21.02.2015 Views

A converse to Halasz's theorem - IAS

A converse to Halasz's theorem - IAS

A converse to Halasz's theorem - IAS

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

12 MAKSYM RADZIWI̷L̷L<br />

Lemma 7. Let Ψ(·) be a distribution function. Let f be a positive strongly additive function.<br />

Suppose that 0 f(p) O(1) for all primes p. Let<br />

K f (x; t) :=<br />

1<br />

B 2 (f; x)<br />

∑<br />

p x<br />

f(p) t<br />

If K f (x; t) − Ψ(t) ≪ 1/B 2 (f; x) uniformly in t ∈ R, then<br />

f(p) 2<br />

ρ Ψ (B(f; x); ∆) − η f (x; ∆) = o(1/B 2 (f; x))<br />

uniformly in 1 ∆ o(B(f; x)). The symbols ρ Ψ (B(x); ∆) and η f (x; ∆) are defined in<br />

lemma 6 and lemma 5 respectively.<br />

Proof. Let η = η f (x; ∆). Recall that by lemma 5, η = o(1) in the range 1 ∆ o(B(f; x)).<br />

This will justify the numerous Taylor expansions involving the parameter η. With K f (x; t)<br />

defined as in the statement of the lemma, we have<br />

(15)<br />

∑<br />

px<br />

f(p)e ηf(p)<br />

p<br />

− µ(f; x) = ∑ f(p)(e ηf(p) − 1)<br />

p<br />

px<br />

∫<br />

= B 2 e ηt − 1<br />

(f; x) dK f (x; t)<br />

R t<br />

Let M > 0 be a real number such that 0 f(p) M for all p. Since the f(p) are bounded,<br />

for each x > 0 the distribution function K f (x; t) is supported on [0; M]. Furthermore since<br />

K f (x; t) → Ψ(t) the distribution function Ψ(t) is supported on exactly the same interval.<br />

From these considerations, it follows that<br />

∫<br />

e ηt ∫<br />

− 1<br />

M<br />

e ηt − 1<br />

dK f (x; t) =<br />

dK f (x; t)<br />

(16)<br />

=<br />

R<br />

∫ M<br />

0<br />

t<br />

e ηt − 1<br />

dΨ(t) +<br />

t<br />

∫ M<br />

0<br />

p<br />

0 t<br />

(<br />

Kf (x; t) − Ψ(t) ) [ ]<br />

e ηt − ηt · e ηt − 1<br />

· dt<br />

t 2<br />

By a simple Taylor expansion e ηt − ηt · e ηt − 1 = O(η 2 t 2 ). Therefore the integral on the right<br />

hand side is bounded by O(η 2 /B 2 (f; x)). We conclude from (15) and (16) that<br />

∑ f(p)e ηf(p)<br />

∫<br />

(17)<br />

− µ(f; x) = B 2 e ηt − 1<br />

(f; x) dΨ(t) + O ( η 2)<br />

p<br />

t<br />

px<br />

By definition of ρ Ψ and η f ,<br />

∫<br />

(18) B 2 e ρΨ(B;∆)t − 1<br />

(f; x)<br />

dΨ(t) = ∆B(f; x) = ∑ f(p)e η f (x;∆)f(p)<br />

− µ(f; x)<br />

R t<br />

p<br />

px<br />

From (17) and (18) it follows that<br />

∫<br />

(19) B 2 e ρΨ(B;∆)t − e η f (x;∆)t<br />

(f; x)<br />

dΨ(t) = O ( η 2<br />

t<br />

f(x; ∆) )<br />

R<br />

Since Ψ(t) is supported on [0; M] we can restrict the above integral <strong>to</strong> [0; M]. By lemma 5,<br />

we have η f (x; ∆) ∼ ∆/B(f; x) = o(1) in the range ∆ o(B(f; x)). Also 0 ρ Ψ (x; ∆) <br />

R

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!