06.06.2014 Views

Quantile Cointegration in the Autoregressive Distributed-Lag ...

Quantile Cointegration in the Autoregressive Distributed-Lag ...

Quantile Cointegration in the Autoregressive Distributed-Lag ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(i) Let D G := diag([ √ nι ′ 1+qk , nι′ k ]′ ) and G := [G 1 , . . . , G n ] ′ . Then,<br />

(ii) Fur<strong>the</strong>rmore,<br />

⎡<br />

⎤<br />

n<br />

n∑<br />

−1 n −1 ¯W′ t n −3/2 X ′ t<br />

D −1<br />

G G′ GD −1<br />

G = ⎢ n<br />

⎣<br />

−1 ¯Wt n −1 ¯Wt ¯W′ t n −3/2 ¯Wt X ′ t<br />

⎥<br />

⎦<br />

t=1<br />

n −3/2 X t n −3/2 X t ¯Wt n −2 X t X ′ t<br />

⎡<br />

1 0 ′ ∫ 1 ¯B 0 W (r) ′ dr<br />

⇒ ⎢ 0 E [ ] ¯Wt ¯W′<br />

⎣<br />

t 0 ′<br />

∫ 1 ¯B<br />

∫ 1<br />

0 W (r)dr 0 ¯B 0 W (r) ¯B W (r) ′ dr<br />

⎤<br />

⎥<br />

⎦ ;<br />

D −1<br />

G G′ Ψ τ (U) =<br />

n∑<br />

⎢<br />

⎣<br />

t=1<br />

⎡<br />

n −1/2 ψ τ [U t (τ)]<br />

n −1/2 ψ τ [U t (τ)] ¯W t<br />

n −1 ψ τ [U t (τ)]X t<br />

⎤ ⎡<br />

⎥<br />

⎦ ⇒ ⎢<br />

⎣<br />

⎤<br />

B ψ (1, τ)<br />

B ψ·W (1, τ) ⎥<br />

∫<br />

⎦ ;<br />

1 ¯B 0 W (r)dB ψ (r, τ)<br />

(iii) D −1<br />

H G′ K(τ) = O P (1), where D H := diag([nι ′ 1+qk , n3/2 ι ′ k ]′ );<br />

(iv) M := n −2 X ′ [I − ˜W(˜W ′ ˜W)<br />

−1 ˜W′ ]X ⇒ ∫ 1<br />

0 ˜B W (r)˜B W (r) ′ dr; and<br />

(v) n −1 X ′ [I − ˜W(˜W ′ ˜W)<br />

−1 ˜W′ ]Ψ τ (U) ⇒ ∫ 1<br />

0 ˜B W (r)dB ψ (r, τ). □<br />

Proof of Corollary A1: (i) Lemmas A1(i), A2(i) and A2(ii) imply that<br />

{<br />

n −1<br />

n∑<br />

t=1<br />

¯W t , n −1<br />

n∑<br />

t=1<br />

¯W t ¯W′ t , n −3/2<br />

n∑<br />

t=1<br />

¯W t X ′ t<br />

}<br />

→ P<br />

{<br />

0, E[ ¯Wt ¯W′ t ], 0 } .<br />

Next, Lemma A3 implies that<br />

} {∫ 1<br />

{n −3/2 X t , n −2 X ′ tX t ⇒<br />

0<br />

∫ 1<br />

}<br />

¯B W (r)dr, ¯B W (r) ¯B W (r)dr .<br />

0<br />

Comb<strong>in</strong><strong>in</strong>g <strong>the</strong>se two results we obta<strong>in</strong> <strong>the</strong> desired result <strong>in</strong> Corollary A1(i).<br />

(ii) Assumption 1(vi) implies that<br />

{<br />

n −1/2<br />

n∑<br />

ψ τ [U t (τ)], n −1/2<br />

t=1<br />

}<br />

n∑<br />

ψ τ [U t (τ)] ¯W t ⇒ {B ψ (1, τ), B ψ·W (1, τ)} .<br />

t=1<br />

Moreover, Lemma A3 implies that n −1 ∑ n<br />

1 ψ τ [U t (τ)]X t ⇒ ∫ 1<br />

0 ¯B W (r)dB ψ (r, τ). By comb<strong>in</strong><strong>in</strong>g <strong>the</strong>se<br />

results, we show that <strong>the</strong> asymptotic limit of D −1<br />

G G′ Ψ τ (U) is equal to Corollary A1(ii).<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!