23.05.2014 Views

Springer Lecture Notes in Physics 716

Springer Lecture Notes in Physics 716

Springer Lecture Notes in Physics 716

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

332 U. C. Täuber<br />

s<strong>in</strong>ce [e ai ,a † j ]=eai δ ij . For the desired statistical averages of observables that<br />

must be expressible <strong>in</strong> terms of the occupation numbers {n i }, we then obta<strong>in</strong><br />

〈F (t)〉 = ∑ {n i}<br />

F ({n i }) P ({n i }; t) =〈P| F ({a † i a i}) |Φ(t)〉 . (7.162)<br />

Let first us explore the consequences of probability conservation, i.e., 1 =<br />

〈P|Φ(t)〉 = 〈P|e −Ht |Φ(0)〉. This requires 〈P|H = 0; upon commut<strong>in</strong>g e ∑ i ai<br />

with H, effectively the creation operators become shifted a † i → 1+a† i , whence<br />

this condition is fulfilled provided H i (a † i → 1,a i) = 0, which is <strong>in</strong>deed satisfied<br />

by our explicit expressions (7.160) and (7.161). By this prescription, we may<br />

also <strong>in</strong> averages replace a † i a i → a i , i.e., the particle density becomes a(t) =<br />

〈a i 〉, and the two-po<strong>in</strong>t operator a † i a i a † j a j → a i δ ij + a i a j .<br />

In the bosonic operator representation above, we have assumed that there<br />

exist no restrictions on the particle occupation numbers n i on each site. If,<br />

however, there is a maximum n i ≤ 2s+1, one may <strong>in</strong>stead employ a representation<br />

<strong>in</strong> terms of sp<strong>in</strong> s operators. For example, particle exclusion systems<br />

with n i = 0 or 1 can thus be mapped onto non-Hermitean sp<strong>in</strong> 1/2 “quantum”<br />

systems. Specifically <strong>in</strong> one dimension, such representations <strong>in</strong> terms of <strong>in</strong>tegrable<br />

sp<strong>in</strong> cha<strong>in</strong>s have proved a fruitful tool; for overviews, see Refs. [51–54].<br />

An alternative approach uses the bosonic theory, but encodes the site occupation<br />

restrictions through appropriate exponentials <strong>in</strong> the number operators<br />

e −a† i ai [55].<br />

We may now follow an established route <strong>in</strong> quantum many-particle theory<br />

[56] and proceed towards a field theory representation through construct<strong>in</strong>g<br />

the path <strong>in</strong>tegral equivalent to the “Schröd<strong>in</strong>ger” dynamics (7.159) based<br />

on coherent states, which are right eigenstates of the annihilation operator,<br />

a i |φ i 〉 = φ i |φ i 〉, with complex eigenvalues φ i . Explicitly, one f<strong>in</strong>ds<br />

(<br />

|φ i 〉 =exp − 1 )<br />

2 |φ i| 2 + φ i a † i |0〉 , (7.163)<br />

satisfy<strong>in</strong>g the overlap and (over-)completeness relations<br />

〈φ j |φ i 〉 =exp<br />

(− 1 2 |φ i| 2 − 1 ) ∫ ∏<br />

2 |φ j| 2 + φ ∗ d 2 φ i<br />

j φ i ,<br />

π |{φ i}〉 〈{φ i }| =1.<br />

i<br />

(7.164)<br />

Upon splitt<strong>in</strong>g the temporal evolution (7.159) <strong>in</strong>to <strong>in</strong>f<strong>in</strong>itesimal steps, and<br />

<strong>in</strong>sert<strong>in</strong>g Eq. (7.164) at each time step, standard procedures (elaborated <strong>in</strong><br />

detail <strong>in</strong> Ref. [12]) yield eventually<br />

∫ ∏<br />

〈F (t)〉 ∝<br />

i<br />

D[φ i ] D[φ ∗ i ] F ({φ i })e −A[φ∗ i ,φi] , (7.165)<br />

with the action

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!