23.02.2015 Views

The PHOENIX Model Atmosphere Package - FTP Directory Listing

The PHOENIX Model Atmosphere Package - FTP Directory Listing

The PHOENIX Model Atmosphere Package - FTP Directory Listing

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong><br />

<strong>Atmosphere</strong> <strong>Package</strong><br />

Peter H. Hauschildt<br />

yeti@hs.uni-hamburg.de<br />

Hamburger Sternwarte<br />

Gojenbergsweg 112<br />

21029 Hamburg<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.1


<strong>PHOENIX</strong> version 16<br />

integrated /1D and /3D versions<br />

same micro-physics from 1D to 3D<br />

new EOS (ACES)<br />

dust formation/destruction →<br />

DRIFT (Helling & Woitke)<br />

massively parallel:<br />

multi-stage domain decomposition<br />

MPI<br />

weak & strong scaling verified to 4k+ processes<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.2


Applications<br />

<strong>PHOENIX</strong> v16 is being used to model<br />

“all” types of normal stars<br />

nova and supernova atmospheres<br />

very low mass stars, brown dwarfs & Exoplanet<br />

atmospheres<br />

irradiated planets/stars<br />

terrestrial planets<br />

disks (proto-planetary, AGN)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.3


<strong>Model</strong> Construction<br />

Basic Physical <strong>Model</strong><br />

spherical shell<br />

static (stars) or expanding (novae, winds, SNe)<br />

hydrostatic or hydrodynamical equilibrium<br />

central source provides energy<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.4


<strong>Model</strong> Construction<br />

Constraint equations:<br />

energy conservation<br />

→ temperature structure<br />

momentum conservation<br />

→ pressure & velocity structure<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.5


<strong>Model</strong> Construction<br />

“Auxiliary” equations:<br />

Radiative transfer equation<br />

solved via (non-local) operator splitting<br />

full characteristics based method<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.6


<strong>Model</strong> Construction<br />

Radiative transfer equation<br />

1 or 3D<br />

time independence<br />

problem: scattering (dust, lines)<br />

∂<br />

∂t I(ν,⃗x, ˆ⃗n) + ˆ⃗n · ∇I(ν,⃗x, ˆ⃗n)<br />

(<br />

= χ(ν,⃗x) S(ν,⃗x) − I(ν,⃗x, ˆ⃗n)<br />

)<br />

solve for large optical depths & strong scattering<br />

allow for irradiation, velocity fields<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.7


3DRT Framework<br />

Cartesian (spherical, cylindrical) coordinates<br />

voxel grid (“cells”)<br />

physical data constant within a voxel<br />

solve RT inside the voxels<br />

grid coordinates, e.g., [−n x , +n x ]<br />

→ voxel coordinates from (−n x , −n y , −n z ) to<br />

(+n x , +n y , +n z )<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.8


Data size<br />

small grid:<br />

n x = n y = n z = 32<br />

→ (2 ∗ 32 + 1) 3 = 274 625 voxels<br />

compare to typically 64 to 128 grid points in 1D!<br />

large grid:<br />

n x = n y = n z = 128<br />

→ (2 ∗ 128 + 1) 3 = 16 974 593 voxels<br />

→ one scalar physical variable (e.g., T) → 129 MB<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.9


3DRT Framework<br />

solution through operator splitting<br />

[1 − Λ ∗ (1 − ǫ)] ¯J new = ¯J fs − Λ ∗ (1 − ǫ) ¯J old ,<br />

where ¯J fs = ΛS old .<br />

need method to perform FS<br />

need method to construct Λ ∗<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.10


Computation of Λ ∗<br />

tri-diagonal operator in the 1D case<br />

→ nearest neighbor Λ ∗ in 3D<br />

1D: considers interaction of point with two direct<br />

neighbors<br />

3D: interaction of a voxel with the 3 3 − 1 = 26<br />

surrounding voxels<br />

(or 6 neighbors in strictly face-centered view)<br />

3D: storage requirements large but worth it!<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.11


convergence: ǫ l = 10 −8<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.12


<strong>Model</strong> Construction<br />

“Auxiliary” equations:<br />

equation of state → (T,P gas ,ρ) relation<br />

high temperatures:<br />

(hot stars, Supernovae, novae)<br />

→ need to include many ions<br />

low temperatures:<br />

(Brown dwarfs, Jupiter-like planets, cool<br />

novae)<br />

→ need to include 100’s of molecules & dust<br />

species<br />

ACES EOS (Travis Barman), valid above 100 K<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.13


Molecules<br />

Selected molecules considered in the EOS<br />

NH C 2 CN CO MgH CaH SiH TiO H 2 O H 2<br />

N 2 NO CO 2 O 2 ZrO VO MgS SiO AlH HCl<br />

HF HS TiH AlO BO CrO LaO MgO ScO YO<br />

SiF NaCl CaOH HCN C 2 H 2 CH 4 CH 2 C 2 H HCO NH 2<br />

LiOH C 2 O AlOF NaOH MgOH AlO 2 Al 2 O AlOH SiH 2 SiO 2<br />

H 2 S OCS KOH TiO 2 TiOCl VO 2 FeF 2 YO 2 ZrO 2 BaOH<br />

LaO 2 C 2 H 4 C 3 SiC 2 CH 3 C 3 H NH 3 C 2 N 2 C 2 N CaF 2<br />

AlOCl Si 2 C CS 2 CaCl 2 AlF CaF Si 2 SiS CS AlCl<br />

KCl CaCl TiS TiCl SiN AlS AL 2 FeO SiC TiF 2<br />

FeH LiCl NS NaH SO S 2 AlBO 2 AlClF AlCl 2 AlF 2<br />

AlOF 2 AlO 2 H Al 2 O 2 BeBO 2 OBF HBO HBO 2 HBS BH 2 BO 2 H 2<br />

BH 3 H 3 BO 3 KBO 2 LiBO 2 NaBO 2 BO 2 BaCl 2 BaF 2 BaO 2 H 2 BaClF<br />

BeCl 2 BeF 2 BeOH BeH 2 BeH 2 O 2 Be 2 O Be 3 O 3 ClCN CHCl CHF<br />

CHP CH 3 Cl KCN NaCN BeC 2 C 2 HCl C 2 HF (NaCN) 2 C 4 C 5<br />

CaO 2 H 2 MgClF SiH 3 Cl FeCl 2 K 2 Cl 2 MgCl 2 Na 2 Cl 2 TiOCl 2 SrCl 2 TiCl 2<br />

ZrCl 2 TiCl 3 ZrCl 3 ZrCl 4 CrO 2 SiH 3 F OTiF SiH 2 F 2 MgF 2 SrF 2<br />

ZrF 2 TiF 3 ZrF 4 FeO 2 H 2 SrOH (KOH) 2 (LiOH) 2 MgO 2 H 2 (NaOH) 2 SrO 2 H 2<br />

PH 2 PH 3 SiH 4 Si 2 N PO 2 SO 2 P 4 Si 3 NO 2 NO 3<br />

C 3 N C 2 H 3 C 4 H HC 3 N C 4 H 2 CH 3 CN HC 5 N C 6 H C 4 H 4 C 6 H 2<br />

HC 7 N C 4 H 4 S C 4 H 4 O C 4 H 6 C 6 H 4 HC 9 N C 5 H 5 N C 6 H 5 O C 6 H 6 C 6 H 6 O<br />

HC 11 N OH − CH − C − 2 OH CH CN − SiH − H − 2 HS −<br />

CS − FeO − BO − AlCl<br />

− 2 AlF<br />

− 2 AlOF − 2 AlOH − CO<br />

− 2 NO + H<br />

+ 2<br />

TiO + ZrO + AlOH + BaOH + HCO + CaOH + SrOH + H 3 O + H + 3<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.14


Liquids & Solids<br />

Selected liquid/dust species considered in the EOS<br />

Al/l B/l Ba/l Be/l Ca/l Cr/l Cu/l Fe/l K/l<br />

Li/l Mg/l Mn/l Na/l Nb/l Ni/l P/l S/l Si/l<br />

Sr/l Ti/l V/l Zn/l Zr/l BeO/l ClK/l NbO/l OSr/l<br />

ClNa/l VO/l B 2 Ti/l BaCl 2 /l CaCl 2 /l Cl 2 Fe/l Cl 2 Sr/l O 2 Si/l Li 2 O/l<br />

Mg 2 Si/l Cu 2 O/l Cl 3 Fe/l Cr 2 O 3 /l NiS 2 /l BLiO 2 /l Cl 2 S 2 /l Ni 3 S 2 /l Al 2 O 3 /l<br />

O 3 V 2 /l Cl 5 Nb/l Nb 2 O 5 /l B 4 K 2 O 7 B 4 Na 2 O 7 Li 2 O 3 Si B 4 Li 2 O 7 Mg 3 O 8 P 2 Al 3 F 14 N<br />

B 5 H 9 /l H 10 O 8 S B 8 K 2 O 13 B 10 H 14 Al B Ba Be C<br />

Ca Co Cr Cu Fe Li Mg Mn Na<br />

Nb Ni P S Si Sr Ti V Zn<br />

Zr MgO FeS CaO CaS MgS TiN AlN NiS<br />

MnS TiO VO CuO FeO TiC SiC ZrC H 2 O<br />

TiO 2 ZrO 2 SiO 2 FeS 2 NiS 2 Mg 3 N 2 Ni 3 S 2 Ti 2 O 3 Ti 3 O 5<br />

Ti 4 O 7 V 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 O 3 Al 2 S 3 Cr 2 O 3 CaTiO 3<br />

MgTiO 3 MgSiO 3 CaSiO 3 MnSiO 3 Na 2 SiO 3 K 2 SiO 3 Fe 2 SiO 4 Ca 2 SiO 4 Mg 2 SiO 4<br />

ZrSiO 4 Fe 2 O 3 Fe 3 O 4 MgAl 2 O 4 MgTi 2 O 5 Al 2 SiO 5 CaMgSi 2 Ca 2 MgSi Ca 2 Al 2 S<br />

CaAl 2 Si KAlSi 3 O NaAlSi 3 Al 6 Si 2 O MgC 2 Cr 3 C 2 Mg 2 C 3 Al 4 C 3 Cr 7 C 3<br />

Cr 23 C 6<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.15


<strong>Model</strong> Construction<br />

statistical equilibrium equations<br />

→ relate the population of each energy level to<br />

non-local radiation field and to collisional<br />

processes<br />

radiative transfer & statistical equilibrium<br />

equations are intricately coupled<br />

→ must be solved together<br />

→ statistical equations are inherently non-local ⇒<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.16


Fe NLTE model atoms<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.17


<strong>Model</strong> Construction<br />

atomic line blanketing: ≈ 5 − 30 × 10 6 lines<br />

dynamically selected from a list of 83 × 10 6 lines<br />

molecular line blanketing: ≈ 15 − 600 × 10 6 lines<br />

dynamically selected from a list of 1.2 × 10 9 lines<br />

direct opacity sampling of line blanketing<br />

depth dependent line profiles<br />

→ no ODF or opacity sampling tables (NLTE!).<br />

special profiles for important lines<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.18


Computational Problem<br />

1D (serial) CPU time: 1–6 CPU days<br />

3D (serial) CPU time: 10 CPU years<br />

Solution: parallel computing<br />

dramatically reduces wallclock time per model<br />

allows efficient use of existing large<br />

supercomputer facilities<br />

1D: 8-16 CPUs for a few hours<br />

3D: 4096 CPUs for one day<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.19


Results: A stars<br />

models work well for A0V’s . . .<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.20


Results: solar type stars<br />

models work well for G2V’s . . .<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.21


Dust formation/destruction<br />

directly couple DRIFT (Helling & Woitke) dust<br />

model to <strong>PHOENIX</strong> model atmospheres<br />

<strong>PHOENIX</strong> → provides atmosphere structure<br />

(T,P g ,...)<br />

DRIFT → compute dust formation/destruction<br />

(cloud deck)<br />

→ feedback to <strong>PHOENIX</strong><br />

→ new atmosphere structure<br />

iterate to convergence<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.22


DRIFT dust mode<br />

Helling & Woitke<br />

stationary solution<br />

nucleation rates for (TiO 2 ) N seeds<br />

7 most important solids used (TiO 2 , Al 2 O 3 , Fe, SiO 2 ,<br />

MgO, MgSiO 3 , Mg 2 SiO 2 )<br />

mixing by convection + overshooting<br />

grain size distribution via moments<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.23


DRIFT dust mode<br />

Helling et al (2001)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.24


DRIFT-<strong>PHOENIX</strong> models<br />

location of convection zone crucial for dust<br />

formation!<br />

considering feedback dust formation vs.<br />

atmosphere structure crucial<br />

cloud deck depends on model parameters<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.25


atmosphere structure feedback<br />

Dissertation M. Dehn (2007)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.26


Application: good fits<br />

Witte et al (2011)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.27


Application: good fits<br />

Witte et al (2011)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.28


Application: good fits<br />

Witte et al (2011)<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.29


Irradiation<br />

temperature structure for different separations<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.30


Irradiation<br />

EGP spectra for different separations<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.31


Results: 2D structure<br />

roll the movie!<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.32


Results: 3DRT w/ irradiation<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.33


Results: 3D w/ irradiation<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.34


spherical 3D coordinates<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.35


<strong>PHOENIX</strong> 1D vs 3D: 3000K<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.36


<strong>PHOENIX</strong> 1D vs 3D: 5700K<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.37


<strong>PHOENIX</strong> 1D vs 3D: 9000K<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.38


3D visualization: hydro model, line<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.39


3D visualization: GCM planet<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.40


Conclusions: <strong>The</strong> Future<br />

better/more detailed line profiles<br />

optical properties of dust particles<br />

→ materials physics!<br />

detailed models of dust formation<br />

→ composition/sizes/shapes<br />

non-equilibrium effects → NLTE+NLCE<br />

multi-D RT calculations → irradiation<br />

Brussels.tex – <strong>The</strong> <strong>PHOENIX</strong> <strong>Model</strong> <strong>Atmosphere</strong> <strong>Package</strong> – Peter H. Hauschildt – 21/6/2011 – 16:49 – p.41

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!