04.01.2015 Views

MATLAB Functions for Mie Scattering and Absorption

MATLAB Functions for Mie Scattering and Absorption

MATLAB Functions for Mie Scattering and Absorption

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

5<br />

E<br />

E<br />

s!<br />

s"<br />

ikr<br />

e<br />

= cos"<br />

# S2(cos!<br />

)<br />

$ ikr<br />

ikr<br />

e<br />

= sin"<br />

# S1(cos!<br />

)<br />

ikr<br />

with the scattering amplitudes S 1 <strong>and</strong> S 2<br />

S (cos%<br />

) =<br />

1<br />

S (cos%<br />

) =<br />

2<br />

"<br />

!<br />

n=<br />

1<br />

"<br />

!<br />

n=<br />

1<br />

2n<br />

+ 1<br />

( an#<br />

n<br />

n(<br />

n + 1)<br />

2n<br />

+ 1<br />

( an$<br />

n<br />

n(<br />

n + 1)<br />

+ b $ );<br />

n<br />

+ b # )<br />

n<br />

n<br />

n<br />

(p.111)<br />

(4.74)<br />

E s θ is the scattered far-field component in the scattering plane, defined by the incident<br />

<strong>and</strong> scattered directions, <strong>and</strong> E s φ is the orthogonal component. The angle φ is<br />

the angle between the incident electric field <strong>and</strong> the scattering plane. The functions<br />

π n(cosθ) <strong>and</strong> τ n(cosθ) describe the angular scattering patterns of the spherical harmonics<br />

used to describe S 1 <strong>and</strong> S 2 <strong>and</strong> follow from the recurrence relations<br />

2n<br />

! 1<br />

n<br />

#<br />

n<br />

= cos$<br />

"#<br />

n! 1<br />

! #<br />

n!<br />

2;<br />

%<br />

n<br />

= ncos$<br />

"#<br />

n<br />

! ( n + 1)<br />

#<br />

n!<br />

1<br />

(4.47)<br />

n ! 1<br />

n ! 1<br />

starting with (Deirmendjian, 1969, p. 15)<br />

#<br />

0<br />

= 0;<br />

#<br />

1<br />

= 1; #<br />

2<br />

= 3cos!<br />

; "<br />

0<br />

= 0; "<br />

1<br />

= cos!<br />

; "<br />

2<br />

= 3cos(2!<br />

)<br />

2.4 The internal field<br />

<strong>MATLAB</strong> function: presently, no direct function, but see <strong>Mie</strong>_Esquare<br />

The internal field E 1 <strong>for</strong> an incident field with unit amplitude is given by<br />

! "<br />

n=<br />

1<br />

(1)<br />

(1)<br />

( c n<br />

M # d N )<br />

2n<br />

+ 1)<br />

E<br />

1<br />

=<br />

o1n<br />

n e1n<br />

(4.40)<br />

n(<br />

n + 1)<br />

where the vector-wave harmonic fields are given in spherical (r,θ,φ) coordinates by<br />

M<br />

N<br />

(1)<br />

o1n<br />

(1)<br />

e1n<br />

& 0<br />

#<br />

$<br />

!<br />

= $ cos+<br />

'*<br />

n(cos)<br />

jn(<br />

rmx)<br />

!<br />

$<br />

!<br />

% ( sin+<br />

',<br />

n(cos)<br />

jn(<br />

rmx)<br />

"<br />

&<br />

jn(<br />

rmx)<br />

#<br />

$ n(<br />

n + 1)cos+<br />

' sin)<br />

'*<br />

n(cos)<br />

!<br />

$<br />

rmx !<br />

$<br />

[ rmxj rmx !<br />

n(<br />

)]'<br />

= $ cos+<br />

',<br />

n(cos)<br />

!<br />

$<br />

rmx<br />

!<br />

$<br />

[ rmxjn(<br />

rmx)]'<br />

!<br />

( sin+<br />

'*<br />

n(cos)<br />

%<br />

rmx "<br />

(4.50)<br />

<strong>and</strong> the coordinate system is defined as <strong>for</strong> the scattered field. The vector-wave<br />

functions N <strong>and</strong> M are orthogonal with respect to integration over directions. Furthermore<br />

<strong>for</strong> different values of n, the N functions are orthogonal, too, <strong>and</strong> the same<br />

is true <strong>for</strong> the M functions.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!