30.08.2014 Views

M87 at metre wavelengths

M87 at metre wavelengths

M87 at metre wavelengths

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Leiden - 15/05/2012<br />

<strong>M87</strong> <strong>at</strong> <strong>metre</strong> <strong>wavelengths</strong><br />

the LOFAR picture<br />

Francesco de Gasperin<br />

E. Orru’, M. Murgia, A. Merloni, H. Falcke<br />

R. Beck, R. Beswick1, L. Bırzan, A. Bonafede, M. Brueggen, G. Brunetti, K. Chyzy, J. Conway, J.H. Croston, T. Enßlin,<br />

C. Ferrari, G. Heald, S. Heidenreich, N. Jackson, G. Macario, J.P. McKean, G. Miley, R. Morganti, A. R. Offringa, R. Pizzo,<br />

D. Rafferty, H. Rottgering, A. Shulevski, M. Steinmetz, C. Tasse, S. van der Tol, W. van Driel, R. J. van Weeren, J. E. van Zwieten<br />

de Gasperin et al. A&A (2012)


Leiden - 15/05/2012<br />

<strong>M87</strong> <strong>at</strong> <strong>metre</strong> <strong>wavelengths</strong><br />

the LOFAR picture<br />

- Wow!<br />

anonymous radio astronomer<br />

looking <strong>at</strong> <strong>M87</strong><br />

Francesco de Gasperin<br />

E. Orru’, M. Murgia, A. Merloni, H. Falcke<br />

R. Beck, R. Beswick1, L. Bırzan, A. Bonafede, M. Brueggen, G. Brunetti, K. Chyzy, J. Conway, J.H. Croston, T. Enßlin,<br />

C. Ferrari, G. Heald, S. Heidenreich, N. Jackson, G. Macario, J.P. McKean, G. Miley, R. Morganti, A. R. Offringa, R. Pizzo,<br />

D. Rafferty, H. Rottgering, A. Shulevski, M. Steinmetz, C. Tasse, S. van der Tol, W. van Driel, R. J. van Weeren, J. E. van Zwieten<br />

de Gasperin et al. A&A (2012)


M90<br />

NGC4435<br />

NGC4402<br />

NGC4438<br />

M86<br />

M84<br />

M89<br />

<strong>M87</strong><br />

NGC4388<br />

NGC4567/NGC4568<br />

Mei et al. (2007)


M90<br />

NGC4435<br />

NGC4402<br />

NGC4438<br />

M86<br />

M84<br />

M89<br />

<strong>M87</strong><br />

NGC4388<br />

NGC4567/NGC4568<br />

Virgo cluster:<br />

Distance: 16.5 Mpc<br />

Comprising 1500 - 2000 galaxies<br />

Three sub-clumps, BCG: <strong>M87</strong>, M86, M49<br />

Not yet virialized<br />

• Gas stripping<br />

• Mergers<br />

• AGN activity<br />

Mei et al. (2007)


Virgo A (3C274)<br />

Flux: ~1700 Jy @ 100 MHz<br />

Size (core): 5 kpc (1’)<br />

Size (halo): 80 kpc (16’)<br />

BH mass: 6.4 10^9 M<br />

Amorphous source


Virgo A (3C274)<br />

Flux: ~1700 Jy @ 100 MHz<br />

Size (core): 5 kpc (1’)<br />

Size (halo): 80 kpc (16’)<br />

BH mass: 6.4 10^9 M<br />

Amorphous source<br />

1993AJ....106.22<br />

74 MHz


Virgo A (3C274)<br />

Flux: ~1700 Jy @ 100 MHz<br />

Size (core): 5 kpc (1’)<br />

Size (halo): 80 kpc (16’)<br />

BH mass: 6.4 10^9 M<br />

Amorphous source<br />

1993AJ....106.22<br />

614 OWEN, EILEK, & KASSIM Vol. 543<br />

0 50 100 150 200<br />

12 46<br />

44<br />

74 MHz<br />

DECLINATION (B1950)<br />

42<br />

40<br />

38<br />

B<br />

A<br />

C<br />

E<br />

F<br />

D<br />

H<br />

36<br />

G<br />

34<br />

12 28 30 15 00<br />

RIGHT ASCENSION (B1950)<br />

FIG. 3.ÈGray-scale image of Virgo A/<strong>M87</strong> and the loc<strong>at</strong>ion of minimum-pressure measurements given in Table 1<br />

TABLE 2<br />

X-RAY DENSITY AND PRESSURE PROFILE<br />

Scale Distance n e<br />

k T B<br />

p<br />

(arcmin) (kpc) (10~3 cm~3) (keV) (10~11 dyn cm~2)<br />

0.83 . . . . . . 4.1 82.4 1.10 14.5<br />

1.67 . . . . . . 8.2 32.6 1.14 5.95<br />

2.50 ...... 12.3 18.7 1.41 4.27<br />

3.33 ...... 16.4 14.7 1.36 3.20<br />

4.17 ...... 20.6 11.3 2.3 4.17<br />

5.0 . . . . . . . 24.7 9.06 2.0 2.89<br />

5.83 ...... 28.8 7.53 1.7 1.99<br />

6.67 ...... 32.9 6.56 1.6 1.67<br />

NOTE.ÈD<strong>at</strong>a from Nulsen & Bo hringer 1995, scaled to our assumed<br />

distance of 17 Mpc.<br />

327 MHz<br />

strong cooling cores. The fact th<strong>at</strong> all such sources are<br />

found in a special position rel<strong>at</strong>ive to their parent cluster (as<br />

well as their parent cluster being special in having a strong<br />

cooling core) argues against them being simply normal, FR<br />

I tailed sources seen in severe projection. It seems more<br />

likely th<strong>at</strong> the interaction of the jet with the dense, highpressure<br />

external medium is more extreme than in most<br />

radio galaxies and th<strong>at</strong> the jet is bent or disrupted as it tries<br />

to Ñow through the dense external medium. The Virgo A<br />

radio halo is our best opportunity to study such an interaction.<br />

3.1. N<strong>at</strong>ure of the Halo<br />

The <strong>M87</strong> radio halo, Virgo A, looks like two bubbles th<strong>at</strong><br />

are supported by the energy of poorly collim<strong>at</strong>ed outÑows


Virgo A (3C274)<br />

Flux: ~1700 Jy @ 100 MHz<br />

Size (core): 5 kpc (1’)<br />

Size (halo): 80 kpc (16’)<br />

BH mass: 6.4 10^9 M<br />

Amorphous source<br />

1993AJ....106.22<br />

614 OWEN, EILEK, & KASSIM Vol. 543<br />

0 50 100 150 200<br />

12 46<br />

44<br />

74 MHz<br />

DECLINATION (B1950)<br />

42<br />

40<br />

38<br />

B<br />

A<br />

C<br />

E<br />

F<br />

D<br />

H<br />

1996A&A...309L..19R<br />

36<br />

G<br />

34<br />

12 28 30 15 00<br />

RIGHT ASCENSION (B1950)<br />

FIG. 3.ÈGray-scale image of Virgo A/<strong>M87</strong> and the loc<strong>at</strong>ion of minimum-pressure measurements given in Table 1<br />

TABLE 2<br />

X-RAY DENSITY AND PRESSURE PROFILE<br />

Scale Distance n e<br />

k T B<br />

p<br />

(arcmin) (kpc) (10~3 cm~3) (keV) (10~11 dyn cm~2)<br />

0.83 . . . . . . 4.1 82.4 1.10 14.5<br />

1.67 . . . . . . 8.2 32.6 1.14 5.95<br />

2.50 ...... 12.3 18.7 1.41 4.27<br />

3.33 ...... 16.4 14.7 1.36 3.20<br />

4.17 ...... 20.6 11.3 2.3 4.17<br />

5.0 . . . . . . . 24.7 9.06 2.0 2.89<br />

5.83 ...... 28.8 7.53 1.7 1.99<br />

6.67 ...... 32.9 6.56 1.6 1.67<br />

NOTE.ÈD<strong>at</strong>a from Nulsen & Bo hringer 1995, scaled to our assumed<br />

distance of 17 Mpc.<br />

327 MHz<br />

strong cooling cores. The fact th<strong>at</strong> all such sources are<br />

found in a special position rel<strong>at</strong>ive to their parent cluster (as<br />

well as their parent cluster being special in having a strong<br />

cooling core) argues against them being simply normal, FR<br />

I tailed sources seen in severe projection. It seems more<br />

likely th<strong>at</strong> the interaction of the jet with the dense, highpressure<br />

external medium is more extreme than in most<br />

radio galaxies and th<strong>at</strong> the jet is bent or disrupted as it tries<br />

to Ñow through the dense external medium. The Virgo A<br />

radio halo is our best opportunity to study such an interaction.<br />

3.1. N<strong>at</strong>ure of the Halo<br />

The <strong>M87</strong> radio halo, Virgo A, looks like two bubbles th<strong>at</strong><br />

are supported by the energy of poorly collim<strong>at</strong>ed outÑows<br />

10.55 GHz


Virgo A (3C274)<br />

Flux: ~1700 Jy @ 100 MHz<br />

Size (core): 5 kpc (1’)<br />

Size (halo): 80 kpc (16’)<br />

BH mass: 6.4 10^9 M<br />

Amorphous source<br />

2054 E. T. Million et al.<br />

Fig. 2a<br />

Fig. 2b<br />

fig. 2afig. 2b<br />

Fig. 2.—Images of the seven ACIS-I pointings after background subtraction and ‘‘fl<strong>at</strong> fielding’’ in the energy band 0.5Y1.0 keV with 1 pixel ¼ 3 00 <strong>at</strong> two different<br />

scales. (a) The very prominent eastern and southwestern arms (see also Fig. 5, where these are labeled in both the X-ray and radio images). (b)Amoredetailedviewofthe<br />

tracery of filaments th<strong>at</strong> suggests the similarity between the structures in the eastern and southwestern arms. The long southwestern arm appears to be composed of several<br />

intertwined filaments (see loc<strong>at</strong>ion indic<strong>at</strong>ed by the label ‘‘Filament’’). The eastern arm can be interpreted as a series of bubbles (several labeled inrightpanel)<strong>at</strong>different<br />

evolutionary stages as they rise in the <strong>at</strong>mosphere of <strong>M87</strong>. The filamentary structures are very soft and are not apparent <strong>at</strong> energies above 2 keV (e.g., see Fig. 7).<br />

X-ray maps from:<br />

Million et al. (2010)<br />

Forman et al. (2007)<br />

For the 1.2Y2.5 keV band, Figure 1 (upper solid curve)shows<br />

th<strong>at</strong> the count r<strong>at</strong>e for a unit volume of unit density is independent<br />

of gas temper<strong>at</strong>ure, for gas temper<strong>at</strong>ures above about 1 keV.<br />

If we express the count r<strong>at</strong>e as<br />

Z<br />

C / (T ) dl;<br />

ð1Þ<br />

n 2 e<br />

where n e is the electron density, (T ) is the volume emissivity of<br />

the gas convolved with the Chandra response, and l is the p<strong>at</strong>h<br />

length along the line of sight, the independence of the1.2Y2.5 keV<br />

‘‘density’’ image (actually the square of the density integr<strong>at</strong>ed<br />

along the line of sight).<br />

The properties of the 3.5Y7.5 keV band can be determined<br />

by rewriting equ<strong>at</strong>ion (1) using the ideal gas law, p / n e T,to<br />

elimin<strong>at</strong>e the gas density. We find<br />

Z<br />

C / p 2 (T ) T 2 dl:<br />

ð2Þ<br />

The lower dashed curve in Figure 1 is (T )/T 2 for a unit<br />

density and unit volume of gas. For gas temper<strong>at</strong>ures from 1 to


<strong>M87</strong><br />

HBA map:<br />

RMS: 6 mJy/beam<br />

Beam: 19” x 14”<br />

Dyn Range > 13000<br />

Frequency: 140 MHz<br />

NOTES:<br />

•Other strong sources uv-subtracted<br />

•Imaging of the core with standard<br />

Clean algorithm<br />

•Imaging of the extended emission with<br />

Maximum Entropy (fl<strong>at</strong> prior)


<strong>M87</strong><br />

LBA map:<br />

RMS: 0.6 Jy/beam<br />

Beam: 85” x 44”<br />

Freq: 25 MHz<br />

Lowest frequency<br />

image of Virgo A<br />

extended structure<br />

No new extended<br />

fe<strong>at</strong>ures<br />

Are lobes “alive”?


<strong>M87</strong> - spectral index<br />

Low-freq Spectral index map<br />

Error (%) map


<strong>M87</strong> - spectral index<br />

Low-freq Spectral index map<br />

1062<br />

FORMAN<br />

Error (%) map


<strong>M87</strong> - spectral index<br />

Low-freq Spectral index map<br />

Adiab<strong>at</strong>ic<br />

expansion<br />

1062<br />

FORMAN<br />

Error (%) map


<strong>M87</strong> - Core<br />

Spectral index analysis:<br />

• LOFAR-LBA @ 30-77 MHz<br />

• LOFAR HBA @ 115-162 MHz<br />

• VLA @ 327 MHz<br />

• VLA @ 1.4-1.6 MHz<br />

• Effelsberg @ 10.55 GHz<br />

Possible issues:<br />

• Absolute flux scale<br />

• Curv<strong>at</strong>ure domin<strong>at</strong>ed by a single frequency<br />

• Averaging of different parts of the source


<strong>M87</strong> - Regions<br />

E2<br />

W2<br />

E1<br />

W3<br />

W1<br />

W4


Slope of injected<br />

electrons fixed to 0.58<br />

<strong>M87</strong> - Regions<br />

B = 10.5 uG<br />

P = 3e-12 dyn/cm^2<br />

t = 15.7 Myr<br />

B = 13.2 uG<br />

P = 4.8e-12 dyn/cm^2<br />

t = 10 Myr<br />

B = 15.6 uG<br />

P = 6.7e-12 dyn/cm^2<br />

t = 9.4 Myr<br />

Pressure:<br />

equipartition needs<br />

k>1000, thermal<br />

component?<br />

B = 14.3 uG<br />

P = 5.6e-12 dyn/cm^2<br />

t = 4.7Myr<br />

B = 13 uG<br />

P = 4.7e-12 dyn/cm^2<br />

t = 10 Myr<br />

B = 11.1 uG<br />

P = 3.4e-12 dyn/cm^2<br />

t = 13.5 Myr<br />

Synchrotron ageing:<br />

B 0.5<br />

t s = 1590<br />

(B 2 + BIC 2 ) [(1 + z) ⌫ b] 0.5<br />

Equipartition:<br />

• k = 1<br />

• γ min = 100<br />

• D = 20 kpc<br />

B = 12.4 uG<br />

P = 4.2e-12 dyn/cm^2<br />

t = 13.7 Myr<br />

B = 13.1 uG<br />

P = 4.7e-12 dyn/cm^2<br />

t = 9.6 Myr<br />

B = 13.7 uG<br />

P = 5.2e-12 dyn/cm^2<br />

t = 10.3 Myr


Slope of injected<br />

electrons fixed to 0.58<br />

<strong>M87</strong> - Regions<br />

B = 14.3 uG<br />

P = 5.6e-12 dyn/cm^2<br />

t = 4.7Myr<br />

B = 13 uG<br />

P = 4.7e-12 dyn/cm^2<br />

t = 10 Myr<br />

Pressure:<br />

equipartition needs<br />

k>1000, thermal<br />

component?<br />

Equipartition:<br />

• k = 1<br />

• γ min = 100<br />

• D = 20 kpc<br />

B = 12.4 uG<br />

P = 4.2e-12 dyn/cm^2<br />

t = 13.7 Myr<br />

Synchrotron ageing:<br />

B 0.5<br />

t s = 1590<br />

(B 2 + BIC 2 ) [(1 + z) ⌫ b] 0.5<br />

B = 13.7 uG<br />

P = 5.2e-12 dyn/cm^2<br />

t = 10.3 Myr


<strong>M87</strong> - Results<br />

Discrepancy with dynamic time (~50 Myr):<br />

• Mix of weak and strong magnetic fields (filamentary<br />

structure)<br />

• In situ re-acceler<strong>at</strong>ion due to e.g. turbulence<br />

• Plasma flow along pre-existing channels<br />

• Bubbles plasma has initial momentum: ~20 kpc in 15<br />

Myr<br />

• Pressure gener<strong>at</strong>ed by the plasma and the magnetic<br />

fields less than wh<strong>at</strong> required to sustain the halo.<br />

Probably, thermal gas plays a role in sustaining the<br />

halo.<br />

• Synchrotron aging analysis provided a global halo age<br />

of ≃40 Myr<br />

• Estim<strong>at</strong>e jet power P≃6−10e44 erg/s. 10 to 100 times<br />

higher than the X-ray luminosity due to cooling flow<br />

Churazov et al. (2001), Blundell & Rowlings (2000), Owen et al. (2000), Brueggens et al. (2002)


<strong>M87</strong> - Results<br />

Discrepancy with dynamic time (~50 Myr):<br />

• Mix of weak and strong magnetic fields (filamentary<br />

structure)<br />

• In situ re-acceler<strong>at</strong>ion due to e.g. turbulence<br />

• Plasma flow along pre-existing channels<br />

• Bubbles plasma has initial momentum: ~20 kpc in 15<br />

Myr<br />

• Pressure gener<strong>at</strong>ed by the plasma and the magnetic<br />

fields less than wh<strong>at</strong> required to sustain the halo.<br />

Probably, thermal gas plays a role in sustaining the<br />

halo.<br />

• Synchrotron aging analysis provided a global halo age<br />

of ≃40 Myr<br />

• Estim<strong>at</strong>e jet power P≃6−10e44 erg/s. 10 to 100 times<br />

higher than the X-ray luminosity due to cooling flow<br />

• No emission younger than 0.4 Gyr outside the radio<br />

halo<br />

Churazov et al. (2001), Blundell & Rowlings (2000), Owen et al. (2000), Brueggens et al. (2002)


The Virgo Campaign<br />

2011 LOFAR Observ<strong>at</strong>ions<br />

F. de Gasperin, M. Bruggen, E. Churazov, W. Cotton, H. Falcke, W.<br />

Forman, H. Intema, A. Merloni, M. Murgia, E. Orru', F. Owen, U. Rao<br />

LBA (low):<br />

15 - 30 MHz<br />

8 h<br />

25 ant<br />

LBA (high):<br />

30 - 77 MHz<br />

8 h<br />

24 ant<br />

HBA:<br />

115 - 162 MHz<br />

8 h<br />

45 ant (dual)<br />

Images from: http://www.astron.nl/~heald/lofarSt<strong>at</strong>usMap.html


The Virgo Campaign<br />

2011 LOFAR Observ<strong>at</strong>ions<br />

F. de Gasperin, M. Bruggen, E. Churazov, W. Cotton, H. Falcke, W.<br />

Forman, H. Intema, A. Merloni, M. Murgia, E. Orru', F. Owen, U. Rao<br />

LBA (low):<br />

15 - 30 MHz<br />

8 h<br />

25 ant<br />

LBA (high):<br />

30 - 77 MHz<br />

8 h<br />

24 ant<br />

HBA:<br />

115 - 162 MHz<br />

8 h<br />

45 ant (dual)<br />

2013 LOFAR Observ<strong>at</strong>ions<br />

LBA:<br />

22 - 70 MHz<br />

8 h<br />

36 ant<br />

HBA:<br />

112 - 184 MHz<br />

6 h<br />

50 ant (dual+int)<br />

2013 VLA+GBT Observ<strong>at</strong>ions<br />

P-band:<br />

230-470 MHz<br />

A+B+C+D conf.<br />

L-band:<br />

1 - 2 GHz<br />

A+B+C+D conf.<br />

S-band:<br />

2 - 4 GHz<br />

B+C+D conf.<br />

+ GBT<br />

C-band:<br />

4 - 8 GHz<br />

C+D conf.<br />

+GBT<br />

Images from: http://www.astron.nl/~heald/lofarSt<strong>at</strong>usMap.html


The Virgo Campaign<br />

2011 LOFAR Observ<strong>at</strong>ions<br />

F. de Gasperin, M. Bruggen, E. Churazov, W. Cotton, H. Falcke, W.<br />

Forman, H. Intema, A. Merloni, M. Murgia, E. Orru', F. Owen, U. Rao<br />

LBA (low):<br />

15 - 30 MHz<br />

8 h<br />

25 ant<br />

LBA (high):<br />

30 - 77 MHz<br />

8 h<br />

24 ant<br />

HBA:<br />

115 - 162 MHz<br />

8 h<br />

45 ant (dual)<br />

2013 LOFAR Observ<strong>at</strong>ions<br />

LBA:<br />

22 - 70 MHz<br />

8 h<br />

36 ant<br />

HBA:<br />

112 - 184 MHz<br />

6 h<br />

50 ant (dual+int)<br />

60 MHz, 0.4% of the BW<br />

2013 VLA+GBT Observ<strong>at</strong>ions<br />

P-band:<br />

230-470 MHz<br />

A+B+C+D conf.<br />

L-band:<br />

1 - 2 GHz<br />

A+B+C+D conf.<br />

S-band:<br />

2 - 4 GHz<br />

B+C+D conf.<br />

+ GBT<br />

C-band:<br />

4 - 8 GHz<br />

C+D conf.<br />

+GBT<br />

Images from: http://www.astron.nl/~heald/lofarSt<strong>at</strong>usMap.html


The Virgo Campaign<br />

F. de Gasperin, M. Bruggen, E. Churazov, W.<br />

Cotton, H. Falcke, W. Forman, H. Intema, A.<br />

Merloni, M. Murgia, E. Orru', F. Owen, U. Rao<br />

LBA HBA P L S C<br />

⌫ b / 1<br />

t 2 B 3


M88<br />

NGC4402<br />

M90<br />

NGC4438<br />

M58<br />

NGC4388<br />

NGC 4567<br />

NGC 4568<br />

NGC4407


NGC 4388<br />

Sy 1<br />

NGC 4407<br />

M58<br />

Sy 2<br />

NGC 4567<br />

NGC 4568<br />

merging?<br />

NGC 4438<br />

distorted disk<br />

LINER<br />

M90<br />

Sy<br />

NGC 4402<br />

M88<br />

Sy 2


Conclusions:<br />

• Virgo A extended halo is an active and living source<br />

• Down to 25 MHz no previously unseen steep-spectrum fe<strong>at</strong>ures<br />

were detected<br />

• Steepening in the low-frequency end of the spectra can be<br />

connected to adiab<strong>at</strong>ic expansion of the plasma bubble<br />

• Magnetic field strength ≃10 μG found in the flow regions, and of ≃7<br />

μG in the halo regions<br />

• Pressure gener<strong>at</strong>ed by the plasma and the magnetic fields less than<br />

wh<strong>at</strong> required to sustain the halo. Probably, thermal gas plays a role<br />

in sustaining the halo.<br />

• Synchrotron aging analysis provided a global halo age of ≃40 Myr<br />

• Estim<strong>at</strong>e jet power P≃6−10e44 erg/s. 10 to 100 times higher than<br />

the X-ray luminosity due to cooling flow


Conclusions:<br />

• Virgo A extended halo is an active and living source<br />

• Down to 25 MHz no previously unseen steep-spectrum fe<strong>at</strong>ures<br />

were detected<br />

• Steepening in the low-frequency end of the spectra can be<br />

connected to adiab<strong>at</strong>ic expansion of the plasma bubble<br />

• Magnetic field strength ≃10 μG found in the flow regions, and of ≃7<br />

μG in the halo regions<br />

• Pressure gener<strong>at</strong>ed by the plasma and the magnetic fields less than<br />

wh<strong>at</strong> required to sustain the halo. Probably, thermal gas plays a role<br />

in sustaining the halo.<br />

• Synchrotron aging analysis provided a global halo age of ≃40 Myr<br />

• Estim<strong>at</strong>e jet power P≃6−10e44 erg/s. 10 to 100 times higher than<br />

the X-ray luminosity due to cooling flow<br />

Thank you


JP Model<br />

⌫ b / 1<br />

t 2 B 3


CI Model<br />

⌫ b / 1<br />

t 2 B 3


<strong>M87</strong> - Jet Power<br />

dU int<br />

dt<br />

= P ⌘ p dV<br />

dt<br />

L rad<br />

Assuming:<br />

• R = 35 kpc<br />

• Jet power time independant<br />

• p approxim<strong>at</strong>ed with the surrounding medium<br />

• Halo age: 40 Myr<br />

Jet power: 6-10 e44 erg/s<br />

(from 10 to 100 times the X-ray luminosity of the cooling flow)<br />

Eilek & Shore (1989), Owen et al. (2000), M<strong>at</strong>ushita et al. 2002


<strong>M87</strong> - Jet Power<br />

dU int<br />

dt<br />

= P ⌘ p dV<br />

dt<br />

L rad<br />

Assuming:<br />

• R = 35 kpc<br />

• Jet power time independant<br />

• p approxim<strong>at</strong>ed with the surrounding medium<br />

• Halo age: 40 Myr<br />

Jet power: 6-10 e44 erg/s<br />

(from 10 to 100 times the X-ray luminosity of the cooling flow)<br />

Eilek & Shore (1989), Owen et al. (2000), M<strong>at</strong>ushita et al. 2002


The Calibr<strong>at</strong>ion<br />

Vir A


The Calibr<strong>at</strong>ion<br />

Cyg A<br />

Vir A<br />

Cas A


The Calibr<strong>at</strong>ion<br />

Vir A<br />

Cyg A<br />

Cas A<br />

Demixing

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!