CO 2 <strong>and</strong> Ozone)<br />

It is expected that atmospheric concentrations of CO 2 will change from 360<br />

μmol -1 to 550-1000 μmol -1 <strong>in</strong> <strong>the</strong> next 100 years. This will probably <strong>in</strong>terfere with <strong>the</strong><br />

primary <strong>and</strong> secondary metabolism of plants (Davey et al., 2004).<br />

With respect to secondary metabolism, it is known that high concentrations of<br />

CO 2 <strong>in</strong>terfere with <strong>the</strong> biosyn<strong>the</strong>sis of lign<strong>in</strong>. But it has been observed both <strong>in</strong>creases <strong>in</strong><br />

(Koricheva et al., 1998; Richard et al., 2001), reduction <strong>in</strong> (Knops et al., 2007) or even<br />

no effect on <strong>the</strong> concentration of lign<strong>in</strong> (Cotrufo et al., 2005) with <strong>in</strong>creas<strong>in</strong>g rates of<br />

CO 2 . Moreover, <strong>the</strong> response to high CO 2 concentrations is <strong>in</strong>fluenced by fertilization<br />

with N (Matros et al., 2006). Accord<strong>in</strong>gly, high concentrations of CO 2 <strong>in</strong> <strong>the</strong> roots of<br />

Nicotiana tabacum cv. Samsun-NN grown <strong>in</strong> 5 mM of NH 4 NO 3 led to an <strong>in</strong>crease <strong>in</strong><br />

lign<strong>in</strong> content; however, under 8 mM of NH 4 NO 3 , no <strong>changes</strong> <strong>in</strong> <strong>the</strong> levels of lign<strong>in</strong><br />

were observed (Matros et al., 2006).<br />

Plantago maritima ma<strong>in</strong>ta<strong>in</strong>ed for a year <strong>in</strong> an atmosphere of 600 μmol CO 2<br />

638<br />

mol -1<br />

showed an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> biomass of stems <strong>and</strong> roots <strong>and</strong> <strong>changes</strong> <strong>in</strong><br />

639<br />

640<br />

vascularization <strong>and</strong> lignification when compared with plants kept <strong>in</strong> normal<br />

concentrations of CO 2 (Davey et al., 2004). An atmosphere rich <strong>in</strong> CO 2 resulted <strong>in</strong> a


28<br />

641<br />

642<br />

643<br />

644<br />

645<br />

646<br />

647<br />

648<br />

higher concentration of caffeic acid <strong>in</strong> <strong>the</strong> leaves, while <strong>the</strong>re was an <strong>in</strong>crease of p-<br />

coumaric acid <strong>in</strong> <strong>the</strong> roots.<br />

Both <strong>the</strong> enzyme activity <strong>and</strong> gene expression of PAL (Paakkonen et al., 1998),<br />

4CL (Booker <strong>and</strong> Miller, 1998), COMT (Koch et al., 1998) <strong>and</strong> CAD (Booker <strong>and</strong><br />

Miller, 1998; Z<strong>in</strong>ser et al., 1998) are stimulated by exposure to ozone. It was also<br />

observed <strong>in</strong>creased shikimate dehydrogenase activity <strong>in</strong> leaves of Populus tremula X<br />

alba, as well as elevated lign<strong>in</strong> content <strong>and</strong> <strong>changes</strong> <strong>in</strong> lign<strong>in</strong> structure (Cabane et al.,<br />

2004).<br />

649<br />

650<br />

651<br />

652<br />

653<br />

654<br />

655<br />

656<br />

657<br />

658<br />

659<br />

660<br />

661<br />

662<br />

663<br />

664<br />

665<br />

Biotic <strong>stresses</strong> (bacteria, fungi <strong>and</strong> virus)<br />

An <strong>in</strong>crease <strong>in</strong> lignification is often observed <strong>in</strong> response to attack by pathogen.<br />

The response is believed to represent one of a plethora of mechanisms designed to block<br />

parasite <strong>in</strong>vasion, thus reduc<strong>in</strong>g <strong>the</strong> susceptibility of <strong>the</strong> host, s<strong>in</strong>ce lign<strong>in</strong> is a nondegradable<br />

mechanical barrier for most microorganisms.<br />

Two genes cod<strong>in</strong>g for CCR (AtCCR1 <strong>and</strong> AtCCR2) <strong>in</strong> A. thaliana are<br />

differentially expressed upon <strong>in</strong>fection with Xanthomonas campestris. AtCCR1 is<br />

preferentially expressed <strong>in</strong> <strong>the</strong> normal development of tissues, while AtCCR2 shows<br />

lower expression. However, this relation is reversed <strong>in</strong> response to <strong>the</strong> attack by X.<br />

Campestris, <strong>in</strong>dicat<strong>in</strong>g that <strong>the</strong>se genes might participate <strong>in</strong> <strong>the</strong> hypersensitive response<br />

to <strong>the</strong> pathogen.<br />

Agrobacterium <strong>in</strong>duces <strong>the</strong> production of ferulic acid <strong>in</strong> wheat. Ferulic acid is a<br />

precursor <strong>in</strong> lign<strong>in</strong> biosyn<strong>the</strong>sis, suggest<strong>in</strong>g <strong>the</strong> existence of a defence response<br />

prevent<strong>in</strong>g <strong>in</strong>fection by <strong>the</strong> bacteria <strong>in</strong> <strong>the</strong>se plants (Parrott et al., 2002).<br />

No <strong>changes</strong> occurred <strong>in</strong> <strong>the</strong> lign<strong>in</strong> content of wheat leaves <strong>in</strong>fected with mosaic<br />

virus (Kofalvi <strong>and</strong> Nassuth, 1995).


29<br />

666<br />

667<br />

668<br />

669<br />

670<br />

671<br />

672<br />

673<br />

674<br />

675<br />

676<br />

677<br />

678<br />

679<br />

680<br />

681<br />

682<br />

683<br />

684<br />

685<br />

686<br />

687<br />

688<br />

689<br />

690<br />

Several authors have shown <strong>changes</strong> <strong>in</strong> lign<strong>in</strong> content due to attack by fungi, but<br />

not all of <strong>the</strong>se studies have sufficiently demonstrated <strong>the</strong> importance of lign<strong>in</strong> dur<strong>in</strong>g<br />

<strong>the</strong>se processes. In addition, fewer still are <strong>the</strong> works that analyze <strong>the</strong> <strong>changes</strong> <strong>in</strong> plant<br />

metabolism <strong>and</strong> gene expression responsible for this differential accumulation of lign<strong>in</strong>.<br />

The <strong>in</strong>fection of P<strong>in</strong>us nigra by Sphaeropsis sap<strong>in</strong>ea <strong>in</strong>duces an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

deposition of lign<strong>in</strong> (Bonello <strong>and</strong> Blodgett, 2003). Lignification is a defence response <strong>in</strong><br />

<strong>the</strong> hypersensitive reaction of wheat to Pucc<strong>in</strong>ia gram<strong>in</strong>is (Moerschbacher et al., 1990).<br />

Dur<strong>in</strong>g such a response <strong>in</strong> wheat, lign<strong>in</strong> rich <strong>in</strong> syr<strong>in</strong>gyl units accumulates (Menden et<br />

al., 2007).<br />

The deposition of lign<strong>in</strong> <strong>in</strong> necrophylatic periderm <strong>in</strong> <strong>the</strong> early stages of<br />

<strong>in</strong>fection by Mycosphaerella expla<strong>in</strong>s <strong>the</strong> greater resistance of E. nitens as compared to<br />

E. globulus, as this response may prevent <strong>the</strong> spread of tox<strong>in</strong>s <strong>and</strong> fungal enzymes to <strong>the</strong><br />

host, <strong>the</strong>reby prevent<strong>in</strong>g <strong>the</strong> displacement of water <strong>and</strong> nutrients from <strong>the</strong> host cell to<br />

<strong>the</strong> fungus (Smith et al., 2007).<br />

Metabolic studies on <strong>the</strong> <strong>changes</strong> <strong>in</strong> <strong>the</strong> xylem tissues of Ulmus m<strong>in</strong>or <strong>and</strong><br />

Ulmus m<strong>in</strong>or x Ulmus pumila after <strong>in</strong>oculation with Ophiostomis new-ulmi showed that<br />

<strong>the</strong> hybrid has a faster defence response, which is characterized by an <strong>in</strong>crease <strong>in</strong> <strong>the</strong><br />

amount of lign<strong>in</strong>, dim<strong>in</strong>ish<strong>in</strong>g <strong>the</strong> probability of pathogen <strong>in</strong>vasion (Mart<strong>in</strong> et al., 2007).<br />

Regard<strong>in</strong>g physiological <strong>and</strong> molecular aspects, <strong>the</strong> differential accumulation of<br />

lign<strong>in</strong> <strong>and</strong> lignans <strong>in</strong> cell suspension cultures of L<strong>in</strong>um usitatissimum was studied, <strong>in</strong><br />

response to Botrytis c<strong>in</strong>erea, Fusarium oxysporum <strong>and</strong> Phoma exigua mycelium<br />

extracts (Hano et al., 2006). In this study, genes cod<strong>in</strong>g for PAL, CCR <strong>and</strong> CAD<br />

showed elevated expression; PAL activity was enhanced as well.<br />

F<strong>in</strong>ally, COMT expression <strong>in</strong> diploid wheat (Triticum monococcum) is elevated<br />

follow<strong>in</strong>g <strong>in</strong>oculation with Blumeria gram<strong>in</strong>is (Bhuiyan et al., 2007).


30<br />

691<br />

692<br />

693<br />

694<br />

695<br />

696<br />

697<br />

698<br />

699<br />

700<br />

701<br />

702<br />

703<br />

704<br />

705<br />

706<br />

707<br />

708<br />

709<br />

710<br />

711<br />

712<br />

713<br />

714<br />

Conclud<strong>in</strong>g Remarks<br />

Figure 1 shows <strong>the</strong> ma<strong>in</strong> route of lign<strong>in</strong> biosyn<strong>the</strong>sis <strong>in</strong> plants <strong>and</strong> <strong>the</strong> enzymes<br />

<strong>in</strong>volved <strong>in</strong> each metabolic step (adapted from Rastogi <strong>and</strong> Dwivedi, 2008). For most of<br />

<strong>the</strong> genes cod<strong>in</strong>g for <strong>the</strong>se enzymes, transgenic plants have been produced us<strong>in</strong>g genesilenc<strong>in</strong>g<br />

techniques (Anterola <strong>and</strong> Lewis, 2002). The aim of <strong>the</strong>se works was to reduce<br />

lign<strong>in</strong> content or to change <strong>the</strong> structure of lign<strong>in</strong>, goals which have economical <strong>and</strong><br />

environmental implications: cheaper <strong>and</strong> more process-amenable trees for pulp <strong>and</strong><br />

paper manufacture with less pollution, more readily digestible forage for livestock <strong>and</strong><br />

improved feedstock for fuel/chemical production (Anterola <strong>and</strong> Lewis, 2002).<br />

The potential applications of chang<strong>in</strong>g or silenc<strong>in</strong>g <strong>the</strong> expression of <strong>the</strong>se genes<br />

were comprehensively discussed by Anterola <strong>and</strong> Lewis (2002). Some questions<br />

discussed by <strong>the</strong>se authors were, “why do vascular plants consistently produce various<br />

types of cell walls with lign<strong>in</strong>s from ei<strong>the</strong>r two or three monolignols, <strong>and</strong> how does this<br />

occur <strong>in</strong> vivo? Why are <strong>the</strong>se moieties also differentially deposited <strong>in</strong>to specific regions<br />

of develop<strong>in</strong>g cell wall types?” Despite <strong>the</strong> complexity of <strong>the</strong> lign<strong>in</strong> biosyn<strong>the</strong>sis<br />

network, Anterola <strong>and</strong> Lewis (2002) used accumulated knowledge obta<strong>in</strong>ed with<br />

mutants or transgenic plants (<strong>in</strong> which levels of particular enzymes of <strong>the</strong> pathway have<br />

been modified <strong>in</strong> some way) to show that monolignol biosyn<strong>the</strong>sis is under f<strong>in</strong>e<br />

metabolic <strong>and</strong> transcriptional coord<strong>in</strong>ation.<br />

For several of <strong>the</strong>se genes, repressed expression led to diverse <strong>and</strong> undesirable<br />

impacts on plant physiology due to <strong>the</strong> multiple products that orig<strong>in</strong>ate from <strong>the</strong><br />

phenylpropanoid pathway. Therefore, <strong>the</strong> PAL, C4H, C3H <strong>and</strong> 4CL genes (see Figure 1)<br />

are not good targets for genetic manipulation aim<strong>in</strong>g to reduce lign<strong>in</strong>, while CCoAOMT,


31<br />

715<br />

716<br />

717<br />

718<br />

719<br />

720<br />

721<br />

722<br />

723<br />

724<br />

725<br />

726<br />

727<br />

728<br />

729<br />

730<br />

731<br />

732<br />

733<br />

734<br />

735<br />

736<br />

737<br />

738<br />

739<br />

COMT <strong>and</strong> CAD genes can be used to reduce <strong>and</strong> change lign<strong>in</strong> composition (Rastogi<br />

<strong>and</strong> Dwivedi, 2008).<br />

The biosyn<strong>the</strong>sis of monolignols <strong>in</strong> phenylpropanoid metabolism is a metabolic<br />

grid; that is, different routes may be used to syn<strong>the</strong>size a compound. This gives plants<br />

<strong>the</strong> plasticity to produce lign<strong>in</strong> when a step is <strong>in</strong>hibited for whatever reason such as<br />

when a specific gene is silenced. In addition, enzymes related to lign<strong>in</strong> biosyn<strong>the</strong>sis<br />

usually derive from multigene families; depend<strong>in</strong>g on <strong>the</strong> stress<strong>in</strong>g situation (<strong>biotic</strong> or<br />

a<strong>biotic</strong>), different genes for different isozymes can be activated. For <strong>the</strong> sake of<br />

complexity, it is also well known that <strong>the</strong> relative proportions of <strong>the</strong> monolignols may<br />

vary due to environmental <strong>in</strong>fluence (Boudet, 1998). It has been suggested that plants<br />

are versatile <strong>in</strong> <strong>the</strong>ir ability to tolerate substantial <strong>changes</strong> <strong>in</strong> lign<strong>in</strong> structure <strong>and</strong><br />

<strong>in</strong>corporate phenolic compounds o<strong>the</strong>r than <strong>the</strong> three known monolignols (Ralph et al.,<br />

2004). Recently, it was shown that acylated monolignols could also serve as lign<strong>in</strong><br />

precursors (Lu <strong>and</strong> Ralph, 2003). This can make lign<strong>in</strong> more recalcitrant to disruption<br />

dur<strong>in</strong>g pulp<strong>in</strong>g <strong>in</strong> <strong>the</strong> paper <strong>in</strong>dustry, for example (Lapierre et al., 1999). However, it<br />

does not appear that “non-traditional” phenolics, o<strong>the</strong>r than <strong>the</strong> monolignols, are<br />

<strong>in</strong>corporated <strong>in</strong>to lign<strong>in</strong> (Anterola <strong>and</strong> Lewis, 2002).<br />

There are several examples <strong>in</strong>dicat<strong>in</strong>g that lign<strong>in</strong> found <strong>in</strong> nature may comprise<br />

modified molecules (Lu et al., 2004; Morreel et al., 2004). Phenolic amides may also be<br />

part of <strong>the</strong> cell wall, as proven by over-expression of <strong>the</strong> enzyme responsible for <strong>the</strong>ir<br />

biosyn<strong>the</strong>sis, which caused an <strong>in</strong>crease <strong>in</strong> <strong>the</strong>ir <strong>in</strong>corporation <strong>in</strong>to <strong>the</strong> cell wall matrix<br />

(Hagel <strong>and</strong> Facch<strong>in</strong>i, 2005). Recent research also showed that acetylation of syr<strong>in</strong>gyl<br />

units seems to be an exclusive characteristic of angiosperms, as <strong>the</strong> process was<br />

observed among 11 angiosperm species but not <strong>in</strong> 2 gymnosperm species (Del Rio et<br />

al., 2007).


32<br />

740<br />

741<br />

742<br />

743<br />

744<br />

745<br />

746<br />

747<br />

748<br />

This review showed that lign<strong>in</strong> biosyn<strong>the</strong>sis <strong>in</strong> nature can <strong>in</strong>crease complexity<br />

depend<strong>in</strong>g on <strong>the</strong> <strong>stresses</strong> <strong>and</strong> whe<strong>the</strong>r <strong>the</strong> stressor is act<strong>in</strong>g dur<strong>in</strong>g plant growth <strong>and</strong><br />

development. Unfortunately, little has been done to elucidate how such stress<strong>in</strong>g<br />

situations can change lign<strong>in</strong> content or alter its composition with regard to <strong>the</strong> build<strong>in</strong>g<br />

blocks called monolignols, or o<strong>the</strong>r phenolics enter<strong>in</strong>g <strong>the</strong> polymeric structure. Reaction<br />

wood has proven to be an important model for underst<strong>and</strong><strong>in</strong>g lign<strong>in</strong> formation <strong>in</strong> plants<br />

(Mellerowicz <strong>and</strong> Sundberg, 2008). O<strong>the</strong>r <strong>stresses</strong> may also become excellent models<br />

that will yield important clues for underst<strong>and</strong><strong>in</strong>g such complex metabolic pathways, as<br />

well as <strong>the</strong> <strong>in</strong>tricacies of genetic <strong>and</strong> metabolic control.<br />

749<br />

750<br />

751<br />

752<br />

Acknowledgments<br />

The authors (J.C.M.S.M., M.C.D. <strong>and</strong> P.M.) thank CNPq for research fellowships.<br />

Votorantim Celulose e Papel S.A. is acknowledged for f<strong>in</strong>ancial support.<br />

753<br />

754<br />

References<br />

755<br />

756<br />

757<br />

758<br />

759<br />

760<br />

761<br />

762<br />

763<br />

764<br />

765<br />

766<br />

767<br />

768<br />

769<br />

770<br />

771<br />

772<br />

Akgül M, Çöpür Y, Temiz S (2007). A comparison of kraft <strong>and</strong> kraft-sodium<br />

borohydrate brutia p<strong>in</strong>e pulps. Build<strong>in</strong>g <strong>and</strong> Environment, 42, 2586-2590.<br />

Allona I, Qu<strong>in</strong>n M, Shoop E, Swope K, St Cyr S, Carlis J, Riedl J, Retzel E,<br />

Campbell MM, Sederoff R, Whetten RW (1998). Analysis of xylem<br />

formation <strong>in</strong> p<strong>in</strong>e by cDNA sequenc<strong>in</strong>g. Proceed<strong>in</strong>gs of <strong>the</strong> National Academy<br />

of Sciences of <strong>the</strong> United States of America, 95, 9693-9698.<br />

Alvarez S, Marsh EL, Schroeder SG, Schachtman DP (2008). Metabolomic <strong>and</strong><br />

proteomic <strong>changes</strong> <strong>in</strong> <strong>the</strong> xylem sap of maize under drought. Plant Cell <strong>and</strong><br />

Environment, 31, 325-340.<br />

Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg<br />

B (2003). Asymmetric expression of a poplar ACC oxidase controls ethylene<br />

production dur<strong>in</strong>g gravitational <strong>in</strong>duction of tension wood. Plant Journal, 34,<br />

339-349.<br />

Andersson-Gunneras S, Mellerowicz EJ, Love J, Segerman B, Ohmiya Y,<br />

Cout<strong>in</strong>ho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006).<br />

Biosyn<strong>the</strong>sis of cellulose-enriched tension wood <strong>in</strong> Populus tremula: global<br />

analysis of transcripts <strong>and</strong> metabolites identifies biochemical <strong>and</strong> developmental


33<br />

773<br />

774<br />

775<br />

776<br />

777<br />

778<br />

779<br />

780<br />

781<br />

782<br />

783<br />

784<br />

785<br />

786<br />

787<br />

788<br />

789<br />

790<br />

791<br />

792<br />

793<br />

794<br />

795<br />

796<br />

797<br />

798<br />

799<br />

800<br />

801<br />

802<br />

803<br />

804<br />

805<br />

806<br />

807<br />

808<br />

809<br />

810<br />

811<br />

812<br />

813<br />

814<br />

815<br />

816<br />

817<br />

818<br />

819<br />

820<br />

821<br />

822<br />

regulators <strong>in</strong> secondary wall biosyn<strong>the</strong>sis.(vol 45, pg 144, 2005). Plant Journal,<br />

46, 349-349.<br />

Anterola AM, Lewis NG (2002). Trends <strong>in</strong> lign<strong>in</strong> modification: a comprehensive<br />

analysis of <strong>the</strong> effects of genetic manipulations/mutations on lignification <strong>and</strong><br />

vascular <strong>in</strong>tegrity Phytochemistry, 61, 221-294.<br />

Aoyama W, Matsumura A, Tsutsumi Y, Nishida T (2001). Lignification <strong>and</strong><br />

peroxidase <strong>in</strong> tension wood of Eucalyptus vim<strong>in</strong>alis seedl<strong>in</strong>gs. Journal of Wood<br />

Science, 47, 419-424.<br />

Atici O, Nalbantoglu B (2003). Antifreeze prote<strong>in</strong>s <strong>in</strong> higher plants. Phytochemistry,<br />

64, 1187-1196.<br />

Baba Ki, Asada T, Hayashi T (2000). Relation between developmental <strong>changes</strong> on<br />

anatomical structure <strong>and</strong> on prote<strong>in</strong> pattern <strong>in</strong> differentiat<strong>in</strong>g xylem of tension<br />

wood. Journal of Wood Science, 46, 1-7.<br />

Barnes JD, Bettar<strong>in</strong>i I, Polle A, Slee N, Ra<strong>in</strong>es C, Miglietta F, Raschi A, Fordham<br />

M (1997). The impact of elevated CO2 on growth <strong>and</strong> photosyn<strong>the</strong>sis <strong>in</strong><br />

Agrostis can<strong>in</strong>a L. ssp. monteluccii adapted to contrast<strong>in</strong>g atmospheric CO 2<br />

concentrations. Oecologia, 110, 169-178.<br />

Bedon F, Grima-Pettenati J, Mackay J (2007). Conifer R2R3-MYB transcription<br />

factors: sequence analyses <strong>and</strong> gene expression <strong>in</strong> wood-form<strong>in</strong>g tissues of white<br />

spruce (Picea glauca). BMC Plant Biology, 7.<br />

Bhuiyan N, Liu W, Liu G, Selvaraj G, Wei Y, K<strong>in</strong>g J (2007). Transcriptional<br />

regulation of genes <strong>in</strong>volved <strong>in</strong> <strong>the</strong> pathways of biosyn<strong>the</strong>sis <strong>and</strong> supply of<br />

methyl units <strong>in</strong> response to powdery mildew attack <strong>and</strong> a<strong>biotic</strong> <strong>stresses</strong> <strong>in</strong> wheat.<br />

Plant Molecular Biology, 64, 305-318.<br />

Blodgett JT, Herms DA, Bonello P (2005). Effects of fertilization on red p<strong>in</strong>e defense<br />

chemistry <strong>and</strong> resistance to Sphaeropsis sap<strong>in</strong>ea. Forest Ecology <strong>and</strong><br />

Management, 208, 373-382.<br />

Boerjan W, Ralph J, Baucher M (2003). Lign<strong>in</strong> biosyn<strong>the</strong>sis. Annual Review of Plant<br />

Biology, 54, 519-546.<br />

Bok-Rye L, Kil-Yong K, Woo-J<strong>in</strong> J, Jean-Christophe A, Ala<strong>in</strong> O, Tae-Hwan K<br />

(2007). Peroxidases <strong>and</strong> lignification <strong>in</strong> relation to <strong>the</strong> <strong>in</strong>tensity of water-deficit<br />

stress <strong>in</strong> white clover (Trifolium repens L.). Journal of Experimental Botany, 58,<br />

1271-1271.<br />

Bonello P, Blodgett JT (2003). P<strong>in</strong>us nigra - Sphaeropsis sap<strong>in</strong>ea as a model<br />

pathosystem to <strong>in</strong>vestigate local <strong>and</strong> systemic effects of fungal <strong>in</strong>fection of<br />

p<strong>in</strong>es. Physiological <strong>and</strong> Molecular Plant Pathology, 63, 249-261.<br />

Booker F, Miller J (1998). Phenylpropanoid metabolism <strong>and</strong> phenolic composition of<br />

soybean [Glyc<strong>in</strong>e max (L.) Merr.] leaves follow<strong>in</strong>g exposure to ozone. Journal<br />

of Experimental Botany, 49, 1191-1202.<br />

Boudet AM (1998). A new view of lignification Trends <strong>in</strong> Plant Science, 3, 67-71.<br />

Boudet AM (2000). Lign<strong>in</strong>s <strong>and</strong> lignification: selected issues. Plant Physiology <strong>and</strong><br />

Biochemistry, 38, 81-96.<br />

Budíková S (1999). Structural <strong>changes</strong> <strong>and</strong> alum<strong>in</strong>ium distribution <strong>in</strong> maize root<br />

tissues. Biologia Plantarum, 42, 259-266.<br />

Cabane M, Pireaux JC, Leger E, Weber E, Dizengremel P, Pollet B, Lapierre C<br />

(2004). Condensed lign<strong>in</strong>s are syn<strong>the</strong>sized <strong>in</strong> poplar leaves exposed to ozone.<br />

Plant Physiology, 134, 586-594.<br />

Carp<strong>in</strong> S, Crevecoeur M, de Meyer M, Simon P, Grepp<strong>in</strong> H, Penel C (2001).<br />

Identification of a Ca2+-pectate b<strong>in</strong>d<strong>in</strong>g site on an apoplastic peroxidase. Plant<br />

Cell, 13, 511-520.


34<br />

823<br />

824<br />

825<br />

826<br />

827<br />

828<br />

829<br />

830<br />

831<br />

832<br />

833<br />

834<br />

835<br />

836<br />

837<br />

838<br />

839<br />

840<br />

841<br />

842<br />

843<br />

844<br />

845<br />

846<br />

847<br />

848<br />

849<br />

850<br />

851<br />

852<br />

853<br />

854<br />

855<br />

856<br />

857<br />

858<br />

859<br />

860<br />

861<br />

862<br />

863<br />

864<br />

865<br />

866<br />

867<br />

868<br />

869<br />

870<br />

871<br />

872<br />

Carpita NC, Gibeaut DM (1993). Structural models of primary-cell walls <strong>in</strong> flower<strong>in</strong>g<br />

plants - consistency of molecular-structure with <strong>the</strong> physical-properties of <strong>the</strong><br />

walls dur<strong>in</strong>g growth. Plant Journal, 3, 1-30.<br />

Castañeda P, Pérez LM (1996). Calcium ions promote <strong>the</strong> response of Citrus limon<br />

aga<strong>in</strong>st fungal elicitors or wound<strong>in</strong>g. Phytochemistry, 42, 595-598.<br />

Chen EL, Chen YA, Chen LM, Liu ZH (2002). Effect of copper on peroxidase<br />

activity <strong>and</strong> lign<strong>in</strong> content <strong>in</strong> Raphanus sativus. Plant Physiology <strong>and</strong><br />

Biochemistry, 40, 439-444.<br />

Ch<strong>in</strong>nusamy V, Zhu J, Zhu J-K (2007). Cold stress regulation of gene expression <strong>in</strong><br />

plants. Trends <strong>in</strong> Plant Science, 12, 444-451.<br />

Chuanzao M, Keke Y, L<strong>in</strong>g Y, B<strong>in</strong>gsong Z, Yunrong W, Feiyan L, P<strong>in</strong>g W (2004).<br />

Identification of alum<strong>in</strong>ium-regulated genes by cDNA-AFLP <strong>in</strong> rice (Oryza<br />

sativa L.): alum<strong>in</strong>ium-regulated genes for <strong>the</strong> metabolism of cell wall<br />

components. Journal of Experimental Botany, 55, 137-143.<br />

Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005). Precautions for <strong>the</strong> structural<br />

analysis of <strong>the</strong> gelat<strong>in</strong>uous layer <strong>in</strong> tension wood. IAWA Journal, 26, 189-195.<br />

Claus H (2004). Laccases: structure, reactions, distribution. Micron, 35, 93-96.<br />

Cooke JEK, Brown KA, Wu R, Davis JM (2003). Gene expression associated with N-<br />

<strong>in</strong>duced shifts <strong>in</strong> resource allocation <strong>in</strong> poplar. Plant Cell Environment, 26, 757-<br />

770.<br />

Cotrufo MF, DeAngelis P, Polle A (2005). Leaf litter production <strong>and</strong> decomposition <strong>in</strong><br />

a poplar short-rotation coppice exposed to free air CO 2 enrichment (POPFACE)<br />

Global Change Biology, 11, 971-982.<br />

Davey MP, Bryant DN, Cumm<strong>in</strong>s I, Ashenden TW, Gates P, Baxter R, Edwards R<br />

(2004). Effects of elevated CO 2 on <strong>the</strong> vasculature <strong>and</strong> phenolic secondary<br />

metabolism of Plantago maritima. Phytochemistry, 65, 2197-2204.<br />

de Obeso M, Caparros-Ruiz D, Vignols F, Puigdomenech P, Rigau J (2003).<br />

Characterisation of maize peroxidases hav<strong>in</strong>g differential patterns of mRNA<br />

accumulation <strong>in</strong> relation to lignify<strong>in</strong>g tissues. Gene, 309, 23-33.<br />

Déjard<strong>in</strong> A, Leplé JC, Lesage-Descauses MC, Costa G, Pilate G (2004). Expressed<br />

sequence tags from poplar wood tissues - a comparative analysis from multiple<br />

libraries. Plant Biology, 6, 55-64.<br />

Del Rio JC, Marques G, Rencoret J, Mart<strong>in</strong>ez AT, Gutierrez A (2007). Occurrence<br />

of naturally acetylated lign<strong>in</strong> units. Journal of Agricultural <strong>and</strong> Food Chemistry,<br />

55, 5461-5468.<br />

Delessert C, Wilson I, Van Der Straeten D, Dennis E, Dolferus R (2004). Spatial <strong>and</strong><br />

temporal analysis of <strong>the</strong> local response to wound<strong>in</strong>g. Plant Molecular Biology,<br />

55, 165-181.<br />

Diaz J, Bernal A, Pomar F, Mer<strong>in</strong>o F (2001). Induction of shikimate dehydrogenase<br />

<strong>and</strong> peroxidase <strong>in</strong> pepper (Capsicum annuum L.) seedl<strong>in</strong>gs <strong>in</strong> response to copper<br />

stress <strong>and</strong> its relation to lignification. Plant Science, 161, 179-188.<br />

Dixon RA, Paiva NL (1995). Stress-<strong>in</strong>duced phenylpropanoid metabolism. Plant Cell,<br />

7, 1085-1097.<br />

Donaldson LA, Grace J, Downes GM (2004). With<strong>in</strong>-tree variation <strong>in</strong> anatomical<br />

properties of compression wood <strong>in</strong> radiata p<strong>in</strong>e. Iawa Journal, 25, 253-271.<br />

Ederli L, Reale L, Ferranti F, Pasqual<strong>in</strong>i S (2004). Responses <strong>in</strong>duced by high<br />

concentration of cadmium <strong>in</strong> Phragmites australis roots. Physiologia Plantarum,<br />

121, 66-74.<br />

El Kayal W, Keller G, Debayles C, Kumar R, Weier D, Teulieres C, Marque C<br />

(2006). Regulation of tocopherol biosyn<strong>the</strong>sis through transcriptional control of


35<br />

873<br />

874<br />

875<br />

876<br />

877<br />

878<br />

879<br />

880<br />

881<br />

882<br />

883<br />

884<br />

885<br />

886<br />

887<br />

888<br />

889<br />

890<br />

891<br />

892<br />

893<br />

894<br />

895<br />

896<br />

897<br />

898<br />

899<br />

900<br />

901<br />

902<br />

903<br />

904<br />

905<br />

906<br />

907<br />

908<br />

909<br />

910<br />

911<br />

912<br />

913<br />

914<br />

915<br />

916<br />

917<br />

918<br />

919<br />

920<br />

tocopherol cyclase dur<strong>in</strong>g cold harden<strong>in</strong>g <strong>in</strong> Eucalyptus gunnii. Physiologia<br />

Plantarum, 126, 212-223.<br />

Entry JA, Runion GB, Prior SA, Mitchell RJ, Rogers HH (1998). Influence of CO 2<br />

enrichment <strong>and</strong> nitrogen fertilization on tissue chemistry <strong>and</strong> carbon allocation<br />

<strong>in</strong> longleaf p<strong>in</strong>e seedl<strong>in</strong>gs. Plant <strong>and</strong> Soil, 200, 3-11.<br />

Fan L, L<strong>in</strong>ker R, Gepste<strong>in</strong> S, Tanimoto E, Yamamoto R, Neumann PM (2006).<br />

Progressive <strong>in</strong>hibition by water deficit of cell wall extensibility <strong>and</strong> growth<br />

along <strong>the</strong> elongation zone of maize roots is related to <strong>in</strong>creased lign<strong>in</strong><br />

metabolism <strong>and</strong> progressive stelar accumulation of wall phenolics. Plant<br />

Physiology, 140, 603-612.<br />

Ford CW, Morrison IM, Wilson JR (1979). Temperature effects on lign<strong>in</strong>,<br />

hemicellulose <strong>and</strong> cellulose <strong>in</strong> tropical <strong>and</strong> temperate grasses. Australian<br />

Journal of Agricultural Research, 30, 621-633.<br />

Frankenste<strong>in</strong> C, Schmitt U, Koch G (2006). Topochemical studies on modified lign<strong>in</strong><br />

distribution <strong>in</strong> <strong>the</strong> xylem of poplar (Populus spp.) after wound<strong>in</strong>g. Annals of<br />

Botany, 97, 195-204.<br />

Funada R, Miura T, Shimizu Y, K<strong>in</strong>ase T, Nakaba S, Kubo T, Sano Y (2008).<br />

Gibberell<strong>in</strong>-<strong>in</strong>duced formation of tension wood <strong>in</strong> angiosperm trees. Planta, 227,<br />

1409-1414.<br />

Ghanati F, Morita A, Yokota H (2005). Deposition of suber<strong>in</strong> <strong>in</strong> roots of soybean<br />

<strong>in</strong>duced by excess boron. Plant Science, 168, 397-405.<br />

G<strong>in</strong>dl W, Grabner M, Wimmer R (2000). The <strong>in</strong>fluence of temperature on latewood<br />

lign<strong>in</strong> content <strong>in</strong> treel<strong>in</strong>e Norway spruce compared with maximum density <strong>and</strong><br />

r<strong>in</strong>g width. Trees - Structure <strong>and</strong> Function, 14, 409-414.<br />

Gion JM, Lalanne C, Le Provost G, Ferry-Dumazet H, Paiva J, Chaumeil P,<br />

Frigerio JM, Brach J, Barre A, de Daruvar A, Claverol S, Bonneu M,<br />

Sommerer N, Negroni L, Plomion C (2005). The proteome of maritime p<strong>in</strong>e<br />

wood form<strong>in</strong>g tissue. Proteomics, 5, 3731-3751.<br />

Gratão P, Polle A, Lea P, Azevedo R (2005). Mak<strong>in</strong>g <strong>the</strong> life of heavy metal-stressed<br />

plants a little easier. Functional Plant Biology, 32, 481-494.<br />

Hagel JM, Facch<strong>in</strong>i PJ (2005). Elevated tyros<strong>in</strong>e decarboxylase <strong>and</strong> tyram<strong>in</strong>e<br />

hydroxyc<strong>in</strong>namoyltransferase levels <strong>in</strong>crease wound-<strong>in</strong>duced tyram<strong>in</strong>e-derived<br />

hydroxyc<strong>in</strong>namic acid amide accumulation <strong>in</strong> transgenic tobacco leaves. Planta,<br />

221, 904-914.<br />

Hannah MA, Heyer AG, H<strong>in</strong>cha DK (2005). A global survey of gene regulation<br />

dur<strong>in</strong>g cold acclimation <strong>in</strong> Arabidopsis thaliana. PLoS Genetics, 1, e26.<br />

Hano C, Addi M, Bensaddek L, Crônier D, Baltora-Rosset S, Doussot J, Maury S,<br />

Mesnard F, Chabbert B, Hawk<strong>in</strong>s S, La<strong>in</strong>é E, Lambl<strong>in</strong> F (2006). Differential<br />

accumulation of monolignol-derived compounds <strong>in</strong> elicited flax (L<strong>in</strong>um<br />

usitatissimum) cell suspension cultures. Planta, 223, 975-989.<br />

Hatfield R, Fukushima RS (2005). Can lign<strong>in</strong> be accurately measured? Crop Science,<br />

45, 832-839.<br />

Hausman JF, Evers D, Thiellement H, Jouve L (2000). Compared responses of<br />

poplar cutt<strong>in</strong>gs <strong>and</strong> <strong>in</strong> vitro raised shoots to short-term chill<strong>in</strong>g treatments. Plant<br />

Cell Reports, 19, 954-960.<br />

Hawk<strong>in</strong>s S, Boudet A (2003). 'Defence lign<strong>in</strong>' <strong>and</strong> hydroxyc<strong>in</strong>namyl alcohol<br />

dehydrogenase activities <strong>in</strong> wounded Eucalyptus gunnii. European Journal of<br />

Forest Pathology, 33, 91-104.


36<br />

921<br />

922<br />

923<br />

924<br />

925<br />

926<br />

927<br />

928<br />

929<br />

930<br />

931<br />

932<br />

933<br />

934<br />

935<br />

936<br />

937<br />

938<br />

939<br />

940<br />

941<br />

942<br />

943<br />

944<br />

945<br />

946<br />

947<br />

948<br />

949<br />

950<br />

951<br />

952<br />

953<br />

954<br />

955<br />

956<br />

957<br />

958<br />

959<br />

960<br />

961<br />

962<br />

963<br />

964<br />

965<br />

966<br />

967<br />

968<br />

969<br />

970<br />

Hellgren JM, Olofsson K, Sundberg B (2004). Patterns of aux<strong>in</strong> distribution dur<strong>in</strong>g<br />

gravitational <strong>in</strong>duction of reaction wood <strong>in</strong> poplar <strong>and</strong> p<strong>in</strong>e. Plant Physiology,<br />

135, 212-220.<br />

Hilal M, Parrado MF, Rosa M, Gallardo M, Orce L, Marta Massa E, González JA,<br />

Prado FE (2004). Epidermal lign<strong>in</strong> deposition <strong>in</strong> qu<strong>in</strong>oa cotyledons <strong>in</strong> response<br />

to UV-B radiation. Photochemistry <strong>and</strong> Photobiology, 79, 205-210.<br />

Huang G, Shi JX, Langrish TAG (2007). A new pulp<strong>in</strong>g process for wheat straw to<br />

reduce problems with <strong>the</strong> discharge of black liquor. BioResource Technology,<br />

98, 2829-2835.<br />

Ja<strong>in</strong> R, Shrivastava A, Solomon S, Yadav R (2007). Low temperature stress-<strong>in</strong>duced<br />

biochemical <strong>changes</strong> affect stubble bud sprout<strong>in</strong>g <strong>in</strong> sugarcane ( Saccharum spp.<br />

hybrid). Plant Growth Regulation, 53, 17-23.<br />

Janas KM, Cvikrova M, Palagiewicz A, Eder J (2000). Alterations <strong>in</strong><br />

phenylpropanoid content <strong>in</strong> soybean roots dur<strong>in</strong>g low temperature acclimation.<br />

Plant Physiology <strong>and</strong> Biochemistry, 38, 587-593.<br />

J<strong>and</strong>a T, Szalai G, Leskó K, Yordanova R, Apostol S, Popova LP (2007). Factors<br />

contribut<strong>in</strong>g to enhanced freez<strong>in</strong>g tolerance <strong>in</strong> wheat dur<strong>in</strong>g frost harden<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> light. Phytochemistry, 68, 1674-1682.<br />

Joseleau J-P, Imai T, Kuroda K, Ruel K (2004). Detection <strong>in</strong> situ <strong>and</strong><br />

characterization of lign<strong>in</strong> <strong>in</strong> <strong>the</strong> G-layer of tension wood fibres of Populus<br />

deltoides. Planta, 219, 338-345.<br />

Khristova P, Kordsachia O, Patt R, Karar I, Khider T (2006). Environmentally<br />

friendly pulp<strong>in</strong>g <strong>and</strong> bleach<strong>in</strong>g of bagasse. Industrial Crops <strong>and</strong> Products, 23,<br />

131-139.<br />

Kim YJ, Kim DG, Lee SH, Lee I (2006). Wound-<strong>in</strong>duced expression of <strong>the</strong> ferulate 5-<br />

hydroxylase gene <strong>in</strong> Campto<strong>the</strong>ca acum<strong>in</strong>ata. Biochimica et Biophysica Acta,<br />

1760, 182-190.<br />

Kimura M, Yamamoto YY, Seki M, Sakurai T, Sato M, Abe T, Yoshida S, Manabe<br />

K, Sh<strong>in</strong>ozaki K, Matsui M (2003). Identification of Arabidopsis genes<br />

regulated by high light-stress us<strong>in</strong>g cDNA microarray. Photochemistry<br />

Photobiology, 77, 226-233.<br />

Knops JMH, Naeemw S, Reich PB (2007). The impact of elevated CO 2 , <strong>in</strong>creased<br />

nitrogen availability <strong>and</strong> biodiversity on plant tissue quality <strong>and</strong> decomposition.<br />

Global Change Biology, 13, 1960-1971.<br />

Koch JR, Scherzer AJ, Eshita SM, Davis KR (1998). Ozone sensitivity <strong>in</strong> hybrid<br />

poplar is correlated with a lack of defense-gene activation Plant Physiology,<br />

118, 1243-1252.<br />

Kofalvi SA, Nassuth A (1995). Influence of wheat streak mosaic virus <strong>in</strong>fection on<br />

phenylpropanoid metabolism <strong>and</strong> <strong>the</strong> accumulation of phenolics <strong>and</strong> lign<strong>in</strong> <strong>in</strong><br />

wheat. Physiological <strong>and</strong> Molecular Plant Pathology, 47, 365-377.<br />

Kolupaev YE, Ak<strong>in</strong><strong>in</strong>a GE, Mokrousov AV (2005). Induction of heat tolerance <strong>in</strong><br />

wheat coleoptiles by calcium ions <strong>and</strong> its relation to oxidative stress. Russian<br />

Journal of Plant Physiology, 52, 199-204.<br />

Koricheva J, Larsson S, Haukioja E, Ke<strong>in</strong>anen M (1998). Regulation of woody plant<br />

secondary metabolism by resource availability: hypo<strong>the</strong>sis test<strong>in</strong>g by means of<br />

meta-analysis. Oikos, 83, 212-226.<br />

Kostia<strong>in</strong>en K, Kaak<strong>in</strong>en S, Saranpaa P, Sigurdsson BD, L<strong>in</strong>der S, Vapaavuori E<br />

(2004). Effect of elevated [CO 2 ] on stem wood properties of mature Norway<br />

spruce grown at different soil nutrient availability Global Change Biology, 10,<br />

1526-1538.


37<br />

971<br />

972<br />

973<br />

974<br />

975<br />

976<br />

977<br />

978<br />

979<br />

980<br />

981<br />

982<br />

983<br />

984<br />

985<br />

986<br />

987<br />

988<br />

989<br />

990<br />

991<br />

992<br />

993<br />

994<br />

995<br />

996<br />

997<br />

998<br />

999<br />

1000<br />

1001<br />

1002<br />

1003<br />

1004<br />

1005<br />

1006<br />

1007<br />

1008<br />

1009<br />

1010<br />

1011<br />

1012<br />

1013<br />

1014<br />

1015<br />

1016<br />

1017<br />

1018<br />

Kusumoto D (2005). Concentrations of lign<strong>in</strong> <strong>and</strong> wall-bound ferulic acid after<br />

wound<strong>in</strong>g <strong>in</strong> <strong>the</strong> phloem of Chamaecyparis obtusa. Trees - Structure <strong>and</strong><br />

Function, 19, 451-456.<br />

Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leple JC,<br />

Boerjan W, Ferret V, De Nadai V, Jouan<strong>in</strong> L (1999). Structural alterations of<br />

lign<strong>in</strong>s <strong>in</strong> transgenic poplars with depressed c<strong>in</strong>namyl alcohol dehydrogenase or<br />

caffeic acid O-methyltransferase activity have an opposite impact on <strong>the</strong><br />

efficiency of <strong>in</strong>dustrial kraft pulp<strong>in</strong>g. Plant Physiology, 119, 153-163.<br />

Lautner S, Ehlt<strong>in</strong>g B, W<strong>in</strong>deisen E, Rennenberg H, Matyssek R, Fromm J (2007).<br />

Calcium nutrition has a significant <strong>in</strong>fluence on wood formation <strong>in</strong> poplar. New<br />

Phytologist, 173, 743-752.<br />

Le Provost G, Paiva J, Pot D, Brach J, Plomion C (2003). Seasonal variation <strong>in</strong><br />

transcript accumulation <strong>in</strong> wood-form<strong>in</strong>g tissues of maritime p<strong>in</strong>e (P<strong>in</strong>us<br />

p<strong>in</strong>aster Ait.) with emphasis on a cell wall glyc<strong>in</strong>e-rich prote<strong>in</strong>. Planta, 217,<br />

820-830.<br />

Liberloo M, Calfapietra C, Lukac M, Godbold D, Luos ZB, Polle A, Hoosbeek MR,<br />

Kull O, Marek M, Ra<strong>in</strong>es C, Rub<strong>in</strong>o M, Taylor G, Scarascia-Mugnozza G,<br />

Ceulemans R (2006). Woody biomass production dur<strong>in</strong>g <strong>the</strong> second rotation of<br />

a bio-energy Populus plantation <strong>in</strong>creases <strong>in</strong> a future high CO 2 world. Global<br />

Change Biology, 12, 1094-1106.<br />

Lima JD, Mazzafera P, Moraes WS, Silva RB (2009). Chá: aspectos relacionados a<br />

qualidade e perspectivas. Ciência Rural, 39, 1270-1278 .<br />

Little CHA, Savidge RA (1987). The role of plant growth regulators <strong>in</strong> forest tree<br />

cambial growth. Plant Growth Regulation, 6, 137-169.<br />

Lu FC, Ralph J (2003). Non-degradative dissolution <strong>and</strong> acetylation of ball-milled<br />

plant cell walls: high-resolution solution-state NMR. Plant Journal, 35, 535-<br />

544.<br />

Lu FC, Ralph J, Morreel K, Messens E, Boerjan W (2004). Preparation <strong>and</strong><br />

relevance of a cross-coupl<strong>in</strong>g product between s<strong>in</strong>apyl alcohol <strong>and</strong> s<strong>in</strong>apyl p-<br />

hydroxybenzoate. Organic <strong>and</strong> Biomolecular Chemistry, 2, 2888-2890.<br />

Luo Z-B, Langenfeld-Heyser R, Calfapietra C, Polle A (2005). Influence of free air<br />

CO 2 enrichment (EUROFACE) <strong>and</strong> nitrogen fertilisation on <strong>the</strong> anatomy of<br />

juvenile wood of three poplar species after coppic<strong>in</strong>g. Trees - Structure <strong>and</strong><br />

Function, 19, 109-118.<br />

Mart<strong>in</strong> JA, Solla A, Woodward S, Gil L (2007). Detection of differential <strong>changes</strong> <strong>in</strong><br />

lign<strong>in</strong> composition of elm xylem tissues <strong>in</strong>oculated with Ophiostoma novo-ulmi<br />

us<strong>in</strong>g fourier transform-<strong>in</strong>frared spectroscopy. Forest Pathology, 37, 187-191.<br />

Matros A, Amme S, Kettig B, Buck-Sorl<strong>in</strong> GH, Sonnewald U, Mock H-P (2006).<br />

Growth at elevated CO 2 concentrations leads to modified profiles of secondary<br />

metabolites <strong>in</strong> tobacco cv. SamsunNN <strong>and</strong> to <strong>in</strong>creased resistance aga<strong>in</strong>st<br />

<strong>in</strong>fection with potato virus Y. Plant Cell <strong>and</strong> Environment, 29, 126-137.<br />

McDougall GJ (2000). A comparison of prote<strong>in</strong>s from <strong>the</strong> develop<strong>in</strong>g xylem of<br />

compression <strong>and</strong> non-compression wood of branches of Sitka spruce (Picea<br />

sitchensis) reveals a differentially expressed laccase. Journal of Experimental<br />

Botany, 51, 1767-1767.<br />

Mellerowicz EJ, Sundberg B (2008). Wood cell walls: biosyn<strong>the</strong>sis, developmental<br />

dynamics <strong>and</strong> <strong>the</strong>ir implications for wood properties. Current Op<strong>in</strong>ion <strong>in</strong> Plant<br />

Biology, 11, 293-300.


38<br />

1019<br />

1020<br />

1021<br />

1022<br />

1023<br />

1024<br />

1025<br />

1026<br />

1027<br />

1028<br />

1029<br />

1030<br />

1031<br />

1032<br />

1033<br />

1034<br />

1035<br />

1036<br />

1037<br />

1038<br />

1039<br />

1040<br />

1041<br />

1042<br />

1043<br />

1044<br />

1045<br />

1046<br />

1047<br />

1048<br />

1049<br />

1050<br />

1051<br />

1052<br />

1053<br />

1054<br />

1055<br />

1056<br />

1057<br />

1058<br />

1059<br />

1060<br />

1061<br />

1062<br />

1063<br />

1064<br />

1065<br />

1066<br />

1067<br />

Menden B, Kohlhoff M, Moerschbacher BM (2007). Wheat cells accumulate a<br />

syr<strong>in</strong>gyl-rich lign<strong>in</strong> dur<strong>in</strong>g <strong>the</strong> hypersensitive resistance response.<br />

Phytochemistry, 68, 513-520.<br />

Moerschbacher BM, Noll U, Gorrichon L, Reisener H-J (1990). Specific <strong>in</strong>hibition<br />

of lignification breaks hypersensitive resistance of wheat to stem rust. Plant<br />

Physiology, 93, 465-470.<br />

Möller R, Ball R, Henderson A, Modzel G, F<strong>in</strong>d J (2006). Effect of light <strong>and</strong><br />

activated charcoal on tracheary element differentiation <strong>in</strong> callus cultures of<br />

P<strong>in</strong>us radiata D. Don. Plant Cell, Tissue <strong>and</strong> Organ Culture, 85, 161-171.<br />

Monties B (1989). Lign<strong>in</strong>s. In: Harborne JB, ed, Methods <strong>in</strong> plant biochemistry, Vol. 1,<br />

Academic Press, London. pp 113-157.<br />

Morreel K, Ralph J, Kim H, Lu FC, Goem<strong>in</strong>ne G, Ralph S, Messens E, Boerjan W<br />

(2004). Profil<strong>in</strong>g of oligolignols reveals monolignol coupl<strong>in</strong>g conditions <strong>in</strong><br />

lignify<strong>in</strong>g poplar xylem. Plant Physiology, 136, 3537-3549.<br />

Møller SG, McPherson MJ (1998). Developmental expression <strong>and</strong> biochemical<br />

analysis of <strong>the</strong> Arabidopsis atao1 gene encod<strong>in</strong>g an H2O2 generat<strong>in</strong>g diam<strong>in</strong>e<br />

oxidase. Plant Journal, 13, 781-791.<br />

Nimz HH, Robert D, Faix O, Nemr M (1981). C-13 NMR-spectra of lign<strong>in</strong>s .8.<br />

Structural differences between lign<strong>in</strong>s of hardwoods, softwoods, grasses <strong>and</strong><br />

compression wood. Holzforschung, 35, 16-26.<br />

Olenichenko N, Zagosk<strong>in</strong>a N (2005). Response of w<strong>in</strong>ter wheat to cold: production of<br />

phenolic compounds <strong>and</strong> l-phenylalan<strong>in</strong>e ammonia lyase activity. Applied<br />

Biochemistry <strong>and</strong> Microbiology, 41, 600-603.<br />

Paakkonen E, Seppanen S, Holopa<strong>in</strong>en T, Kokko H, Karenlampi S, L. K,<br />

Kangasjarvi J (1998). Induction of genes for <strong>the</strong> stress prote<strong>in</strong>s PR-10 <strong>and</strong> PAL<br />

<strong>in</strong> relation to growth, visible <strong>in</strong>juries <strong>and</strong> stomatal conductance <strong>in</strong> birch (Betula<br />

pendula) clones exposed to ozone <strong>and</strong>/or drought New Phytologist, 138, 295-<br />

305.<br />

Parrott DL, Anderson AJ, Carman JG (2002). Agrobacterium <strong>in</strong>duces plant cell<br />

death <strong>in</strong> wheat (Triticum aestivum L.). Physiological <strong>and</strong> Molecular Plant<br />

Pathology, 60, 59-69.<br />

Paux E, Carocha V, Marques C, Mendes de Sousa A, Borralho N, Sivadon P,<br />

Grima-Pettenati J (2005). Transcript profil<strong>in</strong>g of Eucalyptus xylem genes<br />

dur<strong>in</strong>g tension wood formation. New Phytologist, 167, 89-100.<br />

Penel C, Grepp<strong>in</strong> H (1996). Pect<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s: Characterization of <strong>the</strong> b<strong>in</strong>d<strong>in</strong>g<br />

<strong>and</strong> comparison with hepar<strong>in</strong>. Plant Physiology <strong>and</strong> Biochemistry, 34, 479-488.<br />

Pitre F, Cooke J, Mackay J (2007). Short-term effects of nitrogen availability on wood<br />

formation <strong>and</strong> fibre properties <strong>in</strong> hybrid poplar. Trees - Structure <strong>and</strong> Function,<br />

21, 249-259.<br />

Plomion C, Pionneau C, Brach J, Costa P, Bailleres H (2000). Compression woodresponsive<br />

prote<strong>in</strong>s <strong>in</strong> develop<strong>in</strong>g xylem of maritime p<strong>in</strong>e (P<strong>in</strong>us p<strong>in</strong>aster Ait.).<br />

Plant Physiology, 123, 959-969.<br />

Qiu D, Wilson IW, Gan S, Washusen R, Moran GF, Sou<strong>the</strong>rton SG (2008). Gene<br />

expression <strong>in</strong> Eucalyptus branch wood with marked variation <strong>in</strong> cellulose<br />

microfibril orientation <strong>and</strong> lack<strong>in</strong>g G-layers. New Phytologist, 179, 94-103.<br />

Ralph J, Lundquist K, Brunow G, Lu F, Kim H, Schatz PF, Marita JM, Hatfield<br />

RD, Ralph SA, Christensen JH, Boerjan W (2004). Lign<strong>in</strong>s: natural polymers<br />

from oxidative coupl<strong>in</strong>g of 4-hydroxyphenylpropanoids. Phytochemistry<br />

Reviews, 3.


39<br />

1068<br />

1069<br />

1070<br />

1071<br />

1072<br />

1073<br />

1074<br />

1075<br />

1076<br />

1077<br />

1078<br />

1079<br />

1080<br />

1081<br />

1082<br />

1083<br />

1084<br />

1085<br />

1086<br />

1087<br />

1088<br />

1089<br />

1090<br />

1091<br />

1092<br />

1093<br />

1094<br />

1095<br />

1096<br />

1097<br />

1098<br />

1099<br />

1100<br />

1101<br />

1102<br />

1103<br />

1104<br />

1105<br />

1106<br />

1107<br />

1108<br />

1109<br />

1110<br />

1111<br />

1112<br />

1113<br />

1114<br />

1115<br />

1116<br />

Rastogi S, Dwivedi UN (2008). Manipulation of lign<strong>in</strong> <strong>in</strong> plants with special reference<br />

to O-methyltransferase. Plant Science, 174, 264-277.<br />

Richard JN, Cortufo MF, Philip I, Elizabeth GON, Josep GC (2001). Elevated CO 2 ,<br />

litter chemistry, <strong>and</strong> decomposition: a syn<strong>the</strong>sis. Oecologia, 127, 153-165.<br />

Robson AD, Hartley RD, Jarvis SC (1981). Effect of copper deficiency on phenolic<br />

<strong>and</strong> o<strong>the</strong>r constituents of wheat cell walls. New Phytologist, 89, 361-371.<br />

Rodrigues J, Graça J, Pereira H (2001). Influence of tree eccentric growth on<br />

syr<strong>in</strong>gyl/guaiacyl ratio <strong>in</strong> Eucalyptus globulus wood lign<strong>in</strong> assessed by<br />

analytical pyrolysis. Journal of Analytical <strong>and</strong> Applied Pyrolysis, 58, 481-489.<br />

Rogers LA, Campbel MM (2004). The genetic control of lign<strong>in</strong> deposition dur<strong>in</strong>g<br />

plant growth <strong>and</strong> development. New Phytologist, 164, 17-30.<br />

Rogers LA, Dubos C, Cullis IF, Surman C, Poole M, Willment J, Mansfield SD,<br />

Campbell MM (2005). Light, <strong>the</strong> circadian clock, <strong>and</strong> sugar perception <strong>in</strong> <strong>the</strong><br />

control of lign<strong>in</strong> biosyn<strong>the</strong>sis. Journal of Experimental Botany, 56, 1651-1663.<br />

Rozema J, van de Staaij J, Björn LO, Caldwell M (1997). UV-B as an environmental<br />

factor <strong>in</strong> plant life: stress <strong>and</strong> regulation. Trends <strong>in</strong> Ecology & Evolution, 12, 22-<br />

28.<br />

Ruelle J, Yoshida M, Clair B, Thibaut B (2007). Peculiar tension wood structure <strong>in</strong><br />

Laetia procera (Poepp.) Eichl. (Flacourtiaceae). Trees - Structure <strong>and</strong> Function,<br />

21, 345-355.<br />

Sasaki M, Yamamoto Y, Matsumoto H (1996). Lign<strong>in</strong> deposition <strong>in</strong>duced by<br />

alum<strong>in</strong>um <strong>in</strong> wheat (Triticum aestivum) roots. Physiologia Plantarum, 96, 193-<br />

198.<br />

Smith AH, Gill WM, P<strong>in</strong>kard EA, Mohammed CL (2007). Anatomical <strong>and</strong><br />

histochemical defence responses <strong>in</strong>duced <strong>in</strong> juvenile leaves of Eucalyptus<br />

globulus <strong>and</strong> Eucalyptus nitens by Mycosphaerella <strong>in</strong>fection. Forest Pathology,<br />

37, 361-373.<br />

Snowden KC, Gardner RC (1993). Five genes <strong>in</strong>duced by alum<strong>in</strong>um <strong>in</strong> wheat<br />

(Triticum aestivum L.) roots. Plant Physiology, 103, 855-861.<br />

Solecka D, Boudet A-M, Kacperska A (1999). Phenylpropanoid <strong>and</strong> anthocyan<strong>in</strong><br />

<strong>changes</strong> <strong>in</strong> low-temperature treated w<strong>in</strong>ter oilseed rape leaves. Plant Physiology<br />

<strong>and</strong> Biochemistry, 37, 491-496.<br />

Solecka D, Kacperska A (1995). Phenylalan<strong>in</strong>e ammonia-lyase activity <strong>in</strong> leaves of<br />

w<strong>in</strong>ter oilseed rape plants as affected by acclimation of plants to lowtemperature.<br />

Plant Physiology <strong>and</strong> Biochemistry, 33, 585-591.<br />

Soltani BM, Ehlt<strong>in</strong>g J, Hamberger B, Douglas CJ (2006). Multiple cis-regulatory<br />

elements regulate dist<strong>in</strong>ct <strong>and</strong> complex patterns of developmental <strong>and</strong> wound<strong>in</strong>duced<br />

expression of Arabidopsis thaliana 4CL gene family members. Planta,<br />

224, 1226-1238.<br />

Steponkus P (1984). Role of <strong>the</strong> plasma membrane <strong>in</strong> freez<strong>in</strong>g <strong>in</strong>jury <strong>and</strong> cold<br />

acclimation. Annual Review of Plant Physiology, 35, 543-584.<br />

Steponkus PL, Uemura M, Webb MS (1993). Membrane destabilization dur<strong>in</strong>g<br />

freeze-<strong>in</strong>duced dehydration. Current Topics Plant Physiology, 10, 37-47.<br />

Suzuki N, Mittler R (2006). Reactive oxygen species <strong>and</strong> temperature <strong>stresses</strong>: A<br />

delicate balance between signal<strong>in</strong>g <strong>and</strong> destruction. Physiologia Plantarum, 126,<br />

45-51.<br />

Syros TD, Yupsanis TA, Economou AS (2005). Expression of peroxidases dur<strong>in</strong>g<br />

seedl<strong>in</strong>g growth <strong>in</strong> Ebenus cretica L. as affected by light <strong>and</strong> temperature<br />

treatments. Plant Growth Regulation, 46, 143-151.


40<br />

1117<br />

1118<br />

1119<br />

1120<br />

1121<br />

1122<br />

1123<br />

1124<br />

1125<br />

1126<br />

1127<br />

1128<br />

1129<br />

1130<br />

1131<br />

1132<br />

1133<br />

1134<br />

1135<br />

1136<br />

1137<br />

1138<br />

1139<br />

1140<br />

1141<br />

1142<br />

1143<br />

1144<br />

1145<br />

1146<br />

1147<br />

1148<br />

1149<br />

1150<br />

1151<br />

1152<br />

1153<br />

1154<br />

1155<br />

1156<br />

1157<br />

1158<br />

1159<br />

1160<br />

1161<br />

1162<br />

1163<br />

1164<br />

1165<br />

1166<br />

Tahara K, Norisada M, Hogetsu T, Kojima K (2005). Alum<strong>in</strong>um tolerance <strong>and</strong><br />

alum<strong>in</strong>um-<strong>in</strong>duced deposition of callose <strong>and</strong> lign<strong>in</strong> <strong>in</strong> <strong>the</strong> root tips of Melaleuca<br />

<strong>and</strong> Eucalyptus species. Journal of Forest Research, 10, 325-333.<br />

Takahama U (1988). Hydrogen peroxide-dependent oxidation of flavonoids <strong>and</strong><br />

hydroxyc<strong>in</strong>namic acid derivatives <strong>in</strong> epidermal <strong>and</strong> guard cells of Tradescantia<br />

virg<strong>in</strong>iana L. Plant <strong>and</strong> Cell Physiology, 29, 475-481.<br />

Takahama U, Oniki T (1997). A peroxidase/phenolics/ascorbate system can scavenge<br />

hydrogen peroxide <strong>in</strong> plant cells. Physiologia Plantarum, 101, 845-852<br />

Taşgına E, Atıcıb Ö, Nalbantoğlua B, Popovac LP (2006). Effects of salicylic acid<br />

<strong>and</strong> cold treatments on prote<strong>in</strong> levels <strong>and</strong> on <strong>the</strong> activities of antioxidant<br />

enzymes <strong>in</strong> <strong>the</strong> apoplast of w<strong>in</strong>ter wheat leaves. Phytochemistry, 67, 710-715.<br />

Teixeira AF, Andrade ADB, Ferrarese-Filho O, Ferrarese MDL (2006). Role of<br />

calcium on phenolic compounds <strong>and</strong> enzymes related to lignification <strong>in</strong> soybean<br />

(Glyc<strong>in</strong>e max L.) root growth. Plant Growth Regulation, 49, 69-76.<br />

Thomashow MF (1999). Plant cold acclimation: freez<strong>in</strong>g tolerance genes <strong>and</strong><br />

regulatory mechanisms. Annual Review of Plant Biology, 50, 571-599.<br />

Tomas-Barberan FA, Gil MI, Castaner M, Artes F, Saltveit ME (1997). Effect of<br />

selected brown<strong>in</strong>g <strong>in</strong>hibitors on phenolic metabolism <strong>in</strong> stem tissue of harvested<br />

lettuce. Journal of Agricultural <strong>and</strong> Food Chemistry, 45, 583-589.<br />

van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerl<strong>and</strong><br />

PD, van Themaat EVL, Koornneef M, Aarts MGM (2006). Large expression<br />

differences <strong>in</strong> genes for iron <strong>and</strong> z<strong>in</strong>c homeostasis, stress response, <strong>and</strong> lign<strong>in</strong><br />

biosyn<strong>the</strong>sis dist<strong>in</strong>guish roots of Arabidopsis thaliana <strong>and</strong> <strong>the</strong> related metal<br />

hyperaccumulator Thlaspi caerulescens. Plant Physiology, 142, 1127-1147.<br />

V<strong>in</strong>cent D, Lapierre C, Pollet B, Cornic G, Negroni L, Zivy M (2005). Water deficits<br />

affect caffeate O-methyltransferase, lignification, <strong>and</strong> related enzymes <strong>in</strong> maize<br />

leaves. A proteomic <strong>in</strong>vestigation. Plant Physiology, 137, 949-960.<br />

Whetten R, Sederoff R (1995). Lign<strong>in</strong> biosyn<strong>the</strong>sis. Plant Cell, 7, 1001-1013.<br />

Wilson K, White DJB (1986). Reaction wood: its structure, properties <strong>and</strong> functions.<br />

In: Wilson K, <strong>and</strong> White DJB, eds., The anatomy of wood: its diversity <strong>and</strong><br />

variability, Stobart <strong>and</strong> Son Ltd, London, UK. pp 222–250.<br />

Yamasaki S, Noguchi N, Mimaki K (2007). Cont<strong>in</strong>uous UV-B irradiation <strong>in</strong>duces<br />

morphological <strong>changes</strong> <strong>and</strong> <strong>the</strong> accumulation of polyphenolic compounds on <strong>the</strong><br />

surface of cucumber cotyledons. Journal of Radiation Research, 48, 443-454.<br />

Yang L, Wang CC, Guo WD, Li XB, Lu M, Yu CL (2006). Differential expression of<br />

cell wall related genes <strong>in</strong> <strong>the</strong> elongation zone of rice roots under water deficit.<br />

Russian Journal of Plant Physiology, 53, 390-395.<br />

Yeh TF, Braun JL, Goldfarb B, Chang HM, Kadla JF (2006). Morphological <strong>and</strong><br />

chemical variations between juvenile wood, mature wood, <strong>and</strong> compression<br />

wood of loblolly p<strong>in</strong>e (P<strong>in</strong>us taeda L.). Holzforschung, 60, 1-8.<br />

Yeh TF, Goldfarb B, Chang HM, Peszlen I, Braun JL, Kadla JF (2005).<br />

Comparison of morphological <strong>and</strong> chemical properties between juvenile wood<br />

<strong>and</strong> compression wood of loblolly p<strong>in</strong>e. Holzforschung, 59, 669-674.<br />

Yoshida M, Ohta H, Yamamoto H, Okuyama T (2002). Tensile growth stress <strong>and</strong><br />

lign<strong>in</strong> distribution <strong>in</strong> <strong>the</strong> cell walls of yellow poplar, Liriodendron tulipifera<br />

L<strong>in</strong>n. Trees-Structure <strong>and</strong> Function, 16, 457-464.<br />

Yoshimura K, Masuda A, Kuwano M, Yokota A, Akashi K (2008). Programmed<br />

proteome response for drought avoidance/tolerance <strong>in</strong> <strong>the</strong> root of a C-3<br />

xerophyte (wild watermelon) under water deficits. Plant <strong>and</strong> Cell Physiology,<br />

49, 226-241.


41<br />

1167<br />

1168<br />

1169<br />

1170<br />

1171<br />

1172<br />

1173<br />

1174<br />

1175<br />

1176<br />

1177<br />

1178<br />

1179<br />

1180<br />

1181<br />

1182<br />

1183<br />

1184<br />

1185<br />

Yoshizawa N, Inami A, Miyake S, Ishiguri F, Yokota S (2000). Anatomy <strong>and</strong> lign<strong>in</strong><br />

distribution of reaction wood <strong>in</strong> two Magnolia species. Wood Science <strong>and</strong><br />

Technology, 34, 183-196.<br />

Zagosk<strong>in</strong>a N, Goncharuk E, Alyav<strong>in</strong>a A (2007). Effect of cadmium on <strong>the</strong> phenolic<br />

compounds formation <strong>in</strong> <strong>the</strong> callus cultures derived from various organs of <strong>the</strong><br />

tea plant. Russian Journal of Plant Physiology, 54, 237-243.<br />

Zagosk<strong>in</strong>a NV, Dubrav<strong>in</strong>a GA, Alyav<strong>in</strong>a AK, Goncharuk EA (2003). Effect of<br />

ultraviolet (UV-B) radiation on <strong>the</strong> formation <strong>and</strong> localization of phenolic<br />

compounds <strong>in</strong> tea plant callus cultures. Russian Journal of Plant Physiology, 50,<br />

270-275.<br />

Zhong R, Kays SJ, Schroeder BP, Ye Z-H (2002). Mutation of a chit<strong>in</strong>ase-like gene<br />

causes ectopic deposition of lign<strong>in</strong>, aberrant cell shapes, <strong>and</strong> overproduction of<br />

ethylene. Plant Cell, 14, 165-179.<br />

Z<strong>in</strong>ser C, Ernst D, S<strong>and</strong>ermann Jr H (1998). Induction of stilbene synthase <strong>and</strong><br />

c<strong>in</strong>namyl alcohol dehydrogenase mRNAs <strong>in</strong> Scots p<strong>in</strong>e (P<strong>in</strong>us sylvestris L.)<br />

seedl<strong>in</strong>gs. Planta, 204, 169-176.


42<br />

1186<br />

1187<br />

1188<br />

1189<br />

1190<br />

1191<br />

1192<br />

1193<br />

1194<br />

1195<br />

Figure 1. Biosyn<strong>the</strong>sis pathway of lign<strong>in</strong> <strong>in</strong> plants (adapted from Rastogi <strong>and</strong> Dwivedi,<br />

2008). PAL - phenylalan<strong>in</strong>e ammonia-lyase; C4H - c<strong>in</strong>namate 4-hydroxylase; C3H -<br />

c<strong>in</strong>namate 3-hydroxylase or p-coumaroyl shikimic acid/qu<strong>in</strong>ic acid 3-hydroxylase;<br />

OMT - O-methyltransferase; HCT - p-hydroxy c<strong>in</strong>namoyl-CoA: shikimate/qu<strong>in</strong>ate p-<br />

hydroxy c<strong>in</strong>namoyl transferase; CCoAOMT - caffeoyl coenzyme A O-<br />

methyltransferase; F5H - ferulate 5-hydroxylase; 4CL - 4-coumarate: coenzyme A<br />

ligase; CCR - c<strong>in</strong>namoyl coenzyme A reductase; Cald5H - coniferaldehyde 5-<br />

hydroxylase; AldOMT - 5-hydroxy coniferaldehyde O-methyltransferase; SAD -<br />

s<strong>in</strong>apyl alcohol dehydrogenase; CAD - c<strong>in</strong>namyl alcohol dehydrogenase.<br />

C<strong>in</strong>namate<br />

PAL<br />

Phenylalan<strong>in</strong>e<br />

C4H<br />

C3H (?) OMT F5H OMT<br />

4-Coumarate Caffeate Ferulate 5-Hydroxyferulate S<strong>in</strong>apate<br />

4CL<br />

4CL 4CL 4CL 4CL (?)<br />

CCoAOM<br />

CCoAOM<br />

HCT<br />

C3H<br />

HCT<br />

COMT F5H (?) COMT<br />

4-Coumaryl-CoA 4-Coumaryl Caffeoyl Caffeoyl-CoA Feruloyl-CoA 5-Hydroxyferuolyl-CoA S<strong>in</strong>apyl-CoA<br />

shikimic acid / shikimic acid /<br />

4-Coumaryl<br />

Caffeoyl<br />

CCR<br />

qu<strong>in</strong>ic acid<br />

qu<strong>in</strong>ic acid<br />

CCR CC CC CC<br />

(?)<br />

OMT F5H OMT<br />

4-Coumaraldehyde Caffeoyl aldehyde Coniferaldehyde 5-Hydroxyconiferaldehyde S<strong>in</strong>apaldehyde<br />

CAD/SAD<br />

CAD/SAD CAD/SAD CAD/SAD CAD/SAD<br />

(?) OMT<br />

F5H<br />

OMT<br />

Cald5h<br />

AldOM<br />

4-Coumaryl alcohol Caffeoyl alcohol Coniferyl alcohol 5-Hydroxyconiferyl S<strong>in</strong>apyl alcohol<br />

alcohol<br />

p-Hydroxypnehyl Guaiacyl Syr<strong>in</strong>gil<br />

(H unit) (G unit) (S unit)<br />

R1 = R2 = H p-coumaryl alcohol (p-hydroxy phenyl, H unit)<br />

R1 = H, R2 = OCH 3 coniferyl alcohol (guayacyl, G unit)<br />

R1 = R2 = OCH 3 s<strong>in</strong>apyl alcohol (syr<strong>in</strong>gyl, S unit)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!