26.05.2014 Views

Photosynthesis and Photorespiration in Whole ... - Plant Physiology

Photosynthesis and Photorespiration in Whole ... - Plant Physiology

Photosynthesis and Photorespiration in Whole ... - Plant Physiology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

738<br />

GERBAUD AND ANDRE <strong>Plant</strong> Physiol. Vol. 64, 1979<br />

-c 75<br />

A a E 1/ A A 4<br />

z<br />

0<br />

P 50<br />

_<br />

IC<br />

A<br />

.-I<br />

0<br />

w<br />

0<br />

w 25<br />

a-<br />

/~~~~<br />

/~~~~~~~~~<br />

n<br />

0 200 400 600 800 12000<br />

CO2 (p.l-1)<br />

FIG. 3. Gas exchange of a plant of wheat as a function of CO2 concentration. Data were comparable by correct<strong>in</strong>g them for the size of the plant,<br />

suppos<strong>in</strong>g a uniform growth throughout the experiment. Abbreviations as <strong>in</strong> Figures I <strong>and</strong> 2.<br />

(Fig. 2). 02 concentration was always normal. Diurnal transpiration<br />

rates were nearly constant, <strong>in</strong>dicat<strong>in</strong>g that stomata can be<br />

considered open throughout the light periods.<br />

As expected, photosynthetic rates follow the concentration of<br />

CO2 <strong>and</strong> respiration varies as Pc but to a smaller extent: it<br />

dim<strong>in</strong>ishes only 20%o when P is halved.<br />

<strong>Photorespiration</strong> varies oppositely to photosynthesis, so that<br />

their sum P, + U depends only on the age <strong>and</strong> size of the plant.<br />

At high concentrations of CO2, where it is admitted that photorespiration<br />

is <strong>in</strong>hibited, there rema<strong>in</strong>s some 02 uptake, about 10%<br />

of Pc; we suppose this is due to the cont<strong>in</strong>uation of night respiration<br />

<strong>in</strong> the light, which appears also <strong>in</strong> maize (1).<br />

Pc + U corresponds to the utilization of reduc<strong>in</strong>g power <strong>in</strong> the<br />

leaves of the plant; its production is measured by the 02 evolution<br />

E. We found E always slightly superior to Pc + U show<strong>in</strong>g that<br />

some reduc<strong>in</strong>g power is also consumed <strong>in</strong> the roots (nitrate reduction).<br />

If we abstract the <strong>in</strong>fluence of plant growth, E appears to be<br />

<strong>in</strong>dependent of CO2 (Fig. 3) <strong>and</strong> P, <strong>and</strong> U follow symmetrical<br />

curves. The mirror effect between Pc <strong>and</strong> U was observed by<br />

Radmer <strong>and</strong> Kok (19) with algae dur<strong>in</strong>g the <strong>in</strong>duction phase of<br />

photosynthesis at constant CO2 level <strong>and</strong>, with a lag time, after<br />

CO2 exhaustion by photosynthesis (20). The ma<strong>in</strong> result of the<br />

present work is the constancy of the gross evolution E under<br />

various conditions of CO2, <strong>in</strong> spite of wide variations of apparent<br />

photosynthesis <strong>and</strong> <strong>in</strong> long steady-state experiments, which shows<br />

that it is not a transient effect but a permanent mechanism. The<br />

permanency of this balance suggests that the electron transport<br />

cha<strong>in</strong> turns over at a constant rate, controlled by the light <strong>in</strong>tensity<br />

<strong>and</strong> <strong>in</strong>dependent of the nature of the f<strong>in</strong>al electron acceptor.<br />

When CO2 concentrations are low the excess of reduc<strong>in</strong>g power<br />

must be trapped by 02 reduction. If the mechanism is blocked for<br />

example by the simultaneous absence of 02 <strong>and</strong> CO2, <strong>in</strong>hibition<br />

or damage occurs (9) because unwanted compounds have to be<br />

reduced <strong>in</strong>stead of 02 or CO2.<br />

Acknowledgments-We are grateful to Mr. A. Daguenet <strong>and</strong> Mrs. J. Massim<strong>in</strong>o for their very<br />

valuable contribution to the experiments.<br />

LITERATURE CITED<br />

1. ANDRE M, A GERBAUD 1979 Consommation d'oxygene pendant la photosynthese chez Zea<br />

mays. CR Acad Sci Paris. In press<br />

2. ANDRE M, D MASSIMINO, A. DAGUENET 1978 Daily patterns under the life cycle of a maize<br />

1 I I I I I I I AI<br />

crop. l. <strong>Photosynthesis</strong>, transpiration, respiration. Physiol <strong>Plant</strong> 43: 397-403<br />

3. ANDRE M, D MASSIMINO, A DAGUENET 1978 Daily patterns under the life cycle of a maize<br />

crop. II. M<strong>in</strong>eral nutrition, root respiration, root excretion. Physiol <strong>Plant</strong> 44: 197-204<br />

4. ANDRE M, C RiCHAUD 1971 Decarboxylation <strong>in</strong> light <strong>in</strong> higher plants studied us<strong>in</strong>g carbon 13.<br />

Second Int Cong <strong>Photosynthesis</strong>, Stresa<br />

5. ANDREWS TJ, GH LORIMER, NE TOLBERT 1971 Incorporation of molecular oxygen <strong>in</strong>to glyc<strong>in</strong>e<br />

<strong>and</strong> ser<strong>in</strong>e dur<strong>in</strong>g photorespiration <strong>in</strong> sp<strong>in</strong>ach leaves. Biochemistry 10: 4777-4782<br />

6. BERRY JA, CB OSMOND, GH LORIMER 1978 Fixation of 02 dur<strong>in</strong>g photorespiration. <strong>Plant</strong><br />

Physiol 62: 954-967<br />

7. BJORKMAN 0, E GAUHL, WM HIESEY, F NICHOISON, NA NoBs 1969 Growth of Mimulus,<br />

Marchantia <strong>and</strong> Zea under different oxygen <strong>and</strong> carbon dioxide levels. Carnegie Inst Wash<br />

Yearbook 66: 228-232<br />

8. CHOLLET R, WL OGREN, 1975 Regulation of <strong>Photorespiration</strong> <strong>in</strong> C3 <strong>and</strong> C4 species. Bot Rev<br />

41: 137-179<br />

9. CORNIc G 1976 Effet exerce sur l'activiti photosynthetique de S<strong>in</strong>apisalba L. par une <strong>in</strong>hibition<br />

temporaire de la photorespiration se deroulant dans un air sans CO2. CR Acad Sci Paris t<br />

282 Ser D: 1955-1958<br />

10. DIMON B 1977 Contribution a letude du metabolisme de l'oxygene au cours de la photorespiration.<br />

These d'Etat. Univ Montpellier (France)<br />

11. DIMON B, R GEisTER 1976 Incorporation d'oxygene dans le glyxolate excrete a la lumiere par<br />

Euglena gracilis. CR Acad Sci Paris t 282 Ser D: 507-510<br />

12. JACKSON WA, RJ VoLK 1970 <strong>Photorespiration</strong>. Annu Rev <strong>Plant</strong> Physiol 39: 385-432<br />

13. KUMARASHINGHE KS, AJ KEYS, CP WHIMrINGHAM 1977 The flux of carbon through the<br />

glycolate pathway dur<strong>in</strong>g photosynthesis by wheat leaves. J Exp Bot 28: 1247-1257<br />

14. MEHLER AH, AH BROWN 1952 Studies on reactions of illum<strong>in</strong>ated chloroplasts. III. Simultaneous<br />

production <strong>and</strong> consumption of oxygen studied with oxygen isotopes. Arch Biochem<br />

Biophys 28: 365-367<br />

15. MULCHI CI, RJ VOLK, WA JACKSON 1971 Oxygen exchange of illum<strong>in</strong>ated leaves at carbon<br />

dioxide compensation <strong>in</strong> MD Hatch, CB Osmond, RO Slatyer, eds, "<strong>Photosynthesis</strong> <strong>and</strong><br />

<strong>Photorespiration</strong>." Wiley-Interscience, New York, pp 35-49<br />

16. OZBUN IL, Ri Vom}, WA JACKSON 1964 Effect of light <strong>and</strong> darkness on gaseous exchanges of<br />

bean leaves. <strong>Plant</strong> Physiol 39: 523-527<br />

17. PARKINSON KJ, HL PENMAN, EB TREGUNNA 1974 Growth of plants <strong>in</strong> different oxygen<br />

concentrations. J Exp Bot 25: 132-145<br />

18. QUEBEDEAUX B, RWF HARDY 1973 Oxygen as a new factor controll<strong>in</strong>g reproductive growth.<br />

Nature 243: 477-479<br />

19. RADMER RJ, B KOK 1976 Photoreduction of 02 primes <strong>and</strong> replaces CO2 assimilation. <strong>Plant</strong><br />

Physiol 58: 336-340<br />

20. RADMER R, B Koc, 0 OLLINGER 1978 K<strong>in</strong>etics <strong>and</strong> apparent K. of oxygen cycle under<br />

conditions of limit<strong>in</strong>g carbon dioxide fixation. <strong>Plant</strong> Physiol 61: 915-917<br />

21. SAMISH Y, D KOLLER 1968 <strong>Photorespiration</strong> <strong>in</strong> green plants estimated by use of isotopic C02-<br />

<strong>Plant</strong> Physiol 43: 1129-1132<br />

22. SAMISH YB 1971 The rate of photorespiration as measured by means of oxygen uptake <strong>and</strong> its<br />

respiratory quotient. <strong>Plant</strong> Physiol 43: 345-348<br />

23. VoLK RJ, WA JACKSON 1964 Mass spectrometric measurement of photosynthesis <strong>and</strong> respiration<br />

<strong>in</strong> leaves. Crop Sci 4: 45-48<br />

24. VoLK RJ, WA JACKSON 1972 Photorespiratory phenomena <strong>in</strong> maize. <strong>Plant</strong> Physiol 49: 218-<br />

223<br />

25. ZELITCH I 1971 <strong>Photosynthesis</strong>, <strong>Photorespiration</strong> <strong>and</strong> <strong>Plant</strong> Productivity. Academic Press, New<br />

York, pp 140-169<br />

Downloaded from www.plantphysiol.org on January 11, 2014 - Published by www.plant.org<br />

Copyright © 1979 American Society of <strong>Plant</strong> Biologists. All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!