12.11.2014 Views

convergence of the fractional parts of the random variables to the ...

convergence of the fractional parts of the random variables to the ...

convergence of the fractional parts of the random variables to the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Convergence <strong>of</strong> <strong>the</strong> <strong>fractional</strong> <strong>parts</strong> <strong>of</strong> <strong>the</strong> <strong>random</strong> <strong>variables</strong> 125<br />

∞∏<br />

m=1<br />

[ii]. According <strong>to</strong> Proposition 3,<br />

∞∑<br />

m=1<br />

(1 − |c m (k)|) divergent ⇐⇒<br />

c m (k) is divergent, that is {S n } d → F, with F ≠ Exp ∗ (λ).<br />

Corollary 2. If <strong>the</strong> sequence (c m ), <strong>of</strong> <strong>the</strong> <strong>random</strong> <strong>variables</strong> sequence (X m )<br />

∞∑<br />

meets <strong>the</strong> condition <strong>of</strong> (1 − |c m (k)|) <strong>to</strong> be convergent, ∀ k ∈ Z 0 , <strong>the</strong>n<br />

m=1<br />

{S n } d → Exp ∗ (λ), where S n = n ∑<br />

m=1<br />

X m , n ∈ N.<br />

Theorem 6. Let (X m ) be a sequence <strong>of</strong> independent and identically distributed<br />

<strong>random</strong> <strong>variables</strong> with <strong>the</strong> characteristic function ϕ, X 1 ∼ Exp ∗ (λ),<br />

and 0 < V arX 1 < ∞. Let (a m ) be a sequence <strong>of</strong> real numbers so that<br />

lim m→∞ a m = 0. We define V n :=<br />

(i). If<br />

∞∑<br />

m=1<br />

n ∑<br />

m=1<br />

a m X m , n ∈ N.<br />

a 2 m is convergent, <strong>the</strong>n {V n } d → Exp ∗ (λ).<br />

(ii). We suppose that <strong>the</strong>re is k ∈ Z 0 , ϕ(2πka m ) ≠ 0. If<br />

a 2 m is divergent,<br />

<strong>the</strong>n {V n } don’t converge <strong>to</strong> Exp ∗ (λ).<br />

∞∑<br />

m=1<br />

Pro<strong>of</strong>. [i]. Let k ∈ Z 0 be fixed. By Corollary 2, it is sufficient <strong>to</strong> show that<br />

∞∑<br />

(1 − |ϕ(2πka m )|) is convergent.<br />

m=1<br />

It is known that if X ∼ Exp ∗ (λ), <strong>the</strong>n ϕ X (t) = λ/ (λ − it), from where<br />

|ϕ X (t)| =<br />

( )<br />

λ<br />

t 2 −<br />

1<br />

2<br />

√<br />

(1<br />

λ 2 + t = +<br />

.<br />

λ) 2<br />

If we consider <strong>the</strong> development in binomial series (1 + x) − 1 2 = 1 − x 2<br />

(<br />

+<br />

3<br />

8 x2 + ..., <strong>the</strong>n we obtain 1 + ( ) )<br />

t 2 −<br />

1<br />

2<br />

λ<br />

= 1 − 1<br />

2λ t2 + o(t 2 ), from where <strong>the</strong><br />

following 1<br />

4λ t2 < 1 − |ϕ X (t)| < 1 λ t2 .<br />

Then<br />

∞∑<br />

∞∑ 1<br />

(1 − |ϕ(2πka m )|) <<br />

λ 4π2 k 2 a 2 m = 4π2 k 2 ∞∑<br />

a 2<br />

λ<br />

m.<br />

m=1<br />

m=1<br />

m=1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!