02.01.2015 Views

Hypothesis testing in mixture regression models - Columbia University

Hypothesis testing in mixture regression models - Columbia University

Hypothesis testing in mixture regression models - Columbia University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

14 H.-T. Zhu and H. Zhang<br />

(5) and the observed sample. Third, by look<strong>in</strong>g at the coefficients of v 4 –v 8 , we f<strong>in</strong>d that the<br />

estimators <strong>in</strong> the two latent groups have opposite signs, expla<strong>in</strong><strong>in</strong>g why they are <strong>in</strong>significant<br />

<strong>in</strong> the ord<strong>in</strong>ary logistic model. This underscores the importance of the two-component model.<br />

The opposite signs of the estimators <strong>in</strong>dicate reversed relationships between these risk factors<br />

and preterm births <strong>in</strong> the two latent groups.<br />

Acknowledgements<br />

This research is supported <strong>in</strong> part by National Institutes of Health grants DA12468 and<br />

AA12044. We thank the Jo<strong>in</strong>t Editor, an Associate Editor and two referees for valuable suggestions<br />

which helped to improve our presentation greatly. We also thank Professor Michael<br />

Bracken for the use of his data set.<br />

Appendix A<br />

Before we present all the assumptions, we need to def<strong>in</strong>e the follow<strong>in</strong>g derivatives of f i .β, µ/: F i,3 .β, µ/ =<br />

@<br />

β 2 f i.β, µ/=f iÅ, F i,4 .µ/ = @ β @ µ f i .βÅ, µ/=f iÅ, F i,5 .µ/ = @ β @<br />

µ 2 f i.βÅ, µ/=f iÅ and F i,7 .µ/ = @<br />

µ 3 f i.βÅ, µ/=f iÅ:<br />

The follow<strong>in</strong>g assumptions are sufficient conditions to derive our asymptotic results. Detailed proofs of<br />

theorems 1–3 can be found <strong>in</strong> Zhu and Zhang (2003).<br />

A.1. Assumption 1 (identifiability)<br />

As n →∞, sup ω∈Ω {n −1 |L n .ω/ − ¯L n .ω/|} → 0 <strong>in</strong> probability, where ¯L n .ω/ = E{L n .ω/}. For every δ > 0,<br />

we have<br />

where ¯ω n is the maximizer of ¯L n .ω/ and<br />

for every δ > 0.<br />

lim <strong>in</strong>f<br />

n→∞ .n−1 [ ¯L n . ¯ω n / − sup { ¯L n .ω/}]/ >0,<br />

ω∈Ω=Ω Å,δ<br />

ΩÅ,δ = {ω : ||β − βÅ|| δ, ||µ 1 − µÅ|| δ, α||µ 2 − µÅ|| δ} ∩ Ω<br />

A.2. Assumption 2<br />

For a small δ 0 > 0, let B δ0 = {.β, µ/ : ||β − βÅ|| δ 0 and ||µ|| M} ∩ Ω,<br />

{∣∣ ∣∣∣ ∣∣∣ 1<br />

sup<br />

.β,µ/∈B δ0<br />

n<br />

∣∣ ∣∣ }<br />

n∑<br />

∣∣∣ ∣∣∣<br />

F i,1 .β, µ/<br />

∣∣ + 1 n∑<br />

∣∣∣ ∣∣∣<br />

F i,3 .β, µ/<br />

n<br />

∣∣ + 1 n∑<br />

F i,2 .µ/<br />

i=1<br />

n ∣∣ + ∑ 6 1 n∑<br />

∣∣<br />

F i,k .µ/<br />

i=1<br />

k=4 n ∣∣<br />

= o p .1/,<br />

i=1<br />

{∣∣ }<br />

∣∣∣ ∣∣∣ 1 n∑<br />

sup √n F i,k .µ/<br />

∣∣<br />

= O p .1/, k = 4, 6, 7,<br />

||µ||M<br />

i=1<br />

sup<br />

.β,µ/∈B δ0<br />

{ 1<br />

n<br />

i=1<br />

}<br />

n∑<br />

∑<br />

||F i,1 .β, µ/|| 3 +||F i,3 .β, µ/|| 3 +||F i,2 .µ/|| 3 + 7 ||F i,k .µ/|| 3 = O p .1/:<br />

i=1<br />

Moreover, max 1<strong>in</strong> sup .β,µ/∈Bδ0 {||F i,1 .β, µ/||+||F i,2 .µ/|| 2 } = o p .n 1=2 /:<br />

k=4<br />

A.3. Assumption 3<br />

.W n .·/, J n .·// ⇒ .W.·/, J.·//, where these processes are <strong>in</strong>dexed by ||µ|| M, and the stochastic process<br />

{.W.µ/, J.µ// : ||µ|| M} has bounded cont<strong>in</strong>uous sample paths with probability 1. Each J.µ/ is<br />

a symmetric matrix and ∞ > sup ||µ||M [λ max {J.µ/}] <strong>in</strong>f ||µ||M [λ m<strong>in</strong> {J.µ/}] > 0 holds almost surely.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!