12.07.2014 Views

Schnyder woods for higher genus triangulated surfaces with ...

Schnyder woods for higher genus triangulated surfaces with ...

Schnyder woods for higher genus triangulated surfaces with ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Luca Castelli Aleardi, Eric Fusy and Thomas Lewiner 14<br />

w<br />

S in<br />

S in<br />

S in<br />

w<br />

w w a<br />

F 2<br />

F 2<br />

w a<br />

S out S out S out<br />

u v<br />

S out v 0 0 u v 0<br />

u<br />

u a<br />

v 1<br />

v 1<br />

S in v 1<br />

S in<br />

S out<br />

S in<br />

S out<br />

Figure 12: This pictures illustrate how the double orientation of special edges can contribute to the additional (trivial) faces to maps T 0<br />

(or T 1 ): in this pictures the double orientation of (u, w) adds a face F 2 to the map T 1 . Depending on its coloration, (u, w) can (or not) be<br />

included on the boundary of F 2<br />

[19] X. He, M.-Y. Kao and H.-I. Lu. Linear-time succint encodings<br />

of planar graphs via canonical orderings. Journal<br />

on Discrete Mathematics, 12:317–325, 1999.<br />

[20] G. Kant. Drawing planar graphs using the canonical<br />

ordering. Algorithmica, 16(1):4–32, 1996.<br />

[21] K. Keeler and J. Westbrook. Short encondings of planar<br />

graph and maps. Discrete and Applied Mathematics,<br />

58:239–252, 1995.<br />

[22] M. Kutz. Computing shortest non-trivial cycles on<br />

orientable <strong>surfaces</strong> of bounded <strong>genus</strong> in almost linear<br />

time. In SoCG, pages 430–438, 2006.<br />

[23] F. Lazarus, M. Pocchiola, G. Vegter and A. Verroust.<br />

Computing a canonical polygonal schema of an orientable<br />

<strong>triangulated</strong> surface. In SoCG, pages 80–89, 2001.<br />

[24] T. Lewiner, H. Lopes and G. Tavares. Optimal discrete<br />

Morse functions <strong>for</strong> 2-manifolds. 26(3):221–233, 2003.<br />

[25] T. Lewiner, H. Lopes, J. Rossignac and A. W. Vieira.<br />

Efficient edgebreaker <strong>for</strong> <strong>surfaces</strong> of arbitrary topology.<br />

In Sibgrapi, pages 218–225, 2004.<br />

[26] H. Lopes, J. Rossignac, A. Safonova, A. Szymczak<br />

and G. Tavares. Edgebreaker: a simple implementation<br />

<strong>for</strong> <strong>surfaces</strong> <strong>with</strong> handles. Computers & Graphics,<br />

27(4):553–567, 2003.<br />

[27] B. Mohar and C. Thomassen. Graphs on Surfaces.<br />

Johns Hopkins, 2001.<br />

[28] P. O. de Mendez. Orientations bipolaires. PhD thesis,<br />

Paris, 1994.<br />

[29] D. Poulalhon and G. Schaeffer. Optimal coding and<br />

sampling of triangulations. Algorithmica, 46:505–527,<br />

2006.<br />

[30] J. Rossignac. Edgebreaker: Connectivity compression<br />

<strong>for</strong> triangle meshes. Transactions on Visualization and<br />

Computer Graphics, 5:47–61, 1999.<br />

[31] C. P. Rourke and B. J. Sanderson. Introduction to<br />

piecewise-linear topology. New York, 1972.<br />

[32] W. <strong>Schnyder</strong>. Planar graphs and poset dimension.<br />

Order, pages 323–343, 1989.<br />

[33] W. <strong>Schnyder</strong>. Embedding planar graphs on the grid. In<br />

SODA, pages 138–148, 1990.<br />

[34] G. Turan. On the succint representation of graphs.<br />

Discrete Applied Mathematics, 8:289–294, 1984.<br />

[35] W. Tutte. A census of planar maps. Canadian Journal<br />

of Mathematics, 15:249–271, 1963.<br />

[36] G. Vegter and C.-K. Yap. Computational complexity of<br />

combinatorial <strong>surfaces</strong>. In SoCG, pages 102–111, 1990.<br />

[37] É. C. de Verdière and F. Lazarus. Optimal system of<br />

loops on an orientable surface. In FOCS, pages 627–636,<br />

2002.<br />

Preprint MAT. 18/08, communicated on September 1 st , 2008 to the Department of Mathematics, Pontifícia Universidade Católica — Rio de Janeiro, Brazil.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!