10.01.2015 Views

Effect of living mulches on yield components of sunflower (Helianthus annuus L.) and weed seed productivity in line with sustainable agriculture

In order to evaluate the effects of some cover crops as living mulches on yield components of sunflower (Helianthus annuus L.) and weed seed productivity in sunflower field, an experiment was done in 2012 at the Research Field of Tabriz University, Iran. The experimental design was a randomized complete block with nine treatments in three replications. Treatments included triticale, hairy vetch, rapeseed, triticale + hairy vetch, triticale + rapeseed, hairy vetch + rapeseed, application of trifluralin herbicide, and controls (weed infested and weed free without planting cover crop). Result indicated than in all cover crops treatments weeds seed production was reduced. Maximum reduction in seed production for total weed species was observed in hairy vetch + rapeseed (69.17%), and also 65.37% reduction in weed seed productivity was observed in triticale + rapeseed compared to weed infested treatment. Although weed seed production was reduced due to presence of these living mulches, but yield components of sunflower were significantly affected by treatments, too. Triticale had lowest effect on yield components of sunflower. On the other hand, not significantly differences were found between trifluralin usage and triticale. Using of living mulch as a strategy to reduce the damage of weeds and application of herbicide can be helpful in integrated weed management and sustainable agriculture.

In order to evaluate the effects of some cover crops as living mulches on yield components of sunflower (Helianthus annuus L.) and weed seed productivity in sunflower field, an experiment was done in 2012 at the Research Field of Tabriz University, Iran. The experimental design was a randomized complete block with nine treatments in three replications. Treatments included triticale, hairy vetch, rapeseed, triticale + hairy vetch, triticale + rapeseed, hairy vetch + rapeseed, application of trifluralin herbicide, and controls (weed infested and weed free without planting cover crop). Result indicated than in all cover crops treatments weeds seed production was reduced. Maximum reduction in seed production for total weed species was observed in hairy vetch + rapeseed (69.17%), and also 65.37% reduction in weed seed productivity was observed in triticale + rapeseed compared to weed infested treatment. Although weed seed production was reduced due to presence of these living mulches, but yield components of sunflower were significantly affected by treatments, too. Triticale had lowest effect on yield components of sunflower. On the other hand, not significantly differences were found between trifluralin usage and triticale. Using of living mulch as a strategy to reduce the damage of weeds and application of herbicide can be helpful in integrated weed management and sustainable agriculture.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Investigati<strong>on</strong>s showed that high <strong>yield</strong>s <strong>and</strong> good<br />

quality <str<strong>on</strong>g>of</str<strong>on</strong>g> cabbage, broccoli, pepper <strong>and</strong> sweet corn<br />

was obta<strong>in</strong>ed when these plants were grow<strong>in</strong>g <strong>with</strong><strong>in</strong><br />

white clover as a <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch (F<strong>in</strong>ch, 1993; Guldan et<br />

al., 1996; Infante <strong>and</strong> Morse, 1996; Starck et al.,<br />

1996). Although <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>mulches</str<strong>on</strong>g> can efficiently<br />

suppress <strong>weed</strong>s, but it is may be they can compete for<br />

nutrients <strong>and</strong> water <strong>with</strong> the ma<strong>in</strong> crop (Echtenkamp<br />

<strong>and</strong> Moomaw, 1989) <strong>and</strong> cause reducti<strong>on</strong> <strong>in</strong> <strong>yield</strong>s.<br />

For example, Peders<strong>on</strong> et al. (2009) found that crop<br />

<strong>yield</strong>s planted <strong>in</strong> <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch systems under different<br />

suppressi<strong>on</strong> regimes were lower than crop <strong>yield</strong>s <strong>in</strong> a<br />

clean-till system (<strong>with</strong>out li<strong>in</strong>g mulch). Management<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>mulches</str<strong>on</strong>g> becomes critical to reduce<br />

competiti<strong>on</strong> <strong>with</strong> the ma<strong>in</strong> crop for resources while<br />

allow<strong>in</strong>g the mulch to grow sufficiently to reap<br />

potential benefits. Different ways have been<br />

suggested to overcome this problem <strong>in</strong> such cropp<strong>in</strong>g<br />

systems. One <str<strong>on</strong>g>of</str<strong>on</strong>g> them is the selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g><br />

mulch species <strong>and</strong> the others have been employed to<br />

suppress the <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch, such as tillage, mow<strong>in</strong>g,<br />

<strong>and</strong> herbicides (Grub<strong>in</strong>ger <strong>and</strong> M<strong>in</strong>otti, 1990; Fischer<br />

<strong>and</strong> Burrill, 1993; Costello, 1994; Mart<strong>in</strong> et al., 1999;<br />

Zemenchik et al., 2000).<br />

References<br />

Akobundu IO, 1993. Integrated <strong>weed</strong> management<br />

techniques to reduce soil degradati<strong>on</strong>. Internati<strong>on</strong>al<br />

Institute for Tropical Agriculture (IITA), Ibadan,<br />

Nigeria Research Notes, 6, 11–16.<br />

B<strong>on</strong>d W, Grundy AC, 2001. N<strong>on</strong>-chemical <strong>weed</strong><br />

management <strong>in</strong> organic farm<strong>in</strong>g systems. Weed Res.<br />

41, 383-405.<br />

Brennan EB, Smith RE, 2005. W<strong>in</strong>ter cover crop<br />

growth <strong>and</strong> <strong>weed</strong> suppressi<strong>on</strong> <strong>on</strong> the central coast <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

California. Weed Technol. 19, 1017-1024.<br />

Bridges DC, 1994. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>weed</strong> <strong>on</strong> human<br />

endeavors. Weed Technol. 8: 392-395.<br />

Costello MJ, 1994. Broccoli growth, <strong>yield</strong> <strong>and</strong> level<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> aphid <strong>in</strong>festati<strong>on</strong> <strong>in</strong> legum<strong>in</strong>ous <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>mulches</str<strong>on</strong>g>.<br />

Biol. Agric. Hort. 10, 207–222.<br />

Cromar HE, Murphy SD, Swant<strong>on</strong> CJ, 1999.<br />

Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> tillage <strong>and</strong> crop residue <strong>on</strong> post dispersal<br />

predati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>weed</strong> <strong>seed</strong>s. Weed Sci. 47, 184-194.<br />

De Haan RL, Wyse DL, Ehlke NJ, Maxwell BD,<br />

Putnam DH, 1994. Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spr<strong>in</strong>g-<strong>seed</strong>ed<br />

smoother plants for <strong>weed</strong> c<strong>on</strong>trol <strong>in</strong> corn (Zea mays).<br />

Weed Sci. 42, 35–43.<br />

Echtenkamp GW, Moomaw RS, 1989. No-till<br />

corn producti<strong>on</strong> <strong>in</strong> a <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch system. Weed<br />

Technol. 3, 261–266.<br />

F<strong>in</strong>ch S, 1993. Integrated pest management <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

cabbage root fly <strong>and</strong> carrot fly. Crop Protec. 12(6),<br />

423-430.<br />

Fischer A, Burrill L, 1993. Manag<strong>in</strong>g <strong>in</strong>terference<br />

<strong>in</strong> a sweet corn–white clover <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch system.<br />

Am. J. Alternative Agric. 8(2), 51–56.<br />

Gask<strong>in</strong> JF, 2006. Cl<strong>on</strong>al structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>vasive hoary<br />

cress (Lepidium draba) <strong>in</strong>festati<strong>on</strong>s. Weed Sci. 54,<br />

428–434.<br />

Grimmer OP, Masiunas JB, 2004. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

w<strong>in</strong>ter-killed cover crops preced<strong>in</strong>g snap pea. Hort.<br />

Technol. 14, 349-355.<br />

Grub<strong>in</strong>ger VP, M<strong>in</strong>otti PL, 1990. Manag<strong>in</strong>g white<br />

clover <str<strong>on</strong>g>liv<strong>in</strong>g</str<strong>on</strong>g> mulch for sweet corn producti<strong>on</strong> <strong>with</strong><br />

partial rototill<strong>in</strong>g. Am. J. Alternative Agric. 5, 4–12.<br />

Guldan SJ, Mart<strong>in</strong> CA, Cueto-W<strong>on</strong>g J, Ste<strong>in</strong>er<br />

RL, 1996. Inter<strong>seed</strong><strong>in</strong>g legumes <strong>in</strong>to chile: Legume<br />

<strong>productivity</strong> <strong>and</strong> effect <strong>in</strong> chile <strong>yield</strong>. Hort. Sci, 31,<br />

1126-1128.<br />

Hallberg GR, 1989. Pesticide polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground<br />

water <strong>in</strong> the humid United States. Agric. Ecosyst.<br />

Envir<strong>on</strong>, 26, 299–367.<br />

Hans<strong>on</strong> JC, Lichtenberg E, Decker AM, Clark<br />

AJ, 1993. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itability <str<strong>on</strong>g>of</str<strong>on</strong>g> no-tillage corn follow<strong>in</strong>g a<br />

hairy vetch cover crop. J. Prod. Agric. 6, 432-437.<br />

Harris RF, Chesters G, Allen ON, 1966. Dynamics<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> soil aggregati<strong>on</strong>. Adv. Agr<strong>on</strong>. 18, 107-169.<br />

Hassannejad S, Porheidar-Ghafarbi S, 2013.<br />

Allelopathic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Allspice, Eucalyptus, Jujube,<br />

<strong>and</strong> Persian walnut <strong>on</strong> field dodder (Cuscuta<br />

campestris Yunck.) <strong>seed</strong> germ<strong>in</strong>ati<strong>on</strong> <strong>and</strong> <strong>seed</strong>l<strong>in</strong>g<br />

growth. Internati<strong>on</strong>al journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agr<strong>on</strong>omy <strong>and</strong> Plant<br />

Producti<strong>on</strong>. 4 (3), 442-449.<br />

Hassannejad <strong>and</strong> Mobli Page 153

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!