09.11.2014 Views

G. Gasper Using sums of squares to prove that ... - Fuchs-braun.com

G. Gasper Using sums of squares to prove that ... - Fuchs-braun.com

G. Gasper Using sums of squares to prove that ... - Fuchs-braun.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

and hence, by (3.7),<br />

(4.14) | 1 F 1 (a; c; z)| 2 =<br />

∞∑<br />

k=0<br />

(a) k (c − a) k<br />

k! (c) 2k (c + k − 1) k<br />

(−1) k y 2k<br />

× 2 F 1 (−k, 1 − k; c; 1 + x 2 /y 2 )( 1 F 1 (a + k; c + 2k; x)) 2 .<br />

Then differentiation <strong>of</strong> equation (4.13) with respect <strong>of</strong> y and application <strong>of</strong><br />

(3.7) gives the following extensions <strong>of</strong> (4.9) and (4.10) (and also <strong>of</strong> (3.19) and<br />

(3.20)), respectively,<br />

(4.15)<br />

and<br />

y ∂ ∂y |c(c + 1) 1F 1 (a; c; z)| 2 = 2y 2 ∞ ∑<br />

(4.16)<br />

∂ 2<br />

k=0<br />

(a) k+1 (c − a) k+1 (c + 1)<br />

k! (c + 2) 2k (c + k + 1) k<br />

(−1) k+1 y 2k<br />

× 2 F 1 (−k, −k; c + 1; 1 + x 2 /y 2 )( 1 F 1 (a + k + 1; c + 2k + 2; x)) 2<br />

∂y 2 |c(c + 1) 1F 1 (a; c; z)| 2 = 2<br />

∞∑<br />

k=0<br />

(a) k+1 (c − a) k+1 (c + 1)<br />

k! (c + 2) 2k (c + k + 1) k<br />

(−1) k+1 y 2k<br />

× 2 F 1 (−k, −k; c + 1; 1 + x 2 /y 2 )( 1 F 1 (a + k + 1; c + 2k + 2; x)) 2<br />

+ 4y 2 ∞ ∑<br />

k=0<br />

(a) k+2 (c − a) k+2<br />

k! (c + 2) 2k+2 (c + k + 3) k<br />

(−1) k y 2k<br />

× 2 F 1 (−k, −k − 1; c + 2; 1 + x 2 /y 2 )( 1 F 1 (a + k + 2; c + 2k + 4; x)) 2 .<br />

If a = −n is a negative integer and c = α + 1, then (4.13)–(4.16) reduce<br />

<strong>to</strong> (4.5), (4.6), (4.9), (4.10), respectively. If a = c + n with n a nonnegative<br />

integer, then (4.15) and (4.16) reduce <strong>to</strong> terminating <strong>sums</strong> <strong>of</strong> <strong>squares</strong> expansions<br />

with nonnegative coefficients which <strong>prove</strong> <strong>that</strong> c(c + 1) 1 F 1 (c + n; c; z),<br />

as a function <strong>of</strong> z, has only real zeros when c ≥ −1, where this function is<br />

<strong>to</strong> be replaced by its c → 0 and c → −1 limit cases when c = 0 and c = −1,<br />

respectively. It should be noted <strong>that</strong>, in view <strong>of</strong> Kummer’s transformation<br />

formula [9, 6.3(7)]<br />

(4.17)<br />

1F 1 (a; c; x) = e x 1F 1 (c − a; c; −x),<br />

these results on the zeros <strong>of</strong> c(c + 1) 1 F 1 (c + n; c; z) are equivalent <strong>to</strong> those<br />

obtained above for the Laguerre polynomials.<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!