06.08.2014 Views

Landau (Fokker-Planck) kinetic equation

Landau (Fokker-Planck) kinetic equation

Landau (Fokker-Planck) kinetic equation

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 1<br />

Kinetic <strong>equation</strong> for plasmas<br />

The exact (microscopic) distribution function F(t,x,v) satisfies<br />

∂F<br />

∂t + v · ∂F<br />

∂x + F micro<br />

m · ∂F<br />

∂v = 0 (1)<br />

which is a manifestation of Liouville theorem. For N particles with initial<br />

conditions x i (0) and v i (0), the exact solution is<br />

F(t,x,v) =<br />

N∑<br />

δ[x − x i (t)]δ[v − v i (t)]. (2)<br />

i=1<br />

Finding F is equivalent to finding all trajectories of N particles, which is practically<br />

impossible.<br />

Problem 2-1 (10 pts). Prove that (2) is the solution of (4).<br />

Therefore, we want to play with a statistical (macroscopic) distribution function<br />

f which is smooth (mist) in contrast to a spiky (rain) microscopic distribution<br />

function F. This smooth function can be obtained by taking an ensemble average:<br />

f = 〈F〉 ens<br />

, and the governing <strong>equation</strong> for f is obtained from (1):<br />

∂f<br />

∂t + v · ∂f 〈<br />

∂x + Fmicro<br />

m · ∂F 〉<br />

= 0. (3)<br />

∂v<br />

ens<br />

By writing F micro = ∑ j F a←j + F ext = 〈F〉 ens<br />

+ ˜F = F + ˜F and F = f + ˜F,<br />

〈<br />

∂f<br />

∂t + v · ∂f<br />

∂x + F m · ∂f ˜F<br />

∂v = − m · ∂ ˜F<br />

〉<br />

, (4)<br />

∂v<br />

ens<br />

where the F term explains the response of a particle to a mean field and ˜F<br />

explains the effect of occasional collision events due to close approach. Basically<br />

the ˜F term is called a collision operator:<br />

〈 ∑ ˜F a←j<br />

C(f a , f b ) = −<br />

· ∂ ˜F<br />

〉<br />

a<br />

m a ∂v<br />

j∈b<br />

If one solves Eq. (1) for the fluctuation ˜F (the Fourier transform method),<br />

one can derive Balescu-Lenard operator. However, we start from the intuitive<br />

Boltzmann operator (binary collision is dominant)<br />

∫ ∫<br />

C(f a , f b )(v a ) = dv b dΣ|v a − v b | [f a (v a ′ )f b(v b ′ ) − f a(v a )f b (v b )] (5)<br />

and derive its approximate version for a Coulomb interaction (small angle scattering<br />

is dominant, plasma parameter (4πnλ 3 D )−1 n<br />

=<br />

1/2<br />

≪ 1). The<br />

T 3/2<br />

ens<br />

e3<br />

4πɛ 3/2<br />

0


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 2<br />

Boltzmann operator satisfies: (i) f is always nonnegative (ii) the operator conserves<br />

particle number, momentum, and energy (iii) ∫ dvf lnf is always decreasing<br />

(non-Maxwellian) or constant (Maxwellian for equilibrium). To summarize,<br />

the state of an ionized gas for plasma species a is described by a distribution<br />

function f a and its evolution is governed by the (approximate) Boltzmann <strong>equation</strong><br />

or <strong>Landau</strong>-<strong>Fokker</strong>-<strong>Planck</strong> <strong>equation</strong><br />

∂f a<br />

∂t + v · ∂f a<br />

∂x + F a<br />

m a<br />

· ∂f a<br />

∂v = ∑ b<br />

C(f a , f b ),<br />

where a and b stand for particle species, e.g., ions (i) and electrons (e).<br />

Rutherford scattering<br />

The scattering of a particle a by a target particle b with a Coulomb potential<br />

α<br />

r<br />

is given by (this is a good exercise to refresh your memory of sophomore<br />

physics)<br />

sin θ 2 = 1<br />

√<br />

1 + (ρ/ρ0 ) , (6)<br />

2<br />

where<br />

and<br />

ρ 0 =<br />

|α|<br />

m ab u2, (7)<br />

m ab =<br />

m am b<br />

,<br />

m a + m b<br />

(8)<br />

u = v a − v b . (9)<br />

Here ρ is the impact parameter, and θ is the scattering angle.<br />

Problem 2-2 (10 pts). Show from energy and momentum conservation that<br />

|u ′ | = |u| where u ′ = v a ′ − v b ′ is the relative velocity after the collision. <br />

In the target particle’s rest frame, the scattered velocity is<br />

u ′ = u(ˆxsin θ cosφ + ŷ sin θ sin φ + ẑ cosθ), (10)<br />

or<br />

u ′ = u + ∆u ‖ + ∆u ⊥ , (11)<br />

∆u ‖ = u(cos θ − 1) = uẑ(cosθ − 1), (12)<br />

∆u ⊥ = u(ˆxsin θ cosφ + ŷ sinθ sinφ) (13)<br />

where ‖ and ⊥ are parallel and perpendicular to u (the relative velocity before<br />

the collision). The differential cross section for a Coulomb interaction is<br />

dΣ<br />

dΩ = d(πρ2 )<br />

2π sinθdθ = −<br />

ρ<br />

sinθ<br />

dρ<br />

dθ = − ρ2 0<br />

4 sin 4 θ 2<br />

ρ 2 0<br />

= −<br />

(1 − cosθ) 2 . (14)


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 3<br />

It follows from the momentum conservation<br />

0 = m a ∆v a + m b ∆v b (15)<br />

that<br />

and<br />

∆v b = − m a<br />

m b<br />

∆v a (16)<br />

∆u = ∆v a − ∆v b = (1 + m a<br />

m b<br />

)∆v a = m a<br />

m ab<br />

∆v a = − m b<br />

m ab<br />

∆v b (17)<br />

Collision operator for Coulomb interaction<br />

The Boltzmann operator is difficult to calculate for the Coulomb interaction.<br />

Fortunately, the scattering cross section (14) for a large angle is extremely small<br />

compared to a small angle. Therefore, Taylor-expanding distribution functions<br />

after the collision in Eq. (5) in power of ∆v and retaining only terms through<br />

the second order, we obtain a practically tractable collision operator:<br />

C(f a , f b ) =<br />

∫<br />

dv b<br />

∫<br />

(<br />

dΣ|v a − v b |<br />

∆v a · ∂f a<br />

∂v a<br />

f b + f a ∆v b · ∂f b<br />

∂v b<br />

+ 1 2 ∆v ∂ ∂<br />

a∆v a : f a + ∆v a ∆v b : ∂f a ∂f b<br />

∂v a ∂v a ∂v a ∂v b<br />

+ 1 )<br />

2 f ∂ ∂<br />

a∆v b ∆v b : f b .<br />

∂v b ∂v b<br />

Using Eq. (17), we can write<br />

∫ [<br />

mab ∂f a<br />

C(f a , f b ) = dv b u ̂∆u · f b − m ab ∂f b<br />

f â∆u · )<br />

m a ∂v a m b ∂v b<br />

+ 1 2 (m ab<br />

m a<br />

) 2 ̂∆u∆u :<br />

+( m ab<br />

m b<br />

) 2 f a ̂∆u∆u :<br />

∂<br />

∂v a<br />

∂<br />

∂v b<br />

∂<br />

∂v a<br />

f a − m ab<br />

m a<br />

m ab<br />

̂∆u∆u : ∂f a ∂f b<br />

m b ∂v a ∂v<br />

]<br />

b<br />

∂<br />

f b , (18)<br />

∂v b<br />

where we have defined ̂∆u = ∫ dΣ∆u and ̂∆u∆u = ∫ dΣ∆u∆u.<br />

Calculation of velocity change<br />

Here we calculate<br />

Using Eq. (14),<br />

̂∆u =<br />

∫ ρmax<br />

0<br />

∫ ρmax<br />

dΣ∆u = u dΣ(cosθ − 1).<br />

0<br />

∫ θmin<br />

2πρ<br />

̂∆u 2 0<br />

= u d cosθ (cosθ − 1)<br />

π (1 − cosθ)<br />

2 θ min<br />

= 2πρ 2 0u ln(1 − cosθ)<br />

∣ ,<br />

π


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 4<br />

where θ min is the angle for ρ = ρ max = λ D . From (6),<br />

where<br />

Then<br />

1 − cosθ min<br />

2<br />

= sin 2 θ min<br />

2<br />

=<br />

1<br />

1 + Λ2, (19)<br />

Λ ab = λ D<br />

= λ Dm ab u 2<br />

≈ 3λ D m b T a + m a T b<br />

. (20)<br />

ρ 0 |α| |α| m a + m b<br />

̂∆u = −2πρ 2 0u ln(1 + Λ 2 ) ≈ −4πρ 2 0u ln Λ (Λ ≫1), (21)<br />

where ln Λ is called the Coulomb logarithm.<br />

Also, we calculate<br />

∫<br />

̂∆u∆u = dΣ∆u∆u<br />

∫<br />

= dΣ(∆u ‖ ∆u ‖ + ∆u ‖ ∆u ⊥ + ∆u ⊥ ∆u ‖ + ∆u ⊥ ∆u ⊥ ).<br />

From Eqs. (12) and (13), ∫ dΣ∆u ‖ ∆u ⊥ = 0, ∫ dΣ∆u ⊥ ∆u ‖ = 0,<br />

∫<br />

∫<br />

dΣ∆u ‖ ∆u ‖ = uu dΣ(cosθ − 1) 2<br />

and<br />

∫<br />

dΣ∆u ⊥ ∆u ⊥ =<br />

where we have used<br />

and<br />

Finally, we have<br />

∫ θmin<br />

= uu<br />

π<br />

2πρ 2 0<br />

d cosθ (cos θ − 1)2<br />

(1 − cosθ)<br />

2<br />

= 2πρ 2 0 uu(1 + cosθ min) = 4πρ 2 Λ2<br />

0uu 1 + Λ 2 ,<br />

∫<br />

−ρ 2 0<br />

dΩ<br />

(1 − cosθ) 2 u2 [ˆxˆx sin 2 θ cos 2 φ<br />

+(ˆxŷ + ŷˆx)sin 2 θ cosφsin φ + ŷŷ sin 2 θ sin 2 φ]<br />

= ρ 2 0 u2 ∫ θmin<br />

π<br />

d cosθ<br />

(1 − cosθ) 2 π(ˆxˆx + ŷŷ)sin2 θ<br />

= πρ 2 0 u2 (ˆxˆx + ŷŷ)[− 2Λ2<br />

1 + Λ 2 − 2 ln 1<br />

1 + Λ 2 ],<br />

1 + cosθ min = 2(1 − sin 2 θ 2 ) = 2(1 − 1<br />

1 + Λ 2 ) = 2Λ2<br />

1 + Λ 2 , (22)<br />

cosθ min = − 1 − Λ2<br />

1 + Λ 2 . (23)<br />

̂∆u∆u ≈ 4πρ 2 0 (u2 I − uu)ln Λ (Λ ≫ 1). (24)


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 5<br />

<strong>Landau</strong> collision operator<br />

Introducing the <strong>Landau</strong> tensor<br />

and its derivative<br />

U = u2 I − uu<br />

u 3 ,<br />

∂<br />

∂v a<br />

· U = − 2u<br />

u 3 ,<br />

we can write Eqs. (21) and (24), respectively, as<br />

and<br />

̂∆u ≈ −4π α2 ln Λ<br />

m 2 u = γ abm a 1 ∂<br />

ab u4 2m 2 · U, (25)<br />

ab<br />

u ∂v a<br />

̂∆u∆u ≈<br />

4π α2 ln Λ U<br />

m 2 ab<br />

u = γ abm a U<br />

m 2 ab<br />

u , (26)<br />

where<br />

γ ab = 4πα2 ln Λ ab<br />

m a<br />

= q2 a q2 b ln Λ ab<br />

4πɛ 2 0 m .<br />

a<br />

Let’s write Eq. (18) term by term (t i denotes the ith term and t ij denotes the<br />

jth term in t i )<br />

t 1 = γ ∫ (<br />

ab ∂ 1 ∂f a<br />

dv b · U · f b + 1 )<br />

∂f a<br />

f b = t 11 + t 12 ,<br />

2 ∂v a m a ∂v a m b ∂v a<br />

t 2 = γ ∫ (<br />

ab ∂<br />

dv b · U · − 1 ∂f b<br />

f a − m )<br />

a ∂f b<br />

2 ∂v a m b ∂v b m 2 f a = t 21 + t 22 ,<br />

b<br />

∂v b<br />

t 3 = γ ∫<br />

ab 1 ∂ ∂f a<br />

dv b U : f b ,<br />

2 m a ∂v a ∂v a<br />

t 4 = − γ ∫<br />

ab 2<br />

2 m b<br />

= γ [ ∫<br />

ab 1<br />

−<br />

2 m b<br />

= t 41 + t 42 ,<br />

dv b U : ∂f a<br />

∂v a<br />

∂f b<br />

dv b U : ∂f a<br />

∂v a<br />

∂f b<br />

∂v b<br />

−<br />

( 1 IBP →)<br />

∂v b 2<br />

∫<br />

dv b<br />

( ∂<br />

∂v a<br />

· U ) · ∂f a<br />

∂v a<br />

f b<br />

]<br />

and<br />

t 5 = γ ab<br />

2<br />

= γ ab<br />

2<br />

m a<br />

m 2 b<br />

f a<br />

∫<br />

∫<br />

m a<br />

m 2 f a<br />

b<br />

dv b U :<br />

∂<br />

∂v b<br />

∂f b<br />

∂v b<br />

(IBP →)<br />

dv b<br />

( ∂<br />

∂v a<br />

· U ) · ∂f b<br />

∂v b<br />

.


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 6<br />

From<br />

and<br />

t 11 + t 3 = γ ab<br />

2<br />

t 21 + t 41 = − γ ab<br />

2<br />

∫<br />

∂<br />

·<br />

∂v a<br />

dv b U ·<br />

t 12 + t 42 = 0,<br />

∫<br />

∂<br />

·<br />

∂v a<br />

t 22 + t 5 = 0,<br />

1<br />

m a<br />

∂f a<br />

∂v a<br />

f b ,<br />

dv b U · f a<br />

1<br />

m b<br />

∂f b<br />

∂v b<br />

,<br />

we have the <strong>Landau</strong> collision operator<br />

C(f a , f b ) = γ ∫ ( )<br />

ab ∂<br />

1 ∂f a 1 ∂f b<br />

· dv b U · f b − f a . (27)<br />

2 ∂v a m a ∂v a m b ∂v b<br />

Problem 2-3 (15 pts). Prove the conservation laws for the particle number,<br />

momentum, and energy, i.e.,<br />

∫<br />

dv a C ab (v a ) = 0,<br />

∫<br />

∫<br />

dv a m a v a C ab (v a ) +<br />

dv b m b v b C ba (v b ) = 0,<br />

and<br />

∫<br />

∫<br />

1<br />

dv a<br />

2 m ava 2 C ab(v a ) +<br />

dv b<br />

1<br />

2 m bv 2 b C ba(v b ) = 0.<br />

Hint: Use Gauss’ theorem and the integration by parts.<br />

Problem 2-4 (20 pts). The entropy for species a is defined as<br />

∫<br />

S(t,x) = − dvf a (v)ln f a (v).<br />

(i) Assume F a (t,x,v) = F a (t,x) + q a v × B. Show that the entropy production<br />

rate for a due to collisions is<br />

∫<br />

Θ a = − dv lnf a (v)C a (v),<br />

where [use Eq. (28)]<br />

C a (v) = ∑ b<br />

C(f a , f b ).<br />

(ii) Show that the total entropy production rate, Θ = ∑ a Θ a, is nonnegative,<br />

i.e.,<br />

Θ ≥ 0.<br />

(iii) Show that the general solution for Θ = 0 is Maxwellian distributions with<br />

the equal temperatures and flow velocities.


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 7<br />

Hint: (i) Multiply (1 + lnf) to the <strong>kinetic</strong> <strong>equation</strong> and integrate over the<br />

velocity variable. (ii) Θ can be written in the form of<br />

Θ = ∑ ∫ ∫<br />

m a γ ab<br />

dv dv ′ f a (v)f b (v ′ )A · U · A,<br />

4<br />

a,b<br />

where A should be found. Then show that A · U · A ≥ 0. (iii) Note that<br />

A · U · A = 0 if and only if A is parallel to u.<br />

Rosenbluth potentials<br />

The <strong>Landau</strong> collision operator can be rewritten as<br />

C(f a , f b ) = γ ∫ ( )<br />

ab ∂<br />

2m a ∂v · dv ′ ∂fa<br />

U ·<br />

∂v f m a ∂f b<br />

b − f a<br />

m b ∂v ′ , (28)<br />

where f a = f a (v) and f b = f b (v ′ ) and u = v − v ′ . Defining the Rosenbluth<br />

potentials:<br />

∫<br />

G b (v) = dv ′ f b (v ′ )|v − v ′ |, (29)<br />

∫<br />

H b (v) = dv ′ f b (v ′ )|v − v ′ | −1 , (30)<br />

and using<br />

∫<br />

− m a<br />

m b<br />

∫<br />

dv ′ U · ∂f a<br />

∂v f b =<br />

(<br />

dv ′ ∂f<br />

)<br />

b<br />

U · f a<br />

∂v ′<br />

U = ∂ ∂<br />

∂v ∂v u,<br />

∂ v ∂ v : U = −8πδ(v − v ′ ),<br />

∫<br />

= ∂<br />

∂v ·<br />

dv ′ ∂ ∂<br />

∂v ∂v u · ∂f a<br />

∂v f b<br />

(<br />

∂ ∂G b<br />

f a<br />

∂v ∂v<br />

= − m a<br />

m b<br />

∫<br />

= −2 m a<br />

m b<br />

f a<br />

∂H b<br />

∂v ,<br />

)<br />

− 2f a<br />

∂H b<br />

∂v ,<br />

dv ′ ∂ ∂<br />

(<br />

∂v ∂v u · ∂f<br />

)<br />

b<br />

f a<br />

∂v ′<br />

we can write the RMJ (Rosenbluth-MacDonald-Judd) form of the collision operator,<br />

[<br />

]<br />

C(f a , f b ) = γ ab ∂<br />

2m a ∂v · ∂<br />

(<br />

∂v · ∂ ∂G<br />

) (<br />

b<br />

f a − 2 1 + m )<br />

a ∂H b<br />

f a .<br />

∂v ∂v m b ∂v<br />

Furthermore, we can also write the operator in the <strong>Fokker</strong>-<strong>Planck</strong> form,<br />

C(f a , f b ) = − ∂ (<br />

∂v · 〈∆v〉<br />

)<br />

f a + 1 ∂ ∂<br />

(<br />

∆t 2 ∂v ∂v : 〈∆v∆v〉<br />

)<br />

f a<br />

∆t


PHYS 7500 Plasma Transport Theory #2 c○Jeong-Young Ji 8<br />

where, from (17), (25), (26), (29), and (30),<br />

∫ ∫<br />

〈∆v〉<br />

= dv b dΣu∆v a f b = γ ab ∂H b<br />

, (31)<br />

∆t<br />

m ab ∂v a<br />

and<br />

〈∆v∆v〉<br />

∆t<br />

∫ ∫<br />

= dv b<br />

dΣu∆v a ∆v a f b = γ ab ∂ ∂G b<br />

. (32)<br />

m a ∂v a ∂v a<br />

In the moment approach, the following form<br />

[<br />

]<br />

C(f a , f b ) = γ ab 1 ∂ ∂f a<br />

m a 2 ∂v ∂v : ∂ ∂G<br />

(<br />

b<br />

∂v ∂v + 1 − m )<br />

a ∂fa<br />

m b ∂v · ∂H b<br />

∂v + 4πm a<br />

f a f b .<br />

m b<br />

is used to calculate collision terms [Ji and Held, Phys. Plasmas 13, 102103<br />

(2006)].<br />

<strong>Fokker</strong>-<strong>Planck</strong> operator<br />

Consider a random-walk like process in the velocity space where velocity can<br />

change from v to v + ∆v with a probability P(v, ∆v) independent of time:<br />

∫<br />

f(t,x,v) = d(∆v)f(t − ∆t,x,v − ∆v)P(v − ∆v, ∆v). (33)<br />

From the Taylor-expansion,<br />

∫ [<br />

f(t,x,v) = d(∆v) fP − ∆t ∂fP − ∆v · ∂fP<br />

∂t ∂v + 1 ]<br />

2 ∆v∆v : ∂ ∂<br />

∂v ∂v fP<br />

= f − ∆t ∂f<br />

∂t − ∂<br />

∂v · (f 〈∆v〉) + 1 ∂ ∂<br />

: (f 〈∆v∆v〉)<br />

2 ∂v ∂v<br />

where we have used ∫ d(∆v)P(v, ∆v) = 1, and defined<br />

∫<br />

〈∆v〉 = d(∆v)P(v, ∆v)∆v (34)<br />

and<br />

∫<br />

〈∆v∆v〉 =<br />

d(∆v)P(v, ∆v)∆v∆v. (35)<br />

Then the change rate of f due to collisions is<br />

∂f<br />

= − ∂ (<br />

∂t ∣ ∂v · f 〈∆v〉 )<br />

+ 1 (<br />

∂ ∂<br />

∆t 2 ∂v ∂v : f 〈∆v∆v〉 )<br />

.<br />

∆t<br />

col<br />

The operator of this form is called the <strong>Fokker</strong>-<strong>Planck</strong> operator. Here the first<br />

and second terms are the dynamical friction and the velocity diffusion, respectively.<br />

It is interesting to compare (34) to (31), and (35) to (32).<br />

Homework due: 9/30/2009

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!