11.11.2012 Views

Evaluation Study for Large Prismatic Lithium-Ion Cell ... - NREL

Evaluation Study for Large Prismatic Lithium-Ion Cell ... - NREL

Evaluation Study for Large Prismatic Lithium-Ion Cell ... - NREL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Evaluation</strong> <strong>Study</strong> <strong>for</strong> <strong>Large</strong> <strong>Prismatic</strong><br />

<strong>Lithium</strong>-<strong>Ion</strong> <strong>Cell</strong> Designs Using<br />

Multi-Scale Multi-Dimensional Battery Model<br />

Gi-Heon Kim and Kandler Smith<br />

National Renewable Energy Laboratory<br />

Golden, Colorado<br />

<strong>NREL</strong>/PR-540-46076<br />

This research activity is funded by the U.S. Department of Energy<br />

<strong>NREL</strong> is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance <strong>for</strong> Sustainable Energy, LLC.


Batteries <strong>for</strong> Electrified Vehicles<br />

Electrified drive-train vehicles such as PHEVs and EVs with rangeextenders<br />

are believed to be near-term technologies that are<br />

• displacing significant petroleum use in the transportation sector<br />

• diversifying energy sources <strong>for</strong> mobility<br />

Advances in batteries are critical to realize green mobility technologies<br />

DOE’s Energy Storage System Per<strong>for</strong>mance Targets <strong>for</strong> PHEVs<br />

National Renewable Energy Laboratory 2<br />

Innovation <strong>for</strong> Our Energy Future


Batteries <strong>for</strong> Electrified Vehicles<br />

Electrified drive-train vehicles such as PHEVs and EVs with rangeextenders<br />

are believed to be near-term technologies that are<br />

• displacing significant petroleum use in the transportation sector<br />

• diversifying energy sources <strong>for</strong> mobility<br />

Advances in batteries are critical to realize green mobility technologies<br />

DOE’s Energy Storage System Per<strong>for</strong>mance Targets <strong>for</strong> PHEVs<br />

Per<strong>for</strong>mance<br />

Life<br />

Cost<br />

Safety<br />

National Renewable Energy Laboratory 3<br />

Innovation <strong>for</strong> Our Energy Future


Multi-Scale Physics in Li-<strong>Ion</strong> Battery<br />

Requirements & Resolutions<br />

“Requirements” are usually defined<br />

in a macroscale domain and terms<br />

Per<strong>for</strong>mance<br />

Life<br />

Cost<br />

Safety<br />

• Wide range of length and time scale physics<br />

• Design improvements required at different scales<br />

• Need <strong>for</strong> better understanding of interaction among different scale physics<br />

National Renewable Energy Laboratory 4<br />

Innovation <strong>for</strong> Our Energy Future


Multi-Physics Interaction<br />

electrochemical<br />

current production<br />

Comparison of two 40 Ah<br />

flat cell designs<br />

2 min 5C discharge<br />

working potential working potential<br />

temperature temperature<br />

electrochemical<br />

current production<br />

National Renewable Energy Laboratory 5<br />

Innovation <strong>for</strong> Our Energy Future


Multi-Physics Interaction<br />

�<strong>Large</strong>r over-potential<br />

promotes faster discharge<br />

reaction<br />

�Converging current<br />

causes higher potential<br />

drop along the collectors<br />

electrochemical<br />

current production<br />

�High temperature<br />

promotes faster<br />

electrochemical reaction<br />

�Higher localized reaction<br />

causes more heat<br />

generation<br />

Comparison of two 40 Ah<br />

flat cell designs<br />

2 min 5C discharge<br />

working potential working potential<br />

temperature temperature<br />

electrochemical<br />

current production<br />

National Renewable Energy Laboratory 6<br />

Innovation <strong>for</strong> Our Energy Future


Multi-Physics Interaction<br />

�<strong>Large</strong>r over-potential<br />

promotes faster discharge<br />

reaction<br />

�Converging current<br />

causes higher potential<br />

drop along the collectors<br />

electrochemical<br />

current production<br />

�High temperature<br />

promotes faster<br />

electrochemical reaction<br />

�Higher localized reaction<br />

causes more heat<br />

generation<br />

Comparison of two 40 Ah<br />

flat cell designs<br />

2 min 5C discharge<br />

working potential working potential<br />

soc<br />

temperature temperature<br />

This cell is cycled<br />

more uni<strong>for</strong>mly, can<br />

there<strong>for</strong>e use less<br />

active material ($)<br />

and has longer life.<br />

National Renewable Energy Laboratory 7<br />

Innovation <strong>for</strong> Our Energy Future<br />

soc<br />

electrochemical<br />

current production


Electrode-Scale Per<strong>for</strong>mance Model<br />

Charge Transfer Kinetics at Reaction Sites<br />

Species Conservation<br />

Charge Conservation<br />

( φ − ) −U<br />

η = φ<br />

s<br />

e<br />

• Pioneered by Newman group (Doyle, Fuller,<br />

and Newman 1993)<br />

• Captures lithium diffusion dynamics and charge<br />

transfer kinetics<br />

• Predicts current/voltage response of a battery<br />

• Provides design guide <strong>for</strong> thermodynamics,<br />

kinetics, and transport across electrodes<br />

Energy Conservation • Difficult to resolve heat and electron current<br />

∂T<br />

ρc<br />

p = ∇ ⋅(<br />

k∇T<br />

)<br />

transport<br />

+ q′<br />

′<br />

∂t<br />

Li ⎛<br />

∂U<br />

eff<br />

eff<br />

eff<br />

q′ ′<br />

⎞<br />

= j ⎜φs<br />

−φ<br />

e −U<br />

+ T ⎟ + σ ∇φs<br />

⋅∇φ<br />

s + κ ∇φe<br />

⋅∇φ<br />

e + κ D ∇lnc<br />

e ⋅∇φ<br />

e<br />

⎝<br />

∂T<br />

⎠<br />

National Renewable Energy Laboratory 8<br />

Innovation <strong>for</strong> Our Energy Future<br />

r


Integrated Model Resolving Different Scale Physics<br />

To expand knowledge of the impacts of designs in different scales,<br />

usages, and management on per<strong>for</strong>mance, life, and safety of battery<br />

systems<br />

Li Transport &<br />

Charge Transfer Kinetics<br />

Electron Transport &<br />

Heat Transport<br />

Simply Work?<br />

Extend model domain size up to cell scale to capture macroscopic design<br />

features, while maintaining model resolution to capture Li diffusion dynamics<br />

in electrode level scale ??? � huge computational complexity and cost<br />

National Renewable Energy Laboratory 9<br />

Innovation <strong>for</strong> Our Energy Future


Approach<br />

Multi-Scale Multi-Dimensional (MSMD) Model<br />

Simulation<br />

Domain<br />

= Macro Grid + Micro Grid<br />

(Grid <strong>for</strong> Sub-grid Model)<br />

• Captures macroscopic electron/heat transports, electrode scale Li<br />

diffusion dynamics/charge transfer kinetics in separate domains<br />

• Physically couple the solution variables defined in each domain using<br />

multi-scale modeling schemes<br />

• Runs in tolerable calculation time, practical <strong>for</strong> battery and system<br />

engineering design<br />

National Renewable Energy Laboratory 10<br />

Innovation <strong>for</strong> Our Energy Future<br />

X<br />

R<br />

Current Collector (Cu)<br />

Negative<br />

Electrode<br />

x<br />

Separator<br />

Positive<br />

Electrode<br />

Current Collector (Al)


Present <strong>Study</strong><br />

“Poorly designed electron and heat transport paths can cause excessive<br />

spatial non-uni<strong>for</strong>mity in battery physics, and then deteriorate the<br />

per<strong>for</strong>mance and shorten the life of the battery.”<br />

Fixed Microscopic Designs Macroscopic Features as Design Variables<br />

Objectives<br />

Demonstrate the impact of macroscopic design factors on battery …<br />

• Per<strong>for</strong>mance : B2 abs# 252 (Kim & Smith) � This talk<br />

• Life: B2 abs# 255 (Smith & Kim)<br />

National Renewable Energy Laboratory 11<br />

Innovation <strong>for</strong> Our Energy Future


Nominal Design – 10C discharge <strong>for</strong> 30 sec<br />

� Stacked prismatic design<br />

� 140 x 100 x 15 mm 3 <strong>for</strong>m factor<br />

� Tabs on a same side<br />

� 20 Ah<br />

� PHEV10 application<br />

� 10C constant current discharge<br />

� soc ini = 90%<br />

� Surface and tab cooling<br />

� h inf = 20 W/m 2 K<br />

� T amb = 30 o C<br />

� T ini = 30 o C<br />

3.2<br />

0 5 10 15<br />

t (s)<br />

20 25 30<br />

National Renewable Energy Laboratory 12<br />

Innovation <strong>for</strong> Our Energy Future<br />

(V)<br />

4<br />

3.8<br />

3.6<br />

3.4<br />

V(t)<br />

OCV(t)<br />

evaluated from volumetric<br />

average of composition<br />

15 mm


Electrical Response – 10C Discharge<br />

Current density field at metal collector foils<br />

after 30 sec discharge at mid-plane<br />

Y(mm)<br />

Y(mm)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Al foil<br />

Cu foil<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

Working potential between electrode planes<br />

after 30 sec discharge at mid-plane<br />

National Renewable Energy Laboratory 13<br />

Innovation <strong>for</strong> Our Energy Future


Electrical Response – 10C Discharge<br />

Current density field at metal collector foils<br />

after 30 sec discharge at mid-plane<br />

Y(mm)<br />

Y(mm)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Al foil<br />

Cu foil<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

after 30 sec discharge at mid-plane<br />

3.37<br />

3.36<br />

3.35<br />

3.34<br />

100<br />

Working Potential [V] Working potential between electrode planes<br />

50<br />

<strong>Large</strong> Overpotential<br />

Y(mm)<br />

0<br />

0<br />

100<br />

50<br />

X(mm)<br />

National Renewable Energy Laboratory 14<br />

Innovation <strong>for</strong> Our Energy Future<br />

… …<br />

3.37<br />

3.365<br />

3.36<br />

3.355<br />

3.35<br />

3.345<br />

3.34


Temperature [ ° C]<br />

36<br />

34<br />

32<br />

30<br />

100<br />

T(t) [ ° C]<br />

Thermal Response – 10C Discharge<br />

Temperature Evolution at Mid-Plane<br />

50<br />

Y(mm)<br />

36<br />

34<br />

32<br />

0<br />

0<br />

Temperature [ ° C]<br />

36<br />

34<br />

32<br />

30<br />

100<br />

100 50<br />

50<br />

X(mm) Y(mm)<br />

0<br />

0<br />

Temperature [ ° C]<br />

avarage temperature<br />

36<br />

34<br />

32<br />

30<br />

100<br />

100 50<br />

50<br />

X(mm) Y(mm)<br />

maximum temperature<br />

minimum temperature<br />

0<br />

0<br />

Temperature [ ° C]<br />

36<br />

34<br />

32<br />

30<br />

100<br />

100 50<br />

50<br />

X(mm) Y(mm)<br />

30<br />

0 5 10 15<br />

t [s]<br />

20 25 30<br />

National Renewable Energy Laboratory 15<br />

Innovation <strong>for</strong> Our Energy Future<br />

0<br />

0<br />

Temperature [ ° C]<br />

36<br />

34<br />

32<br />

30<br />

100<br />

100 50<br />

50<br />

X(mm) Y(mm)<br />

0<br />

0<br />

Temperature [ ° C]<br />

36<br />

34<br />

32<br />

30<br />

100<br />

100 50<br />

50<br />

X(mm) Y(mm)<br />

5s 10s 15s 20s 25s 30s<br />

0<br />

0<br />

100<br />

50<br />

X(mm)<br />

36<br />

34<br />

32<br />

30


35<br />

34<br />

Thermal Response – 10C Discharge<br />

Temperatures after 30 sec discharge<br />

35.9<br />

35.5<br />

34.5<br />

33.6<br />

� T ini =30.0 o C<br />

� T avg=34.3 o C � ∆T=2.3 o C<br />

Z(mm)<br />

Z(mm)<br />

Z(mm)<br />

15<br />

10<br />

5<br />

0<br />

0 20 40<br />

Y(mm)<br />

60 80 100<br />

15<br />

10<br />

5<br />

0<br />

0 20 40<br />

Y(mm)<br />

60 80 100<br />

15<br />

10<br />

5<br />

0<br />

0 20 40<br />

Y(mm)<br />

60 80 100<br />

Y(mm)<br />

Y(mm)<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

100<br />

80<br />

60<br />

40<br />

20<br />

mid-plane<br />

surface<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120 140<br />

National Renewable Energy Laboratory 16<br />

Innovation <strong>for</strong> Our Energy Future


i [A/m 2 ]<br />

soc-soc avg (%)<br />

285<br />

280<br />

275<br />

270<br />

100<br />

0.4<br />

0.2<br />

Electrochemical Response – 10C discharge<br />

50<br />

Y(mm)<br />

0<br />

-0.2<br />

-0.4<br />

100<br />

discharge current density<br />

0<br />

0<br />

soc- soc avg<br />

50<br />

Y(mm)<br />

soc(t) [%]<br />

0 0<br />

90<br />

85<br />

i [A/m 2 ]<br />

100<br />

50<br />

X(mm)<br />

285<br />

280<br />

275<br />

270<br />

100<br />

50<br />

Y(mm)<br />

0<br />

0<br />

i [A/m 2 ]<br />

100<br />

50<br />

X(mm)<br />

285<br />

280<br />

275<br />

270<br />

100<br />

50<br />

Y(mm)<br />

0<br />

0<br />

i [A/m 2 ]<br />

100<br />

50<br />

X(mm)<br />

285<br />

5s 10s 15s 20s 25s 30s<br />

soc-soc avg (%)<br />

100<br />

50<br />

X(mm)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

100<br />

50<br />

Y(mm)<br />

0<br />

0<br />

soc-soc avg (%)<br />

100<br />

50<br />

X(mm)<br />

0.4<br />

0.2<br />

0<br />

-0.2<br />

-0.4<br />

100<br />

50<br />

Y(mm)<br />

0<br />

0<br />

soc-soc avg (%)<br />

100<br />

50<br />

X(mm)<br />

280<br />

275<br />

270<br />

100<br />

80<br />

0 5 10 15<br />

t [s]<br />

20 25 30<br />

National Renewable Energy Laboratory 17<br />

Innovation <strong>for</strong> Our Energy Future<br />

0.4<br />

0.2<br />

-0.2<br />

-0.4<br />

100<br />

50<br />

Y(mm)<br />

0<br />

50<br />

Y(mm)<br />

0<br />

0<br />

0<br />

0<br />

i [A/m 2 ]<br />

100<br />

50<br />

X(mm)<br />

soc-soc avg (%)<br />

100<br />

50<br />

X(mm)<br />

285<br />

280<br />

275<br />

270<br />

100<br />

0.4<br />

0.2<br />

-0.2<br />

-0.4<br />

100<br />

50<br />

Y(mm)<br />

0<br />

50<br />

Y(mm)<br />

0<br />

0<br />

0<br />

0<br />

i [A/m 2 ]<br />

100<br />

50<br />

X(mm)<br />

soc-soc avg (%)<br />

100<br />

50<br />

X(mm)<br />

285<br />

280<br />

275<br />

270<br />

100<br />

0.4<br />

0.2<br />

-0.2<br />

-0.4<br />

100<br />

50<br />

Y(mm)<br />

0<br />

50<br />

Y(mm)<br />

0<br />

0<br />

avarage soc<br />

0<br />

maximum soc<br />

minimum soc<br />

0<br />

100<br />

50<br />

X(mm)<br />

100<br />

50<br />

X(mm)


Virtual Design <strong>Evaluation</strong><br />

Virtual<br />

Vehicle Design<br />

Virtual<br />

Battery Design<br />

Feedback<br />

Embedded<br />

Battery Model<br />

Vehicle Simulator<br />

Multi-Scale<br />

Multi-Dimensional<br />

Li-ion Battery Model<br />

Battery Responses<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Vehicle Speed<br />

0 100 200 300 400 500 600<br />

800<br />

600<br />

400<br />

200<br />

-200<br />

-400<br />

Time (s)<br />

Vehicle Driving Profile<br />

0<br />

-600<br />

0 10 20 30 40 50 60<br />

Battery Power Profile<br />

National Renewable Energy Laboratory 18<br />

Innovation <strong>for</strong> Our Energy Future


Alternative <strong>Cell</strong> Designs<br />

Nominal Design<br />

• 140 x 100 x 15 mm 3<br />

• Tabs on a same side<br />

• 20 Ah<br />

Small Capacity<br />

Thin and Wide<br />

Counter Tab<br />

SC<br />

TW<br />

CT<br />

• 3 x (140 x 100 x 5) mm 3<br />

• Same tab design<br />

• 3 x 6.67 Ah<br />

• Same electrode area/stack layer<br />

• 1/3 thickness<br />

• ~ 3x surface area<br />

• 200 x 140 x 7.5 mm 3<br />

• Same tabs<br />

• 20 Ah<br />

• 2x electrode area/stack layer<br />

• 1/2 thickness<br />

• ~ 2x surface area<br />

• 250 x 120 x 7 mm 3<br />

• Wide-counter tab design<br />

• 20 Ah<br />

• ~2x electrode area/stack layer<br />

• ~1/2 thickness<br />

• ~2x surface area<br />

National Renewable Energy Laboratory 19<br />

Innovation <strong>for</strong> Our Energy Future


T(t) [ ° C]<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

Thermal Behavior Comparison<br />

Battery Power Profile<br />

mid-size sedan PHEV10 US06 drive<br />

800<br />

600<br />

400<br />

200<br />

0<br />

-200<br />

-400<br />

-600<br />

0 10 20 30 40 50 60<br />

3 x<br />

30<br />

0 5 10 15<br />

t [min]<br />

T(t) [ ° C]<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

0 5 10 15<br />

t [min]<br />

• 15-minute drive (CD + CS)<br />

• soc ini = 90%<br />

• Surface and tab cooling<br />

• h inf = 20 W/m 2 K<br />

• T amb = 30 o C<br />

• T ini = 30 o C<br />

SC TW CT<br />

30<br />

0 5 10 15<br />

t [min]<br />

National Renewable Energy Laboratory 20<br />

Innovation <strong>for</strong> Our Energy Future<br />

T(t) [ ° C]<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35


Temperature Imbalance during CD Drive<br />

T avg (t) [ ° C]<br />

∆T(t) [ ° C]<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

0 5 10 15<br />

t [min]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15<br />

t [min]<br />

Nominal<br />

TW<br />

CT<br />

SC<br />

54<br />

52<br />

50<br />

48<br />

46<br />

44<br />

42<br />

100<br />

80<br />

60<br />

40<br />

20<br />

140<br />

120<br />

100<br />

0<br />

0 20 40 60 80 100 120 140<br />

80<br />

60<br />

40<br />

20<br />

@ t = 6 min<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

0<br />

0 20 40 60 80 100 120 140<br />

National Renewable Energy Laboratory 21<br />

Innovation <strong>for</strong> Our Energy Future<br />

SC<br />

TW<br />

100<br />

80<br />

60<br />

40<br />

20<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Nominal<br />

CT<br />

0<br />

0 20 40 60 80 100 120


Temperature Imbalance during CS drive<br />

T avg (t) [ ° C]<br />

∆T(t) [ ° C]<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

0 5 10 15<br />

t [min]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 5 10 15<br />

t [min]<br />

Nominal<br />

TW<br />

CT<br />

SC<br />

48<br />

46<br />

44<br />

42<br />

40<br />

38<br />

36<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120 140<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

@ t=15 min<br />

0<br />

0 20 40 60 80 100 120 140 160 180 200<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120 140<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Nominal<br />

0<br />

0 20 40 60 80 100 120<br />

National Renewable Energy Laboratory 22<br />

Innovation <strong>for</strong> Our Energy Future<br />

SC<br />

TW<br />

CT


Ah Throughput Imbalance TW vs CT<br />

Ah/m 2<br />

28<br />

27.5<br />

27<br />

26.5<br />

26<br />

25.5<br />

V ocv [V]<br />

3.9<br />

3.8<br />

3.7<br />

3.6<br />

3.5<br />

3.4<br />

0 5 10 15<br />

t [min]<br />

Y(mm)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

TW<br />

CT<br />

0<br />

0 20 40 60 80 100<br />

X(mm)<br />

120 140 160 180 200<br />

Y(mm)<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

0 20 40 60<br />

X(mm)<br />

80 100 120<br />

National Renewable Energy Laboratory 23<br />

Innovation <strong>for</strong> Our Energy Future<br />

TW<br />

CT


Summary<br />

Nonuni<strong>for</strong>m battery physics, which is more probable in large-<strong>for</strong>mat<br />

cells, can cause unexpected per<strong>for</strong>mance and life degradations in<br />

lithium-ion batteries.<br />

A Multi-Scale Multi-Dimensional model was used <strong>for</strong> evaluating<br />

large <strong>for</strong>mat prismatic automotive cell designs by integrating microscale<br />

electrochemical process and macro-scale transports.<br />

Thin <strong>for</strong>m factor prismatic cell with wide counter tab design would<br />

be preferable to manage cell internal heat and electron current<br />

transport, and consequently to achieve uni<strong>for</strong>m electrochemical<br />

kinetics over a system.<br />

Engineering questions to be addressed in further discussion include …<br />

What is the optimum <strong>for</strong>m-factor and size of a cell?<br />

Where are good locations <strong>for</strong> tabs or current collectors?<br />

How different are externally proved temperature and electric signals from nonmeasurable<br />

cell internal values?<br />

Where is the effective place <strong>for</strong> cooling? What should the heat-rejection rate be?<br />

National Renewable Energy Laboratory 24<br />

Innovation <strong>for</strong> Our Energy Future


Acknowledgments<br />

Vehicle Technology Program at DOE<br />

• Dave Howell<br />

<strong>NREL</strong> Energy Storage Task<br />

• Ahmad Pesaran<br />

National Renewable Energy Laboratory 25<br />

Innovation <strong>for</strong> Our Energy Future

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!