23.05.2014 Views

Two-pulse spin echo in two-level systems inside ... - physics.sk

Two-pulse spin echo in two-level systems inside ... - physics.sk

Two-pulse spin echo in two-level systems inside ... - physics.sk

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

68 L. L. Chotorlishvili et al.<br />

α 1 = cos [Ω 1 (∆ω)t 1 /2] + i cos [θ 1 (∆ω)] s<strong>in</strong> [Ω 1 (∆ω)t 1 /2] ,<br />

β 1 = s<strong>in</strong> [θ 1 (∆ω)] s<strong>in</strong> [Ω 1 (∆ω)t 1 /2] ,<br />

β 2 = s<strong>in</strong> [θ 2 (∆ω)] s<strong>in</strong> [Ω 2 (∆ω)t 2 /2] ,<br />

[<br />

Ω 1,2 (∆ω) = γnη 2 2 (∆ω)(h (1,2) ) 2 + ∆ω 2] 1/2<br />

,<br />

tn[θ 1,2 (∆ω)] = γ n h (1,2) η(∆ω)/∆ω .<br />

Here h (1,2) is the radio-frequency field amplitude, t 1 and t 2 denote the duration of radiofrequency<br />

field.<br />

When we have wide angles of rotation (Ω 1,2 t 1,2 >> 2π) for the same radio-frequency<br />

<strong>pulse</strong>s, the <strong>in</strong>tegration by ∆ω removes fast oscillat<strong>in</strong>g factors s<strong>in</strong> Ωt and cos Ωt down to zero.<br />

Therefore, the formula (1) takes the simplest form:<br />

|∆M(ω, t)| = 3m δω/2<br />

∫<br />

0<br />

16 ∣ d(∆ω)(ω nd − ω nw ) −1/2 (∆ω d − ∆ω) −1 (∆ω − ∆ω w ) −1/2 ·<br />

−δω/2<br />

(2)<br />

· ∆ωη 4 (∆ω)(γ n h) 3[ ∆ω 2 + (γ n η(∆ω)h) 2] 2 exp [−i∆ω(t − 2τ12 )]<br />

∣ .<br />

The peculiarity of TLS is the dispersion of splitt<strong>in</strong>g energy E requir<strong>in</strong>g the obta<strong>in</strong>ed expression<br />

to be averaged by distribution function. The further simplification of (2) also depends on<br />

E. When E/¯h ∼ ω n where ω n is the carrier frequency of the receiver, δω >> γ n hη(∆ω) is<br />

valid δω is the TLS l<strong>in</strong>e shape width caused by Klauder-Anderson mechanism [17], equals to the<br />

passband width of the receiver). In this case the expression<br />

∆ω exp [−i∆ω(t − 2τ 1,2 )] ÷ [ ∆ω 2 + (γ n hη(∆ω)) 2] 2<br />

is the fast-oscillat<strong>in</strong>g factor under the <strong>in</strong>tegral (2). Therefore, for ∆ω = 0 other factors can<br />

be removed from under the sign of the <strong>in</strong>tegral and thereafter the limits of <strong>in</strong>tegration tend to<br />

<strong>in</strong>f<strong>in</strong>ity. As a result, tak<strong>in</strong>g <strong>in</strong>to account the averag<strong>in</strong>g by the TLS distribution function, we have<br />

¯p<br />

E∫<br />

max<br />

∫ E<br />

E=0 ∆ 0=0<br />

EdEd∆ 0<br />

∆ 0<br />

√<br />

E2 − ∆ 2 0<br />

,<br />

here ¯p is the TLS state density and ∆ 0 is the TLS tunnel<strong>in</strong>g parameter. For the resonant TLS, the<br />

energy of which is with<strong>in</strong> the <strong>in</strong>terval ¯hω n − ¯hδω < E < ¯hω n + ¯hδω, we have<br />

|M(ω, t)| ∼ ¯p<br />

¯hω n+¯hδω ∫<br />

∫ E<br />

¯hω n−¯hδω ∆ 0=0<br />

√ ∣∣∣∣<br />

E/¯h − ω n<br />

E/¯h − ω<br />

∣ |t − 2τ 12| exp<br />

[− (|E/¯h − ω n|) 1/2 ]<br />

EdEd∆ 0<br />

√<br />

|t − 2τ 12 | ∆ 0 E2 − ∆ 2 0<br />

(3)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!