15.07.2014 Views

MULTIVARIATE POLYNOMIALS IN SAGE

MULTIVARIATE POLYNOMIALS IN SAGE

MULTIVARIATE POLYNOMIALS IN SAGE

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

MULTIVARIABLE <strong>POLYNOMIALS</strong> <strong>IN</strong> <strong>SAGE</strong> 15<br />

# we look for the right coefficient<br />

for (key , coeff ) in res :<br />

if ([ key [i] for i in xrange (n)] == [n-i for i in xrange<br />

(1 ,n +1) ]):<br />

return coeff<br />

hal-00824143, version 1 - 21 May 2013<br />

return 0<br />

One can also compute the product and directly read the result:<br />

sage : A = AbstractPolynomialRing (QQ)<br />

sage : m = A. monomial _ basis ()<br />

sage : Schub = A. schubert _ basis _on_ vectors ()<br />

sage : Schub ( (3* m [1] + 2*m[0 ,1] + m [0 ,0 ,1]) ^4 * Schub [1 ,0 ,1 ,0])<br />

8*Y(1 , 1, 4, 0) + 23* Y(1 , 2, 3, 0) + 24* Y(1 , 3, 2, 0) + 39* Y(1 ,<br />

4, 1, 0) + 15* Y(1 , 5, 0, 0) + Y(1 , 0, 5, 0) + 48* Y(2 , 1, 3,<br />

0) + 101* Y(2 , 2, 2, 0) + 117* Y(2 , 3, 1, 0) + 84* Y(2 , 4, 0, 0)<br />

+ 12* Y(2 , 0, 4, 0) + 173* Y(3 , 1, 2, 0) + 78* Y(3 , 2, 1, 0) +<br />

147* Y(3 , 3, 0, 0) + 53* Y(3 , 0, 3, 0) + 283* Y(4 , 1, 1, 0) +<br />

171* Y(4 , 2, 0, 0) + 96* Y(4 , 0, 2, 0) + 93* Y(5 , 1, 0, 0) +<br />

176* Y(5 , 0, 1, 0) + 80* Y(6 , 0, 0, 0)<br />

sage : proj _ deg ( Permutation ([2 ,1 ,4 ,3]) )<br />

78<br />

We can use our function to compute the degree for all permutations of size 4:<br />

sage : degrees = {}<br />

sage : for perm in Permutations (4) :<br />

....: degrees [ perm ] = proj _ deg ( perm )<br />

....:<br />

sage : degrees<br />

{[2 , 1, 4, 3]: 78 , [1 , 3, 4, 2]: 48 , [3 , 2, 4, 1]: 3, [3 , 1, 2,<br />

4]: 48 , [4 , 2, 1, 3]: 3, [1 , 4, 2, 3]: 46 , [3 , 2, 1, 4]: 16 ,<br />

[4 , 1, 3, 2]: 3, [2 , 3, 4, 1]: 6, [3 , 4, 2, 1]: 1, [1 , 2, 3,<br />

4]: 720 , [1 , 3, 2, 4]: 280 , [2 , 4, 3, 1]: 3, [2 , 3, 1, 4]:<br />

46 , [3 , 4, 1, 2]: 2, [4 , 2, 3, 1]: 1, [1 , 4, 3, 2]: 16 , [4 ,<br />

1, 2, 3]: 6, [2 , 4, 1, 3]: 12 , [4 , 3, 1, 2]: 1, [4 , 3, 2, 1]:<br />

1, [3 , 1, 4, 2]: 14 , [2 , 1, 3, 4]: 220 , [1 , 2, 4, 3]: 220}<br />

4.2. Determinants of Schur functions. Grassmannian Schubert polynomials are<br />

the Schubert polynomials indexed by vectors v such that v 1 ≤ v 2 ≤ . . . ≤ v n . They<br />

are symmetric functions in x 1 , . . . , x n . In a single set of variables (i.e., specializing y to<br />

0), Grassmannian Schubert polynomials are equal to Schur functions. More precisely,<br />

the transition matrix between double Grassmannian Schubert polynomials and Schur<br />

functions is unitriangular.<br />

sage : A = AbstractPolynomialRing (QQ)<br />

sage : Schub = A. schubert _ basis _on_ vectors ()<br />

sage : pol = Schub [1 ,2]

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!