03.09.2014 Views

Crystal Structure of the Archaeal Asparagine Synthetase ... - Free

Crystal Structure of the Archaeal Asparagine Synthetase ... - Free

Crystal Structure of the Archaeal Asparagine Synthetase ... - Free

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

452 <strong>Archaeal</strong> <strong>Asparagine</strong> Syn<strong>the</strong>tase <strong>Crystal</strong> <strong>Structure</strong><br />

invent <strong>the</strong>ir cognate amino acid metabolism. Proc. Natl<br />

Acad. Sci. USA, 100, 9837–9842.<br />

18. Eriani, G., Delarue, M., Poch, O., Gangl<strong>of</strong>f, J. & Moras,<br />

D. (1990). Partition <strong>of</strong> tRNA syn<strong>the</strong>tases into two<br />

classes based on mutually exclusive sets <strong>of</strong> sequence<br />

motifs. Nature, 347, 203–206.<br />

19. Schmitt, E., Moulinier, L., Fujiwara, S., Imanaka, T.,<br />

Thierry, J. C. & Moras, D. (1998). <strong>Crystal</strong> structure <strong>of</strong><br />

aspartyl-tRNA syn<strong>the</strong>tase from Pyrococcus kodakaraensis<br />

KOD: archaeon specificity and catalytic mechanism<br />

<strong>of</strong> adenylate formation. EMBO J. 17, 5227–5237.<br />

20. Iwasaki, W., Sekine, S., Kuroishi, C., Kuramitsu, S.,<br />

Shirouzu, M. & Yokoyama, S. (2006). Structural basis<br />

<strong>of</strong> <strong>the</strong> water-assisted asparagine recognition by<br />

asparaginyl-tRNA syn<strong>the</strong>tase. J. Mol. Biol. 360,<br />

329–342.<br />

21. Crépin, T., Peterson, F., Häertlein, M., Jensen, D.,<br />

Wang, C., Cusack, S. & Kron, M. (2011). A hybrid<br />

structural model <strong>of</strong> <strong>the</strong> complete Brugia malayi<br />

cytoplasmic asparaginyl-tRNA syn<strong>the</strong>tase. J. Mol.<br />

Biol. 405, 1056–1069.<br />

22. Ber<strong>the</strong>t-Colominas, C., Seignovert, L., Härtlein, M.,<br />

Grotli, M., Cusack, S. & Leberman, R. (1998). The<br />

crystal structure <strong>of</strong> asparaginyl-tRNA syn<strong>the</strong>tase from<br />

Thermus <strong>the</strong>rmophilus and its complexes with ATP and<br />

asparaginyl-adenylate: <strong>the</strong> mechanism <strong>of</strong> discrimination<br />

between asparagine and aspartic acid. EMBO J.<br />

17, 2947–2960.<br />

23. Cavarelli, J., Rees, B., Thierry, J. C. & Moras, D.<br />

(1993). Yeast aspartyl-tRNA syn<strong>the</strong>tase: a structural<br />

view <strong>of</strong> <strong>the</strong> aminoacylation reaction. Biochimie, 75,<br />

1117–1123.<br />

24. Belrhali, H., Yaremchuk, A., Tukalo, M., Larsen, K.,<br />

Ber<strong>the</strong>t-Colominas, C., Leberman, R. et al. (1994).<br />

<strong>Crystal</strong> structures at 2.5 angström resolution <strong>of</strong> seryltRNA<br />

syn<strong>the</strong>tase complexed with two analogs <strong>of</strong> seryl<br />

adenylate. Science, 263, 1432–1436.<br />

25. Biou, V., Yaremchuk, A., Tukalo, M. & Cusack, S.<br />

(1994). The 2.9 Å crystal structure <strong>of</strong> T. <strong>the</strong>rmophilus<br />

seryl-tRNA syn<strong>the</strong>tase complexed with tRNA Ser .<br />

Science, 263, 1404–1410.<br />

26. Blaise, M., Bailly, M., Fréchin, M., Behrens, M. A.,<br />

Fischer, F., Oliveira, C. L. et al. (2010). <strong>Crystal</strong> structure<br />

<strong>of</strong> a transfer-ribonucleoprotein particle that promotes<br />

asparagine formation. EMBO J. 29, 3118–3129.<br />

27. Cavarelli, J., Eriani, G., Rees, B., Ruff, M., Boeglin, M.,<br />

Mitschler, A. et al. (1994). The active site <strong>of</strong> yeast<br />

aspartyl-tRNA syn<strong>the</strong>tase: structural and functional<br />

aspects <strong>of</strong> <strong>the</strong> aminoacylation reaction. EMBO J. 13,<br />

327–337.<br />

28. Charron, C., Roy, H., Blaise, M., Giegé, R. & Kern, D.<br />

(2004). <strong>Crystal</strong>lization and preliminary X-ray diffraction<br />

data <strong>of</strong> an archaeal asparagine syn<strong>the</strong>tase related<br />

to asparaginyl-tRNA syn<strong>the</strong>tase. Acta <strong>Crystal</strong>logr.,<br />

Sect. D: Biol. <strong>Crystal</strong>logr. 60, 767–769.<br />

29. Kabsch, W. (2010). Integration, scaling, space-group<br />

assignment and post-refinement. Acta <strong>Crystal</strong>logr.,<br />

Sect. D: Biol. <strong>Crystal</strong>logr. 66, 133–144.<br />

30. Storoni, L. C., McCoy, A. J. & Read, R. J. (2004).<br />

Likelihood-enhanced fast rotation functions. Acta<br />

<strong>Crystal</strong>logr., Sect. D: Biol. <strong>Crystal</strong>logr. 60, 432–438.<br />

31. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen,<br />

V. B., Davis, I. W., Echols, N. et al. (2010). A<br />

comprehensive Python-based system for macromolecular<br />

structure solution. Acta <strong>Crystal</strong>logr., Sect. D:<br />

Biol. <strong>Crystal</strong>logr. 66, 213–221.<br />

32. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K.<br />

(2010). Features and development <strong>of</strong> Coot. Acta<br />

<strong>Crystal</strong>logr., Sect. D: Biol. <strong>Crystal</strong>logr. 66, 486–501.<br />

33. Chen, V. B., Arendall , W. B., III, Headd, J. J., Keedy,<br />

D. A., Immormino, R. M., Kapral, G. J. et al. (2010).<br />

MolProbity: all-atom structure validation for macromolecular<br />

crystallography. Acta <strong>Crystal</strong>logr., Sect. D:<br />

Biol. <strong>Crystal</strong>logr. 66, 12–21.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!