02.01.2015 Views

Triple Integrals

Triple Integrals

Triple Integrals

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Practice problems.<br />

1. Evaluate the triple integral<br />

a) ∫ ∫ ∫<br />

E<br />

x 3 y 2 z dx dy dz<br />

where E = { (x, y, z) | 1 ≤ x ≤ 2, 0 ≤ y ≤ x, 0 ≤ z ≤ y 2 }<br />

b) ∫ ∫ ∫<br />

E<br />

2x dx dy dz<br />

where E = { (x, y, z) | 0 ≤ y ≤ 2, 0 ≤ x ≤ √ 4 − y 2 , 0 ≤ z ≤ y }<br />

c) ∫ ∫ ∫<br />

E<br />

6xy dx dy dz<br />

where E lies under the plane z = x + y + 1 and above the region in the xy-plane bounded<br />

by the curves y = √ x, y = 0 and x = 1.<br />

d) ∫ ∫ ∫<br />

E<br />

xy dx dy dz<br />

where E is the solid tetrahedron with vertices (0,0,0), (1, 0, 0), (0, 2, 0) and (0, 0, 3).<br />

2. Find the volume of the tetrahedron bounded by the coordinate planes and the plane 2x + 3y +<br />

6z = 12.<br />

3. Find the average value of the function f(x, y, z) = xyz over the cube with side length 4 that<br />

lies in the first octant with one vertex in the origin and edges parallel to the coordinate axes.<br />

4. Find the mass and the center of mass of the solid E given in problem 1c) and that has the<br />

density function ρ(x, y, z) = 2.<br />

Solutions.<br />

1. a) ∫ 2<br />

∫ x<br />

1 0<br />

∫ y 2<br />

0 x 3 y 2 z dx dy dz = ∫ 2<br />

1 x3 dx ∫ x<br />

0 y2 dy ∫ y 2<br />

0 z dz = ∫ 2<br />

1 x3 dx ∫ x<br />

0 y2 dy z2<br />

2 |y2 0 = ∫ 2<br />

1 x3 dx ∫ x<br />

0<br />

y 6<br />

2 dy = ∫ 2<br />

1 x3 dx y7<br />

14 |x 0 = ∫ 2<br />

1 x10<br />

14<br />

dx =<br />

x11<br />

14(11) |2 1 = 13.29.<br />

b) Here you have to evaluate the integral with respect to y last since all the other variables<br />

have y in the bounds. ∫ 2<br />

0 dy ∫ √ 4−y 2<br />

0 2x dx ∫ y<br />

0 dz = ∫ 2<br />

0 dy ∫ √ 4−y 2<br />

0 2x dx y = ∫ √<br />

2<br />

0 y dy x2 4−y<br />

|<br />

2<br />

0 =<br />

∫ 2<br />

0 y(4 − y2 ) dy = (2y 2 − y4<br />

4 )|2 0 = 8 − 4 = 4.<br />

c) Sketch the region in xy-plane first. The x-bounds are 0 ≤ x ≤ 1. The y-bounds are<br />

0 ≤ y ≤ √ x. The z-bounds are determined by the plane z = x + y + 1 and the xy-plane<br />

and so 0 ≤ z ≤ x + y + 1. So ∫ 1 ∫ √ x ∫ x+y+1<br />

0 0 0 6xy dx dy dz = ∫ 1<br />

0 6xdx ∫ √ x<br />

0 y dy ∫ x+y+1<br />

0 dz =<br />

∫ 1<br />

0 6xdx ∫ √ x<br />

0 y dy(x + y + 1) = ∫ 1<br />

y2<br />

0 6xdx (x + y3<br />

+ y2<br />

2 3 2 )|√ x<br />

0 = ∫ 1<br />

0 6xdx (x x + x3/2 + x) = 65.<br />

2 3 2 28

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!