08.11.2014 Views

Introduction to Heavy Ion Physics

Introduction to Heavy Ion Physics

Introduction to Heavy Ion Physics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Introduction</strong> <strong>to</strong> <strong>Heavy</strong> <strong>Ion</strong><br />

<strong>Physics</strong><br />

P.Hris<strong>to</strong>v<br />

Bachinovo’12


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12 2<br />

Outline<br />

• Motivation: two puzzles in<br />

QCD<br />

• Quark Gluon Plasma and Big<br />

Bang<br />

• Nucleus-Nucleus Collisions<br />

• Geometry of AA collision<br />

• Bulk observables:<br />

multiplicity and volume<br />

• Strangeness enhancement<br />

• Chemical equilibrium<br />

• Particle correlations<br />

• High PT suppression<br />

• Quark number scaling<br />

• Identified particles<br />

• Quarkonia<br />

• Jets<br />

• <strong>Heavy</strong> flavors<br />

Based on the lectures of<br />

Federico Antinori, Frascati,<br />

May 2012<br />

Peter Jacobs, Primorsko,<br />

June 2012<br />

Yves Schutz, CERN, June 2012


Two puzzles in QCD


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

4<br />

The Standard Model and QCD<br />

• strong interaction:<br />

• binds quarks in<strong>to</strong> hadrons<br />

• binds nucleons in<strong>to</strong> nuclei<br />

beauty<br />

• described by QCD:<br />

• interaction between particles<br />

carrying colour charge (quarks,<br />

gluons)<br />

• mediated by strong force carriers<br />

(gluons)<br />

• very successful theory


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

5<br />

• e.g.: pQCD vs production of high energy jets


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

6<br />

The Standard Model and QCD<br />

• strong interaction:<br />

• binds quarks in<strong>to</strong> hadrons<br />

• binds nucleons in<strong>to</strong> nuclei<br />

beauty<br />

• described by QCD:<br />

• interaction between particles<br />

carrying colour charge (quarks,<br />

gluons)<br />

• mediated by strong force carriers<br />

(gluons)<br />

• very successful theory<br />

• jet production<br />

• particle production at high p T<br />

• heavy flavour production<br />

• …<br />

• … but with outstanding puzzles


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

7<br />

Two puzzles in QCD: i) hadron masses<br />

• A pro<strong>to</strong>n is thought <strong>to</strong> be made of<br />

two u and one d quarks<br />

• The sum of their masses is around<br />

12 MeV<br />

beauty<br />

• ... but the pro<strong>to</strong>n mass is 938 MeV!<br />

• how is the extra mass generated?


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

8<br />

Two puzzles in QCD: ii) confinement<br />

• Nobody ever succeeded in<br />

detecting an isolated quark<br />

beauty<br />

• Quarks seem <strong>to</strong> be permanently<br />

confined within pro<strong>to</strong>ns,<br />

neutrons, pions and other<br />

hadrons.<br />

• It looks like one half of the<br />

fundamental fermions are not<br />

directly observable…<br />

why?


Lattice QCD<br />

• rigorous way of doing calculations in non-perturbative regime of QCD<br />

• discretization on a space-time lattice<br />

ultraviolet (large momentum scale) divergencies can be avoided<br />

• zero baryon density, 3<br />

flavours<br />

• e changes rapidly around T c<br />

• T c = 170 MeV:<br />

3 flavours; (q-q)=0<br />

e c = 0.6 GeV/fm 3<br />

• at T~1.2 T c e settles at about<br />

80% of the Stefan-Boltzmann<br />

value for an ideal gas of q,q g<br />

(e SB )<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

9


The QCD Phase diagram<br />

Temperature<br />

Early universe<br />

T c<br />

critical point ?<br />

Deconfinement<br />

Chiral symmetry res<strong>to</strong>ration<br />

quark gluon plasma<br />

nucleon gas<br />

hadron gas<br />

nuclei<br />

colour<br />

superconduc<strong>to</strong>r<br />

CGC<br />

vacuum<br />

r 0<br />

baryon density<br />

Neutron stars


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

11<br />

Res<strong>to</strong>ration of bare masses<br />

• Confined quarks acquire an additional mass (~ 350 MeV) dynamically,<br />

through the confining effect of strong interactions<br />

• M(pro<strong>to</strong>n) 938 MeV; m(u)+m(u)+m(d) = 1015 MeV<br />

• Deconfinement is expected <strong>to</strong> be accompanied by a res<strong>to</strong>ration of the<br />

masses <strong>to</strong> the “bare” values they have in the Lagrangian<br />

• As quarks become deconfined, the masses go back <strong>to</strong> the bare values;<br />

e.g.:<br />

• m(u,d): ~ 350 MeV a few MeV<br />

• m(s): ~ 500 MeV ~ 150 MeV<br />

• (This effect is usually referred <strong>to</strong> as “Partial Res<strong>to</strong>ration of Chiral<br />

Symmetry”. Chiral Symmetry: fermions and antifermions have opposite<br />

helicity. The symmetry is exact only for massless particles, therefore its<br />

res<strong>to</strong>ration here is only partial)


Nucleus – Nucleus collisions


Measurements with<br />

telescopes<br />

Evolution of the<br />

Early Universe: Big<br />

Bang and<br />

deconfinement<br />

Measurements<br />

with colliders<br />

Evolution of a<br />

<strong>Heavy</strong> <strong>Ion</strong><br />

Collision<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

13


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

14


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

15<br />

Collisions of <strong>Heavy</strong> Nuclei at SPS and RHIC<br />

• Super Pro<strong>to</strong>n Synchrotron (SPS) at CERN (Geneva):<br />

• Pb-Pb fixed target, p = 158 A GeV s NN = 17.3 GeV<br />

• 1994 - 2003<br />

• 9 experiments:<br />

• WA97 (silicon pixel telescope spectrometer: production of strange and multiply strange particles)<br />

• WA98 (pho<strong>to</strong>n and hadron spectrometer: pho<strong>to</strong>n and hadronn production)<br />

• NA44 (single arm spectrometer: particle spectra, interferometry, particle correlations)<br />

• NA45 (e + e - spectrometer: low mass lep<strong>to</strong>n pairs)<br />

• NA49 (large acceptance TPC: particle spectra, strangeness production, interferometry, event-by-event , …)<br />

• NA50 (dimuon spectrometer: high mass lep<strong>to</strong>n pairs, J/y production)<br />

• NA52 (focussing spectrometer: strangelet search, particle production)<br />

• NA57 (silicon pixel telescope spectrometer: production of strange and multiply strange particles)<br />

• NA60 (dimuon spectrometer + pixels: dilep<strong>to</strong>ns and charm)<br />

• Relativistic <strong>Heavy</strong> <strong>Ion</strong> Collider (RHIC) at BNL (Long Island)<br />

• Au-Au collider, s NN = 200 GeV<br />

• 2000 - …<br />

• 4 experiments:<br />

• STAR (multi-purpose experiment: focus on hadrons)<br />

• PHENIX (multi-purpose experiment: focus on lep<strong>to</strong>ns, pho<strong>to</strong>ns)<br />

• BRAHMS (two-arm spectrometer: particle spectra, forward rapidity)<br />

• PHOBOS (silicon array: particle spectra)


Nucleus-Nucleus collisions at the LHC!<br />

SPS RHIC LHC<br />

s NN [GeV] 17.3 200 5500<br />

dN ch /dy 450 800 1600<br />

ε [GeV/fm 3 ] 3 5.5 ~ 10<br />

• large ε deeper in deconfinement region<br />

closer <strong>to</strong> “ideal” behaviour?<br />

• large cross section for “hard probes” !<br />

a new set of <strong>to</strong>ols <strong>to</strong> probe the medium properties<br />

e.g.:<br />

Pb Pb<br />

b<br />

b<br />

b<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

b<br />

16


A Pb-Pb collision at the LHC<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

17


Geometry of a Pb-Pb collision<br />

b<br />

• central collisions<br />

• small impact parameter b<br />

• high number of participants high<br />

multiplicity<br />

• peripheral collisions<br />

• large impact parameter b<br />

• low number of participants low multiplicity<br />

for example: sum of the amplitudes<br />

in the ALICE V0 scintilla<strong>to</strong>rs<br />

reproduced by simple model (red):<br />

• random relative position of nuclei in<br />

transverse plane<br />

• Woods-Saxon distribution inside<br />

nucleus<br />

• deviation at very low amplitude<br />

expected due <strong>to</strong> non-nuclear<br />

(electromagnetic) processes<br />

peripheral<br />

central<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

18


Nuclear geometry and hard processes:<br />

Glauber theory<br />

Glauber scaling for hard processes with large momentum transfer<br />

• short coherence length successive NN collisions independent<br />

• p+A is incoherent superposition of N+N collisions<br />

Normalized nuclear density r(b,z):<br />

dzdbr(b,z) 1<br />

Nuclear thickness function<br />

T A<br />

(b) dzr(b,z)<br />

Inelastic cross section<br />

for<br />

p+A collisions:<br />

<br />

<br />

inel<br />

pA db(1[1T A<br />

(b) inel NN<br />

] A )<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

19


Glauber Theory for A+B Collisions<br />

Nuclear overlap function:<br />

Average number of binary NN collisions<br />

for B nucleon at coordinate s B :<br />

Average number of binary NN collisions for A+B<br />

collision with impact parameter b:<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

20


Glauber test at LHC:<br />

Scaling of direct pho<strong>to</strong>n, Z, W yields in Pb+Pb vs p+p<br />

R AA<br />

<br />

d hard AA<br />

/dp T<br />

T AA<br />

d hard pp<br />

/dp T<br />

<br />

EW boson yields all scale with N bin : Glauber OK for hard processes<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

21


Bulk observables:<br />

multiplicity and volume


Particle multiplicity<br />

most central collisions at LHC: ~ 1600 charged particles per unit of η<br />

ALICE: PRL105 (2010) 252301<br />

• log extrapolation:<br />

• OK at lower energies<br />

• finally fails at the LHC<br />

√s NN =2.76 TeV Pb+Pb, 0-5% central, |η|


Initial Energy Density<br />

– Bjorken’s estimation<br />

Bjorken 1983<br />

Boost invariant hydrodynamics:<br />

pR 2<br />

t : proper time<br />

y : rapidity<br />

h : pseudo-rapidity<br />

E T : transverse energy<br />

N ch : Number of charged particles<br />

m T : transverse mass<br />

R: effective transverse radius<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

24


Bjorken’s formula<br />

• To evaluate the energy density reached in the collision:<br />

e <br />

1<br />

Sct<br />

0<br />

dET<br />

dy<br />

y0<br />

S transverse dimension of nucleus<br />

t<br />

0 <br />

"formation time"~ 1fm/ c<br />

dET<br />

• for central collisions at LHC: 1800 GeV<br />

dy<br />

• Initial time t 0 normally taken <strong>to</strong> be ~ 1 fm/c<br />

• i.e. equal <strong>to</strong> the “formation time”: the time it takes for the energy initially<br />

s<strong>to</strong>red in the field <strong>to</strong> materialize in<strong>to</strong> particles<br />

2<br />

1/3<br />

• Transverse dimension: S 160 fm ( R 1.2A<br />

fm)<br />

yo<br />

A <br />

<br />

e ~ (1800/160) GeV/fm<br />

3<br />

~10 GeV/fm<br />

3<br />

More than enough<br />

for deconfinement!<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

25


Hanbury Brown - Twiss interferometry<br />

• quantum phenomenon: enhancement<br />

of correlation function for identical<br />

bosons<br />

• from Heisenberg’s uncertainty<br />

principle:<br />

• Δp · Δx ~ ħ (Planck’s constant)<br />

<br />

<br />

(width of enhancement) · (source size) ~ ħ<br />

extract source size from correlation<br />

function<br />

• first used with pho<strong>to</strong>ns in the 1950s by<br />

astronomers Hanbury Brown and Twiss<br />

• measured size of star Sirius by aiming at it two<br />

pho<strong>to</strong>multipliers separated by a few metres<br />

• e.g.: three components of correlation<br />

function C(q = momentum difference)<br />

for pairs of pions for eight intervals<br />

of pair transverse momentum (k T )<br />

C(p<br />

P(p<br />

,p<br />

~ (q<br />

1 2<br />

2<br />

1 ,p2)<br />

1<br />

r )<br />

P(p1)P(p2<br />

)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

)<br />

F.T. of pion source<br />

26


HBT interferometry<br />

R out<br />

from RHIC <strong>to</strong> LHC:<br />

• increase of size in the 3 dimensions<br />

• out, long, and (finally!) side<br />

• “homogeneity” volume ~ x 2<br />

R side<br />

R long<br />

ALICE: Phys Lett B 696 (2011) 328<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

27


Strangeness enhancement


His<strong>to</strong>ric QGP predictions<br />

• res<strong>to</strong>ration of c symmetry + Pauli principle -> increased<br />

production of s<br />

• mass of strange quark in QGP expected <strong>to</strong> go back <strong>to</strong> current value<br />

• m S ~ 150 MeV ~ Tc<br />

copious production of ss pairs, mostly by gg fusion<br />

[Rafelski: Phys. Rep. 88 (1982) 331]<br />

d s<br />

d<br />

[Rafelski-Müller: P. R. Lett. 48 (1982) 1066]<br />

u<br />

u<br />

u u d d u<br />

d u d<br />

p<br />

s d d u<br />

-<br />

s s d u d d<br />

u d<br />

u d d d<br />

p u<br />

for multi-strange<br />

+ s<br />

d u u u u d<br />

s<br />

u s u u<br />

• can be built recombining s quarks<br />

s d<br />

p<br />

d s d<br />

W u<br />

strangeness enhancement increasing<br />

+ s s u d<br />

u<br />

u s s s<br />

with strangeness content<br />

u d u<br />

u<br />

d<br />

s d s<br />

[Koch, Müller & Rafelski: Phys. Rep. 142 (1986) 167]<br />

L<br />

• deconfinement stronger effect<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

K +<br />

X - 29


• The QGP strangeness abundance is enhanced<br />

• As the QGP cools down, eventually the quarks recombine in<strong>to</strong> hadrons<br />

(“hadronization”)<br />

• The abundance of strange hadrons should also be enhanced<br />

• The enhancement should be larger for particles of higher strangeness<br />

content, e.g.:<br />

E(W ) > E(X ) > E(L)<br />

(sss) (ssd) (sud)<br />

|s| = 3 |s| = 2 |s| = 1<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

30


Strangeness enhancement at the SPS<br />

• Enhancement in Pb-Pb relative <strong>to</strong> p-Be (WA97/NA57)<br />

Enhancement is larger for<br />

particles of higher<br />

strangeness content<br />

(QGP prediction!)<br />

up <strong>to</strong> a fac<strong>to</strong>r ~ 20 for W<br />

So far, no hadronic model<br />

has reproduced these<br />

observations (try harder!)<br />

Actually, the most reliable<br />

hadronic models predicted<br />

an opposite behaviour of<br />

enhancement vs<br />

strangeness<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

31


Strangeness enhancement: SPS. RHIC. LHC<br />

• enhancement decreases with increasing √s<br />

strange/non-strange increases with √s in pp<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

32


Chemical Equilibrium<br />

Thermal Fits<br />

Chemical Freeze-out


Chemical equilibrium<br />

• The relative particle abundances measured in Pb-Pb collisions are close <strong>to</strong> the<br />

thermodynamical (chemical) equilibrium values (maximum entropy)<br />

corresponding <strong>to</strong> a temperature of ~ 170 MeV (“chemical freeze-out<br />

temperature”). Two parameters: T and μ in the fit.<br />

this would be a natural<br />

outcome of statistical<br />

hadronization of<br />

uncorrelated quarks<br />

[P.Braun-Munzinger, I.Heppe, J.Stachel, Phys. Lett. B465 (1999), 15]<br />

“chemical freeze out”:<br />

the moment when<br />

inelastic interactions<br />

cease<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

34


Chemical equilibrium @ RHIC<br />

• Thermal fits again doing well<br />

200 GeV<br />

62.4 GeV<br />

Jun Takahashi (STAR), SQM`07<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

35


• remarkable regularity in freeze-out systematics<br />

Jean Cleymans, SQM`07<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

36


Particle correlations


Flow<br />

Out-of-plane<br />

Elliptic Flow<br />

• Non-central collisions are azimuthally asymmetric<br />

Y<br />

Reaction<br />

plane<br />

Flow<br />

In-plane<br />

X<br />

<br />

The transfer of this asymmetry <strong>to</strong> momentum space provides a<br />

measure of the strength of collective phenomena<br />

• Large mean free path<br />

• particles stream out isotropically, no memory of the asymmetry<br />

• extreme: ideal gas (infinite mean free path)<br />

• Small mean free path<br />

• larger density gradient -> larger pressure gradient -> larger momentum<br />

• extreme: ideal liquid (zero mean free path, hydrodynamic limit)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

38


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

39<br />

dN<br />

<br />

dp dyd<br />

Azimuthal Asymmetry<br />

• Fourier expansion of azimuthal distribution:<br />

p<br />

T<br />

T<br />

1<br />

2p<br />

p<br />

T<br />

dN<br />

dp<br />

T<br />

dy<br />

<br />

1<br />

2v1 cos( )<br />

2v2<br />

cos(2<br />

) <br />

... <br />

v1 cos <br />

"directed<br />

flow"<br />

v2 cos 2<br />

"elliptic flow"<br />

@RHIC:<br />

• at low p T : azimuthal asymmetry<br />

almost as large as expected at<br />

hydro limit!<br />

• “perfect liquid”?<br />

• very far from “ideal gas”<br />

picture of plasma


v 2 at the LHC<br />

• v 2 still large at the LHC<br />

• v 2 (p T ) very similar at LHC and RHIC<br />

<br />

system still behaves very<br />

close <strong>to</strong> ideal liquid (low<br />

viscosity)<br />

similar hydrodynamical behaviour?<br />

ALICE: PRL 105 (2010) 252302<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

40


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

41<br />

Structures in (Δη,Δφ)<br />

long range structure<br />

in η on near side<br />

aka “the ridge”<br />

near side jet peak<br />

two shoulders<br />

on away side<br />

(at 120 and 240 )<br />

aka “the Mach cone”


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

42<br />

Mach cone?<br />

• double-hump structure on awayside,<br />

at 120 and 240<br />

• a proposed explanation:<br />

• shock wave (sonic boom) :<br />

propagation through medium<br />

of recoiling par<strong>to</strong>n<br />

[Casalderrey-Solana, et al.: hep-ph/0411315]


Fluctuations v 3<br />

Matt Luzum (QM 2011)<br />

• “ideal” shape of participants’ overlap<br />

is ~ elliptic<br />

• in particular: no odd harmonics expected<br />

• participants’ plane coincides with event<br />

plane<br />

• but fluctuations in initial conditions:<br />

• participants plane event plane<br />

v 3 (“triangular”) harmonic appears<br />

[B Alver & G Roland, PRC81 (2010)<br />

054905]<br />

• and indeed, v3 0 !<br />

• v 3 has weaker centrality dependence<br />

than v 2<br />

• when calculated wrt participants<br />

plane, v 3 vanishes<br />

• as expected, if due <strong>to</strong> fluctuations…<br />

ALICE: PRL 107 (2011) 032301<br />

v 2<br />

v 3<br />

43<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12


Long-η-range correlations<br />

• “ultra-central” events: dramatic<br />

shape evolution in a very narrow<br />

centrality range<br />

• double hump structure on awayside<br />

appears on 1% most central<br />

• visible without any need for v 2<br />

subtraction!<br />

• first five harmonics describe<br />

shape at 10 -3 level<br />

“ridge” and “Mach cone”<br />

• explanations based on medium<br />

response <strong>to</strong> propagating par<strong>to</strong>ns were<br />

proposed at RHIC<br />

• Fourier analysis of new data suggests<br />

very natural alternative explanation in<br />

terms of hydrodynamic response <strong>to</strong><br />

initial state fluctuations<br />

ALICE: Andrew Phys. Adare Lett. – B ALICE 708 (2012) (QM2011) 249<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

44


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

45<br />

Correlations: outlook<br />

• is there any residual room for medium response<br />

effects?<br />

look at the “small print” on the away side<br />

• quantitative comparisons with full hydrodynamic<br />

calculations


High-p T suppression


Participants Scaling vs Binary Scaling<br />

e.g.:<br />

N part (or N wound ) = 7 “participants”<br />

N bin (or N coll ) = 12 “binary collisions”<br />

• “Soft”, large cross-section processes expected <strong>to</strong> scale like N part<br />

• “Hard”, low cross-section processes expected <strong>to</strong> scale like N bin<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

47


The nuclear modification fac<strong>to</strong>r<br />

• quantify departure from binary scaling in AA<br />

ratio of yield in AA versus reference collisions<br />

• e.g.: reference is pp R AA<br />

R<br />

AA<br />

<br />

Yield<br />

Yield<br />

AA<br />

pp<br />

<br />

1<br />

Nbin<br />

AA<br />

• …or peripheral AA Rcp (“central <strong>to</strong> peripheral”)<br />

R<br />

cp<br />

<br />

Yield<br />

Yield<br />

AA, central<br />

AA, periph<br />

<br />

Nbin<br />

Nbin<br />

AA,periph<br />

AA, central<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

48


High p T suppression: R AA at RHIC<br />

• High p T particle production<br />

expected <strong>to</strong> scale with<br />

number of binary NN<br />

collisions if no medium<br />

effects<br />

• Clearly does not work for<br />

more central collisions<br />

• Interpreted as due <strong>to</strong> loss<br />

of energy of par<strong>to</strong>ns<br />

propagating through medium<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

49


R AA at the LHC<br />

• Suppression even larger than<br />

@ RHIC<br />

R<br />

AA<br />

( p<br />

T<br />

)<br />

<br />

Yield<br />

AA(<br />

p<br />

Nbin Yield<br />

AA<br />

T<br />

pp<br />

)<br />

( p<br />

T<br />

)<br />

• R AA (p T ) for charged particles<br />

produced in 0-5% centrality<br />

range<br />

• minimum (~ 0.14) for p T ~ 6-7<br />

GeV/c<br />

• then slow increase at high p T<br />

• still significant suppression<br />

at p T ~ 100 GeV/c !<br />

• essential quantitative<br />

constraint for par<strong>to</strong>n energy<br />

loss models!<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

compiled in: CMS: EPJC 72 (2012) 1945<br />

50


Suppression vs event plane<br />

• significant effect, even at 20 GeV!<br />

• further constraints <strong>to</strong> energy loss models<br />

Alexandru Dobrin – ALICE (QM2011)<br />

path-length dependence of energy loss (L 2 , L 3 , …)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

51


Quark number scaling


Baryon puzzle @ RHIC<br />

• Central Au-Au: as many p - (K - )<br />

as p (L) at p T ~ 1.5 2.5 GeV<br />

• e + e - jet (SLD)<br />

• very few baryons<br />

from fragmentation!<br />

p<br />

K<br />

p<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

H.Huang @ SQM 2004 53


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

54<br />

Rcp<br />

R<br />

cp<br />

<br />

Yield<br />

Yield<br />

AA, central<br />

AA, periph<br />

<br />

Ncoll<br />

Ncoll<br />

AA,periph<br />

AA, central<br />

• at higher p T, Rcp of baryons<br />

also comes down!<br />

• if loss is par<strong>to</strong>nic, shouldn’t it<br />

affect p and p in the same way?


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

55<br />

Quark Recombination(Coalescence)?<br />

• if hadrons are formed by recombination, features of the par<strong>to</strong>n<br />

spectrum are shifted <strong>to</strong> higher p T in the hadron spectrum,<br />

in a different way for mesons and baryons<br />

quark number scaling<br />

K +<br />

d s<br />

d<br />

u<br />

u<br />

u u d<br />

X -<br />

d u<br />

d u d<br />

p<br />

u s d d u<br />

-<br />

s s d d d<br />

u d d d<br />

u d<br />

p + u s<br />

d u u u u d<br />

s<br />

u s u u<br />

s d<br />

p<br />

d s d<br />

W + s s u u d<br />

u<br />

u s s s<br />

u d u<br />

u<br />

d<br />

s d s<br />

L<br />

S.Bass @ SQM`04


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

Hadronization<br />

baryon/meson<br />

anomaly<br />

• Radial flow<br />

• Par<strong>to</strong>n fragmentation<br />

• Coalescence (?)<br />

56


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

57<br />

Quark number scaling and v 2<br />

• Recombination also offers an explanation for v 2 baryon puzzle...<br />

dN<br />

<br />

p dp dyd<br />

T<br />

T<br />

1<br />

2p<br />

dN<br />

1<br />

2v1 cos( )<br />

2v2<br />

cos(2<br />

) ...<br />

<br />

p dp dy<br />

T<br />

T<br />

v1 cos <br />

"direct flow"<br />

v2 cos 2<br />

"elliptic flow"<br />

scaled with n(quarks)<br />

STAR Preliminary


Identified particles


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

59<br />

p T spectra vs hydrodynamics<br />

• comparison of identified particle spectra with hydro predictions<br />

• (calculations by C Shen et al.: arXiv:1105.3226 [nucl-th])<br />

Michele Floris – ALICE (QM2011)<br />

<br />

OK for π and K, but p seem <strong>to</strong> “misbehave” (less yield, flatter spectrum)


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

60<br />

v 2 vs hydrodynamics<br />

• comparison of identified particles v 2 (p T ) with hydro prediction<br />

Raimond Snellings<br />

ALICE (QM2011)<br />

• (calculation by C Shen et al.: arXiv:1105.3226 [nucl-th])<br />

<br />

again, pro<strong>to</strong>ns are off… what’s going on with pro<strong>to</strong>ns?<br />

<strong>to</strong> be continued…


Quarkonia


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

62<br />

Charmonium suppression<br />

• QGP signature proposed by Matsui and Satz, 1986<br />

• In the plasma phase the interaction potential is expected <strong>to</strong> be<br />

screened beyond the Debye length l D (analogous <strong>to</strong> e.m. Debye<br />

screening):<br />

• Charmonium (cc) and bot<strong>to</strong>nium (bb) states with r > l D will not bind;<br />

their production will be suppressed


dN/dp<br />

Charmonium suppression<br />

1. Ordinary matter<br />

B<br />

J/ cc<br />

Mass<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

63


dN/dp<br />

Charmonium suppression<br />

2. Quark matter<br />

B<br />

J/ cc<br />

Mass<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

64


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

65<br />

J/y suppression pattern at the SPS<br />

NA50<br />

• measured/expected J/y<br />

suppression vs estimated energy<br />

density<br />

• anomalous suppression sets in at<br />

e ~ 2.3 GeV/fm 3 (b ~ 8 fm)<br />

• effect seems <strong>to</strong> accelerate at<br />

e ~ 3 GeV/fm 3 (b ~ 3.6 fm)<br />

• this pattern has been<br />

interpreted as successive<br />

melting of the c c and of the J/y


J/ψ suppression at RHIC<br />

• J/ψ ~ as suppressed as<br />

at SPS (NA50)<br />

[Hugo Pereira (PHENIX), QM05]<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

66


J/ψ @ LHC: high p T<br />

• LHC: |y| < 2.4, p T > 6.5 GeV/c (CMS)<br />

prompt J/ψ<br />

• LHC |y| < 2.5, pT > 3 GeV/c (ATLAS)<br />

<br />

more suppressed than<br />

RHIC: |y| < 1. pT > 5 GeV/c (STAR)<br />

inclusive J/ ψ<br />

CMS: arXiv:1201.5069<br />

ATLAS: PLB 697 (2011) 294<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

67


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

68<br />

J/ψ @ LHC: low p T<br />

• LHC: 2.5 < y < 4, p T > 0 (ALICE)<br />

<br />

less suppression than<br />

RHIC: 1.2 < y < 2.2, p T > 0 (PHENIX)<br />

<br />

~ as suppressed as<br />

RHIC: |y| < 0.35. pT > 0 (PHENIX)<br />

• very flat as a function of N part<br />

recombination at low p T ?


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

69<br />

Υ(1S) suppression<br />

CMS: arXiv:1201.5069


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

70<br />

Υ(2S+3S) suppression!<br />

CMS: arXiv: 1105.4894<br />

• additional suppression for Υ(2S+3S) w.r.t. Υ(1S) ?


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

71<br />

Quarkonia: outlook<br />

• the future runs should allow us <strong>to</strong> establish<br />

quantitatively the complete quarkonium<br />

suppression(/recombination?) pattern<br />

• high statistic measurements<br />

• open flavour baseline / contamination<br />

• pA baseline


Jets


High p T Probes of the Matter: Jet Study<br />

How Jets are produced?<br />

Event Topology<br />

p<br />

isotropic emission<br />

Hadron Jet<br />

N<br />

q<br />

Fragmentation<br />

Function<br />

q<br />

N<br />

Jet: A localized collection<br />

of hadrons which come<br />

from a fragmenting par<strong>to</strong>n<br />

N<br />

K<br />

p<br />

r<br />

N<br />

Jet event<br />

Hadron Jet<br />

N<br />

K<br />

r<br />

N<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

73


dN/d<br />

dN/dp<br />

Jets<br />

1. Ordinary matter<br />

Fragmentation<br />

function<br />

-180 O 18O<br />

Relative angle<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

Transverse momentum<br />

74


dN/d<br />

dN/dp<br />

Jets<br />

2. Quark matter<br />

Fragmentation<br />

function<br />

-18O O 18O<br />

Relative angle<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

Transverse momentum<br />

75


Jets: Azimuthal Correlation<br />

• Identify jets on a statistical basis<br />

• Given a trigger particle with p T > p T<br />

(trigger), associate particles with p T<br />

> p T (associated)<br />

1 1<br />

C2(<br />

,<br />

h)<br />

<br />

N(<br />

,<br />

h)<br />

N Efficiency<br />

TRIGGER<br />

4 < p T (trig) < 6 GeV/c<br />

2 < p T (assoc.) < p T (trig)<br />

• Away-side correlation suppression in<br />

central Au+Au, but not in d+Au.<br />

• d+Au looks like p+p<br />

• Medium density up <strong>to</strong> 100 times normal<br />

nuclear matter !<br />

“Classical” RHIC result<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

76


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

77<br />

Di-jet imbalance<br />

• Pb-Pb events with large di-jet imbalance observed at the LHC<br />

recoiling jet strongly quenched! CMS: arXiv:1102.1957


A J<br />

• with increasing centrality:<br />

• imbalance quantified by the di-jet asymmetry variable A J :<br />

R 0.4<br />

h <br />

2.8<br />

<br />

enhancement of asymmetric di-jets<br />

with respect <strong>to</strong> pp<br />

• & HIJING + PYTHIA simulation<br />

ATLAS: PRL105 (2010) 252303<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

78


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

79<br />

Di-jet Δφ<br />

• no visible angular decorrelation in Δφ wrt pp collisions!<br />

CMS: arXiv:1102.1957<br />

large imbalance effect on jet energy, but very little effect on jet<br />

direction!


Jet nuclear modification fac<strong>to</strong>r<br />

R<br />

CP<br />

<br />

<br />

Nbin <br />

Nbin <br />

Central<br />

Peripheral<br />

Yield<br />

Yield<br />

Central<br />

Peripheral<br />

<br />

substantial suppression of jet<br />

production<br />

• in central Pb-Pb wrt binary-scaled<br />

peripheral<br />

<br />

out <strong>to</strong> very large jet energies!<br />

Brian Cole – ATLAS (QM2011)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

80


Jet fragmentation function<br />

• distribution of the momenta of the fragments along the jet axis<br />

z<br />

<br />

p<br />

hadron<br />

T<br />

cos(R)<br />

E<br />

jet<br />

T<br />

central<br />

peripheral<br />

Brian Cole – ATLAS (QM2011)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

• distribution is very<br />

similar in central and<br />

peripheral events<br />

• although quenching is<br />

very different…<br />

apparently no effect<br />

from quenching inside<br />

the jet cone…<br />

another puzzle ?<br />

81


What next?<br />

• understand theoretically what is going on<br />

• strong di-jet asymmetry<br />

• no visible effects in fragmentation function, dijet angular<br />

correlations…<br />

• g/Z-jet fragmentation functions<br />

• measure fragmentation function of jets recoiling against<br />

vec<strong>to</strong>r bosons low-bias estimate of jet energy before<br />

quenching<br />

• explore the surroundings of away-side jets<br />

• broadening? softening? re-heating?<br />

• in-medium fragmentation vs reaction plane<br />

• path length dependence!<br />

• b-tagged jets (quark vs gluon jets)<br />

• extreme suppression?<br />

• “mono-jet” events? what do they look like?<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

82


<strong>Heavy</strong> flavors


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

84<br />

Charm and beauty: ideal probes<br />

• study medium with probes of known colour charge<br />

and mass<br />

e.g.: energy loss by gluon radiation expected <strong>to</strong> be:<br />

• par<strong>to</strong>n-specific: stronger for gluons than quarks (colour charge)<br />

• flavour-specific: stronger for lighter than for heavier quarks<br />

(dead-cone effect)<br />

• study effect of medium on fragmentation (no extra<br />

production of c, b at hadronization)<br />

independent string fragmentation vs recombination<br />

• e.g.: D + s/D +<br />

• + measurement important for quarkonium physics<br />

• open QQ production natural normalization for quarkonium studies<br />

• B meson decays non negligible source of non-prompt J/y


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

85<br />

Theoretically...<br />

E<br />

s<br />

C<br />

R<br />

2<br />

qˆ L<br />

average energy loss<br />

Casimir coupling fac<strong>to</strong>r<br />

R.Baier et al., Nucl. Phys. B483 (1997) 291 (“BDMPS”)<br />

transport coefficient of the medium<br />

distance travelled in the medium<br />

Energy loss for heavy flavours is expected <strong>to</strong> be reduced:<br />

i) Casimir fac<strong>to</strong>r<br />

• light hadrons originate from a mixture of gluon and quark jets,<br />

heavy flavoured hadrons originate from quark jets<br />

• C R is 4/3 for quarks, 3 for gluons<br />

ii) dead-cone effect<br />

• gluon radiation expected <strong>to</strong> be suppressed for q < M Q /E Q<br />

[Dokshitzer & Karzeev, Phys. Lett. B519 (2001) 199]<br />

[Armes<strong>to</strong> et al., Phys. Rev. D69 (2004) 114003]


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

86<br />

Experimentally: at RHIC<br />

• HF electrons ~ as<br />

suppressed as light<br />

hadrons<br />

• use of high density (qhat),<br />

introduction of elastic (in<br />

addition <strong>to</strong> radiative)<br />

energy loss... not enough<br />

• high qhat and no beauty<br />

electrons does better<br />

[B.I. Abelev et al (STAR): nucl-ex/0607012]


How much beauty?<br />

[M. Cacciari et al.: PRL 95 (2005) 122001]<br />

• high p T region expected<br />

<strong>to</strong> be beauty-dominated<br />

• but how “high”?<br />

[A. Suaide QM06]<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

• not easy <strong>to</strong> disentangle c/b<br />

contributions <strong>to</strong> RHIC HF e<br />

samples (no heavy flavour vertex<br />

detec<strong>to</strong>rs in RHIC experiments)<br />

87


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

88<br />

Vertex Detec<strong>to</strong>rs!<br />

• need less indirect measurement<br />

full reconstruction of charm decays!<br />

• get rid of b/c ambiguities<br />

• study relative abundances in charm sec<strong>to</strong>r<br />

• Silicon Pixels in ALICE, ATLAS, CMS<br />

• + Silicon Vertex upgrades in STAR, PHENIX


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

89<br />

Track Impact Parameter<br />

• track impact parameter (d 0 ): separation of secondary tracks from HF<br />

decays from primary vertex<br />

• e.g.: d 0 resolution in ALICE


Reconstructed D decays<br />

strong suppression observed in central<br />

Pb-Pb (0-20%) with respect <strong>to</strong> scaled pp<br />

reference<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

90


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

91<br />

Comparison: D and π suppression<br />

0-20% 40-80%<br />

• charm is substantially suppressed:<br />

• in central collisions: ~ a fac<strong>to</strong>r 4-5 for p T > 5 GeV/c<br />

• D meson R AA ~ compatible with π R AA


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

92<br />

How about the colour fac<strong>to</strong>r?<br />

• quarks (C R = 4/3) expected <strong>to</strong><br />

couple weaker than gluons (C R = 3)<br />

at p T ~ 8 GeV, fac<strong>to</strong>r ~ 2 less<br />

suppression expected for D than<br />

for light hadrons in gluon radiation<br />

energy loss prediction<br />

… <strong>to</strong> be continued with higher<br />

statistics…<br />

N Armes<strong>to</strong> et al., Phys. Rev. D71 (2005) 054027


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

93<br />

c and b quenching @ LHC<br />

substantial suppression of<br />

heavy flavour production<br />

– beauty, <strong>to</strong>o!<br />

with larger statistics: study par<strong>to</strong>n mass and colour charge<br />

dependence of interaction with medium!


8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

94<br />

<strong>Heavy</strong> Flavour: outlook<br />

• high statistics D measurements<br />

are D really as suppressed as light hadrons?<br />

• charm thermalisation?<br />

measure D mesons v2<br />

• subtract D background pure B electron spectrum<br />

• beauty energy loss in wide p T range<br />

• in-medium fragmentation of b-tagged jets !


Conclusions<br />

• Pre-SPS and SPS studies: strangeness enhancement, charmonium<br />

suppression => indications of QGP<br />

• RHIC studies: jet quenching, flow => QGP becomes hot dense matter<br />

(ideal liquid)<br />

• in November 2010, the field of ultrarelativistic nuclear collisions has<br />

entered a new era with the start of heavy ion collisions at the LHC<br />

• abundance of hard probes<br />

• exciting results already from 2010 data sample<br />

• flow + fluctuations => death of ridge and Mach cone?<br />

• anomalies in pro<strong>to</strong>n yields & momentum distributions<br />

• pattern of jet and heavy flavour suppression => challenge <strong>to</strong> Eloss models<br />

• and the future looks bright!<br />

• ~ 150/µb delivered by LHC in 2011<br />

• p-Pb run scheduled for 2012<br />

<br />

<br />

precision measurements + handle on cold nuclear matter effects<br />

close in on dynamic and coupling properties of medium<br />

and … look out for surprises!!!<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12 95


Thank you!


Backup slides<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

97


Rapidity and Pseudorapidity<br />

rapidity<br />

pseudorapidity<br />

y<br />

<br />

1<br />

2<br />

<br />

log<br />

<br />

<br />

E<br />

E<br />

<br />

<br />

p<br />

p<br />

z<br />

z<br />

<br />

<br />

<br />

h 1 2 log p p z<br />

<br />

p p z<br />

<br />

1<br />

2 log(tan(q 2 ))<br />

• in the ultrarelativistic limit: p ~ E h ~ y<br />

• for the transverse variables:<br />

<br />

rapidity<br />

pseudorapidity<br />

p<br />

E<br />

z<br />

m<br />

m<br />

T<br />

T<br />

sinh( y)<br />

cosh( y)<br />

p<br />

p<br />

z<br />

<br />

<br />

p<br />

p<br />

T<br />

T<br />

sinh( h)<br />

cosh( h)<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

98


Transverse variables<br />

• Transverse momentum:<br />

2 2<br />

pT<br />

px<br />

py<br />

pT<br />

( px,<br />

py<br />

)<br />

• Transverse mass:<br />

m<br />

<br />

m<br />

<br />

2 2<br />

T<br />

p T<br />

E<br />

<br />

m<br />

2<br />

<br />

p<br />

2<br />

<br />

2 2<br />

m T<br />

p z<br />

p z<br />

mT<br />

sinh(y) E m cosh(y)<br />

T<br />

• Transverse energy:<br />

E<br />

<br />

T<br />

E i<br />

i<br />

sinq<br />

i<br />

q i = angle w.r.t. beam direction<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

99


Invariant cross-section<br />

• A + B a 1 + a 2 + … + a n<br />

• we may be interested only in the production of a specific type of<br />

particle e.g.:<br />

Pb + Pb W + X<br />

• Differential cross section:<br />

• but d 3 p is not Lorentz invariant; is used instead:<br />

3<br />

d p<br />

E<br />

dp<br />

x<br />

dp<br />

y<br />

dy<br />

<br />

d<br />

d<br />

3<br />

<br />

3<br />

p W<br />

d 3<br />

p<br />

E<br />

Lorentz-invariant for a boost along z<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

100


• Invariant cross-section:<br />

E<br />

3<br />

d <br />

<br />

3<br />

dp<br />

3<br />

d <br />

dp dp dy<br />

x<br />

y<br />

• in terms of p T :<br />

E<br />

3<br />

d <br />

<br />

3<br />

dp<br />

p<br />

T<br />

3<br />

d <br />

dp ddy<br />

T<br />

• integrating over :<br />

1<br />

2pp<br />

T<br />

2<br />

d <br />

dp dy<br />

T<br />

2<br />

1 d <br />

<br />

2<br />

p d(<br />

p ) dy<br />

T<br />

2<br />

1 d <br />

<br />

2<br />

p d(<br />

m ) dy<br />

T<br />

<br />

1<br />

2pm<br />

T<br />

2<br />

d <br />

dm dy<br />

T<br />

8-th Summer School on Nuclear <strong>Physics</strong>, 3-12/07/12<br />

101

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!