02.07.2014 Views

Starch Gel Electrophoresis Techniques

Starch Gel Electrophoresis Techniques

Starch Gel Electrophoresis Techniques

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Starch</strong> <strong>Gel</strong> <strong>Electrophoresis</strong><br />

<strong>Techniques</strong><br />

Carol Betzel, RGT<br />

<strong>Electrophoresis</strong> Lab Supervisor<br />

BioDiagnostics, Inc.<br />

River Falls, WI


Reference Manual<br />

<strong>Techniques</strong> and Scoring Procedures for<br />

<strong>Starch</strong> <strong>Gel</strong> <strong>Electrophoresis</strong> of Enzymes<br />

from Maize (Zea mays L.)<br />

C. W. Stuber<br />

J. F. Wendel<br />

M. M. Goodman<br />

J. S. C. Smith<br />

Technical Bulletin 286<br />

March 1988<br />

North Carolina Agricultural Research Service<br />

North Carolina State University<br />

Raleigh, North Carolina


What is <strong>Starch</strong> <strong>Gel</strong> Isozyme<br />

<strong>Electrophoresis</strong>?<br />

Isozyme=Protein<br />

Proteins are charged molecules<br />

Isozyme <strong>Electrophoresis</strong> is a technique of<br />

separating multiple forms of an enzyme<br />

(isozymes) from each other<br />

A starch gel is the matrix in which the<br />

molecules are separated when an electrical<br />

field is applied


What are Isozymes?<br />

<br />

Isozymes are multiple molecular forms of<br />

specific enzymes<br />

<br />

A single gene determines each molecular<br />

form of an isozyme<br />

<br />

The occurrence of different forms of an<br />

isozyme is governed by simple Mendelian<br />

Genetics


Reference Manual Contents<br />

<br />

<br />

<br />

<br />

<br />

Equipment<br />

<br />

Sample prep, gel trays, slicing apparatus<br />

Procedures<br />

<br />

<br />

<br />

Sample and gel prep<br />

<strong>Gel</strong> and staining solution recipes<br />

Enzyme systems<br />

Scoring Procedures; common nomenclature<br />

References<br />

List of supplies


<strong>Gel</strong> Mold


Maize Chromosome Map<br />

Each gene had been mapped to a locus.


<strong>Gel</strong> Making<br />

Determine gel system needed<br />

Single or multiple gels: # of loci needed<br />

Need consistent starch product<br />

Need consistent taring and gel making<br />

procedures


“B” <strong>Gel</strong> Ingredients<br />

L-histidine pH 5.7


Trouble Shooting for <strong>Gel</strong><br />

Quality<br />

Water quality<br />

pH<br />

<strong>Starch</strong> source (hydrolyzed starch)<br />

<strong>Starch</strong> and sucrose amounts<br />

Proper gel preparation procedures


<strong>Gel</strong> Mold


<strong>Gel</strong> Mold with Open “Legs”


<strong>Gel</strong> Mold—Taping


<strong>Gel</strong> Mold—Taped


Pouring the <strong>Gel</strong>


Sample Preparation<br />

Coleoptile<br />

Leaf<br />

Brace root<br />

Pollen<br />

(Seed used in IEF)


Harvesting Coleoptile Tissue<br />

REPRESENTATIVE SAMPLE IS CRITICAL!<br />

DON’T SKIP THE SMALL COLEOPTILES!


Sample Preparation<br />

Use control with a known banding<br />

pattern<br />

Use female and male controls for<br />

hybrids—not needed if previously tested<br />

and banding patterns are recorded in a<br />

database


Extraction Buffer<br />

Releases proteins from tissue<br />

Homogenizes the tissue sample


Add to<br />

each<br />

well<br />

Extraction Buffer


Use to<br />

crush<br />

seedlings<br />

Crusher


Releases<br />

proteins<br />

from<br />

tissue<br />

Crushing Coleoptiles


Paper Wick


Loading <strong>Gel</strong>s<br />

Sample absorbed onto paper wick is<br />

inserted into gel<br />

Important to keep lanes in correct order<br />

when loading<br />

Documentation of loaded samples is<br />

critical


Samples From One Seed Lot


Remove<br />

tape<br />

from gel<br />

mold leg<br />

Removing Tape from <strong>Gel</strong> Mold


Cut off<br />

meniscus<br />

Leveling <strong>Gel</strong> Top


Cut slit<br />

to insert<br />

wick<br />

Loading <strong>Gel</strong>


Inset<br />

wick—<br />

section 1<br />

Loading <strong>Gel</strong>


Inset<br />

wick—<br />

section<br />

2<br />

Loading <strong>Gel</strong>


<strong>Gel</strong> loading<br />

completed;<br />

insert<br />

marker dye<br />

to measure<br />

migration<br />

distance<br />

Loaded <strong>Gel</strong>


Running the <strong>Gel</strong><br />

Electrical power source<br />

Electrodes, + and – charge<br />

Choose constant:<br />

<br />

<br />

<br />

Milliamps (Current)<br />

Watts (Power) or<br />

Volts (Voltage)


Ohm’s Law<br />

<br />

<br />

I=E/R<br />

<br />

Electric current is directly proportional to voltage<br />

and inversely proportional to resistance<br />

Electrical Parameters<br />

<br />

<br />

<br />

<br />

I = Currant (amps)<br />

E = Voltage (volts)<br />

R = Resistance (ohms)<br />

P = Power (watts)


Fill<br />

buffer<br />

trays<br />

Running the <strong>Gel</strong>


Place<br />

gel mold<br />

in buffer<br />

trays<br />

Running the <strong>Gel</strong>


Running the <strong>Gel</strong><br />

Connect<br />

to<br />

electrical<br />

leads;<br />

Positive<br />

+ and<br />

Negative<br />

- charge


Set upper<br />

limit for<br />

desired<br />

constant<br />

and run gel<br />

for several<br />

hours to<br />

separate<br />

bands<br />

Running the <strong>Gel</strong>


Before <strong>Electrophoresis</strong><br />

Proteins are polarized molecules<br />

Origin


After <strong>Electrophoresis</strong><br />

origin<br />

<strong>Gel</strong> acts as a sieve; molecules move through and<br />

separate in electric field


Running the <strong>Gel</strong><br />

<br />

Speed of migration determined by<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Temperature<br />

Density of gel<br />

Setting of mAmps, Watts, or Volts<br />

Type of buffer<br />

pH of gel<br />

Concentration of buffer<br />

Molecular size and shape of proteins<br />

Net charges


Running the <strong>Gel</strong><br />

Need to keep the gel cold or:<br />

<br />

<br />

<br />

<br />

Proteins will degrade<br />

Bands will appear distorted<br />

Bands will diffuse<br />

Loss of enzymatic activity


Slicing the <strong>Gel</strong><br />

<br />

<br />

Slice gel into several separate slices<br />

Each slice is stained with a different protein<br />

specific stain. Examples:<br />

ACP Acid phosphatase<br />

ADH Alcohol dehydrogenase<br />

GLU β-glucosidase<br />

IDH Isocitrate dehydrogenase<br />

MDH Malate dehydrogenase<br />

PGD 6-phosogluconate dehydrogenase<br />

PGM Phosphoglucomutase


Slicing the <strong>Gel</strong><br />

<br />

Additional stains.<br />

ACO Aconitase<br />

AMP Arginine aminopeptidase<br />

CAT Catalase<br />

DIA Diaphorase<br />

ENP Endopeptidase<br />

EST Esterase<br />

GOT Glutamate-oxaloacetate transaminase<br />

PHI Phosphohexose isomerase<br />

SAD Shikimic acid dehydrogenase


Cut notch in<br />

corner for<br />

orientation<br />

Removing <strong>Gel</strong> from Mold


Removing gel from mold


Removing <strong>Gel</strong> from Mold


Draw<br />

wire<br />

through<br />

gel<br />

Slicing the <strong>Gel</strong>


Remove<br />

plastic<br />

strip on<br />

each<br />

side of<br />

gel<br />

Slicing the <strong>Gel</strong>


Draw<br />

wire<br />

through<br />

gel<br />

again;<br />

repeat<br />

process<br />

to get<br />

several<br />

layers<br />

Slicing the <strong>Gel</strong>


Transfering <strong>Gel</strong> Slice<br />

Lay piece<br />

of filter<br />

paper on<br />

gel slice<br />

and lift


Place gel<br />

slice in<br />

staining<br />

tray<br />

Transfering <strong>Gel</strong> Slice


Staining <strong>Gel</strong>s<br />

Know your chemical MSDS for safety<br />

Proper chemical and concentrations<br />

preparation<br />

Incubation times and conditions<br />

Slice sequences and thickness


Staining the <strong>Gel</strong><br />

Reveals zones of enzymatic activity as bands.<br />

Bands observed on a gel after staining represents<br />

multiple forms of an enzyme.


Stained <strong>Gel</strong> Slice<br />

ACP<br />

Acid phosphatase


Stained <strong>Gel</strong> Slice<br />

MDH<br />

Malate dehydrogenase


Seven<br />

stained<br />

gel slices<br />

from one<br />

gel; with<br />

seven<br />

different<br />

enzyme<br />

specific<br />

stains<br />

Stained <strong>Gel</strong> Slices


Why Corn?<br />

<br />

<br />

<br />

<br />

Highly polymorphic (more than one form or<br />

banding pattern at a locus)<br />

Suitable for high throughput<br />

Sample preparation fairly simple<br />

Data very useful for:<br />

<br />

<br />

<br />

Hybrid production: % selfs, off-types, variants<br />

Inbred production: % off-types, variants,<br />

segregation<br />

Breeder’s seed: homozygous or segregating ears


Sweet Corn is Good to Eat!<br />

And also can be<br />

tested on a<br />

starch gel—so<br />

can popcorn!<br />

But can’t test candy corn ☹


Other Crops<br />

<br />

Canola<br />

PHI<br />

ACO<br />

<br />

Sunflowers<br />

PHI PGD PGM


Other Crops<br />

<br />

Sorghum<br />

PHI<br />

CAT<br />

<br />

Soybeans<br />

DIA


PROS<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Quick turn around time for results<br />

High throughput<br />

Gives strong data genotypically of corn, etc<br />

Isozyme <strong>Electrophoresis</strong> results cannot be masked by<br />

environmental effects<br />

<strong>Starch</strong> matrix is suitable for isozymes to travel<br />

through and can get more than one slice from a gel<br />

Non-toxic<br />

Fairly inexpensive equipment<br />

Powerful ID: may be able to identify seed mixes or<br />

incorrect labeled samples if suspect variety previously<br />

tested


CONS<br />

<br />

<br />

<br />

<br />

<br />

<br />

What may be an offtype on the gel may or may not<br />

be expressed phenotypically<br />

Must be live tissue to extract isozymes<br />

Not all tissues of corn band out the same; and some<br />

enzymes are not expressed in leaf and brace root<br />

tissue<br />

Not suitable for scanning or long term storing gels<br />

<strong>Starch</strong> and chemical supply/demand issues<br />

Limited number of loci tested; may not be able to<br />

detect selfing in some hybrids


Field vs Lab test<br />

Variant or offtype may be an<br />

insignificant agronomic characteristic<br />

Environmental factors can affect plant<br />

appearance<br />

Generally a correlation between field<br />

growouts and electrophoresis data


Applications<br />

Know seed quality before conditioning<br />

and delivering seed to customer<br />

<br />

Less than 2 week, vs. grow outs<br />

Improve inbred uniformity<br />

Verify varieties<br />

Can test brace roots from field samples<br />

to help identify problems


Applications<br />

Breeder’s seed<br />

<br />

Eliminate segregating lines<br />

<br />

If 2 loci are segregating, could develop 4 new<br />

homozygous lines:<br />

ACP1: 2/2,2/4,4/4 MDH2: 3/3,3/6,6/6<br />

<br />

<br />

<br />

<br />

Type A: ACP1=2/2; MDH2=3/3<br />

Type B: ACP1=2/2; MDH2=6/6<br />

Type C: ACP1=4/4; MDH2=3/3<br />

Type D: ACP1=4/4; MDH2=6/6


Questions?<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!