21.11.2014 Views

Nanofiber - UMT Admin Panel

Nanofiber - UMT Admin Panel

Nanofiber - UMT Admin Panel

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Nanofiber</strong>s- preparation and<br />

potential applications<br />

Zeeshan Khatri, Kai Wei and Ick-Soo Kim<br />

Shinshu University<br />

Nano Fusion Technology Research Lab.


Zeeshan Khatri<br />

BE Textile; ME Textile; PE; CText ATI; CCol ASDC<br />

Dr. Eng. Student<br />

Nano Fusion Technology Research Group<br />

Faculty of Textile Science and Technology<br />

Shinshu University, Nagano, JAPAN<br />

Lecturer<br />

Department of Textile Engineering<br />

Mehran University of Engineering and Technology, Jamshoro<br />

2<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


「 信 州 大 学 繊 維 学 部 」<br />

Ueda,<br />

Japan<br />

3<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Shinshu University is located in Nagano Prefecture<br />

The Japan Alps<br />

Winter Olympic Game in 1998 Old castle Hot spring<br />

4<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Contents<br />

Introduction: Why <strong>Nanofiber</strong>?<br />

Potential Applications<br />

& Recent Research Achievements<br />

Nano-Fiber Production System<br />

5<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


What is Nano?<br />

1 nm is to a tennis ball<br />

what a tennis ball is to the Earth<br />

10 7 m<br />

Tennis ball<br />

1 nm = 10 -9<br />

6<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


7<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Introduction: Why <strong>Nanofiber</strong>?<br />

10 μm<br />

Small but Great Effect !<br />

from Phillip Gibson and Heidi Schreuder-Gibson,<br />

U.S. Army Soldier Systems Center, Natick<br />

8<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Electrospun <strong>Nanofiber</strong>s: Electrostatic Spinning<br />

9<br />

Copper Wire<br />

Syringe<br />

Polymer<br />

Needle<br />

<strong>Nanofiber</strong> ・・・<br />

Charged fibers<br />

Positive<br />

Electrode<br />

Single Jet<br />

Rotating Metallic Collector<br />

Schematic of electrospinning<br />

Power Supply<br />

Shinshu University, Japan<br />

3D structure of<br />

E-spun fibers<br />

One of top-down manufacturing processes<br />

to produce polymer fibers<br />

History<br />

Electrospinning<br />

1902 Initiative<br />

1934 Patenting (By Formhals)<br />

Early 1990s Activation (By Reneker)<br />

Characteristics of electrospinning;<br />

- Various polymers are available<br />

- Low cost for production<br />

- Controlled diameter of the fibers<br />

from nano- to micrometers<br />

- Easy processing<br />

- Direction preparation of fabric sheets<br />

System parameters<br />

- Mw &MWD, architecture(branched,<br />

linear<br />

etc.) of the polymer<br />

-Solution properties (viscosity,<br />

conductivity, and surface tension)<br />

Processing parameters<br />

- Applied voltage, flow rate, concentration,<br />

distance between the capillary tip and<br />

collector, ambient parameters<br />

(temperature, humidity, air velocity in<br />

the<br />

chamber)<br />

- Motion of collector<br />

Nano Fusion Technology Research Group


Organic Polymers for Electrospinning<br />

Nylon6, Nylon66,<br />

PVC, PU, PVC/PU,<br />

PVA, PVAc, PAN,<br />

PEI, PC, PSF, etc.<br />

Nylon6, Nylon66, PU,<br />

PVA, PVAc, PAN, PEI,<br />

etc.<br />

-Biodegradable<br />

polymers :PCL, PLA,<br />

PLGA, etc.<br />

PU, PU/PVC, PCL<br />

Nylon6, Nylon66,<br />

PSF, etc.<br />

Coating Nonwoven Filaments<br />

5 μm 1 μm<br />

10 μm<br />

Key Technologies<br />

10<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Various Nanostructured Electrospun <strong>Nanofiber</strong>s<br />

Randomly deposited<br />

nanofibers<br />

Aligned nanofibers<br />

Porous fibers<br />

Porous fibers<br />

Twisted ribbon fibers<br />

Cross-section images<br />

11<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Various Electrospun <strong>Nanofiber</strong>s<br />

PVA<br />

Poly(1-butene)<br />

Polyvinyl acetate (PVAc)<br />

Poly-L-lactic acid (PLLA)<br />

PP<br />

Polystyrene(PS)<br />

Poly(vinylidene fluoride)(PVDF)<br />

Cellulose acetate<br />

PVP<br />

Nylon-6<br />

Poly(4-methyl-1-pentene)(PMP)<br />

Nylon66, PVC, PAN,<br />

PU<br />

Silk<br />

Poly(ether ketone)<br />

PES, PCL, PLA etc.<br />

2μm<br />

12<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong>s: volumetry in biomedical publications since 2000<br />

This chart was built by searching PubMed for publications mentionning<br />

nanofiber or nanofibers in their title or abstract.<br />

13<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Potential Applications<br />

&<br />

Recent Research Achievements<br />

14<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Various Applications<br />

Air filter<br />

Advantages<br />

Large specific<br />

surface area<br />

Disadvantages<br />

Low<br />

mechanical properties<br />

Liquid filter<br />

Battery<br />

separator<br />

Low air resistance<br />

Small pore size<br />

<strong>Nanofiber</strong><br />

Wes<br />

Difficulty of<br />

mass production<br />

Risks<br />

on human health<br />

Outdoor wear<br />

Lightweight<br />

Environmental pollution<br />

Medical uses<br />

Carbon Fiber<br />

Clean-room<br />

wiper<br />

15<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Recent Research Achievements<br />

Advanced Electrospinning<br />

Spinning Techniques<br />

Solution electrospinning<br />

Melt-blown electrospinning<br />

Hand spinning<br />

Ultrasonic Electrospinning<br />

<strong>Nanofiber</strong> Assembly<br />

<strong>Nanofiber</strong> filaments<br />

High strength nanofiber filaments<br />

Shape memory nanofiber filaments<br />

<strong>Nanofiber</strong> tubes<br />

<strong>Nanofiber</strong> capsules<br />

Energy<br />

Electrics/Electronics<br />

Metal nanofibers<br />

Catalysts<br />

EMI shielding materials<br />

Filters<br />

Separators<br />

Electrodes<br />

<strong>Nanofiber</strong>s<br />

Healthcare<br />

Biomedical<br />

Nanofibrous scaffolds<br />

Wound dressing<br />

Drug delivery carriers<br />

Hydrogel nanofibers<br />

16<br />

Nano-Characterization<br />

Tensile test of single nanofibers<br />

Friction test<br />

Shinshu University, Japan<br />

Mass Production System<br />

<strong>Nanofiber</strong> Mass Production<br />

System<br />

Nano Fusion Technology Research Group


Pressure Drop<br />

Marketed Filter<br />

With <strong>Nanofiber</strong><br />

10 μm 10 μm<br />

Nano Filter Advantage<br />

• 低 い 圧 力 損 失<br />

• 高 い 集 塵 効 率<br />

• 長 寿 命 ,リサイクル<br />

( 表 面 濾 過 方 式 による)<br />

Depth Filtration<br />

Surface Filtration<br />

Dust<br />

Dust<br />

Finish Point of Life Time<br />

With <strong>Nanofiber</strong><br />

Marketed filter<br />

Time<br />

17<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


ULPA, HEPA and <strong>Nanofiber</strong><br />

3 layer<br />

<strong>Nanofiber</strong> Web<br />

SB Nonwoven<br />

Air<br />

Permeability<br />

(cc/cm 2 /sec)<br />

Pressure drop<br />

(mmH2O)<br />

Efficiency<br />

(%)<br />

HEPA 5.4 20.5 99.9<br />

<strong>Nanofiber</strong> 14.7 5.8 HEPA 同 等<br />

ULPA 2.01 34.7 99.999<br />

<strong>Nanofiber</strong> 11.5 7.8 UEPA 同 等<br />

18<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Efficiency(%)<br />

Filters<br />

Marketed Filter<br />

<strong>Nanofiber</strong> Filter<br />

Trapping mechanism<br />

Mechanical<br />

capture (pore size)<br />

Adsorption<br />

(Ionic bond , etc.)<br />

Mechanical capture<br />

(pore size)<br />

Bacteria retention<br />

ability<br />

100<br />

80<br />

Efficiency test<br />

Removal efficiency (%) 80 ~ 99 99.999<br />

6 0<br />

40<br />

Particles Water<br />

20<br />

0<br />

<strong>Nanofiber</strong> Web<br />

Marketed<br />

Membrane<br />

Particle size (µm)<br />

Hydrophilic Polymer (Nylon, PU, etc)<br />

<strong>Nanofiber</strong> Membrane<br />

19<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Air<br />

Water<br />

Hydrophobic Polymer (PU, etc)<br />

<strong>Nanofiber</strong> Membrane<br />

Physical Property Sample 2005 Sample 2007 Test Method<br />

Thickness (micron) 15 14 JIS L1096<br />

Air Permeability (cc/cm・sec) 0.80±0.05 0.50±0.05 JIS L1096A<br />

Water-proofness (mmH 2 O) 5,000±100 12,000±500 JIS L1092B<br />

Vapor Transmission Rate(g/m 2 ・24hr) 140,000±5,000 160,000±5,000 JIS L1099B-2<br />

20<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Counts<br />

Nano-Wiper<br />

Airborne Particle Counter<br />

50<br />

40<br />

Marketed Product<br />

Nano Wiper<br />

30<br />

20<br />

10<br />

0<br />

100 200 300 400 500 600<br />

Particle Size (nm)<br />

<strong>Nanofiber</strong>s<br />

dusts<br />

dusts<br />

Commercial wiper<br />

Nano wiper<br />

Contains the size of particles<br />

ranging from 0.1 to 1.0 microns<br />

21<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


fungi<br />

virus<br />

Dust size: 3~5μm<br />

Virus size: 0.1~0.3μm<br />

Nano fiber<br />

+<br />

Antibacterial powder<br />

<strong>Nanofiber</strong>-Mask<br />

Nanomask<br />

・lightweight<br />

・Low constricting of the breath<br />

・Blocking of harmful substances and providing<br />

immune function.(99.9%high antivirus function)<br />

Bacteria : Klebsiella pneumoniae ATCC 4352<br />

Standard fabric : Cotton<br />

Blank<br />

Sample<br />

Normal Mask<br />

<strong>Nanofiber</strong> Mask<br />

At beginning 2.0×10 4 2.0×10 4<br />

After 18 hrs 4.5×10 7 5.8×10 7<br />

Bacteriostatic<br />

reduction rate<br />

- 0<br />

At beginning 2.0×10 4 2.0×10 4<br />

After 18 hrs 4.5×10 7


<strong>Nanofiber</strong>-Wallpaper<br />

Nano Wallpaper (Nanofilm+Paper+Nonwoven)<br />

After 2 weeks<br />

*We see only a stain that is not mold.<br />

一 般<br />

ナノ<br />

23<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Metallized nanofibers<br />

Metalized <strong>Nanofiber</strong>s<br />

Electrospinning<br />

2μm<br />

Ag: Antimicrobial<br />

Cu: Electrical conductivity<br />

Au, Ni: Catalytically / electrical<br />

TiO 2 : Anti-UV / photocatalysis<br />

Other materials<br />

Metal deposited PU nanofiber web<br />

Metal Deposition<br />

Targeted<br />

<strong>Nanofiber</strong> webs<br />

(a)<br />

Metal<br />

vapor<br />

Metal<br />

Crucible<br />

Resistive<br />

Heater<br />

< 10 -6 Torr<br />

24<br />

(a)<br />

Vacuum<br />

Pump<br />

Shinshu University, (b) Japan<br />

Nano Fusion Technology Research Group


Metallized nanofibers<br />

Metal nanofibers<br />

Pure PU nanofiber<br />

web<br />

Deposition<br />

Ⅰ. Pure PU<br />

Ⅱ.10nm Cu-deposited PU nanofiber web<br />

Ⅲ. 50nm Cu-deposited PU nanofiber web<br />

Ⅳ. 100nm Cu-deposited PU nanofiber web<br />

Metal deposited PU nanofiber<br />

web<br />

25<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong> Assembly: <strong>Nanofiber</strong> Filaments<br />

High strength nanofiber filaments<br />

高 分 子 ナノ 繊 維 からなる 糸 の 製 造 方 法 特 願 2010-081120<br />

1) Electrospinning 2)Slitting and twisting<br />

3cm 1.8×10 -4 Ω・m<br />

26<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong> Assembly: Aligned <strong>Nanofiber</strong>s<br />

Aligned nanofibers<br />

n<br />

N. Kimura, H. K. Kim, B. S. Kim, K. H. Lee, I. S. Kim, Macromol. Mater. Eng. 2010, 295, 1090-1096.<br />

27<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong> Assembly: <strong>Nanofiber</strong> Filaments<br />

Shape memory nanofiber filaments<br />

1) Electrospinning 2)Slitting and twisting 3)Silicone coating & curing 4) Shape memory<br />

behavior<br />

Y. Lee, et al., to be submitted (2011).<br />

28<br />

X. Luo, P. T. Mather, Macromolecules 2009, 42, 7251-7253.<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Blood Sugar Bio-sensor<br />

cellulose<br />

10 μm<br />

Expected blood sugar Bio-sensor<br />

Using Nano-fibers<br />

‣ Very high sensitive<br />

‣ Faster<br />

29<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Sensor Field<br />

Output<br />

molecule<br />

metal-oxidesemiconductor<br />

Chemical reaction<br />

(Redox reaction et.al )<br />

Current<br />

generation<br />

Sensor mechanism<br />

(Gas sensor, humidity sensor et.al.)<br />

<strong>Nanofiber</strong><br />

High Sensitve<br />

Sensor<br />

Because…<br />

High surface-to-volume ratio<br />

→ reaction area up!!<br />

pump<br />

Response time = 8 s<br />

High voltage<br />

Power supply<br />

Response time = 100 s<br />

Polyimide tape<br />

for masking<br />

Meltng<br />

substrate<br />

High speed response<br />

30<br />

Shinshu University, Japan<br />

Comparing response of bulk PPy and PPy nanofibers<br />

upon exposure to 20ppm of NH 3 .<br />

Nano Fusion Technology Research Group


Tissue Engineering<br />

The typical tissue<br />

engineering approach.<br />

Combination<br />

•Cells<br />

•Engineering<br />

•Materials<br />

•Suitable biochemical<br />

•Physio-chemical factors<br />

1. Remove cells<br />

2. Expand number in culture<br />

3. Seed onto an appropriate scaffold<br />

4. Place into culture<br />

5. Re-implant engineered tissue repair<br />

damaged site<br />

31<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Tissue Engineering<br />

Proteoglycan<br />

Collagen fiber<br />

Hyaluronic acid<br />

Fibronectin<br />

Extracellular Matrix (ECM)<br />

The extracellular matrix is part of animal<br />

tissue that usually provides structural<br />

support to the cells in addition to<br />

performing various other important<br />

functions.<br />

Seeking to imitate the functions of ECM,<br />

we used many method. These mainly<br />

involve the use of synthetic scaffolds<br />

fabricated from biocompatible materials<br />

to carry, support and guide cells towards<br />

tissue regeneration.<br />

Function of scaffold material<br />

・Biocompatibility<br />

・ Moderate strength<br />

・ Supporting to cell proliferation and<br />

differentiation<br />

32<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Biomedical Application: Scaffolds<br />

With <strong>Nanofiber</strong><br />

Without<br />

Mouse<br />

Good loosely connected 3D porous mats<br />

- high porosity and high surface area<br />

×40 After<br />

3weeks<br />

• Commercially available synthetic polymer<br />

polylactide (PLA), polycaprolactone (PCL),<br />

poly(glycolic acid) (PGA), and their copolymers etc.<br />

and especially synthesised novel biomaterials that<br />

are designed<br />

33<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


34<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


ポアサイズの 拡 大 化<br />

Kai Wei, Yuan Li, Kyu-Oh Kim, Yuya Nakagawa, Byoung-Suhk Kim, Koji<br />

Abe, Guo-Qiang Chen, Ick-Soo Kim.<br />

Fabrication of nano-hydroxyapatite on electrospun silk fibroin nanofiber and<br />

their effects in osteoblastic behavior.<br />

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A. IF:3.044<br />

研 究 目 的<br />

35<br />

細 胞 培 養 の 高 効 率 化 に 向 けた<br />

ナノファイバー 不 織 布 の 形 態 制 御<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Biomedical Application: Blood Vessel Prosthesis<br />

<strong>Nanofiber</strong> tube<br />

Blood vessel prosthesis<br />

Cross-section part<br />

Surface part<br />

36<br />

Shinshu University, Japan<br />

Meadox Exxcel TM<br />

ePTFE Vascular Grafts<br />

Nano Fusion Technology Research Group


Post operation,<br />

regenerated<br />

nerve<br />

4 months<br />

Electrospun Collagen/PCL<br />

nerve guide conduit<br />

Electrospun PLGA/PCL nerve<br />

guide conduit<br />

37<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


38<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


39<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


40<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


41<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


42<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


10<br />

μm<br />

100 μm<br />

43<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Cell Adhesion Behavior<br />

44<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong> capsule<br />

: 3D wrapping/coating by Electrospinning Method<br />

4) PLA nanofiber capsule<br />

• Nanoparticles (ex. TiO2, ZnO3, Silica, Etc.)<br />

• Nano micelles with drugs<br />

<strong>Nanofiber</strong> tube<br />

Cross-section part<br />

Surface part<br />

45<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Smart drug delivery<br />

<strong>Nanofiber</strong>s<br />

• To enhance the<br />

therapeutic activity by<br />

prolonging drug half-life<br />

• To be released through<br />

diffusion system<br />

In vivo<br />

•Glucose reaction<br />

Nanoparticles<br />

• Improving solubility of<br />

hydrophobic drugs<br />

• Reducing potential<br />

immunogenicity<br />

46<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Core-Shell<br />

Nanostructured<br />

Particles<br />

O<br />

CH 3<br />

O CH 2<br />

C<br />

N<br />

O<br />

R<br />

Si<br />

Si<br />

O<br />

O<br />

Si<br />

CH 2 H H 3 C<br />

O<br />

O<br />

Si<br />

n<br />

Si<br />

O<br />

R<br />

R<br />

C O<br />

R Si<br />

O O<br />

Si O<br />

CH Si R Si<br />

N<br />

3<br />

R<br />

O<br />

O<br />

R<br />

H<br />

Si<br />

O<br />

R<br />

Si<br />

Si R<br />

H 3 C<br />

O<br />

O<br />

Si<br />

Si O<br />

R<br />

R Si<br />

O O<br />

Si O<br />

Si R<br />

O<br />

Si R<br />

R<br />

PEG-POSS Telechelic<br />

POSS<br />

Hydrophobic Segment<br />

PEG<br />

Hydrophilic Segment<br />

47<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


The drug release behavior according to<br />

diffusion controlled mechanism is usually<br />

governed by the following equation,<br />

n = 0.87<br />

diffusion or non-frictian diffusion<br />

M t /M = kt n<br />

where M is the total amount of insulin in<br />

dosage form, M t is the amount of insulin<br />

released at time t, k is kinetic constant, and n<br />

is diffusion or release exponent constant.<br />

K.O. Kim, B.S. Kim, I.S. Kim, Journal of Biomaterials and Nanobiotechnology, 2011, 2, 201-206.<br />

48<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


<strong>Nanofiber</strong> Production<br />

Systems<br />

49<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


Global Companies Worldwide for <strong>Nanofiber</strong><br />

Production<br />

E 社<br />

N 社<br />

● Development of nanofiber production<br />

equipment by global companies worldwide<br />

● Currently developed equipment in lab scale:<br />

60cm in width and max. 0.5m/min in capacity<br />

● For mass production of the nanofibers,<br />

facility development, polymer recipe, electrical,<br />

electronics, and control of the complex<br />

technologies should be proceeded.<br />

F 社<br />

M 社<br />

K 社<br />

D 社<br />

Nano-I<br />

50<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


TOPTEC´s Unique <strong>Nanofiber</strong> Production System<br />

<strong>Nanofiber</strong> Mass Production Plant<br />

51<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


52<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group


53<br />

Shinshu University, Japan<br />

Nano Fusion Technology Research Group

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!