01.03.2015 Views

NORMED SPACE OF

NORMED SPACE OF

NORMED SPACE OF

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

4 S. EKARIANI, H. GUNAWAN, M. IDRIS<br />

By Minkowski’s inequality, we have<br />

Hence we obtain<br />

⎛<br />

∣ ∣<br />

⎝ 1 ∑ ∑ ∑ ∑ ∣∣∣∣∣ ∣∣∣∣∣ η 1j1 η 1j2 η 1j3<br />

ξ k η 2j1 η 2j2 η 2j3<br />

3!<br />

k j 1 j 2 j 3 η 3j1 η 3j2 η 3j3<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

⎛<br />

∣ ∣<br />

≤ ⎝ 1 ∑ ∑ ∑ ∑ ∣∣∣∣∣ ∣∣∣∣∣ η 2j2 η 2k η 2j3<br />

η 1j1 ξ j2 ξ k ξ j3<br />

3!<br />

k j 1 j 2 j 3 η 3j2 η 3k η 3j3<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

⎛<br />

∣ ∣<br />

⎝ 1 ∑ ∑ ∑ ∑ ∣∣∣∣∣ ∣∣∣∣∣ η 2j1 η 2k η 2j3<br />

η 1j2 η 3j1 η 3k η 3j3<br />

3!<br />

k j 1 j 2 j 3 ξ j1 ξ k ξ j3<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

⎛<br />

∣ ∣<br />

⎝ 1 ∑ ∑ ∑ ∑ ∣∣∣∣∣ ∣∣∣∣∣ η 2j1 η 2k η 2j2<br />

η 1j3 ξ j1 ξ k ξ j2<br />

3!<br />

k j 1 j 2 j 3 η 3j1 η 3k η 3j2<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

⎛<br />

∣ ∣<br />

⎝ 1 ∑ ∑ ∑ ∑ ∣∣∣∣∣ ∣∣∣∣∣ η 1j1 η 1j3 η 1j2<br />

η 2k η 3j1 η 3j3 η 3j2<br />

3!<br />

k j 1 j 2 j 3 ξ j1 ξ j3 ξ j2<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

⎛<br />

∣ ∣ ∣∣∣∣∣ ∣∣∣∣∣<br />

⎝ 1 ∑ ∑ ∑ ∑ η 1j1 η 1j3 η 1j2<br />

η 3k ξ j1 ξ j3 ξ j2<br />

3!<br />

k j 1 j 2 j 3 η 2j1 η 2j3 η 2j2<br />

∣∣ ∣∣∣∣∣ ∣∣∣∣∣ p⎞<br />

⎠<br />

= 3 ∥y 1 ∥ p ∥x, y 2 , y 3 ∥ p + ∥y 2 ∥ p ∥x, y 1 , y 3 ∥ p + ∥y 3 ∥ p ∥x, y 1 , y 2 ∥ p .<br />

∥x∥ p ∥y 1 , y 2 , y 3 ∥ p ≤ 3∥y 1 ∥ p ∥x, y 2 , y 3 ∥ p + ∥y 2 ∥ p ∥x, y 1 , y 3 ∥ p + ∥y 3 ∥ p ∥x, y 1 , y 2 ∥ p ,<br />

1<br />

p<br />

1<br />

p<br />

1<br />

p<br />

1<br />

p<br />

1<br />

p<br />

1<br />

p<br />

+<br />

+<br />

+<br />

+<br />

as desired.<br />

□<br />

Proposition 2.5. Let {a 1 , . . . , a n } be a linearly independent set on l p . Then the<br />

norm ∥ ⋅ ∥ ∗ p defined in Proposotion 2.3 is equivalent to the usual norm ∥ ⋅ ∥ p on l p .<br />

Precisely, we have<br />

n∥a 1 , . . . , a n ∥ p<br />

(2n − 1) [∥a 1 ∥ p + ⋅ ⋅ ⋅ + ∥a n ∥ p ] ∥x∥ p ≤ ∥x∥ ∗ p<br />

for every x ∈ l p .<br />

⎡<br />

≤ (n!) 1− 1 p ⎣<br />

∑<br />

{i 2,...,i n}⊂{1,...,n}<br />

⎤<br />

∥a i2 ∥ p p ⋅ ⋅ ⋅ ∥a in ∥ p ⎦<br />

p<br />

1<br />

p<br />

∥x∥ p<br />

Proof. For any x ∈ l p and any subset {i 2 , . . . , i n } of {1, 2, . . . , n}, we observe that<br />

∥x, a i2 , . . . , a in ∥ p ≤ (n!) 1−(1/p) ∥x∥ p ∥a i2 ∥ p ⋅ ⋅ ⋅ ∥a in ∥ p .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!