03.05.2014 Views

Methane as a greenhouse gas and food web fuel in some boreal lakes

Methane as a greenhouse gas and food web fuel in some boreal lakes

Methane as a greenhouse gas and food web fuel in some boreal lakes

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Methane</strong> <strong>as</strong> a <strong>greenhouse</strong> g<strong>as</strong> <strong>and</strong><br />

<strong>food</strong> <strong>web</strong> <strong>fuel</strong> <strong>in</strong> <strong>some</strong> <strong>boreal</strong> <strong>lakes</strong><br />

Paula Kankaala<br />

University of E<strong>as</strong>tern F<strong>in</strong>l<strong>and</strong>, Joensuu<br />

campus, Box 111, FI-80101 Joensuu,<br />

F<strong>in</strong>l<strong>and</strong><br />

The results presented here are ma<strong>in</strong>ly<br />

from studies at Lammi Biological<br />

Station, University of Hels<strong>in</strong>ki, F<strong>in</strong>l<strong>and</strong>


Objectives of the studies<br />

• Several projects funded ma<strong>in</strong>ly by the<br />

Academy of F<strong>in</strong>l<strong>and</strong> (from 1991)<br />

– Carbon cycle <strong>in</strong> <strong>boreal</strong> <strong>lakes</strong>, impacts of climate<br />

change<br />

– Lakes <strong>as</strong> sources <strong>and</strong> s<strong>in</strong>ks of CO 2 <strong>and</strong> CH 4<br />

• Littoral <strong>and</strong> pelagic CH 4 fluxes<br />

• Methanotrophy<br />

• MOB <strong>in</strong> the diets of crustacean zooplankton of<br />

small stratified <strong>lakes</strong> (δ 13 C, δ 15 N, PFLA)


Littoral CH 4 emissions were studied <strong>in</strong><br />

the vegetated st<strong>and</strong>s of four <strong>lakes</strong><br />

Lake Area km 2 TotP µg L -1<br />

Al<strong>in</strong>en Rautjärvi 0.50 20<br />

Ekojärvi 0.74 22<br />

Pääjärvi 13.4 12<br />

Vesijärvi, Enonselkä 26 36<br />

… <strong>and</strong> <strong>in</strong> experimental st<strong>and</strong>s of<br />

Equisetum fluviatile


• CH 4 transport via<br />

aerechymal tissues<br />

• Closed-chamber<br />

technique<br />

• Board-walks <strong>in</strong> the littoral<br />

zone


…or sampl<strong>in</strong>g <strong>in</strong> a boat


Pelagic area:<br />

Float<strong>in</strong>g chambers <strong>and</strong>/or me<strong>as</strong>urements of CH 4<br />

concentration <strong>in</strong> the uppermost 30-cm water layer


G<strong>as</strong> samples were analysed with g<strong>as</strong> chromatograph<br />

equipped with flame ionization detector (FID)


Vegetated littoral are<strong>as</strong><br />

100<br />

80<br />

mg CH4 m -2 d -1<br />

60<br />

40<br />

20<br />

0<br />

13/05/2002 12/06/2002 12/07/2002 11/08/2002 10/09/2002 10/10/2002 09/11/2002<br />

Se<strong>as</strong>onal dynamics of CH 4 efflux (mg m -2 d -1 )<br />

from a Schoenoplectus lacustris st<strong>and</strong>, Al<strong>in</strong>en<br />

Rautjärvi


1500<br />

1000<br />

1997<br />

1500<br />

1000<br />

1998<br />

1500<br />

1000<br />

1999<br />

CH4 emission<br />

biom<strong>as</strong>s<br />

500<br />

500<br />

500<br />

0<br />

1-May 1-Jul 1-Sep 1-Nov<br />

0<br />

1-May 1-Jul 1-Sep 1-Nov<br />

0<br />

1-May 1-Jul 1-Sep 1-Nov<br />

Lake Vesijärvi: Efflux of CH 4 (mg m -2 d -1 ) <strong>and</strong> biom<strong>as</strong>s<br />

of green shoots (g DW m -2 ) <strong>in</strong> a dense P. australis<br />

st<strong>and</strong> .


CH 4 effluxes from vegetated littoral st<strong>and</strong>s, mol<br />

CH 4 m -2 (ice-free period) -1<br />

<strong>and</strong> P. australis<br />

Species<br />

Equisetum<br />

fluviatile<br />

Equisetum<br />

fluviatile<br />

Lake/exp<br />

Sediment<br />

type<br />

LOI<br />

Max<br />

biom<strong>as</strong>s Total efflux Reference<br />

g DW m -2 mol CH 4<br />

m -2<br />

exp.<br />

mesocosm s<strong>and</strong> 1 ± 0.2 290 ± 70 0.16 Kankaala & Bergström, 2004<br />

exp.<br />

mesocosm silty gyttja 8 ± 0.3 1190 ± 120 2.29 Kankaala & Bergström, 2004<br />

Equisetum<br />

fluviatile Pääjärvi s<strong>and</strong>y gyttja 8 700 ± 300 2.72 Hyvönen et al. 1998<br />

E. fluv. & P.<br />

australis Ekojärvi silty gyttja 12 ± 4 80 ± 40 0.78 Kankaala et al. 2005<br />

Schoenoplectus<br />

lacustris<br />

Al<strong>in</strong>en<br />

Rautjärvi<br />

gyttja s<strong>and</strong> <strong>and</strong><br />

Phragmites<br />

australis<br />

P. australis <strong>in</strong>ner<br />

zone<br />

P. australis, outer<br />

zone<br />

Vesijärvi<br />

Scirpus peat 40 ± 35 140 ± 60 0.18 Kankaala et al. 2005<br />

Al<strong>in</strong>en<br />

Rautjärvi gyttja s<strong>and</strong> 2 ± 1 70 ± 10 0.22 Kankaala et al. 2005<br />

Phragmites<br />

Vesijärvi peat 85 ± 3 800 ± 100 3.62 Kankaala et al., 2004<br />

Phragmites<br />

peat, 55 ± 5 480 ± 440 7.67 Kankaala et al., 2004<br />

detritus from Lemna trisulca


CH 4 emissions of vegetated<br />

littoral are<strong>as</strong><br />

• Se<strong>as</strong>onal variation correlated with<br />

temperature or plant biom<strong>as</strong>s<br />

(substrate limited are<strong>as</strong>)<br />

• Between-st<strong>and</strong> variation correlated with<br />

productivity of CH 4 <strong>in</strong> the sediment but<br />

not with the sediment organic matter<br />

content


Pelagic zone<br />

In many small <strong>boreal</strong> <strong>lakes</strong> the water column is steeply stratified by temperature <strong>and</strong> oxygen<br />

Incomplete spr<strong>in</strong>g<br />

mix<strong>in</strong>g<br />

0.0<br />

Temperature o C<br />

0.0<br />

O 2 mg L -1<br />

-0.5<br />

-0.5<br />

-1.0<br />

-1.0<br />

Depth m<br />

-1.5<br />

-2.0<br />

Depth m<br />

-1.5<br />

-2.0<br />

-2.5<br />

-3.0<br />

-3.5<br />

Mekkojärvi<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

150 180 210 240 270 300<br />

150 180 210 240 270 300<br />

May Jun Jul Aug Sep Oct May Jun Jul Aug Sep Oct<br />

-2.5<br />

-3.0<br />

-3.5<br />

0<br />

4<br />

6<br />

8<br />

10


The highest CH 4 concentrations are me<strong>as</strong>ured <strong>in</strong> late<br />

summer <strong>in</strong> the hypolimnion<br />

Depth m<br />

-0.5<br />

-1.0<br />

-1.5<br />

Mekkojärvi<br />

The maximum CH 4<br />

concentrations<br />

me<strong>as</strong>ured <strong>in</strong> the study<br />

<strong>lakes</strong> varied between<br />

170 <strong>and</strong> 1900 µmol L -1<br />

-2.0<br />

-2.5<br />

150 180 210 240 270 300<br />

May Jun Jul Aug Sep Oct<br />

20<br />

40<br />

60<br />

80<br />

100<br />

120<br />

140<br />

160


6.0<br />

mmol CH 4 m -2 d -1<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

Chamber<br />

BLD method<br />

0.0<br />

01 April<br />

2002<br />

01 May<br />

2002<br />

01 June<br />

2002<br />

01 July<br />

2002<br />

01 August<br />

2002<br />

31 August<br />

2002<br />

01 October<br />

2002<br />

31 October<br />

2002<br />

The highest CH 4 emissions to the atmosphere<br />

occur dur<strong>in</strong>g the autumnal turnover period<br />

(Valkea Kot<strong>in</strong>en)


CH 4 efflux from the pelagic area of the<br />

<strong>lakes</strong><br />

CH 4 efflux mol m -2 (ice-free period) -1<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0.0<br />

MJ N AM TL HJ VK OnJ OrJ PJ<br />

Littoral effluxes 0.2 – 7.7 mol CH 4 m -2<br />

(ice-free period) -1<br />

0.70<br />

0.60<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

R² = 0.758<br />

R² = 0.891<br />

0.001 0.100 10.000<br />

Lake area km 2<br />

No anoxia <strong>in</strong><br />

the hypolimnion


Methanotrophy<br />

Littoral area<br />

• Me<strong>as</strong>urements <strong>in</strong> experimental<br />

st<strong>and</strong>s of Equisetum fluviatile<br />


Mekkojärvi 2005<br />

CH 4 efflux or MOB act. mg C -2 d -1<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

01.05.05<br />

01.06.05<br />

MOB activity<br />

Efflux to<br />

atmosphere<br />

02.07.05<br />

02.08.05<br />

02.09.05<br />

03.10.05<br />

03.11.05<br />

mg C m -2 d -1<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

nd<br />

PP<br />

MOB<br />

HBP<br />

GSB<br />

Spr<strong>in</strong>g Summer Autumn<br />

Net production by phytoplankton (PP),<br />

heterotrophic bacteria (HBP), methane<br />

oxidiz<strong>in</strong>g bacteria (MOB) <strong>and</strong> green sulphur<br />

bacteria (GBB)<br />

nd


Autumn mix<strong>in</strong>g of the water column<br />

200<br />

-40<br />

150<br />

-50<br />

CH 4 µmol L -1<br />

100<br />

13 C-CH4<br />

-60<br />

-70<br />

50<br />

-80<br />

0<br />

10-Sep 20-Sep 30-Sep 10-Oct 20-Oct 30-Oct<br />

-90<br />

10-Sep 20-Sep 30-Sep 10-Oct 20-Oct 30-Oct<br />

Type I MOB formed 32 ± 23 % of the<br />

bacterial biom<strong>as</strong>s <strong>in</strong> autumn<br />

0-0.6 m 0.6-1.2 m<br />

1.2-1.8 m 1.8-2.4 m<br />

2.4-3.0 m


Mekkojärvi study <strong>in</strong> 2005, the diet of<br />

Daphnia longisp<strong>in</strong>a<br />

80 %<br />

Algae MOB HB Chlorobium<br />

60 %<br />

40 %<br />

20 %<br />

0 %<br />

Spr<strong>in</strong>g Summer Autumn 1 Autumn 2<br />

Additions of NaH 13 CO 3 , correspond<strong>in</strong>g ca. 2‰ of<br />

the amount of total DIC <strong>in</strong> the epilimnion<br />

Proportions of algae, MOB, HB <strong>and</strong> GSB <strong>in</strong><br />

the diet of Daphnia, IsoSource mix<strong>in</strong>g<br />

model results


Algae <strong>and</strong> different bacterial groups <strong>in</strong> the<br />

diets ot crustacean zooplankton <strong>in</strong> five<br />

<strong>lakes</strong><br />

• Lakes with area rang<strong>in</strong>g from 0.003 to 0.145 km 2<br />

• Water colour rang<strong>in</strong>g from ca. 30 to 400 mg Pt L -1<br />

• Sampl<strong>in</strong>g <strong>in</strong> May <strong>and</strong> October<br />

• Analyses of δ 13 C <strong>and</strong> 15 N values of cladocerans <strong>and</strong><br />

copepods <strong>and</strong> their potential <strong>food</strong> sources<br />

• Two-isotope IsoSource modell<strong>in</strong>g of the proportions (%)<br />

of algae, heterotrophic bacteria (HB), green suphur<br />

bacteria (GSB), detritus <strong>and</strong> methane oxidiz<strong>in</strong>g bacteria<br />

(MOB) <strong>in</strong> the diets of cladocerans <strong>and</strong> copepods


Two-isotope IsoSource model results of the proportions (%) of<br />

algae, heterotrophic bacteria (HB), green suphur bacteria<br />

(GSB), detritus <strong>and</strong> methane oxidiz<strong>in</strong>g bacteria (MOB) <strong>in</strong> the<br />

diets of cladocerans <strong>and</strong> copepods <strong>in</strong> the five <strong>lakes</strong><br />

Cladocera Lake<br />

May<br />

Algae<br />

HB<br />

+GSB+detr MOB<br />

Valkea<br />

Mustajärvi 0-76 23-82 0-17<br />

Valkea<br />

Kot<strong>in</strong>en 34-86 0-58 7-14<br />

Al<strong>in</strong>en<br />

Mustajärvi 14-39 60-80 1-6<br />

Nimetön 8-44 39-68 10-24<br />

Mekkojärvi 42-69 19-39 12-19<br />

Copepoda Lake<br />

May<br />

Algae<br />

HB<br />

+GSB+detr MOB<br />

Valkea<br />

Mustajärvi 0-85 15-75 0-28<br />

Valkea<br />

Kot<strong>in</strong>en 23-28 52-57 17-20<br />

Al<strong>in</strong>en<br />

Mustajärvi 45-66 9-31 24-25<br />

Nimetön 0-17 53-70 29-35<br />

Mekkojärvi 92-98 2-6 0-2<br />

Oct<br />

Valkea<br />

Mustajärvi 0-21 63-83 15-17<br />

Valkea<br />

Kot<strong>in</strong>en 38-47 24-35 27-29<br />

Al<strong>in</strong>en<br />

Mustajärvi 17-26 40-47 34-36<br />

Oct<br />

Valkea<br />

Mustajärvi 4-67 18-71 15-28<br />

Valkea<br />

Kot<strong>in</strong>en 24-51 41-68 8-12<br />

Al<strong>in</strong>en<br />

Mustajärvi 61-69 16-23 15-16<br />

Nimetön<br />

no data<br />

Nimetön 0-13 50-64 35-40<br />

Mekkojärvi 20-65 0-32 35-50<br />

Mekkojärvi 0-29 33-53 37-50


Ma<strong>in</strong> results <strong>and</strong> conclusions<br />

• Areal CH 4 effluxes from the vegetated littoral zone are<br />

larger than from the pelagic area of the <strong>boreal</strong> <strong>lakes</strong><br />

- The highest CH 4 effluxes are rele<strong>as</strong>ed from emergent<br />

vegetation st<strong>and</strong>s of eutrophied <strong>lakes</strong><br />

- Pelagic CH 4 effluxes are <strong>in</strong>versely related to the size of the<br />

lake<br />

• In the pelagic area 80-90% of the CH 4 loss is due to<br />

oxidation <strong>in</strong> the water column<br />

• In small, stratified, <strong>boreal</strong> <strong>lakes</strong> (area


Aknowledgements<br />

University of Hels<strong>in</strong>ki:<br />

Jussi Huotari, Ti<strong>in</strong>a Käki, Anne Ojala, Jessica<br />

L<strong>in</strong>naluoma, Ti<strong>in</strong>a Tulonen, El<strong>in</strong>a Peltomaa, Lotta<br />

Leht<strong>in</strong>en, Lauri Arvola<br />

University of Jyväskylä:<br />

Roger Jones, Sami Taipale, Hannu Nykänen, Marja<br />

Tiirola<br />

F<strong>in</strong>nish Environment Institute:<br />

Ir<strong>in</strong>a Bergström, Pirkko Kortela<strong>in</strong>en, Miitta<br />

Rantakari


This presentation is b<strong>as</strong>ed on the follow<strong>in</strong>g papers <strong>and</strong> on <strong>some</strong> unpublished results<br />

Bergström, I., Mäkelä, S., Kankaala, P. & Kortela<strong>in</strong>en, P. 2007. <strong>Methane</strong> efflux from littoral vegetation st<strong>and</strong>s of southern <strong>boreal</strong> <strong>lakes</strong>: an upscaled, regional estimate. -<br />

Atm. Env. 41: 339-351.<br />

Hyvönen, T., Ojala, A., Kankaala, P. & Martika<strong>in</strong>en, P 1998. <strong>Methane</strong> rele<strong>as</strong>e from st<strong>and</strong>s of water horsetail (Equisetum fluviatile) <strong>in</strong> a <strong>boreal</strong> lake. - Freshwater Biology<br />

40:275-284.<br />

Kankaala, P. & Bergström, I. 2004. Emission <strong>and</strong> oxidation of methane <strong>in</strong> Equisetum fluviatile st<strong>and</strong>s grow<strong>in</strong>g on organic <strong>and</strong> s<strong>and</strong> bottoms. - Biogeochemistry 67: 21-37.<br />

Kankaala, P. Eller, G. & Jones, R.I. 2007. Could bacterivorous zooplankton affect lake pelagic methanotrophic activity? – Fundam. Appl. Limnol. 169: 203-209.<br />

Kankaala, P., Huotari, J., Peltomaa, E. Saloranta T. & Ojala, A. 2006. Methanotrophic activity <strong>in</strong> relation to methane efflux <strong>and</strong> total heterotrophic bacterial production <strong>in</strong><br />

a stratified, humic, <strong>boreal</strong> lake. - Limnol. Oceanogr. 51: 1195-1204.<br />

Kankaala, P., Käki, T. & Ojala, A. 2003. Quality of detritus impacts on spatial variation of methane emissions from littoral sediment of a <strong>boreal</strong> lake. - Arch. Hydrobiol.<br />

157: 47-66.<br />

Kankaala, P., Käki, T., Ojala, A., Pajunen, H. & Arvola, L. 2005. <strong>Methane</strong> efflux <strong>in</strong> relation to plant biom<strong>as</strong>s <strong>and</strong> sediment characteristics <strong>in</strong> st<strong>and</strong>s of three common<br />

emergent macrophytes <strong>in</strong> <strong>boreal</strong> mesoeutrophic <strong>lakes</strong>. - Global Change Biology 11: 145-153.<br />

Kankaala, P., Mäkelä,S., Bergström, I., Huitu, E., Käki, T. Ojala, A., Rantakari, M. Kortela<strong>in</strong>en, P & Arvola, L. 2003. Midsummer spatial variation <strong>in</strong> methane efflux from<br />

st<strong>and</strong>s of littoral vegetation <strong>in</strong> a <strong>boreal</strong> meso-eutrophic lake. - Freshwater Biology 48: 1617-1629..<br />

Kankaala, P., Ojala A. & Käki, T. 2004. Temporal <strong>and</strong> spatial variation <strong>in</strong> methane emissions from a flooded transgression shore of a <strong>boreal</strong> lake. - Biogeochemistry 68:<br />

297-311.<br />

Kankaala, P., Taipale, S. Li, L. & Jones, R.I. 2010. Diets of crustacean zooplankton, <strong>in</strong>ferred from stable carbon <strong>and</strong> nitrogen isotope analyses, <strong>in</strong> <strong>lakes</strong> with vary<strong>in</strong>g<br />

allochthonous dissolved organic carbon content. – Aquat. Ecol. 44: 781-795.<br />

Kankaala, P., Taipale, S., Grey, J., Sonn<strong>in</strong>en, E., Arvola, L. & Jones, R.I. 2006. Experimental δ 13 C evidence for a contribution of methane to pelagic <strong>food</strong> <strong>web</strong>s <strong>in</strong> <strong>lakes</strong>. -<br />

Limnol. Oceanogr. 51: 2821-2827.<br />

Kankaala, P., Taipale, S., Nykänen, H. & Jones, R.I. 2007. Oxidation, efflux <strong>and</strong> isotopic fractionation of methane dur<strong>in</strong>g autumnal turnover <strong>in</strong> a polyhumic, <strong>boreal</strong> lake. -<br />

J. Geophys. Res. 112, G02003, doi: 10.1029/2006JG000336.<br />

Käki, T. Ojala, A. & Kankaala, P. 2001. Diel variation <strong>in</strong> methane emissions from st<strong>and</strong>s of Phragmites australis (CAV.) TRIN. EX STEUD. <strong>and</strong> Typha latifolia L. <strong>in</strong> a <strong>boreal</strong><br />

lake.- Aquatic Botany 71:259-271.<br />

López Bellido, J., Tulonen, T, Kankaala, P. & Ojala, A. 2009. CO 2 <strong>and</strong> CH 4 fluxes dur<strong>in</strong>g spr<strong>in</strong>g <strong>and</strong> autumn mix<strong>in</strong>g periods <strong>in</strong> a <strong>boreal</strong> lake (Pääjärvi, southern F<strong>in</strong>l<strong>and</strong>). – J.<br />

Geophys. Res. 114, DOI: 10.1029/2009JG000923.<br />

Ojala, A., López Bellido, J., Tulonen, T, Kankaala, P. & Huotari, J. 2011. Carbon g<strong>as</strong> fluxes from a brown-water <strong>and</strong> a clear-water lake <strong>in</strong> the Boreal Zone dur<strong>in</strong>g a summer<br />

with extreme ra<strong>in</strong> events. – Limnol. Oceanogr. 56: 61-76.<br />

Taipale, S., Kankaala, P. & Jones, R.I. 2007. Contributions of different organic carbon sources to Daphnia <strong>in</strong> the pelagic <strong>food</strong> <strong>web</strong> of a small polyhumic lake: results from<br />

mesocosm DI 13 C-additions. - Ecosystems 10: 757-772.<br />

Taipale, S., Kankaala, P., Hahn, M.W., Jones, R.I. & Tiirola, M. 2011. <strong>Methane</strong>-oxidiz<strong>in</strong>g <strong>and</strong> photoautotrophic bacteria are major producers <strong>in</strong> a humic lake with a large<br />

anoxic hypolimnion. - Aquat. Microb. Ecol. DOI:10.3354/ame01512.<br />

Taipale, S., Kankaala, P., Hämälä<strong>in</strong>en, H., & Jones, R.I. 2009. Se<strong>as</strong>onal shifts <strong>in</strong> diet of lake zooplankton revealed by phospholipid fatty acid analysis. - Freshwater Biology<br />

54: 90-104.<br />

Taipale, S., Kankaala, P., Tiirola, M. & Jones, R.I. 2008. Whole-lake dissolved <strong>in</strong>organic 13 C additions reveal se<strong>as</strong>onal shifts <strong>in</strong> zooplankton diet. – Ecology 89: 463-474.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!