10.01.2015 Views

ON WEIGHTED NORM INTEGRAL INEQUALITY ... - Kjm.pmf.kg.ac.rs

ON WEIGHTED NORM INTEGRAL INEQUALITY ... - Kjm.pmf.kg.ac.rs

ON WEIGHTED NORM INTEGRAL INEQUALITY ... - Kjm.pmf.kg.ac.rs

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

165<br />

Kragujev<strong>ac</strong> J. Math. 29 (2006) 165–173.<br />

<strong>ON</strong> <strong>WEIGHTED</strong> <strong>NORM</strong> <strong>INTEGRAL</strong> <strong>INEQUALITY</strong> OF<br />

G. H. HARDY’S TYPE<br />

K. Rauf and J. O. Omolehin<br />

Department of Mathematics, Unive<strong>rs</strong>ity of Ilorin, Ilorin, Nigeria<br />

(e-mails: balk r@yahoo.com, omolehin joseph@yahoo.com)<br />

(Received May 25, 2005)<br />

Abstr<strong>ac</strong>t. In this paper, we give a necessary and sufficient condition on Hardy’s integral<br />

inequality:<br />

∫<br />

∫<br />

[T f] p wdµ ≤ C f p vdµ ∀f ≥ 0 (1)<br />

X<br />

where w, v are non-negative measurable functions on X, a non-negative function f defined<br />

on (0, ∞), K(x, y) is a non-negative and measurable on X ×X, (T f)(x) = ∫ ∞<br />

0<br />

K(x, y)f(y)dy<br />

and C is a constant depending on K, p but independent of f. This work is a continuation<br />

of our recent result in [9].<br />

X<br />

1. INTRODUCTI<strong>ON</strong><br />

In the early twenties, G. H. Hardy proved the following result:<br />

Theorem 1.1. Let 1 < p < ∞ and let f be a non-negative measurable function<br />

defined on (0, ∞). Then,<br />

∫ ∞ (∫ x<br />

x −p<br />

0<br />

0<br />

) ( ) p p<br />

p<br />

∫ ∞<br />

f(t)dt dx ≤ f(x) p dx (2)<br />

p − 1 0


166<br />

holds.<br />

For a proof (see [3]).<br />

It has wide applications in differential and integral equations, Lapl<strong>ac</strong>e transforms<br />

and Fourier series (See [1, 2, 4, 5, 8, 10] and [11]) for related works. Recently, B.<br />

Mucheuhoupt [7] raised the question that given the weight w, under what condition<br />

will there exist a weight function v, finite µ−almost everywhere on X such that the<br />

inequality (1) holds. In their attempt to simplify this problem, R. Kerman and E.<br />

Sawyer [6] provided partial solution to his question and two new open problems were<br />

generated. In [9], the proof of the following theorem, among othe<strong>rs</strong>, on weighted norm<br />

inequalities for positive sublinear operator was established:<br />

Theorem 1.2. Let 1 < p < ∞ and suppose w is a weight on X. Define the<br />

sublinear operator T by T (f + g)(x) = ∫ X K(x, y)(f + g)(y)dµ(y) then, there exists a<br />

weight function v, finite µ−almost everywhere on X such that ∫ X [T (f + g)]p wdµ ≤<br />

C(K, p) ∫ X (f p + g p )vdµ holds, for all f, g > 0, if and only if there is a positive<br />

function Φ and θ on X with ∫ X (T Φ)p wdµ < ∞ and ∫ X (T θ)p wdµ < ∞ or equivalently<br />

Φ 1−p T ∗ ((T Φ) p−1 w) < ∞ and Φ 1−p T ∗ ((T θ) p−1 w) < ∞ respectively, C(K, p) =<br />

max [C 1 (K, p), C 2 (K, p)] is a constant independent of f and g.<br />

The proof is ex<strong>ac</strong>tly as in [9]. Thus, we omit it.<br />

This theorem is known to have provided partial solution to the open problem<br />

number one in [6]. The aim of the present paper is to extent our recent result in [9] to<br />

the case when T is a special integral operator and to consider the case of interchanging<br />

non-negative weight functions w for which there are non trivial v ’s. These provided<br />

partial solutions to the second open problem in [6].<br />

Throughout this work, we let (X, ζ, µ) be a σ−finite measure sp<strong>ac</strong>e, K(x, y) be a<br />

non-negative and measurable on X × X. Also, set (T f)(x) = ∫ ∞<br />

0 K(x, y)f(y)dy and<br />

(T ∗ f)(x) = ∫ ∞<br />

0 K(y, x)f(y)dy for non negative functions f.<br />

Furthermore, let p ′<br />

denotes the conjugate index of p, p ≠ 0 and is defined by<br />

1<br />

+ 1 = 1 with p p ′ p′ = ∞ if p = 1.


167<br />

2. STATEMENT OF RESULTS<br />

In this section, we state and prove our main results by induction and show that<br />

for all n ∈ ℵ, the nth partial sum of the left hand side of the inequality (3) is less<br />

than or equal to the nth partial sum of the right hand side.<br />

Theorem 2.1. Let 1 < p < ∞ and suppose v is a weight on X. Then there is a<br />

weight w, finite µ−almost everywhere on X, such that the weighted norm inequality:<br />

∑<br />

∫<br />

∫<br />

n∈ℵ<br />

[T f] p wdµ ≤ ∑ f p vdµ (3)<br />

X n n∈ℵ<br />

X n<br />

holds, for all f > 0, if and only if there is a positive function Φ on X with<br />

∫<br />

X<br />

[T ∗ Φ] p v 1−p′ dµ < ∞ (4)<br />

or equivalently,<br />

Φ 1−p T ∗ [ (T Φ) p−1 w ] < ∞ (5)<br />

µ−almost everywhere.<br />

in (5).<br />

We noted that the weighted norm inequality (3) holds with v equals to the weight<br />

Proof. Suppose that ∫ X [T ∗ Φ] p v 1−p′ dµ < ∞, where 1 p + 1 p ′<br />

= 1. Since X is a<br />

σ−finite measure sp<strong>ac</strong>e. X = ∪ ∞ n=1X n with X n ∩ X m = ∅, n ≠ m and µ(X n ) < ∞.<br />

We shall determine a necessary and sufficient condition on v such that the inequality<br />

(3) holds. But,<br />

and<br />

∫<br />

X<br />

Thus we need to show that<br />

∫<br />

[T f] p wdµ = f]<br />

∪ ∞ n=1 n[T p wdµ = ∑ ∫<br />

[T f] p wdµ<br />

X n∈ℵ<br />

X n<br />

∫<br />

∑<br />

∫<br />

n∈ℵ<br />

X<br />

f p vdµ = ∑ n∈ℵ<br />

∫<br />

X n<br />

[T f] p wdµ ≤ ∑ n∈ℵ<br />

X n<br />

f p vdµ<br />

∫<br />

X n<br />

f p vdµ


168<br />

Let n = 1, we have<br />

∫<br />

[T f] p wdµ =<br />

X 1<br />

=<br />

≤<br />

∫X 1<br />

[∫<br />

∫X 1<br />

[∫<br />

K(x, y)f(y)dµ(y)] p<br />

wdµ<br />

K(x, y) 1 −<br />

p f(y)Φ 1 p ′ K(x, y) 1 p ′ Φ 1 p<br />

p<br />

dµ(y)] ′ wdµ<br />

[ ∫<br />

∫<br />

]<br />

( K(x, y)f(y)<br />

∫X p Φ − p p ′ dµ(y)) 1 p ( K(x, y)Φdµ(y)) 1 p<br />

p ′ wdµ<br />

1<br />

By Holder’s inequality<br />

∫ [<br />

= (T f p Φ 1−p )(T Φ) p−1 w ] dµ<br />

X 1<br />

By a property of an inner product<br />

∫<br />

= f p vdµ<br />

X 1<br />

Hence, valid for n = 1.<br />

Next, assume n = k > 1, we have<br />

k∑<br />

∫<br />

[T f] p wdµ = [T f] p wdµ<br />

n=1<br />

∪<br />

∫<br />

k n=1 Xn ∫<br />

∫<br />

= [T f] p wdµ + [T f] p wdµ + . . . + [T f] p wdµ<br />

X 1 X 2 X<br />

∫<br />

∫<br />

∫<br />

k<br />

≤ f p vdµ + f p vdµ + . . . + f p vdµ<br />

X 1 X 2 X k<br />

By Holder’s inequality and using the above argument for n = 1<br />

∫<br />

= f p vdµ<br />

Then, for n = k + 1, we have<br />

k+1 ∑<br />

∫<br />

∪ k n=1 X n<br />

[T f] p wdµ = ∑ k ∫<br />

n=1 X n<br />

[T f] p wdµ + ∫ X k+1<br />

[T f] p wdµ<br />

n=1<br />

X n<br />

k∑<br />

∫<br />

∫<br />

≤ f p vdµ + [T f] p wdµ<br />

n=1<br />

X n X k+1<br />

by assumption when n = k<br />

≤<br />

k∑<br />

∫<br />

∫<br />

f p vdµ +<br />

X n<br />

f p vdµ<br />

X k+1<br />

n=1<br />

since µ(X k+1 ) < ∞ and by the proof of k = 1. On the other hand, let us assume that<br />

(3) holds for some v < ∞ µ−almost everywhere on X. By using the σ−finiteness of<br />

µ, we can find a positive function Φ such that ∫ X Φp vdµ < ∞ and (4) holds.


169<br />

Finally, suppose (4) holds and let v denotes the weight in (5) then<br />

k+1 ∑<br />

n=1<br />

∫<br />

X n<br />

Φ p vdµ =<br />

=<br />

=<br />

=<br />

=<br />

∫<br />

∫<br />

∫<br />

Φ p vdµ + Φ p vdµ + . . . + Φ p vdµ<br />

X 1 X 2 X<br />

∫<br />

k+1<br />

Φ [ p (Φ 1−p T ∗ (T Φ) p−1 w) ] ∫<br />

dµ + Φ [ p (Φ 1−p T ∗ (T Φ) p−1 w) ] dµ<br />

X 1 X<br />

∫<br />

2<br />

+ . . . + Φ [ p (Φ 1−p T ∗ (T Φ) p−1 w) ] dµ<br />

X<br />

∫<br />

k+1<br />

[ [ ΦT<br />

∗<br />

(T Φ) p−1 w ]] ∫ [<br />

dµ +<br />

[ ΦT<br />

∗<br />

(T Φ) p−1 w ]] dµ<br />

X 1 X<br />

∫<br />

2<br />

[<br />

+ . . . +<br />

[ ΦT<br />

∗<br />

(T Φ) p−1 w ]] dµ<br />

X<br />

∫<br />

k+1<br />

[<br />

(T Φ)(T Φ) p−1 w ] ∫ [<br />

dµ + (T Φ)(T Φ) p−1 w ] dµ<br />

X 1 X<br />

∫<br />

2<br />

[<br />

+ . . . + (T Φ)(T Φ) p−1 w ] dµ<br />

X<br />

∫<br />

k+1<br />

∫<br />

∫<br />

[(T Φ) p w] dµ + [(T Φ) p w] dµ + . . . + [(T Φ) p w] dµ<br />

X 1 X 2 X k+1<br />

∫<br />

⇒<br />

[(T f) p w] dµ =<br />

X 1 +X 2 +...+X k+1<br />

by (5).<br />

k+1 ∑<br />

n=1<br />

∫<br />

X n<br />

[(T Φ) p w] dµ < ∞<br />

We conclude that the result in (3) is valid for all n = 1, 2, . . . and the proof is complete.<br />

✷<br />

Remark. If we set n = 1 with X 1 = X in (3), then our result yields Theorem 1<br />

obtained by Kerman and Sawyer [6].<br />

let<br />

Theorem 2.2. For X ∈ R and 1 < p < ∞. Let f(t) ≥ 0 and g(t) ≥ 0 and also<br />

h(t) =<br />

{<br />

f(t) if t > 0<br />

g(t) if t < 0<br />

and zero otherwise, also suppose T is a completely arbitrary integral operator, then<br />

∫<br />

R<br />

∫<br />

[T h](t) p dµ ≤<br />

R<br />

∫<br />

f p v 1 dµ +<br />

If and only if there exists a positive function Φ on t with<br />

X<br />

R<br />

g p v 2 dµ (6)<br />

∫<br />

v 1 = [T Φ] p dµ < ∞ (7)


170<br />

and<br />

or equivalently,<br />

and<br />

∫<br />

v 2 =<br />

X<br />

[T ∗ Φ] p dµ < ∞ (8)<br />

v 1 = Φ 1−p T ∗ (T Φ) p−1 < ∞ (9)<br />

v 2 = Φ 1−p T (T ∗ Φ) p−1 < ∞ (10)<br />

Proof. Suppose T f = ∫ ∞<br />

0 f(t)dt and T ∗ is the dual of T .<br />

Let<br />

Then,<br />

Therefore,<br />

I =<br />

=<br />

∫<br />

R<br />

∫<br />

R<br />

= ∫ x<br />

I = T h(t)<br />

h(t)dt<br />

[f(t) + g(t)] dt<br />

0 f(t)dt + ∫ ∞<br />

x g(t)dt<br />

∫<br />

∫ [∫ x ∫ ∞ p<br />

[T h](t) p dµ = f(t)dt + g(t)dt]<br />

dµ<br />

R<br />

R 0<br />

x<br />

∫ [∫ x<br />

∫ ∞ ]<br />

≤ f(t) p dt + g(t) p dt dµ<br />

R 0<br />

x<br />

By Minkowski’s inequality<br />

∫<br />

∫<br />

= (T f) p dµ + (T ∗ g) p dµ<br />

R<br />

R<br />

∫ [<br />

≤ (T f p Φ 1−p )(T Φ) p−1] ∫ [<br />

dµ + (T ∗ g p Φ 1−p )(T ∗ Φ) p−1] dµ<br />

∫R<br />

[ R<br />

= f p Φ 1−p T ∗ (T Φ) p−1] ∫ [<br />

dµ + g p Φ 1−p T ∗∗ (T ∗ Φ) p−1] dµ<br />

By definition of inner product<br />

∫<br />

∫<br />

= f p v 1 dµ +<br />

Conve<strong>rs</strong>ely, we can assume that (6) holds for some v < ∞ µ−almost everywhere.<br />

R<br />

R<br />

R<br />

g p v 2 dµ<br />

By using the σ−finiteness of µ, we can obtain a positive function Φ such<br />

that ∫ X Φp 1(v 1 )dµ < ∞ and ∫ X Φp 2(v 2 )dµ < ∞, then (7) and (8) holds.<br />

R


171<br />

Finally, suppose (7) and (8) holds and let v denotes the weight in (9) and (10)<br />

then we can use the method of theorem 2.1 to show that<br />

∫<br />

∫<br />

∫<br />

Φ p 1(v 1 )dµ + Φ p 2(v 2 )dµ = [T h](t) p dµ<br />

R<br />

R<br />

There is a similar result for the dual operator. This completes the proof of the<br />

theorem.<br />

✷<br />

R<br />

3. C<strong>ON</strong>SEQUENCE OF OUR MAIN RESULT<br />

The next thorem treats the case of a convolution operator with radially decreasing<br />

kernel on R + .<br />

Theorem 3.1. Let 1 < p < ∞ and suppose that Φ, w(x) ≥ 0 are locally integrable<br />

with respect to Lebesque measure on R + and that Φ(x) = Φ(|x|) is non-increasing as<br />

a function of |x|. Define the convolution operator T by<br />

T h(x) = (Φ ∗ h(x) =<br />

∫ ∞<br />

0<br />

Φ(x − s)ϕ(h(s))dµ(s) (11)<br />

Where ϕ is a scalar function and h(x) is as defined in Theorem 2.2. Then, there<br />

exists a weight function v(x) finite µ−almost everywhere on X and C ≥ 0 such that:<br />

∫<br />

∫<br />

(T h) p wdµ(s) ≤ C(K, p) h p vdµ(s) (12)<br />

X<br />

X<br />

if and only if for all s ∈ R +<br />

∫<br />

X<br />

Φ(x − s) p w(x)d(x) < ∞ (13)<br />

Proof. Equation (11) can be transformed into linear form:<br />

T h(x) =<br />

and a nonlinear element<br />

∫ x<br />

0<br />

Φ(x − s)U(s)dµ(s) (14)<br />

U(t) = ϕ(h(s)) t ∈ R + (15)<br />

The proof follows readily from the proof of theorem 3.1 in [9] and Theorem 3.2, if we<br />

set K(x, y) ≡ Φ(x − s) and also theorem 2.2 of the current paper.<br />


172<br />

References<br />

[1] K. F. Ande<strong>rs</strong>en, H. G. Heinig, Weighted norm inequalities for certain integral<br />

operato<strong>rs</strong>, SIAM J. Math. Anal., 14, No. 4 (1983), 833–844.<br />

[2] P. R. Bees<strong>ac</strong>k, Integral inequalities involving a function and its derivatives, Amer.<br />

Math. Monthly, 78 (1971), 705–741.<br />

[3] G. H. Hardy, J. E. Littlewood, G. Polya, Inequalities, Cambridge Univ. Press,<br />

Cambridge (1952).<br />

[4] H. G. Heinig, Weighted norm inequality for certain integral operato<strong>rs</strong> II, Proc.<br />

Amer. Math. Soc., 95, No. 3 (1985), 387–395.<br />

[5] C. O. Imoru, On some extensions of Hardy’s inequality, Internat. J. Math and<br />

Math. Sc., 8 (1) (1995), 165–171.<br />

[6] R. Kerman, E. Sawyer, On weighted norm inequalities for positive linear operato<strong>rs</strong>,<br />

American Mathematical Society, 25 (1989), 589–593.<br />

[7] B. Muckenhoupt, Hardy’s inequality with weights, Studia Math, 44 (1972),<br />

31–38.<br />

[8] J. A. Oguntuase, R. Adegoke, Weighted norm inequality for some integral operato<strong>rs</strong>,<br />

Zbornik Radova Prirodno-matematickog fakulteta u Kragujevcu, 21 (1999),<br />

55–62.<br />

[9] K. Rauf, C. O. Imoru, Some generalisation of weighted norm inequalities for<br />

a certain class of integral operato<strong>rs</strong>, Kragujev<strong>ac</strong> Journal of Mathematics, 24<br />

(2002), 95–105.<br />

[10] K. Rauf, On an improvement of Bicheng, Zhuohua and Debnath’s Results, Journal<br />

of the Mathematical Association of Nigeria, ABACUS, 31, No. 2B (2004),<br />

257–261.


173<br />

[11] K. Rauf, A Char<strong>ac</strong>terization of Weighted Norm for the Hardy-Littlewood Maximal<br />

Function, The Nigerian Journal of Pure and Applied Sciences, 19 (2004),<br />

1734–1740.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!