12.01.2015 Views

THEOREM ON COMMUTATION IN THE PRINCIPAL PART

THEOREM ON COMMUTATION IN THE PRINCIPAL PART

THEOREM ON COMMUTATION IN THE PRINCIPAL PART

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

6 M.S. AKBASHEVA, A.B. SHABAT<br />

In the first case, the triangular substitution reduces the operator A to a one-dimensional one,<br />

and in the second case, the substitution<br />

{︃<br />

{︃<br />

x = ˆx + ˆy<br />

D^x = D x + 3D y<br />

⇒<br />

.<br />

y = 3ˆx + 2ˆy D^y = D x + 2D y<br />

reduces the pair (13) to the case of separating variables:<br />

A = A 1 · A 2 , [A 1 , A 2 ] = 0, B = A 3 1A 2 2, A 1 = e x D x , A 2 = e y D y .<br />

2.2. The case N > 2. The problem of classifying polynomials satisfying the functional<br />

equation (5) and its Corollary (3) when N > 2 remains open so far. In the simplest case of<br />

second-order operators and N = 3:<br />

A = e x · a(D x , D y , D z ), B = e y · b(D x , D y , D z ),<br />

Equation (3) is reduced to the following system of algebraic equations for 12 coefficients of<br />

homogeneous polynomials P (ξ, η, ζ) = a 0 (ξ, η, ζ), Q(ξ, η, ζ) = b 0 (ξ, η, ζ):<br />

P = a 1 ξ 2 + a 2 ξη + a 3 ξζ + a 4 η 2 + a 5 ηζ + a 6 ζ 2 , Q = b 1 ξ 2 + b 2 ξη + · · · + b 6 ζ 2 ,<br />

2a 1 b 1 = b 1 a 2 , a 4 b 2 = 2a 4 b 4 , a 6 b 3 = a 5 b 6 , a 1 b 2 + 2a 2 b 1 = 2a 4 b 1 + a 2 b 2 (22 1 )<br />

a 1 b 3 + 2b 1 a 3 = b 1 a 5 + a 2 b 3 , a 2 b 2 + 2a 4 b 1 = 2a 4 b 2 + a 2 b 4 , a 3 b 3 + 2a 6 b 1 = b 3 a 5 + b 6 a 2 (22 2 )<br />

a 2 b 3 + a 3 b 2 + 2a 5 b 1 = b 2 a 5 + 2b 3 a 4 + b 5 a 2 , a 4 b 3 + a 5 b 2 = b 4 a 5 + 2b 5 a 4 (22 3 )<br />

variant : b 1 = a 4 = 1, a 5 b 3 + a 6 b 2 = b 5 a 5 + 2b 6 a 4 (22 4 )<br />

In case of the general condition b 1 a 4 ≠ 0, this system provides a two-parameter system:<br />

P = Q = (ξ + η) 2 + α(ξ + η)ζ + λαζ 2 = (ξ + η + β 1 ζ)(ξ + η + β 2 ζ)<br />

of solutions to Equation (3) and the corresponding commuting operators<br />

A = e x (D x + D y + β 1 D z )(D x + D y + β 2 D z ), B = e y−x A. (2.14)<br />

Imposing additional conditions on the parameters β j , one can obtain the third operator C of<br />

the form (2), commuting with (2.14).<br />

BIBLIOGRAPHY<br />

1. I. Schur Uber vertauschbare lineare Differentialausdrucke // Sitzungsber. Berliner Math. Gen.<br />

1905. 4. P. 2–8.<br />

2. J.L. Burchnall, T.W. Chaundy Commutative ordinary diff. operators, II. The identity P n = Q m<br />

// Proc. Roy. Soc. London, (A). 1932. 134. P. 471–485.<br />

3. Shabat A.B., Elkanova Z.S. On commuting differential operators // TMF. 2010. V. 162, 3.<br />

P. 334–344. In Russian.<br />

4. Shabat A.B., Elkanova Z.S. On commutativity conditions of differential operators // UMJ. 2011.<br />

V. 3, 2. P. 91–99.<br />

Madina Salikhovna Akbasheva,<br />

Aliev Karachaevo-Cherkesiya State University<br />

369202, Karachaevsk, Lenin Str., 29, Russia<br />

E-mail: Haliy 0986@mail.ru<br />

Aleksey Borisovich Shabat,<br />

Aliev Karachaevo-Cherkesiya State University<br />

369202, Karachaevsk, Lenin Str., 29, Russia<br />

E-mail: Shabatab@mail.ru<br />

Translated from Russian by E.D. Avdonina.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!