11.01.2015 Views

Organocatalysed asymmetric Mannich reactions

Organocatalysed asymmetric Mannich reactions

Organocatalysed asymmetric Mannich reactions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

(Cooperation Northern Netherlands) and EFRO (European<br />

Fund for Regional Development).<br />

Scheme 44<br />

With 4-Cl or 4-F-substituents, the reaction of acyclic ketones<br />

with aromatic aldehydes in the presence of (substituted) aniline<br />

also proceeded with high enantioselectivities (up to 86% ee).<br />

No diastereoselective examples were reported.<br />

5 Conclusions<br />

This survey of organocatalytic methods for the synthesis of<br />

<strong>asymmetric</strong> <strong>Mannich</strong> bases leads us to conclude that this is a<br />

promising field for which many new applications in the<br />

synthesis of biologically active compounds will emerge. It also<br />

becomes evident that the use of proline as the catalyst gives<br />

easy access to syn-products in high yields with high regio-,<br />

chemo-, diastereo- and enantioselectivity. Since proline is<br />

commercially available in L- and D-form, the products can also<br />

be obtained in both enantiomeric forms. Both one-pot threecomponent<br />

<strong>reactions</strong> and <strong>reactions</strong> with preformed imines<br />

have extensively been studied using unmodified ketones and<br />

aldehydes as <strong>Mannich</strong>-donors. It must be noted that a<br />

relatively high catalyst loading generally has to be used<br />

(typically 10–30 mol%). This is mainly due to the low solubility<br />

of proline in (a)polar organic solvents. Some research groups<br />

have therefore developed new, more soluble catalysts to<br />

overcome this problem. However, this led to more expensive<br />

catalysts of which the scope still needs to be fully investigated.<br />

Moreover, since proline catalysis only gives access to synadducts,<br />

anti-directing catalysts were also desired. Nowadays,<br />

a series of enamine forming amines are available that give rise<br />

to the anti-products in good selectivity.<br />

Besides catalysis by proline and derivatives, chiral bases<br />

have also been successfully employed in combination with<br />

electron-poor imines and active methylene compounds.<br />

Success in this particular reaction is often facilitated by<br />

introducing thiourea moieties, that interact with the system<br />

through cooperative hydrogen bonding.<br />

Finally, chiral Brønsted acids (mostly phosphoric acids)<br />

have been employed to include the iminium ion in a chiral ion<br />

pair, which also results in enantioselective addition onto the<br />

iminium species.<br />

Acknowledgements<br />

anti-Selective Brønsted acid-catalysed <strong>reactions</strong>.<br />

This work forms part of the Ultimate Chiral Technology<br />

project supported in part with funds provided by SNN<br />

References<br />

1 A. Berkessel and H. Gröger, Asymmetric Organocatalysis, Wiley-<br />

VCH, Weinheim, 2005; P. I. Dalko, Enantioselective<br />

Organocatalysis, Wiley-VCH, Weinheim, 2007.<br />

2 M. Arend, B. Westermann and N. Risch, Angew. Chem., Int. Ed.,<br />

1998, 37, 1044–1070.<br />

3 For a short survey of highlights in this field, see: M. M. B. Marques,<br />

Angew. Chem., Int. Ed., 2006, 45, 348.<br />

4 For a recent review in this area, see: A. Ting and Scott E. Schaus,<br />

Eur. J. Org. Chem., 2007, DOI: 10.1002/ejoc.200700409.<br />

5 B. List, J. Am. Chem. Soc., 2000, 122, 9336.<br />

6 B. List, P. Pojarliev, W. T. Biller and H. J. Martin, J. Am. Chem.<br />

Soc., 2002, 124, 827–833, and references therein.<br />

7 W. Notz, S. Watanabe, N. S. Chowdari, G. Zhong, J. M.<br />

Betancort, F. Tanaka and C. F. Barbas III, Adv. Synth. Catal.,<br />

2004, 346, 1131–1140, and references therein.<br />

8 W. Notz, F. Tanaka and C. F. Barbas III, Acc. Chem. Res., 2004,<br />

37, 580–591, and references therein.<br />

9 A. Córdova, Chem.–Eur. J., 2004, 10, 1987–1997.<br />

10 Y. Hayashi, W. Tsuboi, I. Ashimine, T. Urushima,<br />

M. Shoji and K. Sakai, Angew. Chem., Int. Ed., 2003, 42,<br />

3677–2680.<br />

11 Y. Hayashi, T. Urushima, M. Shin and M. Shoji, Tetrahedron,<br />

2005, 61, 11393–11404.<br />

12 I. Ibrahem, W. Zou, Y. Xu and A. Córdova, Adv. Synth. Catal.,<br />

2006, 348, 211–222, and references therein.<br />

13 S. Fustero, D. Jiménez, J. F. Sanz-Cervera, M. Sánchez-Roselió,<br />

E. Esteban and A. Simón-Fuentes, Org. Lett., 2005, 7, 3433, and<br />

references therein.<br />

14 B. Westermann and C. Neuhaus, Angew. Chem., Int. Ed., 2005, 44,<br />

4077–4079.<br />

15 D. Enders, C. Grondal, M. Vrettou and G. Raabe, Angew. Chem.,<br />

Int. Ed., 2005, 44, 4079–4083.<br />

16 I. Ibrahem, W. Zou, M. Enqvist, Y. Xu and A. Córdova, Chem.–<br />

Eur. J., 2005, 11, 7024–7029.<br />

17 A. J. A. Cobb, D. M. Shaw, D. A. Longbottom, J. B. Gold and<br />

S. V. Ley, Org. Biomol. Chem., 2005, 3, 84–96.<br />

18 N. S. Chowdari, M. Ahmad, K. Albertshofer, F. Tanaka and<br />

C. F. Barbas, III., Org. Lett., 2006, 8, 2839–2842.<br />

19 W. Wang, J. Wang and H. Li, Tetrahedron Lett., 2004, 45,<br />

7243–7246.<br />

20 Y. Hayashi, J. Yamaguchi, K. Hibino, T. Sumiya, T. Urushima,<br />

M. Shoji, D. Hashizume and H. Koshino, Adv. Synth. Catal., 2004,<br />

346, 1435–1439.<br />

21 P. G. M. Wuts and T. W. Greene, Greene’s Protective<br />

Groups in Organic Synthesis, Wiley-VCH, Weinheim, 4th edn,<br />

2007.<br />

22 S. De Lamo Marin, T. Martens, C. Mioskowski and J. Royer,<br />

J. Org. Chem., 2005, 70, 10592–10595.<br />

23 J. M. M. Verkade, L. J. C. van Hemert, P. J. L. M. Quaedflieg,<br />

P. L. Alsters, F. L. van Delft and F. P. J. T. Rutjes, Tetrahedron<br />

Lett., 2006, 47, 8109–8113.<br />

24 J. M. M. Verkade, L. J. C. van Hemert, P. J. L. M. Quaedflieg,<br />

H. E. Schoemaker, M. Schürmann, F. L. van Delft and<br />

F. P. J. T. Rutjes, Adv. Synth. Catal., 2006, 349, 1332–1336.<br />

25 D. Enders, C. Grondal and M. Vrettou, Synthesis, 2006, 21,<br />

3597–3604.<br />

26 J. Vesely, R. Rios, I. Ibrahem and A. Córdova, Tetrahedron Lett.,<br />

2007, 48, 421–425.<br />

27 J. W. Wang, M. Stadtler and B. List, Angew. Chem., Int. Ed., 2007,<br />

46, 609–611.<br />

28 A. Córdova and C. F. Barbas, III., Tetrahedron Lett., 2002, 43,<br />

7749–7752.<br />

29 W. Notz, F. Tanaka, S.-I. Watanabe, N. S. Chowdari, J. M.<br />

Turner, R. Thayumanavan and C. F. Barbas, J. Org. Chem., 2003,<br />

68, 9624–9634.<br />

30 J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz,<br />

A. Kjærsgaerd and K. A. Jørgensen, J. Am. Chem. Soc., 2005,<br />

127, 18296–18304.<br />

40 | Chem. Soc. Rev., 2008, 37, 29–41 This journal is ß The Royal Society of Chemistry 2008

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!