24.12.2014 Views

Shells

Shells

Shells

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The neural origins of sea shell patterns<br />

George Oster<br />

Bard Ermentrout<br />

Professor, University of Pittsburgh<br />

Alistair Boettiger<br />

Graduate student, UCB Biophysics<br />

1


Introduction<br />

Among the most striking and diverse patterns in nature are<br />

those seen on gastropod shells.<br />

Underlying them are common dynamical concepts:<br />

Local Activation with Lateral Inhibition (LALI) &<br />

Slow negative feedback (“LALI in time”)<br />

2<br />

2


Shapes<br />

ANGULATE WENTELTRAP PINK MOUTHED MUREX PAPER NAUTILUS<br />

VENUS COMB ROSE BRANCHED MUREX TOOTH SHELL<br />

http://xahlee.org/xamsi_calku/xamsi_calku.html<br />

3<br />

3


Colors & Patterns<br />

4<br />

4


What purpose is the pigment<br />

Most species found in sediment or covered with<br />

the opaque periostracum<br />

Camouflage possible in only a few species<br />

Many species (bivalves) with colorful shells have<br />

no eyes<br />

Comfort (1950) suggests pigment is a waste<br />

product! (But why so complex)<br />

5<br />

5


Developmental stability<br />

“…pigmentation and growth are functionally related. Both co-occur<br />

temporally and spatially, as the pigmentation is deposited<br />

when and where the shell grows. The same (richly innervated)<br />

organ, the mantle, would be responsible for growing the shell,<br />

depositing the pigment, and sensing the actual shell shape and the<br />

current pigmentation.”<br />

Bauchau (Belg. J. Zool., 131:23, 2001)<br />

6<br />

6


Model for neurosecretion of shell and pigment<br />

Time<br />

-L<br />

0<br />

X<br />

L<br />

7<br />

7


Mathematical model<br />

Sensory<br />

Integration<br />

Memory<br />

E( x,t)<br />

Excitation<br />

L<br />

∫<br />

− L<br />

M<br />

∫<br />

0<br />

( )<br />

= dx' dτ W E<br />

x − x',τ<br />

Spatial-Temporal<br />

weighting<br />

P( x',t − τ )<br />

Pigment or Structure<br />

elements<br />

E( x,t)<br />

Inhibition<br />

L<br />

∫<br />

− L<br />

M<br />

∫<br />

0<br />

( )<br />

= dx' dτ W I<br />

x − x',τ<br />

( )<br />

P x',t − τ<br />

P( x,t)<br />

New pigment<br />

secretion<br />

( )<br />

( ) − S I<br />

I ( x,t)<br />

= S E<br />

E(x,t<br />

<br />

<br />

Neurally stimulated secretion<br />

SE<br />

SI<br />

8<br />

8


Reduction to simpler models<br />

Discretize<br />

time<br />

Z t+1<br />

= S E<br />

R t +1<br />

= γ Z t<br />

+ δ R t<br />

( W E<br />

∗ Z ) t<br />

− S ( I<br />

W I<br />

∗ Z ) t<br />

− R t +1<br />

where: Z t<br />

≡ P( x) t<br />

− R ( t<br />

x)<br />

‘Refractory substance’<br />

Cellular<br />

Automata (CA)<br />

P t +1<br />

= H ( W E<br />

∗ P t<br />

− θ ) E<br />

− H ( W I<br />

∗ P t<br />

− θ ) I<br />

S E,I<br />

( u) = H ( u)<br />

SE<br />

SI<br />

9<br />

9


Other models<br />

Waddington & Crowe (1969) Cellular automata model<br />

Wolfram (in ANKS, 2002) CA models<br />

Meinhardt (2003)<br />

The Algorithmic Beauty of Seashells<br />

(many different reaction-diffusion models)<br />

Kusch & Markus (1996), complex CA model<br />

Ermentrout, Campbell, Oster (1986), mechanistic model<br />

based on neural activity 10<br />

10


Experimental foundations<br />

Richly innervated sensory region (circumpallial nerve).<br />

Secretion is neurally driven.<br />

Increased mantle neural activity associated with shell repair<br />

Ablation of mantle neurons impairs shell growth<br />

Mantle contains many neurotransmitters (ACh, dopamine,<br />

peptides, Westerman et al, 2002)<br />

11<br />

11


Summary so far…<br />

It is clear that there is a ʻmemoryʼ: the new state<br />

is determined by previous states.<br />

The simplest way to read this memory is via the<br />

shell itself, either pigment or shape.<br />

Pigment and shape serve to mark the shell<br />

margin, without which growth of the shell could<br />

not be regulated (Bauchau).<br />

Has the advantage of being clocked to the act of<br />

shell deposition rather than any internal or<br />

external synchronizer that is easily interruptible<br />

(tides, weather, etc.)<br />

12<br />

12


Shell anatomy<br />

Inner Outer<br />

Epitheli<br />

Middle<br />

Polyaxial<br />

Periostracal groove<br />

C ircum pallial<br />

axon<br />

Pigm ent sensing cells<br />

shell<br />

Extrapallial space<br />

Secretory gland cells<br />

D orsal epithelium<br />

Pallial nerves<br />

Ventral epithelium<br />

13<br />

Westerman et al. (2005)J. Morphology 264<br />

13


<strong>Shells</strong> can be described geometrically<br />

r(t,ω) = r 0<br />

(t)e − k r ω '<br />

θ(t,ω) = ω + θ 0<br />

(t)<br />

z(t,ω) = z 0<br />

(t)e − k z ω 14<br />

14


The model can ‘grow’ shells dynamically<br />

Existing structural<br />

features<br />

N eurosensory<br />

stim ulation<br />

R esulting neurosecretory<br />

activity<br />

C orres ponding aperture growth<br />

15<br />

15


The model can ‘grow’ shells dynamically<br />

Existing structural<br />

features<br />

N eurosensory<br />

stim ulation<br />

R esulting neurosecretory<br />

activity<br />

C orres ponding aperture growth<br />

15<br />

15


All shell patterns are generated from 2 basic patterns<br />

1. Bifurcation patterns<br />

• Oscillations<br />

• Stripes<br />

2. Traveling waves<br />

• Triangle patterns arise from wave collisions<br />

16<br />

16


Bifurcations from the homogeneous state<br />

Start with homogeneous steady state: A = I = P = SE(P) − SI:<br />

M =<br />

⎛<br />

⎝<br />

⎜<br />

( ) ˆ<br />

a + (1− a )S '<br />

P W<br />

E E E E<br />

(k)<br />

(1− a E<br />

)S ' I<br />

(P) Wˆ<br />

E<br />

(k)<br />

−(1− a E<br />

)S I ' (P) ˆ W I<br />

(k)<br />

a I<br />

+ (1− a I<br />

)S I<br />

'<br />

( P) ˆ<br />

⎞<br />

W I<br />

(k) ⎠<br />

⎟<br />

Fourier transform<br />

of kernel<br />

If a E,I<br />

= 1− c E,I<br />

,<br />

Turing-Hopf<br />

0 < 1+ S I ' (P) ˆ W I<br />

(k) − S E<br />

'<br />

(P) ˆ W E<br />

(k)<br />

Turing<br />

0 > c E<br />

c I<br />

(<br />

'<br />

S E<br />

(P) Wˆ<br />

E<br />

(k) − 1) − 1+ S ' I<br />

(P) ˆ<br />

( W I<br />

(k)) Hopf<br />

17<br />

17


Turing instablity → Stripes<br />

Pigment secretion<br />

Bankivia fasciata<br />

Model simulations<br />

Turitella sp.<br />

Structual secretion<br />

18<br />

18


Hopf instability → Oscillations<br />

Pacemakers/hot spots<br />

Model<br />

Amoria ellioti<br />

Strigella sp<br />

Conus zebroides<br />

Narita communis<br />

The stripes are actually propagating waves, as we will see…<br />

19<br />

19


Excitable → Waves<br />

C. vicweei<br />

C. clerii<br />

20<br />

20


Waves can annihilate or reflect<br />

Colliding waves annihilate then reignite, appearing to cross<br />

Waves with broad inhibitory tails can reignite<br />

Tapes literus<br />

21<br />

21


Triangle patterns arise from wave collisions<br />

Model<br />

Model<br />

Model<br />

conus_bullatus<br />

22<br />

22


Complex patterns<br />

Clithon oualaniensis<br />

Lioconcha castrensis<br />

Model<br />

Model<br />

Model<br />

Conus gloriamaris<br />

Model<br />

Conus vicweei<br />

23<br />

23


The role of shell geometry<br />

24<br />

24


The effect of shell defects on patterns<br />

25<br />

25


Bifurcations separate different patterns<br />

26<br />

26


Quantifying patterns<br />

27<br />

27


Cowries require a 2-D model<br />

28<br />

28


Connection to cortical waves<br />

Neuron<br />

Compression and Reflection of<br />

Visually Evoked Cortical Waves<br />

Weifeng Xu, Xiaoying Huang, Kentaroh Takagaki, and Jian-young Wu<br />

Department of Physiology and Biophysics, Georgetown University Medical Center, Washington, DC<br />

29<br />

29


What’s next: the amazing cuttlefish!<br />

30<br />

30


What’s next: the amazing cuttlefish!<br />

30<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!