15.12.2014 Views

Role of plant growth promoting rhizobacteria and L-tryptophan on improvement of growth, nutrient availability and yield of wheat (Triticum aestivum) under salt stress

During the present study Pseudomonas sp and Bacillus cereus isolated from rhizospheric soil of halophytic weeds of Khewra salt range were used as bioinoculant on wheat. Aqueous solution of tryptophan was added to the rhizospheric soil @1ug/L after seed germination. Experiment was conducted at Quaid-i-Azam University Islamabad in pots under sterilized condition. Electrical conductivity (EC) was maintained to 3.7 dsm-1 by applying 150mM NaCl twice (after 7 and 14d of seed germination). PGPR inoculation significantly decreased EC, pH, SAR, Na, and Cl contents and improved K, Ca, Mg, Fe, P, NO3 and organic matter contents of the rhizospheric soil. Tryptophan addition assisted the PGPR to further decrease the EC, SAR and improved nutrients uptake and growth. Tryptophan augmented the PGPR-induced increase in fresh weight, chlorophyll, proline and sugar contents. Superoxide dismutase and peroxidase activities of leaves of inoculated plants were also higher in the presence of tryptophan. Greater production of abscisic acid and Indole acetic acid were recorded in leaves of PGPR inoculated plants and addition of tryptophan augmented the phytohormone production in leaves of treated plants. Inoculation of PGPR alone and with tryptophan positively affected the yield of crop by improving seed establishment and number of seeds/spike.

During the present study Pseudomonas sp and Bacillus cereus isolated from rhizospheric soil of halophytic weeds of Khewra salt range were used as bioinoculant on wheat. Aqueous solution of tryptophan was added to the
rhizospheric soil @1ug/L after seed germination. Experiment was conducted at Quaid-i-Azam University Islamabad in pots under sterilized condition. Electrical conductivity (EC) was maintained to 3.7 dsm-1 by applying 150mM NaCl twice (after 7 and 14d of seed germination). PGPR inoculation significantly decreased EC, pH, SAR, Na, and Cl contents and improved K, Ca, Mg, Fe, P, NO3 and organic matter contents of the
rhizospheric soil. Tryptophan addition assisted the PGPR to further decrease the EC, SAR and improved nutrients uptake and growth. Tryptophan augmented the PGPR-induced increase in fresh weight, chlorophyll, proline and sugar contents. Superoxide dismutase and peroxidase activities of leaves of inoculated plants were also higher in the presence of tryptophan. Greater production of abscisic acid and Indole acetic acid were recorded in leaves of PGPR inoculated plants and addition of tryptophan augmented the phytohormone production in leaves of treated plants. Inoculation of PGPR alone and with tryptophan positively affected the yield of crop by improving seed establishment and number of seeds/spike.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

hizospheric soil than that <str<strong>on</strong>g>of</str<strong>on</strong>g> uninoculated c<strong>on</strong>trol<br />

soil. As compared to uninoculated c<strong>on</strong>trol ABA<br />

c<strong>on</strong>tents in the leaves were 80-84% higher in<br />

Pseudom<strong>on</strong>as sp <str<strong>on</strong>g>and</str<strong>on</strong>g> Bacillus cereus inoculated<br />

<str<strong>on</strong>g>plant</str<strong>on</strong>g>s respectively. Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> to <str<strong>on</strong>g>plant</str<strong>on</strong>g>s<br />

increased the ABA c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> soil further by 30-50%<br />

whereas in leaves 12-15% more ABA were observed<br />

over uninoculated c<strong>on</strong>trol.<br />

Bacillus cereus produced 6-8% higher Gibberelic acid<br />

(Fig 6 ) than that <str<strong>on</strong>g>of</str<strong>on</strong>g> Pseudom<strong>on</strong>as sp. Leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<str<strong>on</strong>g>plant</str<strong>on</strong>g> had 35% <str<strong>on</strong>g>and</str<strong>on</strong>g> 29% higher GA <str<strong>on</strong>g>and</str<strong>on</strong>g> 24-31% higher<br />

GA c<strong>on</strong>tents were recorded in rhizospheric soil over<br />

uninoculated c<strong>on</strong>trol. Tryptophan additi<strong>on</strong> had<br />

resulted 50% more GA in rhizospheric soil <str<strong>on</strong>g>and</str<strong>on</strong>g> 62%<br />

higher GA in leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> PGPR inoculated <str<strong>on</strong>g>plant</str<strong>on</strong>g>s. Plant<br />

<str<strong>on</strong>g>growth</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> development is modulated by the<br />

enzymes <str<strong>on</strong>g>and</str<strong>on</strong>g> phytohorhorm<strong>on</strong>es <str<strong>on</strong>g>and</str<strong>on</strong>g> PGPR based<br />

mechanism is involved in direct synthesis <str<strong>on</strong>g>of</str<strong>on</strong>g> Indole<br />

acetic acid, Gibberelic acid <str<strong>on</strong>g>and</str<strong>on</strong>g> Abscisic acid (Gray et<br />

al., 2005).<br />

Spike length, Seeds/spike <str<strong>on</strong>g>and</str<strong>on</strong>g> seed weigh<br />

Pseudom<strong>on</strong>as sp <str<strong>on</strong>g>and</str<strong>on</strong>g> Bacillus cereus significantly<br />

increased (35% <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol) spike length (Table 4).<br />

Additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> with Pseudom<strong>on</strong>as sp <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bacillus cereus further increased the spike length by<br />

4% <str<strong>on</strong>g>and</str<strong>on</strong>g> 14% respectively. Pseudom<strong>on</strong>as sp <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

Bacillus cereus increased 27%, 40% seeds/spike<br />

respectively <str<strong>on</strong>g>and</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> with<br />

Pseudom<strong>on</strong>as sp <str<strong>on</strong>g>and</str<strong>on</strong>g> Bacillus cereus further<br />

increased (11-15%) seeds/spike. Both Pseudom<strong>on</strong>as<br />

Table 4. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> PGPR applicati<strong>on</strong> <strong>on</strong> <strong>yield</strong><br />

parameters at maturity<br />

Treatment<br />

spike Seeds/<br />

length spike<br />

c<strong>on</strong>trol 3.7D 22D 22.06C<br />

±0.05 ±1 ±0.54<br />

Pseudom<strong>on</strong>as<br />

sp<br />

Number <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

seeds/spike<br />

5.06B 28.63BC 30.65A<br />

±0.04 ±0.63 ±0.15<br />

Bacillus cereus 5.02B 31.37AB 30.73A<br />

±0.13 ±1.38 ±0.38<br />

Pseudom<strong>on</strong>as<br />

sp+tryp<br />

5.2B 31.88AB 31.21A<br />

±0.1 ±0.88 ±0.21<br />

Bacillus<br />

cereus+tryp<br />

5.51A 32.75A 31.19A<br />

±0.13 ±0.25 ±0.19<br />

tryp 4.4C 26.88C 24.65C<br />

±0.02 ±1.88 ±0.75<br />

sp <str<strong>on</strong>g>and</str<strong>on</strong>g> Bacillus cereus increased seed weight equally<br />

(36%) <str<strong>on</strong>g>and</str<strong>on</strong>g> additi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> increased seed<br />

weight by 5% in both treatments.<br />

Increase in spike length, grain <strong>yield</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> seed weight<br />

might be attributed to increase level <str<strong>on</strong>g>of</str<strong>on</strong>g> N,P <str<strong>on</strong>g>and</str<strong>on</strong>g> K in<br />

the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> PGPR <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> (Cakmakci et<br />

al., 2007) <str<strong>on</strong>g>and</str<strong>on</strong>g> increase rate <str<strong>on</strong>g>of</str<strong>on</strong>g> photosynthesis (Baset-<br />

Mia et al., 2010)<br />

C<strong>on</strong>clusi<strong>on</strong><br />

Bacillus cereus <str<strong>on</strong>g>and</str<strong>on</strong>g> Pseudom<strong>on</strong>as sp have ability to<br />

c<strong>on</strong>vert <str<strong>on</strong>g>and</str<strong>on</strong>g> utilize <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g>. L<strong>on</strong>g term survival <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

PGPR in sterilized soil al<strong>on</strong>g with added <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g><br />

alleviate osmotic, oxidative <str<strong>on</strong>g>and</str<strong>on</strong>g> dehydrati<strong>on</strong> <strong>stress</strong>es.<br />

Improvement in phytohorm<strong>on</strong>e c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves<br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> soil <strong>under</strong> <strong>salt</strong> <strong>stress</strong> due to applied PGPR <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

<str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance. Hence <str<strong>on</strong>g>tryptophan</str<strong>on</strong>g><br />

applicati<strong>on</strong> may be beneficial for <str<strong>on</strong>g>plant</str<strong>on</strong>g> adaptability<br />

<strong>under</strong> <strong>stress</strong>.<br />

Acknowledgement<br />

We are thankful to Higher Educati<strong>on</strong> Commissi<strong>on</strong><br />

(HEC) <str<strong>on</strong>g>of</str<strong>on</strong>g> Pakistan for providing us support <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

funding for our work.<br />

References<br />

Arshad M, Hussain A, Shakoor A. 1995. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

soil applied L–<str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>growth</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> chemical<br />

compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cott<strong>on</strong>, Journal Of Plant Nutrti<strong>on</strong> 18,<br />

317-329.<br />

Ali NM, Yus<str<strong>on</strong>g>of</str<strong>on</strong>g> HM, L<strong>on</strong>g K, Yeap SK, Ho WY,<br />

Beh BK, Koh SP, Abdullah MP, Noorjahan NB.<br />

2013. Antioxidant <str<strong>on</strong>g>and</str<strong>on</strong>g> Hepatoprotective Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

Aqueous Extract <str<strong>on</strong>g>of</str<strong>on</strong>g> Germinated <str<strong>on</strong>g>and</str<strong>on</strong>g> fermented Mung<br />

Bean <strong>on</strong> Ethanol-Mediated Liver Damage. Bio Med<br />

Research Internati<strong>on</strong>al 9, 693-713.<br />

Ashrafuzzaman M, Hossen FA, Ismail MR,<br />

Hoque MA, Islam MZ, Shahidullah SM, Me<strong>on</strong><br />

S. 2009. Efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> <str<strong>on</strong>g>growth</str<strong>on</strong>g><str<strong>on</strong>g>promoting</str<strong>on</strong>g><br />

Rhizobacteria (PGPR) for the enhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> rice<br />

<str<strong>on</strong>g>growth</str<strong>on</strong>g>. African Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Biotechnology 8, 1247-<br />

1252.<br />

Barazani O, Friedman J. 2000. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

exogenously applied L–<str<strong>on</strong>g>tryptophan</str<strong>on</strong>g> <strong>on</strong> allelochemical<br />

activity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>plant</str<strong>on</strong>g> – <str<strong>on</strong>g>growth</str<strong>on</strong>g> promoti<strong>on</strong> <str<strong>on</strong>g>rhizobacteria</str<strong>on</strong>g>.<br />

Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemical Ecology 26, 343–349.<br />

ul-Hassan <str<strong>on</strong>g>and</str<strong>on</strong>g> Bano Page 37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!